論文名稱 應用支援向量迴歸於交通資料遺失值之插補:以固定式車輛偵測器資料為例
學位 碩士
年別 105
學校系所 淡江大學運輸管理學系
作者 葉蕢誠
指導教授 董啟崇
論文摘要 支援向量迴歸(Support Vector Regression, SVR)係源自於支援向量機的機器學習方法,早期運用於模式識別領域,其具有容許誤差、不需過多假設,且透過核函數(Kernel Function)處理在高維空間非線性轉換問題的特點。相關研究透過此方法處理交通領域的問題,如交通量預測、旅行時間預測等,證實有良好的成果。因此本研究目的係構建以SVR為基礎的快速反應插補模型,並檢視其特性,包括預測準確性、模式參數是否達到穩定及泛用,以及操作上是否容易,追求建立一套可以簡易修正的基礎模式參數,並可調整因應適用於不同的情境狀態問題。本研究有別以往研究模式構建直接以原始時序資料投入模式中,模式構建係以基本鄰近上、下游資料作為錨定值及上下游資料間相對變動量(差分值)之核心差分反應模型,並可透過調整因子來鬆綁模式應用限制,如參考點相對位置及車道數變化等。另基於現階段國內交通資料的蒐集仍以固定式車輛偵測器為主,本研究選擇以封閉式直線路段之速率資料作為模式示範插捕對象,並選擇不同道路等級與區域進行校估及驗證。SVR模式參數校估可分為兩部分,其一為模式內部運作參數之懲罰系數C、核函數的寬度係數γ,以及不敏感損失函數的寬度ε,並以先設ε值進行K-fold交叉驗證進行調校(C, γ);其二為校估轉換後之線性迴歸式的權重係數ω及截距項。
附件下載 (電子檔於105-10-27後開放下載)
應用支援向量迴歸於交通資料遺失值之插補:以固定式車輛偵測器資料為例.pdf
張貼日 2016/11/04
Hashtags
查看次數: 102