CHAPTER 3. PROPERTIES OF CHAOS

This chapter will introduce several ways to test and predict for chaos. Since the
approaches have been well established in many chaos and time series textbooks (for
instance, Brock, et al. 1991; Hilborn, 1994; Kantz and Schreiber, 1997; Alligood, et al.
2000; Sprott, 2003), we only briefly outline them in the following parts. The chapter
is organized as follows: In section 3.1, defines the chaos. In section 3.2, presents some
properties of chaos. In section 3.3, introduces the promising indexes, geometric plots
and statistical tests, to distinguish the chaos from other dynamical systems. Prediction

of chaotic time series based on Takens’s embedding theorem is introduces in section

3.4.

3.1 Definition of Chaos

Chaos is one subject area in the field of nonlinear dynamics, which is part of the
broader field of dynamical systems. A dynamical system, one that evolves in time, can
be stochastic or deterministic (Sprott, 2003). A stochastic system will change with
time according to some random' processes, including uncorrelated (white) and
correlated (colored) noises. A deterministic’ system, by contrast, will evolve under
some deterministic governing rules (or mathematical equations) in such a way that the
present state is uniquely determined by the past states. Such deterministic chaos can
only occur when the governing rules or equations are nonlinear. There are several
definitions of chaos in use. A definition similar to the following is commonly found in
the literature (for instance, Adrangi, et al. 2001; Barnett, et al. 1995; Hilborn, 1994;
Kantz and Schreiber, 1997).

“The series a, has a chaotic explanation if there exists a system
(h,F,x,)wherea, = h(x,), x,,,=F(x,), x, is the initial condition at t=0,
and where h maps the n-dimensional phase space, R" to R' and F maps
R" to R". It is also required that all trajectories x, lie on an attractor A

' It means breakdown of cause and effect, i.e. given exact knowledge of the state of a random system
at one time, it is impossible to predict which set of alternatives will occur as the state of the system at
the next instant.

2 A system is deterministic if precise knowledge of the time evolution equations and the initial
conditions completely determine the future behavior of the system.
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and nearby trajectories diverge so that the system never reaches equilibrium
(i.e., not eventually locating at fixed points) nor exactly repeats its path (i.e., it
is aperiodic). For the chaotic time series, if one knows (h,F) and could
measure X, without error, one could forecast x,,, and thus a,,, perfectly.
With the divergence property and attractor A, in order that F generates
stochastic-looking behavior, nearby trajectories must diverge (repel)
exponentially. Moreover, in order that F generates deterministic behavior,
locally diverging trajectories must eventually fold back (attract) on themselves.
The attractors may be thought of as a subset of the phase space towards which
sufficiently close trajectories are asymptotically attracted.”

3.2 Some Properties of Chaos

According to Sprott (2003), chaotic systems have several important features: (1)
they are aperiodic, namely trajectories or orbits never repeat (Strange attractor); (2)
they exhibit sensitive dependence on initial conditions (SDIC) and hence they are
unpredictable’ in the long run; (3) they are governed by one or more control
parameters, a small change in which can cause the chaos to appear or disappear; (4)
their governing equations are nonlinear; (5) they exhibit an apparent randomness; (6)
they exist order within disorder; (7) In addition, the geometry with non-integer
dimensionalities plays an essential role in the chaotic systems. Such geometries have
been named “fractals” because of the non-integer dimensionalities (Mandelbrot, 2000).
The fractals have the property of “self-similarity,” which characterizes that a small

section of an object or time series, suitably magnified, is resemble to the original one.

The above properties of chaos are probably better appreciated in the framework
of a chaotic function. Here we briefly illustrate some of these properties in the
framework of the Logistic function, a function commonly employed to demonstrate
the chaos phenomenon (Baumol and benhabib, 1989; Hsieh, 1991; Adrangi, 2001).

Consider the nonlinear equation (Logistic function) with a single parameter, w

x,=F(x)=wx(l1-x,)

Figure 3-1 graphs the relationship (x

t+12

x,) for w=3.75, x,=0.10. It should be

3 Predictability means if given an initial condition to within a small uncertainty range, we know the
subsequent evolution of the system to within, more or less, the same order range of uncertainty.
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apparent that (x

.1» X,) oscillations from a distinctive phase diagram (the bounding
parabolic curve). As the oscillations expand, they encounter and “bounce off” the
phase curve, moving closer to an apparent equilibrium on the negative slope of the
phase curve. However, the convergence towards any equilibrium in that vicinity can

only be temporary, since the slope of the phase curve (0x,,, /0x, = w(l—2x,)) is

less than -1. Figure 3-1 also illustrates the property of period folding of trajectories in

chaotic systems, and demonstrates the concept of low dimension: the chaotic map of

X

.., against X, give us a series of points in the phase curve. Even in the limit, these

points would only from a one dimension set —a curve. On the other hand, had the

X

., and X, relationship been random, the points would have been scattered about
the two-dimensional phase space. Figure 3-2 demonstrates the Lorenz attractor from

the X-Z plane, which is also a good example of strange attractor.

To illustrate the concept of SDIC, we graph in Figure 3-3 (a) and (b) the time
paths (x,, t=1, 2,.., 60) for the Logistic equation with w=3.750, Xx, =0.10, and

w=3.753, X, =0.10, respectively. It is immediately apparent that the Logistic

equation has produced fairly complex time paths. Note that the same change (an
“error”’) of only 0.003 introduced in w has caused the time path to be vastly different
after only a few time periods. For instance, for the first nine periods, the time path in
Figure 3-3 (a) “looks” almost identical to that in Figure 3-3 (b). However, the paths
after t=10 diverge substantially. While we employ the Logistic equation to
demonstrate SDIC here, the sort of behavior holds for a very wide set of chaotic

relations.

The above illustration suggests that the presence of chaos will hamper the
success of technical analysis and long-range forecasting models. For instance, it is
hard to imagine how to imagine how any forecasting technique that relies on

extrapolation could have correctly predicted the relative calm between points A and B
in Figure 3-3 (b). Of course, one could forecast X, perfectly if one could measure w
and X, with infinite accuracy. Given that such measurement is not practical, both

basic forecasting devices - extrapolation and estimation of structural forecasting

models - become highly questionable in chaotic systems (also see Baumol and
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benhabib, 1989; Hsieh, 1991; Adrangi, 2001).

It should be noted, however, that chaotic systems may provide some advange for
forecasting/technique analysis in the very-short run (say a few days when dealing with

chaotic daily data).
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Figure 3-1 Logistic function xy+;=3.750x(1- x;), X¢=0.10 (60 iterations)
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Figure 3-2 Lorenz attractor from the X-Z plane
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Figure 3-3 Logistic function x| vs. time

A chaotic time series appears stochastic (feature 5) but it is actually generated by
a deterministic system. However, it is difficult to make distinction between stochastic
data and deterministic chaos because both have very similar irregularity (feature 1).
To elucidate this feature, we deliberately generate three well-known time series data:
the Henon-type time series (2000 iterates) generated by eq. (3-1), the Lorenz-type
time series (2000 data points at intervals of ~ t=0.1) generated by eq. (3-2), and the

Gaussian white noise data generated by eq. (3-3).

X, =1-1.4X,°+Y,: Y,=0.3X, (3-1)

dX/dt=10(Y-X); dY/dt=28X-Y-XZ; dZ/dt=XY-8Z/3 (3-2)

P(X)Le*"”2 (3-3)
27
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The Henon-type and Lorenz-type time series data with parameters given in egs.
(3-1) and (3-2) have been proven as deterministic chaotic systems (Henon, 1976;
Tucker, 1999); while the Gaussian white noise given in eq. (3-3) is known as a
stochastic random system (Press, et al. 1992). For the one-dimensional plots (trace),
X(t) versus t, we notice that Henon-type and Lorenz-type chaotic time series (Figures
3-4(a) and 3-4 (b)) are almost indistinguishable from a Gauassian white noise (Figure
3-4 (c)). Such one-dimensional plots conclude that it is almost impossible to
distinguish, by visualization method, between a stochastic system and a deterministic
chaos because both have very similar irregularity. However, if we reconstruct these
time series in higher dimensional state space, we would see the difference. For
instance, Figure 3-5 presents their two-dimensional plots, X(t) versus X(t-n), where n
is the delay time; and Figure 3-6 shows the three-dimensional plots, X (t) versus X(t-n)
versus X(t-2n). Notice that both chaotic systems have shown discernible structures
(Figures 3-5 (a) and 3-5 (b); Figures 3-6(a) and 3-6(b)), which are intrinsically
governed by different deterministic rules. In contrast, the random system does not
reveal any structure at all, which plots just fill up the entire plane as shown in Figure
3-5 (c) and look like a “fuzzy ball” as shown in Figure 3-6(c). These three examples
show that a very simple deterministic equation of trajectory motions or time series
data, which is essentially a chaotic system, can reveal very irregular trace similar to a
stochastic system, and it is also a good example to demonstrate how to find order
within disorder. Figure 3-7 demonstrates the fractal umbrella trees, which is a good

example of geometric self-similarity.
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Figure 3-4 One-dimensional state-space plots for the examples
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Figure 3-5 Two-dimensional state-space plots for the examples
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3.3 Geometric Plots and Statistics

The above illustrations from eqs (3-1) through (3-3) suggest that it is very easy to

incorrectly think a random system as chaos or a chaotic system as random by only
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visualizing their time series dynamics in the one-dimensional state space (or trace)
because they are very much alike. Therefore, we must make use of other effective
indexes that could noticeably distinguish them. We know that the simplest
determinism of chaotic time series has each value dependent solely on its immediate
predecessor; hence, through the reconstruction of the state space, some of its spatial
plots would reveal very unique patterns, which can be served for distinction purposes.
The two- or three-dimensional state space plots in Figures 3-4 through 3-6 are good

examples of such “promising” plots.

This research would attempt batteries of promising indexes, including geometric
plots and statistics, and choose the most crucial ones to develop a parsimony
procedure to test for chaos. Other known geometric plots in chaos and time series
literatures include return maps (plots of each local maximum versus the previous
maximum), phase-space plots (slopes of the trajectories), Poincare maps (or Poincare
movies), iterated function systems (IFS) clumpiness maps, autocorrelation function
plots, probability distributions, and power spectra. The well-known statistics include
the largest Lyapunov exponent, Kolmogorov entropy, Hurst exponent, relative
complexity, capacity dimension, embedding dimension, correlation dimension, and
delay time. To facilitate the comparison, we summarize the main properties of these

indexes in Table 3-1.

Table 3-1 Summary of geometric plots and statistics for time series data

Periodic and Stochastic data
Index ] o Chaotic data
quasi-periodic data|  (white or colored noises)

A simple chaotic system can produce
no apparent structure and the

a closed loop for ) a plot with discernible structure;
o plots fill up the entire plane or )
State-space |periodic; a fuzzy ] ) however, more complicated cases
space for white noise; may
plots loop for will fill two- and three- dimensional
o exhibit a structure for colored ) ) )
quasi-periodic regions, respectively, with no

noise ) .
discernible structure.

no apparent structure and the

Phase-space |reveal a closed ;
plots fill up the entire plane or may exhibit a structure

plots curve space for white noise; may

exhibit a structure for colored
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noise

may exhibit a

fill the two-dimensional plane

Return maps for white noise; may exhibita |may yield discernible patterns
pattern pattern for colored noise

Poincare nearby points no discernible patterns would  |repeated stretching and folding,
movies move together emerges causing the nearby points to separate

White 7/ noise is a space-filled

uncorrelated process that

uniformly fills its space of

representation. At the other

extreme, Brown //f noise
IFS . accumulates over the diagonals
clumpiness with some and some of the sides of the with some localized clumps

localized clumps

map square leaving most of the

representation space empty. Pink

1/f' noise produces self-similar

repeating triangular structure of

different sizes and accumulates,

albeit in a dispersed way, near

the diagonals.

tend to have little correlation;
Correlation varied with delay |dropped abruptly to zero for however, chaotic data from
) time (t) with white noise; varied witht with  |differential equations may be highly
function amplitude slowly |amplitude slowly decreasing for |correlated if the sample time is
plots decreasing colored noise small, since adjacent data points
have similar values.

Probability |a simple histogram ) o )
distribution |with sharp edges a Maxwellian distribution likely to be a fractal

broadband spectrum(on a linear

scale); the steepness of the slope|broadband spectrum (on a linear
Power with a few (on a log-log scale): Brown I/f|scale); power spectra that are straight
spectrum  |dominant peaks noise has a steep slope; Pink ///'|lines on a log-linear scale are thought

noise has a shallow slope; white

1/f’ noise with a flat spectrum.

as good candidates for chaos

55




LE<O0 fixed point;

Largest LE=0 periodic;
L . Y
YAPHROY | (quasi-periodic,  |LE—o0 LE>0
exponent 1 ith LE>0
(LE)

Kolmogorov|periodic KE=0;
entropy quasi-periodic KE—o oo >KE>0
(KE) KE>0

HE=-0.5 white noise; HE 0.5

Hurst
black noise; HE = 0.5 Brown
exponent  |HE >0 ) differ from 0 and 0.5

noise (random walk); HE=0
(HE)

pink noise; HE  -0.5 blue noise

Relative LZC—0 (perfect

complexity |predictability has a |LZC=1 white noise 0<LZC<1
(LZC) value of 0)
Capacity
dimension |1 N/A not integer
(CAD)
Embedding
dimension | N/A ED>5 ED<5
(ED)
Correlation
dimension | N/A COD> 5 COD<5
(COD)
Delay time DT—0 white noise; colored

DT>0 DT>0
(DT) noise DT>0

N/A: not available in the textbooks such as Brock, et al. 1991; Hilborn, 1994; Kantz
and Schreiber, 1997; Alligood, et al. 2000; Sprott, 2003.

3.3.1 Geometric Plots
1. State-space plots

These plots illustrate how a multidimensional space can be constructed from a
time series without the necessity of taking derivatives of the data. The simplest

chaotic determinism would have each value dependent only on its immediate
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predecessor. For the one-dimensional plot, X (t) versus t, very often looks like random.
For the two-dimensional delay-time plot, X (t) versus X (t+7 ), a chaotic sequence
might show remarkable structure. A simple chaotic system can produce a plot with
discernible structure; however, more complicated cases will fill two- and
three-dimensional regions respectively with no discernible structure. A white noise
sequence should fill up the entire plane with no apparent structure; Colored noise may
exhibit a structure. A periodic system will exhibit a closed loop. A fuzzy loop means

the system is qusi-periodic on a long time scale.

2. Phase-space plots

A two-dimensional phase-space plot is the time derivative x’(t) plotted with
respect to x(t) at each data point. The first derivative is taken by half of the two data
points adjacent to each point. A three-dimensional phase-space plot is the second
derivative x”(t) plotted along with x’(t) and x(t) on the three axes. The second
derivative is taken as the difference between the slopes of the lines connecting each
data point with its two nearest neighbors. Some cases that are not obviously periodic

in two dimensions may reveal their periodicity in three-dimension.

Periodic data should appear as a closed curve on such plot. White noise should
appear no apparent structure and the plots fill up the entire plane or space; Colored

noise may exhibit a structure. Chaotic may exhibit a structure.

3. Return maps

A two-dimensional phase-space plot generally will not distinguish between
random and chaotic data. For this purpose, it is useful to take some sort of cross
section of the phase plane in order to reduce its dimension by one. After such an
operation, chaotic data will often appear in the form of a strange attractor having a
fractal structure with fractional dimension. Periodic and quasi-periodic data may
exhibit a pattern. White noise should fill the two-dimensional plane; Colored noise

may exhibit a pattern.

4. Poincare movies
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The structure of a time series trajectories can often be revealed in a Poincare
section (also called a surface of section). It reduces the dimension of the attractor by
one. The dimension of the Poincare section is usually independent of the section taken
as long as it includes the attractor. There are infinitely many such sections, and some
are more revealing than others. The map produced in this way (called a Poincare map)
has a subset of the same dynamics as the corresponding trajectories, including
Lyapunov exponents and bifurcation behavior, except that it is missing the zero
Lyapunov exponents corresponding to the direction of the trajectories. The Poincare
movies show an animated display of every n-th data point versus its m-th predecessor

as if viewed under a strobe light that flashes every n-th time step (in 2-D or 3-D).

For the random data dominated by noise, no discernible pattern would emerge.
Periodic data nearby points move together. Chaotic data one can observe repeated

stretching and folding of the trajectories, causing nearby points to separate.

5. IFS clumpiness maps

Iterated function systems (IFS) suggest a data-analysis method (Peak and Frame,
1994). The IFS clumpiness is highly sensitive to determinism in the data; however, it
does not very well distinguish chaos from colored (correlated) noise. We can shuffle
the data points (randomizing their order but preserving their distribution) and look for

the difference of the IFS clumpiness in the original and surrogate plots.

Periodic data may with some localized clumps. White 7//° noise is a space-filled
uncorrelated process that uniformly fills its space of representation. At the other
extreme, Brown //f noise accumulates over the diagonals and some of the sides of
the square leaving most of the representation space empty. Pink 1/ noise produces
self-similar repeating triangular structure of different sizes and accumulates, albeit in

a dispersed way, near the diagonals. Chaotic data should with some localized clumps.

6. Correlation function plots

The Fourier transform of the power spectrum in the time domain, according to
the Wiener-Khinchin theorem, is given by the serial correlation function (or called

autocorrelation function):
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G(k)y =

The correlation function measures how strongly on average each data point is
always correlated with one k time steps. It is the ratio of the auto covariance to the
variance of the data, and G(k) is normalized so that G(0)=1. In general, the correlation
function falls from a value of 1 at k=0 to zero at large k. The value of £ at which it

fallsto 1/e  37% is called the correlation time 7.

Random data will have no correlation and its autocorrelation function will drop
abruptly to 0, implying small correlation time. Highly correlated data will have a
correlation function that varies with T but whose amplitude only slowly decreases.
Chaotic data tend to show little correlation; However, chaotic data from differential
equations may be highly correlated if the sample time is small, since adjacent data

points have similar values.

7. Probability distributions

The probability distribution, P(X), or probability density distribution, is a plot of
the probability that X is within some “bin” A X of X. By iterating many times from an
arbitrary initial condition, one can plot a histogram of the resulting X values.
Normalizing the histogram such that the area under the curve is 1 leads to an
approximate probability distribution P(X) that a point X is within the bin of X. The
largest peak (mode) represents a value would spend most of its time near its extrema.
A highly non-uniform probability is a result of the non-uniform stretching of the

trajectories with enough iteration.

8. Power spectra

For stationary or distrended data with inherent periodicities, Fourier analysis
(also called spectral analysis, frequency analysis, or harmonic analysis) is useful
(Newland; 1993). A Fourier transform on the time series data displays the power
(mean square amplitude) as a function of frequency. Random and chaotic data give

rise to broad spectra. Periodic and quasi-periodic data will produce a few dominant
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peaks in the spectrum. Power spectra that are straight lines on a log-linear scale are
thought to be good candidates for chaos since noise tends to have a power-law
spectrum. The cumulative period gram is the integral of the power spectrum over
frequency. It should follow the 45-degree line if the power spectrum is flat indicating

white noise.

The steepness of the slope (on a log-log scale): Brown //f noise has a steep

slope; Pink 1/f' noise has a shallow slope; white 1// noise with a flat spectrum.

Note that noise with a power spectrum that varies with frequency as 1/ f“is

called correlated (or colored). White noise has « =0 in which power spectrum is
independent of frequency. White noise is uncorrelated since the correlation function is
zero for all nonzero time lags. The case of « =1 is called pink (or flicker) noise. The
case with o =2 is Brownian motion (or called brown noise, named after Robert
Brown but has nothing to do with color). Cases with o >2 are sometimes called black

noise. The case with « <0 is called blue noise.

3.3.2 Statistics
1. Lyapunov exponent

The Lyapunov exponents for a dynamical system are measures of the average
rate of divergence or convergence of typical trajectories in the phase space. A positive
Lyapunov exponent is a measure of the average exponential divergence of two nearby
trajectories. If a discrete nonlinear system is dissipative, a positive Lyapunov
exponent is an indication that the system is chaotic (Gencay, 1996). Chaotic
trajectories should have at least one positive Lyapunov exponent. For fixed data, all
Lyapunov exponents are negative. For periodic trajectories, the largest Lyapunov
exponent is equal to zero. White noise the largest Lyapunov exponent is equal to

infinite.

The definition of Lyapunov exponent is expressed as follows:

A= llnﬂ
n d,
where

x,=j" value from the time series data
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.th .
x;=i" value that is close to x,
d,= ‘x = xi‘

d, = ‘x

Jj+n - xi+n

2. Kolmogorov entropy

Similar to Lyapunov exponent, Kolmogorov-Sinai invariant (or Kolmogorov
entropy) also focuses on the concept of SDIC for chaos (Hilborn, 1994). Consider two
trajectories representing time paths that are extremely close so as to be
indistinguishable. However, these trajectories diverge so that they become
distinguishable as time passes. The Kolmogorov entropy (K) measures the speed with
which this takes place and is given by

M
K =lim lim lim ln(C—(g)

£—0 m—>0 N—® C/’]M+1 (8)

)

If a time series is non-complex and completely predictable, K will approach to zero. If
a time series is completely random, the value will tend to be very large. That is, the
lower the value of K, the more predictable the system is. For chaotic systems, one

would expect small K values.

3. Hurst exponent

Hurst exponent is a measure of the extent to which the data can be represented
by a random walk, or Brownian motion. In such a case that a time series trajectory x,,
on average, moves away from its initial position by an amount proportional to the
square root of time, we say that its Hurst exponent is 0.5 (Kantz and Schreiber, 1997).
Thus, we can judge whether the time series is random or not by this test. It is
determined from the square root relation between increments and time intervals as

follows:
(5o A2

where HE= Hurst exponent. For a time series data, HE greater than 0.5 indicates the

time series data is positively correlated (or persistence). HE less than 0.5 indicates the
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time series data is negatively-correlated (or anti-persistence). Note that Hurst

exponent can be estimated by HE=(«a -1)/2, where «is the exponent of the noise

with a power spectrum that varies with frequency as 1/ .

HE=-0.5 white noise; HE 0.5 black noise; HE = 0.5 Brown noise (random walk);
HE=0 pink noise; HE -0.5 blue noise

4. Relative Lempel-Ziv complexity

We can use symbolic dynamics to calculate the relative Lempel-Ziv complexity
(LZC) relative to white noise. It is a measure of the algorithmic complexity of the
time series. Using the algorithm of Kaspar and Schuster, each data point is converted
to a single binary digit according to the fact that whether its value is greater or less
than the median value. Maximal complexity (complete randomness) has a value of 1.0

and perfect predictability has a value of 0.

5. Capacity dimension

Self-similarity of sets is characterized by the Hausdorff dimension, although the
box counting dimension is much more convenient to compute. It presents an upper
bound on the Hausdorff dimension from which it is known to differ only for some
constructed examples. Consider a point set located in R™. If we cover it with a regular
grid of boxes of length ¢ and call M(g) the number of boxes which contain at least one

point, then for a self-similar set
M(g)ce™, &—0.

D, is then called the box counting or capacity dimension. A not integer dimension

implies essentially chaotic data.

6. Embedding dimension

The false nearest-neighbors method is commonly used. Find the nearest x; for

each point x, in a time-delay embedding m and call the separation between these

points R = \/ (x,—x,)" +(x_, —x,,)" +.. . Likewise, calculate the separation
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R, (m+1) in a time-delay embedding m+/. If R (m+1) significantly exceeds

R (m), then the neighbors are close only because of overlap; namely they are not

|xl—m - xn—m |

truly close. The criterion for falseness is thus )
m

~R,, where R, is a

threshold value. A correlation dimension greater than 5 implies essentially random

data.

7. Correlation dimension

Correlation dimension, applied to characterize chaotic attractors, is widely used
by physicists to test for chaos in time series data (Hilborn, 1994). Compared with the
capacity dimension measure, it has a computational advantage because it uses the
trajectory points directly and does not require a separate partitioning of the state space.

Grassberger and Procaccia (1983) define the correlation dimension of a time series as

D" = lim{log C(¢)/log £]

where N is the embedding dimension and C(¢)is the correlation integral. A

correlation dimension greater than 5 implies essentially random data.

8. Delay time

Highly random data will have no correlation and its autocorrelation function will
drop abruptly to 0, implying small correlation time, or called delay time t. Highly
correlated data like the output of a sine wave generator will have an autocorrelation
function that varies with tau (t) but whose amplitude only slowly decreases. Chaotic
data from difference equations tend to show little correlation, but chaotic data from
differential equations may be highly correlated if the sample time is small, since

adjacent data points have similar.

3.4 Takens’ Embedding Theorem

Building the chaotic prediction model, from a time series mainly involves two
steps: (1) reconstruction of the phase space from data by time delay embedding; and

(i) development of a methodology for phase-space prediction. In Figure 1-2, we
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reconstruct the phase space with the Takens’ embedding theorem by embedding the
one-dimension time series data into the n-dimensional space. After plotting the time
series data from the latest observations in the n-dimensional reconstructed phase
space, we investigated the historical observations neighboring to the latest

observation.

Generally, the order of a system is described by “N” state variables (“N” stands
for the number of variables which affect a system) and can be represented as a
trajectory in the N-dimensional state (phase) space. However, the observable time
series data is only a part of “N” state variables usually. In this case, from the time
series data of a single observed variable, its trajectory can be reconstructed in an

N-dimensional space using delay time. From the observed time series data £'(¢), data
vector Z(t)= {{(t),g”(t — 7)., S (t— (N — l)r)} is generated where N and 7

represent embedding dimension and delay time. The vector indicates one point of an
N-dimensional reconstructed state (phase) space. Therefore, a trajectory can be drawn
in an N-dimensional reconstructed state (phase) space by changing t with 7 fixed.
When embedding dimension N is sufficiently large, we can say that the reconstructed
trajectory is embedded in the reconstructed state (phase) space. To be concrete, it has
been proven by Takens (1981) that retains the phase structure in the original
O-dimensional state (phase) space, i. e.; the reconstructed trajectory to be embedded
is as follows.

N 20+1

If an observed time series data is chaotic, then the trajectories of the time series
will follow a certain deterministic regularity. Thus, if the deterministic regularity can
be estimated, then the data in the near future (before the deterministic causality is lost)
can be predicted. However, since chaos has a property of “sensitivity on the initial

condition,” we cannot make a long-term prediction for any time series data.
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