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CHAPTER 4. TESTING FOR CHAOS IN TRAFFIC FLOW 

DYNAMICS 

It is argued that testing for chaos is more artistic than scientific and that no recipe 

will guarantee success for every case (Sprott, 2003). Nonetheless, this chapter 

attempts to develop a parsimony procedure to test if chaotic phenomena exist in a 

traffic flow dynamics. We undertake a comprehensive comparison of promising plots 

and statistics between the observed freeway traffic flow data and their surrogates. The 

most crucial indexes are selected to develop the parsimony procedure. We also utilize 

some well-known time series data generators to validate the proposed procedure and 

further apply it to test for the chaotic of traffic flows at different sites. This chapter is 

organized as follows: In section 4.1, introduces the original and surrogate data. In 

section 4.2, an empirical study is carried out using the minute-flow time series data 

drawn from the I-35 Freeway in Minneapolis, Minnesota. A comparison is then made 

between the original traffic flow data and their surrogates. Section 4.3 selects the most 

crucial indexes to develop a parsimony testing procedure, which is further validated 

by well-known time series generators.  

4.1 Original and Surrogate Data 

Our empirical one-minute traffic flow time series data are directly drawn from 16 

detector stations of the United States I-35 Freeway in Minneapolis, Minnesota. 

Averages of the lane-specific flow counts are accumulated over one-minute period. At 

each station a total of 1,780 minute-flow samples are used, representing ten workdays’ 

morning peak hours from 6 am to 9 am each day (Note: 20 samples are missing on the 

last day at some stations, thus we only take 1,780 samples). The average lane-flow 

rates for these 16 stations range from 16.8 to 33.8 vehicles per minute, or equivalently, 

with average headways from 3.57 seconds (a moderate flow) to 1.78 seconds (a 

saturated, near capacity, flow). 

 

As pointed out by Sprott (2003), a stochastic system with a non-uniform power 
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spectrum can masquerade for chaos. Therefore, we must test our conclusions about 

whether an original time series is chaotic by further applying the test to the surrogate 

data, which are designed to mimic the statistical properties of the original data, but 

with the determinism removed. The surrogate data are generated by randomly 

shuffling the original data. The shuffling can be done quickly by stepping through the 

time series, swapping each values with one chosen randomly from anywhere in the 

series. On average, each point being moved twice will essentially guarantee 

randomness. This method does require keeping the whole time series in memory. 

While shuffling the sequences will preserve the same probability distribution as the 

original data, the surrogates do not preserve the same power spectrum and correlation 

function (Theiler, et al. 1992). In other words, the surrogates are not chaotic. 

 

To generate the surrogate time series nY with the same power spectrum as the 

original time series nX , we use the following equations to find mS and then to 

construct a surrogate series nY  with the same Fourier amplitudes but with random 

phases (Osborne, et al. 1986). 
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where G(k) is autocorrelation function, K is the maximum of k, which usually appears 

to be about N/4. mr are N/2 uniform random numbers chosen from 10 <≤ mr . N is the 

number of data. The surrogate data for the 16 stations are generated by the above 

equations, eight of which are used to establish the parsimony procedure and the 

remaining eight stations are reserved to examine the applicability of our proposed 

parsimony procedure. 

4.2 Empirical Testing Results 

By visualizing all the geometric plots for the eight stations, we find that some 

plots have not displayed apparent difference between the original and surrogate data, 

but some others have noticeable distinction. Since the details of geometric plots for 

the eight stations are tediously long, the paper only demonstrates the details at station 
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50, in which the average lane-flow is 25.6 vehicles per minute (or, average headway is 

2.34 seconds). 

 

The one-dimensional graph of data in Figure 4-1(a) verifies the integrity of the 

original time series, which ranges reasonably within a bounded interval between zero 

and around 35 vehicles per minute per lane (equivalently, the lane capacity is nearly 

2,200 vehicles per hour), suggesting that there are no outrageously silly mistakes, 

formatting errors or missing points of the observed traffic data. We notice that the 

flow rates in the seventh day are systematically lower than the other days. It could be 

due to bad weather (e.g., raining) or a long-duration incident (such as road 

construction work). The graph of data in Figure 4-1(b) presents almost complete 

randomness, showing that the surrogate data has no deterministic structure at all. The 

trajectories of surrogate time series in Figures 4-2(b) and 4-3(b) scatter a bit more 

uniformly in the plane or space than the original time series in Figures 4-2(a) and 4-3 

(a), implying that the original data is not as random as the surrogate data. However, 

these two- and three-dimensional graphs of data do not differ significantly. The return 

map in Figure 4-4(a) appears a little more than that in Figure 4-4(b) in the form of a 

strange attractor (fractal structure, an evidence of chaos), implying that the original 

data is likely chaotic. However, both Figures 4-4(a) and 4-4(b) do not reveal 

noticeable dissimilarity. The phase-space plots of the original data in Figures 4-5(a) 

and 4-6(a) do not differ significantly from surrogate data in Figures 4-5 (b) and 4-6 

(b), either. The Poincare movies in Figures 4-7(a) and 4-8(a) show the repeated 

stretching and folding of the trajectories, indicating that the data is likely chaotic. 

Figures 4-7(b) and 4-8(b) do not reveal such property but their Poincare sections are 

not significantly different from the original data. In sum, the geometric plots from 

Figure 4-2 to Figure 4-8 do not differ conspicuously between the original and 

surrogate data; thus, these plots should not be good indexes for analyzing the chaotic 

structures. 

  

Theoretically, the IFS clumpiness map is a good indicator of determinism. If the 

data is white noise it should fill the screen uniformly. The IFS clumpiness map in 

Figure 4-9(a) presents localized clumps, strongly inferring that the original data is not 

white noise. In contrast, the IFS clumpiness plot in Figure 4-9(b) fills up the screen 

uniformly, firmly indicating that the surrogate data is white noise. The same 
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probability distribution for both original and surrogate data in Figures 4-10(a) and 

4-10(b) confirms that the distribution of surrogate time series has been preserved even 

though we have shuffled the order form the original data. Note that the probability 

distribution does not form a simple histogram with sharp edges, strongly implying 

that the traffic flow dynamics is neither periodic nor quasi-periodic. Figure 4-11(a) 

visibly shows that the correlation function does not drop abruptly to zero as Figure 

4-11(b) does, strongly indicating that the original data is not random but the surrogate 

data is. Figure 4-12(a) shows that the data gives rise to broad spectra without 

producing a few dominant peaks, also clearly indicating that the original data is 

neither periodic nor quasi-periodic. In contrast, the copious sharp peaks in Figure 

4-12(b) provide strong evidence of randomness for the surrogate data. In sum, except 

for Figures 4-10(a) and 4-11(b) that are supposed to be the same, the geometric plots 

in Figures 4-9 through 4-12 are apparently dissimilar between the original and 

surrogate data; thus, these plots could be good indexes for analyzing the chaotic 

structure. 

 

We further calculate all of the aforementioned statistics for the same eight 

stations and the results are reported in Table 4-1. The largest Lyapunov exponent (LE) 

for both original and surrogate data are positive, which has definitely ruled out both 

time series being periodic or fixed point. The embedding dimension (ED), capacity 

dimension (CAD) and correlation dimension (COD) of the original data are somewhat 

smaller than those of the surrogate data, implying that the original data is less random 

than the surrogates. A lower dimensionality of such indexes often suggests that the 

data is not random. The original data has smaller Kolmogorov entropy (KE) than the 

surrogates, implying that the original data is less disorder than the surrogates. Except 

for the largest Lyapunov exponent that is the most critical index for ruling out the 

time series is likely to become eventually stable fixed points (LE<0) or periodic 

(LE=0), all of the above indexes in effect do not differ largely between the original 

and surrogate data, thus will not be used for analyzing the chaotic structure. 

 

The delay time (DT), a proxy of correlation function, also reaches the same 

conclusion as by Figure 4-11. The surrogate data has a very small DT value while the 

original data exhibits a large DT value, strongly suggesting that the surrogate data is 

random, while the original data is not. Hurst exponent (HE) is different from 0.5 at 
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each station, implying that the original data is not Brownian noise (random walk). 

Note that HE equal to zero for the surrogates in fact represents a pink noise, very 

similar to the white noise whose exact HE value is –0.5 (Sprott, 2003). The relative 

complexity (LZC) is equal to 1.0 for the surrogates, indicating that the time series is 

completely randomized (has the highest complexity). However, all the original data 

also have rather large LZC values (0.6~0.8), implying that the minute-flow time series 

is very oscillatory so that it is difficult to model or predict. 

 

Table 4-1 Statistics of minute-flow time series for eight stations  

Station 

No. 

Average lane-flow 

(veh./min) 

Data 

DT ED COD LE KE HE LZC CAD

original 12.1 3.0 3.2 0.7 0.2 0.2  0.8  2.4 

49 21.9 surrogate 0.7 4.0 3.9 0.5 0.3 0.0  1.0  3.6 

original 12.4 3.0 3.2 0.7 0.2 0.2  0.8  2.5 

48 23.9 surrogate 0.6 4.0 3.9 0.6 0.4 0.0  1.0  3.5 

original 13.9 3.0 3.2 0.7 0.4 0.2  0.7  2.5 

50 25.6 surrogate 0.6 5.0 4.5 0.5 0.4 0.0  1.0  4.1 

original 11.0 3.0 3.2 0.7 0.2 0.1  0.8  2.0 

39 27.8 surrogate 0.6 4.0 3.9 0.4 0.4 0.0  1.0  2.9 

original 11.9 4.0 3.9 0.4 0.3 0.1  0.8  2.5 

42 31.9 surrogate 0.6 5.0 4.6 0.3 0.5 0.0  1.0  3.3 

original 14.0 3.0 3.2 1.1 0.3 0.2  0.7  2.4 

51 32.5 surrogate 0.6 6.0 5.0 0.5 0.7 0.0  1.0  4.1 

original 16.1 4.0 3.8 0.4 0.5 0.3  0.7  2.9 

54 32.8 surrogate 0.6 4.0 3.9 0.6 0.4 0.0  1.0  3.6 

original 16.2 4.0 3.8 0.4 0.3 0.3  0.7  3.0 

55 33.8 surrogate 0.6 4.0 3.9 0.6 0.5 0.0  1.0  4.2 

 

 

Based on the comparative results of geometric plots and statistics between the 

original and surrogate data, we are confident that the observed freeway minute-flow 

dynamics is not periodic, quasi-periodic, or eventually fixed points. It is not white 

noise or random. As a consequence, we can conclude that the minute-flow dynamics 

exhibits chaotic structures. 

4.3Development of Parsimony Procedure 
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4.3.1 Proposed testing procedure 

We attempt to establish a “parsimony” testing procedure by utilizing as few 

geometric plots or statistics as possible. Only the most crucial or significant indexes 

will be included in the procedure. Figure 4-13 depicts the procedure, which is briefly 

narrated as follows:  

 

Step 1. Examine the largest Lyapunov exponent (LE) for the original data 

If the LE is negative, the time series will converge toward a stable sink 

(called equilibrium fixed points). If the LE is zero, the time series is periodic in 

the sense that the trajectories will converge to a period-k sink (k is greater or 

equal to 2). If the LE is positive, the time series can be quasi-periodic (with 

multiple incommensurable periods) or chaotic (with determinism) or stochastic 

(with random noise), then we go to step 2. 

 

Step 2. Examine the power spectrum of the original data 

If the power law spectrum is narrow and has only few (two or three) 

dominant sharp peaks, it must be quasi-periodic. In case that it is a broadband 

spectrum, it can be chaotic or stochastic, then we go further to step 3. 

 

Step 3. Compare the IFS clumpiness between the original and surrogate data 

If the IFS clumpiness map of the original data visually differs from the 

surrogate, then we have evidence (but not proof!) that the time series is not 

stochastic (Smith 1992a). In this case, we can probably say that the original time 

series exhibits chaotic structures. 

 

In short, the first step is to rule out the fixed points and periodic data. The second 

step further rules out the quasi-periodic data. The final step further makes distinction 

between chaotic and stochastic time series. 

 

4.3.2 Validations 

To validate how well our proposed parsimony testing procedure work, we utilize 

nine well-known time series data generators: FIX.DAT is fixed-point time series 

generated by eq. (4-3). FEIGEN.DAT (The iterates of this map form a 
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one-dimensional Cantor set at the transition between periodic and chaotic behavior) 

and SINE.DAT are periodic time series generated by eqs. (4-4) and (4-5). 

TWOSINE.DAT and THREESIN.DAT are quasi-periodic time series generated by eqs. 

(4-6) and (4-7). NOISE.DAT and RANDOM.DAT are stochastic time series generated 

by eqs. (3-3) and (4-8). HENON.DAT and LORENZXZ.DAT are chaotic time series 

generated by eqs. (3-1) and (3-2). We produce 2,000 iterates for each of the nine time 

series generators and then examine the largest Lyapunov exponent in the first step, the 

power spectrum in the second step and the IFS clumpiness in the final step proposed 

in the above-mentioned parsimony procedure. 

 

Xn=constant                                                     (4-3) 

 

Xn+1=3.5699456Xn(1-Xn)                                           (4-4) 

 

Sin (t/10)                                                        (4-5) 

where t is an integer value from 0 to 1999. 

 

Sin (t/2)+cos(gt/2)                                                 (4-6) 

where t is an integer value from 0 to 1999,g= 2/)15( −  

 

Sin (t/2)+cos(gt/2)+sin(ht/2+π/4)                                    (4-7) 

where t is an integer value from 0 to 1999, g= 2/)15( −  

 

21 2sinln2 rrX π−=                                              (4-8) 

 

Table 4-2 presents the largest Lyapunov exponents of these nine generators. 

Figure 4-14 displays the power spectra, and Figure 4-15 displays the IFS clumpiness. 

From Table 4-2, the first step has successfully identified the FIX.DAT (LE<0) as an 

equilibrium fixed-point time series and SINE.DAT (LE=0) and FEIGEN.DAT (LE=0) 

as periodic time series. Therefore we go to step two by examining the power spectra 

for the rest of the tested data. We find that only TWOSINE.DAT (Figure 4-14(a)) and 

THREESIN.DAT (Figure 4-14(b)) have spectra with few dominant peaks, which are 

evidences for quasi-periodic time series. Finally, we go to step three to further 
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distinguish chaotic from stochastic time series by comparing the IFS clumpiness maps 

between original and surrogate data. We find that the original data of NOISE.DAT and 

RANDOM.DAT (Figure 4-15(a) and (c)) do not differ from the surrogate (Figure 4-15 

(b) and (d)), indicating that NOISE.DAT and RANDOM.DAT are stochastic data. By 

contrast, the original data (Figure 4-15(e) and (g)) differ from the surrogate (Figure 

4-15(f) and (h)), supporting that HENON.DAT and LORENZXZ.DAT are chaotic 

data. In other words, these known time series data generators validate our proposed 

parsimony testing procedure. 

 

Table 4-2 The parsimony procedure validated by known time series generators 
Data Generator Known Properties Largest Lyapunov Exponent 

(LE) 

FIX.DAT Fixed point -0.1 

SINE.DAT Periodic 0.0 

FEIGEN.DAT Periodic 0.0 

TWOSINE.DAT Quasi-periodic 0.5 

THREESIN.DAT Quasi-periodic 0.5 

NOISE.DAT Stochastic 0.5 

RANDOM.DAT Stochastic 0.7 

LORENZXZ.DAT Chaotic 0.1 

HENON.DAT Chaotic 0.6 

 

4.3.3 Applications 

 

We apply our proposed parsimony procedure to further test the remaining ten 

stations on the I-35 Freeway whether or not chaotic structures also exhibit in the 

minute-flow dynamics. Table 4-3 reports the results. The LE value for each station is 

positive, ruling out the traffic dynamics is equilibrium fixed points or period. The 

power spectrum for each station is broad (station 32, for example, Figure 4-16), 

further ruling out the flow time series quasi-period. Finally, the IFS clumpiness for 

each station (station 32, for example, Figure 4-17) reveals an obvious difference 

between the original and surrogate data, further ruling out the data stochastic. Thus, 

we conclude that all the remaining eight stations also exhibit chaotic structures in the 

nature of their one-minute flow dynamics. 
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Table 4-3 Applications of the parsimony procedure 
Station No. Average lane-flow 

(veh./min) 

Largest Lyapunov Exponent (LE) 

32 16.8 0.6 

45 23.7 0.7 

44 24.8 0.7 

43 28.9 0.7 

41 29.9 0.7 

52 31.9 0.3 

53 32.5 0.4 

56 33.2 0.4 
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Figure 4-1 One-dimensional state-space plots 
 

      
 
 

Figure 4-2 Two-dimensional state-space plots 
 

      
 
 

Figure 4-3 Three-dimensional state-space plots 
 

(a) Original data (station 50) (b) Surrogate data (station 50) 

(a) Original data (station 50) (b) Surrogate data (station 50) 

(a) Original data (station 50) (b) Surrogate data (station 50) 
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Figure 4-4 Return maps 
 

      
 
 
 

Figure 4-5 Two-dimensional phase-space plots 
 

      
 
 
 

Figure 4-6 Three-dimensional phase-space plots 
 

(a) Original data (station 50) (b) Surrogate data (station 50) 

(a) Original data (station 50) (b) Surrogate data (station 50) 

(a) Original data (station 50) (b) Surrogate data (station 50) 
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Figure 4-7 Two-dimensional Poincare’ movies 
 

    
 
 

Figure 4-8 Three-dimensional Poincare’ movies 
 

      
 
 
 

Figure 4-9 IFS clumpiness maps 
 

(a) Original data (station 50) (b) Surrogate data (station 50) 

(a) Original data (station 50) (b) Surrogate data (station 50) 

(a) Original data (station 50) (b) Surrogate data (station 50) 
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Figure 4-10 Probability distributions 
 

      
 
 
 

Figure 4-11 Correlation function 
 

     
  

 
Figure 4-12 Power spectrum 

 

(a) Original data (station 50) (b) Surrogate data (station 50) 

(a) Original data (station 50) (b) Surrogate data (station 50) 

(a) Original data (station 50) (b) Surrogate data (station 50) 
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Figure 4-13 Proposed parsimony procedure 
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(a) TWOSINE.DAT    (b) THREESIN.DAT 

 

   
(c) NOISE.DAT        (d) RANDOM.DAT 

 

    
(e) LORENZXZ.DAT      (f) HENON.DAT 

 
Figure 4-14 Power spectra for known time series generators 
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(a) Original data (NOISE.DAT)  (b) Surrogate data (NOISE.DAT) 
 

    
(b) Original data (RANDOM.DAT) (d) Surrogate data (RANDOM.DAT) 
 

    
        (e) Original data (HENON.DAT)  (f) Surrogate data (HENON.DAT) 
 

   
(g) Original data (LORENZXZ.DAT) (h) Surrogate data (LORENZXZ.DAT) 

 
Figure 4-15 IFS clumpiness maps for known time series generators 
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Figure 4-16 Power spectrum for station 32 
 

   
 
 

Figure 4-17 IFS clumpiness maps for station 32 
 

 

(a) Original data (b) Surrogate data 


