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Chapter 2 

LITERATURE REVIEW 

 

This chapter reviewed existing macroscopic continuum traffic flow models and the 

simulation methods applied to solve them. A few recently developed numerical methods for 

hyperbolic PDEs were also surveyed in this study. 

 

2.1 Review of Macroscopic Continuum Traffic Flow Models 

2.1.1 The Simple Continuum Model 

The landmark papers of Lighthill and Whitham (1955), as well as Richards (1956) mark 

the birth of dynamic macroscopic modeling of traffic flow. In this macroscopic model, three 

aggregate variables, density, flow rate, and space-mean speed, are used. This 

Lighthill-Whitham-Richards (LWR) model consists essentially of the conservation equation 
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supplemented by the fundamental equation of traffic flow 

kuq =                                                                   (2.2) 

and a speed-density (u-k) relationship  

)(kuu e= ,                                                               (2.3) 

where k represents the traffic density; q the flow rate of the traffic stream; u the space-mean 

speed. t and x is time and space, respectively. The equilibrium relationship between the speed 

and the traffic density is denoted as )(kue , and ),( txg  represents the generation of flow. 

Since there is only one partial differential equation, the LWR model henceforth is called 
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“the simple continuum model.” The most significant result of the simple continuum model is 

manifestation of shock waves in traffic flow. However, since the PDE is nonlinear and 

dominated by the convective term, the simple continuum model easily produces discontinuous 

solutions even when the initial condition is arbitrary smooth.  

In addition, since speed in the simple continuum model is totally determined by the 

statistical equilibrium speed-density relationship (2.3), no fluctuations of speed around the 

equilibrium values are allowed. Moreover, the simple continuum model does not have the 

ability to explain the amplification of small disturbances in heavy traffic because no stable 

condition can be derived from the model. Therefore, from theoretical point of view, the simple 

continuum model does not adequately describe traffic flow dynamics, especially at transient 

flow conditions. 

Although LWR mode is not perfect, it is still the best available description of kinematical 

waves in traffic, particularly if the intensity of perturbations is not too large. It was used by 

Lighthill and Whitham to provide a fair description of the behavior of traffic in front of 

bottlenecks and the periodic disturbances caused by traffic light. 

Newell (1993) evaluated flows or densities by cumulative flow A(x,t) past any point x by 

time t. It is shown how a formal solution for A(x,t) can be evaluated directly from boundary or 

initial conditions. Daganzo (1994) presented a model on a highway with a single entrance and 

exit. The model proposed can be used to predict traffic’s evolution over time and space, 

including transient phenomena such as the building, propagation, and dissipation of queue. 

The well-solved difference equations were derived from a special case of the hydrodynamic 

model of traffic flow. Daganzo (1995a) extended the difference equations to network traffic. 

2.1.2 The High Order Continuum Models 

In order to overcome the defects in the simple continuum model, Payne (1971) and 

Whitham (1974) developed the first high-order dynamic and macroscopic traffic flow model 
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based on a nonlinear car- following model by means of Taylor’s series expansions. 

Payne-Whitham (PW) model is commonly called “the original high-order model”. The state 

equations of the original high-order model are 
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is an anticipation term taking into account awareness of the drivers for the traffic condition 

ahead, where ( )kPe  is an equilibrium traffic pressure. The anticipation term used by Payne is 

determined by ( ) ( ) ( )kukP ee ′=′ τ21 . In general, ( ) ( )kkkP ee θ= , where ( )keθ  denotes speed 

variance. Analogous to the situation for ( )kue , there have been different suggestions for the 

function ( )keθ . For example, Kühne  (1991), and Kerner and Kohnhäuser (1993, 1994) 

suggested a constant value ( ) 2
0cke =θ , whereas Phillips (1977) proposed a linear relation 

( ) ( )mme kkk −= 1θθ . The dependence of speed ( )kue  and variance ( )keθ  on the density in 

the equilibrium case can be derived by means of kinetic theory from the equilibrium 

distribution function. 

Furthermore, due to the original high order model having two different characteristic 

speeds Tu νλ +=1  and Tu νλ −=2 , the original high order model allows negative speeds 

at the tail of congested regions which violates an essential characteristic of traffic flow 

(Daganzo, 1995b), i.e. traffic flow cannot move at a negative speed.  

Since 1971, several high order models have been developed by some researchers in 
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traffic flow theory. All those high order models have made some changes to the original high 

order model. For example, Papageorgiou (1983) made some improvements to the Euler 

discretized form of the PW model based on the computational experiments. The equations of 

Papageorgiou’s improved high order model are 
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where, in addition to the previous notation, æ and ê are the two new parameters which were 

introduced to improve the computational results of the PW model. The third term, 
k
u

gη , 

was introduced to handle the traffic friction between the main flow and the merging(or 

diverging) flow. However, the third term did not correctly describe the traffic friction because 

it turns to the maximum value when the density on the freeway is close to zero, which is not 

realistic. 

Phillips (1979) derived a high order continuum traffic flow model form a kinematic 

model by taking moments of the associated Boltzmann equation. The equations for Phillips’ 

high order model are 
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where, in addition to the previous notation. T(k) is the relaxation time with the form: 
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where b is the number of lanes, kj is the jam density and ul is an experimentally determined 

proportionality constant. P(k) is a traffic pressure function with the form: 
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)()( kkAkkP j −= , 

where A is a constant. It seems that Phillips’ model accounts for passing and lane changing on 

multilane highways due to his model involving vehicular interaction. Comparing with the 

original high order model, this model also has a smooth solution under certain conditions and 

is able to explain the amplification of small disturbances on heavy traffic. Moreover, this 

model is consistent with the simple continuum model in the equilibrium limit. 

Kühne (1984) developed a high order model based on the Navier-Stokes equations for a 

viscosity term including in the momentum equation. The equations for Kühne’s model are 
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where the third term 2

2

x
u

∂
∂υ  is the viscosity term. Thus, this model seems to be more realistic 

because all the properties of a continuous flow behavior can be described by the 

Navier-Stokes equations. Due to viscosity effects, discontinuous solutions that exist in other 

high order models do not exist in Kühne’s model. The model was used to capture stop-start 

waves. 

Michalopoulos et al. (1991b, 1993a, 1993b) developed two high order continuum models. 

One is the semi-viscous high order model, and the other is the viscous high order model. The 

semi-viscous model are shown as follows  
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where ì is a geometry parameter depending on the type of road geometry and á is a 

dimensionless constant. T(k) is the relaxation time with the form 
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where T0>0 and 0<ã<1 are constants. The third term, gkαµ , was introduced to handle the 

traffic friction. Since the traffic friction turns to maximum value when the density on the 

freeway approaches jam density, the third term did not correctly describe the traffic friction. 

While the density on the freeway approaches jam density, the flow speed is already low. Thus 

traffic friction as defined earlier is likely negligible. In addition, since there is no absolute 

value of g in the third term, the speed of the main flow will be increased in diverging 

situations, which is also unrealistic. 

The viscous model was formed as follows 
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where â is a dimensionless constant. Because of no relaxation time, this model is no longer 

consistent with the simple continuum model. 

The main feature of the semi-viscous and viscous models is that the equilibrium 

speed-density relationship is never required. However, since the equilibrium speed is replaced 

by free flow speed, incorrect trends for speed might be produced by the semi-viscous model 

under the varying distribution of free flow speed on a highway. In addition, the semi-viscous 

model is not consistent with the simple continuum model in the equilibrium limit. In the 

viscous model, since the relaxation process is totally replaced by viscosity, the accuracy of the 

viscous model describing traffic dynamics could be a problem in congested situations(Liu et 

al., 1997). 

It is clear to see that these high order models mentioned above are still based on the 

fundamental structure of the original high order model. Thus, they have two different 
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characteristic speeds: one is always positive and greater than the flow velocity; another is 

negative under congestion conditions. Therefore, these high order models suffer from the 

same serious defects as the PW model. 

Helbing (1996b) extended the PW model by introducing an additional PDE for the 

velocity variance θ . His macroscopic model is derived from gas-kinetic equations and 

consists of the conservation of vehicles equations and the velocity dynamics. Helbing’s model 
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describing the dynamics of the varianceθ  with eθ  depending on k  is the same way as eu  

in theose PW-like models. 

Zhang (1998, 1999, 2000, 2001) proposed a new non-equilibrium traffic flow model that 

is shown to be devoid of “wrong way ” travel. Upon further examination, Zhang found that 

PW-like models always behave isotropically because the material derivative of travel speed 

depends on density gradient. 

Based on improved car-following model, Jiang (2002) replaces the density gradient with 

speed gradient in the momentum equation to avoid wrong-way problem mentioned above. 

Jiang’s model, which is consistent with other high order models, consists of two PDEs as 

follows: 
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2.2 Review of Numerical Simulation of Continuum Traffic Flow Models 

While numerical methods are widely studied and implemented in the field of 
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computational fluid dynamics, they are less well comprehended in traffic flow. This has 

stimulated studies of reliable numerical methods for the solution of continuum traffic flow 

models based on PDEs. So far, there are four types of numerical methods used in the 

continuum traffic flow models. They are the Lax method (Michalopoulos et al., 1985), the 

explicit Euler method (Payne, 1971, 1979; Papageorgiou, 1983; Papageorgiou et al., 1989) 

and the upwind scheme with flux vector splitting (Michalopoulos te al., 1991b, 1993a, 1993b; 

Lytinzis et al., 1994a, 1994b) as well as Roe’s flux difference splitting method (Leo et al., 

1992). Among these four numerical methods, the explicit Euler method is an unstable 

numerical method. The other three methods are stable under the Courant-Friedriches-Lewy 

(CFL) condition. These methods are briefly reviewed in this section. 

Michalopoulos et al. (1985) have used the Lax method (Lax, 1954) to the simple 

continuum model because the Lax method is simple and easily implemented. However, the 

Lax method introduces a strong numerical dissipation effect to the simple continuum model. 

Thus, the Lax method cannot capture the correct shock intensities. 

Payne (1979) first used the explicit Euler method to the original high-order model due to 

its simplicity. However, this numerical method cannot make the original high order model 

work at the smaller values of the density because there is a term including the reciprocal of 

the density. The model cannot produce the correct shock intensities because the model was 

discretized based on the non-conservation form (Hirsch, 1990). Moreover, this method is 

unstable from the computational point of view because this method yields a negative diffusion 

coefficient in the truncation error terms (Lyrintzis, 1994b). 

Michalopoulos et al. (1991b, 1993a, 1993b) first applied the upwind scheme with flux 

vector splitting to the semi-viscous model. Later, Lyrintzis et al. (1994b) also used the upwind 

scheme with flux vector splitting to their proposed high order model. Since the upwind 

scheme with flux vector splitting is a stable numerical method under the CFL condition and 
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introduces wave propagation properties (i.e., the sign of the eigenvalues) in the discretization 

process, i.e. a forward difference is used for an upstream moving wave and a backward 

difference for a downstream moving wave, the models with this upwind method capture 

correct shock waves approximately and produce more accurate results than the models with 

the Euler method (Lyrintzis et al., 1994b). However, this upwind method is totally dependent 

on the fact that fluxes are homogeneous of degree one in the conservative variables. One 

cannot directly apply this scheme to a general flux function. Moreover, since this upwind 

method introduces only information on the sign of the eigenvalues, one cannot introduce other 

physical properties such as shock and rarefaction waves into the discretization process 

through this method. 

Leo and Pretty (1992) derived Roe’s flux difference splitting method (Roe, 1981) for 

PW system of equations and applied the algorithm to some numerical examples. They also 

tested out the LWR model with the Murman scheme that is an equivalent Roe’s algorithm 

for a single equation. 

Furthermore, Cho and Lin (2000) used and compared finite difference methods and finite 

element methods to solve the LWR model. They summarized that the finite element methods 

are more accurate than finite difference approximations. 

 

2.3 Brief Review of Numerical Methods for Hyperbolic PDEs 

Hyperbolic PDEs are time-dependent systems of PDEs with a particularly simple 

structure. In one space dimension, hyperbolic PDE can be shown as the form 
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Here mk ℜ→ℜ×ℜ: is an m-dimensional vector of conserved quantities, or state variable, 

and mmf ℜ→ℜ:  is called flux function. The system (2.18) is ‘hyperbolic’ provided that the 
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eigenvalues of )(kf ′ , the m×m Jacobian matrix of the flux function, are real, and the matrix 

is diagonalizable for each value of k. By the chain rule, (2.18) can be written in the quasilinear 

form 
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where fa ′= . 

There have been many finite difference applied to solve hyperbolic conservation laws. 

Such as the upwind, Godunov’s, Hyman, Lax-Wendroff, MacCormack’s, Rusanov, and 

Glimm’s methods, a random choice method, were surveyed by Sod (1978). He also discussed 

the hybrid scheme of Harten and Zwas (1972), the antidiffusion method of Boris and Book 

(1973), and the artificial compression method of Harten. The antidiffusion method of Boris 

and Book, can be viewed as a flux- limiter method, is called the flux-corrected transport (FCT) 

method. The numerical results were compared and demonstrated that Glimm’s method has 

several advantages. Without the use of corrective procedures, Gonudov’s and Hyman’s 

methods produce the best results of all the schemes tested. Glimm’ scheme gives the best 

resolution of the shocks and contact discontinuities. The hybrid methods of Harten and Zwas 

combines the first and high order schemes in such a way as to extract the best features of both. 

Furthermore, high order accurate methods, such as artificial viscosity, slop- limiter, and ENO 

schemes were developed recently. ENO schemes proposed by Harten, Osher, Engquist, and 

Chakravarthy (1987) was the first successful attempt to obtain self similar (i.e. no mesh size 

dependent parameters), uniformly high order accurate, yet essentially non-oscillatory 

interpolation (i.e. the magnitude of the oscillations decays as )( kxO ∆  where k  is the order 

of accuracy) for piecewise smooth functions. The vital idea of ENO schemes is to use the 

“smoothest” stencil among several candidates to approximate the fluxes at cell boundaries to a 

high order accuracy and at the same time to avoid spurious oscillations near discontinuities. 
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Table 2.1. Finite Difference Methods for hyperbolic conservation laws kt + f(k)x = 0. 
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