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Abstract

Between August 6, 2009, and August 10, 2009, the deadly typhoon Morakot has hit
Taiwan which brought the rainfall and the worst flooding across the country. Due to the
devasting flooding incident, 681 people were dead and 18 went missing. Furthermore, the
flooding washed away buildings, roads, bridges, and destroyed the only way back and forth
of several mountain areas. Once the villages and towns lose the important traffic, air-delivery
becomes the only choice to obtain supplies. However, the shortness of the air-delivery made
the villages face tough trials. In such an emergency, the most concerned in this research is
delivering numerous supplies quickly, properly, and accurately to meet everyone who is in
urgent need.

In recent years, most logistics service providers are desired to seek innovative delivery
options to fight with time pressure and labor shortages. In that case, autonomous vehicles
seem to be the most appropriate solution to solve the problem. In Singapore, Jurong Island
has applied autonomous trucks because of the shortage of labor. In America, autonomous
trucks are the only solution in increasing efficiency to fight against the increasing volume of
freights. According to National Development Council in Taiwan, the total population from
2020 to 2065 will decrease from 23 million to 17 million. The shortage of labor will bother
Taiwan. The autonomous truck can redeem the shortage of labor and increase the efficiency
in transportation and safety by automotive control. All the strengths can be achieved by
autonomous vehicles, that is why this research focuses on ITS technologies such as an
autonomous truck.

The objective of this research aims to develop a model for delivering relief resources in

an emergency using Intelligent Transportation System (ITS) such as autonomous vehicles
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and unmanned aerial vehicles (UAVs). This research focuses on the routing problem in
emergency logistics. Logistics has been mostly utilized in the commercial field. However,
logistics is also an important tool to transport relief resources when a disaster occurs.

Once the emergency occurs, autonomous vehicles can prevent the labor shortage. In
limited time, UAVs are useful to do humanitarian logistics and the most important for those
injuries is to deliver relief resources fast and moderately. By optimizing the route and
distributing the resource moderately, relief transporting by autonomous vehicles can
efficiently transport to injuries from the disaster. Despite the autonomous trucks are mostly
utilize in delivering cargos, the development of the intelligent transportation system is the
trends sweeping across the whole world. Thus, this research is desired to adopt autonomous
trucks cooperating with two UAVs to transport supplies when an emergency occurs. To
enhance the efficiency in delivering supplies, this research aims to develop a model for
traveling salesman problem with two drones based on tabu search algorithm. Finally, the
results are expected to present optimal routes for an autonomous truck and UAVs and be
compared with a standard commercial solver, GUROBI. This research is contributed to
providing some ideals for delivering relief resources in an emergency adopting the
autonomous truck cooperating with two UAVs.

Keywords: Tabu Search, Autonomous Vehicle, Unmanned Aerial Vehicle, Traveling

Salesman Problem, Flying Sidekick Traveling Salesman Problem
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CHAPTER 1 INTRODUCTION

1.1 Research Motivation and Background

Between August 6, 2009, and August 10, 2009, the deadly typhoon Morakot has brought
a large amount of rainfall to hit Taiwan. The flooding incident caused by Morakot was
Taiwan’s worst flooding. Due to the devasting flooding incident, 681 people were dead and
18 went missing. The flooding made the rivers wash away the building, roads, and bridges,
cut up power lines. Moreover, landslides caused by the rainfall destroyed the only way back
and forth for several mountain areas. Because the roads had been destroyed, mountain areas
lose the important traffic and had to rely on air-delivery to obtain resources such as food,
water, and supplies. However, the shortness of the air-delivery made the mountain areas face
tough trials. In such an emergency, the most concerned are delivering supplies and resources
quickly to meet everyone who is in urgent need of the proper vehicles.

In actual life, the disaster always comes in very timely, seriously and unpredictable.
Once the disaster occurs, no matter the earthquake, flood, hurricane, or fire explosion it is,
human and financial losses are inflicted significantly. In consideration of the disaster effects,
the emergency transportation network can play a vital role, especially in delivering resource
relief after a disaster. Unlike the developed countries after suffering the disaster in which the
goal is to return the city to the pre-disaster condition quickly, the developing countries are
attempting to rescue more people in the response phase (Khademi et al., 2015). Once a
serious disaster strikes in Taiwan, the consequences always come with destructive and
irreducible. For instance, the devastating the 921 earthquake in Nantou in 1990 almost
destroyed the whole cities in the middle of Taiwan and almost 14,000 were injured or even

dead. In 2014, a series of gas explosions happened in the southern Taiwanese city of
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Kaohsiung which destructed the city roads and caused 321 injured and 32 killed. Another
case in 2016, the Meinong earthquake, which is the most serious earthquake after the 921
earthquake, crush several buildings in Tainan, the worst situation is that Meinong earthquake
caused the most sufferer of the collapse of a single building in Taiwan’s history. In terms of
the disaster which is an unpredictable and serious outcome, the problem of delivering relief
resources should be noticed in an emergency that may destroy the roads.

In recent years, logistics service providers (LSPs) are regularly adopting innovative
technologies such as autonomous vehicles and drones to improve the parcel delivery process
(Joerss et al., 2016). The expectation for fast delivery is the reason why more than half of
LSPs are nowadays offering same-day and next-day delivery options to their customers
(Saleh, 2017). Furthermore, while facing emergency disasters, autonomous vehicles can
shortage numerous relief resource equipment without the driver’s seat. The emerging
technologies V2I or V2V can also make inventory transparent cooperate with fleet and even
help unmanned aerial vehicles (UAVs), as called drones, to plan ideal route feasibly and
efficiently. On the other hand, UAVs have been also proposed to assist in releasing natural
disasters emergency (Estrada and Ndoma, 2019). Undoubtful, fast and unlimited by terrain,
which is the characteristic of UAVs to deliver goods reasonable such as relief supplies in
emergency transportation.

This research aims to develop a model for emergency relief and resource transportation
by autonomous truck cooperating with two UAVs and further construct a heuristics
algorithm which is tabu search to minimize delivery time. The proposed model is tested on
a realistic Kaoshiung network in Taiwan. This research is expected to provide
recommendations for the relevant organization (Humanitarian relief, government, sufferer)

in an emergency.
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1.2 Research Objectives

The purpose of this research is to enhance the efficiency and response quickly on the
route assignment to demand points that need relief and resources adopting the autonomous
truck with drones in an emergency. Thus, scheduling, distribution and cooperating with
drones should be completed within the least amount of time when planning distribution
routes according to the practical demand for the resource at different locations. To find the
optimal distribution route necessarily according to the needs of the demand points and
delivery time, this research is desired to execute a model concerning a traveling salesman
problem (TSP). The results are expected to provide practical and specific recommendations
and comments for relevant authorities such as hospitals, government, and autonomous
vehicle operators. The objectives are summarized as follows:

1. The problem of optimal delivery with the autonomous truck and two drones is
introduced and formulated.

2. An efficient heuristic algorithm which is Tabu Search is proposed to solve the problem.

3. This research demonstrates the improvement of the delivery time within the UAVs by
computational experiments.

4. This research indicates the proposed heuristic algorithm can obtain a better feasible

solution than a commercial solver, GUROBI comparing solution time.

1.3 Research Flow Chart

Figure 1-1 is the research flow chart and the following briefly describe research tasks
respectively.
1. Research Background and Motivation

Explain the important issue of the emergency such as an earthquake or explosion in
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Taiwan. Moreover, define the purpose of the research and outline the research objectives.
Literature Review

Review the vehicle routing problem (VRP), the features of autonomous vehicles and
UAVs and the traveling salesman problem (TSP) related to UAVs.

Problem Statement

Based on the background of this research, describe the issue in detail and define the
problem in this research.

Model Formulation and Solution Algorithms

This research proposes a model for emergency relief distribution adopting the
autonomous vehicle cooperating with two UAVs. Present the algorithm for route
optimization with the objective of the minimum travel times. Further, present the detailed
definition, formulation, and solution algorithms.

Numerical Experiments and Analysis

The performance between the proposed heuristics algorithm and the commercial solver,
GUROBI are discussed by solution time.

Empirical Study

This research executes the model of delivery problem adopting the autonomous truck
with two drones in the empirical network which is Kaoshiung City giving various
numbers of demand points

Results and Discussion

This research presents the results of route optimization solution time via the proposed
heuristics algorithm and the commercial solver.

Conclusion and Suggestion

Due to the rareness of Taiwan research related to emergency transportation, especially

adopting the autonomous vehicle as well as UAVs, this research is desired to contribute
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to providing recommendations and reference for relevant authorities based on the results

of numerical experiments.

Research Background and Motivation

A

Literature Review

Autonomous Vehicles Unmanned Aerial Vehicles

Travelling Salesman Problem Vehicle Routing Problem

Tabu Search Algorithm

Problem Statement

r

Model Formulation and Solution Algorithm

Y

Numerical Experiments and Analysis

A 4

Empirical Study

Results and Discussions

Conclusions and Suggestions

Figure 1-1 Research flow chart
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CHAPTER 2 LITERATURE REVIEW

In this research, the purpose is to solve the problem concerning emergency
transportation by adopting autonomous vehicles cooperating with unmanned aerial vehicles.
Therefore, this research focuses on describing the problem as a traveling salesman problem
(TSP). Each of the sections is detailed summarizing as followed: Section 2.1 reviews the
features with autonomous vehicles. Section 2.2 reviews the features and developments of
the unmanned aerial vehicles (UAV). Section 2.3 reviews the traveling salesman problem
(TSP) and the extended problem related to UAVs. Section 2.4 further reviews the basic
introduction and the extended problem of vehicle routing problem (VRP). Section 2.5
reviews the tabu search Optimization approach. Section 2.6 states a summary in Chapter 2

by providing the key points in each of the sections.

2.1 Autonomous Vehicles

In recent years, autonomous vehicles (AVs) are a recent phenomenon that a range of
studies focuses on. Most researchers are focusing on examining the technical aspects,
feasibility, and the impacts on safety and congestion of AVs. As an emergency technology in
Intelligent Transportation System (ITS), AVs can be applied in logistics or as a hub for UAVs.
In the following context, a brief introduction of AVs is shown.

Autonomous vehicles are also called automated vehicles, self-driving vehicles, and
driverless vehicles. The driving automation levels of AVs can be divided into six degrees
from full manual to full automation. The Society of Automotive Engineers International

(SAE International, 2014) defines six different levels are shown in Table 2-1.
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Table 2-1 SAE International’s levels of driving automation for on-load vehicles

SAE Statement Brief description
level
Human driver monitors the driving environment

0 No Automation Zero autonomy; the driver performs all driving
tasks.

1 Driver Assistance Vehicle is controlled by the driver, but some
driving assist features may be included in the
vehicle design

2 Partial Automation Vehicle has combined automated functions, like
acceleration and steering, but the driver must
always remain engaged with the driving task and
monitor the environment.

Automated driving system monitors the driving environment

3 Conditional Automation | Driver is a necessity but is not required to
monitor the environment. The driver must always
be ready to take control of the vehicle with
notice.

4 High Automation The vehicle can perform all driving functions
under certain conditions. The driver may have the
option to control the vehicle.

5 Full Automation The vehicle can perform all driving functions

under all conditions. The driver may have the

option to control the vehicle.

(Reference: SAE International, 2014)
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In recent years, autonomous vehicles have been a prominent role across the Information
and Communication Technology (ICT) industry and the automotive industry. With the
increasing maturity and breakthrough of self-driving technologies, many corporations in
different fields have invested in developing AVs and implemented lots of AVs tests. Such as
the United Kingdom, the United States, Japan, and Singapore, they are all developing the

AVs and starting the project to test the AVs.

2.2 Unmanned Aerial Vehicle (UAV)

The researches related to UAV today involving lots of papers on different topics such as
battery endurance improvement, GPS enhancements, navigation, and obstacle avoidance.
Most researchers are focusing on examining the technical aspects, feasibility, and the safety
of UAVs. As an emergency technology in Intelligent Transportation System (ITS), UAVs
can be applied in either last-mile delivery with fast and flexible or deliver lightweight reliefs
such as food, water, and medicine after a disaster. Thus, this section states a brief introduction

and the development of UAVs by focusing on resource distribution in an emergency.

2.2.1 Current States of Unmanned Aerial vehicles

Unmanned aerial vehicle is also called drone, unmanned aircraft system (UAS) or
uncrewed aerial vehicle (UAV). Due to the characteristics that drones can be easily operated,
controlled without a human pilot, and the cost is relatively lower compared with human labor,
they must be implemented as an alternative delivery way in the future. The topics in different
countries for drones involve legal issues, environment, political issues, and economics are
various. However, the most concern and the challenge is whether the broader society would
accept it or not. In the previous literature, privacy seems to be the most trouble concern for

the public. Also, safety concerns closely follow privacy. Unsurprised, the phenomenon also
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happens on another emerging technology, autonomous vehicles (Rosenfeld, 2019).

Despite the privacy and safety bother the public, it is estimated that drones would be
widely used in each territory such as logistics, agriculture, observation of infrastructure, film
or cinema used and emergency supplies (Watkins et al., 2019). In this research, the goal is
to implement the characteristics of drones that they can fly over rough or difficult terrain in

which the road access is limited to discuss with the use of emergency supplies transportation.

2.2.2 Developments of Unmanned Aerial vehicles

In recent years, many companies have been tested the UAVs for various use and been
used for the rapid delivery of lightweight freight such as goods that need to be transported
for a limited distance. Therefore, this research reviewed the developments of drones by
different two companies and are described as followed:

(1) Amazon
In 2013, Amazon CEO Jeff Bezos announced that Amazon would develop a fleet
of UAVs for small parcel delivery within 30 minutes for its customers. The plan by

Bezos was called Amazon Prime Air. In 2017, Amazon completed its first public

demonstration of a Prime Air drone delivery in the U.S. It is worthy to mention that the

flight was completed fully autonomously with Amazon’s software without human
intervention or guidance.
(2) UPS
In 2017, UPS tested the use of drones for residential delivery on a blueberry. The
test was set to launch a multi-rotor drone from the top of a delivery truck. The drone
delivered a package directly to a home, then returned to the van which had moved down
the road to a new location. While the drone dock on the top of the delivery truck, it can

recharge through a physical connection between its arms and the truck’s electric battery.
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And the UAV is capable of a 30 minutes flight time at a top speed of 45 miles. However,
the UPS has investigated that the drones will only fly for about 22 minutes to deliver
goods to customers.

According to UPS Vice President of Engineering, John Dodero, the company’s goal
is to have drones work off any type of vehicle, whether gas-powered or electric, to make

last-mile deliveries.

2.3 Traveling Salesman Problem

As was mentioned at the beginning of this chapter, this research focusses on emergency
transportation adopting the autonomous truck cooperating with UAVs. Due to the speediness
of UAVs, once the UAVs delivers more, the demand points will be satisfied more quickly.
In other words, in such a limited time, the goal of this research is to achieve high efficiency.

In this chapter, the traveling salesman problem related to the UAVs would be discussed
to help construct the problem. Chapter 2.3.1 briefly defines and introduces the traveling
salesman problem. Chapter 2.3.2 discusses the extended problem of traveling salesman

problem related to UAVs.

2.3.1 Traveling Salesman Problem (TSP)

In recent years, there is a vast number of works of literature on the traveling salesman
problem TSP and VRP. TSP is a fundamental, special case on VRP. The first to propose the
TSP was Dantzig and Ramser (1959).

The basic assumptions in TSP are as followed:
1. The salesman departs the depot and finally backs to the depot,
2. At the journey, the salesman must visit all the customers; and

3. The customers must be visited at most once.

10
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As in Figure 2-1, a simple illustration shows the difference between the VRP and TSP.
The difference between the TSP and VRP is that the capacity of the vehicle (salesman) can
not be constrained in TSP. Furthermore, the criteria of VRP is under the capacity constraints
of the vehicles and seek to satisfy all the customers on different paths. Lastly, the objective

of TSP is to optimize the travel cost or minimize path length.

I:I : depot

» customer
(a) VRP (b) TSP

Figure 2-1 Illustration of the VRP and TSP
In Section 2.3.2, this research would discuss with the variant of TSP, which is FSTSP.

The idea of FSTSP would be implemented to help construct our problem.
2.3.2 The Flying Sidekick Traveling Salesman Problem (FSTSP)

There are numerous literatures on the traveling salesman problem (TSP) and vehicle
routing problem (VRP). Meanwhile, an increasing number of studies investigate the
efficiency of delivery systems that deploy UAVs.

Murray and Chu (2015) were the first to propose a variant of the traditional TSP, the
“Flying Sidekick Traveling Salesman Problem” (FSTSP). In their paper, they constructed
the problem in mixed-integer linear programming. In FSTSP that they proposed, each

customer must be served exactly once by a delivery truck or by a UAV which operates in

11
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coordination with the truck. Once launched, the UAV must visit a customer and return, within
its flight endurance limit, to the truck or the depot. The objective is to minimize the total
service time while all customers are visited, and both the truck and the UAV return to the
depot. The ideological framework in FSTSP is that a drone should cooperate with a truck to
visit the customer. The truck and the drone depart from a single depot together or
independently, fulfill the customers’ demand and return to the same depot. However, some
customers are visited by the drone, others are visited by the truck, but when traveling in
tandem, the drone is transported by the truck.

Take an insight into FSTSP, the general notation is as followed:

Let C = {1,2,---,c} be the set of all customers and C'e C denotes the subset of
customers that may be serviced by the UAV. The depot is set as node 0 at the departure of
the truck and UAV and is set as node ¢ + 1 at their return. Therefore, the sets to operate with
are N = {0,2,---,c + 1} donate the set of all nodes. To further facilitate the network
structure of the problem, let N, = {0,1,::+,c} be the set of all nodes the two vehicles may
depart from, and let N, = {1,2,:--,¢ + 1} be the set of all nodes visited by a vehicle along
a tour.

Let parameter 7;; be the time required for the truck to travel from node i to node j,
parameter T;; be the analogous travel times for the UAV. Given the logical restrictions that
Toc+1 = 0.

The following parameters, measured in units of time, are considered:

s, - the time required to prepare the UAV for launch;

sg - the time required for the UAV recovery, after the truck and UAV reaches
rendezvous.

The traveling speeds are constant for both trucks and drones.
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In the algorithm in FSTSP that Murray and Chu (2015) proposed, they computed the
saving of serving the node j by the drone for each j € C’, The method computes the
greatest saving by testing all the possible sorties of the current truck subroute, and also by
testing all possible insertions of other truck nodes in other positions in the current truck
subroute. Starting from the depot, the drone is set to fly to j if the greatest saving is positive,
and the method is iterated for the remaining truck route.

Meanwhile, other researches continuously propose either the various algorithms or the
different criteria to build an environment that is matching the real-life aspects according to
the FSTSP.

Agatz et al. (2018) generate combinations of truck and drone routes between each
possible launch and pickup nodes. They refer to each combination as an operation and
propose an operation-based formulation. Two heuristics based on local search and dynamic
programming were proposed by Agatz et al. (2018). Different from the assumptions made
by Murray and Chu (2015), the truck can meet with the drone at the starting node of the
flight.

Ha et al. (2018) were the first to define the delivery cost of the TSP-D. They provide
two different heuristics that are inspired by the route first-cluster second heuristic, which is
based on local search and GRASP. The results in their research were probably obtained for
large instances with 50 and 100 customer nodes.

Wang et al. (2017) is the first research to consider a more general case with multi-trucks
and multi-UAVs. They investigate this version of the problem in which one or more UAV's
can travel with every truck from a theoretical aspect that provides worst-case analysis and
bounds for several considerations. In their research, the objective function is to minimize the
delivery completion time, that is, the time when the last truck or UAV returns to the depot.

Yurek and Ozmutlu (2018) presented an iterative algorithm based on a decomposition
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approach to minimize the delivery completion time of Traveling Salesman Problem with
Drone (TSP-D).

de Freitas and Penna (2018) provided a randomized variable neighborhood descent
heuristic to solve FSTSP, in which the initial solution is created from the optimal TSP
solution obtained by the Concorde solver. In the second phase, an implementation of the
Randomized Variable Neighborhood Descent (RVND) heuristic is used as a local search to

obtain the problem solution.

2.4 Vehicle Routing Problem

In this research, as a result of the focus is to develop a TSP model that adopting AVs and
UAVs, the VRP related to vehicles should be noticed and identified. By reviewing the VRP

researches in recent literature, this research can confirm the problem more clearly.

2.4.1 The Introduction of Vehicle Routing Problem

The vehicle routing problem (VRP) is the most well-studied optimization problem in
operations research. This problem was first proposed by Dantzig and Ramser (1959). They
defined the truck dispatching problem as a linear programming formulation. In their paper,
they define VRP by given a network G = (V, E), with a node set V consisting the depot and
the customer node. Under the limited capacity of the truck, the goal is to satisfy all the
demand stations with minimum possible covered mileage. Since then, such variants have
been considered, incorporating capacities, service time windows, maximum route lengths,
distinguishing pickups and deliveries, fleet inhomogeneities, and so forth. However, in the
consideration of real-life aspects associated with largescale problems, the VRP has extended

to different kinds of problems concerning different settings.
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2.4.2 The extended problem of VRP

As discussed above, the vehicle routing problem is extended into different types

considering different constraints. As Table 2-2, different factors lead to related variants in

terms of VRP.

Table 2-2 The factor of the Vehicle Routing and Scheduling Problem

Factor

Classification

Time windows

Yes; No

Number of depots

Single; Multiple

The size of vehicle fleet

One; Many

The categories of vehicle fleet

Single; Multiple

Type of demand points

Deterministic; Stochastic

Position of the demand points

On node; On arc; Both on node and arc

Type of network

Undirect; Direct

Capacity of vehicles

Same; Different

The range of routing distance

Same constraints; Different constraints

Cost Variable; Fixed

Operation type Pick-up; Delivery; Pick-up and Delivery;
Backhauls; Dial-a-ride

Objective Minimize the distance; Minimize the cost;

Minimize the number of vehicles

To understand the variants of VRP, some papers in the literature were reviewed
concerning each variant and the contributions were compared analytically. For instance, the

literatures were widely studied such as VRP with Pick-up and Delivery (VRPPD),
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Capacitated VRP (CVRP), Multi Depot VRP (MDVRP), Periodic VRP (PVRP), Flexible
VRP (FVRP), VRP with Backhauls (VRPB), Rich VRP (RVRP), Green VRP (VRP) and so
forth.

Gribkovskaia et al. (2008) proposed a mixed-integer linear programming (MILP)
formulation to minimize the total cost associated with the covered routes with totally
delivered orders, and partially satisfied pickups. They defined the problem as a VRPPD and
consider whether it is more beneficial to satisfy the identical customer twice rather than
creating a full route circle.

Recently, Belgin et al. (2018) published research related to VRPPD with two-echelon
(2E-VRPPD). They were desired to make pickup and delivery operations accomplish
simultaneously, with the same vehicle delivering all the orders from the depot to the
destinations, and from destinations back to the depot. Moreover, a Node-based mathematical
model and a hybrid heuristic algorithm were used to solve the 2E-VRPPD.

To solve the Capacitated Vehicle Routing Problem (CVRP), Lahyani et al. (2015)
noticed that the capacity of the vehicle is one of the important decisions that impact the
optimal VRP network choices. The objective is to provide a solution with minimum costs
with a closed route circle, one-time customer service by one vehicle and the route total
demand must not exceed the assigned vehicle capacity.

Lietal. (2016) focus on combination-vehicle attributes as a Combination Truck Routing
problem (CTRP). Types of vehicle and travel distance were considered, and a heuristic
algorithm was applied to solve a real logistical case.

However, Montoya-Torres et al. (2015) published a literature review about the MDVRP
considering different VRP variants. In their paper, different approaches were proposed to
solve the problem with the final clients, who are not clustered around every single depot.

Consequently, research was extended to the MDVRP and deemed to be realistic and served
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real applications as effectively as possible.

Lahyani et al. (2018) introduced a combination of Multi-Depot Fleet Size and Mix VRP
(MDFSMVRP). They compared different formulations related to Branch-and-Cut and
Branch-and-Bound algorithms to solve the suggested formulations with different indexes.
An improvement in the lower and upper bounds on the tested instances has been
considerably achieved. This problem extends the multi depot vehicle routing problem and
the fleet size and mix vehicle routing problem and combines complex assignment and
routing decisions under the objective of minimizing fixed vehicle costs and variable routing
costs.

Refer to the Periodic Vehicle Routing Problem (PVRP), Campbell and Wilson (2014)
proposed a VRP with multiple service periods. The objective in their paper is to satisfy the
orders from customers during multiple periods with the same fixed quantity.

Archetti et al. (2017) present the PVRP with a flexible characteristic, Flexible PVRP
(FPVRP). In their paper, the objective function is to minimize the total routing costs, while
allowing some flexibility to customer satisfaction frequencies and quantity during the
planning horizon, rather than fixed frequencies and quantity. On the other hand, the FPVRP
considers the inventory costs accompanied by the objective function, which is modeled in
the Inventory Routing Problem (IRP). The results reveal that the costs were minimized better
than when using PVRP or IRP.

Another variant, VRP with Backhauls (VRPB) emerged depends on the route types
planned to be covered by the available fleet of trucks where both delivery and pickup are
available on the same routes.

Kog and Laporte (2018) analyzed different VRPB literature and compared the exact and
heuristic algorithms. They made a classification for VRPB in different variants tabulating in

their research with the defined mathematical model and solution.
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On the other hand, Bortfeldt et al. (2015) had extended VRPB into clusters with a three-
dimensional loading problem (3L-VRPCB). In their paper, the line-haul customers should
be served before the backhaul ones. They also proposed two hybrid algorithms to deal with
the packing and routing procedures.

Garcia-Ngjera et al. (2015) proposed a multi-objective model that minimizes the number
of vehicles, traveling costs, and the un-serviced backhauls. In their paper, a similarity-based
selection evolutionary algorithm approach is proposed for finding improved multi-objective
solutions for VRPB.

In recent years, to be a Rich VRP (RVRP), three VRP variants such as Open VRP
(OVRP), the Dynamic VRP (DVRP), and the Time-Dependent VRP (TDVRP) are more
important to be noticed and considered in a combined VRP model (Braekers et al., 2016).

Marinakis and Marinaki (2014) suggest a newly developed Bumble Bees Mating
Optimization (BBMO) algorithm to solve the OVRP. In their paper, the algorithm was
compared with several metaheuristics, evolutionary and nature-inspired algorithms. They
believed that the results were satisfactory and better solutions were revealed.

Another important variant, the DVRP, presents that the real-life aspects are mostly
dynamic in nature and requirements. Wide researches were conducted and accompanied by
a different mix of other variants.

Pillac et al. (2013) published a review paper that comprehensively studied various
DVRP works from different perspectives. It is specifically that the evolution and quality of
the information being transferred across the planning horizon are two dimensions
importantly to understand when studying the DVRP. Regarding the evolution, the
information can be changed after the planners defined a routing plan, while the quality of
the information emerges from the uncertain demand of available data. By the improvement

of recent technology, it provides an easier follow-up system for the routing planning process,
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as the complexity of the DVRP increases and the need for richer VRP models emerges.

Furthermore, another important variant of VRP, Time-dependent VRP (TDVRP) is also
vital. It is worth mentioning that the routing plan of the previous VRP variants was static
with vehicle speed and journey time. On the opposite, the optimal solution of planned routes
from cost and distance overviews should be aggressively impacted by traffic congestion.
Thus, the research of VRP must be more realistic while considering the current traffic
conditions. In recent years, real-time information in traffic conditions on a certain route may
help to identify the expected time to cross a certain route. Therefore, Time-Dependent VRP
would greatly improve the optimal solution of the routing plan with minimum cost and time.
Furthermore, the optimal solution is expected to be enhanced not only in minimizing time
durations for planned routes but also in CO2 emissions of the traveled routes (Maden et al.,
2010).

Maden et al. (2010) proposed a heuristic algorithm that minimizes the total travel time
of TDVRP. They considered the problem with the expected traffic congestion, which is
usually higher during rush hours. A sample in the United Kingdom was conducted and the
results show 7% of CO2 emissions were reduced compared to the traditional VRP model
with an emission saving objective.

Huang et al. (2017) considered the path selection decision with a TDVRP problem. In
their paper, the conventional assumption of the given customer nodes and arcs were
improved by providing a path selection choice in the road network. They proposed a model
that provided a solution with an optimal route and path selection decision depending on both
departure times and congestion levels related to the suggested network. The contribution of
their paper is to solve Time-Dependent VRP with Path Selection (TDVRP-PS) using The
Route-Path Approximation (RPA) method, which provides a near-optimal solution, taking

into consideration stochastic traffic conditions.

19

doi:10.6844/NCKU202002083



In the summary of classical VRP, it is vital to continuously develop effective VRP
models. The variants VRP model can be applied in many different territories such as logistics
and transportation. Later in below, the Rich VRP (RVRP) and Green VRP (G-VRP) are more
discussed below.

As the technology grew up and the damage that people did to the earth, different
researches are now focusing on green policy applications and seeking sustainable VRP
models to deal with the trend worldwide.

Erdogan and Miller-Hooks (2012) added a battery capacity constraint along with the
option of recharging at a station with constant time. They assumed a full-charge policy and
proposed two heuristics to solve the problem by minimizing the total travel distance. In the
settings of their paper, the charging stations are scarce in the network and the vehicle can
visit the same station multiple times. Numerical experiments showed that these techniques
perform well compared to exact solution methods and that they can be used to solve large
problem instances.

Lin et al. (2014) comprehensively review the literature on GVRP. The proposed models
and categorized into GVRP and Pollution Routing Problems (PRPs). The idea of their work
considered how traditional VRP can interact with the GVRP in the coming inspired research
topics. The contributions of the paper are they created a starting point for researchers and
logistics practitioners to construct sustainable VRP work that considers the important
variants, combining the most important real-life aspects with continual green needs.

Burer and Letchford (2012) proposed a three-objective mathematical model to solve the
problem: first is to minimize the traveling costs and consumed energy; the second is to
minimize the fuel consumption rate by minimizing the incurred environmental penalty and
the last is to maximize customer satisfaction levels in terms of maximum possible average

velocity. The results revealed that by considering the relationship between route type and
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certain fuel consumption rates associated with CO2 emissions, an improvement exists for
reducing environmental pollution and planning eco-friendly routes. They also suggested that
the model is NP-Hard programmed and will be time-consuming for solving larger instances.
Thus, using heuristics, meta-heuristics, or an exact method, such as spatial branch-and-
bound and branch-and-reduce would be more realistic to solve the model.

After reviewing the previous Green-VRP, the Rich VRP would be reviewed as followed.
Lahyani et al. (2015) present a taxonomy of PVRP as Table 2-3. The most important that
they mentioned was the gap between the suggested RVRP models in the literature and the
complexity of the real-life aspects. They questioned that most researches focus on providing
a mathematical model with solutions rather than adjusting the real-life characteristics. In
their paper, they provided the requirements as optimization criteria, constraints, and

preferences that should be available to produce an RVRP model.

Table 2-3 A taxonomy of PVRP

Scenario characteristics

1. Input data Static

Dynamic

Deterministic

Stochastic

2. Decision management component Routing

Inventory and routing

Location and routing

Routing and driver scheduling

Production and distribution planning
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3. Number of depots

Single

Multiple

4. Operation type

Pickup or delivery

Pickup and delivery

Backhauls

Dial-a-ride

5. Load splitting constraints

Splitting allowed

Splitting not allowed

6. Planning period

Single period

Multiple periods

7. Multiple uses of vehicles

Single-trip

Multiple-trip

Problem physical characteristics

1. Vehicles | (1) Type

Homogeneous
Heterogeneous

(2) Number Fixed
Unlimited

(3) Structure Compartmentalized

Not compartmentalized

(4) Loading policy

Chronological order

No policy

(5) Capacity constraints

(6) Driver regulations

2. Time constraints

Restriction on customer
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Restriction on road access

Restriction on depot

Service time

Waiting time

3. Time window structure Single time windows

Multiple time windows

4. Incompatibility constraints

5. Specific constraints

6. Objective function Slngle objective

Multiple objectives

(Reference: (Lahyani et al., 2015))

One more work on the RVRP was presented by Goel and Gruhn (2008). The variants
that were studied as combined are time windows restrictions, a heterogamous fleet of trucks
with variable travel times, travel costs and capacity, multi-dimensional capacity constraints,
multiple pickups and delivery location service, different starting and ending points, and route
restrictions. Despite the literature related to RVRP are taking consideration of the various
characteristics to deal with real-life conditions, each of the researches is focusing on the
problem that they faced.

Considering the variants of different characteristics of previous literature, this research
categorized VRP into seven types of classical VRP and described the objectives in detail. It
is shown as followed:

1. Capacitated Vehicle Routing Problem, CVRP

The objective of CVRP is to minimize total distribution cost and there is one single

depot that the vehicle starting to serve each customer. Each customer can only be

serviced once. Besides, the vehicles must return to the depot under the capacity or travel
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distance.

Period Vehicle Routing Problem, PVRP

The objective of PVRP is to minimize the cost and meet customers’ needs
simultaneously in each period. Each customer can only be serviced once and the
constrains of vehicles are the same.

Stochastic Vehicle Routing Problem, SVRP

The demand for customer points is a random variable of probability. The route of
vehicles must be given. The objective of the SVRP is to minimize the cost.
Multi-Depot Vehicle Routing Problem, MDVRP

The objective of MDVRP is to minimize the cost. The vehicle starts from the depot and
returns to the same depot after serving each customer. In the network of MDVRP,
multiple depots are depending on the setting of the research. Besides, each customer
can only be serviced once.

Vehicle Routing Problem with Backhauls, VRPB

The vehicles from the depot start to deliver for customers, and on the route of backing
to the depot, the vehicles receive the goods from the customer under the constraints of
capacity and routing distance. The objective of VRPB is to minimize the cost
considering the least of trips

Pick-up and Delivery Vehicle Routing Problem, PDVRP

The difference between VRPB and PDVRP is that pickup and delivery are synchronized.
Therefore, it is necessary to consider the capacity of the vehicles. The objective of
PDVRP is to minimize the cost considering the least of trips

Vehicle Routing Problem with Time Window, VRPTW

The vehicles must satisfy the customers at a certain time. In the setting of a hard time

window, the vehicles do not exceed the customer's demand time. In the setting of a soft
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time window, if the vehicle arrives early, it will wait for the customer. On the contrary,
if it arrives late, it needs to be punished. The objective of VRPTW is to minimize the

cost under the harsh conditions in the time request of the customer.

2.5 Tabu Search Method

In 1986, Glover (1986) first proposed tabu search (TS) which is employing local search
methods used for mathematical optimization. The word “tabu” in English socially equals to
“forbidden to be used, mentioned, or approached”. As a meta-heuristic, TS is inspired by the
principles of artificial intelligence (Al) and has been applied intensively for various types of
optimization problems with good results. The basic idea of the TS is to identify specific
moves as forbidden to prevent cycling. In a general form, the composition of TS contains
five components. They are neighborhood solution, move, tabu list, aspiration criterion, and
stopping criterion. Moreover, tabu search is based on introducing flexible memory structures
in conjunction with strategic restrictions and aspiration levels as a means for exploiting
search spaces. Also, it can find reasonable and optimal solutions within a quick time. In

Figure 2-2, an optimization framework in the tabu search algorithm is illustrated as followed.
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Figure 2-2 Tabu search framework
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Encoding:

Encoding represents that the problem is transferred to program language such as binary
digit {0,1}. Then various presenting method has been raised to evaluate the problem.
Thus, the encoding code corresponds to moves, and the moves are also the unit of the
candidate list. Lastly, the final solution is selected by TS.

1. Initialize current solution S
Each move is a path from the node to node. The initial solution must set up by the
moves. First, a solution must be captured which is not optimal. Then optimal the
solution by TS and make the solution better and better.

2. Create a candidate list
After obtaining the current solution, create a candidate list for the current solution. The
constructive methods that seeking possible solutions are different such as random
search and neighborhood search. Once the adjacent solutions have been obtained, the
moves may be swapped.

3. Tabu search
After swapping the moves, find the solution S’ from the candidate list. Then select a
move and judge whether the move is tabu or not. If it is tabu, the move would be further
determined if it is satisfied aspiration criteria. The aspiration criteria means once the
move results in a solution much better than any visited before, tabu restriction may be
violated. In this condition, the aspiration can be happened such as better than the
currently known best solution and significant improvement. At the same time, the move
enters aspiration criteria then becomes an admissible solution. Once the move is tabu
and not satisfied the aspiration criteria. The move should be deleted from the candidate
list then update the tabu list and finally back to the previous step that restarts to find the

other best solution S’ from the candidate list. On the opposite, once the move is not
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tabu, the move is the admissible solution.
4.  Stopping condition
General stopping condition contains several situations and means that reach the optimal
solution.
(1) The maximum number of solutions to be explored is fixed.
(2) The number of iterations since the last improvement is larger than a specified
number.

(3) The total number of iterations of the TS algorithm is fixed.

2.6 Summary

As this research mentioned in the previous sections, the flying sidekick traveling
salesman problem was first proposed in 2015 (Murray and Chu, 2015). After that, the
problem related to drones is increasing more and more. The variants of TSP and VRP with
UAVs mostly discuss how to construct the problems and approaches well. All evaluated
manner mainly considered the most important objective which is travel times. Thus,
according to the model that Murray and Chu (2015) proposed and constructed. Many pieces
of research focus on the real aspects to match their problem and many variants of VRP related
to UAVs such as VRP-D and TSPD.

Since the TSP is an NP-hard problem in combinatorial optimization which means the
computing time is too long to generate effective solutions. This research constructs a
heuristics algorithm based on tabu search. With the ability of tabu search, this research is
desired to solve the problem concerning the UAVs working with the truck in tandem.

In the next chapter, this research describes our problem as a problem statement and research
assumptions. Then transform it to the model formulation. Finally, the solution algorithm will

be proposed in detail.
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CHAPTER 3 RESEARCH METHODOLOGY

As described in Chapter 1, the purpose of this research is to propose a model for the
optimal delivery of relief transportation by adopting autonomous vehicles cooperating with
drones. Chapter 3 is organized as follows. In Section 3.1, the conceptual framework is
presented. In Section 3.2, the problem and the research assumptions of this research are
described in detail. In Section 3.3, the research framework is presented. In Section 3.4, the
model formulations of the problem are proposed, and Section 3.5 discusses the tabu search

solution algorithm.

3.1 Conceptual Framework

In recent years, most of the researches consider adopting Intelligent Transportation
System (ITS). However, as an innovative option for traditional vehicles, autonomous
vehicles and drones should be discussed. In a real environment as an emergency occurs,
applying autonomous vehicles to arrive on-site is urgent. However, while the road may have
been destroyed, the UAVs should cooperate with autonomous vehicles to complete the
mission. Additionally, while there is a disaster such as an earthquake or explosion, it is
important to apply UAVs more because the delivery speed of UAVs is quicker than using
only autonomous vehicles. Thus, the problem for the coordination of the autonomous truck
and drones to achieve optimal routes in limited time is the most concern. As discussed above,
this research considers one objective which is the time when both vehicles return to the depot
after satisfying whole the demand points. As discussed above, this research extends the idea
of applying Intelligent Transportation System in logistics to transportation in an emergency.
Based on the tabu search algorithm, this research obtains the minimal time of delivery tasks

on the network. The main conceptual framework is formulated in Figure 3-1.
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Figure 3-1 Conceptual framework

3.2 Problem Statement and Research Assumptions

In the problem of this research, the problem is defined on a directed network G =
(N,A), where N is the set of nodes representing the depot and the demand points set and
A 1is the set of directed arcs. The speed of the autonomous truck and UAVs are different.
Each link (i,j) is associated with travel times of autonomous truck 7;; and each link
(v,i,j, k) is associated with travel times of drones 7,;;. In this network, the depot serves as
starting and ending nodes, are defined as node 0 and node (n + 1) respectably. Next,
denote the set of demand points by D = {1,2,3,+:-,n} and also denote D, = D U {0} as
the set of demand points with the starting depot that vehicle may depart and D, = D U
{(n+ 1)} as the set of demand points with the ending depot that the vehicle may visit.

Following the formulation proposed by Murray and Chu (2015), this research defines
F ={(v,i,j,k)} asthree nodes in UAVSs’ travel arcs. Note that F = {(v,i,j,k)}, if node i

is not the ending depot (ieD,), the delivery node j must be in the demand points set that
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can be served by UAVs and is not same as the launch node (jeD, i # j) and the rendezvous
node k can be either demand points or the ending depot and cannot equalto i or j (keD,,
k+1i, k+j).

This research defines the decision variables. Set x;; equals to 1 if an autonomous truck
travels an arc (i,j)eA from node i to node j and O otherwise, on this situation, the
autonomous truck travels from node ieD, tonode jeD, where i # j. Set y,;j. equals to
1 if the drone travels an arc (v,i,j, k)eF from node i to node j and merges at node k
and 0 otherwise, on this situation, the UAVs launch from node ieD, to node jeD and
merges with the autonomous truck or the ending depot at node keD, where (v,1,j, k)€F.

At the particular demand point, the truck may launch, retrieve, and re-launched multiple
UAVs, it is crucial to coordinate all the process to avoid air collisions. Thus, we denote t;
as the autonomous truck arrival time at node ieN, st; as the service time at node ieD,,
ct; as the completion time at node ieN. Moreover, denote the t,; as the UAV v €V
arrival time at node ieN and ct,; as the UAV v € V completion time at node ieN. The
decision variables t; and t,; are representing the arrival times of the autonomous truck
and UAVs at node i respectively. All the decision variables related to times are used to
sequence the launch, retrieve, and truck service. Next, four binary decision variables are

presented as OF oL ‘ " these are established to coordinate the

vq1,V2,k > v,v0,k> Yvq,v,,00 Vq,Vp,00

R
171,1.72,](

ordering and sequencing for the drones to launch and retrieve at each node. Set O
equals to 1 ifone UAV v; € V and another one v, € V' are both retrieved at node k € D,

and v, isretrieved before v,.Conversely, set 051,1,2,,c equalsto 1 ifone UAV v; €V and

another one v, € V are both launched from node i € D, and v; is launched before v,.

!
vl,vz,i

Besides, set O equals to 1 if one UAV v; € V launches from node i € D before
another one v, € V retrieves at node { € D and conversely set O, ,, ; equals to 1 if one

UAV v, €V retrieves at node i € D before another one v, € V launches from node i €
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After denoting all the decision variables, this research set the auxiliary decision variable

u; to be used in the TSP subtour elimination constrains (Desrochers and Laporte, 1991).
After describing the operations process, the research assumptions are listed as followed:

A. To reduce the complexity of the problem, this research assumes that the autonomous
truck is capable to have enough capacity to load resources and UAVs through the entire
delivery process. Due to one of the characteristics in autonomous vehicles is no front
seat, the autonomous truck stores more resource. Thus, this assumption can ensure the
autonomous truck operates from exceeding its capacity.

B. The model constructed by this research does not consider the build-up time for the UAV
to load reliefs. Because this research doubted that build-up time can be so short to be
negligible while comparing to the travel time of the autonomous truck and UAVs. On
the other hand, the problem concerning the preparation time of the UAVs for launching
and rendezvousing with the vehicle can be overcome. The actual operation case in
February 2017 has shown that a drone above the UPS delivery trucks can deliver the
package and return to the truck autonomously (Hughes, 2017). Also, this research
assumes that the preparation time is too minimal to be measured.

C. This research considers the battery level of the UAVs and reflected it into the fixed
time-based flight endurance. The flight endurance e,;j, is addressed in Constraint (3-
33) standing for the flight endurance. An Amazon’s conference in Las Vegas in June
2019 has unveiled the latest drone design and Amazon’s UAVs can fly up to 15 miles
and deliver packages under five pounds to customers in less than 30 minutes (Wilke,
2019). However, the battery level is reflected in flight endurance and this assumption
ensures all the UAVs can complete the tasks before running out of battery.

D. Thisresearch assumes UAVs to be homogeneous that can only carry relief for a demand
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point once. In case the UAV finishes delivering to demand point, it must move to the
next node which has not been visited immediately. UAV's must be launched from and
rendezvous by the autonomous truck at particular demand points or depot. Further, once
the UAVs are retrieved by the autonomous truck, the battery of UAVs is fully charged
immediately until the next launched.

This assumption assumes that the UAVs can only launch and rendezvous at the node
instead of an arc. In practice, to make UAVs fall-off on a moving truck is difficult. Due
to the travel speed, the autonomous truck and the UAVs must coordinate and match.
While a drone is going to merge with a moving truck, it requires to reduce its speed. On
the opposite, the truck is asked to increase its speed, too. Such the situation violates the
constant speed assumption of the UAVs and the autonomous truck. On the other hand,
the trucks and drones must wait for each other whenever one arrives at the demand
point nodes before the others. To prevent such a situation, this research assumes that
UAVs can only rendezvous with the autonomous truck at a node instead of an arc.

In this research, all the demand points are served either by the autonomous truck or the
UAVs at most once. The autonomous truck and UAVs can work independently while
UAV is launched so that the route of the autonomous truck and UAVs are
nonoverlapping. Besides, this research set number of two drones are within the
autonomous truck to deliver the relief over the network.

This research sets the nodes that UAVs launch, travel, and rendezvous as three nodes
F ={v,i,j,k}. The three nodes must be consistent within the ordering of the

autonomous truck’s traveling sequence.
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3.3 Research Framework

The research framework of optimal delivery with the autonomous truck-drone is
presented in Figure 3-2. The framework contains five main parts: objective setting, construct
the model, verify the model, apply the model to a realistic network, and assess the
effectiveness of the model. The details of each part are described as followed:

1. Objective setting: As previously reviewed in Section 2.3.2, much researches were
desired to solve the problem and the objective is minimizing the travel times after
serving all the customer nodes. Similarly, the objective of this research is to optimize
the travel times in delivery using the autonomous truck and UAVs in an emergency.

2. Construct the model: In this research, the model is constructed by mathematical
formulation. To match the real-life aspects, the battery consumption of the UAVs is
considered and discuss how the drones cooperate with the autonomous truck.

3. Verify the model: After constructing the model, this research tests whether the model is
reasonable with an exact solution by using the mathematical optimization solver,
GUROBI to solve a small-scale network. Then this research verifies if the model
appropriate to use. If no, restart the research flow of clarifying the problem and revising
the model.

4. Apply the model to a realistic network: After verifying the model, this research
proposed a tabu search algorithm to solve the problem in a realistic network. Section
2.5 shows the basic concept and flow chart of the tabu search.

5. Assess the effectiveness of the model: Finally, the solution from the proposed tabu
search algorithm offered the effectiveness of the model. In this research, the
effectiveness of the proposed heuristics will be compared with the commercial solver,

GUROBI, by solving the problem in a large-scale network.
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Optimal delivery of the autonomous truck-drone
for travelling salesman problem
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Apply the model to a realistic network
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Assess the effectiveness of the model

Figure 3-2 Research framework
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3.4 Mathematical Formulation

As shown in Figure 3-3, a simple example illustrates the problem in this research. The
tour of the autonomous truck and the UAVs are presented separately as the solid line and
dotted line. This research assumes that the autonomous truck can carry two drones. The
autonomous truck by carrying UAVs must start at the depot which is node 0. The demand
points {1,2,3,4,5,6,7,8,9} are satisfied exactly once either by the autonomous truck or the
UAVs. The route of the autonomous truck is {0 > 1 > 2 -4 > 7 > 9 — 0}, while the
routes of two UAVs are {(2,3,4), (4,5,9), (4,6,7),(7,8,9)}. After completing the tasks, the
autonomous truck must return to the depot which is node 0. Lastly, the objective is to

minimize travel times after serving all demand points.

Figure 3-3 Illustration of the coordinated route with autonomous truck and UAVs
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At a particular demand point, the autonomous truck can launch, retrieve, and even re-
launch UAVs. Thus, it is critical to coordinate the sequencing of launching, retrieving for
UAVs and the serving process of the autonomous truck. Besides, this research considers no
driver within the autonomous truck. As long as there is no driver to engage in the launch or
retrieve process of UAVs, all the process included the serving process of the truck and the
launching and retrieving process of UAVs are being performed simultaneously. For example,
at demand points node 7 in Figure 3-3, assume that one UAV v; € V and another one v, €
V' are both retrieved, and one UAV is re-launched later at node 7. The possible scenarios
maybe v; retrieve before v, then v; is re-launched, or v; retrieve before v, then v,
is re-launched, or v; retrieve after v, then v; is re-launched, or v, retrieve after v,
then v, is re-launched. However, the autonomous truck serves the demand point node 7
without driver independent of the UAV launches and retrieves.

After demonstrating the simple example based on Figure 3-3, the following shows the
description and definition of the problem related to this research. A model based on TSP
problem with UAV cooperating with the autonomous truck is developed. The objective of
this problem is to minimize the travel times to deliver all reliefs and return to the depot. The
definitions of the set, parameters, decision variables as well as objective and constraints are

listed as Table 3-1.
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Table 3-1 Notation of the model formulation

Notation Definition
Set
G = (N,A) | Asetofnodes N and a set of arcs A build up the network
N N= {0,123, ,n+1}

A set of n nodes, consisting of demand points, the origin depot (0) where
the autonomous truck starts to travel and the destination depot (n+1) where

the autonomous truck ends traveling.

A A set of arcs contains links connecting nodes of N
D D={123,:,n}

A set of demand points nodes
Dy Dy, =1{0,1,2,3,---,n}

A set of nodes that vehicle may depart consisting of starting depot and
demand points

D, D, ={1,23,,n + 1}

A set of nodes that vehicle may visit consisting of ending depot and demand

points
|4 V = {v,v,}

A set of UAVs contains two UAVs.
F F={(ijk)}

All possible three nodes of the UAV path by UAV v € V

i | ieDy, the lJaunch node i must not be the ending depot

j | jeD, i # j,the delivery node j must be in the demand points set and

must not be the same as the launch node

k | keD,, k #1, k #j ,therendezvous node k can be either demand

points or the ending depot and cannot equal to i or j
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Decision variables

Xi j If an autonomous truck travels an arc (i,j) from node i to node j,
xij =1,
Otherwise, x;; =0

Vu,ijk If one UAV v € V travels an arc (i,j) and (j,k) from node i to node
j and from node j tonode k, Yk =1;

Otherwise, Yy, =0

t; The autonomous truck’s arrival time at node i, where t, = 0

st; The autonomous truck’s service time completion at node i, where st, =
0

ct; The autonomous truck’s completion time at node i

ty; UAV’s v € V arrival time at node i

cty; UAV’s v € V' completion time at node i

051,,,2,,C If one UAV v; € V and another one v, € V are both retrieved at node

k € Dy and v, is retrieved before v,, Of , \ = 1.

Otherwise, Oy , =0

051,1:2,1( If one UAV v; €V and another one v, € V are both launched from

node i € Dy and v; is launched before v,, 01’;1,,,2,,( =1.
Otherwise, Oy , =0
0,, LU If one UAV v; € V launches from node i € D before another one v, €
V retrieves atnode { € D, Oy, ,, ; =1
Otherwise, 0y, ,,; =0
0,','1,,,2,1- If one UAV v; € V retrieves at node i € D before another one v, € V
launches fromnode i € D, Oy, ,,; =1
Otherwise, 0y, ,,; =0
Pij If the autonomous vehicle visits demand point i before demand point j,
pij =1
Otherwise, p;; =0
U; Position of node ieD, atthe route of the autonomous truck, it is employed

for the autonomous truck subtour elimination and 1 < u; < (n + 2).

Parameters
Tij (i,j) € A, Travel times of the autonomous truck associated with A
Tyi j (i,j) € A, Travel times of the UAV associated with A
Sk The autonomous truck service time at node keD,, where S,,,4 =0
ok The UAV v € V service time at node keD,, where S, 41y =0
€y,ijk The endurance, measured in time units for UAV v € V to travel from

ieDy to jeD to keD,
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Objective function
Min t(n+1) (3'1)
Subject to
Routing Constrains
VjeD (3-2)
Z X5+ Z Z Z Yoije =1
iEDO veV iEDO kED+
i%j i#j (v,i,j,k)eF
> xy=1 (3-3)
jeDy
Z Xin+1 = 1 (3-4)
iEDO
u; — U,j +1< (Tl + 2)(1 - xi‘j) VieD (3-5)
Vj €D,
L #]
Vj €D (3-6)
i€eDg keDy
i%j k#j
VieD (3-7)
Z z Yoije =1 ! VO
jeD  keDy Ve
i#j (v,ijk)eF
vk €D (3-8)
Z z Yoije <1 ) V+
ieDg jeD v
ik (v,i,jk)eF
YveV (3-9)
2Ypijk < Z Xp,i + z X1k vi,j €D
heDg leD
h=i l+k i __/:]'
(v, i,j,k) EF
VveV (3-10)
Yvojk = Xnk vjeD
heDg
h*k Vk € D,
(v, i,j,k) EF
VieD 3-11
TR EACR )R S G40
D Vk €D,
(w,i,j,k)EF k =+ l
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VvveV

u; — u]' > 1- (n + z)pl,] Vl,] €D (3-12)
L#]

w—w < —1+m+2)(1-p;;) Vi,jED (3-13)
i+

pl-,j + pj,i =1 Vl,] €D (3-14)
L#]

The objective function is described in Equation (3-1). The objective is to minimize the
arrival time of the autonomous truck and UAVs returning to the depot which is node (n +
1) after serving all the demand points. The objective function (3-1) is equivalent to
min{max {t,1,t;, n+1}} due to both the autonomous truck and UAVs must wait for each
other based on timing and sequencing constraints. Therefore, the arrival time of the
autonomous truck and UAVs at the depot are adjusted to be the same.

In the mathematical model of this research, all constraints are divided into four parts.
First is FSTSP base model by Constraint (3-2) to Constraint (3-14). The second part is the
timing constraints of truck (Constraints (3-15) to (3-19)). The third part is timing constraints
of UAVs (Constraints (3-20) to (3-33)) and the final part are sequencing constraints in
various scenarios (Constraints (3-34) to (3-49))

Constraints (3-2) to (3-14) are associated with the routing problem based on FSTSP
model of the autonomous truck and drones. Separately, Constraint (3-2) guarantees that each
demand point must be visited once either by the autonomous truck or UAVs. Constraint (3-
3) and Constraint (3-4) guarantee the autonomous truck must depart from and return to the
depot. Constraint (3-5) and Constraint (3-11) are subtour elimination equations that
guarantee no subtour is within the route of the autonomous truck and UAV according to
Desrochers and Laporte (1991). Constraint (3-6) guarantees that whenever the autonomous
truck visits at a node j, it must depart from the node j as well. Constraint (3-7) represents

that at most one UAV can depart at nodes when the autonomous truck visits at the identical
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nodes. Similarly, Constraint (3-8) represents that at most one UAV can merge at nodes when
the autonomous truck visits at the identical nodes. Constraint (3-9) guarantees if the UAV
v €V is launched from node i, travels node j then is rendezvoused at node k, the
autonomous truck must visit node i and node j. Similarly, Constraint (3-10) guarantees
that if the UAV v € V' is launched from the depot, travels to node j then is rendezvoused
at node k, the autonomous truck must depart from the depot and eventually arrive at node
k. Constraint (3-12) and Constraint (3-13) are subtour elimination equations that guarantee
no subtour that the autonomous truck visits. Constraint (3-14) guarantees the correct ordering
of node i and node j. Besides, u; and p;; are two auxiliary decision variables to
describe the ordering demand points nodes by the autonomous truck only. Constraint (3-12)

to Constraint (3-14) can also determine the accurate values of u; and p; ;.

Timing Constraints of truck

t] = Cti + Ti,j — M(l — xi,j) Vi € DO (3-15)
vj €D,
Vi#j
vk € D 3-16
Stk = tk + Sk (Z xj',k) * ( )
J€Dg
j*k
cty = St Vk € D, (3-17)
, vk € D (3-18)
cty =ty — M1 — Z Z Vv,i,jk) Vv € V+
ieDy jeD v
i#zk (v,i,j,k)eF
, vk €D (3-19)
cty = cty, — M(1 — Z z Yok m) Vv € VO

.leD meD4
ik (v k,1,m)eF

Constraints (3-15) to (3-19) are associated with travel times of the autonomous truck.
Constraint (3-15) incorporates the travel times of the autonomous truck. Constraint (3-16)
establishes the completion service time at a demand points k by computing the arrival time

and serving time. It describes that the completion service time at node k must not be before
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the arrival time and the service time. Constraints (3-17) to (3-19) establish the departure time

of the autonomous truck from a demand point node. Constraint (3-17) prevents the

autonomous truck from departing node k before it has finished serving the demand points.

Constraint (3-18) and Constraint (3-19) present if the UAV v € V is retrieved or launched

at node k, the autonomous truck must wait until the UAV v € V' has completed arriving or

launching at node k.

Timing Constraints of UAVs
, , Vi € D, (3-20)
Cly = by — M(3 - Z Yvijk — Yol mn
. Vk €D,
jebD meD neDy
(v,i,j,k)EF MEL (y,1,m,n)eF k#i
j#l M n#
n+k VI e D
— Di1) L+
l+k
YveV
, , VvEeV (3-21)
Cly; =ty —M(1— Z Vuijk) .
jeD  keD, 1€ Do
i#j (v,i,j,k)eF
, Vv eV (3-22)
cty; =t —M(1— Z Z Vu,ijk) .
jeD  keDy L€ Do
i#j (v,i,j,k)eF
Cty; = cty,; —M(1 =0, ) Vv eV (3-23)
Vv, €V
VFE VU,
Vi € D,
Cty,i =ty — M1 —0,,,) Vv eV (3-24)
Vv, €V
VFE VU,
VieD
1] ’ ’ YvEeV 3-25
tyj =ty + Ty — M1 — Vv,ijk) _ (3-25)
D, Vj€eD
(V,i,j,k)EF Vi E Do
i #j
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tyj Sty +Ty;+ M- Vv,ijk)

keDy
(w,i,j,k)EF

VvveV
VjeD
Vi € D,
i #]

(3-26)

! ! !
cty; =ty + Svj(z Vvijk)
ieDyg keDy
i#j (v,ijk)eF

VveV
VjeD

(3-27)

cty; <ty + S, + M- Z
ieDyg keDy
i#j (vijk)eF

Yo, j,k)

VveV
Vj €D

(3-28)

tog 2t —M(@A - Z z Vv, jk)

ieDo
i#j (vijk)eF

VveV
vk € D,

(3-29)

R
tore = by, — M1 — Oy, 1)

YveV
Vv, €V
V# U,
Vk € D,

(3-30)

to = Cty,x — M1 = 0y, k)

VvveV
Vv, eV
v # VU,
Vk €D

(3-31)

! 1A !
Lok 2 Ctvj + Tv,j,k - M(l - yv,i,j,k)
ifDO
(w,i,j,k)EF

VvveV
Vk €D,
VjeD
j*k

(3-32)

! !

tok — Ctyj < epijre T ML =Yy 50)

VvveV
Vi € D,
VjeD
JER!

Vk €D,

(v,i,j,k) EF

(3-33)

Constraints (3-20) to (3-33) are asso

ciated with travel

times and the endurance

limitations of the UAVs. Constraint (3-20) presents that if there are two routes of UAVs that

are (i,j,k) and (I,m,n) and node i is visited before node [ by the autonomous truck,

node [ must be visited after node k. Constraints (3-21) to (3-24) state the launching of
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UAVs. Constraint (3-21) presents the UAV v € V. must be launched at node i before
arriving node 1. Similarly, Constraint (3-22) presents the UAV v € V' must be launched at
node i before the autonomous truck has arrived at node i. On the other hand, Constraint (3-
23) presents if one UAV v, € V is launched before another one UAV v € V, v € Vmust
not be launched from node i until v, € V has been launched. While Constraint (3-24)
presents if one UAV v € V is launched before another one UAV v, € V, v, € V must not
be launched from node i until v € V has been launched. Constraints (3-25) and (3-26)
address the arrival timing for UAV serving a demand point node j. And Constraints (3-27)
and (3-29) address the departure timing for UAV serving a demand point node j. Constraints
(3-25) to (3-28) ensure one UAV travels to the demand point node directly and must depart
the demand point node immediately after completing the service. However, the retrieving of
the UAV's must occur at the location by the autonomous truck. Constraints (3-29) to (3-33)
state the retrieving of UAVs. Constraint (3-29) presents the UAV v € V' must be retrieved at
node k before the autonomous truck has arrived at node k. On the other hand, Constraint
(3-30) presents if one UAV v, € V is retrieved before another one UAV v EV, veEV
must not be retrieved at node k until v, € V has retrieved. While Constraint (3-31)
presents if one UAV v € V is retrieved before another one UAV v, € V, v, € V must not
be retrieved at node k until v € V has retrieved. Constraint (3-32) states one UAV v € V
must not be retrieved at node k before launching from node i and traveling from node j
tonode k. The last Constraint (3-33) addresses to the endurance limitations of UAVs. While
a UAV v €V travels from node j to node k, the flying time between the arrival time at

node k and the departure time from node i must not exceed the endurance (e, ; ; x ).
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Sequencing Constraints when UAVs are both retrieved
VveV (3-34)
05v2k < z z yv,i,j,k
ieDy  jeD Vv, € 4
izk (v,i,jk)eF V#E U,
Vk €D,
VveV (3-35)
051; k < z Z Vv, ijk
W2, 2,01,
ieDg jeD VUZ ev
ik (vy,i,jk)€F vV # U,
vk € D,
Opvpc + Ofy e <1 Vv eV (3-36)
Vv, €V
V# U,
Vk € D,
Opvpc + Ofy i +1 Vv eV (3-37)
Vv, €V
20, D Yunt ) D i
ieDgy jeD ieDg jeD VF v,
ik (v,i,j,k)€eF i#£k (va,i,jk)eF Vk € D,
Sequencing Constraints when UAVs are both launched
YveV (3-38)
01 < Yous
U, v,i,j,k
jeD  keD, Vv, €V
Jj#i (v,i,j,k)eF Vv # U,
Vi € D,
YveV (3-39)
,U2,L vy,1,),k
jeDy  keDy Vv, €V
Jj#i (vy,i,j,k)EF V# U,
Vi € D,
Oppi + Op i <1 Vv EV (3-40)
Vv, €V
vV F VU,
Vi € D,
Opyyi + Op,pi +1 Vv EV (3-41)
Vv, €V
200 D Yt ) D e |
jeD  keDy jebD keDy v V2
j#i (v,i,j,k)eF J#L (vl j k)eF Vi € D,
Sequencing Constraints if one UAV is launched and another one is retrieved
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;ka < Vourcim Vv, €V (3-42)
o leD meDy o Vv eV
l#k (v,,k,1l,m)eF vV #E U,
vk € D
1’7’2vk < Yok VveV (3-43)
" leD meD4 o Vv, € 4
Lk (v,k,1l,m)eF v, £V
vk € D
1’72vk < yvijk vwev (3_44)
" ieDy  jeD ”, Vv, € v
i#k (v,i,jk)eF v, £ v
Vk € D
1’712vk = z Z Yv,i,jk vz € v (3_45)
" ieDg jeD T Vv eV
i#k (vy,i,),k)eF vV # U,
vk € D
Op,wk + Oy +1 Vv EV (3-46)
Vv, €V
= Z Z yv,i,j,k + Z Z sz,k,l,m
ieDy  jeD leD meD, Uy FVU
ik (v,i,j,k)eF l#k (v, k1 m)eF vk eD
Op,wie + Opp, i < 1 Vv eV (3-47)
Vv, €V
Vv, FV
vk €D
Opyo + Oy <1 vv eV (3-48)
Vv, €V
v, F UV
vk €D
(I vv eV (3-49)
Vv, €V
v, FV
vk €D
In Constraints (3-34) to (3-49), the decision variables (05, k, Oy.v, i» Op, 11 Oy, ) 8TE

used to sequence the process at each demand point node. Constraints (3-34) to (3-37) are

associated with the scenario concerning the sequence when both UAVs are retrieved.
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Constraints (3-34) and (3-35) present if both the UAVs are not retrieved at node k, 05,1;2,;(
is not equal to one. Constraint (3-36) states either one UAV v € V is retrieved before
another UAV v, €V, one UAV v, €V is retrieved before another UAV v €V or at
least one of these UAVs is not retrieved at node k. Constraint (3-37) addresses if both UAVs
are retrieved at node k, then either the UAV v € V is retrieved before another UAV v, €
V' orthe UAV v, €V is retrieved before another UAV v € V. Constraints (3-38) to (3-41)
are associated with the scenario concerning the sequence when both UAVs are launched.
Constraint (3-38) and Constraint (3-39) present if both the UAVs are not launched at node
I, O,ﬁvz,i is not equal to one. Constraint (3-40) states either one UAV v € V is launched
before another UAV v, € V,one UAV v, € V islaunched before another UAV v € IV or
at least one of these UAVs is not launched at node i. Constraint (3-41) addresses if both
UAVs are launched at node i, then either the UAV v € V' is launched before another UAV
v, €V or the UAV v, € V is launched before another UAV v € V. Constraints (3-42) to
(3-49) are associated with the scenario concerning the sequence when one UAV is launched,

and another is retrieved. Constraints (3-42) and (3-43) state that O, and 0,

v ,i V0,0 1S equal

to zero if the UAV v, € V or the UAV v € V is not launched from node k. Constraints

(3-44) and (3-45) state that O, and 0,

Vo, U, Vo,U,1

is equal to zero if the UAV v, € V or the
UAV v €V is not retrieved at node k. Constraint (3-46) addresses if the UAV v €V is
retrieved at node k and the UAV v, € V is launched from node v, € V, then either the
UAV v, €V is launched before the UAV v €V is retrieved or the UAV v €V is
retrieved before the UAV v, € V' is launched. Constraint (3-47) states when UAV v € V
is retrieved before UAV v, € V is launched, it is not possible for UAV v, € V to be
launched before UAV v € V is retrieved. Constraint (3-48) states when UAV v €V is
launched before UAV v, €V is retrieved, it is not possible for UAV v, €V to be

launched before UAV v € V is retrieved. Constraint (3-49) states when UAV v €V is
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retrieved before UAV v, € V islaunched, it is not possible for UAV v, € V' to be retrieved

before UAV v € V is launched.

3.5 Solution Algorithm

This section presents the overall model of delivery optimization with the autonomous
truck and the UAVs. Thus, this research adopts a tabu search algorithm with one objective
including minimum travel times. The problem which is proposed is classified to be a
traveling salesman problem. Further, TSP problem has been proved an NP-Hard problem
and only a small-sized problem can be solved by a commercial solver such as GUROBI
within a reasonable run time. To overcome the issue, this research introduces a tabu search
algorithm for solving the problem. This section provides the basic procedure of tabu search.

The solution process is presented in Figure 3-4.

l Start ‘
!

[ Initialize current solution (X) ‘

I

Create a candidate list of neighbors to
current solution

Find the best solution (X;) from the
candidate list

Is the best solution
(X1) a Tabu move?

solution (X;)
satisfy the
aspiration
riteria?

Update tabu list

s the best solution
(X7) better than the
current solution?

No Set solution X = X;,

Is stopping
condition satisfied?

| End |

Figure 3-4 Solution process of tabu search
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Step1  Start
This research set up an experimental network, model parameters and the setting related
to tabu search algorithm such as tabu list, tabu tenure, and the aspiration criteria.

Step 2 Initialize current solution (X)
In this phase, a simple heuristic generates an initial solution quickly. By optimizing the
travel times of the autonomous truck and UAVs, the initial feasibly solution is
constructed.

Step3  Create a candidate list of neighbors to the current solution
After generating the initial solution, this research further creates a candidate list for the
current solution. The constructive methods are used for seeking possible solutions that
are neighborhood search.

Step4  Find the best solution (X;) from the candidate list
In this phase, the most important is to search by moving iteratively from one solution
to another until a satisfactory solution is obtained. By the previous steps, the neighbor
solutions can be obtained and compare whether it is the best.

Process of Tabu Search

Step 5  Is the best solution (X;) in the tabu list?
Tabu list is to record a limited number of attributes of solutions. The moves, selections
and assignments can be tabu to be discouraged. To avoid local solution, the tabu list is
adopted to record moves by tabu tenure that determines the number of the moves are in
the tabu list.

Step 6  Is the best solution (X;) satisfy the aspiration criteria?
The aspiration criteria is to accept an improving solution even if generated by a tabu
move. Due to the aspiration criteria in tabu search, tabu search finds a more efficient

solution. In the process, while the best solution is tabu, this research continues to judge
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whether the best solution is in aspiration criteria or not. If it is not in the aspiration
criteria, the current best solution is instituted by another best solution.

Step 7  Update tabu list
After the solution moves to another current solution, the tabu list must be updated
including the tabu tenure. Tabu tenure set in the previous step controls the number of
iterations a tabu move which is considered to remain tabu list.

Step 8  Is the best solution (X;) better than the current solution (X)?
Based on finishing the previous step, this research keeps considering if the best solution
(X,) better than the current solution (X). If yes, set X; equals to the best solution. On
the opposite, if no, check whether the stopping condition is satisfied or not.

Step 9 Is the stopping condition satisfied?
In the final step of the process of the tabu search algorithm, the process ends while the
algorithm reaches the stopping condition. This research set the model to stop when the
maximum number of solutions to be explored is fixed and the number of iterations since
the last improvement is larger than a specified number. It can prevent the iterations from
unlimited.
As discussed above, the tabu search uses a local or neighborhood search procedure, to

iteratively move from one potential solution X to an improved neighborhood solution X'

until the stopping condition has been satisfied.
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CHAPTER 4 NUMERICAL ANALYSIS

Based on the solution approach mentioned in Chapter 3, Chapter 4 discusses the details
of the mathematical model and the heuristic approach. Sections 4.1 and 4.2 present the
structure of the mathematical model which is Mixed Integer Linear Programming and the
heuristic algorithm which is a tabu search algorithm. In Section 4.3, two small-scale test
networks are developed for mathematical models and heuristic algorithm, and Section 4.4

presents the results of two test instances in various solution approaches.

4.1 The Structure of Mathematical Model

In this research, the mathematical model constructed and described in Chapter 3 is
solved by the mathematical programming software, GUROBI Optimizer. Figure 4-1
illustrates the detailed procedure of experiments, and GUROBI Optimizer is modeling with
python interface.

In GUROBI Optimizer, this research starts with input data and constructs three
components including objective function, decision variables, and constraints. Through the
mathematical programming software, GUROBI, the output solution provides optimal routes,
objective function value, and total runtime for running the program.

In terms of mathematical programming software, GUROBI is coded in Python and
tested on a Windows 10 machine (Intel(R) Core (TM) 15-8250U/ 1.80GHz processor with

8GB RAM).
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Optimal e Total
function ]
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Figure 4-1 The overall solution procedure by GUROBI

4.2 The Structure of Heuristic Approach

4.2.1 Tabu Search Solution Algorithm

TSP problem is an NP-Hard problem and only a small-sized problem can be solved by
a commercial solver, GUROBI within a reasonable time. However, based on the proposed
tabu search (TS) approach by Glover (1986), TS is a metaheuristic that guides a local search

out of local optima. Tabu search is effective on a wide variety of classical optimization
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problems, such as traveling salesman problems, and also be applied to practical problems.
In that case, this research applies the tabu search solution algorithm to solve practical
problems. Tabu search is a local search method that begins with an initial solution and
explores the solution space by iteratively examining the neighbor solutions.

Basic components of the tabu search heuristic include initial solution, neighborhood
solution, move, tabu list, aspiration criterion, and stopping criterion. In this research, the
components which are designed to solve the optimal delivery with the autonomous truck and
UAVs is described as followed:

Initial solution:

In terms of the tabu search algorithm, the initial solution must be constructed first. In a
general TSP problem, the initial solution is usually generated by simple heuristics such as
insertion heuristic, greedy heuristic, or saving-based heuristic. However, as a variant of TSP
problem, the optimal delivery with the autonomous truck and two drones is more complex
considering various constraints in the autonomous truck and drones. This research generates
an initial solution by randomly assigning the demand point nodes to the autonomous truck
and the UAVs under the constraints of the fixed time-based flight endurance and testify if
the initial solution is in a reasonable situation. For example, given a network with depot
(node 0) and four demand points (nodes 1, 2, 3, 4). Assumed that initial solution is
{0,2,1,3,4,0} and objective function value is 20. The demand points served by UAV 1 and
UAV 2 are node 2 and node 4. The heuristics algorithm must test whether the routes of UAV
1 and UAV 2 are under the constraints of the fixed time-based flight endurance or not. If the
routes of UAVs are over flight endurance, this initial solution is infeasible. Moreover, the
initial solution will be generated until it is feasible.

Neighborhood solution and move:

The solutions in the neighborhood of a given solution are the solutions that can be
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obtained by applying move operations to the current solution. The move operation involves
relocating a demand point node from its current node to another node that minimizes the
fitness, which is calculated by travel times of the autonomous truck and drones. Continuing
the example from the previous paragraph, assumed the neighborhood solution is {0,3,1,2,4,0}
and objective function value is 16. The initial solution makes a move to this neighborhood
solution and the objective function value is decreased from 20 to 16. The process of moving
between solution and solution is defined as a move. Additionally, whenever the demand point
changes, the demand points must be reassigned to UAVs and re-calculate the total cost which
is total travel times.

In each iteration of the search process, all possible move operations for all demand point
nodes are evaluated and the best one is subsequently performed. The best move operation is
the one that leads to the minimized objective function value. To prevent cycling, if a demand
point has been moved from the delivery route in given iterations which means the current
solution is optimal, then moving the same demand point into the tabu list and declared the
move is tabu, for the following iterations. Whenever the move is in the tabu list, it must be
fixed in a length of n iterations which is tabu tenure. However, there are no related literature
applying tabu search in a Flying Sidekick Traveling Salesman Problem territory. Thus, the
length of tabu tenure is set 7 according to Glover (1990).

Aspiration criterion:

While a tabu move is in the tabu list, it can be allowed only when the resulting solution
is feasible and has an objective function value that is better than that of the current best
feasible solution found by the search. In this research, a common-sense-based approach is
applied to relax the tabu restriction if a solution happens to produce a better result than the
currently best solution. The tabu move can only satisfy the aspiration criterion in three

situations synchronous, that is
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1. The move is in the tabu list
2. The move is the best in the tabu list
3. The objective function value corresponds to the move is better than the current solution
Termination condition:

The termination condition is a user-controlled parameter by setting iterations. The
greater the number of iterations is, the runtime of the program coding by Python in this
research is longer. Therefore, the number of iterations must be suitable while processing the

tabu search algorithm.
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4.2.2 Heuristic Flowchart

To solve the problem of optimal delivery with the autonomous truck and the UAVs, the
proposed algorithm, tabu search is coded in Python and tested on a Windows 10 machine
(Intel(R) Core (TM) 15-8250U/ 1.80GHz processor with 8GB RAM).

Figure 4-1 shows the heuristic flowchart and the explanations of each step are described

Input network data
simulated by
DynaTAIWAN

]

Generate distance matrix:
Dijkstra algorithm

]

Generate travel time matrixes for
the autonomous truck and UAVs

|

Input the tabu search parameters

l

Generate initial solution

l

Generate feasible candidate
solution list

l

Select the best solution from the
candidate list

as follow:

Do not consider this solution

Is the best
solution in the
Tabu list

Yes No

s the bes
solution satisfy
the aspiration
criteria

/ Update related data

Termination
condition

Report solution

Figure 4-2 Heuristic flowchart
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Step 1: To generate the travel times matrixes of the autonomous truck and UAVs, the
first step is to obtain network data simulated by DynaTAIWAN.

Step 2: After obtaining network data simulated by DynaTAIWAN, the program
generates a distance matrix of the empirical network by Dijkstra algorithm to generate the
shortest path between demand points and demand points.

Step 3: After getting the distance matrix between demand points and demand points,
the program generates the travel times matrixes of the autonomous truck and UAVs.

Step 4: After acquiring the most important data which are the travel time matrixes of
the autonomous truck and UAVs. This research continues to input the program parameters
concerning the tabu search algorithm that is the number of nodes, service times of the
demand points for autonomous truck and UAVs, fixed time-based flight endurance of UAVs,
tabu tenure, aspiration criteria, termination condition.

Step 5: After input the program parameters, it starts to generate one initial solution
randomly. In this step, the travel route is determined first. Secondly, the demand points in
the travel route are assigned to the autonomous truck or UAVs. Simultaneously, the program
checks if the travel route by UAV exceed the fixed time-based flight endurance (ey;jx) or
not. If exceeds, repeats this step until generating the feasible solution. Otherwise, the initial
solution is generated successfully.

Step 6: The candidate solutions of the candidate list are continuously generated by swap
two nodes using the 2-Opt algorithm.

Step 7: The program selects the best solution of the candidate list and tests whether the
solution is in the tabu list, if no, the program records the solution as the current solution and
updates the tabu list. On the opposite, if the solution is in the tabu list, the program
continuously checks whether the best solution meets the aspiration criteria or not.

Step 8: While the solution is in the tabu list, the program test whether the solution meets
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the aspiration criteria or not. As mentioned in the previous section, a common-sense-based
approach is applied to relax the tabu restriction if a solution happens to produce a better
result than the currently best solution. The tabu move can only satisfy the aspiration criterion
in three situations synchronous, which is that the solution is the best in the tabu list, and the
objective function value corresponds to the solution is better than the current solution. Lastly,
if the solution meets the aspiration criteria, then the program moves to Step 9 and records
such a solution as a new current solution. Otherwise, the program restarts Step 7 to find the
other solution which is best from the candidate list.

Step 9: Update related data in the tabu list such as current solution, tabu tenure,
objective function value, and tabu list.

Step 10: As long as meeting the termination condition, the program reports the solution
related to the optimal route of the autonomous truck and UAVs, objective function value,
and runtime of the heuristic program. However, if the termination condition is not satisfied,

the program must restart with Step 6.

4.3 Test Network Development

To develop an actual network for optimal delivery problems concerning minimal travel
times, test instances are constructed in two different networks. In this research, the
commercial solver, GUROBI and tabu search algorithm are used to solve the small-scale
networks and also be tested if the model in Section 3.4 properly reflects the optimal delivery

route. Moreover, two test networks are described as followed.

4.3.1 Test Network I

As shown in Figure 4-2, the test network I is an undirected graph and comprises ten

nodes includes one depot and nine demand points and 45 arcs. The distance matrix in the
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test network I is presented in Table 4-1. Additionally, this research sets the speed of the
autonomous truck as 14 m/s (equals to 50 kph). The travel times matrix for the autonomous

truck is shown in Table 4-2.
) o

Figure 4-3 Test Network I with ten nodes
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Table 4-1 Distance matrix in Test Network I (meters)

0 1 2 3 4 5 6 7 8 9

2000 | 6000 | 5000 |5000 | 7000 | 7000 |5000 |5000 |3000
2000 3000 {2000 |3000 |[5000 |5000 |4000 |3000 |2000
6000 | 3000 535 1000 | 3000 | 3000 |3000 |4000 | 5000
5000 | 2000 |S535 1000 | 3000 |3000 |2000 |3000 |4000
5000 | 3000 | 1000 | 1000 2000 | 2000 |2000 |2000 |4000
7000 | 5000 | 3000 |3000 |2000 2000 | 3000 | 4000 | 6000
7000 | 5000 |3000 |3000 |2000 |2000 1000 | 2000 | 4000
5000 | 4000 |3000 |2000 |2000 |3000 | 1000 787 3000
5000 | 3000 |4000 |[3000 |2000 |4000 |2000 | 787 3000
3000 | 2000 |5000 4000 |4000 |6000 |4000 |3000 |3000

Table 4-2 Travel time matrix of the autonomous truck in Test Network I (seconds)

0 1 2 3 4 5 6 7 8 9

142.86 | 428.57 | 357.14 | 357.14 | 500.00 | 500.00 | 357.14 | 357.14 | 214.29

142.86 214.29 | 142.86 | 214.29 | 357.14 | 357.14 | 285.71 | 214.29 | 142.86

428.57 | 214.29 3821 | 71.43 |214.29 | 214.29 | 214.29 | 285.71 | 357.14

357.14 | 142.86 | 38.21 71.43 | 214.29 | 214.29 | 142.86 | 214.29 | 285.71

357.14 | 214.29 | 71.43 | 71.43 142.86 | 142.86 | 142.86 | 142.86 | 285.71

500.00 | 357.14 | 214.29 | 214.29 | 142.86 142.86 | 214.29 | 285.71 | 428.57

500.00 | 357.14 | 214.29 | 214.29 | 142.86 | 142.86 71.43 | 142.86 | 285.71

357.14 | 285.71 | 214.29 | 142.86 | 142.86 | 214.29 | 71.43 56.21 | 214.29

357.14 | 214.29 | 285.71 | 214.29 | 142.86 | 285.71 | 142.86 | 56.21 214.29

214.29 | 142.86 | 357.14 | 285.71 | 285.71 | 428.57 | 285.71 | 214.29 | 214.29
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4.3.2 Test Network I1

As shown in Figure 4-3, the test network II is an undirected graph and comprises ten
nodes includes one depot and nine demand points and 45 arcs. The distance matrix in test
network II is presented in Table 4-1. Additionally, this research sets the speed of the
autonomous truck as 14 m/s (equals to 50 kph). The travel times matrix for the autonomous

truck is shown in Table 4-2.

W o

(,
N

© Q,

S

Figure 4-4 Test Network II with ten nodes
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Table 4-3 Distance matrix in Test Network II (meters)

0 1 2 3 4 5 6 7 8 9

1800 | 2050 | 1950 |[2100 | 1800 | 1350 | 1900 | 1800 | 1600
1800 650 1250 | 2400 |2270 |2280 |3050 |3180 |3250
2050 | 650 760 2000 | 1950 | 2100 |2850 |3100 | 3300
1950 | 1250 | 760 1280 | 1220 | 1550 |2250 |2550 | 2850
2100 | 2400 |2000 | 1280 255 840 1230 | 1650 | 2180
1800 | 2270 | 1950 | 1220 | 255 590 1100 | 1460 | 1950
1350 | 2280 |2100 | 1550 | &40 590 760 1000 | 1400
1900 | 3050 | 2850 |2250 |1230 | 1100 | 760 470 1100
1800 | 3180 |3100 |2550 |1650 | 1460 |1000 |470 660
1600 | 3250 | 3300 |2850 |2180 |1950 |1400 | 1100 | 660

Table 4-4 Travel time matrix of the autonomous truck in Test Network II (seconds)

0 1 2 3 4 5 6 7 8 9

128.57 | 146.43 | 139.29 | 150.00 | 128.57 | 96.43 | 135.71 | 128.57 | 114.29
128.57 46.43 | 89.29 | 171.43 | 162.14 | 162.86 | 217.86 | 227.14 | 232.14
146.43 | 46.43 54.29 | 142.86 | 139.29 | 150.00 | 203.57 | 221.43 | 235.71
139.29 | 89.29 | 54.29 9143 |87.14 | 110.71 | 160.71 | 182.14 | 203.57
150.00 | 171.43 | 142.86 | 91.43 18.21 |60.00 |87.86 | 117.86 | 155.71
128.57 | 162.14 | 139.29 | 87.14 | 18.21 42.14 | 78.57 |104.29 | 139.29
96.43 |162.86 | 150.00 | 110.71 | 60.00 | 42.14 5429 | 71.43 | 100.00
135.71 | 217.86 | 203.57 | 160.71 | 87.86 | 78.57 | 54.29 33.57 | 78.57
128.57 | 227.14 | 221.43 | 182.14 | 117.86 | 104.29 | 71.43 | 33.57 47.14
114.29 | 232.14 | 235.71 | 203.57 | 155.71 | 139.29 | 100.00 | 78.57 | 47.14
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4.4 Results of Test Networks

To test whether the mathematical model mentioned in Chapter 3 can solve the problem
of optimal delivery with the autonomous truck and two UAVs or not. The mathematic model
is tested on various test networks with ten nodes by MILP solver, GUROBI. Furthermore,
the tabu search algorithm approach is tested on the test networks to solve the optimal delivery
with the autonomous truck and two UAVs. The results of two test networks solving by
GUROBI and tabu search are presented in the following context. In this research, the
program coded in Python is tested on a Windows 10 machine (Intel(R) Core (TM) 15-8250U/

1.80GHz processor with 8GB RAM).

4.4.1 Results of Test Network I Solving by GUROBI

In the test of the mathematical model, some important input is determined before
running the GUROBI. The travel times and speed of the autonomous truck is presented in
Section 4.3.1. Secondly, the service times of the autonomous truck and the UAVs are
assumed to be 30 and 60 seconds. Finally, as a constraint concerning the battery capacity to
drones, this research applies fixed time-based endurance where two drones cooperating with
the autonomous truck are considered to have the same maximum flight endurance. The flight
endurance is constant for all three demand point nodes without considering speed and
distance. In this experiment, the missions for the drones in this research are to deliver
medical relief after disasters as soon as possible. Thus, this research set the UAV can reach
20 m/s and flight 200 seconds by carrying 70lbs (equals to 30 kg) medical reliefs. By
calculating the distance matrix in Table 4-1 and the speed of the UAV. The flight constraint
between nodes and nodes is presented in Table 4-5. For instance, while the UAV is desired

to launch from node 4, satisfy node 5 then retrieving at node 7, the program calculates the
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travel times between node 4 to node 5 and node 5 to node 7. Due to the travel times between
node 4 to node 5 and node 5 to node 7 are 100 seconds and 150 seconds, the UAV under the
flight endurance is not able to deliver reliefs to node 5 in this case.

Table 4-5 The travel times matrix with the UAV in Test Network I (seconds)

0 1 2 3 4 5 6 7 8 9

0 100 300 250 250 350 350 250 250 150
1 100 150 100 150 250 250 200 150 100
2 300 150 26.75 50 150 150 150 200 250
3 250 100 | 26.75 50 150 150 100 150 200
4 250 150 50 50 100 100 100 100 200
5 350 250 150 150 100 100 150 200 300
6 350 250 150 150 100 100 50 100 200
7 250 200 150 100 100 150 50 39.35 | 150
8 250 150 200 150 100 200 100 | 39.35 150
9 150 100 250 200 200 300 200 150 150

As mentioned in Chapter 3, this research sets the optimal delivery problem with two
UAVs as a MILP mathematical model solving by a commercial solver, GUROBI. The results
are presented in Table 4-6 and visualized in Figure 4-5. In this case, GUROBI spends almost
80 seconds to generate the optimal solution and the optimal delivery time in test network [
is 1463.84 seconds. In Figure 4-4, the results provide that the autonomous truck starts at the
starting depot, node 0 and satisfies node 9, node 7; continuously, the UAV 1 is launched from
the autonomous truck at node 7, travels and delivers supplies to node 8, and retrieved by the
autonomous truck at node 6. After finishing the first delivery task, the autonomous truck
keeps traveling to node 5, node 4 and the UAV 1 is launched from the autonomous truck at

node 4, travels and delivers supplies to node 2, and retrieved by the autonomous truck at
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node 3. Finally, the autonomous truck by carrying two drones travel from node 3 to node 1

and back to the ending depot (node 0).
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Table 4-6 The results of Test Network I solving by GUROBI

Total Runtime Objective Number of Number of
(seconds) Function Value UAV Customers
79.36 1463.84 2 9
Delivery nodes

UAV 2

UAV 1 8 2
N N
’ 4 / 4

The autonomous truck | Start —»9 —>7—> 6—>5—>4—> 3 —> |

O Demand point
se=a UAV]
—-=-== UAV2

—— The autonomous truck

Figure 4-5 The visual results of Test Network I solving by GUROBI
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4.4.2 Results of Test Network I Solving by Tabu Search Algorithm

Tabu search algorithm approach is tested on the test network I to solve the optimal
delivery with the autonomous truck with two UAVs. The travel times matrix of the
autonomous truck and the UAVs are presented in Table 4-2 and Table 4-5. Additionally, the
service times of the autonomous truck and the UAVs are 30 and 60 seconds. Finally, the
UAVs can reach 20 m/s and flight 200 seconds by carrying 701bs (equals to 30 kg) medical
reliefs under fixed time-based flight endurance constraint. Based on the components in the
tabu search algorithm mentioned in Section 4.2, the tabu tenure, aspiration criterion, and the
termination condition are set to generate a feasible solution. The termination condition is set
as 200 iterations.

The results in test problem solving by tabu search are presented in Table 4-7 and
visualized in Figure 4-6. In this case, the tabu search algorithm spends almost 26 seconds to
generate the optimal feasible solution and the optimal delivery time in test network I is
1568.20 seconds. In Figure 4-5, the results present that the autonomous truck starts at the
starting depot, node 0, and satisfies node 9, node 7; continuously, the UAV 1 is launched
from the autonomous truck at node 7, travels and delivery supplies to node 8, and retrieved
by the autonomous truck at node 6. After finishing the first delivery task, the autonomous
truck keeps traveling to node 5, node 4 and the UAV 1 is launched from the autonomous
truck at node 4, travels and delivers supplies to node 2, and retrieved by the autonomous
truck at node 3. Finally, the autonomous truck by carrying two drones travel from node 3 to

node 1 and back to the ending depot (node 0).
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Table 4-7 The results of Test Network I solving by tabu search algorithm

Total Runtime Objective Number of Number of
(seconds) Function Value UAV Customers
26.15 1568.20 2 9
Delivery nodes
UAV 2
UAV 1 2
N,
’ \4 4
The autonomous truck | Start —»9 —>7—> 6—> 5—> 4 —> 3 —» |

Depot

Demand point
UAV1
UAV2

The autonomous truck

Figure 4-6 The visual results of Test Network I solving by the tabu search algorithm
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4.4.3 Results of Test Network II Solving by GUROBI

In test network 11, the travel times and speed of the autonomous truck are presented in
Section 4.3.2 and the service times of the autonomous truck and the UAVs are assumed to
be 30 and 60 seconds. Based on the endurance constraint of UAVs, this research set the UAV
can reach 20 m/s and flight 200 seconds by carrying 701bs (equals to 30 kg) medical reliefs.
Furthermore, two drones cooperating with the autonomous truck are considered to be
homogeneous to have the same maximum flight endurance. By calculating the distance
matrix in Table 4-3 and the speed of the UAV. The flight constraint between nodes and nodes
is presented in Table 4-8.

Table 4-8 The travel times matrix with the UAV in Test Network II (seconds)

0 1 2 3 4 5 6 7 8 9
0 90 102.5 | 97.5 105 90 67.5 95 90 80
1 90 5 pipy62e5 120 | 113.5 | 114 | 1525 | 159 | 1625
2 ] 1025 | 325 38 100 97.5 105 | 1425 | 155 165
3 97.5 | 62.5 38 64 61 77.5 | 112.5 | 127.5 | 1425
4 105 120 100 64 12.75 42 61.5 | 825 109
5 90 113.5 | 97.5 61 12.75 29.5 55 73 97.5
6 67.5 114 105 77.5 42 29.5 38 50 70
7 95 152.5 | 1425 | 112.5 | 61.5 55 38 23.5 55
8 90 159 155 | 127.5 | 825 73 50 23.5 33
9 80 162.5 | 165 | 1425 | 109 97.5 70 55 33

70

doi:10.6844/NCKU202002083



In test network II, the results are presented in Table 4-9 and visualized in Figure 4-6.

The results describe that GUROBI spends 232 seconds to generate the optimal solution and

the optimal delivery time in test network II is 747.09 seconds. In Figure 4-6, the autonomous

truck starts at the starting depot, node 0, serves node 3 and the UAV 2 is launched from node

1, serves 2 and retrieved with the autonomous truck at node 3. After satisfying node 3, the

autonomous truck continuously serves node 5, node 6 and the UAV 1 is simultaneously

launched, serves node 4 then retrieved at node 6. At node 6, two UAVs are both launched,

UAV 1 and 2 serve node 8 and node 7 then retrieved at node 9. Completing satisfying node

9, the autonomous truck by carrying two UAVs heads to the ending depot (node 0).

Table 4-9 The results of Test Network II solving by GUROBI

Total Runtime Objective Number of Number of
(seconds) Function Value UAV Customers
232.90 747.09 2 9
Delivery nodes
UAV 2 2
A3 \
UAV 1 F N 4 \
Ill \ YN /AN
/ * ’/ \\ N,
The autonomous truck | Start > | > 3 > 5 » 0—End
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‘--_.®’ | | Depot

O Demand point
----» UAVI
---» UAV2

—— The autonomous truck

Figure 4-7 The visual results of Test Network II solving by GUROBI

4.4.4 Results of Test Network II Solving by Tabu Search Algorithm

In test network II, the service times of the autonomous truck and the UAVS are 30 and
60 seconds. Moreover, the UAVs can reach 20 m/s and flight 200 seconds by carrying 70lbs
(equals to 30 kg) medical reliefs under fixed time-based flight endurance constraint. The
travel times matrix of the autonomous truck and the UAVs are presented in Table 4-2 and
Table 4-6. Based on the components in the tabu search algorithm mentioned in Section 4.2,
the tabu tenure, aspiration criterion, and the termination condition are set to generate a
feasible solution. The termination condition is set as 200 iterations.

The results in test network II solving by tabu search are presented in Table 4-10 and
visualized in Figure 4-7. In this instance, the tabu search algorithm spends almost 3.23

seconds to generate the optimal feasible solution and the optimal delivery time in test
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network II is 765.71 seconds. In Figure 4-7, the results present that the autonomous truck

starts at the starting depot, node 0 and satisfies node 2, node 3. At the starting depot, the

UAV 1 is launched, serves nodel and retrieved with the autonomous truck at node 3. At node

3, two UAVs are both launched, UAV 1 and 2 serve node 4 and node 5 then retrieved at node

6. Completing satisfying node 6 by the autonomous truck, two UAVs are continuously

launched at node 6, UAV 1 and 2 serve node 7 and node 8 then retrieved at node 9. Finishing

completing serving node 9, the autonomous truck by carrying two UAVs travels back to the

ending depot (node 0).

Table 4-10 The results of Test Network II solving by tabu search algorithm

Total Runtime Objective Number of Number of
(seconds) Function Value UAV Customers
3.23 765.71 2 9
Delivery nodes
UAV 2 < 5
/ \\
/4 AY
UAV | =N LA N TN
- SN ,’ AN \‘ 1,7 AN
-~ N S “ud
The autonomous truck | Start > 2 ) > 6 » 9——>»FEnd
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---» UAV2

— The autonomous truck

Figure 4-8 The visual results of Test Network II solving by the tabu search algorithm

4.5 Summary

In the test of the mathematical model, the service times of the autonomous truck and
the UAVs are assumed to be 30 and 60 seconds. The fixed time-based flight endurance is
200 seconds and can reach 20 m/s. The termination condition of the tabu search is set as 200
iterations.

In Table 4-11, the results of the test network I and test network 11 by GUROBI and tabu
search is presented. In terms of objective function value, the gap with GUROBI in test
network I and test network II are within 8% and 3%. On the other hand, the runtime
comparing with GUROBI are improved a lot by tabu search. In conclusion, the tabu search
solution algorithm can generate the best feasible solutions in less runtime comparing with

GUROBI.
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Table 4-11 Results of test network I and test network 11

Solution Runtime Ob;. Routes of the Routes of Routes of
Algorithm | (Seconds) | (Seconds) | autonomous truck UAV 1 UAV 2
Test Network [
GUROBI 79.36 1463.84 | (0,9,7,6,5,4,3,1,0) | (7,8,6)(3,2,1)
Tabu 26.15 1568.20 | (0,9,7,6,5,4,3,1,0) | (7,8,6)(4,2,3)
search
Test Network II
GUROBI 232.90 747.09 (0,1,3,5,6,9,0) (3,4,6)(6,8,9) (1,2,3)
(6,7,9)
Tabu 3.23 765.71 (0,2,3,6,9,0) (0,1,3)(3,4,6) (3,5,6)
search (6,7,9) (6,8,9)
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CHAPTER 5 EMPIRICAL STUDY

After constructing the small-scale test network instances, this research designs the
empirical experimental network, Kaoshiung City, in Chapter 5. Section 5.1 discusses the
experimental design, including experimental network, design, setup, and process. Section
5.2 introduces an empirical network with three various numbers of demand points. Section
5.3 presents the results of the empirical network in different amounts of demand points.

Section 5.4 summarizes Chapter 5 by providing the results of the analysis.

5.1 Experimental Design and Setup

To develop an actual network for optimal delivery problems concerning minimal travel
times, this section describes the empirical experimental network in Kaoshiung City. The
basic data of the experimental network and the settings related to the model such as the fixed
time-based flight endurance of UAVs are described in this section. Finally, the results of the
optimal delivery with the autonomous truck and two UAVs solving by tabu search algorithm

is presented as followed in Section 5.3.

5.1.1 Experimental Design

In this research, three random various test instances are used for testing purposes.
Different test instances established on the empirical network, Kaoshiung City, include 20,
30 and 40 nodes.

The demand point nodes in the empirical study are randomly generated, and the detailed
setting is further discussed in Section 5.2.

On the other hand, the most important element in this research is the travel times related

to the autonomous truck and two UAVs. However, it is difficult to set the distances and the
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speed between nodes properly. In this case, the San-min District of Kaoshiung City shown
in Figure 5-1 with real geometric data is adopted. The characteristics of arcs between nodes
and nodes are determined by DynaTAIWAN simulation software. DynaTAIWAN (Dynamic
Traffic Assignment and Information in Wide Area Network) is structured based on the notion
of the simulation-assignment method (Jayakrishnan et al, 1994; Mahmassani et al., 1994).
DynaTAIWAN simulation software considers theoretical foundations and implements the
system based on the software development process, including mesoscopic mixed traffic flow
mode, driving decision behavior, traffic control strategy, simulation method, and dynamic
traffic assignment. The major characteristics of DynaTAIWAN are to reflect the impact on a
traffic network for motorcycles in Taiwan. As shown in Figure 5-2, the conceptual
framework of DynaTAIWAN based on mixed traffic flow and driving behavior in Taiwan
can develop multiple simulation scenarios such as simulation of event impact, simulation
analysis of electronic toll collection, activities impact analysis, dynamic route guide,
multiple vehicle types analysis, vehicle routing problem (VRP), and bus, light rail transit
(LRT), mass rapid transit (MRT) exclusive lane. In conclusion, the range of the empirical
network, San-min District of Kaoshiung City in this research is 19.79km?, consisting of 132
nodes and 363 arcs. Additionally, the empirical network with three different amounts of

nodes is used for testing purposes.
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Figure 5-1 The San-min District network of Kaoshiung City
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Figure 5-2 The conceptual framework of DynaTAIWAN

(Source: Hu et al., 2005)
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5.1.2 Experimental Setup

In terms of the length between nodes and nodes, this research applies the Dijkstra
algorithm to reach the shortest path and continuously builds the distance matrix. Dijkstra
algorithm is described as follow:

Step 1: Assign to every node a tentative distance value. Set the distance value of the
initial node to zero and the distance value of all other nodes to infinity.

Step 2: Generate a set of visited nodes with just the initial node and unvisited set
with all nodes without the initial node.

Step 3: For the initial node or current node, consider all its unvisited neighbors and
calculate the distance (distance to the current node and distance from the current node to the
neighbor). If the calculated distance is less than their current tentative distance, replace it
with this new distance.

Step 4: While the process has done considering neighbors of the current node, put the
current node into the visited set and remove it from the unvisited set.

Step 5: If the destination node has been put into the visited set, the algorithm has
finished. If not, go to step 6.

Step 6: Set the unvisited node marked with the smallest tentative distance as the next
current node and go back to step 3.

After the procedure to calculate the shortest path, the distance matrix is generated by
the Dijkstra algorithm.

In terms of empirical network, the starting depot and the ending depot are set as the
same. And the demand point nodes are randomly generated from 132 nodes without
repetition.

In terms of input data, Table 5-1 provides the design of an empirical network with three
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types of amounts of demand point nodes instance. The speed of the autonomous truck is 14
m/s (equals to 50 kph). Under fixed time-based flight endurance constraint, the UAVs
reaches 20 m/s (equals to 72 kph). Secondly, the service times of the autonomous truck and
the UAVs are 30 and 60 seconds. Based on the test problem in the empirical network, the
fixed time-based flight endurance is set in different scenarios that are 400, 800 seconds.
Moreover, the termination condition is set in 200 iterations. And all the experiments are

conducted on a Windows 10 machine (Intel(R) Core (TM) 15-8250U/ 1.80GHz processor

with §GB RAM).
Table 5-1 The parameters setting
Notation Value
Speed of the autonomous truck 14 m/s
Speed of the UAVs 20 m/s
Service time of the autonomous truck 30
Service time of the UAVs 60

5.2 Empirical Experiments

As the input data and settings are described in experimental design and setup in Section

5.1. This section further discusses the experimental network with 20, 30, and 40 nodes.

5.2.1 Empirical Instance with 20 Nodes

The 20 nodes are randomly selected for testing purposes. As presented in Figure 5-3,
one depot and 19 demand point nodes are included in the empirical network.
The round symbols in black are represented as the demand point nodes and the square

symbol in black is represented as the starting depot and ending depot.
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Figure 5-3 Experimental instances with twenty nodes in the empirical network
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5.2.2 Empirical Instance with 30 Nodes

The 30 nodes are randomly selected for testing purposes. As presented in Figure 5-4,
one depot and 29 demand point nodes are included in the empirical network.
The round symbols in black are represented as the demand point nodes and the square

symbol in black is represented as the starting depot and ending depot.

Bl Dcpot
. Demand point
— Arcs

Figure 5-4 Experimental instances with twenty-nine nodes in the empirical network

82

doi:10.6844/NCKU202002083



5.2.3 Empirical Instance with 40 Nodes

The 40 nodes are randomly selected for testing purposes. As presented in Figure 5-5,
one depot and 39 demand point nodes are included in the empirical network.
The round symbols in black are represented as the demand point nodes and the square

symbol in black is represented as the starting depot and ending depot.

®
©
® :
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() @

B Dcpot \ © / S
. Demand point @ O 20 - 90
— Arcs @, \ >§

@ 101 99 110

Figure 5-5 Experimental instances with thirty-nine nodes in the empirical network
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5.3 Results of Experimental Network

This research executes the tabu search algorithm with parameters based on the

experimental setup in Section 5.1. Given 20, 30, 40 nodes and the empirical network with

travel times, the results of the optimal route in delivering supplies by the autonomous truck

with two drones are presented. The optimal routes related to the different number of nodes

and fixed time-based flight endurance and objective function value which is the total travel

times are listed in Table 5-2.

Table 5-2 Optimal delivery routes of empirical network

Number | Flight | Termination | Objective Total The optimal route
of endurance | condition function runtime
nodes (evijk) (iterations) value [seconds]
[hr:min:sec]
20 400 200 00:48:71 9 The autonomous truck
[12,110,103,129,69,106,62,127,91,86,99,50,12]
UAV1
[(12,128,110),(110,28,129),(69,75,106),
(106,58,62)(91,83,86)]
UAV 2
[(12,48,129),(110,101,62),(62,35,50)]
800 200 00:39:19 42 The autonomous truck
[12,58,62,91,127,110,86,69,48,129,12]
UAV 1
[(12,28,58),(62,103,91),(110,101,86),
(86,75,69),(69,50,48)]
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UAV 2

[(12,106,58),(91,128,127),(110,99,86).(86,83,69),

(69,35,48)]

30

400

200

01:26:24

537

The autonomous truck
[51,96,68,110,103,88,124,122,
79,119,115,63,25,128,18,29,51]
UAV 1
[(51,78,96),(96,71,68),(68,62,88),
(88,131,124),(124,104,122),(122,81,79),
(79,93,119),(25,84,29)]
UAV 2
[(68,74,88),(124,100,122),(122,132,79),

(79,34,119),(115,43,63),(25,108,29)]

800

200

01:19:91

106

The autonomous truck
[51,96,25,29,84,124,88,71,
68,78,63,119,128,108,115,51]
UAV 1
[(51,79,96),(96,100,124),(124,103,88),
(88,81,71),(63,43,119),( 119,18,128),
(128,110,108),(108,132,115)]
UAV 2
[(51,131,96),(124,122,88),
(88,74,71),(63,93,119),
(119,34,128),(128,104,108),

(108,62,115)]
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400 200 01:45:65 1131 The autonomous truck
[119,35,40,88,130,128,117,17,38,84,66,85,
19,112,32,48,115,97,102,96,78,68,24,119]

UAV 1
[(119,42,35),(40,30,88),(88,86,130),(128,34,117),
(38,50,84),(66,27,19),(19,58,112),(112,46,32),
(97,131,78),(78,125,68)]

UAV 2

[(88,13,130),(117,93,85),(85,123,19),(19,54,32),

(115,124,78),(78,81,68),(68,45,24)]

800 200 01:30:93 594 The autonomous truck
[119,35,66,81,45,58,86,97,130,17,
54,13,38,30,42,50,34,84,124,123,119]
UAV 1
[(119,48,35),(81,27,45),(58,46,86),(86,102,97),
(130,131,17),(54,112,13),(13,32,38),
(38,19,30),(50,24,34),(34,68,84),(84,93,124)]
UAV 2
[(81,115,45),(58,85,86),(86,117,97),
(130,128,17),(17,40,54),(54,88,13),

(13,125,38),(34,78,84,),(84,96,124)]
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In terms of the fixed time-based flight endurance, as expected, different flight
endurance setting produces different objective function values for the empirical study. The
UAVs can satisfy the demand points which is far away in larger flight endurance.

As shown in Table 5-3, while the flight endurance is larger, the UAVs serve the demand
points farther. However, the degree of difference is not quite large. Refer to the empirical
network, Kaoshiung city, the distance between some demand points is short which means
the UAVs in 400 seconds endurance can serve most of the demand points, in this case, the
benefits that adopting high-level UAVs which is in 800 seconds endurance is less.

Table 5-3 The number of nodes satisfied by various vehicles

Number | Flight endurance Satisfied by the Satisfied by | Satisfied by | Satisfied by
of nodes (evijk) autonomous truck the UAVs | the UAV 1 | the UAV 2
20 400 11 8 5 3
800 9 10 5 5
30 400 15 14 8 6
800 14 15 8 7
40 400 22 17 10 7
800 19 20 11 9
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In terms of the different number of demand points, the convergence in various flight
endurance is presented in Figure 5-6, Figure 5-7, and Figure 5-8. The results of convergence
show while setting the termination condition as 200 iterations, the tabu search algorithm
continued searching for better solutions and finally find the solution which is minimized

travel times.
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Figure 5-6 Convergence of 20 nodes with 400 and 800 endurance in 200 iterations
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Figure 5-7 Convergence of 30 nodes with 400 and 800 endurance in 200 iterations
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Figure 5-8 Convergence of 40 nodes with 400 and 800 endurance in 200 iterations

As shown in Table 5-4, the results of empirical experiments are compared with TSP
solutions. Table 5-4 summarizes the total travel times and percentage improvement over TSP
solutions in empirical networks with 20, 30, 40 nodes and various flight endurance. In terms
of flight endurance, the improvement rate over TSP in higher flight endurance is better than
the lower one in 20, 30, 40 nodes network. However, in 30 and 40 nodes network, the
improvement rate is presented as a non-increasing behavior. This research summarizes and
suggests two possible explanations. First, the heuristic algorithm is probably not providing
near-optimal solutions for larger empirical networks. Nevertheless, there is no existing
method to assess the optimal gap for the Multiple Flying Sidekick Traveling Salesman
Problem (mFSTSP). Secondly, in terms of the coordination with the autonomous truck and
two UAVs. While the UAV is going to merge with the autonomous truck, different vehicles
must wait for each other. Additionally, in 40 nodes network, the density of demand points
increases and the distance between nodes and nodes become shorter. In this case, it is less
beneficial to deploy UAVs. In conclusion, two factors diminish the rates of improvement as
the demand points are increasing. However, the results indicate that higher flight endurance

leads to a reduction of total travel times comparing with the lower flight endurance.
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Table 5-4 Comparison of travel times between FSTSP and TSP problems

Number Flight FSTSP problem (The TSP problem Improvement
of nodes endurance autonomous truck (Only truck) rate over TSP
(eyiji) and two UAV5s) [hr:min:sec] problem
[hr:min:sec] [%]
20 400 00:48:71 01:00:14 18.3
800 00:39:19 01:00:14 34.7
30 400 01:26:24 01:29:03 3.0
800 01:19:91 01:29:03 9.6
40 400 01:45:65 01:27:19 -21.5
800 01:30:93 01:27:19 -4.8

5.4 Summary

In empirical experiments, this research discusses the empirical network, Kaoshiung
City. Additionally, in terms of NP-Hard problems in Flying Sidekick Traveling Salesman
Problem, the optimal delivery problems with the autonomous truck and two UAVs in various
flight endurance are solved by the tabu search algorithm.

Based on the results, this research presents the related data in optimal delivery routes
of the empirical network including the total runtime of the program, optimal routes divided
by the autonomous truck and two drones, the convergence of the solutions, and the
minimized travel times which is an objective function value. This research further discusses
that flight endurance impacts objection function value. Besides, due to the inability of
GURORBI to generate optimal solutions for large-scale problems within reasonable runtime,
there is no benchmark comparing to the total runtime of the program of the tabu search

algorithm.
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CHAPTER 6 CONCLUSIONS AND SUGGESTIONS

This research develops a tabu search algorithm to solve the delivery problem with the
autonomous truck and UAVs in an emergency within the least amount of time. The

conclusions and suggestions are summarized in Section 6.1 and Section 6.2.

6.1 Conclusions

This research develops a model applying the autonomous truck and the UAVs to deliver
medical reliefs in an emergency. Based on the conception of the mathematical model and the
results of the empirical study, the conclusions of this research are summarized as follows:

1. This research executes a model for a variant of traveling salesman problem. The
problem of optimal delivery with the autonomous truck and drones is introduced and
formulated by the mathematical model and the definitions of the problem statement.

2. This research develops a tabu search algorithm to enhance the efficiency and response
quickly on the route assignment to demand points that need reliefs and resources
adopting the autonomous truck with drones in an emergency. By discussing the basic
components of the tabu search, the heuristic algorithm is proposed to solve the problem
efficiently.

3. This research constructs the practical network which is Kaoshiung City and adopts a
tabu search algorithm to find the solutions in different flight endurance related to drones.

4.  The results within reasonable runtime and the optimal delivery routes are generated by

the tabu search algorithm.
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6.2 Suggestions

The suggestions for future study on optimal delivery of the autonomous truck and the
drones in an emergency are summarized as follows:

1. In this research, the mathematic model is provided and allows one autonomous truck
and two drones to serve demand points. However, the problem can be extended to allow
more autonomous trucks carrying three to six drones to compare the efficiency of
delivery tasks in the different number of vehicles.

2. Inthis research, the problem is defined as Flying Sidekick Traveling Salesman Problem
which means the UAVs cannot travel to demand points from and back to the depot
directly. In the future, the problem might be a mixed problem that the drones can satisfy
the demand points nearby the depot and simultaneously sending vehicles by carrying
drones to serve the demand points far away.

3. This research assumes that the performance of the drones are analogs and the demand
point can be satisfied without considering the capacity limitations of drones. It is worthy
to mention if the drones should be heterogeneous in a fleet to be realistic in a real
situation.

4. This research applies an empirical network, San-min District in Kaoshiung City. The
area of the empirical network is 19.79km?, consisting of 132 nodes and 363 arcs.
However, the ability of UAVs such as velocity and battery constraints are becoming
better and better. It is necessarily applying a larger network to highlight the importance

of the UAVs in FSTSP.
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