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CHAPTER 5. DEVELOPMENT OF PREDICTION MODELS 

This chapter develops three prediction models to forecast the chaotic traffic flow 

time-series data: (1) the temporal confined (TC) model, which uses temporal 

similarity for the prediction reasoning; (2) the spatiotemporal confined (STC) model, 

which incorporates both spatial and temporal similarities into the prediction reasoning; 

(3) the spatial confined (SC) model, which employs spatial similarity for the 

prediction reasoning. This chapter is organized as follows: In Section 5.1, details the 

proposed three models. Section 5.2 carries out an empirical study. The prediction 

performances by these three models are compared. Section 5.3 further conducts 

sensitivity analyses by varying the spatial or temporal threshold values. 

5.1  Proposed Models 

5.1.1 Temporal Confined (TC) Model 

Our first prediction model is established on the basis of “temporal confined 

(TC)” reasoning concept; thus is termed as TC model. To explain the TC reasoning, 

we plot several trajectories as shown in Figure 5-1, of which the patterns of two 

historical vectors )(2 tΖ  and )(4 tΖ  are assumed “significantly dissimilar” from the 

current observed vector )(tpΖ ; namely, )()( 22 vtt nn −−ξξ and )()( 44 vtt nn −−ξξ  are 

significantly larger than )()( vtt pnpn −−ξξ  in the nth dimensional state space, then our 

TC reasoning will exclude these two vectors from being selected for the future change 

reasoning from )(tpΖ to )( stp +Ζ . 

 

The “temporal similarity” refers to the situation when the gap of differencing 

variable between )(tpnζ  and )(tmnζ  is smaller than a designated temporal threshold 

value ( tε ). In other words, all the historical trajectories are viewed as similar if their 

temporal changes are within the temporal sphere confined by a temporal threshold tε . 

For the historical trajectories with temporal changes greater than tε , they will not be 

chosen for the prediction reasoning. Theoretically, the smaller the threshold value tε  
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is, the easier it is to find the trajectories that are similar to the changes of the present 

vector trajectories to serve as the basis of future change reasoning. However, if tε  is 

too small, the data might be insufficient to find similar trajectories because too many 

historical observations might be excluded. If tε  is too big, the prediction accuracy 

might be compromised. In the present paper, we do not attempt to determine the 

optimal temporal threshold value. 

 

We will assign various weights to the differencing variables of historical 

observations based on the “degrees of similarity” and then multiply them respectively 

by the differencing variables of the future state to estimate the weighted average of 

increment for the future change reasoning. Once the increment is estimated, the value 

in the future state of the present time series can be predicted. Detailed procedures for 

the proposed TC model are explained as follows: 

Step 1. Data preprocessing 

Plot the time series data )(tpΖ  of the latest observations in the 

N-dimensional reconstructed state space. 

}{ N,1,2,n ],)1([)( …=−−=Ζ τζ ntt pnp                           (5-1) 

 

Step 2. Feature extraction 

Calculate the “past” temporal differencing values of the latest observations 

)(tpΖ  and of the m historical observations )(tmΖ  at v steps ahead by eqs. (5-2) 

and (5-3), respectively. 

Nnvttt pnpnpn ,...,2,1),()()( =−−=∆ ζζθ                         (5-2) 

MmNnvttt mnmnmn ,...,2,1;,...,2,1),()()( ==−−=∆ ζζθ              (5-3) 

 

Step 3. Define the similarity by a temporal threshold 

Figure 5-1 illustrates a temporal sphere confined by a temporal threshold tε . 

We investigate all the historical observations that have “temporal similarity” to 

the latest observations. Any historical observations that are within the confined 
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sphere are selected as references for prediction reasoning. Namely, choose the 

historical observations with differencing values of )(tpnθ∆  and )(tmnθ∆  

smaller than tε as calculated in eq. (5-4). 

 

tmnpn tt εθθ ≤∆−∆ )()( , m=1, 2,…, M; n=1, 2,…, N                  (5-4) 

 

In Figure 5-1, for example, )(1 tΖ , )(3 tΖ and )(tMΖ are selected because 

their differencing values of )(tpnθ∆  and )(tmnθ∆  are smaller than tε ; however, 

)(2 tΖ  and )(4 tΖ  are not selected because their differencing values are larger 

than tε . Let 1M ′  denote the number of the historical observations being 

selected by the screening through temporal threshold tε . 

 

Step 4. Perform the reasoning 

    IF tmnpn tt εθθ ≤∆−∆ )()( , THEN )(spnθ∆  is “fuzzy equal” to )(smnθ∆  (5-5) 

 

Step 5. Calculate the similarity membership degrees 

Figure 5-2 illustrates the triangle membership functions, which are 

consisted of three differencing values, )(1 tnθ∆ , )(3 tnθ∆ , )(tMnθ∆ . Each 

membership degree ( mnω ) can be estimated by its membership function as 

follows: 

 

)()( tt mntpn

t
mn θεθ

εω
∆−+∆

=                                     (5-6) 

 

Step 6. Estimate the “increments” for prediction 

Calculate the future differencing values for the latest observations. Use eq. 

(5-7) to calculate the estimator )(ˆ sTCθ∆ from the differencing 
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value )(smnθ∆ obtained from eq. (5-5). 
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Step 7. Compute the predicted values for the latest observations 

)(ˆ)()( stst TCpnpn θζζ ∆+=+
∧

                                   (5-8)  

 

5.1.2 Spatiotemporal Confined (STC) Model 

Our second prediction model is established on the basis of “spatial and temporal 

confined (STC)” reasoning concept and hence termed as STC model. The STC model 

is in effect to further impose a spatial limitation on the TC model. In other words, the 

TC model only set up a temporal sphere in selecting the similar trajectories; however, 

the STC model set up both temporal and spatial spheres to screen the historical 

trajectories for prediction reasoning. Detailed procedures for the proposed STC model 

are explained as follows: 

 

Step 1. Data preprocessing 

Plot the time series data )(tpΖ  of the latest observations in the 

N-dimensional reconstructed state space as the TC model does. 

 

Step 2. Feature extraction 

Calculate the “past” temporal differencing values of the latest observations 

)(tpΖ  and of the m historical observations )(tmΖ  at v steps ahead as the TC 

model does. 

 

Step 3. Define the similarity by spatial and temporal thresholds 



 73

Two threshold values, spatial threshold ( sε ) and temporal threshold ( tε ), 

are used to define the “similar trajectories” as shown in Figure 5-3. For the 

spatial confined reasoning, select historical observations whose 

)()( tt mp Ζ−Ζ  are smaller than sε . Namely, 

1])1([])1([ ετζτζ ≤−−−−− ntnt mnpn , m=1, 2,…, M; n=1, 2,…, N   (5-9) 

 

For example, )(1 tΖ , )(2 tΖ , )(3 tΖ  and )(4 tΖ  in Figure 5-2 are 

selected because they are within the spatial threshold. )(tMΖ  is excluded 

because )()( tt Mp Ζ−Ζ is larger than the spatial threshold value sε . For the 

temporal confined reasoning, a temporal threshold ( tε ) is further applied. As 

explained in the TC model case, )(2 tΖ  and )(4 tΖ  are excluded because 

their differencing values of )(tpnζ∆  and )(tmnζ∆  are larger than the 

temporal threshold value tε . Let 2M ′  be the number of the historical 

observations being selected by the screening through thresholds sε  and tε . 

 

Step 4. Perform the reasoning 

      IF smnpn ntnt ετζτζ ≤−−−−− ])1([])1([  AND tmnpn tt εζζ ≤∆−∆ )()(  

THEN )(spnζ∆  is “fuzzy equal” to )(smnζ∆                   (5-10) 

 

Step 5. Calculate the similarity membership degrees 

Figure 5-4 demonstrates the triangle similarity membership functions 

which are consisted of two differencing values, )(1 tnθ∆ and )(3 tnθ∆ . Each 

membership degree ( mnω ) can be estimated by its membership function, also 

from eq. (5-6). 

           

Step 6. Estimate the “increments” for prediction  

Calculate the future differencing values for the latest observations. Use 
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eq. (5-11) to calculate the estimator )(ˆ sSTCθ∆ from the differencing 

value )(smnθ∆ obtained from eq. (5-10). 
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Step 7. Compute the predicted values for the latest observations 

 

)(ˆ)()( stst STCpnpn θζζ ∆+=+
∧

                                (5-12) 

 

5.1.3 Spatial Confined (SC) Model 

The third prediction model is established on the basis of “spatial confined (SC)” 

reasoning concept and therefore termed as SC model. We only set up a spatial 

constraint to screen the historical similar trajectories for the prediction reasoning; 

however, the reasoning for the SC model is different from the above two models. 

Detailed procedures for the proposed SC model are explained as follows: 

 

Step 1 Data preprocessing  

Plot the time series data )(tpΖ of the latest observations in the 

N-dimensional reconstructed state space as the TC model does. 

 

Step 2. Feature extraction 

Calculate the “past” temporal differencing values of the latest 

observations )(tpΖ  and of the m historical observations )(tmΖ  at v steps 

ahead as the TC model does. 
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Step 3. Define the similarity by a spatial threshold 

Same as the first part screening by the spatial threshold in STC model. 

For example, )(1 tΖ , )(2 tΖ , )(3 tΖ  and )(4 tΖ  are selected (Figure 5-5) 

because they are within the spatial threshold. )(tMΖ  is excluded 

because )()( tt mp Ζ−Ζ is larger than the spatial threshold value. Let 3M ′  be 

the number of the historical observations being selected by the screening 

through threshold sε  

 

Step 4. Perform the reasoning 

 

IF tmnpn ntnt ετζτζ ≤−−−−− ])1([])1([   

THEN )()( ss mnpn θθ ∆−∆  is “fuzzy proportion” to )()( tt mnpn θθ ∆−∆  

(5-13) 

 

Step 5. Calculate the similarity membership degrees 

Based on the fuzzy proportional reasoning, as shown in Figure 5-6, each 

membership degree ( mnω ) can be estimated as follows: 

 

)(
)()(

t
tt

n

mnpn
mn δ

θθ
ω

∆−∆
=                                       (5-14) 

 

where { })()(max)( vtztzt mmn −−=δ , m=1,2,..., 3M ′  

 

Step 6. Estimate the “increments” for prediction  

Calculate the future differencing values for the latest observations. Use 

eq. (5-15) to calculate the estimator )(ˆ sSCθ∆ from the differencing 

value )(smnθ∆ obtained from eq. (5-13). 
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Step 7. Calculate the predicted value for the latest observations 

 

)(ˆ)()( stst SCpnpn θζζ ∆+=+
∧

                                 (5-16) 

 

5.2  Empirical Results 

5.2.1  Data 

 
Our empirical one-minute traffic flow data are directly drawn from 16 detector 

stations of the United States I-35 Freeway in Minneapolis, Minnesota. Averages of the 

lane-specific traffic counts are accumulated over one-minute period. At each station 

the minute-flow data for ten workdays’ morning peak hours from 6 am to 9 am are 

extracted. Since 20 samples are missing on the last day at some stations, for 

consistency, we only take 1,780 samples for each station, of which 1,640 samples are 

used for model construction and the remaining 140 samples are for prediction 

performance evaluation. The average flow rates for these 16 stations range from 16.8 

to 33.8 vehicles per minute per lane, or equivalently, with average headways from 

3.57 seconds (a moderate flow) to 1.78 seconds (a saturated, near capacity, flow). 

 
Three parameters of the TC model, including delay time (τ), embedding 

dimension (N) and temporal threshold ( tε ), need to be determined in advance. While 

for the STC and SC models, additional parameter, spatial threshold ( sε ), must be 

determined. The delay time is determined by the autocorrelation function (ACF) as 

illustrated in Fig. 8 The appropriate delay time is the value when ACF reaches zero at 

the first time. At station 32, for instance, the appropriate delay time is 44 minutes. To 
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determine appropriate thresholds and embedding dimension, 27 combinations ( sε =4, 

5, 6; tε =4, 5, 6; N= 5, 6, 7) are attempted for each station. The spatial threshold, 

temporal threshold and embedding dimension that minimize the prediction errors for 

each model are used for further comparison. In the present paper, the number of 

prediction step (s) is set equal to 1. 

 

5.2.2 Prediction performance 

 
We use two criteria, root-mean-square percent error RMSPE and Theil inequality 

coefficient U, to measure the prediction error. These criteria are defined as follows 

(Pindyck and Rubinfeld, 1997): 

 

∑ −
=

t t

tt

x
xx

T
RMSPE 2)

ˆ
(1                                      (5-17) 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= ∑∑∑

t
t

t
t

t
tt x

T
x

T
xx

T
U 222 ˆ11)ˆ(1                      (5-18) 

 

where tx̂ , tx respectively represent the predicted and observed values at time t and 

T is the number of observations. RMSPE is a good indicator for the comparison of 

prediction errors by different models. The smaller the RMSPE is, the higher accuracy 

the model will predict. The other good indicator U can take values between zero and 

one. The closer to zero U is, the more accurate the prediction is. If U=0, tt xx =ˆ for all 

t and it is a perfect prediction. If U=1, on the other hand, the predictive performance is 

as bad as it possibly could be. Note that the numerator (without square root) of U can 

be further decomposed into the following three proportions: the bias (UM), the 

variance (US), and the covariance (UC) (Pindyck and Rubinfeld, 1997): 

 

∑ −−=
t

tt
M xxTxxU 22 )ˆ()/1()ˆ(                               (5-19) 
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∑ −−=
t

tttt
C xxTU 2)ˆ()/1(ˆ)1(2 σσρ                              (5-21) 

 

where ttxx σσ ,ˆ,,ˆ 22 are the means and standard deviations of the series tx̂ and tx , 

respectively, and ρ is their correlation coefficient. The bias proportion UM is an 

indication of systematic error; the variance proportion US indicates the ability of the 

model to replicate the degree of variability; the covariance proportion UC measures 

unsystematic error. We would hope that both UM and US would be close to zero and 

UC close to one. For any value of U > 0, the ideal distribution of inequality over the 

three prediction error sources is 0== SM UU and 1=CU . A large value of UM or US 

(say, above 0.2) would mean that a systematic bias is present or the fluctuation of 

actual time series data considerably differs from that of forecasted data; thus the 

model should be revised (Pindyck and Rubinfeld, 1997). 

 
Table 5-1 reports the prediction results and information of RMSPE and U (with 

three prediction error sources) for the three models. Overall speaking, station 32 

performs the worst in prediction while station 52 is the best for our three prediction 

models. The possible reason is that station 32 may contain unusual traffic pattern (e.g., 

long-duration incident due to road construct or bad weather during the ten-day 

observations) in its original flow time series. For TC model, the value of U ranges 

from 0.099 to 0.197 and the value of RMSPE ranges from 0.106 to 0.281. For STC 

model, the value of U ranges from 0.089 to 0.180 and the value of RMSPE ranges 

from 0.106 to 0.224. For SC model, the value of U ranges from 0.079 to 0.171 and the 

value of RMSPE ranges from 0.106 to 0.209. Such small values for RMSPE and U 

suggest that our proposed three models have predicted rather satisfactorily. We further 

investigate the sources of prediction errors by examining both the bias and variance 

proportions for U statistic, which are far less than 0.2 at all stations, robustly 

indicating that our prediction models can successfully capture the trends and 

fluctuations of one-minute flow dynamics. 

 
In general, the STC model performs somewhat better than the TC and SC models 

in low-flow conditions; SC model is slightly superior to the STC model, which 

performs better than the TC model in medium- to heavy-flow conditions. Figure 5-10 

relates the prediction errors to the traffic volumes. We find that both U and RMSPE 
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decline somehow with the increase of traffic volume, implying that our proposed 

three prediction models perform better in heavier flow conditions than in lighter ones. 

Taking the lightest traffic volume at station 32 (the worst prediction case) and the 

highest traffic volume at station 55 (the second-best prediction case) as examples, 

Figure 5-8 and 5-9 compare their 140 validation samples between the predicted and 

observed one-minute flow time series data. Both Figures 5-8 and 5-9 have 

demonstrated the powerful prediction capability of our proposed models, which are 

verified by the above-mentioned low U statistic with very small bias and variance 

proportions. 

 

5.3  Sensitivity Analysis 

We conduct a sensitivity analysis for the STC model by varying the temporal 

threshold value tε under the best combination of sε and N. Taking the worst case 

(station 32) as an example, the result is shown in Figure 5-11, which indicates that as 

the temporal threshold tε is enlarged, the prediction errors for STC model tend to 

decrease and converge to the SC model. It concludes that if we relieve the temporal 

restraint, the STC model will perform equally well as the SC model although both 

models have utilized somewhat different prediction reasoning rationales. 

 
Furthermore, Figure 5-12 presents another sensitivity analysis for the STC model 

by varying the spatial threshold value sε under the best combination of tε and N. We 

also note that as the spatial threshold sε is enlarged, the prediction errors of STC 

model tend to increase and converge to the TC model. Theoretically, we can view TC 

model as a special case of STC model if sε approaches to arbitrarily large. The 

sensitivity analysis agrees to this underline theory. 

 
As explained in the models development, the TC model does not rule out any 

historical trajectories that are far away from the present observed data in the 

reconstructed state space. It only rules out the trajectories beyond a temporal 

threshold value tε , which are viewed temporal dissimilarity. One may assert that the 

distant historical trajectories would be more dissimilar than the nearby trajectories to 

the present data. If this is true, the predictive power of TC model must be inferior to 
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the STC model. Our empirical cases study has validated this assertion. 
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Figure 5-1 Selection of “similar trajectories” by a temporal threshold 
(Assume 1M ′ =3; i.e., trajectories 1, 3, and M are selected) 
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Figure 5-2 Similarity membership degrees for TC Model ( 1M ′ =3 from Fig. 2) 
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Figure 5-3 Selection of “similar trajectories” by spatial and temporal thresholds 
(Assume 2M ′ =2; i.e., trajectories 1 and 3 are selected) 
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Figure 5-4 Similarity membership degrees for STC model ( 22 =′M  from Fig. 4) 
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Figure 5-5 Selection of “similar trajectories” by spatial threshold 
(Assume 3M ′ =4; i.e., trajectories 1, 2, 3 and 4 are selected) 
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Figure 5-6 Similarity membership degrees for SC model ( 43 =′M from Fig. 6) 
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Figure 5-7 Autocorrelation function 

(Station 32, for example) 
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(b) STC Model 
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(c) SC Model 
(Solid line is the observed data; dot line is the predicted data) 

 
Figure 5-8 Comparison of predicted and observed traffic flows at the lightest traffic 

volume station 32 (the worst prediction case) 
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(Solid line is the observed data; dot line is the predicted data) 
 

Figure 5-9. Comparison of predicted and observed traffic flows at the highest traffic 
volume station 55  
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(a) TC Model 
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(b) STC Model 
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(c) SC Model 
 

Figure 5-10 Prediction errors with respect to traffic volumes 
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(Solid line is the SC model; dot line is the STC model) 

Figure 5-11 Sensitivity analysis for temporal threshold value tε  
 (Station 32, for example) 
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(Solid line is the TC model; dot line is the STC model) 

Figure 5-12 Sensitivity analysis for spatial threshold value sε  
(Station 32, for example) 
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Table 5-1 Prediction performances for the three models and sources of prediction 
errors 

Sources of prediction error 
Station 

no. 
Traffic volume 
(veh/min/lane) Model sε tε  Embedding 

dimension
Delay time
τ (minutes) RMSPE U 

UM US UC 

TC - 6 6 0.281 0.197 0.000 0.106 0.894 

STC 4 5 6 0.224 0.180 0.001 0.076 0.923 32 16.8 

SC 5 - 6 

44 

0.208 0.171 0.000 0.079 0.921 

TC - 6 7 0.169 0.167 0.000 0.151 0.849 

STC 4 4 7 0.169 0.129 0.002 0.021 0.977 49 21.9 

SC 4 - 7 

27 

0.169 0.141 0.002 0.056 0.942 

TC - 6 5 0.215 0.162 0.001 0.156 0.843 

STC 4 4 7 0.177 0.146 0.000 0.019 0.981 45 23.7 

SC 4 - 7 

22 

0.177 0.161 0.009 0.035 0.956 

TC - 6 5 0.227 0.170 0.000 0.153 0.847 

STC 4 4 6 0.146 0.136 0.000 0.016 0.984 48 23.9 

SC 4 - 5 

25 

0.144 0.143 0.000 0.092 0.908 

TC - 6 5 0.226 0.148 0.001 0.142 0.857 

STC 4 6 6 0.144 0.133 0.002 0.030 0.968 44 24.8 

SC 5 - 5 

20 

0.131 0.128 0.000 0.075 0.925 

TC - 5 5 0.138 0.127 0.001 0.147 0.852 

STC 4 6 7 0.130 0.119 0.001 0.045 0.954 50 25.6 

SC 4 - 7 

23 

0.130 0.114 0.002 0.018 0.980 

TC - 6 5 0.188 0.188 0.000 0.164 0.836 

STC 4 5 7 0.186 0.124 0.001 0.003 0.996 39 27.8 

SC 4 - 7 

28 

0.186 0.134 0.000 0.009 0.991 

TC - 6 5 0.192 0.182 0.002 0.167 0.831 

STC 4 4 6 0.196 0.144 0.001 0.005 0.994 43 28.9 

SC 4 - 7 

29 

0.209 0.163 0.005 0.050 0.945 

TC - 6 5 0.192 0.166 0.001 0.176 0.823 

STC 4 4 7 0.209 0.113 0.002 0.002 0.996 41 29.9 

SC 4 - 7 

29 

0.209 0.117 0.001 0.002 0.997 

TC - 6 6 0.139 0.124 0.001 0.185 0.814 

STC 4 6 7 0.209 0.106 0.006 0.006 0.988 42 31.9 

SC 5 - 7 

29 

0.209 0.109 0.003 0.005 0.992 

TC - 6 5 0.106 0.099 0.004 0.111 0.885 

STC 4 5 5 0.106 0.098 0.013 0.107 0.880 52 31.9 

SC 7 - 5 

27 

0.106 0.085 0.006 0.023 0.971 

TC - 6 7 0.137 0.125 0.001 0.174 0.825 

STC 4 5 6 0.114 0.089 0.000 0.007 0.993 51 32.5 

SC 4 - 6 

24 

0.114 0.096 0.002 0.024 0.974 

TC - 6 6 0.127 0.112 0.002 0.127 0.871 

STC 4 6 5 0.106 0.094 0.001 0.072 0.927 53 32.5 

SC 5 - 5 

27 

0.106 0.092 0.001 0.056 0.943 

54 32.8 TC - 6 6 27 0.127 0.119 0.001 0.123 0.876 
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STC 4 6 5 0.106 0.105 0.000 0.081 0.919   

SC 5 - 5 

 

0.106 0.096 0.006 0.028 0.966 

TC - 6 5 0.108 0.107 0.003 0.142 0.855 

STC 4 6 5 0.108 0.105 0.008 0.134 0.858 56 33.2 

SC 5 - 5 

28 

0.108 0.095 0.005 0.061 0.934 

TC - 6 5 0.106 0.103 0.003 0.155 0.842 

STC 4 5 5 0.106 0.100 0.002 0.046 0.952 55 33.8 

SC 5 - 5 

27 

0.106 0.093 0.000 0.061 0.939 
Note: The bias proportion UM is an indication of systematic error; the variance proportion US indicates the ability of the model to 
replicate the degree of variability; the covariance proportion UC measures unsystematic error. For a satisfactory prediction model, 
both RMSPE and U values should be small (practically, no greater than 0.2). The ideal distribution for U > 0 is that both UM and  
US should be close to zero (less than 0.2) and UC close to one. 


