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Chapter 4 

WEIGHTED ESSENTIALLY 

NON-OSCILLATORY FINITE DIFFERENCE 

AND FINITE VOLUME SCHEMES 

 

High order WENO schemes are one class of high resolution methods suitable for solving 

hyperbolic conservation laws which shocks and possible discontinuous or sharp gradient 

regions exist in the solutions. In this study, WENO finite difference and finite volume 

methods were utilized to solve macroscopic continuum traffic models. 

WENO schemes are developed based on the successful ENO schemes. The first WENO 

scheme was constructed by Liu and colleagues (1994) for a third order finite volume version 

in one space dimension. Later, Jiang and Shu (1996) developed third and fifth order finite 

difference WENO schemes in multi-space dimensions with a general framework for the  

design of the smoothness indicators and nonlinear weights. Very high order finite difference 

WENO schemes (for order between 7 and 11) have been presented by Balsara and Shu 

(2000). 

In this section, WENO schemes are described for 1D conservation laws 
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equipped with suitable initial and boundary conditions. Here k is the conserved quantity while 

f is the flux. 
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4.1 TVD Runge-Kutta Time Discretization 

Before introducing the spatial discretizations, the time discretization shall be first 

discussed. For the high resolution spatial discretizations applied in this research, the study 

used a class of high order nonlinearly stable Runge-Kutta time discretizations. A distinctive 

feature of this class of time discretizations is that they are convex combinations of first order 

forward Euler steps, hence they maintain strong stability properties in any semi-norm, e.g. 

total variation norm, maximum norm, entropy condition, etc., of the forward Euler step. These 

methods were first developed by Shu (1988), and later generalized by Gottlieb and Shu (1998). 

The most popular scheme in this class is the following third TVD Runge-Kutta method for 

solving 
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where ),( tkL  is a spatial discretization operator: 
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4.2 Weighted Essentially Non-Oscillatory Schemes 

WENO spatial discretizations were introduced in the following sections. This study 

considered WENO reconstruction and approximation first, and then the finite difference and 

finite volume formulations were described. 

4.2.1 WENO Reconstruction and Approximation 

This section concentrates on WENO interpolation and approximation in one space 

dimension. 
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Assume a grid 

bxxxxa NN =<<<<= +− 5.05.05.15.0 L .                                        (4.4) 

Cells, cell centers, and cell sizes are respectively defined as follows 
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With the cell averages of a function )(xv : 
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a polynomial )(xp i  of degree at most 1−k , for each cell iI  can be found, such that it is a 

k -th order accurate approximation to the function )(xv  inside iI : 

NiIxxOxvxp i
k
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Then this gives the k -th order accurate approximations to the functions )(xv  at the cell 

boundaries 
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WENO was developed to improve upon ENO in the idea that using a convex 

combination of all of the candidate stencils to form the reconstruction instead of using only 

one of them. Suppose the k  candidate stencils 
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produce k  different reconstructions to the value 5.0+iv , 
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where 
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Figure 4.1. The candidate stencils for k = 3. 

WENO reconstruction would take a convex combination of all )(
5.0

r
iv +  defined in Eqn. (4.10) 

as a new approximation to the cell boundary value )( 5.0+ixv : 
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Obviously, the choice of the weights rw  would be crucial to the success of WENO 

reconstruction. 

∑
−

=

=≥
1

0

1,0
k

r
rr ww                                                      (4.13) 

is required for stability and consistency. 

If the function )(xv  is smooth in all of the candidate stencils (4.9), there are constants 

rd  such that 
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For example, rd  for 31 ≤≤ k  are given by 
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In this smooth case, the weights would like to be hold 
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which would imply ( )12 −k -th order accuracy: 
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When the function )(xv  has a discontinuity in one or more of the stencils (4.9), it 

would be hoped that the corresponding weight(s) rw  to be essentially 0, to emulate the 

successful ENO idea. This consideration lead to the following form of weights: 
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Here 0>ε  is a parameter to avoid the denominator to become 0 and is usually taken as 

610−=ε  in the computation. rβ  are the so-called “smooth indicators” of the stencil )(iSr . 

When 2=k , 

( )
( ) .

,
2

11

2
10

−

+

−=

−=

ii

ii

vv

vv

β

β
                                                         (4.19) 

For 3=k , 
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Finally, for each cell iI , with the given cell average { }iv  of a function )(xv , upwind 

biased ( )12 −k -th order approximations to the function )(xv  at the cell boundaries, denoted 

by +
− 5.0iv  and −

+ 5.0iv , are obtained. 

4.2.2 Finite Difference Formulation 

First, It is assumed that the grid is uniform, and Eqn. (4.1) is solved directly by using a 

conservative approximation to the spatial derivative 
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where )(tk i  is the numerical approximation to the point value ),( txk i , and the numerical 

flux 
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satisfies the following conditions: 

1. f̂  is a Lipschitz continuous function in all the arguments. 

2. f̂  is consistent with the physical flux, i.e. )(),,(̂ kfkkf siri =+− K . 

Then the Roe speed 
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shall be computed. If 05.0 ≥+ia , the numerical flux would be taken as −
++ = 5.05.0

ˆ
ii vf . 
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Otherwise, it shall be taken as +
++ = 5.05.0

ˆ
ii vf . Finally, the scheme (4.21) can be formed. 
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Figure 4.2. WENO Finite Difference Grid Structure. 

 

4.2.3 Finite Volume Formulation 

For finite volume schemes, Eqn. (4.1) wouldn’t be solved directly, but by its integrated 

version. Eqn. (4.1) is integrated over the interval iI  to obtain 
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is the cell average. Finite volume schemes approximate Eqn. (4.23) by the following 

conservative formulation 
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where )(tk i  is the numerical approximation to the cell average ),( txk i , and the numerical 

flux 5.0+̂if  is defined by 
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with the value obtained by the WENO reconstruction. 

The two-argument function h  in Eqn. (4.26) is a monotone flux. It satisfies: 

1. ),( bah  is a Lipschitz continuous function in both arguments. 

2. ),( bah  is a non-decreasing function in a  and a nonincreasing function in b . 

3. ),( bah  is consistent with the physical flux f , i.e. )(),( afaah = . 

In the calculation, this study uses the simple and inexpensive Lax-Friedrichs flux: 
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where )(max kfu ′=α  is a constant. The maximum is taken over the relevant range of k . 
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Figure 4.3. Procedure of WENO scheme. 

 

4.3 WENO Schemes for High Order Continuum Traffic Flow Models 

High order continuum traffic flow models consist of hyperbolic m × m systems of PDEs, 

i.e. the Jacobian )(kf ′  has m real eigenvalues 

)()(1 kk mλλ ≤≤K ,                                                       (4.28) 

and a complete set of independent eigenvectors 
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The matrix whose columns are eigenvectors (4.29) is denoted by 

( ))(,),()( 1 krkrkR mK= .                                                   (4.30) 

Then clearly 
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)()()()(1 kkRkfkR Λ=′− ,                                                  (4.31) 

where )(kΛ  is the diagonal matrix with )(,),(1 kk mλλ K  on the diagonal. Notice that the 

rows of )(1 kR− , denoted by )(,),(1 klkl mK (row vectors), are left eigenvectors of )(kf ′ : 

miklkkfkl i ,,1),()()()( K==′ λ .                                        (4.32) 

This study applied the WENO schemes in a component-by-component fashion to solve 

high order continuum traffic flow models. Component-wise finite difference and finite 

volume formulation were shown in the following: 

4.3.1 Component-wise Finite Difference Formulation 

For the finite difference formulation, a smooth flux splitting (4.27) is again needed. The 

condition (4.27) now becomes that the two Jacobians 
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are still diagonalizable (preferably by the same eigenvectors )(kR  as for )(kf ′ ), and have 

only non-negative and non-positive eigenvalues, respectively.  

In the scalar case, the  exact Riemann solver gives the Godunov flux. Exact Riemann 

solver can be obtained for many systems including the Euler equations of compressible gas. 

However, it is usually very costly to get this solution. In practice, approximate Riemann 

solvers are usually good enough. As in the scalar case, the quality of the solution is usually 

very sensitive to the choice of approximate Riemann solvers for lower order schemes (first or 

second order), but this sensitivity decreases with an increasing order of accuracy. The simplest 

approximate Riemann solver is again the Lax-Friedrichs solver (4.27), except that here the 

constant α  is taken as  
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where )(kjλ  are the eigenvalues of the Jacobian )(kf ′ . The maximum is again taken over 

the relevant range of k. 

We recommend the Lax-Friedrichs flux splitting (4.27), with α  given by Eqn. (4.34), 

because of its simplicity and smoothness. A somewhat more complicated Lax-Friedrichs type 

flux splitting is: 
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where )(kR  and )(1 kR−  are defined in Eqn. (4.30), and 

),,( 1 mdiag λλ K=Λ  

where )(max kjuj λλ = , and the maximum is again taken over the relevant range of k. This 

way the dissipation is added in each field according to the maximum size of eigenvalues in 

that field, not globally. One could also use other flux splittings, such as the Van Leer splitting 

for gas dynamics. However, for higher order schemes, the flux splitting must be sufficiently 

smooth in order to retain the order of accuracy.  

With these flux splittings, the scalar recipes can be used again to form the finite 

difference scheme, i.e just computing the positive and negative fluxes +
+ 2

1
ˆ
if  and −

+ 2
1

ˆ
if  

component by component. The detailed procedure is shown as follows: 

1. Find a flux splitting. The simplest example is the Lax-Friedrichs flux-splitting (4.27), 

with α  given by Eqn. (4.34); 

2. For each component of the solution k, apply the scalar procedure to reconstruct the 

corresponding component of the numerical flux 
2
1

ˆ
+if ; 

3. Form the scheme (4.21). 
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4.3.2 Component-wise Finite Volume Formulation 

For the finite volume formulation, the reconstruction is made by WENO for each of the 

components of u separately. This produces the left and right values ±
+ 2

1ik  at the cell interface 

2
1+ix . An exact or approximate Riemann solver, ),(

2
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2
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+
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−
+ ii kkh , is then used to build the scheme 

(4.25)-(4.26). The exact Riemann solver is given by the exact solution of Eqn. (4.1) with the 

following step function as initial condition 
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evaluated at the center x=0. Notice that the solution to Eqn. (4.1) with the initial condition 

(4.35) is self-similar, i.e., it is a function of the variable 
t
x=ξ , hence is constant along x=0. 

If this solution is denoted by 
2
1+ik , then the flux is taken as 
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The detailed procedure is shown as follows: 

1. For each component of the solution k , apply the scalar WENO procedure to reconstruct 

the corresponding component of the solution at the cell interfaces, ±
+ 2

1ik  for all i; 

2. Apply an exact or approximate Riemann solver to compute the flux 
2
1

ˆ
+if  for all i in Eqn. 

(4.26); 

3. Form the scheme (4.25). 


