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Chapter 5 

TEST PROBLEMS AND NUMERICAL 

RESULTS 

 

In this chapter, numerical experiments of the simple and high order continuum traffic 

flow models simulated by the high resolution schemes have been carried out. First we tested 

and compared the numerical accuracies and stabilities of WENO finite volume (FV), TVD 

slope- limiter finite difference (FD), and other simple numerical schemes, including the 

Upwind, Lax-Friedrichs, Leapfrog, Beam-Warming, Lax-Wendroff, MacCormack, Godunov, 

for the Riemann problems in the LWR model. Four test problems in the LWR model were 

conducted against the exact solutions. Then the method which has the most accurate LWR 

solutions was applied to solve three test problems of high order continuum models. In these 

examples, WENO scheme was found to be numerically stable and dominantly accurate, but 

cost more execution time. The programming jobs were run on a PC equipped with AMD 

DuronTM 600 MHz processor, 128 MB (PC-100) SDRAM, and 15GB (5,400 RPM) hard drive. 

Detailed descriptions of these test problems were given as follows. 

 

5.1 Numerical Examples for LWR Model 

In this section, numerical solutions of Riemann problems, including shocks and 

rarefaction waves, traffic signal, and square wave problem in LWR model were presented. 

5.1.1 Shock Problems 

The shock problem, which is a class of Riemann problems, was formulated as follows: 
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Greenshieds flow-density relationship: )1(
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Free-flow speed fu = 90 km/hr 

Jam density jk = 180 veh/km 

Length of road section = 30 km 

The road section is discretized into 99 segments (100 nodes), each segment 303m long. The 

initial condition for the Riemann problem can be given as follows: 
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where kl and kr are upstream and downstream densities, respectively.  

5.1.1.1 Case I 

For case I of the shock problems, the initial condition was assumed as follows: 
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The numerical results of these schemes are presented in Figure 5.1-5.18. 
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Figure 5.1. The density behavior for case I of shocks simulated by the Upwind scheme. 



 39 

0

10

20

30

xHkmL
0

0.02
0.04
0.06
0.08
0.1

tHhrL
0

25

50

75

100

kHvehêkmL

0

10

20

30

xHkmL
 

Figure 5.2. The density behavior for case I of shocks simulated by the Lax-Friedrichs scheme. 
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Figure 5.3. The density behavior for case I of shocks simulated by the Leapfrog scheme. 
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Figure 5.4. The density behavior for case I of shocks simulated by the Beam-Warming scheme. 
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Figure 5.5. The density behavior for case I of shocks simulated by the Lax-Wendroff scheme. 
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Figure 5.6. The density behavior for case I of shocks simulated by the MacCormack scheme. 
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Figure 5.7. The density behavior for case I of shocks simulated by the Godunov scheme. 
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Figure 5.8. The density behavior for case I of shocks simulated by TVD slope-limiter scheme. 
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Figure 5.9. The density behavior for case I of shocks simulated by WENO FV scheme. 
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Figure 5.10. The density profile at t = 0.05hr for case I of shocks simulated by the Upwind 

scheme. 
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Figure 5.11. The density profile at t = 0.05hr for case I of shocks simulated by the 

Lax-Friedrichs scheme. 
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Figure 5.12. The density profile at t = 0.05hr for case I of shocks simulated by the Leapfrog 

scheme. 
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Figure 5.13. The density profile at t = 0.05hr for case I of shocks simulated by the 

Beam-Warming scheme. 
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Figure 5.14. The density profile at t = 0.05hr for case I of shocks simulated by the 

Lax-Wendroff scheme. 
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Figure 5.15. The density profile at t = 0.05hr for case I of shocks simulated by the 

MacCormack scheme. 
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Figure 5.16. The density profile at t = 0.05hr for case I of shocks simulated by the Godunov 

scheme. 
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Figure 5.17. The density profile at t = 0.05hr for case I of shocks simulated by TVD 

slope-limiter scheme. 
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Figure 5.18. The density profile at t = 0.05hr for case I of shocks simulated by WENO FV 

scheme. 

Obviously, the results indicate that the Leapfrog and Beam-Warming schemes have poor 

numerical stability. 

5.1.1.2 Case II 

For case II of the shock problems, the initial condition was assumed as follows: 
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The numerical results of these schemes are presented in Figure 5.19-5.26. 
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Figure 5.19. The density behavior for case II of shocks simulated by the Upwind scheme. 
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Figure 5.20. The density behavior for case II of shocks simulated by the Godunov scheme. 
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Figure 5.21. The density behavior for case II of shocks simulated by TVD slope-limiter 

scheme. 
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Figure 5.22. The density behavior for case II of shocks simulated by WENO FV scheme. 
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Figure 5.23. The density profile at t = 0.05hr for case II of shocks simulated by the Upwind 

scheme. 
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Figure 5.24. The density profile at t = 0.05hr for case II of shocks simulated by the Godunov 

scheme. 
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Figure 5.25. The density profile at t = 0.05hr for case II of shocks simulated by TVD 

slope-limiter scheme. 
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Figure 5.26. The density profile at t = 0.05hr for case II of shocks simulated by WENO FV 

scheme. 

In case II, the Upwind scheme loses its accuracy after t = 0.05 hr and then becomes 

worse and worse. Only the Godunov and WENO FV schemes have the desirable accuracy. 

5.1.2 Rarefaction Wave Problems 

In the rarefaction wave problems, all the formulations were the same as the shock 

problems except the initial conditions. 

5.1.2.1 Case I 

For case I of the rarefaction wave problems, the initial condition was assumed as 

follows: 
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The numerical results of these schemes are presented in Figure 5.27-5.44. 
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Figure 5.27. The density behavior for case I of rarefaction waves simulated by the Upwind 

scheme. 
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Figure 5.28. The density behavior for case I of rarefaction waves simulated by the 

Lax-Friedrichs scheme. 
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Figure 5.29. The density behavior for case I of rarefaction waves simulated by the Leapfrog 

scheme. 
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Figure 5.30. The density behavior for case I of rarefaction waves simulated by the 

Beam-Warming scheme. 
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Figure 5.31. The density behavior for case I of rarefaction waves simulated by the 

Lax-Wendroff scheme. 
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Figure 5.32. The density behavior for case I of rarefaction waves simulated by the 

MacCormack scheme. 
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Figure 5.33. The density behavior for case I of rarefaction waves simulated by the Godunov 

scheme. 
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Figure 5.34. The density behavior for case I of rarefaction waves simulated by TVD 

slope-limiter scheme. 
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Figure 5.35. The density behavior for case I of rarefaction waves simulated by WENO FV 

scheme. 
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Figure 5.36. The density profile at t = 0.05hr for case I of rarefaction waves simulated by the 

Upwind scheme. 
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Figure 5.37. The density profile at t = 0.05hr for case I of rarefaction waves simulated by the 

Lax-Friedrichs scheme. 
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Figure 5.38. The density profile at t = 0.05hr for case I of rarefaction waves simulated by the 

Leapfrog scheme. 
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Figure 5.39. The density profile at t = 0.05hr for case I of rarefaction waves simulated by the 

Beam-Warming scheme. 
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Figure 5.40. The density profile at t = 0.05hr for case I of rarefaction waves simulated by the 

Lax-Wendroff scheme. 



 53 

5 10 15 20 25 30
xHkmL0

20

40

60

80

100

120
kHvehêkmL

 

Figure 5.41. The density profile at t = 0.05hr for case I of rarefaction waves simulated by the 

MacCormack scheme. 
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Figure 5.42. The density profile at t = 0.05hr for case I of rarefaction waves simulated by the 

Godunov scheme. 
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Figure 5.43. The density profile at t = 0.05hr for case I of rarefaction waves simulated by 

TVD slope-limiter scheme. 
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Figure 5.44. The density profile at t = 0.05hr for case I of rarefaction waves simulated by 

WENO FV scheme. 

In case I of the rarefaction wave problems, the Leapfrog and Beam-Warming scheme 

shows their ill numerical stabilities again. The Lax-Wendroff and MacCormack also don’t 

have the satisfactory accuracy. 

5.1.2.2 Case II 

In case II of the rarefaction wave problems, the initial condition was assumed as follows: 
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The numerical results of these schemes are presented in Figure 5.45-5.52. 
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Figure 5.45. The density behavior for case II of rarefaction waves simulated by the Upwind 

scheme. 
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Figure 5.46. The density behavior for case II of rarefaction waves simulated by the Godunov 

scheme. 

0
10

20
30xHkmL 0
0.02
0.04
0.06
0.08
0.1

tHhrL0

25

50

75

100

kHvehêkmL

0
10

20
30xHkmL

 

Figure 5.47. The density behavior for case II of rarefaction waves simulated by TVD 

slope-limiter scheme. 
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Figure 5.48. The density behavior for case II of rarefaction waves simulated by WENO FV 

scheme. 
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Figure 5.49. The density profile at t = 0.05hr for case II of rarefaction waves simulated by the 

Upwind scheme. 
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Figure 5.50. The density profile at t = 0.05hr for case II of rarefaction waves simulated by the 

Godunov scheme. 
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Figure 5.51. The density profile at t = 0.05hr for case II of rarefaction waves simulated by 

TVD slope-limiter scheme. 
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Figure 5.52. The density profile at t = 0.05hr for case II of rarefaction waves simulated by 

WENO FV scheme. 

In case II of the rarefaction wave problems, WENO FV scheme demonstrates the 

dominant accuracy among these applied schemes. 

5.1.3 Traffic Signal Switching from Red to Green 

The traffic signal example in this study is a road section with a signal shown in Figure 

5.53. The situation that a traffic signal switches from red to green at that time the traffic is 

lined up behind the red light is simulated. In this example, the numerical errors were analyzed 

to acquire the most accurate scheme. Based on the results from Sections 5.1.1 and 5.1.2, 

Godunov-type TVD slope- limiter, which combines TVD sloper- limiter with Godunov, and 

WENO FV schemes had better accuracies and thus were compared in this section. This 

numerical example was formulated as follows: 
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where free-flow speed fu = 80 kph and jam density jk = 160 veh/km. The length of street 

section is 20 km, and observed time period is 0.25 hr. The exact solution is shown as follows: 
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To check accuracy at a given time level, the 1L  and ∞L  error are measured. 
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The simulated result of WENO FV scheme is shown in Figure 5.54, which illustrates the 

rarefaction waves corresponding to the gradual initiation of the traffic flow when traffic light 

at x = 0 turns from red to green at t = 0. Figure 5.55 presents the numerical comparison of 

accuracy between WENO FV and Godunov-type TVD slope- limiter FD methods. Table 5.1 

and 5.2 demonstrate the numerical accuracy and CPU timing of WENO FV and 

Godunov-type TVD slope- limiter FD methods separately. The results show that WENO FV 

scheme is more accurate than Godunov-type TVD slope-limiter FD method, but requires more 

execution time. 

 

Flow direction

x=0
Traffic signal
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Figure 5.53. A road section with a traffic signal. 
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Figure 5.54. The density behavior with a traffic signal turning from red to green simulated by 

WENO FV scheme. 
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Figure 5.55. The density profile at t = 0.05 hr for traffic signal problem (Solid line: exact 

solution; Dashes: solution of Godunov-type TVD slope-limiter FD scheme; Dots: solution of 

WENO FV scheme). 
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Table 5.1. Numerical accuracy in density at t = 0.05hr for traffic signal problem with 

infinity-norm and one-norm errors (unit: veh/km). 

Scheme ∞L  error 1L  error 

WENO FV 4.144 7.054 

Godunov-type 

TVD Slope-limiter FD 8.417 12.71 

 

Table 5.2. Execution times for simulation of traffic signal problem (unit: CPU sec.). 

               Mesh (M×N) 

Schemes 
75×100 75×200 150×200 300×400 

WENO FV 6 12 16 45 

Godunov-type 

TVD Slope-limiter FD 1 1 2 3 

 

5.1.4 Square Wave Problem 

In order to demonstrate both shock and rarefaction waves, the test case of square wave 

was examined. The square wave problem was formulated as follows: 

Equilibrium density-speed relationship: jkk
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Initial condition: 
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where free-flow speed fu = 140 kph and jam density jk = 220 veh/km. The length of street 

section is 60 km, and observed time period is 1hour. 
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Figure 5.56. The initial condition of density profile in square wave problem. 

First, the analytical solution shall be derived to be the benchmark of the numerical 

accuracy. The exact solutions are obtained using the method of characteristics. With the 

equilibrium density-velocity function 

jkk

f euku
/9)( −= ,                                                          (5.1) 

so that the flow-density relationship, i.e. the flux function, is 
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the wave speed can be obtained 
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Using the chain rule 
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and substituting 
t
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∂

 in Eqn. (5.3), the acquired forms are shown as follows: 
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)(ka
dt
dx = ,                                                              (5.5) 

which implies that k and hence a(k) is constant along these lines. These are the characteristics, 

which are straight lines in this case given by 

atxx += 0 ,                                                              (5.6) 

where x0 is the value of x at t = 0, and 
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Figure 5.57. The flow-density relationship used in square wave problem. 

In order to obtain the exact solution at ),( tx , we trace the characteristic that passes 

through that point back to the initial density profile, where k has the same value on the 

characteristic, i.e. 

00 )0,(),( kxktxk == . 
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When characteristics cross, however, the solution becomes multiply defined and contravenes 

physical phenomena. This is encountered immediately when considering the square wave at x 

= 10. Using the Rankine-Hugoniot jump condition, a shock moving with speed 

[ ]
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lr                                      (5.8) 

is formed. By checking the entropy condition 
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,                                         (5.9) 

a shock is confirmed. 

It is a different scenario for the discontinuity at x = 20. The characteristics to the left of 

discontinuity have negative speed a(kl) = 2/9
2
7 −− eu f , whereas to the right the characteristics 

have positive speed a(kr) = uf. Therefore these characteristics do not meet, Eqn. (5.9) would 

not be satisfied, and hence there is no single shock connecting these states. With the 

non-convex flux function q(k), however, there is a point of inflection. Provided that kl and kr 

are both to the left or right of the point of inflection, then the void created between the 

characteristics is filled in with a rarefaction fan. When the convex hull of the flux function is 

the same as the flux function itself between kl and kr, the solution is purely an expansion fan. 

Therefore it is needed to check where kl and kr are relative to the point of inflection. 

The point of inflection of the flux function (5.2) is at k=k I, where 

0)/18/81()( /92 =−=′′ − jI kk

jjIfI ekkkukq , 

and consequently, 

9/2 jI kk = .                                                            (5.10) 

Since at x = 20, kr < kI < kl, kl and kr are on opposite sides of the point of inflection, the 
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flux function and its convex hull are not the same. The discontinuity therefore comprises of a 

shock and an expansion fan, separated at kT, the point where the tangent to the flux function 

passes through (kl, ql). This ensures the correct entropy-satisfying weak solution. The point (kT, 

qT) can be found by equating the derivative of the flux function at kT to the slope of the line 

between (kT, qT) and (kl, ql), i.e. 

lT

lT
T

kk

qq
kq

−
−=′ )( .                                                         (5.11) 

Multiplying by ( lT kk − ), 

0)()( =′−−− TlTlT kqkkqq                                                 (5.12) 

is obtained. 

Substituting for the flux function (5.2), we obtain 

0)/9/9( /9/92 =−+− −− jljT kk

l

kk

ljlTjT ekekkkkkk ,                                (5.13) 

where kl = 110, and kT can be calculated by using Newton’s method.  

Once kT is found, the speed of the shock (5.8) can be calculated from 

jT kk

jTf

lT

lT ekku
kk

qq
s

/9)/91( −−=
−
−=  

and since kl is unchanged while the shock is moving, kT is constant, and thus so is the speed 

until the shocks collide. 

In order to derive the expansion fan to the right of the shock, between kT and kr = 0, the 

slope of the characteristic A ( )()( rT kqAkq ′≤≤′ ) is found from Eqn. (5.6), i.e. 

t
x

A
20−=                                                              (5.14) 

with the given (x, t). 

Then k can be found again with A using Newton iteration, from 
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Aekkukq jkk

jf =−=′ − /9)/91()( , 

and 

0)/91( /9 =−− −
Aekku jkk

jf .                                               (5.15) 

When the shocks cross, an expansion fan is followed by a discontinuity of height kT. This new 

discontinuity is a shock whose speed can be calculated using Eqn. (5.8), where kl = 0 and kr is 

given by kT. The shock therefore moves with positive speed and hence, as it moves, its height 

decreases, thus changing the shock speed. The shock path will therefore no longer be a 

straight line in the characteristic diagram. The shape of the shock can be calculated 

numerically using Euler’s method. The instantaneous shock speed is calculated by starting at 

the initial position of the colliding shocks and moving a distance äx in time ät. This new 

position (x, t) crosses a characteristic from the expansion fan, and then A can be calculated 

using Eqn. (5.14). So can the new kr by Eqn. (5.15), and hence the new shock speed by Eqn. 

(5.8). The resulting density profile would be a shock moving with positive but decreasing 

speed, with decreasing height, followed by an expansion fan of increasing width. 

Figure 5.62-5.65 present the numerical comparison of accuracy between WENO FV and 

Godunov-type TVD slope-limiter FD methods on various mesh sizes. Table 5.3 and 5.4 

demonstrate the numerical accuracy and CPU timing of WENO FV and Godunov-type TVD 

slope- limiter FD methods separately. The results also show that WENO FV scheme is still 

more accurate than Godunov-type TVD slope- limiter FD method, but requires more execution 

time. 
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Figure 5.58. Characteristics diagram for square wave problem. 

 

0 10 20 30 40 50 60
xHkmL

0

0.2

0.4

0.6

0.8

1

tHhrL

 

Figure 5.59. Characteristics for square wave problem simulated by WENO FV scheme. 
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Figure 5.60. Contours of density for square wave problem simulated by WENO FV scheme. 
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Figure 5.61. The density behavior for square wave problem simulated by WENO FV scheme. 
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Figure 5.62. The density profile at t = 0.4 hr for square wave problem (Mesh: 100×100; Solid 

line: exact solution; Dashes: solution of Godunov-type TVD slope-limiter FD scheme; Dots: 

solution of WENO FV scheme). 
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Figure 5.63. The density profile at t = 0.4 hr for square wave problem (Mesh: 160×160; Solid 

line: exact solution; Dashes: solution of Godunov-type TVD slope-limiter FD scheme; Dots: 

solution of WENO FV scheme). 
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Figure 5.64. The density profile at t = 0.4 hr for square wave problem (Mesh: 200×200; Solid 

line: exact solution; Dashes: solution of Godunov-type TVD slope-limiter FD scheme; Dots: 

solution of WENO FV scheme). 
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Figure 5.65. The density profile at t = 0.4 hr for square wave problem (Mesh: 400×400; Solid 

line: exact solution; Dashes: solution of Godunov-type TVD slope-limiter FD scheme; Dots: 

solution of WENO FV scheme). 
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Table 5.3. Numerical accuracy in density at t = 0.4 hr for square ware problem with 

infinity-norm and one-norm errors (unit: veh/km). 

Scheme Mesh (M×N) ∞L  error 1L  error 

100×100 80.99 147.00 

160×160 91.96 116.61 

200×200 81.39 75.54 
WENO FV 

400×400 79.29 35.76 

100×100 105.95 157.95 

160×160 110.00 126.99 

200×200 101.90 84.10 

Godunov-type 

TVD Slope-limiter FD 

400×400 93.79 42.55 

 

Table 5.4. Execution times for simulation of square ware problem (unit: CPU sec.). 

               Mesh (M×N) 

Schemes 
100×100 160×160 200×200 400×400 

WENO FV 6 19 24 95 

Godunov-type 

TVD Slope-limiter FD 1 2 3 5 

 

5.2 Numerical Examples for PW and Jiang’s Improved Models 

In this section, WENO FV scheme was utilized to solve two classes of high order 

continuum traffic flow models. The PW model, i.e. the original high order model, and the 

novel Jiang’s improved model, which was presented in 2002, were selected for the following 

test pronlems. The equilibrium speed-density relationship developed by Del Castillo and 

Benitez (1995) was applied in both models. 
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Figure 5.66. The equilibrium speed-density and flow-density relationships developed by Del 

Castillo and Benitez. 

The PW and Jiang’s improved models were introduced in Chapter 2 and formulated for 

numerical discretization in Chapter 3. These numerical examples were formulated as follows: 

Del Castillo and Benitez’s density-speed relationship: 

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Jiang’s improved model: 
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Initial condition: 
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where free-flow speed fu = 30 m/s, jam density jk = 0.2 veh/m, relaxation time τ = 2 sec, 

the kinematic wave speed under the jam density mc = 11 m/s, and the propagation speed of 

the disturbance c = 11 m/s . The length of street section is 20 km, and observed time period is 

10 min. 
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5.2.1 Shock Problems 

In the shock problems, three cases are shown as follows. 

5.2.1.1 Case I 

In case I of the shock problems, the situation kl < kr and ql > qr was considered. There are 

two conditions satisfying the situation, as shown in Figure 5.67. 
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(a)                                   (b) 

Figure 5.67. Two conditions in case I of shock problems: (a) kl = 0.03 veh/m and kr = 0.14 

veh/m; (b) kl = 0.1 veh/m and kr = 0.14 veh/m. 
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Figure 5.68. The density and velocity behaviors for condition (a) in case I of shock problems 

simulated by Jiang’s FD scheme with PW model. 
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Figure 5.69. The density and velocity behaviors for condition (a) in case I of shock problems 

simulated by WENO FV scheme with PW model. 
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Figure 5.70. The density and velocity profiles at t = 2 min for condition (a) in case I of shock 

problems simulated with PW model (Dashes: solution of Jiang’s FD scheme; Dots: solution of 

WENO FV scheme). 
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Figure 5.71. The density and velocity behaviors for condition (a) in case I of shock problems 

simulated by Jiang’s FD scheme with Jiang’s improved model. 
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Figure 5.72. The density and velocity behaviors for condition (a) in case I of shock problems 

simulated by WENO FV scheme with Jiang’s improved model. 
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Figure 5.73. The density and velocity profiles at t = 2 min for condition (a) in case I of shock 

problems simulated with Jiang’s improved model (Dashes: solution of Jiang’s FD scheme; 

Dots: solution of WENO FV scheme). 
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Figure 5.74. The density and velocity behaviors for condition (b) in case I of shock problems 

simulated by Jiang’s FD scheme with PW model. 
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Figure 5.75. The density and velocity behaviors for condition (b) in case I of shock problems 

simulated by WENO FV scheme with PW model. 
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Figure 5.76. The density and velocity profiles at t = 2 min for condition (b) in case I of shock 

problems simulated with PW model (Dashes: solution of Jiang’s FD scheme; Dots: solution of 

WENO FV scheme). 
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Figure 5.77. The density and velocity behaviors for condition (b) in case I of shock problems 

simulated by Jiang’s FD scheme with Jiang’s improved model. 
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Figure 5.78. The density and velocity behaviors for condition (b) in case I of shock problems 

simulated by WENO FV scheme with Jiang’s improved model. 
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Figure 5.79. The density and velocity profiles at t = 2 min for condition (b) in case I of shock 

problems simulated with Jiang’s improved model (Dashes: solution of Jiang’s FD scheme; 

Dots: solution of WENO FV scheme). 

5.2.1.2 Case II 
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In case II of the shock problems, the situation kl < kr and ql < qr was considered. There 

are two conditions satisfying the situation, as shown in Figure 5.80. 
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(a)                                   (b) 

Figure 5.80. Two conditions in case II of shock problems: (a) kl = 0.02 veh/m and kr = 0.1 

veh/m; (b) kl = 0.02 veh/m and kr = 0.04 veh/m. 
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Figure 5.81. The density and velocity behaviors for condition (a) in case II of shock problems 

simulated by Jiang’s FD scheme with PW model. 
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Figure 5.82. The density and velocity behaviors for condition (a) in case II of shock problems 

simulated by WENO FV scheme with PW model. 
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Figure 5.83. The density and velocity profiles at t = 2 min for condition (a) in case II of shock 

problems simulated with PW model (Dashes: solution of Jiang’s FD scheme; Dots: solution of 

WENO FV scheme). 
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Figure 5.84. The density and velocity behaviors for condition (a) in case II of shock problems 

simulated by Jiang’s FD scheme with Jiang’s improved model. 
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Figure 5.85. The density and velocity behaviors for condition (a) in case II of shock problems 

simulated by WENO FV scheme with Jiang’s improved model. 
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Figure 5.86. The density and velocity profiles at t = 2 min for condition (a) in case II of shock 

problems simulated with Jiang’s improved model (Dashes: solution of Jiang’s FD scheme; 

Dots: solution of WENO FV scheme). 
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Figure 5.87. The density and velocity behaviors for condition (b) in case II of shock problems 

simulated by Jiang’s FD scheme with PW model. 
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Figure 5.88. The density and velocity behaviors for condition (b) in case II of shock problems 

simulated by WENO FV scheme with PW model. 
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Figure 5.89. The density and velocity profiles at t = 2 min for condition (b) in case II of shock 

problems simulated with PW model (Dashes: solution of Jiang’s FD scheme; Dots: solution of 

WENO FV scheme). 
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Figure 5.90. The density and velocity behaviors for condition (b) in case II of shock problems 

simulated by Jiang’s FD scheme with Jiang’s improved model. 
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Figure 5.91. The density and velocity behaviors for condition (b) in case II of shock problems 

simulated by WENO FV scheme with Jiang’s improved model. 
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Figure 5.92. The density and velocity profiles at t = 2 min for condition (b) in case II of shock 

problems simulated with Jiang’s improved model (Dashes: solution of Jiang’s FD scheme; 

Dots: solution of WENO FV scheme). 
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5.2.1.3 Case III 

In case III of the shock problems, the situation kl < kr and ql = qr was considered, as 

shown in Figure 5.93. 
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Figure 5.93. Case III of shock problems: kl = 0.0133 veh/m and kr = 0.1636 veh/m. 
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Figure 5.94. The density and velocity behaviors for case III of shock problems simulated by 

Jiang’s FD scheme with PW model. 
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Figure 5.95. The density and velocity behaviors for case III of shock problems simulated by 

WENO FV scheme with PW model. 
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Figure 5.96. The density and velocity profiles at t = 2 min for case III of shock problems 

simulated with PW model (Dashes: solution of Jiang’s FD scheme; Dots: solution of WENO 

FV scheme). 
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Figure 5.97. The density and velocity behaviors for case III of shock problems simulated by 

Jiang’s FD scheme with Jiang’s improved model. 
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Figure 5.98. The density and velocity behaviors for case III of shock problems simulated by 

WENO FV scheme with Jiang’s improved model. 
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Figure 5.99. The density and velocity profiles at t = 2 min for case III of shock problems 

simulated with Jiang’s improved model (Dashes: solution of Jiang’s FD scheme; Dots: 

solution of WENO FV scheme). 

 

5.2.2 Rarefaction Wave Problems 

5.2.2.1 Case I 

In case I of the rarefaction wave problems, the situation kl > kr and ql > qr was considered. 

There are two conditions satisfying the situation, as shown in Figure 5.100. 
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(a)                                   (b) 

Figure 5.100. Two conditions in case I of rarefaction wave problems: (a) kl = 0.1 veh/m and kr 

= 0.02 veh/m; (b) kl = 0.04 veh/m and kr = 0.02 veh/m. 
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Figure 5.101. The density and velocity behaviors for condition (a) in case I of rarefaction 

wave problems simulated by Jiang’s FD scheme with PW model. 
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Figure 5.102. The density and velocity behaviors for condition (a) in case I of rarefaction 

wave problems simulated by WENO FV scheme with PW model. 
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Figure 5.103. The density and velocity profiles at t = 2 min for condition (a) in case I of 

rarefaction wave problems simulated with PW model (Dashes: solution of Jiang’s FD scheme; 

Dots: solution of WENO FV scheme). 
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Figure 5.104. The density and velocity behaviors for condition (a) in case I of rarefaction 

wave problems simulated by Jiang’s FD scheme with Jiang’s improved model. 
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Figure 5.105. The density and velocity behaviors for condition (a) in case I of rarefaction 

wave problems simulated by WENO FV scheme with Jiang’s improved model. 
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Figure 5.106. The density and velocity profiles at t = 2 min for condition (a) in case I of 

rarefaction wave problems simulated with Jiang’s improved model (Dashes: solution of 

Jiang’s FD scheme; Dots: solution of WENO FV scheme). 
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Figure 5.107. The density and velocity behaviors for condition (b) in case I of rarefaction 

wave problems simulated by Jiang’s FD scheme with PW model. 
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Figure 5.108. The density and velocity behaviors for condition (b) in case I of rarefaction 

wave problems simulated by WENO FV scheme with PW model. 
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Figure 5.109. The density and velocity profiles at t = 2 min for condition (b) in case I of 

rarefaction wave problems simulated with PW model (Dashes: solution of Jiang’s FD scheme; 

Dots: solution of WENO FV scheme). 
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Figure 5.110. The density and velocity behaviors for condition (b) in case I of rarefaction 

wave problems simulated by Jiang’s FD scheme with Jiang’s improved model. 
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Figure 5.111. The density and velocity behaviors for condition (b) in case I of rarefaction 

wave problems simulated by WENO FV scheme with Jiang’s improved model. 
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Figure 5.112. The density and velocity profiles at t = 2 min for condition (b) in case I of 

rarefaction wave problems simulated with Jiang’s improved model (Dashes: solution of 

Jiang’s FD scheme; Dots: solution of WENO FV scheme). 
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5.2.2.2 Case II 

In case II of the rarefaction wave problems, the situation kl > kr and ql < qr was 

considered. There are two conditions satisfying the situation, as shown in Figure 5.113. 
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(a)                                   (b) 

Figure 5.113. Two conditions in case II of rarefaction wave problems: (a) kl = 0.14 veh/m and 

kr = 0.03 veh/m; (b) kl = 0.14 veh/m and kr = 0.1 veh/m. 
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Figure 5.114. The density and velocity behaviors for condition (a) in case II of rarefaction 

wave problems simulated by Jiang’s FD scheme with PW model. 
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Figure 5.115. The density and velocity behaviors for condition (a) in case II of rarefaction 

wave problems simulated by WENO FV scheme with PW model. 
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Figure 5.116. The density and velocity profiles at t = 2 min for condition (a) in case II of 

rarefaction wave problems simulated with PW model (Dashes: solution of Jiang’s FD scheme; 

Dots: solution of WENO FV scheme). 
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Figure 5.117. The density and velocity behaviors for condition (a) in case II of rarefaction 

wave problems simulated by Jiang’s FD scheme with Jiang’s improved model. 
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Figure 5.118. The density and velocity behaviors for condition (a) in case II of rarefaction 

wave problems simulated by WENO FV scheme with Jiang’s improved model. 
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Figure 5.119. The density and velocity profiles at t = 2 min for condition (a) in case II of 

rarefaction wave problems simulated with Jiang’s improved model (Dashes: solution of 

Jiang’s FD scheme; Dots: solution of WENO FV scheme). 
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Figure 5.120. The density and velocity behaviors for condition (b) in case II of rarefaction 

wave problems simulated by Jiang’s FD scheme with PW model. 
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Figure 5.121. The density and velocity behaviors for condition (b) in case II of rarefaction 

wave problems simulated by WENO FV scheme with PW model. 
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Figure 5.122. The density and velocity profiles at t = 2 min for condition (b) in case II of 

rarefaction wave problems simulated with PW model (Dashes: solution of Jiang’s FD scheme; 

Dots: solution of WENO FV scheme). 
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Figure 5.123. The density and velocity behaviors for condition (b) in case II of rarefaction 

wave problems simulated by Jiang’s FD scheme with Jiang’s improved model. 
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Figure 5.124. The density and velocity behaviors for condition (b) in case II of rarefaction 

wave problems simulated by WENO FV scheme with Jiang’s improved model. 
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Figure 5.125. The density and velocity profiles at t = 2 min for condition (b) in case II of 

rarefaction wave problems simulated with Jiang’s improved model (Dashes: solution of 

Jiang’s FD scheme; Dots: solution of WENO FV scheme). 
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5.2.2.3 Case III 

In case III of the rarefaction problems, the situation kl > kr and ql = qr was considered, as 

shown in Figure 5.126. 
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Figure 5.126. Case III of rarefaction wave problems: kl = 0.1636 veh/m and kr = 0.0133 

veh/m. 
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Figure 5.127. The density and velocity behaviors for case III of rarefaction wave problems 

simulated by Jiang’s FD scheme with PW model. 
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Figure 5.128. The density and velocity behaviors for case III of rarefaction wave problems 

simulated by WENO FV scheme with PW model. 
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Figure 5.129. The density and velocity profiles at t = 2 min for case III of rarefaction wave 

problems simulated with PW model (Dashes: solution of Jiang’s FD scheme; Dots: solution of 

WENO FV scheme). 
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Figure 5.130. The density and velocity behaviors for case III of rarefaction wave problems 

simulated by Jiang’s FD scheme with Jiang’s improved model. 
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Figure 5.131. The density and velocity behaviors for case III of rarefaction wave problems 

simulated by WENO FV scheme with Jiang’s improved model. 
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Figure 5.132. The density and velocity profiles at t = 2 min for case III of rarefaction wave 

problems simulated with Jiang’s improved model (Dashes: solution of Jiang’s FD scheme; 

Dots: solution of WENO FV scheme). 

 

5.2.3 Local Cluster Effect 

In this section, the local cluster effect with respect to a localized perturbation in an initial 

homogeneous condition was simulated. Jiang (2002) demonstrated that his improved model 

can describe the amplification of a small disturbance, known as the local cluster effect of 

traffic flow (Kerner and Konhäuser, 1993, 1994; Herrmann and Kerner, 1998). The local 

cluster effect corresponds to the stop-and-go phenomena observed in the field due to a small 

disturbance (Jiang, 2002). The following initial variation of the average dens ity k0 proposed 

by Hermann and Kerner (1998) was applied in this section: 
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where L is the length of the road section. The equilibrium speed-density relationship 

presented by Kerner and Konhäuser (1993): 
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was also used, as shown in Figure 5.133. 

As the condition Jiang (2002) assumed, L = 32.2 km, Äk0 = 0.01veh/m, the space interval 

Äx = 100m, the time interval Ät = 1sec, and the periodic boundary conditions was adopted as 

follows: 

),0(),(),,0(),( tutLutktLk == . 

Moreover, the initial flow was supposed to be in local equilibrium everywhere: 

))0,(()0,( xkuxu e= , 

Other parameter values are the same as in Section 5.2. 

Jiang (2002) derived the stable condition and found out the traffic would be unstable 

when 

ud kkk << 0 , 

where down-critical density kd = 0.031 and up-critical density ku = 0.084. The results 

simulated by Jiang’s FD scheme illustrated how the unstable traffic developed, as shown in 

Figure 5.135(a)-(j). In Figure 5.135(a)-(b), due to the low traffic density, the perturbation is 

dispersing without any amplification. As the initial density increases, small perturbations can 

be amplified, leading to traffic instability (Jiang, 2002). A single local cluster forms while the 

density is just above kd, as shown in Figure 5.135(d). As the density becomes higher, Figure 

5.135(e) illustrates the structure of multiple clusters which corresponds to a stop-and-go 

traffic. In Figure 5.135(f), a dipole- like structure is observed. When the density becomes 
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larger than ku, a stable regime is reached again as shown in Figure 5.135(h). 

Therefore, provided that the initial density is below kd or above ku, the traffic would be 

stable, and vice versa. The theoretical values of kd and ku derived by Jiang (2002) are 0.031 

and 0.084, respectively. When simulating by Jiang’s FD scheme, the two values are 0.04 and 

0.077. Figure 5.136(a)-(j) demonstrates that WENO FV scheme produces the two values with 

0.035 and 0.08. The numerical comparison between Jiang’s FD and WENO FV schemes is 

given in Figure 5.137 and Table 5.5. It is shown again that WENO scheme really has the 

dominant numerical accuracy. 
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Figure 5.133. The equilibrium speed-density and flow-density relationship presented by 

Kerner and Konhäuser (1993). 
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Figure 5.134. The initial variation of the average density k0 = 0.035 veh/m. 
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(i)                                        (j) 

Figure 5.135. Temporal evolution of traffic on a ring of 32.2 km circumference with a 

homogeneous initial traffic and a localized perturbation of amplitude Äk0 = 0.01 veh/m 

simulated by Jiang’s FD scheme for: (a) k0 = 0.03 veh/m; (b) k0 = 0.035 veh/m; (c) k0 =0.04 

veh/m; (d) k0 = 0.042 veh/m; (e) k0 = 0.046 veh/m; (f) k0 = 0.07 veh/m; (g) k0 =0.077 veh/m; 

(h) k0 = 0.08 veh/m; (i) k0 =0.082 veh/m; (j) k0 = 0.085 veh/m. 
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Figure 5.136. Temporal evolution of traffic on a ring of 32.2 km circumference with a 

homogeneous initial traffic and a localized perturbation of amplitude Äk0 = 0.01 veh/m 

simulated by WENO FV scheme for: (a) k0 = 0.03 veh/m; (b) k0 = 0.035 veh/m; (c) k0 =0.04 

veh/m; (d) k0 = 0.042 veh/m; (e) k0 = 0.046 veh/m; (f) k0 = 0.07 veh/m; (g) k0 =0.077 veh/m; 

(h) k0 = 0.08 veh/m; (i) k0 =0.082 veh/m; (j) k0 = 0.085 veh/m. 
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Figure 5.137. Comparison of down-critical density kd and up-critical density ku between 

Jiang’s FD and WENO FV solutions. 

 

Table 5.5. Comparison of down-critical density kd and up-critical density ku between Jiang’s 

FD and WENO FV solutions. 

          Critical density 

Solution 
Down-critical Up-critical 

Theoretical 0.031 0.084 

WENO FV 0.035 0.08 

Jiang’s FD 0.04 0.077 

 


