LN

1

Free-Surface Effects on the Advancing

3-D Slender Body

Shiann-Jorng Horng, Shean-Kwang Chou,

Ching-Tarng Liaw and Jin-Der Jiang

Institute of Harbor & Marine Technology
Wuchi, Taiwan, R.O.C.

Sponsored by
The National Science Council

Under Grant NSC82-0209-E-124-006



Table of Contents

Table of Contents ...... ...l i e i
List of Figures ... ..ot e i
Abstract .. i
B B e v
Lo Introduction ..... ...t e 1
2. Problem Formulation ............. i i 5
3. Heaving Forces and Pitching Moments ....................cc.ooi... 10
4. Determination of Hydrodynamic Coefficients .......................... 11
5. Numerical Method ....... .o e 13
6. Determination of Mesh Size .......... ..o i, 16
7. Numerical Procedure .............................................. 17
8. Numerical Results and Discussion ...............ccoiiiiiiiiiiiine... 18
0. ConCIUSIONS ..t \tttt ittt et e e 27
Acknowledgement ...... ... e 28
Nomenclature ....... ... i 29
References ..... .o 32
Bagures ... e 35



U

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

10

11

12

13

14

15

16

17

18

19

20

List of Figures
Coordinate systems
Discretization on the open boundaries
Boundary elements on the boundaries
Nondimensional A%, of Wigley model
Nondimensional Bj; of Wigley model
Nondimensional A, of Wigley model
Nondimensional Bg; of Wigley model
Nondimensional A} of Wigley model
Nondimensional Bj; of Wigley model
Nondimensional A, of Wigley model

Nondimensional By of Wigley model

Hypothetical dead wood behind the stern frame

Nondimensional A%, of Series 60 model
Nondimensional Bj; of Series 60 model
Nondimensional Af; of Series 60 model
Nondimensional Bg, of Series 60 model
Nondimensional A} of Series 60 model
Nondimensional Bjy of Series 60 model
Nondimensional ALy of Series 60 model

Nondimensional Bl of Series 60 model

—ii-



ABSTRACT

This paper applies the boundary element method to solve the fluid-
structure interaction problems during heaving and pitching motions with speed
of a wigley and Series 60 ship model. The 3-D fluid motion in the infinite
region is approximated by the unsteady 2-D flow in the finite region with
an artificial open boundary on which a more relaxed Sommerfeld’s radiation
condition is imposed. The heave and pitch diagonal and off-diagonal‘ added
mass and damping coeflicients of a Wigley and Series 60 ship model calculated
by the present method are compared well and have the same trend as the
experimental and other authors’ results. The present method is a very good
method for the calculation of the heave and pitch diagonal and off-diagonal
added mass and damping coefficients of Wigley model and Series 60 ship model

moving with speed.
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1. INTRODUCTION

Oceangoing ships are designed to operate in a wave environment. The

ship motion problem is not only three-dimensional but also has speed effects.

Since the well-known paper of St. Denis and Pierson [7], with the as-
sumption of small, unsteady motions of the ship and of the surrounding fluid,
the ship motion problem can be decomposed linearly into two problems: the
radiation problem and the diffraction problem. We can consider separately the
radiation problem, where the ship undergoes prescribed oscillatory motions in
otherwise calm water, and the diffraction problem, where incident waves act

upon the ship in its steady-state equilibrium position.

Strip theory is probably the most widely used method to compute the
hydrodynamic forces acting on a vessel in regular waves. The strip theory
for heave and pitch motions in head waves of Korvin- Kroukovsky and Ja-
cobs [4] was the first motion theory utilizing the two-dimensional results as an
approximation for the three-dimensional ship-motion problem. They solved
two-dimensional boundary-value problems for each cross-section of the ship.
The two-dimensional solutions were then adjusted to include certain three-
dimensional forward speed effects based on intuitive, physical arguments. In
general, they satisfactorily agreed with the experimental results, for the heave
and pitch motions of the ship in head waves. But the cross-coupling coefficients
in the theory did not satisfy the symmetry relations proved by Timman and
Newman [8], and that has raised a major objection to this theory. This original
strip theory has since been modified and extended by many authors. Salvesen
et al. [6] provided another formulation for strip theory with the forward-speed
effects through the hull boundary condition. But the free surface condition

were independent of the ship’s forward speed. The conventional strip theory
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does not necessarily give accurate answers (for example, high forward speed or
nonconventional vessels), since the forward-speed effects are taken into account
only through the hull boundary condition, while the free-surface condition is
customarily taken as a time harmonic with no forward-speed dependence. It

1s a high frequency theory in that the frequency of encounter is assumed large.

Newmann and Tuck (1964) developed the ordinary slender-body theory
of ship motions by assuming the frequency to be low. In the theory, the wave

length of the incident waves was the same order of magnitude as the ship’s

length.

Newmann [5] and Sclavounos [14] proposed a so-called unified theory to
link ordinary slender body theory and strip theory. At low frequencies, the
unified theory approaches the ordinary slender-body theory and yields terms
that involve longitudinal interference between sections. For high frequencies,
the longitudinal interference disappear and the results are identical to the strip
theory. In that theory, the flow fields were divided into two regions; an inner
region close to the hull and an outer region far apart from the hull. The flow
in the near field was two-dimensional, satisfying the two-dimensional Laplace
equation and the linearized time-harmonic free surface condition, together with
the hull boundary condition. The fully three-dimensional flow in the outer re-
gion satisfied the three-dimensional Laplace equation, subject to the complete
linearized free-surface condition and the radiation condition at infinity. The
complete solution was obtained by matching outer and inner solutions in a
suitably defined overlap region. The unified theory was applied to the forced
heave and pitch motions of the ship in head seas. The computational results
quite satisfactorily agreed with experimental results. However, it is worthwhile

to point out that the free-surface condition in the inner problem did not include
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any forward-speed effects, while the hull boundary condition did.

Chapman [20]‘[3] initiated a new approach to solve the three dimensional
ship motion problems, which included the forward-speed effects on the free-
surface condition. The flow at each cross-section of the ship was analyzed
in a quasi-two-dimensional manner along the characteristic lines defined in
his formulation, with interaction propagated downstream by the free-surface

condition.

Yamasaki & Fujino used Chapman’s concept [20] to solve the stability

derivatives of a Wigley model [9] and the swaying, yawing and rolling problems

of real ship {10].

The advent of large, high-speed computers has allowéd the direct numer-
ical solution of some three dimensional seakeeping problems. Chang [2] de-
veloped a numerical technique in the frequency domain for calculating the
linearized three-dimenisonal ship motion problem. In Chang’s fully three-
dimensional theory, the effects of forward speed on the free-surface condition
were taken into account by modifying the fundamental singularity. Besides, A
three-dimensional time-domain seakeeping computer code has been developed
by Magee & Beck [15] at the University of Michigan. The code uses linear
system theory to determine the hydrodynamic forces acting on a vessel due to
forced oscillations (radiation forces) or due to incident waves (exciting forces).
It is based on the Neumann-Kelvin potential flow model and solves the prob-
lem directly in the time domain rather than the traditional frequency domain.
In the Neumann-Kelvin approach the body boundary condition is satisfied on
the exact body surface and the linearized free surface condition is used. This
approach considers the three-dimensionality of the body surface, but only some

of the forward speed effects. The speed effects on the ship surface boundary
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condition due to the steady forward motion are made the same approximation
used on strip theory. Another three-dimensional time domain approach is de-
veloped by Lin & Dick [16] to study the small-amplitude motions and loads of
a ship in a seaway, where the linear body and free surface boundary conditions
are used , and the large-amplitude motions, where the exact body boundary
conditions is satisfied on the instantaneous wetted surface of the moving body
while the free-surface boundary conditions are linearized. For problems with
forward speed the time-domain solution appear to require less computational

effort than the equivalent frequency-domain solution.

The authors [18] have applied Chapman’s concept [20] to solve oblique
towing flat plate problems before. In this paper, the Chapman’s concept [20)
1s expanded to solve the small heaving and pitching motion problems of a

Wigley and a Series 60 ship model moving with speed again.

The present method is an important step forward in the development of
ship motions with forward speed under small amplitude. It also supplies the
major basis of futual development including nonlinearities in both the body

and the free surface boundary condition.



2. PROBLEM FORMULATION

In this problem, the ship model is assumed to be slender. It is executing
-the heaving and pitching motions with forward speed and the amplitudes of

motion are infinitesimal. The model and the coordinate system are shown in

Fig.1.

O3 — z2y22, is a body-fixed coordinate system with its origin at the inter-
section of the ship’s bow and waterline. Another system O; — z1y; 21 advances
in a straight manner in the mean course of the ship at a forward speed of U.
The origin O; is located at the intersection of the leading edge of the ship
and the undisturbed waterline. The z; coordinate is positive in the negative
direction of advancing direction of the ship and the z; coordinate is positive

upward.

The fluid is assumed to be inviscid, incompressible, and irrotational. The

flow may be described by a velocity potential
Q(xl)ylwzht) =U(B1 +901(5L‘1,y1,31,t) (1)

In a fluid where U is the advancing speed of the ship, ¢ is time and
©1(z1,y1,21,t) is the 3-D velocity potential due to the unsteady ship motion,
it must satisfy the 3-D Laplace equation.

The three-dimensional Laplace’s equation, the kinematic and dynamic

conditions of the free-surface, which the velocity potential ¢; satisfies, are as

follows:
6 P1 6 ©¥1 62(,01 . .
L =
[L] e + ¥ + 523 0 in fluid (2)
o ¢ dp1, OC | Op1 8 O B
(K] §+(U+ 52 1)3m1 + 3oy By~ Bz, on z;1=( (3)

0
o] %2,y 5901+ {(3901 6%)2

as (2P +gC =0 o 21 = (1)
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where ( is the elevation of the free surface and g the acceleration of gravity.

Chapman [20](3] assumed that if a 3-D body is slender, the 3-D fluid
motion around the slender body can be approximated by the unsteady 2-D
flow in a space-fixed plane normal to the longituinal axis of the body. The
3-D velocity potential ¢;1(zy,y1,21,t) can be approximated by the unsteady
2-D velocity potential ¢(y1,21,t) in the y121 plane, and ¢(y;, 21,t) satisfies
the 2-D Laplace equation. In fluid

& 0%
[L] 7 + 5 = 0 (5)

Since the motions of the ship are assumed to be infinitesimal, the higher
order terms in Egs. (3) and (4) can be neglected and the problem can be
linearized. The linearized free surface kinematic boundary condition in the

v1z1 plane becomes

) ) A | |
K] (&= — ) == =0 6
K] 0t+U6:c1)C 0z on A (6)
The linearized free surface dynamic boundary condition in the y; z; plane
is
[D] ( 9 + U——a Yp+9¢(=0 on 0 (7)
—_— = 21 =
8t 8.’171 v g !
For the linear problem, it is assumed that the potential is symmetric about

y1 = 0. Then, the condition under the ship in the y,2; plane becomes
7= (8)

Based on the assumption that heaving motions h(t) and pitching motions
a(t) of the model are infinitesimal, the coordinate systems, 07 — z1y,2; and

O3z — T2Yy224, have the following relations:
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Ty = z; — 2z10(t) (9)
Y2 =y ' (10)
72 = z1 — h(t) — (z¢ — z1)a(t) (11)

where z¢ is the horizontal distance from the ship’s bow to the center of

gravity. h(t) is the pure heaving motion. a(t) is the pure combination motion.

Let the hull shape be represented by
H(z2,y2,22) =0 (12)

then the body surface condition is described by

m@xz +y28y2 -1-,22622 =0 on H(zz,y2,22)=0 (13)

Considering that the ship’s motion is small, the body surface condition
can be satisfied on mean ship hull surface H(z;,y;,21) = 0 rather than on
the exact ship hull surface. By substituting Egs.(1), (9), (10) and (11) into

(13), the body surface condition at the mean hull surface may be expressed as

follows:
H = [h(t) — t — $—=
] U8z1 + 0y Oy * 0z 0z [2(t) = Ua(t) + (26 — z1)a(t)] 921
on H(zi,y1,21) =0 (14)
The two characteristic lines in the z; — t plane are defined by
t — z; /U = constant (15)

.



t+ z1/U = constant (16)

The position of a point on a characteristic line is specified by
.§=—(t+$1/U) (17)

§=5(t—=z1/U) (18)

t=35+q (19)
r; =U(5-q) (20)

According to the chain rule, then

5 8. 8
il — Y= 1
(V30 = 5 (21)

Substituting Eq. (21) into Egs. (6), (7) and (14) , Eqs. (5), (6), (7) and

(14) along the characteristic lines may be expressed as follows

o? d? . .
L] ﬁ + a—z‘f =0 in fluid (22)
1 1
0 o
(K] a_g = a—:- on 2 =0 (23)
Oy
(D] E-{—g(:O on z; =0 (24)



Op OH  Op OH _ OH

H =-—UZ= +[h(5+7) — S+ q -
H) Gt 5o gh = UK 415+ 9) - Vel + )+ (a6 — o)
.. wOH
a(s+q)]a— on H(zi,y1,21)=0
21
(25)
The open boundary condition is [10]
(0] % + Caa—('lo =E on the open boundary. (26)

where C is the propagation speed of the wave, [ is the direction normal to

the open boundary, and E is the numerical error for Sommerfeld radiation

condition.



3. HEAVING FORCES AND PITCHING MOMENTS

Through the boundary element method calculation, the velocity potential

¢ on the boundaries along the characteristic lines can be obtained.

The hydrodynamic vertical force f(T, X) acting on a ship’s section, which
is situated in the 2-D transverse plane along the characteristic lines at z; = X ,

at the instant t = T, are expressed by
F
AT, X) = —Zp/ a—('f'n,.,d.s (27)
K aS

where p is fluid density, n = (ny,n.) is a normal inward unit vector of the
ship’s hull. K is the keel location. F is the undisturbed water line. ds is a line

segment along the hull surface.

Contour integration is performed along the surface of the hull from the

keel to the intersection of the hull and undisturbed waterline.

Consequently, the hydrodynamic vertical force Y(T) acting on the entire
ship at the same instant t = T are obtained by integrating Eq.(27) over the
ship’s length.

L
Y(T) = / F(T, z)dz (28)

The hydrodynamic moment N(T) acting on the entire ship at the instant

t = T are obtained by Eq.(27) over the ship’s length.
oY (T) -

N(T) = ﬁ(:r, z)zdz (29)

o

where L is the length of Wigley or series 60 ship model.

Then the hydrodynamic vertical force time series Y(t) and the hydrody-

namic moment time series N(t) can be obtained.

~-10 -



4. DETERMINATION OF HYDRODYNAMIC COEFFICIENTS

§ Forced Pure Heaving Motions:

When the forced pure heaving motions are considered, the equations of

motion are :

Aszh(t) + Bash(t) = Y (2) (30)
As3h(t) + Bssh(t) = N(t) (31)

where h(t) = z, sinwt
2o : The amplitude of pure heaving motion.
w: The frequency of pure heaving motion.
Ass: Heave diagonal added mass.
B33: Heave diagonal damping coefficients.
As3: Heave énd pitch off-diagonal added mass.
Bs3: Heave and pitch off-diagonal damping coefficients.

Through the Fourier Series expansion, the hydrodynamic coefficients Ass,
Bjj, Ass and Bs3 can be calculated. The nondimensional hydrodynamic coef-

ficients are calculated as follows

Ay = Aga/pV (32)
Bys = Bss\/L/g/pV (33)
Ay = As3/pVL (34)

By = Bss\/L/g/pVL (35)

where V is the displacement volume of Wigley or series 60 ship model.

§ Forced Combination Motions:
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When the forced combination motions are considered, the equations of

motion are :

A35&(t) + B35d(t) = Y(t)

Assa(t) + Bssa(t) = N(t)

where a(t) = 6, sinwt
6, : The amplitude of combination motion.

w : The frequency of combination motion.

Ajss: Heave and pitch off-diagonal added mass.

B3s: Heave and pitch off-diagonal damping coefficients.

Ass: Pitch diagonal added mass.
Bss: Pitch diagonal damping coefficient.

(36)

(37) .

Through the Fourier Series expansion, the hydrodynamic coefficients Aas, Bss,

Ass and Bjs can be calculated. The nondimensional hydrodynamic coefficients

are obtained as follows

Ags = Ass/pVL

Bys = Bss\/L/g/pVL

Ags = Ass/pVL?

Bys = Bssy/L/g/pVL*

-12 -
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5. NUMERICAL METHOD

§ Formulation of Boundary Element Equation:

For a given 1’ point of constant element, the next boundary equation

exists [19]

N N

1 .

—u’+2u,~/ q*dF=qu/ u*dl (42)
2 j=1 Lj =1 T

where u* = (1/27) In (1/r) is the fundamental solution of isotropic two
dimensional Laplace equation. r is the distance from the point of application
of the delta function to the point under consideration. u' is the value of u*
during r = 0. wu; is the value of velocity potential on the segment ’j’. g; is
the value of velocity potential derivative on the segment ’y’. I is the close
boundary of the computational domain. n is the unit normal vector of the
boundary. ¢ = Ou/0n , ¢* = Ou*/0n. The terms fI‘,- q*dl’ and fl’j u*dl relate

the i’ node with the segment ’j’ over which the integral is carried out.

The values of u and q are assumed to be constant on each constant element
and equal to the value at the mid-node of the element. The above integrals are
easy to calculate, the velocity potential and it’s derivative along the boundary

can be obtained.
§ Discretization of Free Surface Boundary Condition:

The discretized forms of the free surface kinematic and dynamic boundary

conditions on characteristic line § are modified from [10]:

Ayl — As Ayl AS

~ _ _ _0Op _
C(y1+—2',3+7aQ)—C(y1_ 2 ’S—TaQ)_*_AS-gZ(yI)O,Saq) (43)
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~ L o B Ay, - AS _
o(y1+Ly1,0,5+A5,7) = ¢(41,0,5,§) — g A5 (y1 + 2y1 ,S+TS,Q) (44)

where A3 is the length spacing along the characteristic line 5§ and

0
Dyr = As5(11,0,5,9) (45)
Y1

§ Discretization of Open Boundary Condition:

The open boundary condition, Eq. (26), is treated by an upwind-centered
difference scheme [1]. For point I, as shown in Fig.2, the difference form of

Sommerfeld’s radiation condition on characteristic line § are modified from

[10]:
[P(t+1.1)—= P(r,1)+ P(r,2)— P(r - 1,2)]/2+ a[P(r,1) — P(7,2)] = € (46)

where a = CAs/Alje = EAS, 7 denotes the position on the characteris-
tic line, Al is the grid spacing in the direction normal to the open boundary,
and P(r,J) is the velocity potential. For point II, the difference form of Som-

merfeld’s radiation condition is

[P(r,2)—P(r-1,2)+P(r-1,3)~P(r-2,3)]/2+a*[P(—1,2)—P(7-1,3)] = ¢*
(47)
For point III, the difference form of Sommerfeld’s radiation condition is

[P(r —1,3)— P(r — 2,3) + P(r — 2,4) — P(r — 3,4)]/2 + o*[P(r — 2,3)
— P(r —-2,4)] = ¢
(48)
Since in Egs.(47) and (48) P is known, o* and €* can be computed
a=0 as a* <0

a=a%e=€¢ as 0<a*<1



AL J

a=1 as a*>1

For the case of o* < 0 or &* > 1, @* is set to 0 or 1 in Eqs. (47) and
(48), then two €*, i.e. €}, ¢} are determined, and € = (€] + €3)/2. With « and

¢ determined P(7 4 1.1) can be computed from Eq.(46).

- 15—
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6. DETERMINATION OF MESH SIZE

According to Egs. (17) and (18), along the characteristic line 3, § is a
constant. The time step At is taken to be Az, /U. Then A5 equals to At.

For the free surface boundary condition,

o Oy
052 + g(')zl on

As A5 < B4/Dzi/g, B = 1, the numerical solution will converge. Here,
we take the time steps equal to 81 in the characteristic line § direction and the

line segment in the z; direction equal to 40, the above criteria can be satisfied.
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7. NUMERICAL PROCEDURE

Fig. 3 shows the fluid domain used in the numerical simulation. The

simulation procedure is summaried as follows.

1.

At 5 = 0, the fluid is assumed to be at rest, and ¢ on the free surface
and the open boundary equals to zero. At the boundary under the keel,
Op[0y1 = 0.

The 2-D flow ficld is solved by boundary clement method to satisfy the
body surface boundary condition. Then, the ¢ on body surface and
Oy [0z on free surface can be calculated.

The value of ¢ at the internal points adjacent to the open boundary is
calculated. The value of ¢ on the open boundary at the next step 5 =

5+ A3 is then obtained.

The velocity potential ¢ on the free surface at the step § = 5 + A5 is

determined by the free surface boundary condition.

The free surface are again subjected to division because the hull shape at

§ =3+ AS, is different from that at 5 = 5.

The velocity potential ¢ at the new nodal points on free surface is deter-

mined by linear interpolation of ¢ values obtained at the step 4.

Return to the step 2 recursively.

The spline interpolation method is used to estimate the sectional shapes

of the Wigley or ship model’s hull, which are not given in the body plan.

To carry out the numerical simulation in an efficient manner, the propeller

aperture behind the stern frame was filled with a hypothetical piece of dead
wood as illustrated in Fig. 12 [10].

~17 -



8. NUMERICAL RESULTS AND DISCUSSION

The pure heaving and forced combination motions of Wigley and Series
60 ship model are carried out by numerical simulation. The main particulars

are given in Tables 1 and 2 respectively.

The computational domain is taken to be 8 times of draft. The ampli-
tude of pure heaving and combination motion are 0.025 M, and 0.026 radian
respectively. The Froude number in length Fn (= U/y/gL) =0.2. The total

boundary element number is 200. The time steps are 81.

Fig. 4 ~ Fig. 11 and Fig. 13 ~ Fig. 20 show the heave and pitch diagonal
and off-diagonal added mass and damping coefficients of Wigley model and
Series 60 ship model individually.

. —18 -



a. Wigley model

The half beam y; of Wigley model is given by:
%1 =(1-X)(1-2)(1+0.2X)+Z(1 - 241 - X)*

where X = (2z; — L)?/L%, Z = (21 /H)?, b= B/2.

The frequencies (rad/sec) of Wigley model motion used to do numerical
simulation are 2.271, 2.455, 3.133, 3.63, 4.126, 5.047, 6.489, 7.5706 and 9.085
individually.

The nondimensional heave diagonal added mass A}, of the experiment
value in Fig. 4 quickly decrease from the frequency 3.133 rad/sec, then gradu-
ally become a stable value at the higher frequency, that is to say, they almost
approach constant at the frequency higher than 5.047 rad/sec. The present
and all other methods have good coincidence with the experiment results at
higher frequency , but the present method has better trend to the experiment

than all other methods at the lower frequency.

The nondimensional heave diagonal damping coefficients B}, of the exper-
iment value in Fig. 5 have larger value near the frequency 3.63 rad/sec. The
present and all other methods almost have the same trend with the experiment

results, but the coincidence only occur at the higher frequency.

The nondimensional heave and pitch off-diagonal added mass AL, of the
experiment value in Fig. 6 quickly decrease at the frequency near 2.271 rad /sec
towards the higher frequency. All the methods have similar trend with the
experiment results. The present method shows closer results to the experiment

than Strip theory and small amplitude calculations of Lin & Dick [16].

The nondimensional heave and pitch off-diagonal damping coefficients B,

in Fig. 7 show that all the methods have similar trend with the experiment
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results, but the present method can give better results to the experiment results

than small amplitude calculations of Lin & Dick.

The nondimensional heave and pitch off-diagonal added mass Ajg are
shown in Fig. 8. As the frequency is larger than 6.489 rad/sec, the experiment
value of Aj; approaches a constant value, and the results of present method,
Magee & Beck [15] and small amplitude calculations of Lin & Dick can give
almost the same value. All the methods have similar trend with the expe-riment

results.

The nondimensional heave and pitch off-diagonal damping coefficients Bj;
are shown in Fig. 9. As the frequency is larger than 6.489 rad/sec, the results
of present method, Magee & Beck [15] and Strip theory [6] can all give almost
the same value as experiment. All the methods have similar trend with the
experiment results, but, the results of small amplitude calculations of Lin &

Dick [16] predict smaller value than all other method.

The nondimensional pitch diagonal added mass Afy are shown in Fig. 10.
As the frequency is larger than 5.047 rad/sec, the experiment value of Al
approaches a constant value. In this frequency range, all the methods can give
similar value, but, the results of the present method are better than all other

methods. All the methods have similar trend with the experiment results.

The nondimensional pitch diagonal damping coefficients Bis arc shown in
Fig. 11. As the frequency is larger than 7.5706 rad/sec, the value of B, of the
experiment, present and all other methods approach a close value. Besides,
except the Strip theory [6], all the other methods have similar trend with the

cxperiment results.

On the whole, for Aj},, A%,, Ajs, AL and B, the result calculated by

the present method are closer to the experiment than those done by the Strip
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theory, especially, the By, of the latter is bad. For Bj,, Bi, and Bl, the result
calculated by the present method and Strip theory are close to the experiment

mm the same order.

For A3y and Aj;, the present method can predict closer value to experi-
ment than Magee & Beck’s. For Bj;, ALy, By, Als, Bis and Bl the result
calculated by the present and Magee & Beck’s method are close to the exper-

iment in the same order.

For Ay, Ajs, Bss and By, the present method is better than small am-
plitude calculations of Lin & Dick, especially, the Bjs. For Bh,, A}, AL, and
By, the present and Lin & Dick’s method are almost closer to the experiment

in the same order.

From the above analysis, we know the present method is a very good
method for the calculation of the heave and pitch diagonal and off-diagonal

added mass and damping coefficients of the Wigley model.
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b. Series 60 ship model

The frequencies (rad/sec) of Series 60 model motion are 2.618, 2.830,
3.611, 4.189, 4.760, 5.818, 7.480, 8.727 and 10.472 respectively.

The nondimensional heave diagonal added mass Aj; of the experiment
value in Fig. 13 become a little stable from the frequency 5.818 rad/sec towards
the higher frequency, that is to say, they almost approach constant at the higher
frequency. The present and all other methods have good coincidence with the

experiment results.

The nondimensional heave diagonal damping coefficients B3, of the exper-
iment value in Fig. 14 have larger value near the frequency 4.760 rad/sec and
quickly decrease as the frequency is higher. The present and all other methods

almost have the same trend with the experiment results.

At the frequency near 2.618 rad/sec, the calculated nondimensional heave
and pitch off-diagonal added mass AL, in Fig. 15 quickly decrease towards
higher frequency, but the experiment values only decrease slowly. All the
methods have similar trend with the experiment results, and the coincidence
still only occur at the higher frequency. The present method shows better

results than all other method.

The nondimensional heave and pitch off-diagonal damping coefficients B,
in Fig. 16 show that all the methods have similar trend with the experiment
results, but the present method can give closer results to the experiment results
than Strip theory and Unified theory [14]. The present method and Magee &

Beck’s calculation [15] are almost closer to the experiment in the same order.

The nondimensional heave and pitch off-diagonal added mass A}y are
shown in Fig. 17. As the frequency is larger than 7.480 rad/sec, the experiment

value of A35 approaches a constant value, the present method can give almost
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the same value. The results of Strip and Unified theory can obtain the close
value, but a little lower. Magee & Beck can obtain the close value, but a
little higher. The present and all other methods have similar trend with the

experiment results.

The nondimensional heave and pitch off-diagonal damping coefficients Bj;
are shown in Fig. 18. As the frequency is larger than 8.727 rad/sec, the
experiment value of By; approaches a constant value. The present and all other
methods have similar trend with the experiment results. Near the frequency
2.830 rad/sec, the present method can predict close value to the experiment

value, but, it predict larger value than the experiment at higher frequency.

The nondimensional pitch diagonal added mass Aj; are shown in Fig. 19.
As the frequency is larger than 5.818 rad/sec, the experiment value of Afg
approaches a constant value. The present method can predict close value to
the experiment as the frequency is higher than 7.480 rad/sec. All the methods

have similar trend with the experiment results.

The nondimensional pitch diagonal damping coefficients B are shown in
Fig. 20. The present method can predict closer value to the experiment than

all other methods.

On the whole, for Aj,, Bi,, A} and Big of Series 60 model calculated
by the present method are closer to the experiment than those done by the
Strip theory, especially, the B;,. For Bj; and Bj, the results calculated by
the present method and Strip theory are close to the experiment in the same
order. For A3; and A}y, the Strip theory can predict closer value to experiment

than the present method.

For Bjy,, Ag; and By, the present method can predict closer value to

!

experiment than Magee & Beck’s, especially, the Bys. For A},, Bi,, As and
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Ajgs, the result calculated by the present and Magee & Beck’s method are close

to the experiment in the same order.

For Bj;, Az, Bis, Ajs and By, the present method can predict closer
value to experiment than Unified theory {14]. For A}, Bjs and Ags, the Unified

theory can predict closer value to experiment than the present method.

Therefore the present method is a good method for the calculation of the
heave and pitch diagonal and off-diagonal added mass and damping coefficients

of Series 60 ship model.
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Table 1

Main Particulars of the Wigley model

Length between perpendiculars L 3.000 m
Breadth B 0.300 m
Draught d 0.1875 m
Trim 0.000 m
Volume of displacement V 0.0946 m?
Coefficient of mid-length section Cpy 0.909
Center of rotation above base 0.1875 m
Center of gravity above base 0.170 m
Radius of inertia for pitch 0.750 m
Froude number of service speed 0.20
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Table 2

Main Particulars of the Series 60 ship model

Length between perpendiculars L

Length on the waterline

Breadth B

Draught d

Volume of displacement V

Block coefficient Cpg

Coefficient of mid-length section C)py
Prismatic Coeflicient Cp

Waterplane area

Waterplane Coefficient Cw

Longitudinal moment of inertia of waterplane
L.C.B. forward of Lgp/2

Center of effort of waterplane after Lgp/2

Froude number of service speed

- 26 —

2.258 m
2.296 m
0.322 m
0.129 m
0.0657 m?
0.700
0.986
0.710
0.572 m?
0.785
0.1685 m*
0.011 m
0.038 m
0.20



9. CONCLUSIONS

From the above analysis, we know, in general, the heave and pitch diagonal
and off-diagonal added mass and damping coefficients of Wigley and Series 60
ship model calculated by the present method are compared well and have the

same trend as the experimental and other authors’ results.

The present method is a very good method for the calculation of the heave
and pitch diagonal and off-diagonal added mass and damping coefficients of
Wigley model and Series 60 ship model moving with speed.

It is an important step forward in the development of ship motions with
forward speed under small amplitude. It also supplies the major basis of futual
development including of nonlinearities in both the body and the free surface

boundary condition.
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& T W Q

Cum
Cp

Y(2)

Q

N(t)

ST B

L1,Y1,21

NOMENCLATURE

propagation speed of the wave

Wigley or ship model breadth

Wigley or ship model half breadth

Wigley or ship model draft

Block coefficient

Coefficient of mid-length section

Prismatic Coeflicient

numerical error for the Sommerfeld Radiation Condition

resultant vertical force time series

Froude number in length (= U/+/gL)
gravitational acceleration

Wigley or shtip model length

direction normal to the open boundary

resultant moment time series

2-D velocity potential due to the unsteady Wigley or ship
model motion
time variable

z; coordinate of calculating 2 D plane

the time corresponding to the location z; = X

advancing speed of the Wigley or ship model

Z1,Y1,2; coordinates for the coordinate system O; — z;y; 2,

the amplitude of pure heaving motion.
The amplitude of combination motion.

The frequency of pure heaving or combination motion
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1%

B55
Agg
B,
453
B,

!
A35
!
Bss
!
A55
!
BSS

Heave diagonal added mass.

Heave diagonal damping coefficients.

Heave and pitch off-diagonal added mass.

Heave and pitch off-diagonal damping coefficients.

Heave and pitch off-diagonal added mass.

Heave and pitch off-diagonal damping coefficients.

Pitch diagonal added mass.

Pitch diagonal damping coefficient.

Nondimensional heave diagonal added mass.

Nondimensional heave diagonal damping coefficients.
Nondimensional heave and pitch off-diagonal added mass.
Nondimensional heave and pitch off-diagonal damping coeffi-
cients.

Nondimensional heave and pitch off-diagonal added mass.
Nondimensional heave and pitch off-diagonal damping coefhi-
cients.

Nondimensional pitch diagonal added mass.

Nondimensional pitch diagonal damping coefficient.

Greek symbols

pe|<]“bﬁ

free surface elevation

mass density of the fluid

volume of displacement

3-D velocity potential due to the Wigley or ship motion
3-D velocity potential due to the unsteady Wigley or ship
motion

2-D velocity potential due to the unsteady Wigley or ship
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motion

time spacing

grid spacing in the y direction
grid spacing in the z direction

the length spacing along the characteristic line §
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