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CHAPTER 3. PROPERTIES OF CHAOS 

This chapter will introduce several ways to test and predict for chaos. Since the 

approaches have been well established in many chaos and time series textbooks (for 

instance, Brock, et al. 1991; Hilborn, 1994; Kantz and Schreiber, 1997; Alligood, et al. 

2000; Sprott, 2003), we only briefly outline them in the following parts. The chapter 

is organized as follows: In section 3.1, defines the chaos. In section 3.2, presents some 

properties of chaos. In section 3.3, introduces the promising indexes, geometric plots 

and statistical tests, to distinguish the chaos from other dynamical systems. Prediction 

of chaotic time series based on Takens’s embedding theorem is introduces in section 

3.4.  

3.1 Definition of Chaos 

Chaos is one subject area in the field of nonlinear dynamics, which is part of the 

broader field of dynamical systems. A dynamical system, one that evolves in time, can 

be stochastic or deterministic (Sprott, 2003). A stochastic system will change with 

time according to some random1 processes, including uncorrelated (white) and 

correlated (colored) noises. A deterministic2 system, by contrast, will evolve under 

some deterministic governing rules (or mathematical equations) in such a way that the 

present state is uniquely determined by the past states. Such deterministic chaos can 

only occur when the governing rules or equations are nonlinear. There are several 

definitions of chaos in use. A definition similar to the following is commonly found in 

the literature (for instance, Adrangi, et al. 2001; Barnett, et al. 1995; Hilborn, 1994; 

Kantz and Schreiber, 1997). 

 

“The series ta  has a chaotic explanation if there exists a system 
) , ,( 0xFh where )( tt xha = , )(1 tt xFx =+ , 0x  is the initial condition at 0=t , 

and where h maps the n-dimensional phase space, nR  to 1R  and F  maps 
nR  to nR . It is also required that all trajectories tx  lie on an attractor A 

                                                 
1 It means breakdown of cause and effect, i.e. given exact knowledge of the state of a random system 

at one time, it is impossible to predict which set of alternatives will occur as the state of the system at 
the next instant. 

2 A system is deterministic if precise knowledge of the time evolution equations and the initial 
conditions completely determine the future behavior of the system. 
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and nearby trajectories diverge so that the system never reaches equilibrium 
(i.e., not eventually locating at fixed points) nor exactly repeats its path (i.e., it 
is aperiodic). For the chaotic time series, if one knows ) ,( Fh  and could 
measure tx  without error, one could forecast itx +  and thus ita +  perfectly. 
With the divergence property and attractor A, in order that F generates 
stochastic-looking behavior, nearby trajectories must diverge (repel) 
exponentially. Moreover, in order that F generates deterministic behavior, 
locally diverging trajectories must eventually fold back (attract) on themselves. 
The attractors may be thought of as a subset of the phase space towards which 
sufficiently close trajectories are asymptotically attracted.” 

3.2 Some Properties of Chaos 

According to Sprott (2003), chaotic systems have several important features: (1) 

they are aperiodic, namely trajectories or orbits never repeat (Strange attractor); (2) 

they exhibit sensitive dependence on initial conditions (SDIC) and hence they are 

unpredictable3 in the long run; (3) they are governed by one or more control 

parameters, a small change in which can cause the chaos to appear or disappear; (4) 

their governing equations are nonlinear; (5) they exhibit an apparent randomness; (6) 

they exist order within disorder; (7) In addition, the geometry with non-integer 

dimensionalities plays an essential role in the chaotic systems. Such geometries have 

been named “fractals” because of the non-integer dimensionalities (Mandelbrot, 2000). 

The fractals have the property of “self-similarity,” which characterizes that a small 

section of an object or time series, suitably magnified, is resemble to the original one. 

 

The above properties of chaos are probably better appreciated in the framework 

of a chaotic function. Here we briefly illustrate some of these properties in the 

framework of the Logistic function, a function commonly employed to demonstrate 

the chaos phenomenon (Baumol and benhabib, 1989; Hsieh, 1991; Adrangi, 2001). 

Consider the nonlinear equation (Logistic function) with a single parameter, w 

)1()(1 tttt xwxxFx −==+  

Figure 3-1 graphs the relationship ( ,1+tx  tx ) for w=3.75, 0x =0.10. It should be 

                                                 
3 Predictability means if given an initial condition to within a small uncertainty range, we know the 

subsequent evolution of the system to within, more or less, the same order range of uncertainty. 
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apparent that ( ,1+tx  tx ) oscillations from a distinctive phase diagram (the bounding 

parabolic curve). As the oscillations expand, they encounter and “bounce off” the 

phase curve, moving closer to an apparent equilibrium on the negative slope of the 

phase curve. However, the convergence towards any equilibrium in that vicinity can 

only be temporary, since the slope of the phase curve ( )21(/1 ttt xwxx −=∂∂ + ) is 

less than -1. Figure 3-1 also illustrates the property of period folding of trajectories in 

chaotic systems, and demonstrates the concept of low dimension: the chaotic map of 

1+tx  against tx  give us a series of points in the phase curve. Even in the limit, these 

points would  only from a one dimension set –a curve. On the other hand, had the 

1+tx  and tx  relationship been random, the points would have been scattered about 

the two-dimensional phase space. Figure 3-2 demonstrates the Lorenz attractor from 

the X-Z plane, which is also a good example of strange attractor. 

 

To illustrate the concept of SDIC, we graph in Figure 3-3 (a) and (b) the time 

paths ( tx , t=1, 2,.., 60) for the Logistic equation with w=3.750, 0x  =0.10, and 

w=3.753, 0x  =0.10, respectively. It is immediately apparent that the Logistic 

equation has produced fairly complex time paths. Note that the same change (an 

“error”) of only 0.003 introduced in w has caused the time path to be vastly different 

after only a few time periods. For instance, for the first nine periods, the time path in 

Figure 3-3 (a) “looks” almost identical to that in Figure 3-3 (b). However, the paths 

after t=10 diverge substantially. While we employ the Logistic equation to 

demonstrate SDIC here, the sort of behavior holds for a very wide set of chaotic 

relations.  

 

The above illustration suggests that the presence of chaos will hamper the 

success of technical analysis and long-range forecasting models. For instance, it is 

hard to imagine how to imagine how any forecasting technique that relies on 

extrapolation could have correctly predicted the relative calm between points A and B 

in Figure 3-3 (b). Of course, one could forecast tx  perfectly if one could measure w 

and 0x  with infinite accuracy. Given that such measurement is not practical, both 

basic forecasting devices - extrapolation and estimation of structural forecasting 

models - become highly questionable in chaotic systems (also see Baumol and 
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benhabib, 1989; Hsieh, 1991; Adrangi, 2001). 

 

It should be noted, however, that chaotic systems may provide some advange for 

forecasting/technique analysis in the very-short run (say a few days when dealing with 

chaotic daily data). 
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Figure 3-1 Logistic function xt+1=3.750xt(1- xt), x0=0.10 (60 iterations)  

 
Figure 3-2 Lorenz attractor from the X-Z plane 
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(a) xt+1=3.750xt(1- xt), x0=0.10 
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(b) xt+1=3.753xt(1- xt), x0=0.10 

 
Figure 3-3 Logistic function xt+1 vs. time 

 

A chaotic time series appears stochastic (feature 5) but it is actually generated by 

a deterministic system. However, it is difficult to make distinction between stochastic 

data and deterministic chaos because both have very similar irregularity (feature 1). 

To elucidate this feature, we deliberately generate three well-known time series data: 

the Henon-type time series (2000 iterates) generated by eq. (3-1), the Lorenz-type 

time series (2000 data points at intervals of △t=0.1) generated by eq. (3-2), and the 

Gaussian white noise data generated by eq. (3-3). 

Xn+1=1-1.4Xn
2+Yn; Yn=0.3Xn                                   (3-1) 

dX/dt=10(Y-X); dY/dt=28X-Y-XZ; dZ/dt=XY-8Z/3                   (3-2) 

2/2

2
1)( XeXP −

π
                                             (3-3) 

A B 
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The Henon-type and Lorenz-type time series data with parameters given in eqs. 

(3-1) and (3-2) have been proven as deterministic chaotic systems (Henon, 1976; 

Tucker, 1999); while the Gaussian white noise given in eq. (3-3) is known as a 

stochastic random system (Press, et al. 1992). For the one-dimensional plots (trace), 

X(t) versus t, we notice that Henon-type and Lorenz-type chaotic time series (Figures 

3-4(a) and 3-4 (b)) are almost indistinguishable from a Gauassian white noise (Figure 

3-4 (c)). Such one-dimensional plots conclude that it is almost impossible to 

distinguish, by visualization method, between a stochastic system and a deterministic 

chaos because both have very similar irregularity. However, if we reconstruct these 

time series in higher dimensional state space, we would see the difference. For 

instance, Figure 3-5 presents their two-dimensional plots, X(t) versus X(t-n), where n 

is the delay time; and Figure 3-6 shows the three-dimensional plots, X (t) versus X(t-n) 

versus X(t-2n). Notice that both chaotic systems have shown discernible structures 

(Figures 3-5 (a) and 3-5 (b); Figures 3-6(a) and 3-6(b)), which are intrinsically 

governed by different deterministic rules. In contrast, the random system does not 

reveal any structure at all, which plots just fill up the entire plane as shown in Figure 

3-5 (c) and look like a “fuzzy ball” as shown in Figure 3-6(c). These three examples 

show that a very simple deterministic equation of trajectory motions or time series 

data, which is essentially a chaotic system, can reveal very irregular trace similar to a 

stochastic system, and it is also a good example to demonstrate how to find order 

within disorder. Figure 3-7 demonstrates the fractal umbrella trees, which is a good 

example of geometric self-similarity. 

 

   
(a) Henon              (b) Lorenz              (c) White noise 

 
Figure 3-4 One-dimensional state-space plots for the examples 
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     (a) Henon                (b) Lorenz              (c) White noise  

 
Figure 3-5 Two-dimensional state-space plots for the examples 

 

   
        (a) Henon               (b) Lorenz           (c) White noise  

 
Figure 3-6 Three-dimensional state-space plots for the examples 

 
 

 
  

Figure 3-7 Fractal umbrella trees 

3.3 Geometric Plots and Statistics 

The above illustrations from eqs (3-1) through (3-3) suggest that it is very easy to 

incorrectly think a random system as chaos or a chaotic system as random by only 
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visualizing their time series dynamics in the one-dimensional state space (or trace) 

because they are very much alike. Therefore, we must make use of other effective 

indexes that could noticeably distinguish them. We know that the simplest 

determinism of chaotic time series has each value dependent solely on its immediate 

predecessor; hence, through the reconstruction of the state space, some of its spatial 

plots would reveal very unique patterns, which can be served for distinction purposes. 

The two- or three-dimensional state space plots in Figures 3-4 through 3-6 are good 

examples of such “promising” plots. 

 

This research would attempt batteries of promising indexes, including geometric 

plots and statistics, and choose the most crucial ones to develop a parsimony 

procedure to test for chaos. Other known geometric plots in chaos and time series 

literatures include return maps (plots of each local maximum versus the previous 

maximum), phase-space plots (slopes of the trajectories), Poincare maps (or Poincare 

movies), iterated function systems (IFS) clumpiness maps, autocorrelation function 

plots, probability distributions, and power spectra. The well-known statistics include 

the largest Lyapunov exponent, Kolmogorov entropy, Hurst exponent, relative 

complexity, capacity dimension, embedding dimension, correlation dimension, and 

delay time. To facilitate the comparison, we summarize the main properties of these 

indexes in Table 3-1. 

 

Table 3-1 Summary of geometric plots and statistics for time series data 

Index 
Periodic and 

quasi-periodic data 

Stochastic data 

(white or colored noises) 
Chaotic data 

State-space 

plots 

a closed loop for 

periodic; a fuzzy 

loop for 

quasi-periodic 

no apparent structure and the 

plots fill up the entire plane or 

space for white noise; may 

exhibit a structure for colored 

noise 

A simple chaotic system can produce 

a plot with discernible structure; 

however, more complicated cases 

will fill two- and three- dimensional 

regions, respectively, with no 

discernible structure. 

Phase-space 

plots 

reveal a closed 

curve 

no apparent structure and the 

plots fill up the entire plane or 

space for white noise; may 

exhibit a structure for colored 

may exhibit a structure  
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noise 

Return maps 
may exhibit a 

pattern 

fill the two-dimensional plane 

for white noise; may exhibit a 

pattern for colored noise 

may yield discernible patterns 

Poincare 

movies 

nearby points 

move together 

no discernible patterns would 

emerges 

repeated stretching and folding, 

causing the nearby points to separate

IFS 

clumpiness 

map 

with some 

localized clumps 

 

White 1/f0 noise is a space-filled 

uncorrelated process that 

uniformly fills its space of 

representation. At the other 

extreme, Brown 1/f2 noise 

accumulates over the diagonals 

and some of the sides of the 

square leaving most of the 

representation space empty. Pink 

1/f1 noise produces self-similar 

repeating triangular structure of 

different sizes and accumulates, 

albeit in a dispersed way, near 

the diagonals. 

with some localized clumps 

Correlation 

function 

plots 

varied with delay 

time (τ) with 

amplitude slowly 

decreasing 

dropped abruptly to zero for 

white noise; varied withτ with 

amplitude slowly decreasing for 

colored noise 

tend to have little correlation; 

however, chaotic data from 

differential equations may be highly 

correlated if the sample time is 

small, since adjacent data points 

have similar values. 

Probability 

distribution 

a simple histogram 

with sharp edges 
a Maxwellian distribution likely to be a fractal 

Power 

spectrum 

with a few 

dominant peaks 

broadband spectrum(on a linear 

scale); the steepness of the slope 

(on a log-log scale): Brown 1/f2

noise has a steep slope; Pink 1/f1

noise has a shallow slope; white 

1/f0 noise with a flat spectrum. 

broadband spectrum (on a linear 

scale); power spectra that are straight 

lines on a log-linear scale are thought 

as good candidates for chaos 
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Largest 

Lyapunov 

exponent 

(LE) 

LE<0 fixed point; 

LE=0 periodic; 

(quasi-periodic, 

with LE>0 

 

LE→∞ LE>0 

Kolmogorov 

entropy 

(KE) 

periodic KE=0; 

quasi-periodic 

KE>0 

KE→∞ ∞ >KE>0 

Hurst 

exponent 

(HE) 

HE >0 

HE=-0.5 white noise; HE＞0.5 

black noise; HE = 0.5 Brown 

noise (random walk); HE=0 

pink noise; HE＜-0.5 blue noise

differ from 0 and 0.5 

Relative 

complexity 

(LZC) 

LZC→0 (perfect 

predictability has a 

value of 0) 

LZC=1 white noise  0<LZC<1 

Capacity 

dimension 

(CAD) 

1  N/A not integer 

Embedding 

dimension 

(ED) 

 N/A ED> 5 ED≤ 5 

Correlation 

dimension 

(COD) 

 N/A COD> 5 COD≤ 5 

Delay time 

(DT) 
DT>0 

DT→0 white noise; colored 

noise DT>0 
DT>0 

N/A: not available in the textbooks such as Brock, et al. 1991; Hilborn, 1994; Kantz 

and Schreiber, 1997; Alligood, et al. 2000; Sprott, 2003. 

 

3.3.1 Geometric Plots 

1. State-space plots 

These plots illustrate how a multidimensional space can be constructed from a 

time series without the necessity of taking derivatives of the data. The simplest 

chaotic determinism would have each value dependent only on its immediate 
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predecessor. For the one-dimensional plot, X (t) versus t, very often looks like random. 

For the two-dimensional delay-time plot, X (t) versus X (t+τ ), a chaotic sequence 

might show remarkable structure. A simple chaotic system can produce a plot with 

discernible structure; however, more complicated cases will fill two- and 

three-dimensional regions respectively with no discernible structure. A white noise 

sequence should fill up the entire plane with no apparent structure; Colored noise may 

exhibit a structure. A periodic system will exhibit a closed loop. A fuzzy loop means 

the system is qusi-periodic on a long time scale.  

 

2. Phase-space plots 

A two-dimensional phase-space plot is the time derivative x’(t) plotted with 

respect to x(t) at each data point. The first derivative is taken by half of the two data 

points adjacent to each point. A three-dimensional phase-space plot is the second 

derivative x’’(t) plotted along with x’(t) and x(t) on the three axes. The second 

derivative is taken as the difference between the slopes of the lines connecting each 

data point with its two nearest neighbors. Some cases that are not obviously periodic 

in two dimensions may reveal their periodicity in three-dimension.  

Periodic data should appear as a closed curve on such plot. White noise should 

appear no apparent structure and the plots fill up the entire plane or space; Colored 

noise may exhibit a structure. Chaotic may exhibit a structure. 

 

3. Return maps 

A two-dimensional phase-space plot generally will not distinguish between 

random and chaotic data. For this purpose, it is useful to take some sort of cross 

section of the phase plane in order to reduce its dimension by one. After such an 

operation, chaotic data will often appear in the form of a strange attractor having a 

fractal structure with fractional dimension. Periodic and quasi-periodic data may 

exhibit a pattern. White noise should fill the two-dimensional plane; Colored noise 

may exhibit a pattern. 

 

4. Poincare movies 
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The structure of a time series trajectories can often be revealed in a Poincare 

section (also called a surface of section). It reduces the dimension of the attractor by 

one. The dimension of the Poincare section is usually independent of the section taken 

as long as it includes the attractor. There are infinitely many such sections, and some 

are more revealing than others. The map produced in this way (called a Poincare map) 

has a subset of the same dynamics as the corresponding trajectories, including 

Lyapunov exponents and bifurcation behavior, except that it is missing the zero 

Lyapunov exponents corresponding to the direction of the trajectories. The Poincare 

movies show an animated display of every n-th data point versus its m-th predecessor 

as if viewed under a strobe light that flashes every n-th time step (in 2-D or 3-D).  

For the random data dominated by noise, no discernible pattern would emerge. 

Periodic data nearby points move together. Chaotic data one can observe repeated 

stretching and folding of the trajectories, causing nearby points to separate. 

 

5. IFS clumpiness maps 

Iterated function systems (IFS) suggest a data-analysis method (Peak and Frame, 

1994). The IFS clumpiness is highly sensitive to determinism in the data; however, it 

does not very well distinguish chaos from colored (correlated) noise. We can shuffle 

the data points (randomizing their order but preserving their distribution) and look for 

the difference of the IFS clumpiness in the original and surrogate plots.  

Periodic data may with some localized clumps. White 1/f0 noise is a space-filled 

uncorrelated process that uniformly fills its space of representation. At the other 

extreme, Brown 1/f2 noise accumulates over the diagonals and some of the sides of 

the square leaving most of the representation space empty. Pink 1/f1 noise produces 

self-similar repeating triangular structure of different sizes and accumulates, albeit in 

a dispersed way, near the diagonals. Chaotic data should with some localized clumps. 

 

6. Correlation function plots 

The Fourier transform of the power spectrum in the time domain, according to 

the Wiener-Khinchin theorem, is given by the serial correlation function (or called 

autocorrelation function): 
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The correlation function measures how strongly on average each data point is 

always correlated with one k time steps. It is the ratio of the auto covariance to the 

variance of the data, and G(k) is normalized so that G(0)=1. In general, the correlation 

function falls from a value of 1 at k=0 to zero at large k. The value of k at which it 

falls to 1/e 37% is called the correlation time≒  τ.  

Random data will have no correlation and its autocorrelation function will drop 

abruptly to 0, implying small correlation time. Highly correlated data will have a 

correlation function that varies with τ but whose amplitude only slowly decreases. 

Chaotic data tend to show little correlation; However, chaotic data from differential 

equations may be highly correlated if the sample time is small, since adjacent data 

points have similar values. 

 

7. Probability distributions 

The probability distribution, P(X), or probability density distribution, is a plot of 

the probability that X is within some “bin”∆X of X. By iterating many times from an 

arbitrary initial condition, one can plot a histogram of the resulting X values. 

Normalizing the histogram such that the area under the curve is 1 leads to an 

approximate probability distribution P(X) that a point X is within the bin of X. The 

largest peak (mode) represents a value would spend most of its time near its extrema. 

A highly non-uniform probability is a result of the non-uniform stretching of the 

trajectories with enough iteration. 

 

8. Power spectra 

For stationary or distrended data with inherent periodicities, Fourier analysis 

(also called spectral analysis, frequency analysis, or harmonic analysis) is useful 

(Newland; 1993). A Fourier transform on the time series data displays the power 

(mean square amplitude) as a function of frequency. Random and chaotic data give 

rise to broad spectra. Periodic and quasi-periodic data will produce a few dominant 



 60

peaks in the spectrum. Power spectra that are straight lines on a log-linear scale are 

thought to be good candidates for chaos since noise tends to have a power-law 

spectrum. The cumulative period gram is the integral of the power spectrum over 

frequency. It should follow the 45-degree line if the power spectrum is flat indicating 

white noise.  

The steepness of the slope (on a log-log scale): Brown 1/f2 noise has a steep 

slope; Pink 1/f1 noise has a shallow slope; white 1/f0 noise with a flat spectrum. 

Note that noise with a power spectrum that varies with frequency as αf/1 is 

called correlated (or colored). White noise has α =0 in which power spectrum is 

independent of frequency. White noise is uncorrelated since the correlation function is 

zero for all nonzero time lags. The case of α =1 is called pink (or flicker) noise. The 

case with α =2 is Brownian motion (or called brown noise, named after Robert 

Brown but has nothing to do with color). Cases with α >2 are sometimes called black 

noise. The case with α <0 is called blue noise. 

 

3.3.2 Statistics 

1. Lyapunov exponent 

The Lyapunov exponents for a dynamical system are measures of the average 

rate of divergence or convergence of typical trajectories in the phase space. A positive 

Lyapunov exponent is a measure of the average exponential divergence of two nearby 

trajectories. If a discrete nonlinear system is dissipative, a positive Lyapunov 

exponent is an indication that the system is chaotic (Gencay, 1996). Chaotic 

trajectories should have at least one positive Lyapunov exponent. For fixed data, all 

Lyapunov exponents are negative. For periodic trajectories, the largest Lyapunov 

exponent is equal to zero. White noise the largest Lyapunov exponent is equal to 

infinite. 

 The definition of Lyapunov exponent is expressed as follows: 

0

ln1
d
d

n
n=λ                                                     

where  

ix = jth value from the time series data  
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jx = ith value that is close to ix  

ij xxd −=0  

ninjn xxd ++ −=  

 

2. Kolmogorov entropy 

Similar to Lyapunov exponent, Kolmogorov-Sinai invariant (or Kolmogorov 

entropy) also focuses on the concept of SDIC for chaos (Hilborn, 1994). Consider two 

trajectories representing time paths that are extremely close so as to be 

indistinguishable. However, these trajectories diverge so that they become 

distinguishable as time passes. The Kolmogorov entropy (K) measures the speed with 

which this takes place and is given by 

)
)(

)(ln(limlimlim 1 ε
ε

ε +∞→∞→∞→
= M

M

Nm C
CK                                      

If a time series is non-complex and completely predictable, K will approach to zero. If 

a time series is completely random, the value will tend to be very large. That is, the 

lower the value of K, the more predictable the system is. For chaotic systems, one 

would expect small K values. 

 

3. Hurst exponent 

Hurst exponent is a measure of the extent to which the data can be represented 

by a random walk, or Brownian motion. In such a case that a time series trajectory tx , 

on average, moves away from its initial position by an amount proportional to the 

square root of time, we say that its Hurst exponent is 0.5 (Kantz and Schreiber, 1997). 

Thus, we can judge whether the time series is random or not by this test. It is 

determined from the square root relation between increments and time intervals as 

follows: 

( ) HEtx 22 ∆∝∆                                                   

where HE= Hurst exponent. For a time series data, HE greater than 0.5 indicates the 

time series data is positively correlated (or persistence). HE less than 0.5 indicates the 
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time series data is negatively-correlated (or anti-persistence). Note that Hurst 

exponent can be estimated by HE=(α -1)/2, where α is the exponent of the noise 

with a power spectrum that varies with frequency as αf/1 . 

HE=-0.5 white noise; HE＞0.5 black noise; HE = 0.5 Brown noise (random walk); 

HE=0 pink noise; HE＜-0.5 blue noise 

 

4. Relative Lempel-Ziv complexity 

We can use symbolic dynamics to calculate the relative Lempel-Ziv complexity 

(LZC) relative to white noise. It is a measure of the algorithmic complexity of the 

time series. Using the algorithm of Kaspar and Schuster, each data point is converted 

to a single binary digit according to the fact that whether its value is greater or less 

than the median value. Maximal complexity (complete randomness) has a value of 1.0 

and perfect predictability has a value of 0. 

 

5. Capacity dimension 

Self-similarity of sets is characterized by the Hausdorff dimension, although the 

box counting dimension is much more convenient to compute. It presents an upper 

bound on the Hausdorff dimension from which it is known to differ only for some 

constructed examples. Consider a point set located in Rm. If we cover it with a regular 

grid of boxes of length ε and call M(ε) the number of boxes which contain at least one 

point, then for a self-similar set 

     FDM −∝ εε )( ,   .0→ε  

FD  is then called the box counting or capacity dimension. A not integer dimension 

implies essentially chaotic data. 

 

6. Embedding dimension 

The false nearest-neighbors method is commonly used. Find the nearest x1 for 

each point xn in a time-delay embedding m and call the separation between these 

points ...)()( 2
11

2 +−+−= −− nlnln xxxxR . Likewise, calculate the separation 
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)1( +mRn  in a time-delay embedding m+1. If )1( +mRn  significantly exceeds 

)(mRn , then the neighbors are close only because of overlap; namely they are not 

truly close. The criterion for falseness is thus T
n

mnml R
mR
xx

f
)(
−− −

, where TR  is a 

threshold value. A correlation dimension greater than 5 implies essentially random 

data. 

 

7. Correlation dimension 

Correlation dimension, applied to characterize chaotic attractors, is widely used 

by physicists to test for chaos in time series data (Hilborn, 1994). Compared with the 

capacity dimension measure, it has a computational advantage because it uses the 

trajectory points directly and does not require a separate partitioning of the state space. 

Grassberger and Procaccia (1983) define the correlation dimension of a time series as 

] log/)([loglim
0

εε
ε

CD N

→
=  

where N is the embedding dimension and )(εC is the correlation integral. A 

correlation dimension greater than 5 implies essentially random data. 

 

8. Delay time 

Highly random data will have no correlation and its autocorrelation function will 

drop abruptly to 0, implying small correlation time, or called delay time τ. Highly 

correlated data like the output of a sine wave generator will have an autocorrelation 

function that varies with tau (τ) but whose amplitude only slowly decreases. Chaotic 

data from difference equations tend to show little correlation, but chaotic data from 

differential equations may be highly correlated if the sample time is small, since 

adjacent data points have similar. 

3.4 Takens’ Embedding Theorem 

Building the chaotic prediction model, from a time series mainly involves two 

steps: (1) reconstruction of the phase space from data by time delay embedding; and 

(ii) development of a methodology for phase-space prediction. In Figure 1-2, we 
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reconstruct the phase space with the Takens’ embedding theorem by embedding the 

one-dimension time series data into the n-dimensional space. After plotting the time 

series data from the latest observations in the n-dimensional reconstructed phase 

space, we investigated the historical observations neighboring to the latest 

observation. 

 

Generally, the order of a system is described by “N” state variables (“N” stands 

for the number of variables which affect a system) and can be represented as a 

trajectory in the N-dimensional state (phase) space. However, the observable time 

series data is only a part of “N” state variables usually. In this case, from the time 

series data of a single observed variable, its trajectory can be reconstructed in an 

N-dimensional space using delay time. From the observed time series data )(tζ , data 

vector { }))1((),...,(),()( τζτζζ −−−= NttttZ  is generated where N and τ  

represent embedding dimension and delay time. The vector indicates one point of an 

N-dimensional reconstructed state (phase) space. Therefore, a trajectory can be drawn 

in an N-dimensional reconstructed state (phase) space by changing t with τ  fixed. 

When embedding dimension N is sufficiently large, we can say that the reconstructed 

trajectory is embedded in the reconstructed state (phase) space. To be concrete, it has 

been proven by Takens (1981) that retains the phase structure in the original 

O-dimensional state (phase) space, i. e.; the reconstructed trajectory to be embedded 

is as follows. 

N≧2O+1 

If an observed time series data is chaotic, then the trajectories of the time series 

will follow a certain deterministic regularity. Thus, if the deterministic regularity can 

be estimated, then the data in the near future (before the deterministic causality is lost) 

can be predicted. However, since chaos has a property of “sensitivity on the initial 

condition,” we cannot make a long-term prediction for any time series data. 


