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Abstract 

Between August 6, 2009, and August 10, 2009, the deadly typhoon Morakot has hit 

Taiwan which brought the rainfall and the worst flooding across the country. Due to the 

devasting flooding incident, 681 people were dead and 18 went missing. Furthermore, the 

flooding washed away buildings, roads, bridges, and destroyed the only way back and forth 

of several mountain areas. Once the villages and towns lose the important traffic, air-delivery 

becomes the only choice to obtain supplies. However, the shortness of the air-delivery made 

the villages face tough trials. In such an emergency, the most concerned in this research is 

delivering numerous supplies quickly, properly, and accurately to meet everyone who is in 

urgent need. 

In recent years, most logistics service providers are desired to seek innovative delivery 

options to fight with time pressure and labor shortages. In that case, autonomous vehicles 

seem to be the most appropriate solution to solve the problem. In Singapore, Jurong Island 

has applied autonomous trucks because of the shortage of labor. In America, autonomous 

trucks are the only solution in increasing efficiency to fight against the increasing volume of 

freights. According to National Development Council in Taiwan, the total population from 

2020 to 2065 will decrease from 23 million to 17 million. The shortage of labor will bother 

Taiwan. The autonomous truck can redeem the shortage of labor and increase the efficiency 

in transportation and safety by automotive control. All the strengths can be achieved by 

autonomous vehicles, that is why this research focuses on ITS technologies such as an 

autonomous truck. 

The objective of this research aims to develop a model for delivering relief resources in 

an emergency using Intelligent Transportation System (ITS) such as autonomous vehicles 



doi:10.6844/NCKU202002083

 

ii 

and unmanned aerial vehicles (UAVs). This research focuses on the routing problem in 

emergency logistics. Logistics has been mostly utilized in the commercial field. However, 

logistics is also an important tool to transport relief resources when a disaster occurs. 

Once the emergency occurs, autonomous vehicles can prevent the labor shortage. In 

limited time, UAVs are useful to do humanitarian logistics and the most important for those 

injuries is to deliver relief resources fast and moderately. By optimizing the route and 

distributing the resource moderately, relief transporting by autonomous vehicles can 

efficiently transport to injuries from the disaster. Despite the autonomous trucks are mostly 

utilize in delivering cargos, the development of the intelligent transportation system is the 

trends sweeping across the whole world. Thus, this research is desired to adopt autonomous 

trucks cooperating with two UAVs to transport supplies when an emergency occurs. To 

enhance the efficiency in delivering supplies, this research aims to develop a model for 

traveling salesman problem with two drones based on tabu search algorithm. Finally, the 

results are expected to present optimal routes for an autonomous truck and UAVs and be 

compared with a standard commercial solver, GUROBI. This research is contributed to 

providing some ideals for delivering relief resources in an emergency adopting the 

autonomous truck cooperating with two UAVs. 

Keywords: Tabu Search, Autonomous Vehicle, Unmanned Aerial Vehicle, Traveling 

Salesman Problem, Flying Sidekick Traveling Salesman Problem 
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摘要 

近年來，研究廣泛應用於物流領域且物流服務業者極力尋求創新的交付方式以應

對時間壓力和勞動力短缺，卻於緊急情況下的物資配送尚未有完善研究。2009 年 8 月

6 日至 8 月 10 日，莫拉克颱風襲擊台灣並帶來嚴重水災。莫拉克颱風引起的水災造

成 681 人死亡及 18 人失蹤。更嚴重的是，洪水破壞了建築物、道路、橋樑，甚至是

數個山區的唯一聯外道路。一旦山區失去聯外交通道路，空投就成為獲取食糧、物資

的唯一選擇。然而，空投的資源短缺使這些村莊面臨艱困考驗。此次事件亦突顯出緊

急情況下，如何應用空投並以快速且準確地援助大量備品，以滿足所有急需的民眾。 

儘管有多數研究討論物流領域的車輛路徑問題，但多數都是以民眾購買日常用品

之物流方面為主，然而物流同時也是發生災難時運送物資的重要工具；故本研究希望

能利用創新的智慧型運輸系統，對於自駕卡車以及無人機緊急物資的運輸進行探討。

本研究認為一旦發生緊急情況，透過自駕車隨時待命並且無須人員駕駛的優點，在有

限的時間內將助於進行人道物流，若發生道路損毀之災害時，搭配雙無人機進行物資

的投遞亦是一大幫助。然而，對於傷患而言，最重要的是快速而適度地運送醫療物資。

通過優化路線和適度分配資源，自駕車與無人機進行醫療救災運輸可以有效地救助受

難患者，為了提高運送醫療物資的效率，自駕車以及無人機的串聯運用應能成為該問

題的最佳解決方案。 

本研究開發一模型為運用雙無人機搭配自駕卡車之模式進行緊急物資運輸，將物

流領域中創新的思維應用於緊急物資配送中的車輛路徑問題，考量運送時間最佳化目

標下，基於禁忌搜尋演算法求解最佳路徑並與商業求解器 GUROBI 進行比較；結果

有望為自駕車及無人機提供最佳路線。期望提供利害關係人在緊急情況下採用自駕卡

車及無人機運送醫療物資有更進一步之參考及建議。 

關鍵詞：禁忌搜尋演算法、自駕車、無人機、搭配無人機之旅行銷售員問題 
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CHAPTER 1 INTRODUCTION 

1.1 Research Motivation and Background 

Between August 6, 2009, and August 10, 2009, the deadly typhoon Morakot has brought 

a large amount of rainfall to hit Taiwan. The flooding incident caused by Morakot was 

Taiwan’s worst flooding. Due to the devasting flooding incident, 681 people were dead and 

18 went missing. The flooding made the rivers wash away the building, roads, and bridges, 

cut up power lines. Moreover, landslides caused by the rainfall destroyed the only way back 

and forth for several mountain areas. Because the roads had been destroyed, mountain areas 

lose the important traffic and had to rely on air-delivery to obtain resources such as food, 

water, and supplies. However, the shortness of the air-delivery made the mountain areas face 

tough trials. In such an emergency, the most concerned are delivering supplies and resources 

quickly to meet everyone who is in urgent need of the proper vehicles. 

In actual life, the disaster always comes in very timely, seriously and unpredictable. 

Once the disaster occurs, no matter the earthquake, flood, hurricane, or fire explosion it is, 

human and financial losses are inflicted significantly. In consideration of the disaster effects, 

the emergency transportation network can play a vital role, especially in delivering resource 

relief after a disaster. Unlike the developed countries after suffering the disaster in which the 

goal is to return the city to the pre-disaster condition quickly, the developing countries are 

attempting to rescue more people in the response phase (Khademi et al., 2015). Once a 

serious disaster strikes in Taiwan, the consequences always come with destructive and 

irreducible. For instance, the devastating the 921 earthquake in Nantou in 1990 almost 

destroyed the whole cities in the middle of Taiwan and almost 14,000 were injured or even 

dead. In 2014, a series of gas explosions happened in the southern Taiwanese city of 
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Kaohsiung which destructed the city roads and caused 321 injured and 32 killed. Another 

case in 2016, the Meinong earthquake, which is the most serious earthquake after the 921 

earthquake, crush several buildings in Tainan, the worst situation is that Meinong earthquake 

caused the most sufferer of the collapse of a single building in Taiwan’s history. In terms of 

the disaster which is an unpredictable and serious outcome, the problem of delivering relief 

resources should be noticed in an emergency that may destroy the roads. 

In recent years, logistics service providers (LSPs) are regularly adopting innovative 

technologies such as autonomous vehicles and drones to improve the parcel delivery process 

(Joerss et al., 2016). The expectation for fast delivery is the reason why more than half of 

LSPs are nowadays offering same-day and next-day delivery options to their customers 

(Saleh, 2017). Furthermore, while facing emergency disasters, autonomous vehicles can 

shortage numerous relief resource equipment without the driver’s seat. The emerging 

technologies V2I or V2V can also make inventory transparent cooperate with fleet and even 

help unmanned aerial vehicles (UAVs), as called drones, to plan ideal route feasibly and 

efficiently. On the other hand, UAVs have been also proposed to assist in releasing natural 

disasters emergency (Estrada and Ndoma, 2019). Undoubtful, fast and unlimited by terrain, 

which is the characteristic of UAVs to deliver goods reasonable such as relief supplies in 

emergency transportation. 

This research aims to develop a model for emergency relief and resource transportation 

by autonomous truck cooperating with two UAVs and further construct a heuristics 

algorithm which is tabu search to minimize delivery time. The proposed model is tested on 

a realistic Kaoshiung network in Taiwan. This research is expected to provide 

recommendations for the relevant organization (Humanitarian relief, government, sufferer) 

in an emergency. 
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1.2 Research Objectives 

The purpose of this research is to enhance the efficiency and response quickly on the 

route assignment to demand points that need relief and resources adopting the autonomous 

truck with drones in an emergency. Thus, scheduling, distribution and cooperating with 

drones should be completed within the least amount of time when planning distribution 

routes according to the practical demand for the resource at different locations. To find the 

optimal distribution route necessarily according to the needs of the demand points and 

delivery time, this research is desired to execute a model concerning a traveling salesman 

problem (TSP). The results are expected to provide practical and specific recommendations 

and comments for relevant authorities such as hospitals, government, and autonomous 

vehicle operators. The objectives are summarized as follows: 

1. The problem of optimal delivery with the autonomous truck and two drones is 

introduced and formulated. 

2. An efficient heuristic algorithm which is Tabu Search is proposed to solve the problem. 

3. This research demonstrates the improvement of the delivery time within the UAVs by 

computational experiments. 

4. This research indicates the proposed heuristic algorithm can obtain a better feasible 

solution than a commercial solver, GUROBI comparing solution time. 

1.3 Research Flow Chart 

Figure 1-1 is the research flow chart and the following briefly describe research tasks 

respectively. 

1. Research Background and Motivation 

Explain the important issue of the emergency such as an earthquake or explosion in 
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Taiwan. Moreover, define the purpose of the research and outline the research objectives. 

2. Literature Review 

Review the vehicle routing problem (VRP), the features of autonomous vehicles and 

UAVs and the traveling salesman problem (TSP) related to UAVs.  

3. Problem Statement 

Based on the background of this research, describe the issue in detail and define the 

problem in this research. 

4. Model Formulation and Solution Algorithms 

This research proposes a model for emergency relief distribution adopting the 

autonomous vehicle cooperating with two UAVs. Present the algorithm for route 

optimization with the objective of the minimum travel times. Further, present the detailed 

definition, formulation, and solution algorithms. 

5. Numerical Experiments and Analysis 

The performance between the proposed heuristics algorithm and the commercial solver, 

GUROBI are discussed by solution time. 

6. Empirical Study 

This research executes the model of delivery problem adopting the autonomous truck 

with two drones in the empirical network which is Kaoshiung City giving various 

numbers of demand points 

7. Results and Discussion 

This research presents the results of route optimization solution time via the proposed 

heuristics algorithm and the commercial solver. 

8. Conclusion and Suggestion 

Due to the rareness of Taiwan research related to emergency transportation, especially 

adopting the autonomous vehicle as well as UAVs, this research is desired to contribute 
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to providing recommendations and reference for relevant authorities based on the results 

of numerical experiments. 

 

Figure 1-1 Research flow chart 
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CHAPTER 2  LITERATURE REVIEW 

In this research, the purpose is to solve the problem concerning emergency 

transportation by adopting autonomous vehicles cooperating with unmanned aerial vehicles. 

Therefore, this research focuses on describing the problem as a traveling salesman problem 

(TSP). Each of the sections is detailed summarizing as followed: Section 2.1 reviews the 

features with autonomous vehicles. Section 2.2 reviews the features and developments of 

the unmanned aerial vehicles (UAV). Section 2.3 reviews the traveling salesman problem 

(TSP) and the extended problem related to UAVs. Section 2.4 further reviews the basic 

introduction and the extended problem of vehicle routing problem (VRP). Section 2.5 

reviews the tabu search Optimization approach. Section 2.6 states a summary in Chapter 2 

by providing the key points in each of the sections.  

2.1 Autonomous Vehicles 

In recent years, autonomous vehicles (AVs) are a recent phenomenon that a range of 

studies focuses on. Most researchers are focusing on examining the technical aspects, 

feasibility, and the impacts on safety and congestion of AVs. As an emergency technology in 

Intelligent Transportation System (ITS), AVs can be applied in logistics or as a hub for UAVs. 

In the following context, a brief introduction of AVs is shown. 

Autonomous vehicles are also called automated vehicles, self-driving vehicles, and 

driverless vehicles. The driving automation levels of AVs can be divided into six degrees 

from full manual to full automation. The Society of Automotive Engineers International 

(SAE International, 2014) defines six different levels are shown in Table 2-1. 
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Table 2-1 SAE International’s levels of driving automation for on-load vehicles 

SAE 

level 

Statement Brief description 

Human driver monitors the driving environment 

0 No Automation Zero autonomy; the driver performs all driving 

tasks. 

1 Driver Assistance Vehicle is controlled by the driver, but some 

driving assist features may be included in the 

vehicle design 

2 Partial Automation Vehicle has combined automated functions, like 

acceleration and steering, but the driver must 

always remain engaged with the driving task and 

monitor the environment. 

Automated driving system monitors the driving environment 

3 Conditional Automation Driver is a necessity but is not required to 

monitor the environment. The driver must always 

be ready to take control of the vehicle with 

notice. 

4 High Automation The vehicle can perform all driving functions 

under certain conditions. The driver may have the 

option to control the vehicle. 

5 Full Automation The vehicle can perform all driving functions 

under all conditions. The driver may have the 

option to control the vehicle. 

(Reference: SAE International, 2014) 
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In recent years, autonomous vehicles have been a prominent role across the Information 

and Communication Technology (ICT) industry and the automotive industry. With the 

increasing maturity and breakthrough of self-driving technologies, many corporations in 

different fields have invested in developing AVs and implemented lots of AVs tests. Such as 

the United Kingdom, the United States, Japan, and Singapore, they are all developing the 

AVs and starting the project to test the AVs.  

2.2 Unmanned Aerial Vehicle (UAV) 

The researches related to UAV today involving lots of papers on different topics such as 

battery endurance improvement, GPS enhancements, navigation, and obstacle avoidance. 

Most researchers are focusing on examining the technical aspects, feasibility, and the safety 

of UAVs. As an emergency technology in Intelligent Transportation System (ITS), UAVs 

can be applied in either last-mile delivery with fast and flexible or deliver lightweight reliefs 

such as food, water, and medicine after a disaster. Thus, this section states a brief introduction 

and the development of UAVs by focusing on resource distribution in an emergency. 

2.2.1 Current States of Unmanned Aerial vehicles 

Unmanned aerial vehicle is also called drone, unmanned aircraft system (UAS) or 

uncrewed aerial vehicle (UAV). Due to the characteristics that drones can be easily operated, 

controlled without a human pilot, and the cost is relatively lower compared with human labor, 

they must be implemented as an alternative delivery way in the future. The topics in different 

countries for drones involve legal issues, environment, political issues, and economics are 

various. However, the most concern and the challenge is whether the broader society would 

accept it or not. In the previous literature, privacy seems to be the most trouble concern for 

the public. Also, safety concerns closely follow privacy. Unsurprised, the phenomenon also 
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happens on another emerging technology, autonomous vehicles (Rosenfeld, 2019).  

Despite the privacy and safety bother the public, it is estimated that drones would be 

widely used in each territory such as logistics, agriculture, observation of infrastructure, film 

or cinema used and emergency supplies (Watkins et al., 2019). In this research, the goal is 

to implement the characteristics of drones that they can fly over rough or difficult terrain in 

which the road access is limited to discuss with the use of emergency supplies transportation. 

2.2.2 Developments of Unmanned Aerial vehicles 

In recent years, many companies have been tested the UAVs for various use and been 

used for the rapid delivery of lightweight freight such as goods that need to be transported 

for a limited distance. Therefore, this research reviewed the developments of drones by 

different two companies and are described as followed: 

(1) Amazon 

In 2013, Amazon CEO Jeff Bezos announced that Amazon would develop a fleet 

of UAVs for small parcel delivery within 30 minutes for its customers. The plan by 

Bezos was called Amazon Prime Air. In 2017, Amazon completed its first public 

demonstration of a Prime Air drone delivery in the U.S. It is worthy to mention that the 

flight was completed fully autonomously with Amazon’s software without human 

intervention or guidance. 

(2) UPS 

In 2017, UPS tested the use of drones for residential delivery on a blueberry. The 

test was set to launch a multi-rotor drone from the top of a delivery truck. The drone 

delivered a package directly to a home, then returned to the van which had moved down 

the road to a new location. While the drone dock on the top of the delivery truck, it can 

recharge through a physical connection between its arms and the truck’s electric battery. 
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And the UAV is capable of a 30 minutes flight time at a top speed of 45 miles. However, 

the UPS has investigated that the drones will only fly for about 22 minutes to deliver 

goods to customers. 

According to UPS Vice President of Engineering, John Dodero, the company’s goal 

is to have drones work off any type of vehicle, whether gas-powered or electric, to make 

last-mile deliveries. 

2.3 Traveling Salesman Problem 

As was mentioned at the beginning of this chapter, this research focusses on emergency 

transportation adopting the autonomous truck cooperating with UAVs. Due to the speediness 

of UAVs, once the UAVs delivers more, the demand points will be satisfied more quickly. 

In other words, in such a limited time, the goal of this research is to achieve high efficiency. 

In this chapter, the traveling salesman problem related to the UAVs would be discussed 

to help construct the problem. Chapter 2.3.1 briefly defines and introduces the traveling 

salesman problem. Chapter 2.3.2 discusses the extended problem of traveling salesman 

problem related to UAVs. 

2.3.1 Traveling Salesman Problem (TSP) 

In recent years, there is a vast number of works of literature on the traveling salesman 

problem TSP and VRP. TSP is a fundamental, special case on VRP. The first to propose the 

TSP was Dantzig and Ramser (1959).  

The basic assumptions in TSP are as followed: 

1. The salesman departs the depot and finally backs to the depot, 

2. At the journey, the salesman must visit all the customers; and  

3. The customers must be visited at most once. 
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As in Figure 2-1, a simple illustration shows the difference between the VRP and TSP. 

The difference between the TSP and VRP is that the capacity of the vehicle (salesman) can 

not be constrained in TSP. Furthermore, the criteria of VRP is under the capacity constraints 

of the vehicles and seek to satisfy all the customers on different paths. Lastly, the objective 

of TSP is to optimize the travel cost or minimize path length. 

 

 

Figure 2-1 Illustration of the VRP and TSP 

In Section 2.3.2, this research would discuss with the variant of TSP, which is FSTSP. 

The idea of FSTSP would be implemented to help construct our problem. 

2.3.2 The Flying Sidekick Traveling Salesman Problem (FSTSP) 

There are numerous literatures on the traveling salesman problem (TSP) and vehicle 

routing problem (VRP). Meanwhile, an increasing number of studies investigate the 

efficiency of delivery systems that deploy UAVs. 

Murray and Chu (2015) were the first to propose a variant of the traditional TSP, the 

“Flying Sidekick Traveling Salesman Problem” (FSTSP). In their paper, they constructed 

the problem in mixed-integer linear programming. In FSTSP that they proposed, each 

customer must be served exactly once by a delivery truck or by a UAV which operates in 
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coordination with the truck. Once launched, the UAV must visit a customer and return, within 

its flight endurance limit, to the truck or the depot. The objective is to minimize the total 

service time while all customers are visited, and both the truck and the UAV return to the 

depot. The ideological framework in FSTSP is that a drone should cooperate with a truck to 

visit the customer. The truck and the drone depart from a single depot together or 

independently, fulfill the customers’ demand and return to the same depot. However, some 

customers are visited by the drone, others are visited by the truck, but when traveling in 

tandem, the drone is transported by the truck. 

Take an insight into FSTSP, the general notation is as followed: 

Let  𝐶  = ሼ1,2, ⋯ , 𝑐ሽ  be the set of all customers and 𝐶ᇱ𝜖 𝐶  denotes the subset of 

customers that may be serviced by the UAV. The depot is set as node 0 at the departure of 

the truck and UAV and is set as node c + 1 at their return. Therefore, the sets to operate with 

are 𝑁  = ሼ0,2, ⋯ , 𝑐 ൅ 1ሽ  donate the set of all nodes. To further facilitate the network 

structure of the problem, let 𝑁଴ = ሼ0,1, ⋯ , 𝑐ሽ be the set of all nodes the two vehicles may 

depart from, and let 𝑁ା = ሼ1,2, ⋯ , 𝑐 ൅ 1ሽ be the set of all nodes visited by a vehicle along 

a tour. 

Let parameter 𝜏௜௝ be the time required for the truck to travel from node 𝑖 to node 𝑗, 

parameter 𝜏௜௝
ᇱ  be the analogous travel times for the UAV. Given the logical restrictions that 

𝜏଴,஼ାଵ ≡ 0. 

The following parameters, measured in units of time, are considered: 

𝑠௅ - the time required to prepare the UAV for launch; 

𝑠ோ  - the time required for the UAV recovery, after the truck and UAV reaches 

rendezvous. 

The traveling speeds are constant for both trucks and drones. 
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In the algorithm in FSTSP that Murray and Chu (2015) proposed, they computed the 

saving of serving the node 𝑗  by the drone for each 𝑗  ∈  𝐶ᇱ , The method computes the 

greatest saving by testing all the possible sorties of the current truck subroute, and also by 

testing all possible insertions of other truck nodes in other positions in the current truck 

subroute. Starting from the depot, the drone is set to fly to 𝑗 if the greatest saving is positive, 

and the method is iterated for the remaining truck route. 

Meanwhile, other researches continuously propose either the various algorithms or the 

different criteria to build an environment that is matching the real-life aspects according to 

the FSTSP. 

Agatz et al. (2018) generate combinations of truck and drone routes between each 

possible launch and pickup nodes. They refer to each combination as an operation and 

propose an operation-based formulation. Two heuristics based on local search and dynamic 

programming were proposed by Agatz et al. (2018). Different from the assumptions made 

by Murray and Chu (2015), the truck can meet with the drone at the starting node of the 

flight. 

Ha et al. (2018) were the first to define the delivery cost of the TSP-D. They provide 

two different heuristics that are inspired by the route first-cluster second heuristic, which is 

based on local search and GRASP. The results in their research were probably obtained for 

large instances with 50 and 100 customer nodes. 

Wang et al. (2017) is the first research to consider a more general case with multi-trucks 

and multi-UAVs. They investigate this version of the problem in which one or more UAVs 

can travel with every truck from a theoretical aspect that provides worst-case analysis and 

bounds for several considerations. In their research, the objective function is to minimize the 

delivery completion time, that is, the time when the last truck or UAV returns to the depot. 

Yurek and Ozmutlu (2018) presented an iterative algorithm based on a decomposition 
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approach to minimize the delivery completion time of Traveling Salesman Problem with 

Drone (TSP-D).  

de Freitas and Penna (2018) provided a randomized variable neighborhood descent 

heuristic to solve FSTSP, in which the initial solution is created from the optimal TSP 

solution obtained by the Concorde solver. In the second phase, an implementation of the 

Randomized Variable Neighborhood Descent (RVND) heuristic is used as a local search to 

obtain the problem solution. 

2.4 Vehicle Routing Problem 

In this research, as a result of the focus is to develop a TSP model that adopting AVs and 

UAVs, the VRP related to vehicles should be noticed and identified. By reviewing the VRP 

researches in recent literature, this research can confirm the problem more clearly. 

2.4.1 The Introduction of Vehicle Routing Problem 

The vehicle routing problem (VRP) is the most well-studied optimization problem in 

operations research. This problem was first proposed by Dantzig and Ramser (1959). They 

defined the truck dispatching problem as a linear programming formulation. In their paper, 

they define VRP by given a network 𝐺 ൌ ሺ𝑉, 𝐸ሻ, with a node set V consisting the depot and 

the customer node. Under the limited capacity of the truck, the goal is to satisfy all the 

demand stations with minimum possible covered mileage. Since then, such variants have 

been considered, incorporating capacities, service time windows, maximum route lengths, 

distinguishing pickups and deliveries, fleet inhomogeneities, and so forth. However, in the 

consideration of real-life aspects associated with largescale problems, the VRP has extended 

to different kinds of problems concerning different settings. 
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2.4.2 The extended problem of VRP 

As discussed above, the vehicle routing problem is extended into different types 

considering different constraints. As Table 2-2, different factors lead to related variants in 

terms of VRP. 

Table 2-2 The factor of the Vehicle Routing and Scheduling Problem 

Factor Classification  

Time windows Yes; No 

Number of depots Single; Multiple 

The size of vehicle fleet One; Many 

The categories of vehicle fleet Single; Multiple 

Type of demand points Deterministic; Stochastic 

Position of the demand points On node; On arc; Both on node and arc 

Type of network Undirect; Direct 

Capacity of vehicles Same; Different 

The range of routing distance Same constraints; Different constraints 

Cost Variable; Fixed 

Operation type Pick-up; Delivery; Pick-up and Delivery; 

Backhauls; Dial-a-ride 

Objective Minimize the distance; Minimize the cost; 

Minimize the number of vehicles 

 

To understand the variants of VRP, some papers in the literature were reviewed 

concerning each variant and the contributions were compared analytically. For instance, the 

literatures were widely studied such as VRP with Pick-up and Delivery (VRPPD), 
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Capacitated VRP (CVRP), Multi Depot VRP (MDVRP), Periodic VRP (PVRP), Flexible 

VRP (FVRP), VRP with Backhauls (VRPB), Rich VRP (RVRP), Green VRP (VRP) and so 

forth. 

Gribkovskaia et al. (2008) proposed a mixed-integer linear programming (MILP) 

formulation to minimize the total cost associated with the covered routes with totally 

delivered orders, and partially satisfied pickups. They defined the problem as a VRPPD and 

consider whether it is more beneficial to satisfy the identical customer twice rather than 

creating a full route circle.  

Recently, Belgin et al. (2018) published research related to VRPPD with two-echelon 

(2E-VRPPD). They were desired to make pickup and delivery operations accomplish 

simultaneously, with the same vehicle delivering all the orders from the depot to the 

destinations, and from destinations back to the depot. Moreover, a Node-based mathematical 

model and a hybrid heuristic algorithm were used to solve the 2E-VRPPD. 

To solve the Capacitated Vehicle Routing Problem (CVRP), Lahyani et al. (2015) 

noticed that the capacity of the vehicle is one of the important decisions that impact the 

optimal VRP network choices. The objective is to provide a solution with minimum costs 

with a closed route circle, one-time customer service by one vehicle and the route total 

demand must not exceed the assigned vehicle capacity.  

Li et al. (2016) focus on combination-vehicle attributes as a Combination Truck Routing 

problem (CTRP). Types of vehicle and travel distance were considered, and a heuristic 

algorithm was applied to solve a real logistical case. 

However, Montoya-Torres et al. (2015) published a literature review about the MDVRP 

considering different VRP variants. In their paper, different approaches were proposed to 

solve the problem with the final clients, who are not clustered around every single depot. 

Consequently, research was extended to the MDVRP and deemed to be realistic and served 



doi:10.6844/NCKU202002083

 

17 

real applications as effectively as possible. 

Lahyani et al. (2018) introduced a combination of Multi-Depot Fleet Size and Mix VRP 

(MDFSMVRP). They compared different formulations related to Branch-and-Cut and 

Branch-and-Bound algorithms to solve the suggested formulations with different indexes. 

An improvement in the lower and upper bounds on the tested instances has been 

considerably achieved. This problem extends the multi depot vehicle routing problem and 

the fleet size and mix vehicle routing problem and combines complex assignment and 

routing decisions under the objective of minimizing fixed vehicle costs and variable routing 

costs.  

Refer to the Periodic Vehicle Routing Problem (PVRP), Campbell and Wilson (2014) 

proposed a VRP with multiple service periods. The objective in their paper is to satisfy the 

orders from customers during multiple periods with the same fixed quantity. 

Archetti et al. (2017) present the PVRP with a flexible characteristic, Flexible PVRP 

(FPVRP). In their paper, the objective function is to minimize the total routing costs, while 

allowing some flexibility to customer satisfaction frequencies and quantity during the 

planning horizon, rather than fixed frequencies and quantity. On the other hand, the FPVRP 

considers the inventory costs accompanied by the objective function, which is modeled in 

the Inventory Routing Problem (IRP). The results reveal that the costs were minimized better 

than when using PVRP or IRP. 

Another variant, VRP with Backhauls (VRPB) emerged depends on the route types 

planned to be covered by the available fleet of trucks where both delivery and pickup are 

available on the same routes.  

Koç and Laporte (2018) analyzed different VRPB literature and compared the exact and 

heuristic algorithms. They made a classification for VRPB in different variants tabulating in 

their research with the defined mathematical model and solution. 
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On the other hand, Bortfeldt et al. (2015) had extended VRPB into clusters with a three-

dimensional loading problem (3L-VRPCB). In their paper, the line-haul customers should 

be served before the backhaul ones. They also proposed two hybrid algorithms to deal with 

the packing and routing procedures. 

García-Nájera et al. (2015) proposed a multi-objective model that minimizes the number 

of vehicles, traveling costs, and the un-serviced backhauls. In their paper, a similarity-based 

selection evolutionary algorithm approach is proposed for finding improved multi-objective 

solutions for VRPB. 

In recent years, to be a Rich VRP (RVRP), three VRP variants such as Open VRP 

(OVRP), the Dynamic VRP (DVRP), and the Time-Dependent VRP (TDVRP) are more 

important to be noticed and considered in a combined VRP model (Braekers et al., 2016). 

Marinakis and Marinaki (2014) suggest a newly developed Bumble Bees Mating 

Optimization (BBMO) algorithm to solve the OVRP. In their paper, the algorithm was 

compared with several metaheuristics, evolutionary and nature-inspired algorithms. They 

believed that the results were satisfactory and better solutions were revealed. 

Another important variant, the DVRP, presents that the real-life aspects are mostly 

dynamic in nature and requirements. Wide researches were conducted and accompanied by 

a different mix of other variants.  

Pillac et al. (2013) published a review paper that comprehensively studied various 

DVRP works from different perspectives. It is specifically that the evolution and quality of 

the information being transferred across the planning horizon are two dimensions 

importantly to understand when studying the DVRP. Regarding the evolution, the 

information can be changed after the planners defined a routing plan, while the quality of 

the information emerges from the uncertain demand of available data. By the improvement 

of recent technology, it provides an easier follow-up system for the routing planning process, 
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as the complexity of the DVRP increases and the need for richer VRP models emerges. 

Furthermore, another important variant of VRP, Time-dependent VRP (TDVRP) is also 

vital. It is worth mentioning that the routing plan of the previous VRP variants was static 

with vehicle speed and journey time. On the opposite, the optimal solution of planned routes 

from cost and distance overviews should be aggressively impacted by traffic congestion. 

Thus, the research of VRP must be more realistic while considering the current traffic 

conditions. In recent years, real-time information in traffic conditions on a certain route may 

help to identify the expected time to cross a certain route. Therefore, Time-Dependent VRP 

would greatly improve the optimal solution of the routing plan with minimum cost and time. 

Furthermore, the optimal solution is expected to be enhanced not only in minimizing time 

durations for planned routes but also in CO2 emissions of the traveled routes (Maden et al., 

2010). 

Maden et al. (2010) proposed a heuristic algorithm that minimizes the total travel time 

of TDVRP. They considered the problem with the expected traffic congestion, which is 

usually higher during rush hours. A sample in the United Kingdom was conducted and the 

results show 7% of CO2 emissions were reduced compared to the traditional VRP model 

with an emission saving objective. 

Huang et al. (2017) considered the path selection decision with a TDVRP problem. In 

their paper, the conventional assumption of the given customer nodes and arcs were 

improved by providing a path selection choice in the road network. They proposed a model 

that provided a solution with an optimal route and path selection decision depending on both 

departure times and congestion levels related to the suggested network. The contribution of 

their paper is to solve Time-Dependent VRP with Path Selection (TDVRP-PS) using The 

Route-Path Approximation (RPA) method, which provides a near-optimal solution, taking 

into consideration stochastic traffic conditions. 
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In the summary of classical VRP, it is vital to continuously develop effective VRP 

models. The variants VRP model can be applied in many different territories such as logistics 

and transportation. Later in below, the Rich VRP (RVRP) and Green VRP (G-VRP) are more 

discussed below. 

As the technology grew up and the damage that people did to the earth, different 

researches are now focusing on green policy applications and seeking sustainable VRP 

models to deal with the trend worldwide. 

Erdoğan and Miller-Hooks (2012) added a battery capacity constraint along with the 

option of recharging at a station with constant time. They assumed a full-charge policy and 

proposed two heuristics to solve the problem by minimizing the total travel distance. In the 

settings of their paper, the charging stations are scarce in the network and the vehicle can 

visit the same station multiple times. Numerical experiments showed that these techniques 

perform well compared to exact solution methods and that they can be used to solve large 

problem instances. 

Lin et al. (2014) comprehensively review the literature on GVRP. The proposed models 

and categorized into GVRP and Pollution Routing Problems (PRPs). The idea of their work 

considered how traditional VRP can interact with the GVRP in the coming inspired research 

topics. The contributions of the paper are they created a starting point for researchers and 

logistics practitioners to construct sustainable VRP work that considers the important 

variants, combining the most important real-life aspects with continual green needs. 

Burer and Letchford (2012) proposed a three-objective mathematical model to solve the 

problem: first is to minimize the traveling costs and consumed energy; the second is to 

minimize the fuel consumption rate by minimizing the incurred environmental penalty and 

the last is to maximize customer satisfaction levels in terms of maximum possible average 

velocity. The results revealed that by considering the relationship between route type and 
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certain fuel consumption rates associated with CO2 emissions, an improvement exists for 

reducing environmental pollution and planning eco-friendly routes. They also suggested that 

the model is NP-Hard programmed and will be time-consuming for solving larger instances. 

Thus, using heuristics, meta-heuristics, or an exact method, such as spatial branch-and-

bound and branch-and-reduce would be more realistic to solve the model. 

After reviewing the previous Green-VRP, the Rich VRP would be reviewed as followed. 

Lahyani et al. (2015) present a taxonomy of PVRP as Table 2-3. The most important that 

they mentioned was the gap between the suggested RVRP models in the literature and the 

complexity of the real-life aspects. They questioned that most researches focus on providing 

a mathematical model with solutions rather than adjusting the real-life characteristics. In 

their paper, they provided the requirements as optimization criteria, constraints, and 

preferences that should be available to produce an RVRP model. 

 

Table 2-3 A taxonomy of PVRP 

Scenario characteristics 

1. Input data Static 

Dynamic 

Deterministic 

Stochastic 

2. Decision management component Routing 

Inventory and routing 

Location and routing 

Routing and driver scheduling 

Production and distribution planning 



doi:10.6844/NCKU202002083

 

22 

3. Number of depots Single 

Multiple 

4. Operation type Pickup or delivery 

Pickup and delivery 

Backhauls 

Dial-a-ride 

5. Load splitting constraints Splitting allowed 

Splitting not allowed 

6. Planning period Single period 

Multiple periods 

7. Multiple uses of vehicles Single-trip 

Multiple-trip 

Problem physical characteristics 

1. Vehicles (1) Type Homogeneous 

Heterogeneous 

(2) Number Fixed 

Unlimited 

(3) Structure Compartmentalized 

Not compartmentalized 

(4) Loading policy Chronological order 

No policy 

(5) Capacity constraints  

(6) Driver regulations  

2. Time constraints Restriction on customer 
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Restriction on road access 

Restriction on depot 

Service time 

Waiting time 

3. Time window structure Single time windows 

Multiple time windows 

4. Incompatibility constraints  

5. Specific constraints  

6. Objective function Single objective 

Multiple objectives 

(Reference: (Lahyani et al., 2015)) 

One more work on the RVRP was presented by Goel and Gruhn (2008). The variants 

that were studied as combined are time windows restrictions, a heterogamous fleet of trucks 

with variable travel times, travel costs and capacity, multi-dimensional capacity constraints, 

multiple pickups and delivery location service, different starting and ending points, and route 

restrictions. Despite the literature related to RVRP are taking consideration of the various 

characteristics to deal with real-life conditions, each of the researches is focusing on the 

problem that they faced. 

Considering the variants of different characteristics of previous literature, this research 

categorized VRP into seven types of classical VRP and described the objectives in detail. It 

is shown as followed: 

1. Capacitated Vehicle Routing Problem, CVRP 

The objective of CVRP is to minimize total distribution cost and there is one single 

depot that the vehicle starting to serve each customer. Each customer can only be 

serviced once. Besides, the vehicles must return to the depot under the capacity or travel 



doi:10.6844/NCKU202002083

 

24 

distance. 

2. Period Vehicle Routing Problem, PVRP 

The objective of PVRP is to minimize the cost and meet customers’ needs 

simultaneously in each period. Each customer can only be serviced once and the 

constrains of vehicles are the same. 

3. Stochastic Vehicle Routing Problem, SVRP 

The demand for customer points is a random variable of probability. The route of 

vehicles must be given. The objective of the SVRP is to minimize the cost. 

4. Multi-Depot Vehicle Routing Problem, MDVRP 

The objective of MDVRP is to minimize the cost. The vehicle starts from the depot and 

returns to the same depot after serving each customer. In the network of MDVRP, 

multiple depots are depending on the setting of the research. Besides, each customer 

can only be serviced once. 

5. Vehicle Routing Problem with Backhauls, VRPB 

The vehicles from the depot start to deliver for customers, and on the route of backing 

to the depot, the vehicles receive the goods from the customer under the constraints of 

capacity and routing distance. The objective of VRPB is to minimize the cost 

considering the least of trips 

6. Pick-up and Delivery Vehicle Routing Problem, PDVRP 

The difference between VRPB and PDVRP is that pickup and delivery are synchronized. 

Therefore, it is necessary to consider the capacity of the vehicles. The objective of 

PDVRP is to minimize the cost considering the least of trips 

7. Vehicle Routing Problem with Time Window, VRPTW 

The vehicles must satisfy the customers at a certain time. In the setting of a hard time 

window, the vehicles do not exceed the customer's demand time. In the setting of a soft 
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time window, if the vehicle arrives early, it will wait for the customer. On the contrary, 

if it arrives late, it needs to be punished. The objective of VRPTW is to minimize the 

cost under the harsh conditions in the time request of the customer. 

2.5 Tabu Search Method 

In 1986, Glover (1986) first proposed tabu search (TS) which is employing local search 

methods used for mathematical optimization. The word “tabu” in English socially equals to 

“forbidden to be used, mentioned, or approached”. As a meta-heuristic, TS is inspired by the 

principles of artificial intelligence (AI) and has been applied intensively for various types of 

optimization problems with good results. The basic idea of the TS is to identify specific 

moves as forbidden to prevent cycling. In a general form, the composition of TS contains 

five components. They are neighborhood solution, move, tabu list, aspiration criterion, and 

stopping criterion. Moreover, tabu search is based on introducing flexible memory structures 

in conjunction with strategic restrictions and aspiration levels as a means for exploiting 

search spaces. Also, it can find reasonable and optimal solutions within a quick time. In 

Figure 2-2, an optimization framework in the tabu search algorithm is illustrated as followed. 
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Figure 2-2 Tabu search framework 
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Encoding: 

Encoding represents that the problem is transferred to program language such as binary 

digit ሼ0,1ሽ. Then various presenting method has been raised to evaluate the problem. 

Thus, the encoding code corresponds to moves, and the moves are also the unit of the 

candidate list. Lastly, the final solution is selected by TS. 

1. Initialize current solution 𝑆 

Each move is a path from the node to node. The initial solution must set up by the 

moves. First, a solution must be captured which is not optimal. Then optimal the 

solution by TS and make the solution better and better. 

2. Create a candidate list 

After obtaining the current solution, create a candidate list for the current solution. The 

constructive methods that seeking possible solutions are different such as random 

search and neighborhood search. Once the adjacent solutions have been obtained, the 

moves may be swapped. 

3. Tabu search 

After swapping the moves, find the solution 𝑆ᇱ from the candidate list. Then select a 

move and judge whether the move is tabu or not. If it is tabu, the move would be further 

determined if it is satisfied aspiration criteria. The aspiration criteria means once the 

move results in a solution much better than any visited before, tabu restriction may be 

violated. In this condition, the aspiration can be happened such as better than the 

currently known best solution and significant improvement. At the same time, the move 

enters aspiration criteria then becomes an admissible solution. Once the move is tabu 

and not satisfied the aspiration criteria. The move should be deleted from the candidate 

list then update the tabu list and finally back to the previous step that restarts to find the 

other best solution 𝑆ᇱ from the candidate list. On the opposite, once the move is not 
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tabu, the move is the admissible solution. 

4. Stopping condition 

General stopping condition contains several situations and means that reach the optimal 

solution. 

(1) The maximum number of solutions to be explored is fixed. 

(2) The number of iterations since the last improvement is larger than a specified 

number. 

(3) The total number of iterations of the TS algorithm is fixed. 

2.6 Summary 

As this research mentioned in the previous sections, the flying sidekick traveling 

salesman problem was first proposed in 2015 (Murray and Chu, 2015). After that, the 

problem related to drones is increasing more and more. The variants of TSP and VRP with 

UAVs mostly discuss how to construct the problems and approaches well. All evaluated 

manner mainly considered the most important objective which is travel times. Thus, 

according to the model that Murray and Chu (2015) proposed and constructed. Many pieces 

of research focus on the real aspects to match their problem and many variants of VRP related 

to UAVs such as VRP-D and TSPD. 

Since the TSP is an NP-hard problem in combinatorial optimization which means the 

computing time is too long to generate effective solutions. This research constructs a 

heuristics algorithm based on tabu search. With the ability of tabu search, this research is 

desired to solve the problem concerning the UAVs working with the truck in tandem. 

In the next chapter, this research describes our problem as a problem statement and research 

assumptions. Then transform it to the model formulation. Finally, the solution algorithm will 

be proposed in detail. 



doi:10.6844/NCKU202002083

 

29 

CHAPTER 3 RESEARCH METHODOLOGY 

As described in Chapter 1, the purpose of this research is to propose a model for the 

optimal delivery of relief transportation by adopting autonomous vehicles cooperating with 

drones. Chapter 3 is organized as follows. In Section 3.1, the conceptual framework is 

presented. In Section 3.2, the problem and the research assumptions of this research are 

described in detail. In Section 3.3, the research framework is presented. In Section 3.4, the 

model formulations of the problem are proposed, and Section 3.5 discusses the tabu search 

solution algorithm. 

3.1 Conceptual Framework 

In recent years, most of the researches consider adopting Intelligent Transportation 

System (ITS). However, as an innovative option for traditional vehicles, autonomous 

vehicles and drones should be discussed. In a real environment as an emergency occurs, 

applying autonomous vehicles to arrive on-site is urgent. However, while the road may have 

been destroyed, the UAVs should cooperate with autonomous vehicles to complete the 

mission. Additionally, while there is a disaster such as an earthquake or explosion, it is 

important to apply UAVs more because the delivery speed of UAVs is quicker than using 

only autonomous vehicles. Thus, the problem for the coordination of the autonomous truck 

and drones to achieve optimal routes in limited time is the most concern. As discussed above, 

this research considers one objective which is the time when both vehicles return to the depot 

after satisfying whole the demand points. As discussed above, this research extends the idea 

of applying Intelligent Transportation System in logistics to transportation in an emergency. 

Based on the tabu search algorithm, this research obtains the minimal time of delivery tasks 

on the network. The main conceptual framework is formulated in Figure 3-1. 
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Figure 3-1 Conceptual framework 

3.2  Problem Statement and Research Assumptions 

In the problem of this research, the problem is defined on a directed network 𝐺 ൌ

ሺ𝑁, 𝐴ሻ, where 𝑁 is the set of nodes representing the depot and the demand points set and 

𝐴 is the set of directed arcs. The speed of the autonomous truck and UAVs are different. 

Each link ሺ𝑖, 𝑗ሻ  is associated with travel times of autonomous truck 𝜏௜௝  and each link 

ሺ𝑣, 𝑖, 𝑗, 𝑘ሻ is associated with travel times of drones 𝜏௩௜௝
ᇱ . In this network, the depot serves as 

starting and ending nodes, are defined as node 0  and node ሺ𝑛 ൅ 1ሻ  respectably. Next, 

denote the set of demand points by 𝐷 ൌ ሼ1,2,3, ⋯ , 𝑛ሽ and also denote 𝐷଴ ൌ  𝐷 ∪ ሼ0ሽ as 

the set of demand points with the starting depot that vehicle may depart and 𝐷ା ൌ  𝐷 ∪

ሼሺ𝑛 ൅ 1ሻሽ as the set of demand points with the ending depot that the vehicle may visit. 

Following the formulation proposed by Murray and Chu (2015), this research defines 

𝐹 ൌ ሼሺ𝑣, 𝑖, 𝑗, 𝑘ሻሽ as three nodes in UAVs’ travel arcs. Note that 𝐹 ൌ ሼሺ𝑣, 𝑖, 𝑗, 𝑘ሻሽ, if node 𝑖 

is not the ending depot (𝑖𝜖𝐷଴), the delivery node 𝑗 must be in the demand points set that 



doi:10.6844/NCKU202002083

 

31 

can be served by UAVs and is not same as the launch node (𝑗𝜖𝐷, 𝑖 ് 𝑗) and the rendezvous 

node 𝑘 can be either demand points or the ending depot and cannot equal to 𝑖 or 𝑗 (𝑘𝜖𝐷ା, 

𝑘 ് 𝑖, 𝑘 ് 𝑗).  

This research defines the decision variables. Set 𝑥௜௝ equals to 1 if an autonomous truck 

travels an arc ሺ𝑖, 𝑗ሻ𝜖𝐴  from node 𝑖  to node 𝑗  and 0 otherwise, on this situation, the 

autonomous truck travels from node 𝑖𝜖𝐷଴ to node 𝑗𝜖𝐷ା where 𝑖 ് 𝑗. Set 𝑦௩௜௝௞ equals to 

1 if the drone travels an arc ሺ𝑣, 𝑖, 𝑗, 𝑘ሻ𝜖𝐹 from node 𝑖 to node 𝑗 and merges at node 𝑘 

and 0 otherwise, on this situation, the UAVs launch from node 𝑖𝜖𝐷଴  to node 𝑗𝜖𝐷  and 

merges with the autonomous truck or the ending depot at node 𝑘𝜖𝐷ା where ሺ𝑣, 𝑖, 𝑗, 𝑘ሻ𝜖𝐹. 

At the particular demand point, the truck may launch, retrieve, and re-launched multiple 

UAVs, it is crucial to coordinate all the process to avoid air collisions. Thus, we denote 𝑡௜ 

as the autonomous truck arrival time at node 𝑖𝜖𝑁, 𝑠𝑡௜ as the service time at node 𝑖𝜖𝐷ା, 

𝑐𝑡௜  as the completion time at node 𝑖𝜖𝑁 . Moreover, denote the 𝑡௩௜
ᇱ   as the UAV 𝑣 ∈ 𝑉 

arrival time at node 𝑖𝜖𝑁 and 𝑐𝑡௩௜
ᇱ  as the UAV 𝑣 ∈ 𝑉 completion time at node 𝑖𝜖𝑁. The 

decision variables 𝑡௜ and 𝑡௩௜
ᇱ  are representing the arrival times of the autonomous truck 

and UAVs at node i  respectively. All the decision variables related to times are used to 

sequence the launch, retrieve, and truck service. Next, four binary decision variables are 

presented as 𝑂௩భ,௩మ,௞
ோ  , 𝑂௩భ,௩మ,௞

௅  , 𝑂௩భ,௩మ,௜
ᇱ  , 𝑂௩భ,௩మ,௜

ᇱᇱ  , these are established to coordinate the 

ordering and sequencing for the drones to launch and retrieve at each node. Set 𝑂௩భ,௩మ,௞
ோ  

equals to 1 if one UAV 𝑣ଵ ∈ 𝑉 and another one 𝑣ଶ ∈ 𝑉 are both retrieved at node 𝑘 ∈ 𝐷ା 

and 𝑣ଵ is retrieved before 𝑣ଶ. Conversely, set 𝑂௩భ,௩మ,௞
௅  equals to 1 if one UAV 𝑣ଵ ∈ 𝑉 and 

another one 𝑣ଶ ∈ 𝑉 are both launched from node 𝑖 ∈ 𝐷଴ and 𝑣ଵ is launched before 𝑣ଶ. 

Besides, set 𝑂௩భ,௩మ,௜
ᇱ   equals to 1 if one UAV 𝑣ଵ ∈ 𝑉  launches from node 𝑖 ∈ 𝐷  before 

another one 𝑣ଶ ∈ 𝑉 retrieves at node 𝑖 ∈ 𝐷 and conversely set 𝑂௩భ,௩మ,௜
ᇱᇱ  equals to 1 if one 

UAV 𝑣ଵ ∈ 𝑉 retrieves at node 𝑖 ∈ 𝐷 before another one 𝑣ଶ ∈ 𝑉 launches from node 𝑖 ∈
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𝐷. 

After denoting all the decision variables, this research set the auxiliary decision variable 

𝑢௜ to be used in the TSP subtour elimination constrains (Desrochers and Laporte, 1991). 

After describing the operations process, the research assumptions are listed as followed: 

A. To reduce the complexity of the problem, this research assumes that the autonomous 

truck is capable to have enough capacity to load resources and UAVs through the entire 

delivery process. Due to one of the characteristics in autonomous vehicles is no front 

seat, the autonomous truck stores more resource. Thus, this assumption can ensure the 

autonomous truck operates from exceeding its capacity. 

B. The model constructed by this research does not consider the build-up time for the UAV 

to load reliefs. Because this research doubted that build-up time can be so short to be 

negligible while comparing to the travel time of the autonomous truck and UAVs. On 

the other hand, the problem concerning the preparation time of the UAVs for launching 

and rendezvousing with the vehicle can be overcome. The actual operation case in 

February 2017 has shown that a drone above the UPS delivery trucks can deliver the 

package and return to the truck autonomously (Hughes, 2017). Also, this research 

assumes that the preparation time is too minimal to be measured. 

C. This research considers the battery level of the UAVs and reflected it into the fixed 

time-based flight endurance. The flight endurance 𝑒௩௜௝௞ is addressed in Constraint (3-

33) standing for the flight endurance. An Amazon’s conference in Las Vegas in June 

2019 has unveiled the latest drone design and Amazon’s UAVs can fly up to 15 miles 

and deliver packages under five pounds to customers in less than 30 minutes (Wilke, 

2019). However, the battery level is reflected in flight endurance and this assumption 

ensures all the UAVs can complete the tasks before running out of battery. 

D. This research assumes UAVs to be homogeneous that can only carry relief for a demand 
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point once. In case the UAV finishes delivering to demand point, it must move to the 

next node which has not been visited immediately. UAVs must be launched from and 

rendezvous by the autonomous truck at particular demand points or depot. Further, once 

the UAVs are retrieved by the autonomous truck, the battery of UAVs is fully charged 

immediately until the next launched. 

E. This assumption assumes that the UAVs can only launch and rendezvous at the node 

instead of an arc. In practice, to make UAVs fall-off on a moving truck is difficult. Due 

to the travel speed, the autonomous truck and the UAVs must coordinate and match. 

While a drone is going to merge with a moving truck, it requires to reduce its speed. On 

the opposite, the truck is asked to increase its speed, too. Such the situation violates the 

constant speed assumption of the UAVs and the autonomous truck. On the other hand, 

the trucks and drones must wait for each other whenever one arrives at the demand 

point nodes before the others. To prevent such a situation, this research assumes that 

UAVs can only rendezvous with the autonomous truck at a node instead of an arc. 

F. In this research, all the demand points are served either by the autonomous truck or the 

UAVs at most once. The autonomous truck and UAVs can work independently while 

UAV is launched so that the route of the autonomous truck and UAVs are 

nonoverlapping. Besides, this research set number of two drones are within the 

autonomous truck to deliver the relief over the network. 

G. This research sets the nodes that UAVs launch, travel, and rendezvous as three nodes 

𝐹 ൌ ሼ𝑣, 𝑖, 𝑗, 𝑘ሽ . The three nodes must be consistent within the ordering of the 

autonomous truck’s traveling sequence. 
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3.3 Research Framework 

The research framework of optimal delivery with the autonomous truck-drone is 

presented in Figure 3-2. The framework contains five main parts: objective setting, construct 

the model, verify the model, apply the model to a realistic network, and assess the 

effectiveness of the model. The details of each part are described as followed: 

1. Objective setting: As previously reviewed in Section 2.3.2, much researches were 

desired to solve the problem and the objective is minimizing the travel times after 

serving all the customer nodes. Similarly, the objective of this research is to optimize 

the travel times in delivery using the autonomous truck and UAVs in an emergency.  

2. Construct the model: In this research, the model is constructed by mathematical 

formulation. To match the real-life aspects, the battery consumption of the UAVs is 

considered and discuss how the drones cooperate with the autonomous truck. 

3. Verify the model: After constructing the model, this research tests whether the model is 

reasonable with an exact solution by using the mathematical optimization solver, 

GUROBI to solve a small-scale network. Then this research verifies if the model 

appropriate to use. If no, restart the research flow of clarifying the problem and revising 

the model. 

4. Apply the model to a realistic network: After verifying the model, this research 

proposed a tabu search algorithm to solve the problem in a realistic network. Section 

2.5 shows the basic concept and flow chart of the tabu search. 

5. Assess the effectiveness of the model: Finally, the solution from the proposed tabu 

search algorithm offered the effectiveness of the model. In this research, the 

effectiveness of the proposed heuristics will be compared with the commercial solver, 

GUROBI, by solving the problem in a large-scale network. 
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Figure 3-2 Research framework 
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3.4 Mathematical Formulation 

As shown in Figure 3-3, a simple example illustrates the problem in this research. The 

tour of the autonomous truck and the UAVs are presented separately as the solid line and 

dotted line. This research assumes that the autonomous truck can carry two drones. The 

autonomous truck by carrying UAVs must start at the depot which is node 0. The demand 

points ሼ1,2,3,4,5,6,7,8,9ሽ are satisfied exactly once either by the autonomous truck or the 

UAVs. The route of the autonomous truck is ሼ0 → 1 → 2 → 4 → 7 → 9 → 0ሽ , while the 

routes of two UAVs are ሼሺ2,3,4ሻ, ሺ4,5,9ሻ, ሺ4,6,7ሻ, ሺ7,8,9ሻሽ. After completing the tasks, the 

autonomous truck must return to the depot which is node 0 . Lastly, the objective is to 

minimize travel times after serving all demand points. 

 

Figure 3-3 Illustration of the coordinated route with autonomous truck and UAVs 
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At a particular demand point, the autonomous truck can launch, retrieve, and even re-

launch UAVs. Thus, it is critical to coordinate the sequencing of launching, retrieving for 

UAVs and the serving process of the autonomous truck. Besides, this research considers no 

driver within the autonomous truck. As long as there is no driver to engage in the launch or 

retrieve process of UAVs, all the process included the serving process of the truck and the 

launching and retrieving process of UAVs are being performed simultaneously. For example, 

at demand points node 7 in Figure 3-3, assume that one UAV 𝑣ଵ ∈ 𝑉 and another one 𝑣ଶ ∈

𝑉 are both retrieved, and one UAV is re-launched later at node 7. The possible scenarios 

maybe 𝑣ଵ retrieve before 𝑣ଶ then 𝑣ଵ is re-launched, or 𝑣ଵ retrieve before 𝑣ଶ then 𝑣ଶ 

is re-launched, or 𝑣ଵ  retrieve after 𝑣ଶ  then 𝑣ଵ  is re-launched, or 𝑣ଵ  retrieve after 𝑣ଶ 

then 𝑣ଶ is re-launched. However, the autonomous truck serves the demand point node 7 

without driver independent of the UAV launches and retrieves. 

After demonstrating the simple example based on Figure 3-3, the following shows the 

description and definition of the problem related to this research. A model based on TSP 

problem with UAV cooperating with the autonomous truck is developed. The objective of 

this problem is to minimize the travel times to deliver all reliefs and return to the depot. The 

definitions of the set, parameters, decision variables as well as objective and constraints are 

listed as Table 3-1. 
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Table 3-1 Notation of the model formulation 

Notation Definition 

Set 

𝐺 ൌ ሺ𝑁, 𝐴ሻ A set of nodes N and a set of arcs A build up the network 

𝑁 𝑁 ൌ  ሼ0,1,2,3, ⋯ , 𝑛 ൅ 1ሽ 

A set of n nodes, consisting of demand points, the origin depot (0) where 

the autonomous truck starts to travel and the destination depot (n+1) where 

the autonomous truck ends traveling. 

𝐴 A set of arcs contains links connecting nodes of 𝑁 

𝐷 𝐷 ൌ ሼ1,2,3, ⋯ , 𝑛ሽ 

A set of demand points nodes 

𝐷଴ 𝐷଴ ൌ ሼ0,1,2,3, ⋯ , 𝑛ሽ 

A set of nodes that vehicle may depart consisting of starting depot and 

demand points  

𝐷ା 𝐷ା ൌ ሼ1,2,3, ⋯ , 𝑛 ൅ 1ሽ 

A set of nodes that vehicle may visit consisting of ending depot and demand 

points 

𝑉 𝑉 ൌ ሼ𝑣ଵ, 𝑣ଶሽ 

A set of UAVs contains two UAVs. 

𝐹 𝐹 ൌ ሼሺ𝑣, 𝑖, 𝑗, 𝑘ሻሽ, 

All possible three nodes of the UAV path by UAV 𝑣 ∈ 𝑉 

𝑖 𝑖𝜖𝐷଴, the launch node 𝑖 must not be the ending depot 

𝑗 𝑗𝜖𝐷, 𝑖 ് 𝑗, the delivery node 𝑗 must be in the demand points set and 

must not be the same as the launch node 

𝑘 𝑘𝜖𝐷ା, 𝑘 ് 𝑖, 𝑘 ് 𝑗 , the rendezvous node 𝑘 can be either demand 

points or the ending depot and cannot equal to 𝑖 or 𝑗 
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Decision variables 

𝑥௜,௝ If an autonomous truck travels an arc ሺ𝑖, 𝑗ሻ from node 𝑖 to node 𝑗, 

𝑥௜௝ = 1; 

Otherwise, 𝑥௜௝ = 0 

𝑦௩,௜,௝,௞ If one UAV 𝑣 ∈ 𝑉 travels an arc ሺ𝑖, 𝑗ሻ and ሺ𝑗, 𝑘ሻ from node 𝑖 to node 

𝑗 and from node 𝑗 to node 𝑘, 𝑦௩௜௝௞ = 1;  

Otherwise, 𝑦௩௜௝௞ = 0 

𝑡௜ The autonomous truck’s arrival time at node 𝑖, where 𝑡଴ ൌ 0 

𝑠𝑡௜ The autonomous truck’s service time completion at node 𝑖, where 𝑠𝑡଴ ൌ

0 

𝑐𝑡௜ The autonomous truck’s completion time at node 𝑖 

𝑡௩௜
ᇱ  UAV’s 𝑣 ∈ 𝑉 arrival time at node 𝑖 

𝑐𝑡௩௜
ᇱ  UAV’s 𝑣 ∈ 𝑉 completion time at node 𝑖 

𝑂௩భ,௩మ,௞
ோ  If one UAV 𝑣ଵ ∈ 𝑉 and another one 𝑣ଶ ∈ 𝑉 are both retrieved at node 

𝑘 ∈ 𝐷ା and 𝑣ଵ is retrieved before 𝑣ଶ, 𝑂௩భ,௩మ,௞
ோ ൌ 1. 

Otherwise, 𝑂௩భ,௩మ,௞
ோ ൌ 0 

𝑂௩భ,௩మ,௞
௅  If one UAV 𝑣ଵ ∈ 𝑉 and another one 𝑣ଶ ∈ 𝑉  are both launched from 

node 𝑖 ∈ 𝐷଴ and 𝑣ଵ is launched before 𝑣ଶ, 𝑂௩భ,௩మ,௞
௅ ൌ 1. 

Otherwise, 𝑂௩భ,௩మ,௞
௅ ൌ 0 

𝑂௩భ,௩మ,௜
ᇱ  If one UAV 𝑣ଵ ∈ 𝑉 launches from node 𝑖 ∈ 𝐷 before another one 𝑣ଶ ∈

𝑉 retrieves at node 𝑖 ∈ 𝐷, 𝑂௩భ,௩మ,௜
ᇱ ൌ 1 

Otherwise, 𝑂௩భ,௩మ,௜
ᇱ ൌ 0 

𝑂௩భ,௩మ,௜
ᇱᇱ  If one UAV 𝑣ଵ ∈ 𝑉 retrieves at node 𝑖 ∈ 𝐷 before another one 𝑣ଶ ∈ 𝑉

launches from node 𝑖 ∈ 𝐷, 𝑂௩భ,௩మ,௜
ᇱᇱ ൌ 1

Otherwise, 𝑂௩భ,௩మ,௜
ᇱᇱ ൌ 0 

𝑝௜,௝  If the autonomous vehicle visits demand point 𝑖 before demand point 𝑗,

𝑝௜௝ = 1; 

Otherwise, 𝑝௜௝ = 0 

𝑢௜  Position of node 𝑖𝜖𝐷ା at the route of the autonomous truck, it is employed 

for the autonomous truck subtour elimination and 1 ൑ 𝑢௜ ൑ ሺ𝑛 ൅ 2ሻ. 

Parameters 

𝜏௜,௝  ሺ𝑖, 𝑗ሻ ∈ 𝐴, Travel times of the autonomous truck associated with 𝐴 

𝜏௩,௜,௝
ᇱ   ሺ𝑖, 𝑗ሻ ∈ 𝐴, Travel times of the UAV associated with 𝐴 

𝑆௞ The autonomous truck service time at node 𝑘𝜖𝐷ା, where 𝑆௡ାଵ ൌ 0 

𝑆௩௞
ᇱ  The UAV 𝑣 ∈ 𝑉 service time at node 𝑘𝜖𝐷ା, where 𝑆௩,ሺ௡ାଵሻ

ᇱ ൌ 0 

𝑒௩,௜,௝,௞ The endurance, measured in time units for UAV 𝑣 ∈ 𝑉  to travel from 

𝑖𝜖𝐷଴ to 𝑗𝜖𝐷 to 𝑘𝜖𝐷ା 
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Objective function 

𝑀𝑖𝑛 𝑡ሺ௡ାଵሻ (3-1) 

Subject to 
Routing Constrains 

෍ 𝑥௜,௝
௜ఢ஽బ
௜ஷ௝ 

൅ ෍ ෍ ෍ 𝑦௩,௜,௝,௞
௞ఢ஽శ

ሺ௩,௜,௝,௞ሻఢி 
௜ఢ஽బ
௜ஷ௝ 

௩∈௏

 ൌ 1 
∀𝑗 ∈ 𝐷 (3-2) 

෍ 𝑥଴,௝ ൌ 1
௝ఢ஽శ 

 (3-3) 

෍ 𝑥௜,௡ାଵ ൌ 1
௜ఢ஽బ 

 (3-4) 

𝑢௜ െ 𝑢௝ ൅ 1 ൑ ሺ𝑛 ൅ 2ሻሺ1 െ 𝑥௜,௝ሻ ∀𝑖 ∈ 𝐷 

∀𝑗 ∈ 𝐷ା 

𝑖 ് 𝑗 

(3-5) 

෍ 𝑥௜,௝ ൌ  ෍ 𝑥௝,௞
௞ఢ஽శ
௞ஷ௝ 

௜ఢ஽బ
௜ஷ௝ 

 
∀𝑗 ∈ 𝐷 (3-6) 

෍ ෍ 𝑦௩,௜,௝,௞
௞ఢ஽శ

ሺ௩,௜,௝,௞ሻఢி 

 ൑ 1
௝ఢ஽
௜ஷ௝ 

 
∀𝑖 ∈ 𝐷଴ 

∀𝑣 ∈ 𝑉 

(3-7) 

෍ ෍ 𝑦௩,௜,௝,௞
௝ఢ஽

ሺ௩,௜,௝,௞ሻఢி 

 ൑ 1
௜ఢ஽బ
௜ஷ௞ 

 
∀𝑘 ∈ 𝐷ା 

∀𝑣 ∈ 𝑉 

(3-8) 

2𝑦௩,௜,௝,௞  ൑ ෍ 𝑥௛,௜ ൅ ෍ 𝑥௟,௞
௟ఢ஽
௟ஷ௞ 

௛ఢ஽బ
௛ஷ௜ 

 
∀𝑣 ∈ 𝑉 

∀𝑖, 𝑗 ∈ 𝐷 

𝑖 ് 𝑗 

∀𝑘 ∈ 𝐷ା 

ሺ𝑣, 𝑖, 𝑗, 𝑘ሻ ∈ 𝐹 

(3-9) 

𝑦௩,଴,௝,௞  ൑ ෍ 𝑥௛,௞
௛ఢ஽బ
௛ஷ௞ 

 
∀𝑣 ∈ 𝑉 

∀𝑗 ∈ 𝐷 

∀𝑘 ∈ 𝐷ା 

ሺ𝑣, 𝑖, 𝑗, 𝑘ሻ ∈ 𝐹 

(3-10)

𝑢௞ െ 𝑢௜ ൒ 1 െ ሺ𝑛 ൅ 2ሻሺ1 െ ෍ 𝑦௩,௜,௝,௞
௝ఢ஽

ሺ௩,௜,௝,௞ሻ∈ி 

ሻ 
∀𝑖 ∈ 𝐷 

∀𝑘 ∈ 𝐷ା 

𝑘 ് 𝑖 

(3-11)
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∀𝑣 ∈ 𝑉 

𝑢௜ െ 𝑢௝ ൒  1 െ ሺ𝑛 ൅ 2ሻ𝑝௜,௝ ∀𝑖, 𝑗 ∈ 𝐷 

𝑖 ് 𝑗 

(3-12)

𝑢௜ െ 𝑢௝ ൑  െ1 ൅ ሺ𝑛 ൅ 2ሻ൫1 െ 𝑝௜,௝൯ ∀𝑖, 𝑗 ∈ 𝐷 

𝑖 ് 𝑗 

(3-13)

𝑝௜,௝ ൅ 𝑝௝,௜ ൌ 1  ∀𝑖, 𝑗 ∈ 𝐷 

𝑖 ് 𝑗 

(3-14)

The objective function is described in Equation (3-1). The objective is to minimize the 

arrival time of the autonomous truck and UAVs returning to the depot which is node ሺ𝑛 ൅

1ሻ  after serving all the demand points. The objective function (3-1) is equivalent to 

𝑚𝑖𝑛ሼ𝑚𝑎𝑥 ሼ𝑡௡ାଵ, 𝑡௩,௡ାଵ
ᇱ ሽሽ due to both the autonomous truck and UAVs must wait for each 

other based on timing and sequencing constraints. Therefore, the arrival time of the 

autonomous truck and UAVs at the depot are adjusted to be the same.  

In the mathematical model of this research, all constraints are divided into four parts. 

First is FSTSP base model by Constraint (3-2) to Constraint (3-14). The second part is the 

timing constraints of truck (Constraints (3-15) to (3-19)). The third part is timing constraints 

of UAVs (Constraints (3-20) to (3-33)) and the final part are sequencing constraints in 

various scenarios (Constraints (3-34) to (3-49)) 

Constraints (3-2) to (3-14) are associated with the routing problem based on FSTSP 

model of the autonomous truck and drones. Separately, Constraint (3-2) guarantees that each 

demand point must be visited once either by the autonomous truck or UAVs. Constraint (3-

3) and Constraint (3-4) guarantee the autonomous truck must depart from and return to the 

depot. Constraint (3-5) and Constraint (3-11) are subtour elimination equations that 

guarantee no subtour is within the route of the autonomous truck and UAV according to 

Desrochers and Laporte (1991). Constraint (3-6) guarantees that whenever the autonomous 

truck visits at a node 𝑗, it must depart from the node 𝑗 as well. Constraint (3-7) represents 

that at most one UAV can depart at nodes when the autonomous truck visits at the identical 
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nodes. Similarly, Constraint (3-8) represents that at most one UAV can merge at nodes when 

the autonomous truck visits at the identical nodes. Constraint (3-9) guarantees if the UAV 

𝑣 ∈ 𝑉  is launched from node 𝑖 , travels node 𝑗  then is rendezvoused at node 𝑘 , the 

autonomous truck must visit node 𝑖 and node 𝑗. Similarly, Constraint (3-10) guarantees 

that if the UAV 𝑣 ∈ 𝑉 is launched from the depot, travels to node 𝑗 then is rendezvoused 

at node 𝑘, the autonomous truck must depart from the depot and eventually arrive at node 

𝑘. Constraint (3-12) and Constraint (3-13) are subtour elimination equations that guarantee 

no subtour that the autonomous truck visits. Constraint (3-14) guarantees the correct ordering 

of node 𝑖  and node 𝑗 . Besides, 𝑢௜  and 𝑝௜,௝  are two auxiliary decision variables to 

describe the ordering demand points nodes by the autonomous truck only. Constraint (3-12) 

to Constraint (3-14) can also determine the accurate values of 𝑢௜ and 𝑝௜,௝. 

Timing Constraints of truck 

𝑡௝ ൒ 𝑐𝑡௜ ൅  𝜏௜,௝  െ  𝑀ሺ1 െ 𝑥௜,௝ሻ ∀𝑖 ∈ 𝐷଴ 

∀𝑗 ∈ 𝐷ା 

∀𝑖 ് 𝑗 

(3-15)

𝑠𝑡௞ ൒ 𝑡௞ ൅  𝑆௞ ሺ ෍ 𝑥௝,௞
௝ఢ஽బ
௝ஷ௞ 

ሻ 
∀𝑘 ∈ 𝐷ା (3-16)

𝑐𝑡௞  ൒  𝑠𝑡௞  ∀𝑘 ∈ 𝐷ା (3-17)

𝑐𝑡௞ ൒ 𝑡௩௞
ᇱ െ 𝑀ሺ1 െ ෍ ෍ 𝑦௩,௜,௝,௞

௝ఢ஽
ሺ௩,௜,௝,௞ሻఢி 

௜ఢ஽బ
௜ஷ௞

ሻ 
∀𝑘 ∈ 𝐷ା 

∀𝑣 ∈ 𝑉 

(3-18)

𝑐𝑡௞ ൒ 𝑐𝑡௩௞
ᇱ െ 𝑀ሺ1 െ ෍ ෍ 𝑦௩,௞,௟,௠

௠ఢ஽శ
ሺ௩,௞,௟,௠ሻఢி 

௟ఢ஽
௜ஷ௞ 

ሻ 
∀𝑘 ∈ 𝐷଴ 

∀𝑣 ∈ 𝑉 

(3-19)

Constraints (3-15) to (3-19) are associated with travel times of the autonomous truck. 

Constraint (3-15) incorporates the travel times of the autonomous truck. Constraint (3-16) 

establishes the completion service time at a demand points 𝑘 by computing the arrival time 

and serving time. It describes that the completion service time at node 𝑘 must not be before 
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the arrival time and the service time. Constraints (3-17) to (3-19) establish the departure time 

of the autonomous truck from a demand point node. Constraint (3-17) prevents the 

autonomous truck from departing node 𝑘 before it has finished serving the demand points. 

Constraint (3-18) and Constraint (3-19) present if the UAV 𝑣 ∈ 𝑉 is retrieved or launched 

at node 𝑘, the autonomous truck must wait until the UAV 𝑣 ∈ 𝑉 has completed arriving or 

launching at node 𝑘. 

Timing Constraints of UAVs 

𝑐𝑡௩௟
ᇱ ൒ 𝑡௩௞

ᇱ  െ  𝑀ሺ3 െ ෍ 𝑦௩,௜,௝,௞
௝ఢ஽

ሺ௩,௜,௝,௞ሻ∈ி
௝ஷ௟ 

െ ෍ ෍ 𝑦௩,௟,௠,௡
௡ఢ஽శ

ሺ௩,௟,௠,௡ሻఢி 
௡ஷ௜
௡ஷ௞

௠ఢ஽
௠ஷ௜ 
௠ஷ௞
௠ஷ௟

െ  𝑝௜,௟ሻ 

∀𝑖 ∈ 𝐷଴ 

∀𝑘 ∈ 𝐷ା 

𝑘 ് 𝑖 

∀𝑙 ∈ 𝐷 

𝑙 ് 𝑖 

𝑙 ് 𝑘 

∀𝑣 ∈ 𝑉 

(3-20)

𝑐𝑡௩௜
ᇱ  ൒ 𝑡௩௜

ᇱ െ 𝑀ሺ1 െ ෍ ෍ 𝑦௩,௜,௝,௞
௞ఢ஽శ

ሺ௩,௜,௝,௞ሻఢி 
௝ఢ஽
௜ஷ௝

ሻ 
∀𝑣 ∈ 𝑉 

∀𝑖 ∈ 𝐷଴ 

(3-21)

𝑐𝑡௩௜
ᇱ  ൒ 𝑡௜ െ 𝑀ሺ1 െ ෍ ෍ 𝑦௩,௜,௝,௞

௞ఢ஽శ
ሺ௩,௜,௝,௞ሻఢி 

௝ఢ஽
௜ஷ௝

ሻ 
∀𝑣 ∈ 𝑉 

∀𝑖 ∈ 𝐷଴ 

(3-22)

𝑐𝑡௩௜
ᇱ  ൒ 𝑐𝑡௩మ௜

ᇱ െ 𝑀ሺ1 െ 𝑂௩మ,௩,௞
௅ ሻ ∀𝑣 ∈ 𝑉 

∀𝑣ଶ ∈ 𝑉 

𝑣 ് 𝑣ଶ 

∀𝑖 ∈ 𝐷଴ 

(3-23)

𝑐𝑡௩మ௜
ᇱ  ൒ 𝑡௩௜

ᇱ െ 𝑀ሺ1 െ 𝑂௩,௩మ,௜
ᇱᇱ ሻ ∀𝑣 ∈ 𝑉 

∀𝑣ଶ ∈ 𝑉 

𝑣 ് 𝑣ଶ 

∀𝑖 ∈ 𝐷 

(3-24)

𝑡௩௝
ᇱ  ൒ 𝑐𝑡௩௜

ᇱ ൅ 𝜏ᇱ
௩,௜,௝ െ 𝑀ሺ1 െ ෍ 𝑦௩,௜,௝,௞

௞ఢ஽శ
ሺ௩,௜,௝,௞ሻ∈ி 

ሻ 
∀𝑣 ∈ 𝑉 

∀𝑗 ∈ 𝐷 

∀𝑖 ∈ 𝐷଴ 

𝑖 ് 𝑗 

(3-25)



doi:10.6844/NCKU202002083

 

44 

𝑡௩௝
ᇱ  ൑ 𝑐𝑡௩௜

ᇱ ൅ 𝜏ᇱ
௩,௜,௝ ൅ 𝑀ሺ1 െ ෍ 𝑦௩,௜,௝,௞

௞ఢ஽శ
ሺ௩,௜,௝,௞ሻ∈ி 

ሻ 
∀𝑣 ∈ 𝑉 

∀𝑗 ∈ 𝐷 

∀𝑖 ∈ 𝐷଴ 

𝑖 ് 𝑗 

(3-26)

𝑐𝑡௩௝
ᇱ  ൒ 𝑡௩௝

ᇱ ൅ 𝑆௩௝
ᇱ ሺ෍ ෍ 𝑦௩,௜,௝,௞

௞ఢ஽శ
ሺ௩,௜,௝,௞ሻఢி 

௜ఢ஽బ
௜ஷ௝ 

ሻ 
∀𝑣 ∈ 𝑉 

∀𝑗 ∈ 𝐷 

(3-27)

𝑐𝑡௩௝
ᇱ  ൑ 𝑡௩௝

ᇱ ൅ 𝑆௩௝
ᇱ ൅ 𝑀ሺ1 െ ෍ ෍ 𝑦௩,௜,௝,௞

௞ఢ஽శ
ሺ௩,௜,௝,௞ሻఢி

௜ఢ஽బ
௜ஷ௝ 

ሻ 
∀𝑣 ∈ 𝑉 

∀𝑗 ∈ 𝐷 

(3-28)

𝑡௩௞
ᇱ  ൒ 𝑡௞ െ 𝑀ሺ1 െ ෍ ෍ 𝑦௩,௜,௝,௞

௝ఢ஽
ሺ௩,௜,௝,௞ሻఢி 

௜ఢ஽బ
௜ஷ௝

ሻ 
∀𝑣 ∈ 𝑉 

∀𝑘 ∈ 𝐷ା 

(3-29)

𝑡௩௞
ᇱ  ൒ 𝑡௩మ௞

ᇱ െ 𝑀ሺ1 െ 𝑂௩మ,௩,௞
ோ ሻ ∀𝑣 ∈ 𝑉 

∀𝑣ଶ ∈ 𝑉 

𝑣 ് 𝑣ଶ 

∀𝑘 ∈ 𝐷ା 

(3-30)

𝑡௩௞
ᇱ  ൒ 𝑐𝑡௩మ௞

ᇱ െ 𝑀ሺ1 െ 𝑂௩మ,௩,௞
ᇱ ሻ ∀𝑣 ∈ 𝑉 

∀𝑣ଶ ∈ 𝑉 

𝑣 ് 𝑣ଶ 

∀𝑘 ∈ 𝐷 

(3-31)

𝑡௩௞
ᇱ  ൒ 𝑐𝑡௩௝

ᇱ ൅ 𝜏௩,௝,௞
ᇱ െ 𝑀ሺ1 െ ෍ 𝑦௩,௜,௝,௞

௜ఢ஽బ
ሺ௩,௜,௝,௞ሻ∈ி 

ሻ 
∀𝑣 ∈ 𝑉 

∀𝑘 ∈ 𝐷ା 

∀𝑗 ∈ 𝐷 

𝑗 ് 𝑘 

(3-32)

𝑡௩௞
ᇱ െ 𝑐𝑡௩௝

ᇱ  ൑ 𝑒௩,௜,௝,௞ ൅ 𝑀ሺ1 െ 𝑦௩,௜,௝,௞ሻ ∀𝑣 ∈ 𝑉 

∀𝑖 ∈ 𝐷଴ 

∀𝑗 ∈ 𝐷 

𝑗 ് 𝑖 

∀𝑘 ∈ 𝐷ା 

ሺ𝑣, 𝑖, 𝑗, 𝑘ሻ ∈ 𝐹 

(3-33)

Constraints (3-20) to (3-33) are associated with travel times and the endurance 

limitations of the UAVs. Constraint (3-20) presents that if there are two routes of UAVs that 

are ሺ𝑖, 𝑗, 𝑘ሻ and ሺ𝑙, 𝑚, 𝑛ሻ and node 𝑖 is visited before node 𝑙 by the autonomous truck, 

node 𝑙 must be visited after node 𝑘. Constraints (3-21) to (3-24) state the launching of 
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UAVs. Constraint (3-21) presents the UAV 𝑣 ∈ 𝑉  must be launched at node i  before 

arriving node i. Similarly, Constraint (3-22) presents the UAV 𝑣 ∈ 𝑉 must be launched at 

node i before the autonomous truck has arrived at node i. On the other hand, Constraint (3-

23) presents if one UAV 𝑣ଶ ∈ 𝑉 is launched before another one UAV 𝑣 ∈ 𝑉, 𝑣 ∈ 𝑉must 

not be launched from node 𝑖  until 𝑣ଶ ∈ 𝑉  has been launched. While Constraint (3-24) 

presents if one UAV 𝑣 ∈ 𝑉 is launched before another one UAV 𝑣ଶ ∈ 𝑉, 𝑣ଶ ∈ 𝑉 must not 

be launched from node 𝑖  until 𝑣 ∈ 𝑉  has been launched. Constraints (3-25) and (3-26) 

address the arrival timing for UAV serving a demand point node 𝑗. And Constraints (3-27) 

and (3-29) address the departure timing for UAV serving a demand point node 𝑗. Constraints 

(3-25) to (3-28) ensure one UAV travels to the demand point node directly and must depart 

the demand point node immediately after completing the service. However, the retrieving of 

the UAVs must occur at the location by the autonomous truck. Constraints (3-29) to (3-33) 

state the retrieving of UAVs. Constraint (3-29) presents the UAV 𝑣 ∈ 𝑉 must be retrieved at 

node 𝑘 before the autonomous truck has arrived at node 𝑘. On the other hand, Constraint 

(3-30) presents if one UAV 𝑣ଶ ∈ 𝑉  is retrieved before another one UAV 𝑣 ∈ 𝑉 , 𝑣 ∈ 𝑉 

must not be retrieved at node 𝑘  until 𝑣ଶ ∈ 𝑉  has retrieved. While Constraint (3-31) 

presents if one UAV 𝑣 ∈ 𝑉 is retrieved before another one UAV 𝑣ଶ ∈ 𝑉, 𝑣ଶ ∈ 𝑉 must not 

be retrieved at node 𝑘 until 𝑣 ∈ 𝑉 has retrieved. Constraint (3-32) states one UAV 𝑣 ∈ 𝑉 

must not be retrieved at node 𝑘 before launching from node 𝑖 and traveling from node 𝑗 

to node 𝑘. The last Constraint (3-33) addresses to the endurance limitations of UAVs. While 

a UAV 𝑣 ∈ 𝑉 travels from node 𝑗 to node 𝑘, the flying time between the arrival time at 

node 𝑘 and the departure time from node 𝑖 must not exceed the endurance (𝑒௩,௜,௝,௞). 
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Sequencing Constraints when UAVs are both retrieved 

𝑂௩,௩మ,௞
ோ  ൑ ෍ ෍ 𝑦௩,௜,௝,௞

௝ఢ஽
ሺ௩,௜,௝,௞ሻఢி 

௜ఢ஽బ
௜ஷ௞ 

 
∀𝑣 ∈ 𝑉 

∀𝑣ଶ ∈ 𝑉 

𝑣 ് 𝑣ଶ 

∀𝑘 ∈ 𝐷ା 

(3-34)

𝑂௩,௩మ,௞
ோ  ൑ ෍ ෍ 𝑦௩మ,௜,௝,௞

௝ఢ஽
ሺ௩మ,௜,௝,௞ሻఢி 

௜ఢ஽బ
௜ஷ௞ 

 
∀𝑣 ∈ 𝑉 

∀𝑣ଶ ∈ 𝑉 

𝑣 ് 𝑣ଶ 

∀𝑘 ∈ 𝐷ା 

(3-35)

𝑂௩,௩మ,௞
ோ  ൅  𝑂௩మ,௩,௞

ோ  ൑ 1 ∀𝑣 ∈ 𝑉 

∀𝑣ଶ ∈ 𝑉 

𝑣 ് 𝑣ଶ 

∀𝑘 ∈ 𝐷ା 

(3-36)

𝑂௩,௩మ,௞
ோ  ൅  𝑂௩మ,௩,௞

ோ ൅ 1

൒  ෍ ෍ 𝑦௩,௜,௝,௞
௝ఢ஽

ሺ௩,௜,௝,௞ሻఢி 
௜ఢ஽బ
௜ஷ௞ 

൅  ෍ ෍ 𝑦ఔమ,௜,௝,௞
௝ఢ஽

ሺఔమ,௜,௝,௞ሻఢி
௜ఢ஽బ
௜ஷ௞

 

∀𝑣 ∈ 𝑉 

∀𝑣ଶ ∈ 𝑉 

𝑣 ് 𝑣ଶ 

∀𝑘 ∈ 𝐷ା 

(3-37)

Sequencing Constraints when UAVs are both launched 

𝑂௩,௩మ,௜
௅  ൑ ෍ ෍ 𝑦௩,௜,௝,௞

௞ఢ஽శ
ሺ௩,௜,௝,௞ሻఢி 

௝ఢ஽
௝ஷ௜ 

 
∀𝑣 ∈ 𝑉 

∀𝑣ଶ ∈ 𝑉 

𝑣 ് 𝑣ଶ 

∀𝑖 ∈ 𝐷଴ 

(3-38)

𝑂௩,௩మ,௜
௅  ൑ ෍ ෍ 𝑦௩మ,௜,௝,௞

௞ఢ஽శ
ሺ௩మ,௜,௝,௞ሻఢி 

௝ఢ஽బ
௝ஷ௜ 

 
∀𝑣 ∈ 𝑉 

∀𝑣ଶ ∈ 𝑉 

𝑣 ് 𝑣ଶ 

∀𝑖 ∈ 𝐷଴ 

(3-39)

𝑂௩,௩మ,௜
௅  ൅  𝑂௩మ,௩,௜

௅  ൑ 1 ∀𝑣 ∈ 𝑉 

∀𝑣ଶ ∈ 𝑉 

𝑣 ് 𝑣ଶ 

∀𝑖 ∈ 𝐷଴ 

(3-40)

𝑂௩,௩మ,௜
௅  ൅  𝑂௩మ,௩,௜

௅ ൅ 1

൒  ෍ ෍ 𝑦௩,௜,௝,௞
௞ఢ஽శ

ሺ௩,௜,௝,௞ሻఢி 
௝ఢ஽
௝ஷ௜ 

൅ ෍ ෍ 𝑦ఔమ,௜,௝,௞
௞ఢ஽శ

ሺఔమ,௜,௝,௞ሻఢி
௝ఢ஽
௝ஷ௜

 

∀𝑣 ∈ 𝑉 

∀𝑣ଶ ∈ 𝑉 

𝑣 ് 𝑣ଶ 

∀𝑖 ∈ 𝐷଴ 

(3-41)

Sequencing Constraints if one UAV is launched and another one is retrieved 
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𝑂௩మ,௩,௞
ᇱ  ൑ ෍ ෍ 𝑦௩మ,௞,௟,௠

௠ఢ஽శ
ሺ௩మ,௞,௟,௠ሻఢி 

௟ఢ஽
௟ஷ௞ 

 
∀𝑣ଶ ∈ 𝑉 

∀𝑣 ∈ 𝑉 

𝑣 ് 𝑣ଶ 

∀𝑘 ∈ 𝐷 

(3-42)

𝑂௩మ,௩,௞
ᇱᇱ  ൑ ෍ ෍ 𝑦௩,௞,௟,௠

௠ఢ஽శ
ሺ௩,௞,௟,௠ሻఢி 

௟ఢ஽
௟ஷ௞ 

 
∀𝑣 ∈ 𝑉 

∀𝑣ଶ ∈ 𝑉 

𝑣ଶ ് 𝑣 

∀𝑘 ∈ 𝐷 

(3-43)

𝑂௩మ,௩,௞
ᇱ  ൑ ෍ ෍ 𝑦௩,௜,௝,௞

௝ఢ஽
ሺ௩,௜,௝,௞ሻఢி 

௜ఢ஽బ
௜ஷ௞ 

 
∀𝑣 ∈ 𝑉 

∀𝑣ଶ ∈ 𝑉 

𝑣ଶ ് 𝑣 

∀𝑘 ∈ 𝐷 

(3-44)

𝑂௩మ,௩,௞
ᇱᇱ  ൑ ෍ ෍ 𝑦௩మ,௜,௝,௞

௝ఢ஽
ሺ௩మ,௜,௝,௞ሻఢி 

௜ఢ஽బ
௜ஷ௞ 

 
∀𝑣ଶ ∈ 𝑉 

∀𝑣 ∈ 𝑉 

𝑣 ് 𝑣ଶ 

∀𝑘 ∈ 𝐷 

(3-45)

𝑂௩మ,௩,௞
ᇱ  ൅ 𝑂௩,௩మ,௞

ᇱᇱ ൅ 1

൒  ෍ ෍ 𝑦௩,௜,௝,௞
௝ఢ஽

ሺ௩,௜,௝,௞ሻఢி 
௜ఢ஽బ
௜ஷ௞

൅ ෍ ෍ 𝑦௩మ,௞,௟,௠
௠ఢ஽శ

ሺ௩మ,௞,௟,௠ሻఢி
௟ఢ஽
௟ஷ௞

 

∀𝑣 ∈ 𝑉 

∀𝑣ଶ ∈ 𝑉 

𝑣ଶ ് 𝑣 

∀𝑘 ∈ 𝐷 

(3-46)

𝑂௩మ,௩,௞
ᇱ  ൅ 𝑂௩,௩మ,௞

ᇱᇱ ൑ 1 ∀𝑣 ∈ 𝑉 

∀𝑣ଶ ∈ 𝑉 

𝑣ଶ ് 𝑣 

∀𝑘 ∈ 𝐷 

(3-47)

𝑂௩మ,௩,௞
ᇱ  ൅ 𝑂௩,௩మ,௞

ᇱ ൑ 1 ∀𝑣 ∈ 𝑉 

∀𝑣ଶ ∈ 𝑉 

𝑣ଶ ് 𝑣 

∀𝑘 ∈ 𝐷 

(3-48)

𝑂௩మ,௩,௞
ᇱᇱ  ൅ 𝑂௩,௩మ,௞

ᇱᇱ ൑ 1 ∀𝑣 ∈ 𝑉 

∀𝑣ଶ ∈ 𝑉 

𝑣ଶ ് 𝑣 

∀𝑘 ∈ 𝐷 

(3-49)

In Constraints (3-34) to (3-49), the decision variables (𝑂௩,௩మ,௞
ோ , 𝑂௩,௩మ,௜

௅ , 𝑂௩మ,௩,௞
ᇱ , 𝑂௩,௩మ,௞

ᇱᇱ ) are 

used to sequence the process at each demand point node. Constraints (3-34) to (3-37) are 

associated with the scenario concerning the sequence when both UAVs are retrieved. 



doi:10.6844/NCKU202002083

 

48 

Constraints (3-34) and (3-35) present if both the UAVs are not retrieved at node 𝑘, 𝑂௩,௩మ,௞
ோ  

is not equal to one. Constraint (3-36) states either one UAV 𝑣 ∈ 𝑉  is retrieved before 

another UAV 𝑣ଶ ∈ 𝑉 , one UAV  𝑣ଶ ∈ 𝑉  is retrieved before another UAV 𝑣 ∈ 𝑉  or at 

least one of these UAVs is not retrieved at node 𝑘. Constraint (3-37) addresses if both UAVs 

are retrieved at node 𝑘, then either the UAV 𝑣 ∈ 𝑉 is retrieved before another UAV 𝑣ଶ ∈

𝑉 or the UAV 𝑣ଶ ∈ 𝑉 is retrieved before another UAV 𝑣 ∈ 𝑉. Constraints (3-38) to (3-41) 

are associated with the scenario concerning the sequence when both UAVs are launched. 

Constraint (3-38) and Constraint (3-39) present if both the UAVs are not launched at node 

𝑖, 𝑂௩,௩మ,௜
௅  is not equal to one. Constraint (3-40) states either one UAV 𝑣 ∈ 𝑉 is launched 

before another UAV 𝑣ଶ ∈ 𝑉, one UAV  𝑣ଶ ∈ 𝑉 is launched before another UAV 𝑣 ∈ 𝑉 or 

at least one of these UAVs is not launched at node 𝑖. Constraint (3-41) addresses if both 

UAVs are launched at node 𝑖, then either the UAV 𝑣 ∈ 𝑉 is launched before another UAV 

𝑣ଶ ∈ 𝑉 or the UAV 𝑣ଶ ∈ 𝑉 is launched before another UAV 𝑣 ∈ 𝑉. Constraints (3-42) to 

(3-49) are associated with the scenario concerning the sequence when one UAV is launched, 

and another is retrieved. Constraints (3-42) and (3-43) state that 𝑂௩మ,௩,௜
ᇱ  and 𝑂௩మ,௩,௜

ᇱᇱ  is equal 

to zero if the UAV 𝑣ଶ ∈ 𝑉 or the UAV 𝑣 ∈ 𝑉 is not launched from node 𝑘. Constraints 

(3-44) and (3-45) state that 𝑂௩మ,௩,௜
ᇱ  and 𝑂௩మ,௩,௜

ᇱᇱ  is equal to zero if the UAV 𝑣ଶ ∈ 𝑉 or the 

UAV 𝑣 ∈ 𝑉 is not retrieved at node 𝑘. Constraint (3-46) addresses if the UAV 𝑣 ∈ 𝑉 is 

retrieved at node 𝑘 and the UAV 𝑣ଶ ∈ 𝑉 is launched from node 𝑣ଶ ∈ 𝑉, then either the 

UAV 𝑣ଶ ∈ 𝑉  is launched before the UAV 𝑣 ∈ 𝑉  is retrieved or the UAV 𝑣 ∈ 𝑉  is 

retrieved before the UAV 𝑣ଶ ∈ 𝑉 is launched. Constraint (3-47) states when UAV 𝑣 ∈ 𝑉 

is retrieved before UAV 𝑣ଶ ∈ 𝑉  is launched, it is not possible for UAV 𝑣ଶ ∈ 𝑉  to be 

launched before UAV 𝑣 ∈ 𝑉  is retrieved. Constraint (3-48) states when UAV 𝑣 ∈ 𝑉  is 

launched before UAV 𝑣ଶ ∈ 𝑉  is retrieved, it is not possible for UAV 𝑣ଶ ∈ 𝑉  to be 

launched before UAV 𝑣 ∈ 𝑉  is retrieved. Constraint (3-49) states when UAV 𝑣 ∈ 𝑉  is 



doi:10.6844/NCKU202002083

 

49 

retrieved before UAV 𝑣ଶ ∈ 𝑉 is launched, it is not possible for UAV 𝑣ଶ ∈ 𝑉 to be retrieved 

before UAV 𝑣 ∈ 𝑉 is launched. 

3.5 Solution Algorithm 

This section presents the overall model of delivery optimization with the autonomous 

truck and the UAVs. Thus, this research adopts a tabu search algorithm with one objective 

including minimum travel times. The problem which is proposed is classified to be a 

traveling salesman problem. Further, TSP problem has been proved an NP-Hard problem 

and only a small-sized problem can be solved by a commercial solver such as GUROBI 

within a reasonable run time. To overcome the issue, this research introduces a tabu search 

algorithm for solving the problem. This section provides the basic procedure of tabu search. 

The solution process is presented in Figure 3-4.  

 

Figure 3-4 Solution process of tabu search 
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Step 1 Start 

This research set up an experimental network, model parameters and the setting related 

to tabu search algorithm such as tabu list, tabu tenure, and the aspiration criteria. 

Step 2 Initialize current solution (𝑋)                                                      

In this phase, a simple heuristic generates an initial solution quickly. By optimizing the 

travel times of the autonomous truck and UAVs, the initial feasibly solution is 

constructed. 

Step 3 Create a candidate list of neighbors to the current solution 

After generating the initial solution, this research further creates a candidate list for the 

current solution. The constructive methods are used for seeking possible solutions that 

are neighborhood search. 

Step 4 Find the best solution (𝑋ଵ) from the candidate list 

In this phase, the most important is to search by moving iteratively from one solution 

to another until a satisfactory solution is obtained. By the previous steps, the neighbor 

solutions can be obtained and compare whether it is the best. 

Process of Tabu Search 

Step 5 Is the best solution (𝑋ଵ) in the tabu list? 

Tabu list is to record a limited number of attributes of solutions. The moves, selections 

and assignments can be tabu to be discouraged. To avoid local solution, the tabu list is 

adopted to record moves by tabu tenure that determines the number of the moves are in 

the tabu list. 

Step 6 Is the best solution (𝑋ଵ) satisfy the aspiration criteria? 

The aspiration criteria is to accept an improving solution even if generated by a tabu 

move. Due to the aspiration criteria in tabu search, tabu search finds a more efficient 

solution. In the process, while the best solution is tabu, this research continues to judge 
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whether the best solution is in aspiration criteria or not. If it is not in the aspiration 

criteria, the current best solution is instituted by another best solution. 

Step 7 Update tabu list 

After the solution moves to another current solution, the tabu list must be updated 

including the tabu tenure. Tabu tenure set in the previous step controls the number of 

iterations a tabu move which is considered to remain tabu list. 

Step 8 Is the best solution (𝑋ଵ) better than the current solution (𝑋)? 

Based on finishing the previous step, this research keeps considering if the best solution 

(𝑋ଵ) better than the current solution (𝑋). If yes, set 𝑋ଵ equals to the best solution. On 

the opposite, if no, check whether the stopping condition is satisfied or not. 

Step 9 Is the stopping condition satisfied? 

In the final step of the process of the tabu search algorithm, the process ends while the 

algorithm reaches the stopping condition. This research set the model to stop when the 

maximum number of solutions to be explored is fixed and the number of iterations since 

the last improvement is larger than a specified number. It can prevent the iterations from 

unlimited.  

As discussed above, the tabu search uses a local or neighborhood search procedure, to 

iteratively move from one potential solution 𝑋 to an improved neighborhood solution 𝑋ᇱ 

until the stopping condition has been satisfied.  
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CHAPTER 4 NUMERICAL ANALYSIS 

Based on the solution approach mentioned in Chapter 3, Chapter 4 discusses the details 

of the mathematical model and the heuristic approach. Sections 4.1 and 4.2 present the 

structure of the mathematical model which is Mixed Integer Linear Programming and the 

heuristic algorithm which is a tabu search algorithm. In Section 4.3, two small-scale test 

networks are developed for mathematical models and heuristic algorithm, and Section 4.4 

presents the results of two test instances in various solution approaches. 

4.1 The Structure of Mathematical Model 

In this research, the mathematical model constructed and described in Chapter 3 is 

solved by the mathematical programming software, GUROBI Optimizer. Figure 4-1 

illustrates the detailed procedure of experiments, and GUROBI Optimizer is modeling with 

python interface. 

In GUROBI Optimizer, this research starts with input data and constructs three 

components including objective function, decision variables, and constraints. Through the 

mathematical programming software, GUROBI, the output solution provides optimal routes, 

objective function value, and total runtime for running the program. 

In terms of mathematical programming software, GUROBI is coded in Python and 

tested on a Windows 10 machine (Intel(R) Core (TM) i5-8250U/ 1.80GHz processor with 

8GB RAM). 
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Figure 4-1 The overall solution procedure by GUROBI 

4.2 The Structure of Heuristic Approach 

4.2.1 Tabu Search Solution Algorithm 

TSP problem is an NP-Hard problem and only a small-sized problem can be solved by 

a commercial solver, GUROBI within a reasonable time. However, based on the proposed 

tabu search (TS) approach by Glover (1986), TS is a metaheuristic that guides a local search 

out of local optima. Tabu search is effective on a wide variety of classical optimization 
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problems, such as traveling salesman problems, and also be applied to practical problems. 

In that case, this research applies the tabu search solution algorithm to solve practical 

problems. Tabu search is a local search method that begins with an initial solution and 

explores the solution space by iteratively examining the neighbor solutions.  

Basic components of the tabu search heuristic include initial solution, neighborhood 

solution, move, tabu list, aspiration criterion, and stopping criterion. In this research, the 

components which are designed to solve the optimal delivery with the autonomous truck and 

UAVs is described as followed: 

Initial solution: 

In terms of the tabu search algorithm, the initial solution must be constructed first. In a 

general TSP problem, the initial solution is usually generated by simple heuristics such as 

insertion heuristic, greedy heuristic, or saving-based heuristic. However, as a variant of TSP 

problem, the optimal delivery with the autonomous truck and two drones is more complex 

considering various constraints in the autonomous truck and drones. This research generates 

an initial solution by randomly assigning the demand point nodes to the autonomous truck 

and the UAVs under the constraints of the fixed time-based flight endurance and testify if 

the initial solution is in a reasonable situation. For example, given a network with depot 

(node 0) and four demand points (nodes 1, 2, 3, 4). Assumed that initial solution is 

{0,2,1,3,4,0} and objective function value is 20. The demand points served by UAV 1 and 

UAV 2 are node 2 and node 4. The heuristics algorithm must test whether the routes of UAV 

1 and UAV 2 are under the constraints of the fixed time-based flight endurance or not. If the 

routes of UAVs are over flight endurance, this initial solution is infeasible. Moreover, the 

initial solution will be generated until it is feasible. 

Neighborhood solution and move: 

The solutions in the neighborhood of a given solution are the solutions that can be 
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obtained by applying move operations to the current solution. The move operation involves 

relocating a demand point node from its current node to another node that minimizes the 

fitness, which is calculated by travel times of the autonomous truck and drones. Continuing 

the example from the previous paragraph, assumed the neighborhood solution is {0,3,1,2,4,0} 

and objective function value is 16. The initial solution makes a move to this neighborhood 

solution and the objective function value is decreased from 20 to 16. The process of moving 

between solution and solution is defined as a move. Additionally, whenever the demand point 

changes, the demand points must be reassigned to UAVs and re-calculate the total cost which 

is total travel times. 

In each iteration of the search process, all possible move operations for all demand point 

nodes are evaluated and the best one is subsequently performed. The best move operation is 

the one that leads to the minimized objective function value. To prevent cycling, if a demand 

point has been moved from the delivery route in given iterations which means the current 

solution is optimal, then moving the same demand point into the tabu list and declared the 

move is tabu, for the following iterations. Whenever the move is in the tabu list, it must be 

fixed in a length of 𝑛 iterations which is tabu tenure. However, there are no related literature 

applying tabu search in a Flying Sidekick Traveling Salesman Problem territory. Thus, the 

length of tabu tenure is set 7 according to Glover (1990). 

Aspiration criterion: 

While a tabu move is in the tabu list, it can be allowed only when the resulting solution 

is feasible and has an objective function value that is better than that of the current best 

feasible solution found by the search. In this research, a common-sense-based approach is 

applied to relax the tabu restriction if a solution happens to produce a better result than the 

currently best solution. The tabu move can only satisfy the aspiration criterion in three 

situations synchronous, that is  
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1. The move is in the tabu list 

2. The move is the best in the tabu list 

3. The objective function value corresponds to the move is better than the current solution 

Termination condition: 

The termination condition is a user-controlled parameter by setting iterations. The 

greater the number of iterations is, the runtime of the program coding by Python in this 

research is longer. Therefore, the number of iterations must be suitable while processing the 

tabu search algorithm. 
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4.2.2 Heuristic Flowchart 

To solve the problem of optimal delivery with the autonomous truck and the UAVs, the 

proposed algorithm, tabu search is coded in Python and tested on a Windows 10 machine 

(Intel(R) Core (TM) i5-8250U/ 1.80GHz processor with 8GB RAM). 

Figure 4-1 shows the heuristic flowchart and the explanations of each step are described 

as follow: 

 

Figure 4-2 Heuristic flowchart 
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Step 1: To generate the travel times matrixes of the autonomous truck and UAVs, the 

first step is to obtain network data simulated by DynaTAIWAN. 

Step 2: After obtaining network data simulated by DynaTAIWAN, the program 

generates a distance matrix of the empirical network by Dijkstra algorithm to generate the 

shortest path between demand points and demand points. 

Step 3: After getting the distance matrix between demand points and demand points, 

the program generates the travel times matrixes of the autonomous truck and UAVs. 

Step 4: After acquiring the most important data which are the travel time matrixes of 

the autonomous truck and UAVs. This research continues to input the program parameters 

concerning the tabu search algorithm that is the number of nodes, service times of the 

demand points for autonomous truck and UAVs, fixed time-based flight endurance of UAVs, 

tabu tenure, aspiration criteria, termination condition. 

Step 5: After input the program parameters, it starts to generate one initial solution 

randomly. In this step, the travel route is determined first. Secondly, the demand points in 

the travel route are assigned to the autonomous truck or UAVs. Simultaneously, the program 

checks if the travel route by UAV exceed the fixed time-based flight endurance (𝑒௩௜௝௞) or 

not. If exceeds, repeats this step until generating the feasible solution. Otherwise, the initial 

solution is generated successfully. 

Step 6: The candidate solutions of the candidate list are continuously generated by swap 

two nodes using the 2-Opt algorithm. 

Step 7: The program selects the best solution of the candidate list and tests whether the 

solution is in the tabu list, if no, the program records the solution as the current solution and 

updates the tabu list. On the opposite, if the solution is in the tabu list, the program 

continuously checks whether the best solution meets the aspiration criteria or not.  

Step 8: While the solution is in the tabu list, the program test whether the solution meets 
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the aspiration criteria or not. As mentioned in the previous section, a common-sense-based 

approach is applied to relax the tabu restriction if a solution happens to produce a better 

result than the currently best solution. The tabu move can only satisfy the aspiration criterion 

in three situations synchronous, which is that the solution is the best in the tabu list, and the 

objective function value corresponds to the solution is better than the current solution. Lastly, 

if the solution meets the aspiration criteria, then the program moves to Step 9 and records 

such a solution as a new current solution. Otherwise, the program restarts Step 7 to find the 

other solution which is best from the candidate list. 

Step 9: Update related data in the tabu list such as current solution, tabu tenure, 

objective function value, and tabu list. 

Step 10: As long as meeting the termination condition, the program reports the solution 

related to the optimal route of the autonomous truck and UAVs, objective function value, 

and runtime of the heuristic program. However, if the termination condition is not satisfied, 

the program must restart with Step 6. 

4.3 Test Network Development 

To develop an actual network for optimal delivery problems concerning minimal travel 

times, test instances are constructed in two different networks. In this research, the 

commercial solver, GUROBI and tabu search algorithm are used to solve the small-scale 

networks and also be tested if the model in Section 3.4 properly reflects the optimal delivery 

route. Moreover, two test networks are described as followed. 

4.3.1 Test Network I 

As shown in Figure 4-2, the test network I is an undirected graph and comprises ten 

nodes includes one depot and nine demand points and 45 arcs. The distance matrix in the 
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test network I is presented in Table 4-1. Additionally, this research sets the speed of the 

autonomous truck as 14 m/s (equals to 50 kph). The travel times matrix for the autonomous 

truck is shown in Table 4-2. 

 

 

Figure 4-3 Test Network I with ten nodes 
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Table 4-1 Distance matrix in Test Network I (meters) 

 0 1 2 3 4 5 6 7 8 9 

0  2000 6000 5000 5000 7000 7000 5000 5000 3000 

1 2000  3000 2000 3000 5000 5000 4000 3000 2000 

2 6000 3000  535 1000 3000 3000 3000 4000 5000 

3 5000 2000 535  1000 3000 3000 2000 3000 4000 

4 5000 3000 1000 1000  2000 2000 2000 2000 4000 

5 7000 5000 3000 3000 2000  2000 3000 4000 6000 

6 7000 5000 3000 3000 2000 2000  1000 2000 4000 

7 5000 4000 3000 2000 2000 3000 1000  787 3000 

8 5000 3000 4000 3000 2000 4000 2000 787  3000 

9 3000 2000 5000 4000 4000 6000 4000 3000 3000  

Table 4-2 Travel time matrix of the autonomous truck in Test Network I (seconds) 

 0 1 2 3 4 5 6 7 8 9 

0  142.86 428.57 357.14 357.14 500.00 500.00 357.14 357.14 214.29 

1 142.86  214.29 142.86 214.29 357.14 357.14 285.71 214.29 142.86 

2 428.57 214.29  38.21 71.43 214.29 214.29 214.29 285.71 357.14 

3 357.14 142.86 38.21    71.43 214.29 214.29 142.86 214.29 285.71 

4 357.14 214.29 71.43  71.43   142.86 142.86 142.86 142.86 285.71 

5 500.00 357.14 214.29 214.29 142.86   142.86 214.29 285.71 428.57 

6 500.00 357.14 214.29 214.29 142.86 142.86   71.43  142.86 285.71 

7 357.14 285.71 214.29 142.86 142.86 214.29 71.43   56.21  214.29 

8 357.14 214.29 285.71 214.29 142.86 285.71 142.86 56.21    214.29 

9 214.29 142.86 357.14 285.71 285.71 428.57 285.71 214.29 214.29  
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4.3.2 Test Network II 

As shown in Figure 4-3, the test network II is an undirected graph and comprises ten 

nodes includes one depot and nine demand points and 45 arcs. The distance matrix in test 

network II is presented in Table 4-1. Additionally, this research sets the speed of the 

autonomous truck as 14 m/s (equals to 50 kph). The travel times matrix for the autonomous 

truck is shown in Table 4-2. 

 

 

Figure 4-4 Test Network II with ten nodes 
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Table 4-3 Distance matrix in Test Network II (meters) 

 0 1 2 3 4 5 6 7 8 9 

0  1800 2050 1950 2100 1800 1350 1900 1800 1600 

1 1800  650 1250 2400 2270 2280 3050 3180 3250 

2 2050 650  760 2000 1950 2100 2850 3100 3300 

3 1950 1250 760  1280 1220 1550 2250 2550 2850 

4 2100 2400 2000 1280  255 840 1230 1650 2180 

5 1800 2270 1950 1220 255  590 1100 1460 1950 

6 1350 2280 2100 1550 840 590  760 1000 1400 

7 1900 3050 2850 2250 1230 1100 760  470 1100 

8 1800 3180 3100 2550 1650 1460 1000 470  660 

9 1600 3250 3300 2850 2180 1950 1400 1100 660  

Table 4-4 Travel time matrix of the autonomous truck in Test Network II (seconds) 

 0 1 2 3 4 5 6 7 8 9 

0  128.57 146.43 139.29 150.00 128.57 96.43 135.71 128.57 114.29 

1 128.57  46.43  89.29 171.43 162.14 162.86 217.86 227.14 232.14 

2 146.43 46.43  54.29 142.86 139.29 150.00 203.57 221.43 235.71 

3 139.29 89.29 54.29   91.43 87.14 110.71 160.71 182.14 203.57 

4 150.00 171.43 142.86 91.43   18.21 60.00 87.86  117.86 155.71 

5 128.57 162.14 139.29 87.14 18.21  42.14 78.57  104.29 139.29 

6 96.43  162.86 150.00 110.71 60.00 42.14   54.29  71.43  100.00 

7 135.71 217.86 203.57 160.71 87.86 78.57 54.29   33.57  78.57 

8 128.57 227.14 221.43 182.14 117.86 104.29 71.43 33.57    47.14 

9 114.29 232.14 235.71 203.57 155.71 139.29 100.00 78.57  47.14   
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4.4 Results of Test Networks 

To test whether the mathematical model mentioned in Chapter 3 can solve the problem 

of optimal delivery with the autonomous truck and two UAVs or not. The mathematic model 

is tested on various test networks with ten nodes by MILP solver, GUROBI. Furthermore, 

the tabu search algorithm approach is tested on the test networks to solve the optimal delivery 

with the autonomous truck and two UAVs. The results of two test networks solving by 

GUROBI and tabu search are presented in the following context. In this research, the 

program coded in Python is tested on a Windows 10 machine (Intel(R) Core (TM) i5-8250U/ 

1.80GHz processor with 8GB RAM). 

4.4.1 Results of Test Network I Solving by GUROBI 

In the test of the mathematical model, some important input is determined before 

running the GUROBI. The travel times and speed of the autonomous truck is presented in 

Section 4.3.1. Secondly, the service times of the autonomous truck and the UAVs are 

assumed to be 30 and 60 seconds. Finally, as a constraint concerning the battery capacity to 

drones, this research applies fixed time-based endurance where two drones cooperating with 

the autonomous truck are considered to have the same maximum flight endurance. The flight 

endurance is constant for all three demand point nodes without considering speed and 

distance. In this experiment, the missions for the drones in this research are to deliver 

medical relief after disasters as soon as possible. Thus, this research set the UAV can reach 

20 m/s and flight 200 seconds by carrying 70lbs (equals to 30 kg) medical reliefs. By 

calculating the distance matrix in Table 4-1 and the speed of the UAV. The flight constraint 

between nodes and nodes is presented in Table 4-5. For instance, while the UAV is desired 

to launch from node 4, satisfy node 5 then retrieving at node 7, the program calculates the 
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travel times between node 4 to node 5 and node 5 to node 7. Due to the travel times between 

node 4 to node 5 and node 5 to node 7 are 100 seconds and 150 seconds, the UAV under the 

flight endurance is not able to deliver reliefs to node 5 in this case. 

Table 4-5 The travel times matrix with the UAV in Test Network I (seconds) 

 0 1 2 3 4 5 6 7 8 9 

0  100 300 250 250 350 350 250 250 150 

1 100  150 100 150 250 250 200 150 100 

2 300 150  26.75 50 150 150 150 200 250 

3 250 100 26.75  50 150 150 100 150 200 

4 250 150 50 50  100 100 100 100 200 

5 350 250 150 150 100  100 150 200 300 

6 350 250 150 150 100 100  50 100 200 

7 250 200 150 100 100 150 50  39.35 150 

8 250 150 200 150 100 200 100 39.35  150 

9 150 100 250 200 200 300 200 150 150  

 As mentioned in Chapter 3, this research sets the optimal delivery problem with two 

UAVs as a MILP mathematical model solving by a commercial solver, GUROBI. The results 

are presented in Table 4-6 and visualized in Figure 4-5. In this case, GUROBI spends almost 

80 seconds to generate the optimal solution and the optimal delivery time in test network I 

is 1463.84 seconds. In Figure 4-4, the results provide that the autonomous truck starts at the 

starting depot, node 0 and satisfies node 9, node 7; continuously, the UAV 1 is launched from 

the autonomous truck at node 7, travels and delivers supplies to node 8, and retrieved by the 

autonomous truck at node 6. After finishing the first delivery task, the autonomous truck 

keeps traveling to node 5, node 4 and the UAV 1 is launched from the autonomous truck at 

node 4, travels and delivers supplies to node 2, and retrieved by the autonomous truck at 
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node 3. Finally, the autonomous truck by carrying two drones travel from node 3 to node 1 

and back to the ending depot (node 0). 
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Table 4-6 The results of Test Network I solving by GUROBI 

Total Runtime 

(seconds) 

Objective 

Function Value 

Number of 

UAV 

Number of 

Customers 

79.36 1463.84 2 9 

Delivery nodes 

UAV 2 

UAV 1 

The autonomous truck 

 

              8                       2 

Start     9     7     6     5     4     3     1 

 

Figure 4-5 The visual results of Test Network I solving by GUROBI 
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4.4.2 Results of Test Network I Solving by Tabu Search Algorithm 

Tabu search algorithm approach is tested on the test network I to solve the optimal 

delivery with the autonomous truck with two UAVs. The travel times matrix of the 

autonomous truck and the UAVs are presented in Table 4-2 and Table 4-5. Additionally, the 

service times of the autonomous truck and the UAVs are 30 and 60 seconds. Finally, the 

UAVs can reach 20 m/s and flight 200 seconds by carrying 70lbs (equals to 30 kg) medical 

reliefs under fixed time-based flight endurance constraint. Based on the components in the 

tabu search algorithm mentioned in Section 4.2, the tabu tenure, aspiration criterion, and the 

termination condition are set to generate a feasible solution. The termination condition is set 

as 200 iterations. 

The results in test problem solving by tabu search are presented in Table 4-7 and 

visualized in Figure 4-6. In this case, the tabu search algorithm spends almost 26 seconds to 

generate the optimal feasible solution and the optimal delivery time in test network I is 

1568.20 seconds. In Figure 4-5, the results present that the autonomous truck starts at the 

starting depot, node 0, and satisfies node 9, node 7; continuously, the UAV 1 is launched 

from the autonomous truck at node 7, travels and delivery supplies to node 8, and retrieved 

by the autonomous truck at node 6. After finishing the first delivery task, the autonomous 

truck keeps traveling to node 5, node 4 and the UAV 1 is launched from the autonomous 

truck at node 4, travels and delivers supplies to node 2, and retrieved by the autonomous 

truck at node 3. Finally, the autonomous truck by carrying two drones travel from node 3 to 

node 1 and back to the ending depot (node 0). 
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Table 4-7 The results of Test Network I solving by tabu search algorithm 

Total Runtime 

(seconds) 

Objective 

Function Value 

Number of 

UAV 

Number of 

Customers 

26.15 1568.20 2 9 

Delivery nodes 

UAV 2 

UAV 1 

The autonomous truck 

 

        8                 2 

Start     9     7     6     5     4     3     1 

 

Figure 4-6 The visual results of Test Network I solving by the tabu search algorithm 
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4.4.3 Results of Test Network II Solving by GUROBI 

In test network II, the travel times and speed of the autonomous truck are presented in 

Section 4.3.2 and the service times of the autonomous truck and the UAVs are assumed to 

be 30 and 60 seconds. Based on the endurance constraint of UAVs, this research set the UAV 

can reach 20 m/s and flight 200 seconds by carrying 70lbs (equals to 30 kg) medical reliefs. 

Furthermore, two drones cooperating with the autonomous truck are considered to be 

homogeneous to have the same maximum flight endurance. By calculating the distance 

matrix in Table 4-3 and the speed of the UAV. The flight constraint between nodes and nodes 

is presented in Table 4-8. 

Table 4-8 The travel times matrix with the UAV in Test Network II (seconds) 

 0 1 2 3 4 5 6 7 8 9 

0  90 102.5 97.5 105 90 67.5 95 90 80 

1 90  32.5 62.5 120 113.5 114 152.5 159 162.5

2 102.5 32.5  38 100 97.5 105 142.5 155 165 

3 97.5 62.5 38  64 61 77.5 112.5 127.5 142.5

4 105 120 100 64  12.75 42 61.5 82.5 109 

5 90 113.5 97.5 61 12.75  29.5 55 73 97.5 

6 67.5 114 105 77.5 42 29.5  38 50 70 

7 95 152.5 142.5 112.5 61.5 55 38  23.5 55 

8 90 159 155 127.5 82.5 73 50 23.5  33 

9 80 162.5 165 142.5 109 97.5 70 55 33  
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In test network II, the results are presented in Table 4-9 and visualized in Figure 4-6. 

The results describe that GUROBI spends 232 seconds to generate the optimal solution and 

the optimal delivery time in test network II is 747.09 seconds. In Figure 4-6, the autonomous 

truck starts at the starting depot, node 0, serves node 3 and the UAV 2 is launched from node 

1, serves 2 and retrieved with the autonomous truck at node 3. After satisfying node 3, the 

autonomous truck continuously serves node 5, node 6 and the UAV 1 is simultaneously 

launched, serves node 4 then retrieved at node 6. At node 6, two UAVs are both launched, 

UAV 1 and 2 serve node 8 and node 7 then retrieved at node 9. Completing satisfying node 

9, the autonomous truck by carrying two UAVs heads to the ending depot (node 0). 

Table 4-9 The results of Test Network II solving by GUROBI 

Total Runtime 

(seconds) 

Objective 

Function Value 

Number of 

UAV 

Number of 

Customers 

232.90 747.09 2 9 

Delivery nodes 

UAV 2 

UAV 1 

The autonomous truck 

             2                    7 

                       4          8 

Start      1      3      5      6      9     End  
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Figure 4-7 The visual results of Test Network II solving by GUROBI 

4.4.4 Results of Test Network II Solving by Tabu Search Algorithm 

In test network II, the service times of the autonomous truck and the UAVS are 30 and 

60 seconds. Moreover, the UAVs can reach 20 m/s and flight 200 seconds by carrying 70lbs 

(equals to 30 kg) medical reliefs under fixed time-based flight endurance constraint. The 

travel times matrix of the autonomous truck and the UAVs are presented in Table 4-2 and 

Table 4-6. Based on the components in the tabu search algorithm mentioned in Section 4.2, 

the tabu tenure, aspiration criterion, and the termination condition are set to generate a 

feasible solution. The termination condition is set as 200 iterations. 

The results in test network II solving by tabu search are presented in Table 4-10 and 

visualized in Figure 4-7. In this instance, the tabu search algorithm spends almost 3.23 

seconds to generate the optimal feasible solution and the optimal delivery time in test 
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network II is 765.71 seconds. In Figure 4-7, the results present that the autonomous truck 

starts at the starting depot, node 0 and satisfies node 2, node 3. At the starting depot, the 

UAV 1 is launched, serves node1 and retrieved with the autonomous truck at node 3. At node 

3, two UAVs are both launched, UAV 1 and 2 serve node 4 and node 5 then retrieved at node 

6. Completing satisfying node 6 by the autonomous truck, two UAVs are continuously 

launched at node 6, UAV 1 and 2 serve node 7 and node 8 then retrieved at node 9. Finishing 

completing serving node 9, the autonomous truck by carrying two UAVs travels back to the 

ending depot (node 0). 

Table 4-10 The results of Test Network II solving by tabu search algorithm 

Total Runtime 

(seconds) 

Objective 

Function Value 

Number of 

UAV 

Number of 

Customers 

3.23 765.71 2 9 

Delivery nodes 

UAV 2 

UAV 1 

The autonomous truck 

                     5          8 

         1           4          7 

Start      2      3         6          9     End
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Figure 4-8 The visual results of Test Network II solving by the tabu search algorithm 

4.5 Summary 

In the test of the mathematical model, the service times of the autonomous truck and 

the UAVs are assumed to be 30 and 60 seconds. The fixed time-based flight endurance is 

200 seconds and can reach 20 m/s. The termination condition of the tabu search is set as 200 

iterations. 

In Table 4-11, the results of the test network I and test network II by GUROBI and tabu 

search is presented. In terms of objective function value, the gap with GUROBI in test 

network I and test network II are within 8% and 3%. On the other hand, the runtime 

comparing with GUROBI are improved a lot by tabu search. In conclusion, the tabu search 

solution algorithm can generate the best feasible solutions in less runtime comparing with 

GUROBI. 
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Table 4-11 Results of test network I and test network II 

Solution 

Algorithm 

Runtime 

(Seconds) 

Obj. 

(Seconds)

Routes of the 

autonomous truck

Routes of 

UAV 1 

Routes of 

UAV 2 

Test Network I 

GUROBI 79.36 1463.84 (0,9,7,6,5,4,3,1,0) (7,8,6)(3,2,1)  

Tabu 

search 

26.15 1568.20 (0,9,7,6,5,4,3,1,0) (7,8,6)(4,2,3)  

Test Network II 

GUROBI 232.90 747.09 (0,1,3,5,6,9,0) (3,4,6)(6,8,9) (1,2,3) 

(6,7,9) 

Tabu 

search 

3.23 765.71 (0,2,3,6,9,0) (0,1,3)(3,4,6)

(6,7,9) 

(3,5,6) 

(6,8,9) 
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CHAPTER 5 EMPIRICAL STUDY 

After constructing the small-scale test network instances, this research designs the 

empirical experimental network, Kaoshiung City, in Chapter 5. Section 5.1 discusses the 

experimental design, including experimental network, design, setup, and process. Section 

5.2 introduces an empirical network with three various numbers of demand points. Section 

5.3 presents the results of the empirical network in different amounts of demand points. 

Section 5.4 summarizes Chapter 5 by providing the results of the analysis. 

5.1 Experimental Design and Setup 

To develop an actual network for optimal delivery problems concerning minimal travel 

times, this section describes the empirical experimental network in Kaoshiung City. The 

basic data of the experimental network and the settings related to the model such as the fixed 

time-based flight endurance of UAVs are described in this section. Finally, the results of the 

optimal delivery with the autonomous truck and two UAVs solving by tabu search algorithm 

is presented as followed in Section 5.3. 

5.1.1 Experimental Design 

In this research, three random various test instances are used for testing purposes. 

Different test instances established on the empirical network, Kaoshiung City, include 20, 

30 and 40 nodes.  

The demand point nodes in the empirical study are randomly generated, and the detailed 

setting is further discussed in Section 5.2. 

On the other hand, the most important element in this research is the travel times related 

to the autonomous truck and two UAVs. However, it is difficult to set the distances and the 
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speed between nodes properly. In this case, the San-min District of Kaoshiung City shown 

in Figure 5-1 with real geometric data is adopted. The characteristics of arcs between nodes 

and nodes are determined by DynaTAIWAN simulation software. DynaTAIWAN (Dynamic 

Traffic Assignment and Information in Wide Area Network) is structured based on the notion 

of the simulation-assignment method (Jayakrishnan et al, 1994; Mahmassani et al., 1994). 

DynaTAIWAN simulation software considers theoretical foundations and implements the 

system based on the software development process, including mesoscopic mixed traffic flow 

mode, driving decision behavior, traffic control strategy, simulation method, and dynamic 

traffic assignment. The major characteristics of DynaTAIWAN are to reflect the impact on a 

traffic network for motorcycles in Taiwan. As shown in Figure 5-2, the conceptual 

framework of DynaTAIWAN based on mixed traffic flow and driving behavior in Taiwan 

can develop multiple simulation scenarios such as simulation of event impact, simulation 

analysis of electronic toll collection, activities impact analysis, dynamic route guide, 

multiple vehicle types analysis, vehicle routing problem (VRP), and bus, light rail transit 

(LRT), mass rapid transit (MRT) exclusive lane. In conclusion, the range of the empirical 

network, San-min District of Kaoshiung City in this research is 19.79𝑘𝑚ଶ, consisting of 132 

nodes and 363 arcs. Additionally, the empirical network with three different amounts of 

nodes is used for testing purposes. 
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Figure 5-1 The San-min District network of Kaoshiung City 

 

Figure 5-2 The conceptual framework of DynaTAIWAN 

(Source: Hu et al., 2005) 
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5.1.2 Experimental Setup 

In terms of the length between nodes and nodes, this research applies the Dijkstra 

algorithm to reach the shortest path and continuously builds the distance matrix. Dijkstra 

algorithm is described as follow: 

Step 1: Assign to every node a tentative distance value. Set the distance value of the 

initial node to zero and the distance value of all other nodes to infinity. 

Step 2: Generate a set of visited nodes with just the initial node and unvisited set 

with all nodes without the initial node. 

Step 3: For the initial node or current node, consider all its unvisited neighbors and 

calculate the distance (distance to the current node and distance from the current node to the 

neighbor). If the calculated distance is less than their current tentative distance, replace it 

with this new distance. 

Step 4: While the process has done considering neighbors of the current node, put the 

current node into the visited set and remove it from the unvisited set. 

Step 5: If the destination node has been put into the visited set, the algorithm has 

finished. If not, go to step 6. 

Step 6: Set the unvisited node marked with the smallest tentative distance as the next 

current node and go back to step 3. 

After the procedure to calculate the shortest path, the distance matrix is generated by 

the Dijkstra algorithm.  

In terms of empirical network, the starting depot and the ending depot are set as the 

same. And the demand point nodes are randomly generated from 132 nodes without 

repetition.  

In terms of input data, Table 5-1 provides the design of an empirical network with three 
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types of amounts of demand point nodes instance. The speed of the autonomous truck is 14 

m/s (equals to 50 kph). Under fixed time-based flight endurance constraint, the UAVs 

reaches 20 m/s (equals to 72 kph). Secondly, the service times of the autonomous truck and 

the UAVs are 30 and 60 seconds. Based on the test problem in the empirical network, the 

fixed time-based flight endurance is set in different scenarios that are 400, 800 seconds. 

Moreover, the termination condition is set in 200 iterations. And all the experiments are 

conducted on a Windows 10 machine (Intel(R) Core (TM) i5-8250U/ 1.80GHz processor 

with 8GB RAM). 

Table 5-1 The parameters setting 

Notation Value 

Speed of the autonomous truck 14 m/s 

Speed of the UAVs 20 m/s 

Service time of the autonomous truck 30 

Service time of the UAVs 60 

5.2 Empirical Experiments 

As the input data and settings are described in experimental design and setup in Section 

5.1. This section further discusses the experimental network with 20, 30, and 40 nodes. 

5.2.1 Empirical Instance with 20 Nodes 

The 20 nodes are randomly selected for testing purposes. As presented in Figure 5-3, 

one depot and 19 demand point nodes are included in the empirical network. 

The round symbols in black are represented as the demand point nodes and the square 

symbol in black is represented as the starting depot and ending depot. 
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Figure 5-3 Experimental instances with twenty nodes in the empirical network 

  



doi:10.6844/NCKU202002083

 

82 

5.2.2 Empirical Instance with 30 Nodes 

The 30 nodes are randomly selected for testing purposes. As presented in Figure 5-4, 

one depot and 29 demand point nodes are included in the empirical network. 

The round symbols in black are represented as the demand point nodes and the square 

symbol in black is represented as the starting depot and ending depot. 

 

Figure 5-4 Experimental instances with twenty-nine nodes in the empirical network 
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5.2.3 Empirical Instance with 40 Nodes 

The 40 nodes are randomly selected for testing purposes. As presented in Figure 5-5, 

one depot and 39 demand point nodes are included in the empirical network. 

The round symbols in black are represented as the demand point nodes and the square 

symbol in black is represented as the starting depot and ending depot. 

 

Figure 5-5 Experimental instances with thirty-nine nodes in the empirical network 
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5.3 Results of Experimental Network 

This research executes the tabu search algorithm with parameters based on the 

experimental setup in Section 5.1. Given 20, 30, 40 nodes and the empirical network with 

travel times, the results of the optimal route in delivering supplies by the autonomous truck 

with two drones are presented. The optimal routes related to the different number of nodes 

and fixed time-based flight endurance and objective function value which is the total travel 

times are listed in Table 5-2. 

Table 5-2 Optimal delivery routes of empirical network 

Number 

of 

nodes 

Flight 

endurance 

(𝑒௩௜௝௞) 

Termination 

condition 

(iterations) 

Objective 

function 

value 

[hr:min:sec]

Total 

runtime 

[seconds] 

The optimal route 

20 400 200 00:48:71 9 The autonomous truck 

[12,110,103,129,69,106,62,127,91,86,99,50,12] 

UAV1 

[(12,128,110),(110,28,129),(69,75,106), 

(106,58,62)(91,83,86)] 

UAV 2 

[(12,48,129),(110,101,62),(62,35,50)] 

800 200 00:39:19 42 The autonomous truck 

[12,58,62,91,127,110,86,69,48,129,12] 

UAV 1 

[(12,28,58),(62,103,91),(110,101,86), 

(86,75,69),(69,50,48)] 
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UAV 2 

[(12,106,58),(91,128,127),(110,99,86),(86,83,69),

(69,35,48)] 

30 400 200 01:26:24 537 The autonomous truck 

[51,96,68,110,103,88,124,122, 

79,119,115,63,25,128,18,29,51] 

UAV 1 

[(51,78,96),(96,71,68),(68,62,88), 

(88,131,124),(124,104,122),(122,81,79), 

(79,93,119),(25,84,29)] 

UAV 2 

[(68,74,88),(124,100,122),(122,132,79), 

(79,34,119),(115,43,63),(25,108,29)] 

800 200 01:19:91 106 The autonomous truck 

[51,96,25,29,84,124,88,71, 

68,78,63,119,128,108,115,51] 

UAV 1 

[(51,79,96),(96,100,124),(124,103,88), 

(88,81,71),(63,43,119),( 119,18,128), 

(128,110,108),(108,132,115)] 

UAV 2 

[(51,131,96),(124,122,88), 

(88,74,71),(63,93,119), 

(119,34,128),(128,104,108), 

(108,62,115)] 
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40 400 200 01:45:65 1131 The autonomous truck 

[119,35,40,88,130,128,117,17,38,84,66,85, 

19,112,32,48,115,97,102,96,78,68,24,119] 

UAV 1 

[(119,42,35),(40,30,88),(88,86,130),(128,34,117),

(38,50,84),(66,27,19),(19,58,112),(112,46,32), 

(97,131,78),(78,125,68)] 

UAV 2 

[(88,13,130),(117,93,85),(85,123,19),(19,54,32),

(115,124,78),(78,81,68),(68,45,24)] 

800 200 01:30:93 594 The autonomous truck 

[119,35,66,81,45,58,86,97,130,17, 

54,13,38,30,42,50,34,84,124,123,119] 

UAV 1 

[(119,48,35),(81,27,45),(58,46,86),(86,102,97), 

(130,131,17),(54,112,13),(13,32,38), 

(38,19,30),(50,24,34),(34,68,84),(84,93,124)] 

UAV 2 

[(81,115,45),(58,85,86),(86,117,97), 

(130,128,17),(17,40,54),(54,88,13), 

(13,125,38),(34,78,84,),(84,96,124)] 
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In terms of the fixed time-based flight endurance, as expected, different flight 

endurance setting produces different objective function values for the empirical study. The 

UAVs can satisfy the demand points which is far away in larger flight endurance. 

 As shown in Table 5-3, while the flight endurance is larger, the UAVs serve the demand 

points farther. However, the degree of difference is not quite large. Refer to the empirical 

network, Kaoshiung city, the distance between some demand points is short which means 

the UAVs in 400 seconds endurance can serve most of the demand points, in this case, the 

benefits that adopting high-level UAVs which is in 800 seconds endurance is less.  

Table 5-3 The number of nodes satisfied by various vehicles 

Number 

of nodes 

Flight endurance 

(𝑒௩௜௝௞) 

Satisfied by the 

autonomous truck 

Satisfied by 

the UAVs 

Satisfied by 

the UAV 1 

Satisfied by 

the UAV 2 

20 400 11 8 5 3 

800 9 10 5 5 

30 400 15 14 8 6 

800 14 15 8 7 

40 400 22 17 10 7 

800 19 20 11 9 
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In terms of the different number of demand points, the convergence in various flight 

endurance is presented in Figure 5-6, Figure 5-7, and Figure 5-8. The results of convergence 

show while setting the termination condition as 200 iterations, the tabu search algorithm 

continued searching for better solutions and finally find the solution which is minimized 

travel times.  

 

Figure 5-6 Convergence of 20 nodes with 400 and 800 endurance in 200 iterations 

 

Figure 5-7 Convergence of 30 nodes with 400 and 800 endurance in 200 iterations 
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Figure 5-8 Convergence of 40 nodes with 400 and 800 endurance in 200 iterations 

As shown in Table 5-4, the results of empirical experiments are compared with TSP 

solutions. Table 5-4 summarizes the total travel times and percentage improvement over TSP 

solutions in empirical networks with 20, 30, 40 nodes and various flight endurance. In terms 

of flight endurance, the improvement rate over TSP in higher flight endurance is better than 

the lower one in 20, 30, 40 nodes network. However, in 30 and 40 nodes network, the 

improvement rate is presented as a non-increasing behavior. This research summarizes and 

suggests two possible explanations. First, the heuristic algorithm is probably not providing 

near-optimal solutions for larger empirical networks. Nevertheless, there is no existing 

method to assess the optimal gap for the Multiple Flying Sidekick Traveling Salesman 

Problem (mFSTSP). Secondly, in terms of the coordination with the autonomous truck and 

two UAVs. While the UAV is going to merge with the autonomous truck, different vehicles 

must wait for each other. Additionally, in 40 nodes network, the density of demand points 

increases and the distance between nodes and nodes become shorter. In this case, it is less 

beneficial to deploy UAVs. In conclusion, two factors diminish the rates of improvement as 

the demand points are increasing. However, the results indicate that higher flight endurance 

leads to a reduction of total travel times comparing with the lower flight endurance. 
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Table 5-4 Comparison of travel times between FSTSP and TSP problems 

Number 

of nodes 

Flight 

endurance 

(𝑒௩௜௝௞) 

FSTSP problem (The 

autonomous truck 

and two UAVs) 

[hr:min:sec] 

TSP problem 

(Only truck) 

[hr:min:sec] 

Improvement 

rate over TSP 

problem 

[%] 

20 400 00:48:71 01:00:14 18.3 

800 00:39:19 01:00:14 34.7 

30 400 01:26:24 01:29:03 3.0 

800 01:19:91 01:29:03 9.6 

40 400 01:45:65 01:27:19 -21.5 

800 01:30:93 01:27:19 -4.8 

5.4 Summary 

In empirical experiments, this research discusses the empirical network, Kaoshiung 

City. Additionally, in terms of NP-Hard problems in Flying Sidekick Traveling Salesman 

Problem, the optimal delivery problems with the autonomous truck and two UAVs in various 

flight endurance are solved by the tabu search algorithm. 

Based on the results, this research presents the related data in optimal delivery routes 

of the empirical network including the total runtime of the program, optimal routes divided 

by the autonomous truck and two drones, the convergence of the solutions, and the 

minimized travel times which is an objective function value. This research further discusses 

that flight endurance impacts objection function value. Besides, due to the inability of 

GUROBI to generate optimal solutions for large-scale problems within reasonable runtime, 

there is no benchmark comparing to the total runtime of the program of the tabu search 

algorithm. 
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CHAPTER 6 CONCLUSIONS AND SUGGESTIONS 

This research develops a tabu search algorithm to solve the delivery problem with the 

autonomous truck and UAVs in an emergency within the least amount of time. The 

conclusions and suggestions are summarized in Section 6.1 and Section 6.2. 

6.1 Conclusions 

This research develops a model applying the autonomous truck and the UAVs to deliver 

medical reliefs in an emergency. Based on the conception of the mathematical model and the 

results of the empirical study, the conclusions of this research are summarized as follows: 

1. This research executes a model for a variant of traveling salesman problem. The 

problem of optimal delivery with the autonomous truck and drones is introduced and 

formulated by the mathematical model and the definitions of the problem statement. 

2. This research develops a tabu search algorithm to enhance the efficiency and response 

quickly on the route assignment to demand points that need reliefs and resources 

adopting the autonomous truck with drones in an emergency. By discussing the basic 

components of the tabu search, the heuristic algorithm is proposed to solve the problem 

efficiently. 

3. This research constructs the practical network which is Kaoshiung City and adopts a 

tabu search algorithm to find the solutions in different flight endurance related to drones. 

4. The results within reasonable runtime and the optimal delivery routes are generated by 

the tabu search algorithm. 
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6.2 Suggestions 

The suggestions for future study on optimal delivery of the autonomous truck and the 

drones in an emergency are summarized as follows: 

1. In this research, the mathematic model is provided and allows one autonomous truck 

and two drones to serve demand points. However, the problem can be extended to allow 

more autonomous trucks carrying three to six drones to compare the efficiency of 

delivery tasks in the different number of vehicles. 

2. In this research, the problem is defined as Flying Sidekick Traveling Salesman Problem 

which means the UAVs cannot travel to demand points from and back to the depot 

directly. In the future, the problem might be a mixed problem that the drones can satisfy 

the demand points nearby the depot and simultaneously sending vehicles by carrying 

drones to serve the demand points far away. 

3. This research assumes that the performance of the drones are analogs and the demand 

point can be satisfied without considering the capacity limitations of drones. It is worthy 

to mention if the drones should be heterogeneous in a fleet to be realistic in a real 

situation. 

4. This research applies an empirical network, San-min District in Kaoshiung City. The 

area of the empirical network is 19.79𝑘𝑚ଶ , consisting of 132 nodes and 363 arcs. 

However, the ability of UAVs such as velocity and battery constraints are becoming 

better and better. It is necessarily applying a larger network to highlight the importance 

of the UAVs in FSTSP. 
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