CHAPTER 5. DEVELOPMENT OF PREDICTION MODELS

This chapter develops three prediction models to forecast the chaotic traffic flow
time-series data: (1) the temporal confined (TC) model, which uses temporal
similarity for the prediction reasoning; (2) the spatiotemporal confined (STC) model,
which incorporates both spatial and temporal similarities into the prediction reasoning;
(3) the spatial confined (SC) model, which employs spatial similarity for the
prediction reasoning. This chapter is organized as follows: In Section 5.1, details the
proposed three models. Section 5.2 carries out an empirical study. The prediction
performances by these three models are compared. Section 5.3 further conducts

sensitivity analyses by varying the spatial or temporal threshold values.

5.1 Proposed Models

5.1.1 Temporal Confined (TC) Model

Our first prediction model is established on the basis of “temporal confined
(TC)” reasoning concept; thus is termed as TC model. To explain the TC reasoning,
we plot several trajectories as shown in Figure 5-1, of which the patterns of two

historical vectorsZ,(t) andZ,(t) are assumed “significantly dissimilar” from the
current observed vectorZ (t) ; namely, |£,,(t)—&, (t—v)[and|&,, (t) - &, (t—v)| are
significantly larger than ‘gpn () - &t —v)‘ in the n™ dimensional state space, then our

TC reasoning will exclude these two vectors from being selected for the future change

reasoning from Z (t)to Z (t+s).

The “temporal similarity” refers to the situation when the gap of differencing

variable between ¢ (t) and £ (t) issmaller than a designated temporal threshold
value (¢,). In other words, all the historical trajectories are viewed as similar if their
temporal changes are within the temporal sphere confined by a temporal threshold g, .
For the historical trajectories with temporal changes greater than ¢, they will not be

chosen for the prediction reasoning. Theoretically, the smaller the threshold value ¢,
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is, the easier it is to find the trajectories that are similar to the changes of the present

vector trajectories to serve as the basis of future change reasoning. However, if ¢, is

too small, the data might be insufficient to find similar trajectories because too many

historical observations might be excluded. If ¢, is too big, the prediction accuracy

might be compromised. In the present paper, we do not attempt to determine the

optimal temporal threshold value.

We will assign various weights to the differencing variables of historical
observations based on the “degrees of similarity” and then multiply them respectively
by the differencing variables of the future state to estimate the weighted average of
increment for the future change reasoning. Once the increment is estimated, the value
in the future state of the present time series can be predicted. Detailed procedures for

the proposed TC model are explained as follows:
Step 1. Data preprocessing
Plot the time series data Z (t) of the latest observations in the

N-dimensional reconstructed state space.

Z,(0) =¥ t-(-17l,n=12,...,N; (5-1)

Step 2. Feature extraction

Calculate the “past” temporal differencing values of the latest observations

Z ,(t) and of the m historical observations Z  (t) atv steps ahead by egs. (5-2)
and (5-3), respectively.
Aepn(t):é,pn(t)_é/pn(t_v)!n:1l2""’ N (5_2)

AO, ()=C. ()-¢, (t-v),n=12...,N;m=12,...M (5-3)

Step 3. Define the similarity by a temporal threshold

Figure 5-1 illustrates a temporal sphere confined by a temporal threshold ¢, .

We investigate all the historical observations that have “temporal similarity” to
the latest observations. Any historical observations that are within the confined
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sphere are selected as references for prediction reasoning. Namely, choose the

historical observations with differencing values of Ag, (t) and A6, (t)

smaller than ¢, as calculated in eq. (5-4).
‘A%JU—A%AWSQ,mﬂ”ZM,MHﬁLZWHN (5-4)

In Figure 5-1, for example, Z,(t),Z,(t)andZ,,(t) are selected because
their differencing values of A, (t) and Ad,,(t) are smaller thane, ; however,

Z,(t) and Z,(t) are not selected because their differencing values are larger
than ¢,. Let M, denote the number of the historical observations being

selected by the screening through temporal threshold ¢, .

Step 4. Perform the reasoning

IF ‘Aepn(t)—AHmn(t)‘Sgt,THEN AB,.(s) is “fuzzy equal” to A6, (s) (5-5)

Step 5. Calculate the similarity membership degrees

Figure 5-2 illustrates the triangle membership functions, which are

consisted of three differencing values, AG,,(t) , AG, () , A6, (t) . Each

membership degree (w,,) can be estimated by its membership function as

follows:

Opn = & (5'6)
AO, (1) + & — AGy (1)

Step 6. Estimate the “increments” for prediction

Calculate the future differencing values for the latest observations. Use eq.

(5-7) to calculate the estimator AéTC(s) from the differencing
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value Ad,, (s) obtained from eq. (5-5).

Mj
N Za)mnAHmn (S)
Abrc(s) = m:1M1— (5-7)
a)mn
m=1
Step 7. Compute the predicted values for the latest observations
$on(t+5) = £ (0) + A (5) (5-8)

5.1.2 Spatiotemporal Confined (STC) Model

Our second prediction model is established on the basis of “spatial and temporal
confined (STC)” reasoning concept and hence termed as STC model. The STC model
is in effect to further impose a spatial limitation on the TC model. In other words, the
TC model only set up a temporal sphere in selecting the similar trajectories; however,
the STC model set up both temporal and spatial spheres to screen the historical
trajectories for prediction reasoning. Detailed procedures for the proposed STC model

are explained as follows:

Step 1. Data preprocessing

Plot the time series data Z (t) of the latest observations in the

N-dimensional reconstructed state space as the TC model does.

Step 2. Feature extraction

Calculate the “past” temporal differencing values of the latest observations

Z ,(t) and of the m historical observations Z_(t) atv steps ahead as the TC

model does.

Step 3. Define the similarity by spatial and temporal thresholds
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Step 4.

Step 5.

Step 6.

Two threshold values, spatial threshold (&) and temporal threshold (¢,),

are used to define the “similar trajectories” as shown in Figure 5-3. For the
spatial confined reasoning, select historical observations whose

Z,(t)-Z,(t) aresmaller thane,. Namely,

[Clt=(N=Dz]= ¢ lt—(n-Dr] <, m=1,2,...,M; n=1,2,.., N (5-9)

For example, Z,(t), Z,(t), Z,(t) and Z,(t) in Figure 5-2 are
selected because they are within the spatial threshold. Z,, (t) is excluded
because Z ,(t) - Z,, (t) is larger than the spatial threshold value ¢,. For the
temporal confined reasoning, a temporal threshold (¢,) is further applied. As
explained in the TC model case, Z,(t) and Z,(t) are excluded because
their differencing values of AZ (1) and AZ (t) are larger than the
temporal threshold value &, . Let M, Dbe the number of the historical

observations being selected by the screening through thresholds ¢, and ¢,.

Perform the reasoning

IF £ lt— (=Dl & lt-(n-D7] <&, AND [AC,, (1) - AL, (D) <&
THEN AZ, (s) is“fuzzy equal” to AZ, (s) (5-10)
Calculate the similarity membership degrees

Figure 5-4 demonstrates the triangle similarity membership functions

which are consisted of two differencing values, Ag,, (t) and A6, (t) . Each
membership degree (w,,,) can be estimated by its membership function, also

from eq. (5-6).

Estimate the “increments” for prediction

Calculate the future differencing values for the latest observations. Use
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eq. (5-11) to calculate the estimator AéSTC(s) from the differencing

value Ag,, (s) obtained from eq. (5-10).

M3
N z a)mnA emn (S)
AOge(s)=n2 (5-11)

Za)mn
m=1
Step 7. Compute the predicted values for the latest observations

£ o (t+5) =& (1) + Absre (5) (5-12)

5.1.3 Spatial Confined (SC) Model

The third prediction model is established on the basis of “spatial confined (SC)”
reasoning concept and therefore termed as SC model. We only set up a spatial
constraint to screen the historical similar trajectories for the prediction reasoning;
however, the reasoning for the SC model is different from the above two models.

Detailed procedures for the proposed SC model are explained as follows:

Step 1 Data preprocessing
Plot the time series data Z (t) of the latest observations in the

N-dimensional reconstructed state space as the TC model does.

Step 2. Feature extraction

Calculate the “past” temporal differencing values of the latest

observations Z,(t) and of the m historical observations Z (t) at v steps

ahead as the TC model does.

74



Step 3. Define the similarity by a spatial threshold

Same as the first part screening by the spatial threshold in STC model.
For example, Z,(t), Z,(t), Z,(t) and Z,(t) are selected (Figure 5-5)

because they are within the spatial threshold. Z,,(t) is excluded
because Z , (t) - Z,, (t) is larger than the spatial threshold value. Let M; be

the number of the historical observations being selected by the screening

through threshold &

Step 4. Perform the reasoning

IF |t = (n=D)7] =&t = (n-De] < &

THEN ‘Aepn(s)—Aemn(s)‘ is “fuzzy proportion” to ‘Aepn(t)—AHmn(t)‘

(5-13)

Step 5. Calculate the similarity membership degrees

Based on the fuzzy proportional reasoning, as shown in Figure 5-6, each

membership degree (®,,, ) can be estimated as follows:

‘A Hpn (t) - Aemn (t)‘
W =
S, (t)

(5-14)

where 5, (t) = max{z, (t) -z, (t —=v)}, m=1,2,..., M}

Step 6. Estimate the “increments” for prediction

Calculate the future differencing values for the latest observations. Use
eq. (5-15) to calculate the estimator Aésc(s) from the differencing

value A@,_ . (s) obtained from eq. (5-13).
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My
A Za)mnAHmn (s)
Ay (S) ="tF (5-15)

za)mn
m=1
Step 7. Calculate the predicted value for the latest observations
¢ on(t+8)=C,0 (1) + Ady (5) (5-16)

5.2 Empirical Results

521 Data

Our empirical one-minute traffic flow data are directly drawn from 16 detector
stations of the United States I-35 Freeway in Minneapolis, Minnesota. Averages of the
lane-specific traffic counts are accumulated over one-minute period. At each station
the minute-flow data for ten workdays” morning peak hours from 6 am to 9 am are
extracted. Since 20 samples are missing on the last day at some stations, for
consistency, we only take 1,780 samples for each station, of which 1,640 samples are
used for model construction and the remaining 140 samples are for prediction
performance evaluation. The average flow rates for these 16 stations range from 16.8
to 33.8 vehicles per minute per lane, or equivalently, with average headways from

3.57 seconds (a moderate flow) to 1.78 seconds (a saturated, near capacity, flow).

Three parameters of the TC model, including delay time (z), embedding
dimension (N) and temporal threshold (¢, ), need to be determined in advance. While
for the STC and SC models, additional parameter, spatial threshold (&), must be

determined. The delay time is determined by the autocorrelation function (ACF) as
illustrated in Fig. 8 The appropriate delay time is the value when ACF reaches zero at

the first time. At station 32, for instance, the appropriate delay time is 44 minutes. To
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determine appropriate thresholds and embedding dimension, 27 combinations ( &, =4,
5, 6;, £=4,5, 6; N=5, 6, 7) are attempted for each station. The spatial threshold,

temporal threshold and embedding dimension that minimize the prediction errors for
each model are used for further comparison. In the present paper, the number of

prediction step (s) is set equal to 1.

5.2.2 Prediction performance

We use two criteria, root-mean-square percent error RMSPE and Theil inequality
coefficient U, to measure the prediction error. These criteria are defined as follows
(Pindyck and Rubinfeld, 1997):

RMSPE = \/EZ(M)Z (5-17)
T4 X

1 A 2 1 2 1 o2
U= ?Z(xt—xt) /(\/Tth +\/TZXt j (5-18)

where X, , X, respectively represent the predicted and observed values at time t and

T is the number of observations. RMSPE is a good indicator for the comparison of
prediction errors by different models. The smaller the RMSPE is, the higher accuracy
the model will predict. The other good indicator U can take values between zero and
one. The closer to zero U is, the more accurate the prediction is. If U=0, X, = x, for all
tand it is a perfect prediction. If U=1, on the other hand, the predictive performance is
as bad as it possibly could be. Note that the numerator (without square root) of U can
be further decomposed into the following three proportions: the bias (UY), the
variance (U°), and the covariance (U) (Pindyck and Rubinfeld, 1997):

UM=(x -x )2/(1/T)Z(>?t —x,)? (5-19)

U®=(s, —at)z/(llT)Z(it -%)? (5-20)
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uc = 2(1—p)&tat/(1/T)Z(it -X,)* (5-21)

where X%,X%,6, ,0, are the means and standard deviations of the series % and x,,
respectively, and pis their correlation coefficient. The bias proportion U™ is an

indication of systematic error; the variance proportion U® indicates the ability of the
model to replicate the degree of variability; the covariance proportion U® measures
unsystematic error. We would hope that both UM and U® would be close to zero and
UC close to one. For any value of U > 0, the ideal distribution of inequality over the
three prediction error sources is U™ =U® =0andU =1. A large value of UM or U®
(say, above 0.2) would mean that a systematic bias is present or the fluctuation of
actual time series data considerably differs from that of forecasted data; thus the
model should be revised (Pindyck and Rubinfeld, 1997).

Table 5-1 reports the prediction results and information of RMSPE and U (with
three prediction error sources) for the three models. Overall speaking, station 32
performs the worst in prediction while station 52 is the best for our three prediction
models. The possible reason is that station 32 may contain unusual traffic pattern (e.g.,
long-duration incident due to road construct or bad weather during the ten-day
observations) in its original flow time series. For TC model, the value of U ranges
from 0.099 to 0.197 and the value of RMSPE ranges from 0.106 to 0.281. For STC
model, the value of U ranges from 0.089 to 0.180 and the value of RMSPE ranges
from 0.106 to 0.224. For SC model, the value of U ranges from 0.079 to 0.171 and the
value of RMSPE ranges from 0.106 to 0.209. Such small values for RMSPE and U
suggest that our proposed three models have predicted rather satisfactorily. We further
investigate the sources of prediction errors by examining both the bias and variance
proportions for U statistic, which are far less than 0.2 at all stations, robustly
indicating that our prediction models can successfully capture the trends and

fluctuations of one-minute flow dynamics.

In general, the STC model performs somewhat better than the TC and SC models
in low-flow conditions; SC model is slightly superior to the STC model, which
performs better than the TC model in medium- to heavy-flow conditions. Figure 5-10
relates the prediction errors to the traffic volumes. We find that both U and RMSPE
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decline somehow with the increase of traffic volume, implying that our proposed
three prediction models perform better in heavier flow conditions than in lighter ones.
Taking the lightest traffic volume at station 32 (the worst prediction case) and the
highest traffic volume at station 55 (the second-best prediction case) as examples,
Figure 5-8 and 5-9 compare their 140 validation samples between the predicted and
observed one-minute flow time series data. Both Figures 5-8 and 5-9 have
demonstrated the powerful prediction capability of our proposed models, which are
verified by the above-mentioned low U statistic with very small bias and variance

proportions.

5.3 Sensitivity Analysis

We conduct a sensitivity analysis for the STC model by varying the temporal

threshold value g, under the best combination of ¢;and N. Taking the worst case

(station 32) as an example, the result is shown in Figure 5-11, which indicates that as

the temporal threshold ¢, is enlarged, the prediction errors for STC model tend to

decrease and converge to the SC model. It concludes that if we relieve the temporal
restraint, the STC model will perform equally well as the SC model although both
models have utilized somewhat different prediction reasoning rationales.

Furthermore, Figure 5-12 presents another sensitivity analysis for the STC model
by varying the spatial threshold value ¢,under the best combination of &,and N. We
also note that as the spatial threshold¢,is enlarged, the prediction errors of STC

model tend to increase and converge to the TC model. Theoretically, we can view TC

model as a special case of STC model if &, approaches to arbitrarily large. The

sensitivity analysis agrees to this underline theory.

As explained in the models development, the TC model does not rule out any
historical trajectories that are far away from the present observed data in the
reconstructed state space. It only rules out the trajectories beyond a temporal
threshold value ¢,, which are viewed temporal dissimilarity. One may assert that the
distant historical trajectories would be more dissimilar than the nearby trajectories to

the present data. If this is true, the predictive power of TC model must be inferior to
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the STC model. Our empirical cases study has validated this assertion.
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Figure 5-1 Selection of “similar trajectories” by a temporal threshold
(Assume M, =3; i.e., trajectories 1, 3, and M are selected)
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Figure 5-2 Similarity membership degrees for TC Model (M, =3 from Fig. 2)
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Figure 5-3 Selection of “similar trajectories” by spatial and temporal thresholds
(Assume M, =2; i.e., trajectories 1 and 3 are selected)
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Figure 5-4 Similarity membership degrees for STC model (M, =2 from Fig. 4)
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Figure 5-5 Selection of “similar trajectories” by spatial threshold
(Assume M, =4, i.e., trajectories 1, 2, 3 and 4 are selected)
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Figure 5-6 Similarity membership degrees for SC model (M = 4 from Fig. 6)
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Figure 5-8 Comparison of predicted and observed traffic flows at the lightest traffic
volume station 32 (the worst prediction case)
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Figure 5-9. Comparison of predicted and observed traffic flows at the highest traffic

volume station 55
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Figure 5-10 Prediction errors with respect to traffic volumes
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Table 5-1 Prediction performances for the three models and sources of prediction

errors

Station | Traffic volume | \\ '\ | . | - | Embedding Delay time RMSPE U Sources of prediction error

no. (veh/min/lane) s|“t| dimension | 7 (minutes) oM Us e
TC |- |6 6 0.281 0.197 0.000 0.106 0.894
32 16.8 STC (4|5 6 44 0.224 0.180 0.001 0.076 0.923
SC |5]- 6 0.208 0.171 0.000 0.079 0.921
TC |- |6 7 0.169 0.167 0.000 0.151 0.849
49 21.9 STC (4|4 7 27 0.169 0.129 0.002 0.021 0.977
SC | 4] - 7 0.169 0.141 0.002 0.056 0.942
TC -6 5 0.215 0.162 0.001 0.156 0.843
45 23.7 STC (4|4 7 22 0.177 0.146 0.000 0.019 0.981
SC | 4] - 7 0.177 0.161 0.009 0.035 0.956
TC -6 5 0.227 0.170 0.000 0.153 0.847
48 239 STC |4 |4 6 25 0.146 0.136 0.000 0.016 0.984
SC | 4] - 5 0.144 0.143 0.000 0.092 0.908
TC -6 5 0.226 0.148 0.001 0.142 0.857
44 24.8 STC |46 6 20 0.144 0.133 0.002 0.030 0.968
SC 51 - 5 0.131 0.128 0.000 0.075 0.925
TC -15 5 0.138 0.127 0.001 0.147 0.852
50 25.6 STC |46 7 23 0.130 0.119 0.001 0.045 0.954
SC 4 - 7 0.130 0.114 0.002 0.018 0.980
TC |- |6 5 0.188 0.188 0.000 0.164 0.836
39 27.8 STC |45 7 28 0.186 0.124 0.001 0.003 0.996
SC |4] - 7 0.186 0.134 0.000 0.009 0.991
TC |- |6 5 0.192 0.182 0.002 0.167 0.831
43 28.9 STC (4|4 6 29 0.196 0.144 0.001 0.005 0.994
SC |4 - 7 0.209 0.163 0.005 0.050 0.945
TC |- |6 5 0.192 0.166 0.001 0.176 0.823
41 29.9 STC (4|4 7 29 0.209 0.113 0.002 0.002 0.996
SC | 4] - 7 0.209 0.117 0.001 0.002 0.997
TC |- |6 6 0.139 0.124 0.001 0.185 0.814
42 319 STC |46 7 29 0.209 0.106 0.006 0.006 0.988
SC | 5] - 7 0.209 0.109 0.003 0.005 0.992
TC -6 5 0.106 0.099 0.004 0.111 0.885
52 319 STC [ 45 5 27 0.106 0.098 0.013 0.107 0.880
SC | 7] - 5 0.106 0.085 0.006 0.023 0.971
TC -6 7 0.137 0.125 0.001 0.174 0.825
51 325 STC |45 6 24 0.114 0.089 0.000 0.007 0.993
SC | 4] - 6 0.114 0.096 0.002 0.024 0.974
TC -16 6 0.127 0.112 0.002 0.127 0.871
53 325 STC |46 5 27 0.106 0.094 0.001 0.072 0.927
SC 51 - 5 0.106 0.092 0.001 0.056 0.943
54 32.8 TC -6 6 27 0.127 0.119 0.001 0.123 0.876
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STC |46 5 0.106 0.105 0.000 0.081 0.919
SC |[5] - 5 0.106 0.096 0.006 0.028 0.966
TC |- |6 5 0.108 0.107 0.003 0.142 0.855
56 33.2 STC |4 |6 5 28 0.108 0.105 0.008 0.134 0.858
SC |5]- 5 0.108 0.095 0.005 0.061 0.934
TC |- |6 5 0.106 0.103 0.003 0.155 0.842
55 33.8 STC |4 |5 5 27 0.106 0.100 0.002 0.046 0.952
SC |5]- 5 0.106 0.093 0.000 0.061 0.939

Note: The bias proportion U™ is an indication of systematic error; the variance proportion US indicates the ability of the model to
replicate the degree of variability; the covariance proportion U® measures unsystematic error. For a satisfactory prediction model,
both RMSPE and U values should be small (practically, no greater than 0.2). The ideal distribution for U > 0 is that both U™ and
U® should be close to zero (less than 0.2) and U® close to one.

90




