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Chapter 3 

DESCRIPTION OF CONTINUUM TRAFFIC 

FLOW MODELS AND RIEMANN 

PROBLEMS 

 

In this chapter, the conservation equation of traffic flow was derived, and then this study 

implemented the formulation of the simple and high order continuum models for numerical 

discretization. Finally, Riemann problems in continuum traffic flow models were described 

briefly. 

 

3.1 Derivation of Conservation Equation of Traffic Flow 

Consider some segment of roadway without entrances or exits, the number of cars N is 

the integral of the traffic density k(x,t) 
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Figure 3.1. An interval of roadway without entrances or exits. 

The difference in number of cars between time t and t+Ät equals the number crossing at x0 

between t and t+Ät minus the number crossing at x0+Äx between t and t+Ät 
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where q(x0,t) denotes traffic flow rate at x0. Dividing Eqn. (3.2) by Ät and taking the limit as 

Ät→0 produces 
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Combine Eqns. (3.2) and (3.3) to obtain 
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Eqn. (3.4) indicates that changes in the number of cars are only induced by the flow across the 

boundary. Assume that no cars are created or destroyed, and thus the number of cars is 

conserved. Eqn. (3.4) is called the integral conservation law. Provided that the endpoints of 

the roadway section, x0 and x0+Äx are considered as additional independent variables, a partial 

derivative with respect to time must be employed instead of the full derivative in Eqn. (3.4), 
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Then dividing Eqn. (3.5) by x∆−  and taking the limit as Äx→0 yields 
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The right-hand side of Eqn. (3.6) signifies the partial derivative of q(x0,t) with respect to x0. 

Since Äx is small, the number of cars between x0 and x0+Äx could be approximated by the 

traffic density at x0, k(x0,t) times the distance of the segment Äx. 
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Hence, coupling Eqn. (3.6) with Eqn. (3.7) yields 
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Finally, replacing x0 by x provides the conservation equation of traffic flow 
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3.2 Formulation of Continuum Traffic Flow Models for Numerical 

Discretization 

In this section, continuum traffic flow models including the simple and high order 

continuum models were formulated for the numerical discretization. 

3.2.1 LWR Model 

LWR model contains following three equations: 
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Eqn. (3.10) can be derived form Section 3.1 by introducing the generation rate of flow 

),( txg , which is equal to zero in roadway segments without entrances or exits. Eqn. (3.11) 

implies that the flow rate of the traffic stream equals the traffic density times the velocity. Eqn. 

(3.12), which is obtained either from empirical observations or from theoretical models, 

represents the equilibrium relationship between the velocity and the traffic density. 

Rewriting LWR model by combining Eqns. (3.10), (3.11), and (3.12), the following 

equation is acquired: 
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Let U denote the state variable, F(U) the flux function, and S(U) the source flux. The 

formulation of continuum models for numerical discretization could be expressed as follows: 
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Consequently, the state variable, flux function, and source flux for the LWR model are 

kU = , )()()( kfkukUF ee =⋅= , gUS =)( .                    

3.2.2 High Order Continuum Models 

During the past several decades, various high order models have been presented to 

conquer the deficiencies in LWR model. Two of those high order models, PW model and 

Jiang’s improved model, were chosen to implement numerical simulation by high resolution 

schemes. PW model was selected due to being the original high order model. By reason of 

novelty and the capability of overcoming the backward travel problem, this study preferred 

Jiang’s improved model. Furthermore, shocks, rarefaction waves, stop-and-go waves, and 

local cluster effects, which are consistent with the diverse nonlinear dynamical phenomena 

observed in the freeway traffic, could be obtained from Jiang’s improved model (Jiang et al., 

2002). 

3.2.2.1 PW Model 

By coupling the conservation equation and a dynamic speed equation (often named 

“momentum equation”), PW model can be represented as follows: 
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Rewriting Eqns. (3.15) and (3.16) as a system, the formulation of PW model for 

numerical discretization is obtained: 
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where the state variable U , flux function )(UF , and source flux )(US  are vectors: 
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By transferring Eqn. (3.17) to the following formulation: 
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the Jacobian matrix of the system ][J  could be procured as follows: 
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3.2.2.2 Jiang’s Improved Model 

Based on improved car- following model, Jiang’s improved model replaces the density 

gradient with speed gradient in the momentum equation to avoid wrong-way problem 

proposed by Daganzo (1995b). 

Jiang’s improved model, which is consistent with other high order models, consists of 

two PDEs as follows: 
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With the procedure of formulating PW model in Section 3.2.2.1, the formulation of 

Jiang’s improved model for numerical discretization can be also obtained. 

The state variable U ,  flux function )(UF , source flux )(US , and Jacobian matrix 

][J  of Jiang’s improved model are as follows: 
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3.3 Riemann Problems in Continuum Traffic Flow Models 

It turns out that continuum traffic flow models comprise hyperbolic PDEs, with LWR 

model a single PDE and high order models systems of PDEs. As such, discontinuous 

solutions, called shocks, arise from even smooth initial data in these models. A particular 

problem, called a Riemann problem, is often used to characterize the solutions of hyperbolic 

PDEs. A Riemann problem is nothing more than hyperbolic PDEs with a special set of initial 

data, called Riemann data, in which a single jump discontinuity separates two infinitely long 

regions of constant states (e.g. traffic density, velocity, and flow rate). Riemann data for LWR 

model, for example, are shown as follows: 
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where the upstream density kl and the downstream density kr are constants. 

The solutions to hyperbolic PDEs with Riemann initial data, called Riemann solutions, 

are usually of three basic types: shocks, rarefaction waves, and contacts. Not every one of 

these waves is present in continuum traffic flow models. Contacts, for example, do not exist 

in continuum models. Because of the existence of shocks, hyperbolic PDEs such as those of 

LWR and high order models are notoriously difficult to solve numerically. Special care must 

be taken when these equations are converted into formulation of numerical discretization. 

Consequently, Riemann problems would be the main issue to solve in this study. 


