Chapter 5
TEST PROBLEMSAND NUMERICAL
RESULTS

In this chapter, numerical experiments of the smple and high order continuum traffic
flow models ssmulated by the high resolution schemes have been carried out. First we tested
and compared the numerical accuracies and stabilities of WENO finite volume (FV), TVD
dope-limiter finite difference (FD), and other simple numerica schemes, including the
Upwind, Lax-Friedrichs, Leapfrog, BeamtWarming, Lax-Wendroff, MacCormack, Godunov,
for the Riemann problems in the LWR model. Four test problems in the LWR model were
conducted against the exact solutions. Then the method which has the most accurate LWR
solutions was applied to solve three test problems of high order continuum models. In these
examples, WENO scheme was found to be numerically stable and dominantly accurate, but
cost more execution time. The programming jobs were run on a PC equipped with AMD
Duron'™ 600 MHz processor, 128 MB (PC-100) SDRAM, and 15GB (5,400 RPM) hard drive.

Detailed descriptions of these test problems were given as follows.

5.1 Numerical Examplesfor LWR Model

In this section, numerical solutions of Riemann problems, including shocks and

rarefaction waves, traffic Sgnd, and square wave problem in LWR model were presented.
5.1.1 Shock Problems

The shock problem, which isaclass of Riemann problems, was formulated as follows:
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Greenshieds flow-density relationship: g = ku, (1- kL)

J

LWRmode; K1) Flalt) _
it X

Free-flow speed u, =90 km/hr

Jam density k, = 180 vehvkm

Length of road section = 30 km
The road section is discretized into 99 segments (100 nodes), each segment 303m long. The
initid condition for the Riemann problem can be given asfallows

ik, x<O
k(x0) =1,
| By x>0

where k; and k; are upsiream and downstream densties, respectively.
5.1.1.1 Casel

For case | of the shock problems; theinitial condition was assumed asfollows:

K0y = 10 OEX<15
" T170, 15EXE30°

The numericd results of these schemes are presented in Figure 5.1-5.18.
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Figure 5.1. The density behavior for case | of shocks smulated by the Upwind scheme.
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Figure 5.2. The dengity behavior for case | of shocks smulated by the Lax-Friedrichs scheme.
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Figure 5.3. The dengity behavior for case | of shocks smulated by the Legpfrog scheme.
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Figure 5.4. The dengity behavior for case | of shocks smulated by the Beam-Warming scheme.
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Figure 5.5. The density behavior for case | of shocks smulated by the Lax-Wendroff scheme.
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Figure 5.6. The dengity behavior for case | of shocks smulated by the MacCormack scheme.
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Figure 5.7. The dendgity behavior for case | of shocks smulated by the Godunov scheme.
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Figure 5.9. The dengty behavior for case | of shocks smulated by WENO FV scheme.
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Figure 5.10. The dengity profile a t = 0.05hr for case | of shocks smulated by the Upwind
scheme.
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Figure 5.11. The dengty profileat t = 0.05hr for case | of shocks smulated by the
Lax-Friedrichs scheme.
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Figure 5.12. The dengity profile a t = 0.05hr for case | of shocks smulated by the Leapfrog
scheme.
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Figure 5.13. The dengity profile at t = 0.05hr for case | of shocks smulated by the
Beam-Warming scheme.
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Figure 5.14. The dengity profile at t = 0.05hr for case | of shocks Smulated by the
Lax-Wendroff scheme.
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Figure 5.15. The dengity profile at t = 0.05hr for case | of shocks smulated by the

MacCormack scheme.
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Figure 5.16. The density profile at t = 0.05hr for case | of shocks smulated by the Godunov
scheme.
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Figure 5.17. The dengity profile at t = 0.05hr for case | of shocks smulated by TVD

dope-limiter scheme.
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Figure 5.18. The dengity profile at t = 0.05hr for case | of shocks smulated by WENO FV
scheme,

Obvioudly, the results indicate that the Leapfrog and BeamWarming schemes have poor
numericd gability.

5.1.1.2 Casell

For case |1 of the shock problems, the initial condition was assumed as follows:

(0= |10 OEX<15
71110, 15E£ X£30°

The numericd results of these schemes are presented in Figure 5.19-5.26.
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Figure 5.21. The dengity behavior for case Il of shocks smulated by TVD dope-limiter
scheme.
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Figure 5.22. The density behavior for case Il of shocks smulated by WENO FV scheme.
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Figure 5.23. The dengity profile a t = 0.05hr for case Il of shocks smulated by the Upwind

scheme.
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Figure 5.24. The dendity profile at t = 0.05hr for case Il of shocks smulated by the Godunov
scheme,
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Figure 5.25. The dengity profile a t = 0.05hr for case Il of shocks smulated by TVD
dope-limiter scheme.
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Figure 5.26. The density profile at t = 0.05hr for case Il of shocks smulated by WENO FV
scheme,

In case Il, the Upwind scheme loses its accuracy after t = 0.05 hr and then becomes

worse and worse. Only the Godunov and WENO FV schemes have the desirable accurecy.
5.1.2 Rarefaction Wave Problems

In the rarefaction wave problems, all the formulatiors were the same as the shock

problems except the initid conditions.
5.1.2.1 Casel

For case | of the rarefaction wave problems, the initial condition was assumed as

follows,
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180, O£ x<15
k(x,0)f .
120, 15£ x£30

The numerical results of these schemes are presented in Figure 5.27-5.44,
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Figure 5.27. The dengity behavior for case | of rarefaction waves smulated by the Upwind

scheme.
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Figure 5.28. The dendty behavior for case | of rarefaction waves smulated by the

Lax-Friedrichs scheme.
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Figure 5.29. The dendity behavior for case | of rarefaction waves smulated by the Legpfrog
scheme.
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Figure 5.30. The density behavior for case | of rarefaction waves smulated by the
Beam-Warming scheme.
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Figure 5.31. The dendity behavior for case | of rarefaction waves smulated by the
Lax-Wendroff scheme.
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Figure 5.32. The dendity behavior for case | of rarefaction waves smulated by the
MacCormack scheme.

Figure 5.33. The density behavior for case | of rarefaction waves smulated by the Godunov
scheme,
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Figure 5.34. The density behavior for case | of rarefaction waves smulated by TVD
dope-limiter scheme.



Figure 5.35. The dengity behavior for case | of rarefaction waves smulated by WENO FV

scheme.
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Figure 5.36. The dengity profile at t = 0.05hr for case | of rarefaction waves smulated by the

Upwind scheme.
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Figure 5.37. The dengity profile at t = 0.05hr for case | of rarefaction waves smulated by the

Lax-Friedrichs scheme.
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Figure 5.38. The dengity profile at t = 0.05hr for case | of rarefaction waves smulated by the
Legpfrog scheme.

kv ekhm
120

100

8 @
60
40
20

0 L

: : : : - X Hk
5 10 15 20 25 0

Figure 5.39. The dengity profile at t = 0.05hr for case | of rarefaction waves smulated by the

Beam-Warming scheme.
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Figure 5.40. The dengity profile at t = 0.05hr for case | of rarefaction waves smulated by the
Lax-Wendroff scheme.
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Fgure 5.41. The density profile at t = 0.05hr for case | of rarefaction waves smulated by the
MacCormack scheme.
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Figure 5.42. The dengity profile at t = 0.05hr for case | of rarefaction waves smulated by the
Godunov scheme.

kv ekhm
120

100
8 @
6 0

4 6

20
ol

: : : : : x Hk i
5 10 15 20 25 0

Figure 5.43. The density profile at t = 0.05hr for case | of rarefaction waves smulated by
TVD dope-limiter scheme.
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Figure 5.44. The density profile at t = 0.05hr for case | of rarefaction waves smulated by
WENO FV scheme.

In case | of the rarefaction wave problems, the Leapfrog and BeamWarming scheme
shows their ill numerical stabilities again. The Lax-Wendroff and MacCormack also don’ t

have the satisfactory accuracy.
5.1.2.2 Casell

In case |l of the rarefaction wave problems, theinitid condition was assumed as follows:

((x0) =/ 100 OEX<15
77120, 15£X£30°

The numerical results of these schemes are presented in Figure 5.45-5.52.
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Figure 5.45. The densty behavior for case |l of rarefaction waves Smulated by the Upwind
scheme,
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Figure 5.46. The dengity behavior for case Il of rarefaction waves smulated by the Godunov
scheme,
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Figure 5.47. The dengity behavior for case |1 of rarefaction waves smulated by TVD
dope-limiter scheme.
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Figure 5.48. The dengity behavior for case Il of rarefaction waves smulated by WENO FV
scheme,
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Figure 5.49. The densty profile a t = 0.05hr for case I of rarefaction waves smulated by the
Upwind scheme.
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Figure 5.50. The dengity profile at t = 0.05hr for case Il of rarefaction waves Smulated by the

Godunov scheme.
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Figure 5.51. The dengity profile at t = 0.05hr for case Il of rarefaction waves smulated by
TVD dope-limiter scheme.
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Figure 5.52. The dengity profile at t = 0.05hr for case |1 of rarefaction waves smulated by
WENO FV scheme.

In case Il of the rarefaction wave problems, WENO FV scheme demonstrates the

dominant accuracy among these gpplied schemes.
5.1.3 Traffic Signal Switching from Red to Green

The traffic signal example in this study is a road section with a signal shown in Figure
5.53. The situation that a traffic signal switches from red to green at that time the traffic is
lined up behind the red light is simulated. In this example, the numerical errors were analyzed
to acquire the most accurate scheme. Based on the results from Sections 5.1.1 and 5.1.2,
Godunov-type TVD dope-limiter, which combines TVD doper-limiter with Godunov, and
WENO FV schemes had better accuracies and thus were compared in this section. This

numerical example was formulated as follows:

Greenshieds density-speed relationship: u=u, (1- i—k)

J

LWR modd ‘|]k(x,t)+uf(1_ 2, Tk _,
qit k,” fx
N N 170, O£ x<10
Intid conditiort k(x,0) ={
70, 10£ x£20

Boundary condition: k(O,t) = 70- 120t
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where free-flow speed u; = 80 kph and jam density k; = 160 veh/km. The kength of street

section is 20 km, and observed time period is 0.25 hr. The exact solution is shown as follows:

i75- 60t - /(60 - 5)2 - 120(x- 101) 10£ x < 10t
10t £ X £10t +10

X'tlo 10t +10 < X £ 80t +10

o 80t +10< X £ 20

k(x,t) =

~

To check accuracy a agiventimelevel, the L, and L, error are measured.

b N
Ll error = du(x)exa:t - U(X)computed|dx @a |u(Xi)exact - U(X1 )computed|(xi - Xi-l)
i=1

|_¥ eror = SJp|U(X| )exact - u(Xi )computed|

The ssimulated result of WENO FV scheme is shown in Figure 5.54, which illustrates the
rarefaction waves corresponding to the gradual initiation of the traffic flow when traffic light
a x = 0 turns from red to green at t = 0. Figure 5.55 presents the numerical comparison of
accuracy between WENO FV and Godunov-type TVD dope-limiter FD methods. Table 5.1
and 5.2 demonstrate the numerical accuracy and CPU timing of WENO FV and
Godunov-type TVD dope-limiter FD methods separately. The results show that WENO FV
scheme is more accurate than Godunov-type TVD dlope-limiter FD method, but requires more

execution time.
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Figure 5.53. A road section with atreffic sgnd.
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Figure 5.54. The dengty behavior with atraffic 9gnd turning from red to green smulated by

WENO FV scheme.
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Figure 5.55. The dengty profileat t = 0.05 hr for traffic Sgnd problem (Solid line: exact

olution;

Dashes: solution of Godunov-type TVD dope-limiter FD scheme; Dots: solution of

WENO FV scheme).

59



Table 5.1. Numerical accuracy in density at t = 0.05hr for traffic signal problem with
infinity-norm and one-norm errors (unit: vehvkm).

Scheme L, error L, error
WENO RV 4.144 7054
Godunov-type
TVD Slope-limiter FD 8.417 12.71

Table 5.2. Execution times for smulation of traffic sgna problem (unit: CPU sec.).

Mesh (MxN)
75%x100 75%x200 150%x200 300x400
Schemes
WENO FV 6 12 16 45
Godunov-type
TVD Sope-limiter FD 1 1 2 3

5.1.4 Square Wave Problem

In order to demonstrate both shock and rarefaction waves, the test case of square wave

was examined. The square wave problem was formulated as follows:

Equilibrium density-speed refationship:  u(k) =u, e **

KO | KO k) _ o

LWR modd:
It X
" " 1110, 10£ x £ 20
Intid condition k(x,0) = )
10, otherwise
Neumann boundary condition: % =0

where free-flow speed u; = 140 kph and jam density k; = 220 veh/km. The length of street

section is 60 km, and observed time period is 1hour.
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Figure 5.56. Theinitid condition of density profile in square wave problem.
Firgt, the analytica solution shall be derived to be the benchmark of the numerica

accuracy. The exact solutions are obtained using the method of characteristics. With the

equilibrium densty-vedocity function

u(k) =u,e™", (5.1)
s0 that the flow-dengty relationship, i.e. the flux function, is

q(k) = ku, e > | (5.2)

From

Tk  Jatkg _ Tk,

T (k)——O (5.3)

the wave speed can be obtained

a(k) = d—E q&k) =u, (1- 9k /k, )e* ", (5.4)

Udng thechainrule

dk ﬂk dx Tk

da Tt dt x’

and subgtituting % in Egn. (5.3), the acquired forms are shown as follows:
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dk dx‘ﬂk

dat  dt Tx (k)—-o
ad

dk _ ﬁ@ (k)——
dt ﬂXedt

Therefore, % =0 on the lines indicates

dx

T =a(k), (5.5

which implies that k and hence a(k) is constant along these lines. These are the characteristics,

which are sraight linesin this case given by
X=X, +at, (5.6)

where Xgisthevdueof x att = 0, and
a=a(k(x,,0)) =u, (1- 9K(x,,0)/k, )e "’ (5.7)
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Figure 5.57. The flow-dengty relationship used in square wave problem.

In order to obtain the exact solution at (Xx,t), we trace the characteristic that passes
through that point back to the initial density profile, where k has the same value on the

characteridtic, i.e.

K(x,t) =K(x,,0) =K.
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When characteristics cross, however, the solution becomes multiply defined and contravenes
physical phenomena. This is encountered immediately when considering the square wave at x

= 10. Using the Rankine-Hugoniot jump condition, a shock moving with speed

_q 110u €92-0
s= [q] = g-4q = u; € =ufe-9/2 (5.8)
K -k 110- 0

isformed. By checking the entropy condition

atk.)- a(k) ¢ o Ak) - alk)
k- k k-k

k, (5.9)
ashock is confirmed.
It is a different scenario for the discontinuity at x = 20. The characteristics to the left of

discontinuity have negative speed a(k)) = - Zu,e*'?, whereas to the right the characteristics

have positive speed a(k;) = ur. Therefore these characteristics do not meet, Egn. (5.9) would
not be satisfied, and hence there is no single shock connecting these states. With the
non-convex flux function q(k), however, there is a point of inflection. Provided that k; and k;
are both to the left or right of the point of inflection, then the void created between the
characteristics is filled in with a rarefaction fan. When the convex hull of the flux function is
the same as the flux function itself between k; and k;, the solution is purely an expansion fan.

Thereforeit is needed to check where ki and k; are rdative to the point of inflection.

The point of inflection of the flux function (5.2) isa k=k;, where
qek, ) =u, (81, /k? - 18/k;)e ™" =0,

and consequently,

k, =2k, /9. (5.10)

Since a x = 20, k; < k <k, k; and k; are on opposite sides of the point of inflection, the



flux function and its convex hull are not the same. The discontinuity therefore comprises of a
shock and an expansion fan, separated at kr, the point where the tangent to the flux function
passes through (ki, g;). This ensures the correct entropy-satisfying weak solution. The point (kr,
gr) can be found by equating the derivative of the flux function at kt to the slope of the line

between (k1, gr) and (ki, ), i.e.

_ 0 -q
q&k,) = Kk (5.11)

Multiplying by (k; - k),
q - (k - k)gtk;) =0 (5.12)
IS obtained.

Subdtituting for the flux function (5.2), we obtain
(92 /K, - 9k K, [k, +k)e ™™ - ke ™™ =0, (5.13)

where k| = 110, and kr can be caculated by usng Newton’ s method.

Once kt isfound, the speed of the shock (5.8) can be caculated from

% -a _ -Okr/ Ky
s-rk:—uf(l- ok /k;)e

and since k; is unchanged while the shock is moving, kr is constant, and thus so is the speed

until the shocks callide.

In order to derive the expansion fan to the right of the shock, between kr and k; = 0, the

dope of the characteristic A (q&k, ) £ A£ q€k, ) ) isfound from Egn. (5.6), i.e.

A= (5.14)

with the given (x, t).

Then k can befound again with A usng Newton iteration, from



q4k) =u, (1- 9k/k,)e ™ =A,
and
u, (1- 9k/k,)e™" - A=0. (5.15)

When the shocks cross an expansion fan is followed by a discontinuity of height k. This new
discontinuity is a shock whose speed can be calculated using Egn. (5.8), wherek, = 0 and k; is
given by kr. The shock therefore moves with positive speed and hence, as it moves, its height
decreases, thus changing the shock speed. The shock path will therefore no longer be a
straight line in the characteristic diagram. The shape of the shock can be calculated
numericaly using Euler’ s method. The instantaneous shock speed is calculated by starting at
the initial position of the colliding shocks and moving a distance ax in time at. This new
position (x, t) crosses a characteristic from the expansion fan, and then A can be calculated
using Egn. (5.14). So can the new k; by Egn. (5.15), and hence the new shock speed by Egn.
(5.8). The resulting density profile would be a shock moving with positive but decreasing

speed, with decreasing height, followed by an expansion fan of increasing width.

Figure 5.62-5.65 present the numerical comparison of accuracy between WENO FV and
Godunov-type TVD dope-limiter FD methods on various mesh sizes. Table 5.3 and 5.4
demonstrate the numerical accuracy and CPU timing of WENO FV and Godunov-type TVD
dope-limiter FD methods separately. The results aso show that WENO FV scheme is till
more accurate than Godunow-type TVD dope-limiter FD method, but requires more execution

time,
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Figure 5.58. Characterigtics diagram for square wave problem.

Figure 5.59. Characteristics for square wave problem smulated by WENO FV scheme.
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Figure 5.60. Contours of density for square wave problem smulated by WENO FV scheme.
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Figure 5.61. The dendity behavior for square wave problem smulated by WENO FV scheme.
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Figure 5.62. The dengty profilea t = 0.4 hr for square wave problem (Mesh: 100x100; Solid
line: exact solution; Dashes: solution of Godunov-type TVD dope-limiter FD scheme; Dots
solution of WENO FV scheme).
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Figure 5.63. The dengty profileat t = 0.4 hr for square wave problem (Mesh: 160x160; Solid

line: exact solution; Dashes. solution of Godunov-type TVD dope-limiter FD scheme; Dots:
solution of WENO FV scheme).
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Figure 5.64. The dengty profileat t = 0.4 hr for square wave problem (Mesh: 200x200; Solid
line: exact solution; Dashes: solution of Godunov-type TVD dope-limiter FD scheme; Dots
solution of WENO FV scheme).
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Figure 5.65. The dengty profileat t = 0.4 hr for square wave problem (Mesh: 400x400; Solid
line: exact solution; Dashes. solution of Godunov-type TVD dope-limiter FD scheme; Dots:
solution of WENO FV scheme).
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Table 5.3. Numerical accuracy in density at t = 0.4 hr for square ware problem with
infinity-norm and one-norm errors (unit: vehvkm).

Scheme Mesh (MxN) L, emror L, error
100x100 80.99 147.00

WENG Fv 160x160 91.96 116.61
200%200 81.39 75.54

400x400 79.29 35.76

100x100 105.95 157.95

Godunov-type 160160 110.00 126.99
TVD Sope-limiter FD 200%200 101.90 84.10
400x400 93.79 4255

Table 5.4. Execution times for smulation of square ware problem (unit: CPU sec.).

Mesh (MxN)
100x100 160x160 200x200 400%400
Schemes
WENO FV 6 19 24 95
Godunov-type
TVD Slope-limiter FD 1 2 3 S

5.2 Numerical Examplesfor PW and Jiang’ s I mproved M odels

In this section, WENO FV scheme was utilized to solve two classes of high order
continuum traffic flow models. The PW model, i.e. the original high order model, and the
novel Jiang' s improved model, which was presented in 2002, were selected for the following
test pronlems. The equilibrium speed-density relationship developed by Del Castillo and

Benitez (1995) was applied in both models.

70



WHmésL giv esh

3.
25 1.2
2 0 01_8
15 o le
10 0.
5 0.l/2
0 0®m 10, 13 Kyem 0 0®m . 10, 1 . yem

Figure 5.66. The equilibrium speed-density and flow-density relationships developed by Del
Cadtillo and Benitez.

The PW and Jiang’ s improved models were introduced in Chapter 2 and formulated for

numerica discretization in Chapter 3. These numerica examples were formulated as follows:

. . . . e @ & k o
Del Castillo and Benitez' s density-speed relationship: u =u, - expél- exXpg—= (?'- 1)

e Ui 2t
PW mod: X
(W ue. . 6 G L )

T qt e‘HXg _k‘ﬂx t

9, Tl _
Jang simproved mode!: Iﬂt T

ik, 0<x<10
Initid conditiort k(x,0)={
ik, 10<x<20

where free-flow speed u; = 30 m/s, jam density k; = 0.2 veh/m, relaxation time t = 2 sec,

the kinematic wave speed under the jam density c,,= 11 m/s, and the propagation speed of
the disturbance c= 11 m/s. The length of street section is 20 km, and observed time period is

10 min.
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5.2.1 Shock Problems
In the shock problems, three cases are shown as follows.
52.1.1Casel

In case | of the shock problems, the situation k| < k; and g, > g was considered. There are

two conditions satisfying the Situation, as shown in Figure 5.67.

g(veh/s) g(veh/s)

12 12 \

10 10

08 i 08

06 i ; 06 !

oaf / | 04

02 i i 02 i

k,I:o.os 01 kr|:0.14 02 K(vet/m) 005 k=0.1 krI:o.14 02 K(ver/m)
@ ()

Figure 5.67. Two conditionsin case | of shock problems: (a) k; = 0.03 veh/m and k; = 0.14
veh/m; (b) k; = 0.1 vebVm and k; = 0.14 veh/m.

Condition (a)

((x0) = 003 0EX<10
771014, 10£X£20

0.2
.[0. 15 3 7

0 khivieéml ympg2
0.05 1

Figure 5.68. The dendity and velocity behaviors for condition (8) in case | of shock problems
smulated by Jang' s FD scheme with PW modd.
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Figure 5.69. The dendity and velocity behaviors for condition (8) in case | of shock problems
smulated by WENO FV scheme with PW model.

kv entl U Hmésl
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Figure 5.70. The densty and velocity profilesat t = 2 min for condition (&) in case | of shock
problems smulated with PW modd (Dashes: solution of Jang’ s FD scheme; Dots: solution of
WENO FV scheme).
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Figure 5.71. The density and velocity behaviors for condition (8) in case | of shock problems
amulated by Jang' s FD scheme with Jang' simproved model.
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Figure 5.72. The dendity and velocity behaviors for condition (8) in case | of shock problems
smulated by WENO FV schemewith Jang’ simproved modd.
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Figure 5.73. The densty and velocity profilesat t = 2 min for condition (&) in case | of shock
problems smulated with Jang’ simproved modd (Dashes: solution of Jang’ sFD scheme;
Dots: solution of WENO FV scheme).

Condition (b)

((x0)= | 0 OEX<IO
771014, 10£X£20
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Figure 5.74. The dendity and velocity behaviors for condition (b) in case | of shock problems
amulated by Jang' s FD scheme with PW modd.
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Figure 5.75. The dengty and velocity behaviors for condition (b) in case | of shock problems
samulated by WENO FV scheme with PW mode.
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Figure 5.76. The densty and velocity profilesat t = 2 min for condition (b) in case | of shock
problems smulated with PW modd (Dashes: solution of Jang’ s FD scheme; Dots: solution of
WENO FV scheme).
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Figure 5.77. The dendty and velocity behaviors for condition (b) in case | of shock problems
amulated by Jang’ s FD scheme with Jang' simproved mode!.
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0 Kivient yrag L
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Figure 5.78. The dendty and velocity behaviors for condition (b) in case | of shock problems
samulated by WENO FV scheme with Jang' simproved modd.
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Figure 5.79. The densty and velocity profilesat t = 2 min for condition (b) in case | of shock
problems smulated with Jang’ simproved modd (Dashes: solution of Jang’ sFD scheme;
Dots: solution of WENO FV scheme).

52.1.2Casell
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In case Il of the shock problems, the situation ki < krand g < g was considered. There

are two conditions satisfying the stuation, as shown in Figure 5.80.

g(veh/s) q(veh/s)
12 \ 12 /-
10 10
08 08
06 06
04} /i 0al /!
0.2 : 02 :
k=002 k=01 015 2 {ven'm) k,:(').oz k=004 01 015 02 k(ven/m)
@ (b)

Figure 5.80. Two conditionsin case Il of shock problems: (a) k| = 0.02 vem and k; = 0.1
velvm; (b) k = 0.02 veiVm and k; = 0.04 veh/m.

Condition (a)

10.02, 0£x<10
k(x,0) =]

10.1, 10£x£20

Figure 5.81. The dengty and velocity behaviors for condition (a) in case Il of shock problems
smulated by Jang' s FD scheme with PW modd.



Figure 5.82. The dendity and velocity behaviors for condition (8) in case Il of shock problems
samulated by WENO FV scheme with PW mode.
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Figure 5.83. The dendty and velocity profilesat t = 2 min for condition (a) in case Il of shock
problems smulated with PW modd (Dashes: solution of Jang’ s FD scheme; Dots: solution of
WENO FV scheme).

X Hk 1
0

Figure 5.84. The density and velocity behaviors for condition () in case |1 of shock problems
amulated by Jang' s FD scheme with Jang' simproved model.
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Figure 5.85. The density and velocity behaviors for condition (a) in case |l of shock problems
smulated by WENO FV scheme with Jang’ simproved modd.

. 5 |
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Figure 5.86. The densty and velocity profilesat t = 2 min for condition (&) in case Il of shock
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problems smulated with Jang’ simproved modd (Dashes: solution of Jang’ sFD scheme;

Dots: solution of WENO FV scheme).

Condition (b)

10.02, O£ x<10
k(x,0)= |

10.04, 10£ x£20
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Figure 5.87. The density and velocity behaviors for condition (b) in case |1 of shock problems
amulated by Jang' s FD scheme with PW modd.
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Figure 5.88. The density and velocity behaviors for condition (b) in case Il of shock problems
samulated by WENO FV scheme with PW mode.
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Figure 5.89. The dendty and velocity profilesat t = 2 min for condition (b) in case Il of shock
problems smulated with PW modd (Dashes: solution of Jang’ s FD scheme; Dots: solution of
WENO FV scheme).



4
tHmilf O

6

Figure 5.90. The density and velocity behaviors for condition (b) in case |1 of shock problems
amulated by Jang’ s FD scheme with Jang' simproved mode!.

Figure 5.91. The dendity and velocity behaviors for condition (b) in case Il of shock problems
samulated by WENO FV scheme with Jang' simproved modd.
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Figure 5.92. The dendity and velocity profilesat t = 2 min for condition (b) in case Il of shock
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problems smulated with Jang’ simproved modd (Dashes: solution of Jang’ sFD scheme;

Dots solution of WENO FV scheme).

81

X Hk 1m
0



5.2.1.3Caselll

In case Il of the shock problems, the situation k; < k; and g = g was considered, as

shown in Figure 5.93.

g(veh/s)

12
10
0.8
0.6
04

i
02}/
!

: k(veh/m)
k=0.0133 01 k=0.1636 02

Figure 5.93. Case |1 of shock problems. k; = 0.0133 veh/m and k; = 0.1636 veh/m.

Figure 5.94. The dengity and velocity behaviorsfor case 11 of shock problems simulated by
Jang s FD scheme with PW model.
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Figure 5.95. The density and velocity behaviors for case I11 of shock problems smulated by

WENO FV scheme with PW mode.
A u Hméd.
k(;lv.enzrﬁ_ 10
0.175 3%
0.15 ! 3 ¢ :
0.125 i 25 \
0./1 : 20 "|
0. 075 i 15% I\
0.05 ! 10 |
0.025 it 5 !
XHk m
5 10 15 20 5 10 15

Figure 5.96. The dengty and velocity profilesa t = 2 min for case I11 of shock problems
amulated with PW mode (Dashes: solution of Jang' s FD scheme; Dots: solution of WENO
FV scheme).

Figure 5.97. The density and velocity behaviorsfor case 111 of shock problems smulated by
Jang' s FD scheme with Jang' simproved modd.
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Figure 5.98. The density and velocity behaviors for case I11 of shock problems smulated by
WENO FV schemewith Jang' simproved model.
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Figure 5.99. The dengty and velodity profilesa t = 2 min for case I11 of shock problems
samulated with Jang’ simproved modd (Dashes: solution of Jang’ s FD scheme; Dots:
solution of WENO FV scheme).

5.2.2 Rarefaction Wave Problems

5221 Casel

In case | of the rarefaction wave problems, the situation k; > k; and g > g, was considered.

There are two conditions satisfying the Stuation, as shown in Figure 5.100.
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Figure 5.100. Two conditionsin case | of rarefaction wave problems: (a) k; = 0.1 veh/m and k,
=0.02 veh/m; (b) k) = 0.04 velvm and k; = 0.02 veh/m.

Condition (a)

101 0£x<10

k(x,0) =
(x0) 10.02, 10£ x£20

Figure 5.101. The densty and velocity behaviors for condition () in case | of rarefaction
wave problems smulated by Jang' s FD scheme with PW modd.



Figure 5.102. The density and velocity behaviors for condition (a) in case | of rarefaction
wave problems smulated by WENO FV scheme with PW modd.
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Figure 5.103. The dengty and velocity profilesat t = 2 min for condition (8) in case | of
rarefaction wave problems smulated with PW mode (Dashes: solution of Jang’ s FD scheme;
Dots: solution of WENO FV scheme).

Figure 5.104. The dengity and velocity behaviors for condition (&) in case | of rarefaction
wave problems smulated by Jang’ s FD scheme with Jang’ simproved modd.



Figure 5.105. The density and velocity behaviors for condition (a) in case | of rarefaction
wave problems smulated by WENO FV scheme with Jang' simproved modd!.
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Figure 5.106. The dengty and velocity profilesat t = 2 min for condition (8) in case | of
rarefaction wave problems smulated with Jang' simproved moded (Dashes: solution of
Jang' sFD scheme; Dots: solution of WENO FV scheme).

Condition (b)

((x0)= | 004 O x<10
771002 10£x£20
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Figure 5.107. The dengity and velocity behaviors for condition (b) in case | of rarefaction
wave problems smulated by Jang' s FD scheme with PW moddl.

Figure 5.108. The density and velocity behaviors for condition (b) in case | of rarefaction
wave problems smulated by WENO FV scheme with PW modd.
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Figure 5.109. The dengty and velocity profilesat t = 2 min for condition (b) in case | of
rarefaction wave problems smulated with PW mode (Dashes: solution of Jang’ s FD scheme;
Dots solution of WENO FV scheme).



Figure 5.110. The dengity and velocity behaviors for condition (b) in case | of rarefaction
wave problems smulated by Jang’ s FD scheme with Jang’ simproved modd.

Figure 5.111. The dendty and velocity behaviors for condition (b) in casel of rarefaction
wave problems smulated by WENO FV scheme with Jang’ simproved modd.
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Figure 5.112. The dengty and velocity profilesa t =2 min for condition (b) in case | of
rarefaction wave problems smulated with Jang' simproved modd (Dashes: solution of
Jang' sFD scheme; Dots: solution of WENO FV scheme).
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5.2.22 Casell

In case Il of the rarefaction wave problems, the situation k| > k; and q < g was

congdered. There are two conditions satisfying the Stuation, as shown in Figure 5.113.

q(veh/s) g(veh/s)

12 12 \

10 10

08 i 08

06 i ! 06 !

oaf /| 04

02 I ! 02 :

i 5 k(veh/m) 5 k(veh/m)
k=0.03 01 k=0.14 02 0.05 k=01 k=014 02
@ (b)

Figure 5.113. Two conditionsin case Il of rarefaction wave problems: (a) kj = 0.14 veh/m and
kr = 0.03 veh/m; (b) k; = 0.14 veh/m and k; = 0.1 vehVm.

Condition (a)

K0y = 014 OEX<10
"7 710.03, 10£ X£ 20

40

30
2 Wmes.

Figure 5.114. The dengity and velocity behaviors for condition (8) in case Il of rarefaction
wave problems smulated by Jang' s FD scheme with PW moddl.



Figure 5.115. The dengity and velocity behaviors for condition (8) in case |l of rarefaction
wave problems smulated by WENO FV scheme with PW modd.
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Figure 5.116. The dengty and velocity profilesat t = 2 min for condition (&) in case |l of
rarefaction wave problems smulated with PW mode (Dashes: solution of Jang’ s FD scheme;
Dots: solution of WENO FV scheme).

Figure 5.117. The dengty and velocity behaviors for condition (8) in case Il of rarefaction
wave problems smulated by Jang’ s FD scheme with Jang’ simproved modd.
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Figure 5.118. The dengity and velocity behaviors for condition (a) in case Il of rarefaction
wave problems smulated by WENO FV scheme with Jang' simproved modd!.
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Figure 5.119. The dengty and velocity profilesat t = 2 min for condition (&) in case |l of
rarefaction wave problems smulated with Jang’ simproved mode (Dashes: solution of
Jang' sFD scheme; Dots: solution of WENO FV scheme).

Condition (b)

10.14, 0£x<10
k(x,0) =]

10.1, 10£x£20

92

40

2 @mes.

X Hk 1
0



Figure 5.120. The dengty and velocity behaviors for condition (b) in case |l of rarefaction
wave problems smulated by Jang' s FD scheme with PW modd!.

Figure 5.121. The dengty and velocity behaviors for condition (b) in case |l of rarefaction

wave problems smulated by WENO FV scheme with PW modd.
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Figure 5.122. The dendty and velocity profiles at t = 2 min for condition (b) in case Il of
rarefaction wave problems smulated with PW mode (Dashes: solution of Jang’ s FD scheme;
Dots: solution of WENO FV scheme).
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Figure 5.123. The dengty and velocity behaviors for condition (b) in case Il of rarefaction
wave problems smulated by Jang’ s FD scheme with Jang’ simproved modd.

Figure 5.124. The dengty and velocity behaviors for condition (b) in case |l of rarefaction
wave problems smulated by WENO FV scheme with Jang’ simproved moddl.
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Figure 5.125. The dengty and velocity profilesat t = 2 min for condition (b) in case Il of
rarefaction wave problems smulated with Jang' simproved moded (Dashes: solution of
Jang’ s FD scheme; Dots. solution of WENO FV scheme).
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5.2.23Caselll

In case Il of the rarefaction problems, the situation k; > k; and g = g was considered, as

shown in Figure 5.126.

g(veh/s)

12
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0.8
0.6
04
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k.=0.0133 01 k=0.1636 0.2

Figure 5.126. Case 1 of rarefaction wave problems. k; = 0.1636 vehVm and k; = 0.0133
veh/m
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Figure 5.127. The dendty and velocity behaviors for case 11 of rarefaction wave problems
smulated by Jang' s FD scheme with PW modd.



Figure 5.128. The density and velocity behaviorsfor case 11 of rarefaction wave problems
samulated by WENO FV scheme with PW mode.
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Figure 5.129. The dengty and velocity profilesat t =2 min for case I11 of rarefaction wave
problems smulated with PW modd (Dashes: solution of Jang’ s FD scheme; Dots: solution of
WENO FV scheme).
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Figure 5.130. The densty and velocity behaviorsfor case 111 of rarefaction wave problems
amulated by Jang' s FD scheme with Jang' simproved model.
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Figure 5.131. The densty and velocity behaviorsfor case 11 of rarefaction wave problems
amulated by WENO FV scheme with Jang' simproved modd.
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Fgure 5.132. The dengty and velocity profilesat t = 2 min for case I11 of rarefaction wave
problems smulated with Jang’ simproved modd (Dashes: solution of Jang’ sFD scheme;
Dots: solution of WENO FV scheme).

5.2.3 Local Cluster Effect

xHk m
0

In this section, the local cluster effect with respect to alocalized perturbation in an initial

homogeneous condition was simulated. Jiang (2002) demonstrated that his improved model

can describe the amplification of a small disturbance, known as the local cluster effect of

traffic flow (Kerner and Konhduser, 1993, 1994; Herrmann and Kerner, 1998). The locd

cluster effect corresponds to the stop-and-go phenomena observed in the field due to a small

disturbance (Jiang, 2002). The following initial variation of the average density ko proposed

by Hermann and Kerner (1998) was gpplied in this section:
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k(x,0) =k, + Dk cosh
( ) O| H 4
where L is the length of the road section. The equilibrium speed-density relationship

( -

presented by Kerner and Konhé&user (1993):

- 0.25
éllg[ — )9 3.72 106

was also used, as shown in Figure 5.133.

Ql-I-O:

As the condition Jiang (2002) assumed, L = 32.2 km, Ak = 0.01veh/m, the space interval
Ax = 100m, the time interval A = 1sec, and the periodic boundary conditions was adopted as

follows,

k(L,t) =k(O,), u(L,t)=u(0,t).

Moreover, theinitia flow was supposed to bein loca equilibrium everywhere:
u(x,0) = u, (k(x,0)),

Other parameter values are the same asin Section 5.2.

Jiang (2002) derived the stable condition and found out the traffic would be unstable
when
ky <k, <K,,
where down-critical density kg = 0.031 and up-critical density k, = 0.084. The results
simulated by Jang' s FD scheme illustrated how the unstable traffic developed, as shown in
Figure 5.135(a)-(j). In Figure 5.135(a)-(b), due to the low traffic density, the perturbation is
dispersing without any amplification. As the initial dersity increases, small perturbations can
be amplified, leading to traffic instability (Jiang, 2002). A single local cluster forms while the
density is just above kg, as shown in Figure 5.135(d). As the density becomes higher, Figure
5.135(e) illustrates the structure of multiple clusters which corresponds to a stop-and-go

traffic. In Figure 5.135(f), a dipole-like structure is observed. When the density becomes



larger thanky, astable regime is reached again as shown in Figure 5.135(h).

Therefore, provided that the initial density is below kg or above ky, the traffic would be
stable, and vice versa. The theoretical values of kg and k, derived by Jiang (2002) are 0.031
and 0.084, respectively. When simulating by Jiang’ s FD scheme, the two values are 0.04 and
0.077. Figure 5.136(a)- (j) demonstrates that WENO FV scheme produces the two values with
0.035 and 0.08. The numerical comparison between Jiang' s FD and WENO FV schemes is
given in Figure 5.137 and Table 5.5. It is shown again that WENO scheme really has the

dominant numerical accuracy.
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Figure 5.133. The equilibrium speed-dengity and flow-density relationship presented by

Kerner and Konhduser (1993).
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Figure 5.134. Theinitia variation of the average dengity ko = 0.035 velvm.
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Figure 5.135. Tempora evolution of traffic on a ring of 32.2 km circumference with a
homogeneous initial traffic and a localized perturbation of amplitude Ako = 0.01 veh/m
simulated by Jiang’ s FD scheme for: (a) ko = 0.03 veh/m; (b) ko = 0.035 veh/m; () ko =0.04
veh/m; (d) ko = 0.042 veh/m; () ko = 0.046 vehVm; () ko = 0.07 veh/m; (g) ko =0.077 veh/m;
(h) ko = 0.08 velvm; (i) ko =0.082 veh/m; (j) ko = 0.085 vehVm
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Figure 5.136. Temporal evolution of traffic on a ring of 32.2 km circumference with a
homogeneous initial traffic and a localized perturbation of amplitude Akg = 0.01 veh/m
simulated by WENO FV scheme for: (a) ko = 0.03 veh/m; (b) ko = 0.035 veh/m; (c) ko =0.04
veh/m; (d) ko = 0.042 veh/m; (€) ko = 0.046 veh/m; (f) ko = 0.07 vehVm; (g) ko =0.077 veh/m,
(h) ko = 0.08 vehym; (i) ko =0.082 velVm; (j) ko = 0.085 velVm.
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Figure 5.137. Comparison of down-critical densty kg and up-critical dengity k, between
Jang sFD and WENO FV solutions.

Table 5.5. Comparison of down-critical density kq and up-critical density k, between Jiang' s
FD and WENO FV solutions.

Criticd dend
_ b Down-critica Up-criticd
Solution
Theoretica 0.031 0.084
WENO FV 0.035 0.08
Jang' sFD 0.04 0.077
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