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ABSTRACT:

The fast computational method derived by Clamond & Grue (2001) for two-dimensional fully
nonlinear non-overturning waves is extended for simulation of these waves propagating on a
unidirectional; vertically shear current in the direction parallel to this current. To achieve this purpose,
the wave field is decomposed into an irrotational component and a rotational one and a special relation
between these two components is subsequently derived, which can serve as a closure equation when the
irrotational component is solved independently by using the Clamond-Grue method, after which the
rotational component can also be estimated at the free surface. This approach involves fewer
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the vertical direction is nearly linear has been made here. By using this numerical scheme, we clearly
demonstrate that even nonlinear waves can be blocked and reflected by a vertically shear current, and
since this phenomenon is stable, it is not unusual to be seen in the ocean and may therefore be related to
freak waves.
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1. The numerical scheme developed here can simulate the wave-current interaction with fewer
restrictions as compared with the previous methods and therefore has a wide application.

2. The demonstration of the theory that steep surface gravity waves can stably be blocked and reflected
by a vertically sheared current can put more confidence in the idea that freak waves are induced
mainly by this process, which can benefit the future development of a freak wave forecasting
system.

APPLICATIONS:

The results given here will in the fourth year of the project be applied in a case study to decide
whether or not the boat casualties occurred previously in the regions near Taiwan are mostly due to the
blockage and reflection of waves by currents. The development of a reliable freak wave forecasting
system will become possible.
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B—E HIS

ERAR (freak, rogue, or giant waves) RH B & ERBITE—ARER 15
o, RE LG TFREMERFINGE R ARMEGRPEBRERNE, EBTRRSE, T
#& Mallory (1974) 2O BH, FHBEZ 114418 B 1, BB EREY
7% Agulhas current LE¥t (2R Smith 1976), B4t Irvine & Tilley (1988) ¥
HAEROREZE (synthetic aperture radar) FPESHE RN WIREEE, & 3T
# Agulhas current bR, FER]5|BEME (2R White & Fornberg 1998),

SR ERE R, BRI R R SCHFTS | #2 #, Sk STER LB L
£, BRSNS EREMOEEAMRE R4S EERENEBIESEH. &
T e XE S L Y B TR W LB B, RSB B DU B A e B S R Y S I 7 41
IR PCETE R _ LA 5 | SRR BRI LA 1

EWCUITER L, BRAEEEZEH EBMEBES (convergent), RENEETH#ERE
o, EATEERN AR RRER, AR Longuet-Higgins & Stewart (1960; 1961)
G, HERMEAR, BREESE, MEREWE, ERCEREERE (FREBE
B) RIS, A48 Smith (1975) WHER, BERBEREERKS, HE
PHERNSIEL —BRRERE—BERACHR (HElEFT28 Shyu & Tung
1999), WHRKRE Mallory (1974) Attt BHRIREMR MM (& EE—E hole in
the sea’) , JhR—REASTEFE RN KT, FHE AR LB ATE S 2 i
R, BEHEEH—E B RGRHR TR 2 BER BRI A SRR 5% 25 — B
iz, BABIGIHERR, WE (AIEEREERT) S8k - AL EERAE,
T B ASTERIR S 2 AR E TR R, ERREE 2 R RN —, AR E
AHAFL L, RESEEERRIERTI T, B—AH, ERMEEY S TR, ASEERE
B BEREERREBKR, MK —FIER T EE—F R L.

L IRRIE BT 2 R RS AR ) B, (BERR A2 (fully
nonlinear wave), S EHE FHERMARHEE T EREHREER RTS8, HER
IR RN IR E R K&, B855I — M, Smith (1976) & Peregrine &
Smith (1979) & FEFIMEAT 773k, Wu (2004) GRERBIES &, BEHIERER (weakly
nonlinear waves) WML ZE R KA RRE M, MHREH (2011) BIFER Clamond &
Grue (2001) ZAIPREFHE —HEST R IEMRMERIESE < BUE 3, BT W RERT e
PA2E K )R 5o

BT 2 R KSR S B R R S IR (S SR de e, ERES
WA, T2 BB AN, HEEESAEEERAB/INZER (shear), HS

1



MR RETER, FREB I TRIRER RS, BITELERSR (2011) 2 HiEE
RAZEGRAIFEN k—EHEREE, RETER, IS L EHAKE (ks
BBERL), RMRIN, BT SmAER R, SRR as T e
ERREHBREMGI 8. BN THRAGRE, MER R ER KRR EESE HRE
EARBRBNE—#EME, REMLMUB—SHEY, FRESTAEAT EREY
WrE b RFRMBRE, FURR—SVERER ER, FiE SRR RsaE
A5 B BRI R E ERE,

HEATEE—ZENM L6, EREESE5EY, % Clamond & Grue (2001)
TE I B BOR R AL B /7 AN S S E SR RE A, S ARV I — 9S8, Nwogu (2009)
F the vector form of Green’s second identity BB 4B EmEa> Cauchy
integral formula, B Nwogu (2009) 2 ARMERA vorticity equation Z#&F
RERERIER, TRERILE, BIRKERAEL TSI, WH AR ERER,
Ft Nwogu (2009) 3 A—EEMA¥IMEE! vorticity equation R, BIRER
PR FIRBEES B, MEHBEOERRTUERS MER, BRRME R E
Clamond & Grue (2001) Z75#:, (B HIEHE T EARRERE 5 H 2 B HES
TR (T P2 RIS Nwogu (2009) AR RGEGZ —),
TR —WET, BT IRES < et i I et A S, R %
RI—ERRR (R, IS B BEEEB R FiEL closure relationship, KAl EHE
J&R Clamond & Grue (2001) Z HREERER /%, FERH—FE#Z Clamond-Grue
method, M BARER MU RETH—EELFRHER K, B4 SEHENF
w AR, FERREERBED B et 8D IR AR, B e Nwogu
(2009) B ARBRE,



B_EF FRMERTERERLZELSEN

EREREMIKE Nwogu (2009) ZHBR, FERIEH /04 MH RIS
HEMTE—EREEEHRU (2, v, 2) L, BREEAZ HER. BEL5/\Em Al
BEHNSU (z,y, 2) AT AE (REzflyHf) 2 BT SR8 B ERS (EEHEEE
TP AT AR 28, —BMLIDBELE), HEE Nwogu (2009) & WK T/ 1 fE#
bz BRRERETK, BEMAELZELAER (evolution equations) {58 Nwogu
(2009) FrEHERRTE, HEAFEXTEM Nwogu (2009) FrSEEEM KR, Wil
ET—ERURREHERESBZECHER, REERE, B4, BB E
1675718 ST [E R A ot SR A

HPBRMEMTSTERUERE AR AERL, EAEEEMEE, Mk sEs
REt, REFREFA R SEE SRR K Euler equations:

V.u=0, (2.1)
us + (u + Uug + (v + V)uy + wu, + wU' + %px =0, (2.2)
ve+ (u+ U)vg + (v + Vv, + wo, + wV’ + %py =0, (2.3)
wy + (u+U)wx+(v+V)wy+wwz+g+%pz =0. (2.4)

ERXFu(z,y,2,t) = (v, v, w)NBEBHE R IRBEFSHE UNVIIRERBE
RUEHy FRZ 5 & (RRUAMV BN, MUERESAZHBAZK) pREB g
RENIHE, pRREEE, TV = (0/0x,0/0y,0/02)MIRE = MM EEE T,

TERRRZ, & Nwogu (2009) H,U,,U,, V. FIV, B EERBE, BRRISEMRER
%, BRERH/N, BT (2.2)-(2.4) POHRRE, H—28 86 B AR ERERER
RISRAE AT FT AR B TIPS < A RARIS B, EREERAER R SHER L —EE8
Wb, Bt—BR s REREMPTEL KVER, TIRRAEKT AR B R RES
WIRRE, & B NTRR R DR R P R R R &

B batiEhl =4t BEMBEREEBRE L (82 = n(z,y,1)) ZEHK
B 7758 Skt

N = wy — (uy + Un)z — (Un + Vn)ny) (2.5)
p(z,y,m,t) =0, (2.6)

3



Hfu, = u(z, y,n, )00, = Uz, y, n) A FIRKRERGAE S B RE LEE, 541,
HBBRFIENESREAE, AT RRER 28R,

R ERGRANTEHEU (¢, y, 2)EH, T2EpEEsBtrER, B85
BEER, BRI (un, vy, wy) B (us, vs, un ) RER, BB HITEE—RENT:

Us = Uy + Wy, (2.7a)

Vs = Up+ wymy, (2.7b)

Up = Wy — UpTly — Uply. (2.7¢)

B T = E 77 R IRV R AT 5 (s, v, U )BRE (Ury, Uy, wy ) Z HFER:

UE

Uy = Ug — ﬁm(un + UsTlz + VsTy), (2.80)
_ Ty

Uy = Vg — m(un + UsNg + ’Us’l’]y), (286)

wy, = L (Un + sz + vsny) (2.8¢)

n = 1+77:12:+77§ n sz sTy)- .8c

THERIIR, (us, v,) B E H R RE L REZ UGS BRIELN, Mu, QIR EES BRK
IEL. FER (2.7c) RINLEME B BRE LR ES S RIS (2.5) HEE
M = Un — Uptly — V. (2.9)
EXRKRHBEIES S RAEME B FER, BETHRERMGER Euler equa-
tions, HHHRES 18T G54 (2.6) BH (u,, v) ZEILHER,
B (2.6) A%lp, = p(z,y,n,t) = 0, #H chain rule of differentiation /&

9p
n@z

on

9y _ Op on _
n(?a:j

6$j N 6$j

0,

Hi (21, 22) = (2,9). ¥ (2.2)-(24) RALRTH

ugly + (up+ Un)uzg|n + (vy + Vo)uyly + Wyy |y + wnUl|n
+  [wily + (uy + Up)wgly + (vp + Vi)wyly + wyw, |y + glnz = 0, (2.10)

Utly +  (up 4+ Up)vgly + (v + Vi)vyln + wpvely + wp V7|,
+ [wily + (uy + Up)we |y + (v + Vy)wyln + WyWy|y + glny = 0, (2.11)

4



(2.10) A1 (2.11) W AIMEAKE, FEH chain rule of differentiation & (2.5) =

Ung = Utly + Uelyne = Uy + wsnwy — (uy + Un)z — (vy + Vo),

Upg = Ugly + Uslyfe,
Upy = Uyly + elymy,
Wyt = 'wtln + ’wzlnﬂt = wtln + wzln[wn - (Un + U,,)nx - (Un + Vn)’?y],
Wne = Wglp+ Wsly7e,
Wy = Wyly + welymy.

i (2.10) TTERER

Upt + WMy + gNz + (un + Un)(un,w + wn,xﬂw)
+ (v + Vi) (uny + Wy yMz) + wnUl|n =0. (2.12)

HH (2.7a) & (2.5)
Ust = Upt + WytNy + Wyt
= Ut + Wn,tNe + Wylwyz — (uy + Un)Nza: — UnaNz — Un oMy
—(vy + Vn)ﬂxy — Unally — Vi.aTy]

Us,y = Upg + WnaNy + Wylgs

Usy = Upy + WyyMz + Wyhzy
R (2.12) A EBu 2B AERS

LFE Nwogu (2009) Z (2.23) HEL, HHiw,Uy onufw,V;, .0, T, 1 RIERD
% Nwogu (2009) ST HAERT F FREL, hHEEZR, B chain rule of

differentiation,
Un,w = U:cln + Ullnnx = Ullnna:, Vn,w = VZL‘!W + Vl|n77w = Vllnnw'

WETAEREE /T FE MU, FARET R



# (2.13) Hzu, Mu, ZERBuMv,, Alu 2B ERREITHES

1 1
Ust + [977 + 5(“? +7) — 5“%27(1 + 75+ 775)] — (vs — wyMy) (Vs,x — Usyy)

T

+ wU' |y (1 +n2) + wp V' |ymamy + Uytis oz + Vigis yy = O. (2.14)

i AR R 2 BRAR AT v, 2 B L 7T RE =X

1 1
e o 302 0E) = R0 2 )] = ) e — )
Y

RS L SRR Nwogu (2000) 2 (2.24) FI (2.25) BBTH, EHESEN
BIRMEES EE,

FER (2.9), (2.14) f0 (2.15) =M HER, WRABERS %, BIERHY,
usMv X RFER BB, BRE =Bt AR PR & w, E—RARE, %5
EEKn,u v, 2 BERR EE, Nwogu (2009) 7RFER the vector form of Green’s
second identity EHiw,HEn,u,,v,=FMZHHER (85 closure relationship), I
—FARREAN SWITEE-TR L5 ZREE (vorticity) Q(z,y, 2,t), IWERIME
vorticity equations ZREFOME, Bt —Bek LR KE KKE LT8R, XREE
REERE HAVRE, RERME (2.9),(2.14) 0 (2.15) RHMEEHKERKR/LHEL, SHER
REBERE R, RERE—E Nwogu (2009) tit F—REL I A B QEKE R
KEEATBE, T B R R R EAEKEIR, Nwogu (2009) (MAK B RIRIHLR) Eit —
B R G AR K BE



$£=2 Nwogu method 2Rl

EHRRBETME, BRI ATES BTN, Hit vortex-lines e
BB A e REMENRR, REmB T EESEN LA Bt
BRI IEE LTSS (REEU” # 0), ek BERERTER. ROz, 2, )i
MRETHRIEE, ERBYAR (EREBEBATHRRABREZATAA) 25,
Mit—o8 (UTRBQ) 2EBHAERATHLE

Q4+ (u+U)Q +wQ, = —wU"”. (3.1)

SRR, EEERABER, BAERBIERR, B, R,
B BR RNERGETER, BRBBANERZE, Bt Nwogu (2009) E2
Bz TR (u, w) BT EUMLE/N, W EREES

U+ (u+U)Q, = —wlU”. (3.2)

HRU TRz ® (ERRE-808), AT EE—H28A = Q/U", B (3.2) &
N+ (u+U)A, = —w. (3.3)

o, HBEQER—EREER locally &4, H¥ source term BHwIU" ¥ RERE
L, ¥ Nwogu (2009) BBENEEE H A2 HMEEwED, Bt ABEAEEHEE Y
fERER, H B HRE T RERTEMRE.

1 (3.3) ERPEBHRETERS

Atly + (un + Up) Ay ln = —wp. (3.4)

ER
Npg = /\tln + /\2|n77t
Nnz = /\wln + /\zln??w
BEBMIE (3.4) £ Nwogu (2009) Z (5.6) =:

At + (un + Up)Aga = —wy,

AU RIVE TR ERREA,ZEEHER, ReteibrER (2.5) Mk, g2
Be B R 2 — (AT, Rk



B
Qp=-—nU ”|n-
HUt—#ER, B5RWERE F A5, BIRTA0ERRRE QR E 572 5.

LA EBIES Nwogu (2009) KQ(x, 2, t)& ik EERR &, BRI E §iK & RIS
H—ERRTERE TR+ EENES, T ~u, w) BUBLE N2 BZEFIR
HH. Z—H, EEERVERE A AZAAEEM EEER), MluvEFESIER
T, KA FHIEMES & U BHEBN, K—EREFIMERA, E Nwogu (2009)
ZNEEEFASEuBUZEZRRBU ) EEEHANBETAR (2% (3.3) Rk
Nwogu (2009) ZX (5.9) X TAAMERE) , —REE B THHEEEREIEL,
MRS, Rt B RiERME LEZH—HE closure relationship, S EE
FERE AP 6, HEARIER &,



ST DERRSSIETEEIEREMEE

HRRGRTYIEER M, BRRIITEAAERATTE, SREsEE
t, AIRMAIFRREHH velocity potential ¢ stream function <, PR RS
BB SRR BAL—BRR, LER, = —,, MEEE,He, 2 M
BAARE, BRI R B, (Fw,) ZBIGRR, WA RS = SR BAHER S closure
problem. {EAMEANL, B—T5 b EABRY: (iterative scheme) B—{ERAEE
REZ BTN, ERFER, HIL Clamond & Grue (2001) kA4S R E
BRI R, FEHERBREKER, RS GETE N EERERE Y BT
ERERROER, B BREETRARKAK, S84 AR EER, EEL—F
&%, 1% (2011) BUESIRE R HIE I ZE R KSR R > B,

ETHRAREEN (WRMEY) ¥, EEEEHHSEEEML RIU” = 0), Hi
BRG I BIERE:, # Clamond-Grue method {ARIfEM, B B RIRFIFTER 2 FY
TAEEE T MR TE FAETISEARE, SO B et M i/, (BRSNS W
A FEREBRIER,Clamond-Grue method ZANMET K T8,

E NIATER WA T 1 5 M AR & B3 B R 2 et N ke
WRE—ERER, MHREREZABYA/NRTE (3.1) BESO/v ~ U" ok, &
Ho R BEHE (intrinsic frequency), 0FF 2 I BEKE D B, HES o Jw <K
1, BTfIKERSEU" [ok < 1 W—RECYEESELIETIER, BERFSU ~
o, At —RUXARBRU"/U'k < 1, RUTEREEF A2 —FEEEERRN 2 8¢
HARZFE IR, RREU ~ o, BERTERREREH AL TGS EH0 R0
BRRRE R T ATV ERE S A2 B RRE S ERELAER, TIEU ~ ok, 47
BIRIEBCEER (2BR (2010)), WPREU CAES RSN BE%, BTE
ERGEHFRAENNE, B—AH, BEUEN, REUV" /UL < L(EUESEHA
RREML), IR ok < 1, FREERG/w < 1, BERNA BRRFFZE
KU W] RZE Ho B HAR.

HZ R EESR/ NP IR R, A LB B A R S S B IR R T 2
7, MRESWE, RIIEZFRNE (W), BERBAHIBYEER,
(2.7a) B chain rule of differentiation,

Ug = un + wnnx = (¢.’1)"I] + ﬁﬂ) + (¢ZI"7 + wﬂ)nx
= ¢77,w + s, (4'1)



Hrp
Us = Uy + Wy (4.2)

I, B (2.7c) K chain rule of differentiation,
Up = "wn,x + Unp, (4'3)

Hep

Ty = Wy — Uy (4.4)

TLERHE, BRI, My, Clamond & Grue (2001) K#& (2011) thi®
RORIY, BAIS5H T ERNREZER A R, ek Ty A i —
niEZ BE,

1 (4.3) RA (2.9), WM&y H RS RZE, TEE HEE TS8R
M = (—Yne +Un) — Uyny. (4.5)

BESRERAR (2011) &2 (2.4) MBS T 0, I, BHR G, SBAI7E E R LR et R
EEHHARESA LS BRIEL, SRS E—J et RS, FROES R
R L HREEREEEL HBA/NTHG, Z2ER, k- RESEEELSE— K
Bes e — TR B BB A FORB SRR B (LRI S e BB, 48 AR e 96
FEERESME (REMBH M LEA), HEREFGEEUTHND, AEE

iy = 0. (4.6)

Fit (4.5) THES
M= —Ynz — Uphz. (4.7)
REFRBRIEMR, XEhREESS TGRS S It 2480,
F:, W—RERINER, BMERIRS R A e, B ERNR, BB T E R
Z T SRR E
BETREME (4.1) 1 (4.3) RAHERES 1SRG (2.14), LMBEFE

BYAASBZE (RERE) URATE &I RES BRI 5 B2 FoRE (H
BN, HIER (4.2) f1 (4.4), 745

1670 = ¥n o+ 20énothy,
Pt + 977+§ = n,1w+ 772‘” e + (Yo + dnan) Uy
T

x

+ Updpee = —Ry, (4.8)
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Hrh
Ry = st + [fyoly + Y oelinle + DU |p(1 + n2) + Uplls o (4.9)

# (4.8) AEEER (2011) 2 (2.6) XABLLFT BBRFERBATR, £ (4.8) hHHT %L
B SHLRERAEZ Ry, WiEEU |, /T HERN TR RnEE B, WEE
IR R B RS R ek, AIATNLIG S, (B2 (4.8) S%AEWR,N, HE—HE
SRV B efERES R (R (4.9) R), BLEEM vorticity equation K R, &
FEMEM PR G HBBfR (ERTERE (4.9) PEEREEE S BREEREERRES
RIKIBAGR, AT EBR Nwogu (2009) —8FfEEHQIE R A2 L2RF R _LR), F58E
#HEER Clamond-Grue method. H—BIRARREMING B B5H MRS etk B IEE
HREMRREES TR 2 closure relationship (#£ Clamond-Grue method HE3RE]
T EHoH Yz MEBI AR, E T —ERFI B —R R,
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SERE #7Y closure relationship

REH R, SRR RS FRBILR, BER vorticity equation (3.1), HREE
Rt—ZHA BN TENBIER, TEEK (3.1) EREEHEEE, 1iRH—EE
FeBRiE, BT B ERIFTEZ closure relationship.

S, REFBRU" /UL < LAU' ~ o, 0,4 < ¢, ¢, Bl (3.1) TEHSE
5
Q + (¢ + U)Q + 4.2, + 6,U" =0, (5.1)

Hrf
QO = 0, — 1. (5.2)

BTHR, B%E (4.7) & Cauchy-Riemann relations
¢:z: = ’wZ) ¢z = —¢w (—OO <z< 77)7
HEMMEM chain rule of differentiation, ##%E
Qe = Qlyp + Q|
= Qulp + Qly(=tnz — Upna)
= ufy + Qzln[‘(¢m|n + Yzlpne) — Unz)

Qn,x = Qa:'n + Qz|7777w

Rt (5.1) ERARERREIRES

Qn + (¢m|n + Up)Shp 2 + ¢z|nU” n = 0. (5.3)

RER LR, BMEER (4.7), B (4.7) ZKIZPRG, = 0, TiEd, = 08, M
(4.4)
Wy = Uy (5.4)
W ER chain rule of differentiation REHEHRERAE

B (5.4) AT HEEE]

"I’n,x = (an%)w = ('&wln + '&zlnnw)nx + ﬁn"?mac-
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BB EEMRAZ ERAS0EES, Al
Wy = 2bbalyz + Ualyn2 + e (5.5)
& EXARA (5.2) IREHBERE L EREE
Qy = =2 yme + (1 = 13) sl — tigas. (5.6)
i EXEt85, AHERA chain rule of differentiation, AJ#&

Qn,t = - znx(ﬁwdn + ﬁwZInﬂt) - Q{Lmlnﬂwt + (1 - nﬁ)(ﬁztln + '&ZZIWt)
= 20uMatlizly — Nex(Tely + Calgme) — UpMgae- (5.7)
TE (4.7), EXFEI0; 00 Benge XA BIFRE
e = —WYuly + Vzlyne) — Upiie
= Baly — balyne — Upne, (5.8)
Mot = Gualn + Buzlyle — Pralylle — Gazlnn? — balytue — U'ly12 — Uylug
= Gualy(1 = 12) = 200alylle — Gulnlizz — U'lgn? — Uythza, (5.9)

Meat = (Pawaly + Gozalye) (1 = 15) — 2eMuaPoaln — 20u(Puzely + buazlyTle)
—200|nMee — Mo (Pazly + ozlniia) — GalnNazs — U |2
~3U'|nMaMez — UnTzes
= Guzzly — 3bawzlny — 3baeclne + Peaaln® — 3wzlnNeta
=3%szlnNee — BulnNezz — U" g1 — 3U' lyaMes — UnMazz- (5.10)
HRE (5.3) FHEQ, ., MBI (5.6) Haihs>, LHER chain rule of differen-
tiation, &3
e = — 20u(Gezly + Gozlne) — 20alyNos + (1 — 72) (Gazly + Gozlnna)
— MeMaalsly — Nea(aly + Uzlne) — UyNose. (5.11)

FER A EAKENE ] vorticity equation (5.3) FRE I 2 btk BL Ik etk ok e s o Y
R, k—BEAXEEEH (4.9) FTEERZ R, i B R EARE R, SR et s B
BA R B, RILERFIING (4.9) 2 &R ERB LG FEE I —B1%RR. B2, FER chain
rule of differentiation & Cauchy-Riemann relations &%

Pty + Unatly = (Paly + Gelye)ly + (Yaly + Yzl )
= Gzlnlin + G2lyNatly — Bzlnilny + dalnneiy.
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R (4.9) CERABE

[$n.0ln + Ypatiyle = (Bacly + Pozlntn)in + beln(tizly + Gelyms) + (P2zly
@zl )Nty + Belyeatly + G2y (Usly + Uz lyne)
—(Pazly + Pazlna) iy — Goly(Wzly + Delyz) + (Puzly
Pz lne ) ey + GalnTezDn + Gulye(Dgly + elnns).
1S (4.9) ZBELE MO FHEER (5.3) hAEMBE, HBRMEE FREBES8S
FREz = niRZRAIRHE, FRERR (ARER) tMABEFRE: = ik (B
(5.3) ZBENEMLE2 = nik), 153
(8R2/8z),7 = ¢wm|nfLZIn + 3¢xz|n77w'az|n + an%wzln + ﬂ17¢’96x22|7777ac + 2¢xz|nﬂw|n
+0zlnlizz|n + Golnlszlnne + nﬁﬂzlnabzzln + @2 lnNzatiz|n
202 |nMaliazln + Galnnglazly + 2022 lniialyTie + G2lntissly
+uwa |yl + Guoalyily + 2B e lyesatly — Golyostialy
+ Pz lynglizln — Golyalazly — Galymliie: |y (5.12)

EBE ERF, BAGH (5.4) 70 (5.5) RA, LEREHSERG, + 0, = 0. FHE,
HERBELEERETE

(OR3/02)y = —lia|pU’|n(1 + n2) + 4yn,U"|,(1 + 12), (5.13)
R Ry TRAR PRI —FFHRAE (4.9) S SWA8E =15 (B3, B, B (4.2)
Uplis e = Uﬂ(ﬁn + wnnm)w

= Un(awln + '&zln"h + wwlnﬂw + wzlnﬂi + wn”mx)

(OR4/0z)y = U'ly(iizly + telyme + U715 + U3 + 2UnNaNz)
+Un(lozln + Gozlye — aglgne — G|y — Galnee). (5.14)
=&, B (4.2),(5.8) % (5.9)
Ugy = (U + Wyny)e
= Agly + Uylpmy + We|nTe + Wy + WMt
= Uly + Uln(Pely — balyle — Uynz) + Wl + Wy |y (D2l — Balyne
~Une) + Wn(Bazln — Gazlys — 20uzlnte — Polntlos — U'lyn2 — Unaa)
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BRI BN EREREE SRR = BRI, BEEER (X8R)
M BREFRE 2 = ik, B3

(OR1/0z)y = tsly + tazln(ely — balne — Unptiz) + tiln(Dazly — Puzlyie
_Ullnnw) — Ut |y — awzlnnw(¢z|n — Gelyz — Unhz)
~UglyMe(Pezly — Pozlyle — U'lgM) — tialn(Puzly — buzlyn?
~20uzlnMe = Bulnez — U'lgm — Uylaw) + i (Buzzln
~Guzlny = 20zazlnNe — Pozlyow — U”|y2 — Ullyiae). (5.15)

# (5.12)-(5.15) #A, I (5.7)-(5.11) FRA (5.3) BFTBHEBMLL, BT (5.3)
AREES

O(R+9U")/02ly = {natily + 28Iyl — e (D) — blaly

+¢w|n77x'&w|n + Unnw'aa:|n - U'Inﬂnnf.}x, (5.16)

§¢R=R1+R2+R3+R4o

THANE, £ LRPRAEPFYRERE RGPS B, BT RE
(asymptotic expansions) ZBREEMG,U" |y, dynuU" |y, tn3U" |, ZEWs, 8L E R
FRRAEZWE, BN LRFUERSBIGIENR D RERE, MENTEARBE
B, TREM S BHEX RS IR (asymptotic series).

ERZFRET ES B IR, B8RRI, i LR
[O(R + ¢U")/02], = 0

=

(R+ ¢U"), =0, (5.17)
GHIR + ¢U" | FERESRBEABRR, B£[0(R + ¢U")/02), B:ENE, FILE K a4
Bely, HFTTrEE

Ry = —¢U"],. (5.18)

HEERIEREER LXRTER, Bl Esns, RESELE (5.16) 255

HBTERE, RMEO(R + ¢U") /02, M ERE, BH(R + dU" ) A BRI RESHE,
{HEEFHAIEE T H# vorticity equation fEF—%; FAOMERE, JH— TERR S 5,
W E N R 38,
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& (5.18) A (4.8), MFKEER (4.7) X, AERMEEESBHRT, %22
RER R I RN S, SfKEUBZ B, i LERRIEEERTYREEHEE
EHIERE R HEBMOE, BR (5.18) R BIMRMERIARKIL, BIERBRMIEE
vorticity equation ZEKE LT /7ReMEE 0, M, URER,, RELEHERT, ik
TP ERBR R B T FRINE R, HBhEE B R R TSR E 5 B E TR e
BURSBAIN (potential flow) ZRMA LS, # (5.18) B AIREINE AR FEMR LR,

BB HERESHRER, B (5.3) IREHRE LHEESHE R REQ,. B
—JHE, B (4.9) 1 (5.18) RAIEERREHRE LEZIEHEEREZ evolution
equation, HBET,

R (5.18) A (4.9) I
Ut + [bn,0lin + Y anle + DU’ |p(1+ 12) + Uylls o + ¢U" | = 0. (5.19)
##EH (54) K (4.2), MFEMA chain rule of differentiation % Cauchy-Riemann
relations, "5
¢n,xﬁn + wn,wwn = (¢m|n + ¢z|n77x)’&n + (_¢z|n + ¢x|n77m)ﬁn77m
= Paln(iiy + Wpnz)
= Gulite
H—7HE, Af (4.2),(4.4) k (4.6),
Wy(1 +17) = st
1
(Uptis)s = U’Innxf&s-l-Unﬁs,x
= pU'ly(1+10;) + Uplsa
Rt (5.19) REATHER
Ust + [(Paly + Up)islz + ¢onU" |y = 0. (5.20)

EHANR A2 evolution equation, THEERB MU, B (4.2) & (5.4) IREJIL
BVERw, M2, AT R FTE B (EERE I REE) EEhEE LvE, EE
BREPRERK (4.7),(4.8),(5.3) F (5.20) HLIE{A evolution equations 2 BUEME, B
iR Clamond & Grue (2001) A& H M o2y RIBI{%RZ closure relationship.
lt— closure relationship 74 (2011) FEH+LEHMAGRY, EEKEAERES
M, ET—-ERMITERBPMNTEE I — closure relationship K& H %,
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W& Clamond-Grue method 2 closure relationship

JER#TIEZ evolution equation(5.18) AR (4.7),(4.8),(5.3) &I (5.20) Mu{HE
evolution equations, BEREHTIED, by, 10y, Tl EMERGNBE, KEESHE—
f#, W% 5 —ME closure equation, B—TH, MBRFRTEATR, ¥ (5.18) KA (4.8)
%, BIFIH (4.7) f (4.8) B BRER PSS FEREMELR, SMERIFTIEZ closure rela-
tionship FI{ERn,¢, My, BB, it Clamond & Grue (2001) E&FE kel
BARFT AT A KL closure relationship B R} FEF,

Clamond & Grue (2001) B5££% Baker, Meiron & Orszag (1982), B Cauchy
integral formula #EH

1 * D(¢y, — npy) — ¥y — e, da

On = ;PV/_OO 1+ D2 -z’ (6.1)
o0 QS/ ,'7/ 1/)/ + D(w/ _|_ 77/ ¢/ ) dx'/

Yo = —PV/_OO } 771+D2'7 — T —x (6.2)

HPVAFE Cauchy principle value, @), = ¢ (2',1),0y = ¢y(,t),etc, D = (1 —
n)/(@ — )

Enfle, B4, F_ETET PR B 3 AR — (BT AT SR, (B ERER iteration J5
& (RELRELGRRP v, EHEELRIFRRN), BBE—ERANEEERNE
TRERS, WHETNR (NRE-H FEHSNEE), SBa#ER, Fit Clamond &
Grue (2001) B#E—EARIBREI BN AE, L—FHBEAR (6.1) HERRD
(6.2) |, # Clamond & Grue (2001) £E#¥ (6.1), LMHUBEESR—BER,

BB E|z' — x| — oolff, DL’ — x| 12 SHASSE B, H M Fintegration by parts
A4

/ [arctan(D)]¢;, , da' = _l/oo % [/% _ D ]dx',

1+ D2 -z -z

B (6.1) THHS

¢n=_lPV/ w’? —da' + — PV/ "‘”d' 77PV/ P

""OO

1 [ 1 [ D(D—m)yy, da’
+; /—oo [arCtan(D) B D]¢;),x dx/ + ; ./—oo 1 4 Dz - .'E, — X ' (63)
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EXPREMETIE reqular integrals, M= singular integrals, {2875 Hilbert
transform KR, BEEES

1 © f&) N
H{f}—;PV/_oox,_xdx, H = —H,
# (6.3) XATEE

Yy = H{dy} +ndye + H{nH{dn.}}

—H {_1. /oo [arctan(D) — D]QS;MD dz’ + 1 /00 D(D — 7]$)¢n dz’ } |

T Joo TS 1+D? z2'—2

(6.4)

HE evolution equations (4.7) 1 (4.8) H{&ESEY, ,, REY,EH, # Clamond
& Grue (2001) F# L 25>, L EA integration by parts, B3

Une = M{dne} + bnz)z + (H{TH{¢no}})e
Yy {1 / © D*D = o)y, dz’ 1 /°° D(D —n)¢, da’

T J oo 1+D?2 -z 7 )_o 1+D2 g —x

(6.5)

% (6.5) ,Hilbert transforms M fast Fourier transform %8 (2 Rz
1997), T 2B HIEIRAFE Fourier space RST, S ST EGAE H ¥R, B—7F
H, % (6.5) PRIRIME regular integrals, RESREEL — z, S FEED, HEWE
FEBEIANERT KR |2 — 2| 3F|2’ — 2| 22 HEFR, HHIE(6.5) PR
BRI EEE, TH[—oo, +oolfi/MB[z — A,z + )|, HRMERRTEE > ¥
EMLRE, BERSH _ZE=({RENTEE SRR &R, R AERS B
FTERM.

E/EENR, LARME regular integrals &&mn,, MEn,, HREREBRKRS
B,ne = 0, BAEMKIG BB A BRRAERS, ILRIE regular integrals ZIRE D B |2 —
x| Tl — | PHEAER, R ERERS BER/NS U R ISR AN T
REHERE,

FERI(6.5) Az B —HEE R, H regular integrals RFBERS M E, BN L

1i D D-n, 1 Mgy
m = — s
t—zl+D? g/ — g 21—}-77923
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TR B e Fnee— MBS out of phase, HEMRITREKE/IN, FIHEVHREF4AIE
By, MBIEE LR S RN, BRI iteration 53R, {HHRE R4 1 E
BUIN, ¥ iteration AIAMMAL, HILHEMA Clamond & Grue (2001) itz (6.5)
A A RIEB A FT ERE R,
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BEE BERE

PR Clamond-Grue method JEHZ closure equation (6.5) RERIFH clo-
sure equation (5.18), BRI (4.7),(4.8),(5.3) & (5.20) BHLIY{E evolution equa-
tions ZBUERE, LMEETD, by, QR0 ZSERUE. BIRFTE S Lk IR B, By, &
ERACEY, WRMRT o LRE—HEE, LEHIBNE, RElE—B
HEMRER, DEHEH F B S — R 2 E R fE,

E LRI T, BMETIEED, ¢, Q0,2 BRE, REL 20 (CE
#) W, BR—ESE (ERER) EEA—RBERE (pneumatic wavemaker) &
. B EMRA%—EBE, & (4.8) WES

¢nx *%x + 277x¢nx¢nx
2 1+ n?

¢n,xt + (gn+ = + (_wn,m + ¢n,w77w)U/|7l

T

1
+ U77¢77,m + ;pn,w - ¢77U”’17 =0, (7.1)

Hip, REOFEEE B E LT H BRE LS, £ L RPRIHE closure equa-
tion (5.18) ALK R,

BB EXF &y, dEnE S, WRBEBRIRE S BUEMSEE Clamond & Grue
(2001) %54 (4.7) KoMy, WAEFHE Bo = KM H#AE Fourier space NET, A
B(4.7) k& (7.1) RBERES

OF{n} = — kF{thna}t — ikF{Uns} (7.2)
2 2 xr T x
at]:{(bn,a:} = - ]:{pn,w/p} — 9F{n:} — ikF { ¢'7,-”3 wﬂ(ﬂi _:_ 7777)¢77’ Un, }
- ]:{Uﬂ¢77,96$} - f{(—’l‘/)ﬂ)x + ¢77,$77$)U/I77} + f{¢77U”|"7} (73)
Heh FRE K,

EIEAFET #§ (7.2) 71 (7.3) 2 S5A:80 k%, VAT IEBBUERS : fourth-
order Runge-Kutta scheme K~ —{BRHI%: £ 2 F {0, } R F{ ¢y . ME, FRERINE K
HHERI 2N, e, ., REFERBAER (6.5) )y o, BB initial guess

1 (" D(D —1n,) dz’
Ynao =S5 —H {; -\ —_ITDT—(S D¢y, "’”) -z [’ (74)
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Hoh
S =H{na} + (bne)e + H{(TH{Syz})a}- (7.5)
s
(H{nH{dnz}})e = H{(nH{dno})z}
HSEMREY, LED (2% (6.5) R), MAR (7.5) ZEWERFE KDY, .,

BSLAB Ay o 0 FTEEEfEE, E initial guess v, , oBER, T EATEARETER
EH:

r —zx

1 [ DD - dx’
Ynejr1 =S —H {;/ \ %F—DZ—””)(%M — D¢y, ) } : (7.6)

W—EBEREEEE—EER L2 Yy e 1 — Vo[ E/R1.0 x 107108 1k,

 EABIEE S, BRATH#EAEZ Runge-Kutta scheme £ strongly stable, #
HEHRHEER RS, LEOge BT aERIe K, BREH Erh @S It EE
TEREHR, H¥EL—E aliasing errors (HERT2% Canuto et al. (1987)),
R ERRER—EREERTRERS (sawtooth instabilities)(RE 1a), HHEkH
BEEH RS R AR E LUET, BWEARETRERS Nwogu (2009) 7E5—(HES
[EI% & & Fl— 18 low-pass anti-aliasing filter ZGEBMEFTESNBER, B —/EER
ERERRBEEZNRERSR, HFERZERIMGELER, BB B ERMTEES
BRRAPES (RE 1b), HEABERE—BKEERSE, H—1EATHABE
REBRTEE R KRS, RIMENHRA Clamond & Grue (2001) ¥ et AE K IE
f# (zeros padding) HIfE¥k. H—fEE:MRIR Canuto et al. (1987) 23, HAW
RIFMUHEPH ZKEZ aliasing errors, HEABLHBFRNI/ 248, BAEE
EREE, ABEEREMRIERN4A/26E, REBRZ (7.3) K& +72)71,(7.6) =&
F(1+ D)7, MERRTRIERMEE, FHFREAERT, LEREEs BE R
WHAR, RETHRGEELTHSR, EEET2ERaliasing errors, EHKEERY Y%
RERARZAHERAR, BE—EENWREEREST partially de-aliased 2 B (K—
ERTERT HRF AR A BB AR, THEEERTRERK S THUER (RE ). B
M- RRIR4/2ASORE, BEELERKRES/2ERE, DBBREREEE
RE—E (consistency),

&L LT B8, ¢ Rp, FER RGBS B BB, ¥EEEMAA (5.3) K (5.20)
NI 53 IR Q2 R s 2 BAAERR, EEERILE ), BLTESERE dol, 6, |, S
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Pt e Ro RIS HER chain rule of differentiation & Cauchy-Riemann
relations 5%

¢n,z = ¢w|n + ¢z'n77x
Yne = "pwln + ¢z|n77m = “‘¢z|n + ¢w|n77m

B mE A EREH
& l — ¢77,w + "/Jn,wnz
o 1472
& ' _ "‘wn,z + ¢n,az"7m
o 1+n2
BEEAA (5.3) Kk (5.20) £ H4E
) z+ Y Tz — zt+ @ &Nz - rp :
Q.+ ("—Hn’é— + U,,) Qpz + "1 = 77%’7 U"),=0 (7.7)

G [(¢n,m + "ﬁn,xﬂw

N "o
il et U,7> uL +¢gU"]y =0 (7.8)

LEMAZ ¢, KnEER (7.2),(7.3) & (6.5) &, BRI REEBEH, H
It 7] FER fourth-order Runge-Kutta scheme f#, ERFHEBERIIEE C BE
WEH, B (7.7) Hosd, WHEHEREUK (7.8) AME KEHR, BEET

: Pz + Yyl :
Ot = - wr{Setieleg L ur, )

. -1 z+ @ T
— lkf{ 77196+ "7%17 wU”|,7 (7.9)

OF{ts} = — ikF {———‘ﬁ"’wlrf?’;’”’"w as} — ik F{Uptis}

— F{U"|n} (7.10)
# (7.10) HHEE& ¢y, R by fEET oy, BIEFRFRR

F(8oH8) = ~iz F (80} (k). (1.11)

WRR KBS B, BRI, BT {0, .} (k)HEE, A —REEF{ ¢, } (k)
MRBEE IR, RILLAES— R, ¥ (7.10) 2@, B (7.2),(7.3) 2K (7.9)
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ZfE (B (7.3) FIREF{$,U"|,}), FB—1E high-pass filter, ft— filter HjEE
=
f(k) =1 —exp[—-2n(k/kr)X]. (7.12)

HAERMEE > krz 53 BEBTERY, ik < 0.75kr ERIHEA L2 mme, i
BRIRFIELr = ko/7.5, EkoREAERES wave-number, FEMM— filter AIH
ENBEERE S BT R2TRRERALE, ARMIEU” = OFET, AR m
t— filter FrER R, BRAMEE—BRBRBICEE ME2RETA, BERAN,
— filter TEEEBRERER, FILET AR FIENT I E 30 BB AR E A0 R
tg, IR ESE .
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BN\E BEERERN

EFS B B R IR 5 43 R 55 e M SRS AR M R ER 4, 0 S FE e 040 AT B 2L SR,
HE evolution equations (7.2) 1 (7.3) & closure equation (6.5), BH# Clam-
ond & Grue (2001) BAUR#R (2011) FiE AEHERK, HSETEMNSES E
FHR (2011) Freket e BRI MLMEHRE M, HEEU £ ORU” # OB{HAEL,
HETEIME (7.9) 1 (7.10), L—HOEEER (2011) Fre0 BRSRE R BISR E MR RE R,
HEER (2011) W41, U = 0% wave slope ako < 0.188f, i H T BISBR T EE
B2 Stokes waves Z B ZREEMTABEE 2 #ER, R B MINEISE R T ERERETE
WTZIERMER. B—HE, EU # 0, BEATHAEER(L (BEEE SR ERL)
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