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ABSTRACT 

Lighthill and Whitham proposed their kinematic traffic flow model five decades 

ago, then the mathematical description of traffic flow operations has been a lively 

subject of research and debate for traffic scientists. There were a wide range of traffic 

flow theories and models, which were developed to describe traffic flow operations.  

In this study, we focus on mesoscopic traffic flow model. The gas-kinetic traffic 

flow model of Prigogine and Andrews, one of mesoscopic traffic flow model, was 

developed during 1960’s. They modified some of the key concepts in the kinetic 

theory of gases and wrote down an equation alike to the Boltzmann transport equation. 

We present a new traffic Boltzmann transport equation describes the dynamics of the 

velocity distribution functions of vehicles in the traffic flow. From the traffic 

Boltzmann transport equation, we consider the vehicles governed by drift, traffic field, 

deceleration, and lane-changing. The Monte Carlo simulation technique plays an 

important role in solving the complex equation. 

The name of Monte Carlo simulation technique is usually given to stochastic 

methods that employ a stochastic process to simulate a system. In this study, Monte 

Carlo simulation technique is introduced to directly solve the traffic Boltzmann 

transport equation by direct physical simulation. Monte Carlo simulation technique 

offers an accurate description of transport, but it requires intensive computation and 

hence has not found wide use for traffic flow applications. Then we introduce the 

parallel Monte Carlo simulation technique used for improving the drawback of Monte 

Carlo simulation. Finally, comparison the simulation results with real VD data is 

discussed. 
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Chapter 1 Introduction 
Intelligent transportation systems (ITS) are the systems that employ advanced 

information and communication technologies to the operations of existing 

transportation systems in order to ensure traffic safety and transportation mobility, and 

improve traffic congestion and environmental impacts. For the purpose of ITS 

applications, real-time prediction is needed. Managing traffic real-time in congested 

road or networks requires a clear understanding of traffic flow operations. For this 

purpose, during the past fifty years, there were a wide range of traffic flow theories 

and models, which were developed to answer these research questions. 

 

1.1 Motivation and Objective 

Modeling and computer simulation play an increasing role in the optimization of 

traffic flow. Traditionally there have been two types of approach to the problem. 

Macroscopic models based on fluid dynamic equations have been proposed by a large 

number of authors, see, e.g., Lighthill and Whitham [1], May [2] and Payne [3]. 

However, some of these models have been subject to considerable controversy, 

concerning their validity and applicability to traffic flow. Microscopic or 

car-following model are the most basic models, modeling the actual response of 

individual vehicles to their predecessor by ordinary differential equations based on 

Newton’s law. They have been investigated with many authors, e.g. Prigogine [4,5], 

Reuschel [6], Chandler [7], Gazis [8] and Herman [9]. From the viewpoint of 

applicability to model-based estimation, prediction, and control, the absence of a 

closed analytic solution presents a problem that is not easily solved. That is the reason 

that microscopic simulation models are ideally suited for off-line simulations, for 

instance to test roadway geometry. 
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Another interesting approach to the study of traffic flow is the kinetic models. 

Kinetic models in traffic flow started originally with the work of Prigogine et al. [4,5], 

who introduced a kinetic term to account for the slowing down interactions. Kinetic 

models may present an intermediate step between the above two types of model, even 

though they are included of microscopic models. They are based on Boltzmann type 

kinetic equation. On the one hand they can be more fundamentally justified than the 

standard macroscopic models, leading to a better justification of the macroscopic 

models and potentially to more accurate results. On the other side, compared to 

microscopic models, computation time is strongly decreased. This may make the 

kinetic models applicable to the description of real life situations and traffic control 

problems. For this reason, some scholars think this kind of model as a mesoscopic 

model. 

Cho and Lo [10] improved Prigogine model by considering acceleration as 

influence of traffic field, namely traffic Boltzmann transport equation or 

Boltzmann-like model. Boltzmann-like model is a mesoscopic model, which can infer 

to macroscopic models and can be developed with behavioral analysis, so as to 

improve the lack of behavior of macroscopic model. Nevertheless, the resulting 

equations have been criticized for having too many parameters and high 

dimensionality, hampering calibration and their real-time applicability. This is an 

important cause that the thesis will be focus on Boltzmann-like model. We will 

simulate the Boltzmann-like model in parallel to give the usefully real-time data for 

ITS, and to make the ITS approach effective (e.g. traffic signal control, incident 

management, integrated traffic responsive metering). 
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1.2 Study Procedure 

As show in Figure 1.1, we first survey and confirm the study issue for the thesis. The 

second frame reviews some dynamic traffic flow models, some computational 

methods for the Boltzmann transport equation, and the development of Message 

Passing Interface (MPI). The third frame shows our main research methodologies that 

include of Boltzmann transport equation for microscopic traffic flow, Monte Carlo 

simulation method, and parallelism architecture. In the forth step, we will use Monte 

Carlo simulation method and parallel method to solve the traffic Boltzmann transport 

equation. Furthermore, we analyze the simulation results and discuss the performance 

of the parallel system in this study. After that we will compare simulation results with 

real VD data. Finally, some conclusions and further works are given. 
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Fig.1.1 A flowchart of this study 
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1.3 Outline of Thesis 

The rest of the thesis is organized on the following way: In chapter 2 we will review 

some relative literatures. In chapter 3, we formulate the traffic flow model. Our main 

methodologies of the thesis are stated in chapter 4. Numerical simulation of freeway 

traffic flow is discussed in the chapter 5. Finally, expected results are given in chapter 

6. 

In chapter 2, we will briefly review the macroscopic traffic flow models and 

microscopic traffic flow models. Then we will focus on the discussion about 

mesoscopic traffic flow models, some computational methods for the Boltzmann 

transport equation, and the development of Message Passing Interface (MPI). 

In chapter 3, we particularly discuss our modeling, included of traffic Boltzmann 

transport equation and scattering mechanisms. 

In chapter 4, we will discuss the purpose of this thesis and our methodologies. 

Parallel Monte Carlo computing technique for the numerical simulation of traffic 

Boltzmann transport equation will be used in this study.  

In chapter 5, some example is experimental to obtain a first impression of the 

validity of the traffic flow model. Furthermore, performance results for parallel Monte 

Carlo simulation technique are discussed. Eventually, comparison with VD real data 

is required to obtain accuracy of the model and numerical scheme. 

In chapter 6, the conclusion and results are stated. 
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Chapter 2 Literatures Review 
In this chapter, we first review the dynamic traffic flow model, including the 

macroscopic traffic flow models and microscopic traffic flow models. Then we focus 

on the discussion about the mesoscopic traffic flow models and some computational 

methods for the Boltzmann transport equation, and the development of Message 

Passing Interface (MPI). 

 

2.1 A Review on Dynamic Traffic Flow Model 

Traffic operations on roadways can be improved by field research and field 

experiments of real-life traffic flow. However, apart from the scientific problem of 

reproducing such experiments, costs and safety play a role of dominant importance as 

well. Due to the complexity of the traffic flow system, analytical approaches may not 

provide the desired results. Therefore, for almost half a century physicists have been 

trying to understand the fundamental principles governing the flow of vehicular traffic 

using theoretical approaches based on statistical physics. A physicist would like to 

develop a model of traffic by incorporating only the most essential ingredients which 

absolutely necessary to describe the general features of typical real traffic.  

Consequently, traffic flow or simulation models designed to characterize the 

behavior of the complex traffic flow system have become an essential tool in traffic 

flow analysis and experimentation. Usually, we can develop traffic analytical 

techniques by two different points of view, microscopic and macroscopic analysis.  

 

2.1.1 Macroscopic Traffic Flow Models 

Macroscopic traffic flow models assume that the aggregate behavior of drivers 

depends on the traffic conditions in the drivers’ direct environments. In the 
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“coarse-grained” fluid –dynamical description, the traffic is viewed as a compressible 

fluid formed by the vehicles but these individual vehicles do not appear explicitly in 

the theory. Macroscopic system may be selected for higher-density, large-scale 

systems in which a study of the behavior of groups of units is sufficient. Generally, 

calibration of macroscopic models is relatively simple (compared to microscopic 

models). Most macroscopic traffic flow models describe the dynamics of the density k, 

the velocity u, and the flow q and the relationship between them is . Some 

researches investigated speeds, flows and densities from low quality time lapse film 

and got the information of vehicle tracking which proved vehicular platoon can be 

treated as stream of fluid. The general macroscopic traffic flow models are always 

noted, include Lighthill-Whitham-Richards models [1], Payne-type models [3] and 

Helbing-type models [11]. 

ukq ×=

However, macroscopic models are generally too coarse to correctly describe 

microscopic details and impacts, for instance caused by changes in roadway geometry. 

Due to the availability of closed analytical solutions, there are however very suitable 

for application in model-based estimation, prediction, and control of traffic flow.  

 

2.1.2 Microscopic Traffic Flow Models 

In contrast, in the so-called “microscopic” models of vehicular traffic attention is 

explicitly focused on individual vehicles each of which is represented by a particle; 

the nature of the interactions among these particles is determined by the way the 

vehicles influence each other’s movement. In other words, in the “microscopic” 

theories vehicular traffic is treated as a system of interacting particles driven far from 

equilibrium.  

In this section, we discuss microscopic traffic flow models, the development of 

which started during the sixties with the so-called car-following models. We will 

 7 



concisely review some different types of microscopic models.  

 

2.1.2.1 Car-Following Models 

During the 1960’s, research efforts focused on the so-called follower-the-leader 

models [6,12]. The basic idea of the models is that the following drivers will 

correspond to the action of the preceding vehicle. This car-following process is base 

on the following principle: 

 

nn stimulusresponse ][][ ∝                                             (2.1) 

 

for the n-th vehicle (n = 1, 2, …). In general, the response is the braking or the 

acceleration of the following vehicle, delayed by an overall reaction time T. Each 

driver can respond to the surrounding traffic conditions only by accelerating or 

decelerating the vehicle. Different forms of the equations of motion of the vehicles in 

the different versions of the car-following model arise from the differences in their 

assumption regarding the nature of the stimulus. The stimulus may be compose of the 

speed of the vehicle, the difference in the speeds of the vehicle under consideration 

and its lead vehicle, the distance-headway, etc., and, therefore, in general,  

 

),,()( nnnstin vxvfta ∆∆= ,                                            (2.2) 

 

where the function  represents the stimulus received by the n-th vehicle. If the 

function  is assumed or modeled, a different car-following model is derived. For 

example, a well-known model specification is [6]: 

stif

stif

 

))()(()( 1 txtxTta nnn && −=+ +γ ,                                        (2.3) 
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where the sensitivity coefficient  is a constant, which is independent of n, T is a 

response time lag. A survey can be found in Gazis, Herman and Potts [8]. The model 

is a second order ODE 

γ
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with parameters T, c, m, l. the basic idea is that the acceleration at time t+T depends 

on the speed of the vehicle at time t, the relative speeds of the vehicle and its leading 

vehicle at time t and the distance between the vehicles. T is a typical reaction time of 

the driver. c, m, l are fitted to special situations. Since lane-changing processes cannot 

be easily described, car-following models have been mainly applied to single lane 

traffic [13] and traffic stability analysis [2,9]. Todosiev [14] and Wiedemann [15] 

introduced psycho-physiological considerations into the car-following models. 

Wiedemann considers so-called reaction thresholds to distinguish different regions of 

driver behavior.  

 

2.1.2.2 Cellular Automaton Models 

A more recent addition to the development of microscopic traffic flow theories are the 

so-called Cellular Automaton (CA) or Particle Hopping models. CA-models describe 

the traffic system as a lattice of cells of equal size (typically 7.5m). A CA-model 

describes in a discrete way the movements of vehicles from cell to cell [16,17]. 

CA-models aim to combine advantages of complex micro-simulation models, while 

remaining computationally efficient. However, the car-following rules of both the 

space-oriented and time-oriented CA-models lack intuitive appeal and their exact 

mechanisms are not easily interpretable from the driving-task perspective. Moreover, 
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they are too crude to describe and study microscopic details of traffic flow sufficiently 

accurate from a single driver’s perspective. 

 

2.1.3 Mesoscopic Traffic Flow Models 

Instead of describing the traffic dynamics of individual vehicles, mesoscopic traffic 

flow model describe the dynamics of the velocity distribution functions of vehicles in 

the traffic flow. In this section, we first review the seminal models, gas-kinetic traffic 

flow models of Prigogine and coworkers [4,5], after which a few extensions to this 

model type are dealt with. 

In the kinetic theory of gases, the Boltzmann transport equation, which describes 

the time-evolution of distribution , is given by ),,( tvxf
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where the symbols  and  denote gradient operations with respect to  and , 

respectively, while  is the external force. The term 

r∇

F
r

v∇ rr vr

collisiont
f







∂
∂  represents the rate 

of change of f, with time, which is caused by the mutual collisions of the molecules. 

Prigogine and coworkers modified some of the key concepts in the kinetic theory 

of gases and wrote down an equation alike to the Boltzmann transport equation. 

Suppose the velocity distribution function, , denotes the number of 

vehicles, at time t, between x and x+dx, having actual velocity between v and v+dv. In 

addition, Prigogine and coworkers introduced a desired distribution f

dxdvtvxf ),,(

0(v) which is a 

mathematical idealization of the goals that the population of the drivers collectively 

strives to achieve. Prigogine and coworkers suggested that the analogue of the 
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Boltzmann transport equation for the traffic should have the form  
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The first term on the right-hand side accounts for the relaxation of f towards f0 in the 

absence of mutual interactions of the vehicles, and may be interpreted as the 

counterpart of the term  in the above equation (2.5). The second term 

takes in to account traffic interaction. For the relaxation and interaction terms can take 

an expression of the form: 
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where T is relaxation time. 
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where P is the probability of a car passing another one, v  is the average speed of 

traffic, and k is the concentration of the traffic flow.  

Then Anderson, Herman, and Prigogine [18] discussed the homogeneous 

time-independent solution for a one-car speed distribution function, that is derived for 

a Boltzmann-like approach to the statistical theory of traffic flow. Numerical results 

are discussed for a number of different desired speed-distribution functions. Herman 

and Lam [19] extended the model as a kinetic equation consisting of three additive 

terms, each approximating one of the following traffic processes: relaxation, 
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interaction, and adjustment, as 
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Paveri-Fontana [20] argued that each vehicle, in contrast to the molecules in a 

gas, has a desired velocity towards which its actual velocity tend to “relax” in the 

absence of “interaction” with other vehicles. Thus, Paveri-Fontana’s model is based 

on a scenario of relaxation of the velocities of the individual vehicles rather than a 

collective relaxation of the distribution of the velocities. Paveri-Fontana introduced an 

additional phase-space coordinate, namely, the desired velocity. Suppose, 

 denotes the number of vehicles at time t between x and x+dx, 

having actual velocity between v and v+dv and desired velocity between v

00 ),,,( dxdvdvtvvxg

0 and 

v0+dv0. The one-vehicle actual velocity distribution function is described as  

 

∫= 00 ),,,(),,( dvtvvxgtvxf                                          (2.10) 

 

Similarly, the one-vehicle desired velocity distribution function is described as 

 

∫= dvtvvxgtvxf ),,,(),,( 000                                         (2.11) 

 

However, Paveri-Fontana’s model has one more speed dimension, increasing the 

complexity of the problem considerably. Edie et al. [21] determined the reasonable 

accuracy what the speed distributions are on a multiple-lane roadway under steady 

state (spatially homogeneous and time independent) conditions and to compare the 

characteristics of the observed distributions with those derived from the theory. 
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Lampis [22] modified the Prigogine kinetic equation. There, queueing vehicles have 

been included in the Prigogine equation by introducing a speed distribution for queues. 

Nelson [23] and Nelson et al. [24] derived a model for the usual distribution function 

 strictly from microscopic considerations. He treated the acceleration term 

in a way similar to the one Prigogine used for the braking term. However, as he 

himself states, his model is a caricature of traffic flow and should be seen only as a 

first step in obtaining a kinetic equation that is also suitable for real application. 

Helbing [25] resents a gas-kinetic model for multilane traffic flow operations. The 

approach is similar to the approach of Paveri-Fontana, although lane changing is 

explicitly considered. Another multilane gas-kinetic model was proposed by Klar and 

Wegener in 1998 [26].  

),,( tvxf

Recently, Hoogendoorn et al. [27,28] developed a platoon-based multilane 

multi-class model that is describing the dynamics of general traffic flow systems. 

They consider that each class has different behavior and describe by different 

conservation law, and space of a road section is limit and each class of user shares the 

space. Nevertheless, these models have been criticized for having too many 

parameters and high dimensionality, increasing the difficulty to find the numerical 

solutions.  

Cho and Lo [10] improved Boltzmann transport equation by considering 

acceleration as influence of traffic field. It may assume that there exists a velocity 

distribution function , where , . The Boltzmann 

transport equation is shown by 

),,( tf vx ),( yx=x ),( yx vv=v
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where f is defined on  and  is the boundary of individual velocity, E is 

defined traffic field. Traffic field is employed to describe the dependency among 

vehicles traveling in a platoon. The concept of traffic field is extended from 

car-following theory. The relation between traffic field and density results in a 

Poisson equation [29,30]. Nevertheless, the resulting equations have been criticized 

for having too many parameters and high dimensionality, hampering calibration. We 

will simulate the traffic Boltzmann transport equation by Monte Carlo simulation 

technique with a simpler traffic field function that is considered in the study. 

Ω vΩ∂

 

2.2 A Review on the Computational Methods for the 

Boltzmann Transport Equation 

Boltzmann transport equation describes physical phenomena, which are often of great 

engineering and technological importance (in aerospace industry, semiconductor 

design, or currently in traffic flow research). For this reason, analytical and 

computational methods of solving have Boltzmann transport equation has been 

studied extensively since the first computer hardware making these calculations 

feasible. In general, the computational techniques for the Boltzmann transport 

equation can be divided into two categories: deterministic methods and stochastic 

methods. 

The deterministic methods combine finite difference [31], finite element or finite 

volume approximations of the free flow equation with an appropriate evaluation 

method for the collision operator. In these schemes the substantive difficulty is the 

evaluation of the collision operator. These evaluation methods can be divided into two 

groups: statistical quadratures and regular quadratures. In the first group the Monte 

Carlo quadratures are applied to evaluate the collision operator. This approach was 
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initiated from Nordsieck in 1955 [32]. In the second group the collision operator is 

evaluated analytically or numerically (using regular quadratures) for particular 

discretizations of the distribution function, as was done e.g. by Aristov [33] and Tan 

et al. [34]. 

The stochastic methods constitute the other important area within computational 

techniques for solving the Boltzmann transport equation. Flow simulation methods, 

were known as Direct Simulation Monte Carlo methods, were initiated by Bird [35]. 

Since then his method was undergoing subsequent improvements and modifications. 

The simulation method, was derived from the Boltzmann transport equation, was 

presented by Nanbu [36,37,38,39] in the series of his papers. Babovsky [40] modified 

the Nanbu method essentially. The new model reduced its high computational 

complexity and that made the algorithm applicable.  

Monte Carlo methods are in fact computationally effective, compared with 

deterministic methods when treating many dimensional problems. That is partly why 

their use is so widespread in operations research, in radiation transport or the 

particles’ transport in semiconductor devices (where problems in up to seven 

dimensions must be dealt with), and especially in statistical physics and chemistry 

(where systems of hundreds or thousands of particles can now be treated quite 

routinely). Monte Carlo simulation offers an accurate description of transport, but it 

requires intensive computation and hence has not found wide use for traffic 

Boltzmann transport equation. 

 

2.3 Introduction to the Development of Message Passing 

Interface 

We will simulate the traffic Boltzmann transport equation in parallel with Message 
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Passing Interface (MPI). In this section, we will review the development of MPI.  

MPI is a library of routines that can be used to create parallel programs in C, 

C++ or Fortran. Standard C, C++ and Fortran include no constructs supporting 

parallelism so vendors have developed a variety of extensions to allow users of those 

languages to build parallel applications. The result has been a spate of non-portable 

applications, and a need to retrain programmers for each platform upon which they 

work.  

The MPI standard was developed to improve these problems. It is a library that 

runs with standard C, C++ or Fortran programs, using commonly available operating 

system services to create parallel processes and exchange information among these 

processes.  

MPI is designed to allow users to create programs that can run efficiently on 

most parallel architectures. The design process included vendors (such as IBM, Intel, 

TMC, Cray, Convex, etc.), parallel library authors (involved in the development of 

PVM, Linda, etc.), and applications specialists. The final version for the draft 

standard (MPI-1.0) became available in May of 1994 [41]. Beginning in March 1995, 

the Message Passing Interface Forum reconvened to correct errors and make 

clarifications in the MPI document of May 5, 1994, referred to below as Version 1.0. 

These discussions resulted in Version 1.1. The changes from Version 1.0 are minor. It 

extended to the enhanced standard (MPI-2.0) in 1998. From MPI specifications, we 

know MPI is a message-passing model, not a compiler specification and a specific 

product. The more explicit discussion of parallelism architecture is stated in section 

4.4. 
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Chapter 3 Traffic Boltzmann Transport Equation 
The purpose of this thesis is to use parallel Monte Carlo computing technique for the 

numerical simulation of Traffic Boltzmann transport equation. Firstly, how to describe 

the motion of the vehicle through its distribution function in the Traffic Boltzmann 

transport equation is what we want to know. We will discuss particularly in this 

chapter. Then, we discuss Monte Carlo computing technique and construct a 

programming environment of parallel computers included of hardware and software 

in the next chapter. 

 

3.1 Boltzmann Transport Equation for Mesoscopic Traffic 

Flow 

Boltzmann transport equation, which is a mesoscopic kinetic equation, is widely 

applied in applied science, such as gas dynamics, population analysis, semiconductor, 

traffic flow and so on [42]. The Boltzmann transport equation is a continuity equation 

for the single particle distribution function  of a molecular substance. How 

to describe the motion of the vehicle through its distribution function in the 

Boltzmann transport equation for mesoscopic traffic flow is the point we want to 

know.  

),,( tvxf

Consider a multilane freeway on which passing is allowed to occur. We consider 

a multilane road as a two-dimensional space herein as been presented in Figure 3.1. 

We may assume that there exists a distribution function , where 

 represents the number of vehicles dN with position r  and 

velocity  inside the volume element drdv at time t. 

),,( tf vr

(xvrvr ddtf ),,(

( xvv

), y

), yv
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Simulated
SectionRamp A Ramp B

 

Fig. 3.1 The simulated section of the highway. 

 

The time evolution of this distribution function is influenced by several factors, 

including the drift of vehicles into or out of the region , the presence of an 

externally applied field and the scattering of vehicles with other vehicles in the system. 

Each of these events brings about a different change to the distribution as time 

changes and all need to be handled separately. 

rr d+

If we consider vehicles moving at a velocity of v at time t, we may assume that 

the number of vehicles that will drift into the region r will be the same that exists in 

the region r-vt at t=0. What this means, is that in some time interval t, particles move 

a distance of vt which brings them into a region r. These vehicles, which now reside 

in r at time t, must have resided in r-vt, the state before the moved at t=0. Therefore, 

from this it can be determined that the distribution function at r at time t is the same 

as that at region r-vt at time t=0. This can be written as  

 

)0,,(),,( vvrvr tftf −= .                                            (3.1) 

 

By Taylor’s expansion and dropping the high-order terms, the time change of the 

distribution function due to drift can be shown to be 

 

L+−⋅+−−⋅+=− )0(),,()(),,(),,()0,,( ttfttftftf t vrrvrvrvrvvr r  
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∂ .                                      (3.2) 

 

Next we consider an externally applied field, traffic field, on the system. When 

an external traffic field is applied, the momentum (velocity) of the vehicles is changed 

by the virtual force field that excerpts on them. We assume that the acceleration 

characteristics only vary between vehicle-type and roadway geometry. This rate of 

change is given within Newton’s equation of motion as 

 

Ev e
dt
d

= ,                                                         (3.3) 

 

where e is a scalar which is changed with the vehicle-type, and E denotes the traffic 

field, which is the vector component directed in either x and y direction. By the 

virtual force field, the vehicles are accelerated towards their desired velocity or the 

maximum velocity of lane. Therefore, similarly to the drift term, vehicles are 

accelerated out of certain regions and into new regions by this force. Vehicles that 

resided in region r at time t were moved to this region by a force from their original 

location, , at time t=0. This gives us a similar expression to (3.1) and we can 

write 

tvv &−

 

)0,,(),,( tftf vvrvr &−= .                                            (3.4) 

 

Therefore, similar to drift term, the time rate of change of the distribution function 

due to this external virtual force may be written as 
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In order to derive the changes in the distribution function due to scattering 

mechanisms, certain assumptions are made. Firstly, these scattering mechanisms are 

independent of any spatial or time dependence. For this to occur, the scattering 

mechanisms are assumed to be instantaneous and that the vehicles distributions are 

homogeneous in space. This allows the time and spatial terms to be dropped from the 

equation leaving an equation in terms of only the phase space. We can now write 

 

[ vvvvvvvvr ′′′−′−=







∂
∂

∫ dfSfS
t

tf

scattering

)(),()(),(),,( ] ,                   (3.6) 

 

where  is the transition rate from v to . This equation therefore describes 

the change, e.g. due to interactions with ahead slower vehicle or accident etc, in the 

distribution function in terms of vehicles scattering into a state and vehicles scattering 

out of that same state. We will discuss the scattering mechanisms in this thesis 

particularly in next section. 

),( vv ′S v′

The final equation which describes the total change in the distribution function as 

a function of time, which is the known as the time dependant Boltzmann transport 

equation for mesoscopic traffic flow, is given by  

 

scatteringfielddrift t
tf

t
tf

t
tf

t
tf
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In general, we can write the traffic Boltzmann transport equation as 
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Next chapter, we will simulate the traffic Boltzmann transport equation (3.8) by using 

Monte Carlo simulation technique. 

Except for describing the behavior of vehicles in a multilane freeway, this 

distribution function also can be used to obtain various macroscopic quantities 

interested and some of the important macroscopic variables are defined below. For 

example, density is given by  

 

∫=
v

vvrr dtftk ),,(),( ,                                               (3.9) 

 

and flow density, is defined by Cho and Lo [10], is given by 

 

),(),(),,(),( ttkdtftq rurvvrvr ∫ ==
v

,                                 (3.10) 

 

where  denote group velocity, which is defined as  ),( tru

 

∫
∫=

v

v

vvr

vvrv
ru

dtf

dtf
t

),,(

),,(
),( .                                            (3.11) 

 

3.2 Scattering Mechanisms 

The knowledge of scattering mechanisms is essential for the Monte Carlo simulation, 

since they control the nature of the vehicle transport. Scattering mechanisms are very 
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“flexible”. With more knowledge of scattering mechanisms, more the accuracy of 

simulation result will be obtained. Scattering is the process whereby vehicles undergo 

a transition from one state, r and v, to a new state  and . In this study, we 

consider that this may occur due to vehicle’s lane-changing and deceleration caused 

by interactions with ahead slower vehicle. When a vehicle driving with velocity v 

catches up with a slower vehicle, it means that the deceleration from filed term is not 

enough. It either needs to more reduce its velocity, or perform an immediate lane 

change. Scattering in the traffic system is responsible for limiting and controlling the 

vehicle dynamics. Without the scattering events, vehicles would constantly increase 

their velocity to their excepted one by a factor proportional to any applied bias field 

that may exist. And the event that one vehicle covering the other one may happen. 

r′ v′

In this study, the vehicle’s scattering is not real collision as one between particles 

in gas or electrons in device and the length of vehicles can’t be neglected. Therefore, 

we assumed that the virtual length of vehicle (safe distance plus assumptive length of 

vehicle) depends on velocity. The safe distance data of vehicles extracted from video 

file taken of the National Freeway No.1 (Shijr-Wuku Overpass Southbound 14.733km) 

are used. This gives a 200m field of view, and data in Figure 3.2 are obtained on the 

passage of a total of 200 vehicles that have the follow behavior obviously. From 

empirical value and simplifying the complication of the problem, the virtual length of 

vehicle is stated in Table 3.1, and the ellipse in the Figure 3.3.  
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Fig. 3.2 The safe distance data of 200 vehicles extracted from video file. 

 

Table 3.1 The virtual length of vehicle. 

Velocity 
The virtual length of vehicle h:  

v*  +7.50 (m) α

27.78m/s (100km/hr) 19.45+7.50=26.95m 

22.22m/s (80km/hr) 15.55+7.50=23.05m 

16.67m/s (60km/hr) 11.67+7.50=19.17m 

11.11m/s (40km/hr) 7.78+7.50=15.28m 

5.56m/s (20km/hr) 

when 

7.0=α  

3.89+7.50=11.39m 

 

Firstly, we assume that when an incoming fast moving vehicle with velocity v1 

reaches a slow moving vehicle with velocity, v1 > v2, as shown in Figure 3.3 (a), it 

either passes directly as shown in (b), or it slows down to v1′ in (c)  

 

 23



v1 v
2

 

Fig. 3.3 (a) Vehicles with v1, v2 and v1 > v2. 

 

v2

v1

 

Fig. 3.3 (b) Scattering mechanisms between vehicles: lane changing scattering. 

 

v2v'
1

 
Fig. 3.3 (c) Scattering mechanisms between vehicles: deceleration scattering. 

 

We will generate a random number to determine which scattering mechanism is 

happened. And the two types of scattering mechanisms that listed as following are 

taken into account: 

 

z Lane Changing Scattering 

Lane changing can be classified into mandatory and discretionary [43]. 
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Mandatory lane changing occurs when drivers have to change lanes in order to: (1) 

connect to the next link on their path; (2) bypass a lane blockage downstream; (3) 

avoid entering a restricted use lane, etc. Discretionary lane changing refers to cases in 

which drivers change lane in order to bypass a slower vehicle. To simplify the 

complication of the lane-changing problem, we only consider the discretionary lane 

changing. 

For discretionary lane changing, the decision to change is based on the traffic 

condition of both the current lane and adjacent lanes. If a vehicle has a speed lower 

than the driver’s desired speed or the maximum velocity of road due to a slow vehicle 

in front, it checks the neighboring lanes for opportunities to keep its speed. Firstly we 

generate a random number to determine which scattering mechanism is occurred. 

Once a vehicle has decided to change lane, we will generate a random number to 

determine a desired lane after the scattering. Then it examines the gap in the target 

lane to determine whether the desired lane can be executed. If the gap is acceptable, 

the desired lane is executed instantaneously. If no, it slows down to the velocity of the 

slow vehicle in front. Thus the state of the vehicle after lane changing scattering is 

given by 

 

11 vv =′ ,                                                         (3.12) 

 

and 

 

).1,(),( ±=′ yxyx rr                                                (3.13) 

 

z Deceleration Scattering 

The state after deceleration scattering, deceleration caused by interactions, could be 
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described by  

 

21 vv ⋅=′ β ,                                                       (3.14) 

 

and 

 

),,(),( yxyx rr =′                                                   (3.15) 

 

where  and  are the state of vehicle after the scattering. From equation (3.14), 

the velocity of vehicle changes to β times of the velocity of former slow vehicle due 

to deceleration scattering. It causes that the distance between two vehicles becomes 

larger then the virtual length of vehicle in the rear again. 

v′ r′

We can write the traffic Boltzmann transport equation as 
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We will simulate the traffic Boltzmann transport equation (3.16) by using Monte 

Carlo simulation technique in the next chapter. 
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Chapter 4 Monte Carlo Simulation Technique 
The Monte Carlo simulation technique is a stochastic method, which implies that is 

employing a stochastic process to simulate a system. We would like to know whether 

Monte Carlo calculations are in fact worth carrying out. This can be answered in a 

very pragmatic way: many people do them and they have become an accepted part of 

scientific practice in many fields. The reasons do not always depend on pure 

computational economy. Convenience, ease, directness, and expressiveness of the 

method are important assets. As we discuss above, the Monte Carlo simulation 

technique is an important scientific tool, which will help to develop an understanding 

of transport phenomena in traffic Boltzmann transport equation. The principle of the 

Monte Carlo simulation technique applied to the transport analysis is to simulate the 

motion of a single particle on the road. And we will improve the drawback of Monte 

Carlo simulation technique with MPI Library. 

 

4.1 A Short History of Monte Carlo 

Monte Carlo method is called after the city in the Monaco principality, because of 

roulette, a simple random number generator. The name and the systematic 

development of Monte Carlo methods date from about 1944. 

Perhaps the earliest documented use of random sampling to find the solution to 

an integral is that of Comte de Buffon [44]. In 1777 he described the following 

experiment. A needle of length L is thrown at random onto a horizontal plane ruled 

with straight lines a distance d (d > L) apart as shown in Figure 4.1. What is the 

probability P that the needle will intersect one of these lines? Comte de Buffon 

performed the experiment of throwing the needle many times to determine P. He also 

carried out the mathematical analysis of the problem and showed that  
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π
=                                                           (4.1) 

 

 

Fig. 4.1 The experiment of Comte de Buffon. 

 

If we drop the needle N times and count R intersections we obtain  

 

NRP /= , 

RdLN /2=π .                                                     (4.2) 

 

Larger values of the parameter N will give us more accurate approximations of π. 

 

4.2 Pseudorandom number generator 

The Monte Carlo is a fundamental tool of computational statistics. At the kernel of a 

Monte Carlo or simulation method is random number generation. Nowadays most 

computers contain routines that generate random numbers evenly distributed between 

0 and 1. A solution is determined by random sampling of the relationships, or the 
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microscopic interactions, until the result converges. Thus, the mechanics of executing 

a solution involves repetitive action or calculation. To the extent that many 

microscopic interactions can be modeled mathematically, the repetitive solution can 

be executed on a computer. However, the Monte Carlo simulation technique predates 

the computer and is not essential to carry out a solution although in most cases 

computers make the determination of a solution much faster. 

Various methods for generation of random numbers have been used. Sometimes 

processes that are considered random are used, but for Monte Carlo simulation 

techniques, which depend on millions of random numbers, a physical process as a 

source of random numbers is generally cumbersome. Instead of “random” numbers, 

most applications use “pseudorandom” numbers, which are deterministic but “look 

like” they were generated randomly. A simple pseudorandom number generator is 

given as follows:  

 

z Program 

/* a very simple random number generator */ 

#include  <stdio.h> 

#include  <time.h> 

#include  <stdlib.h> 

#define  max  100            /* number of numbers generated */ 

 

void  main() 

{ 

 time_t  t; 

 double  x; 
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 int  y; 

 srand((float) time(&t));    /* seed for number generator */ 

  

/* generating random numbers */ 

for (int i = 0; i < max; i++) 

{ 

 y = rand(); 

 y = y%987; 

 x = y/986.0; 

 printf ( "%f\n",x ); 

} 

} 

 

4.3 Procedure of Monte Carlo Simulation Technique 

Monte Carlo simulation technique is an important method for solving the traffic 

Boltzmann transport equation. The two main principles of a Monte Carlo procedure 

are that these vehicles are accelerated through the simulated system with the traffic 

field and that these vehicles are scattered due to some random scattering mechanism. 

The detail of Monte Carlo algorithm is stated as below and the flowchart is drawn in 

Figure 4.3.  

Firstly, the simulated region is divided into a network of spatial cells with 

dimensions . Time is advanced by discrete steps of magnitude ∆  small 

compared with the free time between scatterings.  

yxi∆∆ t

 

Step1. Set the initial density  each section of the highway. 0ρ
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Step2. From the initial density and a random number r1, we obtain the initial position 

of the vehicle. 

 

The distance between two vehicles ≧ 7.5m (the assumptive length of vehicle). 

 

Step3. From the initial density and speed-density relation model, we obtain the initial 

velocity  of the vehicle. We assume that the initial velocity is the same in 

one section. 

),(0 yxv

May [45] suggested that a bell-shaped curve, which is presented in Figure 4.2, 

might fit some speed-density data very well, based upon empiric observations in 

several studies. The curve would be of the form. 

 

2)/(5.0 mevv fe
ρρ−=                                                    (4.3) 

ve：equilibrium velocity of the section with density ρ 

vf：free velocity 

ρm：concentration at maximum flow 

 

2)/(5.0 mevv fe
ρρ−=

fv

jρ  
Fig. 4.2 Bell-shaped curve 
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Step4. If rij < h, go to step 5. 

rij: the distance between vehicle i and vehicle j. 

h: the virtual length of vehicle has defined in section 3.2.  

Else, a virtual scattering mechanism called self-scattering is happened. The 

self-scattering does not affect the state of the vehicle, which maintains the same 

position and velocity as it had before. Go to step 7. 

 

Step5. The scattering mechanism is selected by generating a random number r2 and 

lane changing scattering probability. To simplify the complication of the 

lane-changing problem, we only consider that lane-changing scattering probability is 

equal to n/(n+1), and n is the number of lanes that can be arrived. Therefore, it is 

necessary for executing the adjacent lanes if the gap distance is acceptable. The 

probability of deceleration scattering is fixed 1/(n+1). Decide the scattering process 

by generating a random number r2 ∈ [0,1]. For example, if the adjacent lanes can be 

arrived all. Then the probability of changing to left lane, changing to right lane and 

the deceleration scattering is all 1/3. 

 

Step6. Determine the state of the vehicle after the scattering. 

Lane-changing scattering:  

 

11 vv =′ ,                                                           (4.4) 

).1,(),( ±=′ yxyx rr                                                  (4.5) 

 

Deceleration scattering: 
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21 vv ⋅=′ β ,                                                        (4.6) 

),,(),( yxyx rr =′                                                     (4.7) 

 

where  and  are the state of vehicle after the scattering. β is equal to 0.95 in 

this study. 

v′ r′

 

Step7. After duration of , obtain the position and velocity of vehicles from drift 

and field term. The acceleration rate of the vehicle caused by external traffic field is 

given by 

t∆

 

Eeae =                                                           (4.8) 

 

In this study, to simplify matters choose e equal to 1, it denotes that only single-class 

vehicles are considered. And we also suggest that the external traffic field only 

depends on the equilibrium speed in the prior section and the average length of the 

vehicles moving to their desired speed. It is an observable fact that drivers increase or 

decease their speed to the equilibrium speed as their desired speed in the prior section.  

From equation (4.9), it could make observation on drivers increasing their speed 

as the number of vehicles ahead of them decreases, and contrariwise. Moreover, the 

behavior of vehicle’s acceleration in y direction is not obvious in actual phenomenon. 

Following above derivation we obtain the acceleration rate of vehicle with velocity v 

in section i at time t: 

 

L
tvtv

tta ie
e 2

)())((
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1, −

== +E                                          (4.9) 
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where  is the equilibrium speed in the prior section, v is the velocity itself, L is 

the average moving length of each vehicle to arrive their desired velocity. The 

external force changes the velocity and position of vehicle by  

1, +iev

 

ttattt e ∆+=∆+ )()()( vv                                           

2)(
2
1)()()( ttattttt e ∆+∆+=∆+ vrr                                     (4.10) 

 

Step8.  > the pre-assigned time of simulation? ttt ∆+=

If yes, stop. 

Else, return to step 4. 

 

A flowchart of Monte Carlo simulation technique is illustrated in Figure 4.3. 
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Self-scattering

Start

Set initial density

  From the initial density and a random number r1，obtain initial position
and velocity of vehicles

?hij <r

Generate random number r2, determine the scattering process

Determine which lane could be to chang (gap acceptable)

  From drift and field term, obtain the velocity and position of vehicles

Time for simulation > preassigned
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End

Determine the state of vehicles after the scattering

No

Yes

Yes

No

 

Fig. 4.3 A flowchart of Monte Carlo simulation technique 

 35



4.4 Technique in Parallel Computing 

The limiting factor for Monte Carlo simulation is, of course, the number of simulation 

samples acquired, as the uncertainty in a Monte Carlo integral scales as the inverse of 

the square root of the number of simulation samples. Therefore, the only way to 

improve the results of a Monte Carlo simulation is to increase the number of 

simulation samples taken. Note, however, that because of the square root dependence, 

a factor of four more simulation samples is required in order to achieve a factor of two 

improvements in the accuracy of the integral. 

There are two straightfoward approaches to increasing the number Monte Carlo 

samples:  

z Running the calculation longer  

z Running the calculation on many separate nodes concurrently  

Of the two choices, the second is by far the most preferable. Indeed, the default 

mode of operation on many parallel (or concurrent) computers is that each node 

performs the same task unless explicitly instructed otherwise. As such, Monte Carlo 

simulations are perfectly suited for parallel computation. All we need to do is run 

independent copies of the same program on many nodes, and collect our final samples 

off of each node. This is an operation that is frequently referred to as trivially 

parallelizable. Note, however, that it is imperative that each node be made 

independent by selecting a different random number for each node. Otherwise, we 

may have N copies of the same calculation.  

In this study, our experimental environment, a platform used for parallel 

computing is PC cluster with MPICH 1.2.2 (shown in Figure 4.4 and Table 4.1). 

These machines are essentially a collection of N computers (nodes) with a relatively 

fast communications system between the nodes. The default mode of operation for 
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these computers is that the program is loaded onto each node, and executed 

independently, unless they are instructed otherwise.  

 

Cluster1

Cluster2

Cluster3

Cluster4

Hub

Internet

eth1
Public IP：140.113.119.202
Gateway：140.113.119.254

eth0
Private IP：10.1.1.1

Master
node

Slave
nodes

Private IP：10.1.1.2
Gateway：10.1.1.1

Private IP：10.1.1.3
Gateway：10.1.1.1

Private IP：10.1.1.4
Gateway：10.1.1.1

 

Fig. 4.4 The experimental environment in this study 

 

Table 4.1 The OS and hardware of the PC cluster 

OS Red Hat Linux 8.0 with Kernel ver. 2.4.18-14 

MPI MPICH-1.2.4 

CPU AMD K7-1.6G XP CPU 

MB GA-7VKML 

VGA S3 Savage4 (generic) 

RAM 512MB DDRAM PC-266 

HDD 80GB 7200rpm 

POWER ATX 300W 

Lan 10/100 Fast Ethernet 
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PC clusters are more general compared with other parallel systems. Researchers 

can easily own a high-performance, low-cost parallel computer system with clusters. 

At a basic level a cluster is a collection of workstations or PCs that are interconnected 

via some network technology. A cluster is a type of parallel or distributed processing 

system, which consists of a collection of interconnected stand-alone computers 

working together as a single, integrated computing resource.  

A computer node can be a single or multiprocessor system (PCs, workstations) 

with memory, I/O facilities, and an operating system. A cluster generally refers to two 

or more computers (nodes) connected together. The nodes can exist in a single cabinet 

or be physically separated and connected via a LAN. An interconnected (LAN-based) 

cluster of computers can appear as a single system to users and applications. Such a 

system can provide a cost-effective way to gain features more expensive proprietary 

shared memory systems. Thus in this study, we will study clusters with emphasis on 

analyzing their performance.  

The most important MPI implementation is MPICH, developed at Argonne 

National Laboratory and Mississippi State University. MPICH is a freely available, 

complete implementation of the MPI specification, designed to be both portable and 

efficient. The “CH” in MPICH stands for “Chameleon,” symbol of adaptability to 

one’s environment and thus of portability. Chameleons are fast, and from the 

beginning a secondary goal was to give up as little efficiency as possible for the 

portability. The current version of MPICH is 1.2.4 and was released on May 7, 2002. 

There are six indispensable functions (shown in Table 4.2), the ones that the 

programmer really cannot do without.  

The most important functions which exist within the MPI standard are two 

fundamental for sending and receiving messages. MPI_Send() is called at the side of 

the message sender. The corresponding MPI_Recv() is placed at the destination  
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Table 4.2 The basic six-function version of MPI 

MPI_INIT Initialize MPI 

MPI_COMM_SIZE Find out how many processes there are 

MPI_COMM_RANK Find out which process I am 

MPI_SEND Send a message 

MPI_RECV Receive a message 

MPI_FINALIZE Terminate MPI 

 

process. Both functions are blocking, but they also have pendants for a non-blocking 

transmission. Besides these two basic functions, many others like broadcast, gather, or 

scatter exist in the MPI standard which are not explained here.  

Shared-variable and message-passing programming operate one a higher level of 

abstraction and provide facilities for process communication. Even on this, we can 

distinguish two different ways, how the data is processed. The first idea is write one 

program and execute it on some processors at the same time. Therefore, the data is 

divided into different parts processed by multiple incarnations of the program in 

parallel. This approach is called data parallelism or SPMD (Single Program Multiple 

Data).  

The second idea is to write multiple programs, where each one is responsible for 

a special task. These different programs are then executed in parallel. We also call this 

approach task parallelism or MPMD (Multiple Program Multiple Data). In this study, 

we will use the first idea to parallel Monte Carlo simulation technique. 
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Chapter 5 Numerical Simulation of Freeway Traffic 

Flow 
In this chapter a simulation study is undertaken of the traffic Boltzmann transport 

equation that has been developed in Chapter 3. And in the Chapter 4 the simulation 

procedure and environment are described. Once initial values have been chosen for 

density and equilibrium speed and boundary conditions are defined the set of 

equations can be solved numerically, simulating the Boltzmann transport equation by 

Monte Carlo simulation technique (some random number generation procedure). To 

simulate the model a computer program was written in C language. Furthermore, 

performance of results for parallel Monte Carlo simulation technique will be 

displayed in section 5.3. In the last section, comparison with real data will be 

discussed. 

 

5.1 Numerical Results of Some Examples 

In the study of traffic flow, we are more interesting in the discussion of the vehicle 

density then the velocity distribution. Since Monte Carlo simulation technique is 

introduced to directly solve the traffic Boltzmann transport equation by direct 

physical simulation. The position, velocity of every vehicle and the density of sections 

could be conveniently obtained by Direct Monte Carlo Simulation.  

A three-lane highway that consists of 45 sections of 100m (=∆x) is considered. 

In the following contents, numerical simulations of some examples with the different 

initial traffic densities are considered. We will discuss if the model does show a 

realistic behavior of vehicles. And as stated in section 4.4, we improve the results of a 

Monte Carlo simulation by increasing the number of simulation samples taken. 

Nowadays, not only during one trial, 100 simulation samples are taken to improve the 
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accuracy of the later simulation results. 

To obtain a first impression of the validity of the model, we firstly start by 

simulating example I traffic situation causing by an accident. Suppose that traffic is 

lined up behind up behind a traffic accident in the highway. We call the position of the 

traffic accident x = 2000(m). Since the cars are bumper to bumper behind the traffic 

accident, ρ = 100(veh/km/lane). If the accident traffic long enough, then we may also 

assume that there is no traffic ahead of the accident, ρ=0(veh/km/lane) for x > 

2000(m). Thus the initial traffic density distribution at t = 0s is as sketched in Figure 

5.1(a).  

In addition, the model parameters are chosen according to Table 5.1. Suppose 

that at t = 0; the traffic accident is eliminated. The initial velocity-location distribution 

is presented in Figure 5.2(a). In this example, we assume the entrance flow is equal to 

0. The results of the numerical simulation are taken at one-minute intervals, and are as 

shown in Figure 5.1(a) and (b). The results of the velocity and position distribution at 

300s are shown in Figure 5.2(b) during one trial. 

Form the density distribution shown in Figure 5.1(a) and (b), we know that as 

soon as the traffic accident is eliminated, the traffic starts to thin out, but sufficiently 

far behind the accident position, the traffic density doesn’t change even after the 

accident is eliminated. The heavier traffic in this example is almost dispersed at about 

t = 240s. Since there is not entrance flow, the density of the front sections become to 

zero gradually. From the velocity and position distribution status Figure 5.2(b), there 

are obvious differences in velocity between the time ranges from 0s to 300s. The 

vehicles are very slow in the initial situation. When the heavier traffic is dispersed, the 

vehicles are moving at faster velocity.  
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Fig. 5.1(a) Example I density distribution: the initial density and the results of 

simulation during 0s to 120s. 
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Fig. 5.1(b) Example I density distribution: the initial density and the results of 

simulation during 180s to 300s. 
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Table 5.1 The model parameters. 

Parameter Value Unit 

vf：free velocity 28.89 (104) m/s (km/hr) 

ρm：concentration at maximum flow 28.75 veh/km/lane 

∆t：time step 1 Second 

L 100 m 

α  0.7 1 

β 0.95 1 
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Fig. 5.2 (a) Example I: the velocity and position distribution; t=0s. 
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Fig. 5.2 (b) Example I: the velocity and position distribution; t=300s. 

 

The validity of the model at another example is now tested. Again a three-lane 

highway of 45 sections with a length of 100m each is considered. We imagine a traffic 

situation in which traffic initially becomes heavier as we go further along the road. 

The traffic becomes denser or compressed, as shown in Figure 5.3(a). Parameters are 

chosen as in the simulation of the previous example. The entrance flow constant in 

time is equal to the equilibrium value of 1000 veh/hr/lane. Vehicle generation takes 

place on an entry section. In this study, we consider a dirichlet boundary program. 

The entrance velocity is equal to the velocity the prior vehicle. 

 As the simulation of previous example, the numerical results (density and 

velocity-position distribution) are illustrated in Figure 5.3(a), (b) and 5.4 (b). 

Obviously, it shows that the lighter traffic with faster velocity reaches the heavier 

traffic with slower velocity at t = 60s, and the vehicles with faster velocity will slow 

down to avoid the accident happen. From Figure 5.3(a) and (b), it reveals that the 

density wave appears to be moving backwards. 

m 

km/hr 
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Fig. 5.3(a) Example II density distribution: the initial density and the results of 
simulation during 0s to 120s. 
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Fig. 5.4 (a) Example II: the velocity and position distribution; t=0s. 
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Fig. 5.4 (b) Example II: the velocity and position distribution; t=300s. 
 

5.2 Comparison with Real Data 

In this section, the comparison with real data is required to obtain accuracy of the 

model and numerical scheme. Vertex Detector data at various locations on the 

National Freeway No.1 (Shijr-Wuku Overpass- Southbound) are used. From HuanPei 

(26km) to WuKu (33km) interchange, there is a VD approximately every 500-meter 

km/hr 

m 

km/hr 

m 
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interval. Firstly, space mean speed and time mean speed should be discussed. 

 

5.2.1 Space Mean and Time Mean Speed 

Mean speed can be computed in two different way, the time mean speed and the space 

mean speed. 

z Time mean speed (Spot speed) is defined as the average speed of all vehicles 

passing a point on a highway over some specified time period. 

z Space mean speed (Harmonic mean speed) is defined as the average speed of all 

vehicles occupying a given section of a highway over some specified time 

period. 

Because space mean speed is applied to ours traffic flow models, the relationships 

between time and space mean speed is given by [46] 

 

t

t
ts u

uu
2σ

−=                                                       (5.3) 

 

as an approximate method for use in traffic engineering practice. From the aggregated 

VDs data, the variance about the time mean speed, 2
tσ , is assumed small enough, we 

strongly suppose that the space mean speed is equal to time mean speed.  

 

5.2.2 Simulation Results 

Traffic counts and speeds, aggregated and exponentially smoothed for 5-minute 

intervals, were recorded in files for a period of 48 hours between June 19th and 20th, 

2002. Using these data of 8 VDs in the segment (stated in Table 5.2), traffic flow 

during half hour from 5:00 to 7:00pm are simulated. In addition, some VDs are 

omitted showing incomplete data or revealing the exact same value across all the time 
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intervals (a strong indication of malfuntion of the VDs). And there is no VD in about 

28.5 kilometer. Linear interpolation allows us to predict those unknown values. The 

initial and boundary conditions are also given from the real data for VD data. The 

model parameters are also chosen according to Table 5.1. 

 
Table 5.2 VDs’ Location on the Shijr-Wugu Section Viaduct 

VD IBS27 IBS28 IBS29 IBS29.5 IBS30 IBS30.5 IBS31 IBS31.4
Kilometer (km) 27.507 28.004 29 29.203 30.009 30.518 31.009 31.498 

Section 1 2 4 5 6 7 8 9 

 

According to the computation experience, we have got that simulating the case with 

100 times could obtain satisfied results. The computing performance is discussed in 

next section. The Monte Carlo simulation result and real VD data in all sections of the 

freeway are illustrated in Figure 5.5. As seen in Figure 5.5, the some of results of 

Monte Carlo simulation are almost approximate to the real data exclude from some 

heavy variation of real VD data. The main reason is the real traffic flow certainly 

can’t be described by two scattering mechanisms. In the future, we will discuss more 

scattering mechanisms to obtain more the accuracy of simulation result. 
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Fig. 5.5 The simulation result and real VD data in some sections of the freeway. 

 

5.3 Result of Parallel Monte Carlo Simulation Technique 

The main disadvantage of Monte Carlo simulation technique is time-consuming. 

Hence we will improve the drawback of Monte Carlo simulation technique with MPI 

Library. We already briefly introduce the development of MPI in section 2.3 and 4.4. 
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In the data parallelism method, the simulated samples are divided into several groups, 

which are performed simultaneously. In this study, we execute our programs on one, 

two and four machines respectively and then compare the time consumed and the 

performance of PCs cluster in each execution.  

The performance gain that can be obtained by parallel can be calculated using 

Amdahl’s Law. Amdahl’s Law defines the speedup that can be gained by using a 

particular feature. Speedup for n processors is defined as  

 

 Processesfor   timeExecution
 Process1for   timeExecution

n
Speedup =                               (5.1) 

 

With varying numbers of processes, we can measure speedup. 

And the efficiency is defined as  

 

n
SpeedupEfficiency =                                                (5.2) 

 

Numerical results of the real VD data in section 5.2 are stated in Table 5.3 by using 

parallel Monte Carlo simulation technique. Since Speedup = n, we have Efficiency = 1. 

When perfect speedup of Speedup = n, referred to as linear speed-up, is achieved 

Efficiency =1. In almost any algorithm there are operations that must be executed on 

one processor at a time, thereby decreasing the efficiency. The fraction of such 

operations is referred to as the “serial fraction”. Other factors that degrade speed-up 

include synchronization of tasks, and communication between processors and are 

referred to as the “parallelization overhead”. 

The results of Table 5.3 indicate near linear speed-up. This is to be expected 

because the present implementation, both the serial fraction and inter-processor 
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communication is in minimal. There is a very small degradation in speed-up and 

efficiency with the number of processors because of increased parallelization 

overhead. 

 

Table 5.3 Performance results for parallel Monte Carlo simulation technique. 

Processors 1 2 4 

Time (seconds) 1201 606 305 

Speedup 1 1.982 3.938 

Efficiency 100% 99.10% 98.45% 
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Chapter 6 Conclusions and Future Works 

6.1 Conclusions 

The main work of this study lies in three areas: (1) a mesoscopic traffic simulator with 

Monte Carlo simulation technique is used to predict the traffic condition; (2) using 

MPI parallel computing technique to improve the drawback of Monte Carlo 

simulation technique; and, (3) the demonstration of the use of the developed 

simulation model.  

 

6.2 Future Works 
The research presented in this thesis can be extended in the following directions: 

 

1. In this study, we use and assume a set of parameters or established model to 

represent drivers’ behavior, vehicle performance. These parameters provide the 

flexibility to customize the mesoscopic traffic flow model for use in various 

environments. However, many of the parameters should be calibrated based on 

field traffic data in Taiwan to improve this model.  

 

2. As discuss above in section 3.2, Scattering mechanisms are very “flexible”. With 

more knowledge of scattering mechanisms, more the accuracy of simulation 

result will be obtained.  

 

3. This distribution function obtained from great quality simulation of Monte Carlo 

method can be used to obtain various macroscopic quantities interested and some 

of the important macroscopic variables. 

 



 54

4. The efficiency of parallel Monte Carlo simulation technique is excellent. As a 

result, as simulation in traffic network, using parallel Monte Carlo simulation 

technique to characterize vehicles transport behavior will be the most accurate 

and popular technique. 

5. Expect to use the simulation solution of traffic Boltzmann transport equation in 

dynamic traffic flow for drafting the analytic tool of traffic real-time control in 

ITS. 
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