Chapter 4

WEIGHTED ESSENTIALLY
NON-OSCILLATORY FINITE DIFFERENCE
AND FINITE VOLUME SCHEMES

High order WENO schemes are one class of high resolution methods suitable for solving
hyperbolic conservation laws which shocks and possible discontinuous or sharp gradient
regions exist in the solutions. In this study, WENO finite difference and finite volume

methods were utilized to solve macroscopic continuum traffic models.

WENO schemes are developed based on the successful ENO schemes. The first WENO
scheme was constructed by Liu and colleagues (1994) for a third order finite volume version
in one space dimension. Later, Jiang and Shu (1996) developed third and fifth order finite
difference WENO schemes in multi-space dimensions with a general framework for the
design of the smoothness indicators and nonlinear weights. Very high order finite difference
WENO schemes (for order between 7 and 11) have been presented by Balsara and Shu

(2000).

In this section, WENO schemes are described for 1D conservation laws

ﬂk(X,t) +ﬂf (k(X,t)) =0 (4 ]_)
it ™ ! '

equipped with suitable initial and boundary conditions. Herek is the conserved quantity while

f istheflux.



4.1 TVD Runge-Kutta Time Discr etization

Before introducing the spatial discretizetions, the time discretization shall be first
discussed. For the high resolution spatial discretizations applied in this research, the study
used a class of high order nonlinearly stable Runge-Kutta time discretizations. A distinctive
feature of this class of time discretizations is that they are convex combinations of first order
forward Euler steps, hence they maintain strong stability properties in any semi-norm, e.g.
total variation norm, maximum norm, entropy condition, etc., of the forward Euler step. These
methods were first developed by Shu (1988), and later generalized by Gottlieb and Shu (1998).
The most popular scheme in this class is the following third TVD Runge-Kutta method for

olving

K _
¢ ~ LD, (4.2)

where L(k,t) isaspatia discretization operator:

k(l) =K" +Dt|_(kn,tn),
k® =%k“ +:11k<1> +%DtL(k‘”,t“ +Dt), (4.3)

kL :lkn +gk(2) +E[1L(k(2),tn +1Dt)
3 3 3 2

4.2 Weighted Essentially Non-Oscillatory Schemes

WENO spatial discretizations were introduced in the following sections. This study
considered WENO reconstruction and approximation first, and then the finite difference and

finite volume formul ations were described.
4.2.1 WENO Reconstruction and Approximation

This section concentrates on WENO interpolation and approximation in one space

dimension.
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Assumeagrid

A= Xos <X < < Xy.o5 < Xyios = b. (4-4)

Cdls, cdl centers, and cell Szes are respectively defined asfollows

1 .
Ii ° [Xi-0.5’xi+0.5]’ Xi ° E(Xi-O.S +Xi+0.5)’ Dxl ° Xi+0.5 - Xi-0.5’ I :l’z""’ N. (45)

With the cdll averages of afunction v(x):

vo &&“'Sv(x)dx, i=12,...,N, (4.6)

apolynomia p,(x) of degree a most k- 1, for each cell |, can be found, such that it is a

k -th order accurate approximation to the function v(x) ingde |,;:
P, (X) = v(X) +O(Dx*) xT1,i=12..,N. (4.7)

Then this gives the k-th order accurate approximations to the functions v(x) at the cell

boundaries

+ —

Vios = B (X.05)s Viies = Py (Xi.o5); i=12,...,N. (4.8)

WENO was developed to improve upon ENO in the idea that using a convex
combination of al of the candidate stencils to form the reconstruction instead of using only

one of them. Supposethe k candidate stencils
S@)={x_,, %X . r=01..k-1 (4.9)

produce k different reconstructions to the vdue v,

(r)
Vi +0.5

k-1
=8¢V, r=0l..,k-1 (4.10)
j=0

where
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Figure 4.1. The candidate stencilsfor k = 3.
WENO reconstruction would take a convex combination of all V). defined in Eqgn. (4.10)

as anew approximation to the cell boundary vaue Vv(X,,,s) :
(4.12)

k-1
V..=3 wv®
i+05 _a rVi+05 -
r=0

Obvioudly, the choice of the weights w would be crucial to the success of WENO

reconstruction.
(4.13)

isrequired for stability and consstency.
If the function v(x) is smooth in al of the candidate stencils (4.9), there are constants

d, such that
(4.14)

k-1
Vi+0.5 = é. drvi(BJ.S = V(Xi+0.5) + O(D(zk-l) .
r=0

For example, d, for 1£ k £3 are given by
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In this smooth case, the weights would like to be hold
w, =d, +O(Dx“"), r=0,..k-1 (4.15)

which would imply (2k - 1) -th order accuracy:

k-1
Vis = @ W VTDs = V(X ,05) + O(DX*Y) . (4.16)

r=0
When the function v(x) has a discontinuity in one or more of the stencils (4.9), it
would be hoped that the corresponding weight(s) w, to be essentially 0, to emulate the

successful ENO idea This congderation lead to the following form of weights:

W=—or r=0..k-1 (4.17)
a3
with
d
a =t 4.18
r (e+br)2 ( )

Here e>0 isaparameter to avoid the denominator to become 0 and is usually taken as

e=10"° in the computation. b, are the so-caled “smooth indicators’ of the tencil S, (i) .

When k=2,

(4.19)
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3, . 1 . .-
0y = (7, - 200 49 )+ {3V - 49, 9, ),

13,_ o 1, _

bl =12 (Vi-l' 2Vi +Vi+l)2 +Z( i-1° Vi+1)2’ (4'20)
13, o 1, _

bz :E(Vi—Z - 2Vi—1 +Vi)2 +Z(Vi—2 - 4Vi—1 +3Ui)2'

Finally, for each cell I., with the given cell average {Vi} of a function v(x), upwind

biased (2k - 1)-th order approximations to the function v(x) at the cell boundaries, denoted

by v, and v ., aeobtaned.

|+

4.2.2 Finite Difference Formulation

First, It is assumed that the grid is uniform, and Eqgn. (4.1) is solved directly by using a

conservative gpproximeation to the spatia derivative

dk®__ 1(z =
T =" &(fwo.s - fi-o.s)’ (4-21)

where k; (t) is the numerical approximation to the point value k(x;,t), and the numerical

flux

fros= FKLrke)
satisfies the following conditions:

1. f is a Lipschitz continuous function in dl the arguments.

A

2. f isconsstent with the physical flux, ie f (k. ,....k,.) = f(K).

Then the Roe speed

a 0 f(ki+1)' f(ki)
i+0.5 k .- ki+l

1+

(4.22)

shall be compued. If a,,;2 0, the numerical flux would be taken as ﬂ+05:\/f

i+05 *



Otherwise, it shall be taken as ﬁ+0_5 =V, . Findly, the scheme (4.21) can be formed.
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Figure 4.2. WENO Finite Difference Grid Structure.

4.2.3 Finite Volume Formulation

For finite volume schemes, Eqgn. (4.1) wouldn’ t be solved directly, but by its integrated

verson. Egn. (4.1) isintegrated over theinterval |, to obtain

dk(x.) _ 1 ]
i = D\ KOs D) F(K(X s.1), (4.23)
where
> o 1 Ji+05
K060 5oQ,, kexdx (4.24)

is the cell average. Finite volume schemes approximate Eqn. (4.23) by the following

consvative formulation
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dk (t)y _ 1 (; ~
T—'a(fno.s' fi-O.S)’ (4.25)

where k (t) is the numerical approximation to the cell average k(x;,t), and the numerical

flux f.,,. isdefined by

A

freos = ks Klos) (4.26)
with the value obtained by the WENO recongtruction.

The two-argument function h in Eqgn. (4.26) is a monotone flux. It satisfies:

1. h(a,b) isaLipschitz continuous function in both arguments.

2. h(a,b) isanondecreasng functionin a and a nonincreasing functionin b.

3. h(a,b) iscondgent with the phydcd flux f ,i.e h(a,a)= f(a).

In the caculation, this study uses the smple and inexpensve Lax- Friedrichs flux:

h(a.b) =%[f(a) +1(b)- a(b- a) (4.27)

where a =max | f €K)| is acongtant. The maximum is taken over the relevant rangeof k.
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Figure 4.3. Procedure of WENO scheme.

4.3 WENO Schemesfor High Order Continuum Traffic Flow Models

High order continuum traffic flow models consist of hyperbolic m x m systems of PDES,

i.e. theJacobian f ¢k) has m red egenvaues

LKE...£] (K), (4.28)
and acomplete set of independent elgenvectors

r,(K),...,r_ (k). (4.29)
The matrix whose columns are eigenvectors (4.29) is denoted by

R(K) = (r,(k),....r (k). (4.30)

Then dearly



R (k) f€k)R(k) =L (k), (4.31)
where L (k) is the diagonal matrix with I,(Kk),...,I (k) on the diagonal. Notice that the

rowsof R*(k),denoted by I,(K),...,| (k) (row vectors), areleft eigenvectorsof  f ¢k):
I(k) f ¢k) =1, (k)I(k), i=1...,m. (4.32)

This study applied the WENO schemes in a component-by-component fashion to solve
high order continuum traffic flow models. Component-wise finite difference and finite

volume formulation were shown in the following:
4.3.1 Component-wise Finite Difference Formulation

For the finite difference formulation, a smooth flux splitting (4.27) is again needed. The

condition (4.27) now becomes that the two Jacobians

f (k) 9F (k)
Tk Tk

(4.33)

are till diagonalizable (preferably by the same eigenvectors R(k) as for f ¢k)), and have

only nonnegative and non-positive eigenvaues, repectively.

In the scalar case, the exact Riemann solver gives the Godunov flux. Exact Riemann
solver can be obtained for many systems including the Euler equations of compressible gas.
However, it is usually very costly to get this solution. In practice, approximate Riemann
solvers are uswally good enough. As in the scalar case, the quality of the solution is usually
very sensitive to the choice of approximate Riemann solvers for lower order schemes (first or
second order), but this sensitivity decreases with an increasing order of accuracy. The smplest
approximate Riemann solver is again the Lax-Friedrichs solver (4.27), except that here the

consant a istaken as

a =max max|| j (k)|, (4.34)

u  1EjEm



where | (k) are the eigenvaues of the Jacobian f ¢k) . The maximum is again taken over
the rlevant range of k.

We recommend the Lax-Friedrichs flux splitting (4.27), with a given by Eqgn. (4.34),

because of its simplicity and smoothness. A somewhat more complicated Lax-Friedrichs type
flux litting is
. 1 TR 1
f*(k) =§(f (k) £ RK)TR(K)K),
where R(k) and R*(k) are defined in Egn. (4.30), and

L =diag(l,,....T )

where T, =max,

I j(k)|, and the maximum is again taken over the relevant range of k. This

way the dissipation is added in each field according to the maximum size of eigenvalues in
that field, not globally. One could also use other flux splittings, such as the Van Leer splitting
for gas dynamics. However, for higher order schemes, the flux splitting must be sufficiently

smooth in order to retain the order of accuracy.

With these flux splittings, the scalar recipes can be used again to form the finite

A

difference scheme, i.e just computing the positive and negative fluxes f.', and ﬁ L

1
i+3

component by component. The detailed procedure is shown as follows:

1. Find a flux splitting. The simplest example is the Lax-Friedrichs flux-splitting (4.27),

with a given by Eqgn. (4.34);

2. For each component of the solution k, apply the scalar procedure to reconstruct the

A

corresponding component of the numerica flux  f

vl
H'2

3. Form the scheme (4.21).



4.3.2 Component-wise Finite Volume Formulation

For the finite volume formulation, the reconstruction is made by WENO for each of the

components of u separately. This produces the left and right values k. at the cell interface

. An exact or approximate Riemann solver, h(k_,,k",), isthen used to build the scheme

1 1
i+57 i+

X

1
I+2

(4.25)-(4.26). The exact Riemann solver is given by the exact solution of Egn. (4.1) with the

following step function asinitid condition

., XEO

+

Nl

Pk
k(x,O):%k+ (>0

(4.35)

Nl

evaluated at the center x=0. Notice that the solution to Egn. (4.1) with the initial condition

(4.35) is self-gmilar, i.e, it is a function of the variable x :?X’ hence is constant along x=0.

If thissolutionisdenoted by k., , then the flux is taken as
h(k, k) = T (K,).

The detailed procedure is shown as follows:

1. For each component of the solution k , apply the scalar WENO procedure to reconstruct

the corresponding component of the solution &t the cell interfaces, k;, for al i;

2. Apply an exact or approximate Riemann solver to compute the flux fAi+l for al i in Eqgn.
(4.26);

3. Form the scheme (4.25).



