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ABSTRACT

Repeatability problem of spectra for wind wave signals in wind blowing water tanks
is stressed, and the deficiency of the impulse response model in serving as a black-
box mechanism for comparing two spectra is also discussed. A few numerical as-
pects in data processing are used to highlight possible differences associated with
different schemes originating from the same analytical formulation. Paradoxes re-
garding the analytical signal are investigated and their causes are studied and illus-
trated. The interplays of amplitude and frequency modulations are emphasized in
characterizing the behaviors of instantaneous frequency. It is identified that local
singular behavior of instantaneous frequency is associated with local irregularity of
the amplitude function. We regard the Gabor’s analytic signal approach as being a
one-and-a-half-dimensional characterizing procedure. And it possesses most of the
characters associated with Fourier analysis, such as phase noise and local transient
phenomena, as well as many additional features associated with discrete numeri-
cal computations. This indicates possible difficulties when the method of analytic
signal is applied to broad band processes.



Chapter

Introduction

In making comparison of two multi-component signals acquired before and after some external fac-
tors being introduced or measured with certain evolution being present, or in studying effects of an
influential factor on the constituents of signals, a black-box mechanism of taking direct quotient of
the spectral coefficients of the two signals has been most often seen. In term of Fourier analysis, the
algorithm involved is basically that of a simple finite impulse response model and the whole concept
can be described with the process of Fourier convolution and deconvolution. The method is concep-
tually easy, but it is hardly physically sound and almost always numerically error prone. Besides,
there is an issue of spectral repeatability. Both numerical simulation and physically acquired data
are used to illustrate this repeatability problem. The causes of the problem are attributed to phase
noise and transient effects imbedded in multi-component signals. The former factor may be due to
improper timing during data acquisition or to some inherent uncontrollable limitations such as those
associated with random processes (e.g., those related to measurements in wind wave field or in tur-
bulent flow field). The latter originates from sharp local and transient variations of signal. In fact, in
addition to these signal-induced natures, there are still other complications that are associated with
different numerical processes, such as the discrete nature of a finite resolution scheme and the pos-
sible differences in time domain or frequency domain processing. Therefore, a different perspective
is always informative and possibly helpful.

1.1 The Heisenberg Uncertainty Principle

One of the well known characters for the two corresponding function spaces of the Fourier
transform pair is that a function cannot be both time- and band-limited. That is to say,



if a function is limited or, more formally stated, finitely supported in one domain, then
the corresponding function in the other domain stretches infinitely on the real line R. This
concept is formally stated by the Heisenberg uncertainty principle which mathematically
specifies a lower limit on the area of the time-frequency window for any Fourier transform
pair.

In discrete time-frequency analysis, this character is also indicated by the Balian-Low
theorem, which basically states that if there exists a Gabor type frame g, , = e~ Mg (s —
n), where m,n € Z and ¢ is an independent variable of a function g, then either g(t) or
G(w)’s second moment of inertia goes unbounded, where G(w) is the Fourier transform of
g(t) [4, 2, 13]. In all real world situations, signals studied are always limited in time (or in
space) and hardware or instruments used to acquire the signals are certainly band-limited.
Moreover, there always exist intrinsic differences between discrete numerical schemes and
continuous analytical methods. Therefore, practical conditions never fulfill the demands of
mathematical requirements, and signal analysis is truly not going to be ideal. The points
stated sound a bit abstract and are analytically oriented; in the followings we shall list
several issues which are quite practical and we encounter them in all cases when analyzing
data using Fourier transform, and, they are more intuitive and easier to comprehend.

Fourier basis functions are periodic and extend bi-infinitely; therefore, in order to take
full advantage of Fourier analysis the signals studied are better periodic and sampled in-
finitely. The various side effects for not fulfilling this requirement include: frequency leak-
age, smoothing errors, and edge effects due to data truncation and segmentation; aliasing
due to under-sampling or non-periodicity; spectral variance due to finite resolution; arti-
fact due to windowing [17, 1]. Besides, efforts to reduce a certain side effect will certainly
introduce other hindrances; there are always tradeoffs.

1.2 Transient Effects and Phase Noise

The statement of the periodicity requirement as well as the existence of a lowest limit for the
area of the time-frequency uncertainty window basically point out that Fourier transform is
suited for characterizing stationary signals and not quite satisfactory for studying transient
local phenomena. Still, there is one good example which clearly manifests this property.
The Gibbs phenomenon states that, if there is an abrupt jump or discontinuity in the
signal then the overshoots, which occur at both sides of the discontinuity when performing
the inverse Fourier transform from its Fourier coefficients, can never disappear and their
amplitude remains at constant no matter how many spectral components are taken into ac-
count (except that the position of the overshoots approach that of the jump). In plain terms,



this phenomenon illustrates the following two points. First, it takes quite a many spectral
components to describe a sharp local transient feature; second, a local variation affects a
board range of the spectrum just as the Fourier transform of the delta distribution covers
the whole frequency axis (the delta distribution is sometimes called deita function, but it is
really not a function in strict mathematical definition since it is not defined in the origin).

A good illustration of the phenomenon, though somewhat exaggerated, is given by Fig-
ure 1.1. In this figure two Lemari€ wavelets in the two least (smallest) scales are used to
represent the short local transient pulses within the signal. The left pulse corresponds to
the result of the inverse wavelet transform from a unit wavelet coefficient at 600 within a
1024-point series. The right pulse corresponds to that of a unit wavelet coefficient at e470.
The choice of the least two scales is to emphasize the effect of transient locality — which
renders a very board distribution of power spectrum. The choice of positions 600 and 470 is
somewhat intentional and somewhat arbitrary, just to give an idea about the symptom related
to the positions of occurrences of the pulses, i.e., the phases — which are associated with
the wiggling of the spectrum. For “intention” we mean that the greater the separation dis-
tance the more severe the wiggling. For “arbitrariness” we mean that in practical situation
we generally do not have control over the timings or positions of the occurrences of local
features if complexity or randomness exists. In fact these statements are the consequence
of the following Fourier transform pairs:

f) = Fl) ; g << G), (1.1)
f—1) &= e “"F(w), (1.2)
If)+ e < |F()+ Gw) (1.3)

In the above equations the double arrow sign means that, except there may exist dif-
ference of multiplication factors, the roles of ¢ and w may be inter-changed — a very nice
property of Fourier analysis, since these as well as other inter-changeable relations facilitate
the convenience and powerfulness of the analysis. The wiggling of the spectral curve can
be explained by the following two simple explanations. Firstly, a basic and useful property
is that “a shift in one domain corresponds to a modulation in the other domain (one of the
duality properties of the Fourier transform)”. It is also noted that, even the modulus of the
modulated spectral coefficients for the single shifted pulse is the same as that of the spectral
coefficients of the original puise, the modulus of the spectral coefficients of the combined
pulses is certainly different from the direct summation of those of the two single pulses.
Secondary, a complementary character to the first, even though Fourier transform is a linear
operation on component signals or on the constituents of a signal, power spectrum does
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Figure 1.1: The phenomena of ambiguity and phase noise arising from the local transient
- features of signal are illustrated using two separated wavelets. Here two Lemarié wavelets
located at two neighboring scales (the least two scales within a 1024-point series) are shown
in the top figure. The power spectrum is shown in the bottom figure. The pulse at left
corresponds to the inverse wavelet transform for unit wavelet coefficient €600; the right
corresponds to e470.



not possess property of linear operation. That is to say, the power of the combined pulses
does not equal to the sum of individual powers for the two pulses. In addition, there is an
artifact which is mainly caused by our desire to attach physical meaning to the complex
results of the Fourier analysis, i.e., from double-sided spectrum to single-sided spectrum
when dealing with real and imaginary parts which distribute at both positive and negative
frequencies. The artifact is most obvious when dealing with two-dimensional spectrum,
where the symmetry of power spectrum can hardly be practically explained.

1.3 Spectral Repeatability for Wind Wave Signals

Even with the acquaintance of the previous phenomena one might not really grasp to what
degree the symptoms may affect the conclusiveness of interpretations of spectra. Measure-
ments of the water wave signals in a wind wave tank tell the story. But first let present
results from a different statistical approach based on zero up-crossing method. Comparison
helps illuminating different characters associated with different perspectives.

Table 1.3 shows the statistics for three sets of data from such a conventional method.
The experimental data is acquired in a wind-blowing oval tank with dimension of 20.0m(L),
31em(W), and 45cm(H). The tank is filled to a water depth of 24 cm. Detail setup of
the tank can be found in Poon, et al (1992) [16]. The wind was kept blowing under the
same condition for the cases shown in the table. The signal was sampled at a rate of 40
samples per second for a duration of 240 seconds. Channel 1 shows data of the aqueous flow
measured at different depths from the water surface using laser Doppler anemometer (LDA)
. Channel 2 shows the water surface displacement measured at nearly the same location as
the LDA measurement point (1 cm separation). Statistics at channel 2 can therefore be
regarded as the results from repeated measurements.

The various statistic values for all individual runs have indicated that the wave field has
reached a stationary condition from the zero up-crossing point of view. However, when
viewed from the spectral perspective, the idea of stationary is hardly substantiated from
these same data sets. The top sub-figure of figure 1.2 shows the power spectra of the re-
peated measurements of water surface displacements. The bottom sub-figure shows spectra
of the LDA aqueous flows measured at several different depths (3, 4, Scm, respectively,
from the still water level).

As is indicated from the top sub-figure, even though the zero up-crossing statistics has
shown conditions to be in good stationary, repeatability of spectra is rather poor. More-
over, when compare the top and the bottom sub-figures it is seen that the spectral shape of
the water surface displacement matches that of the aqueous flow for each individual case,



Table 1.1: The zero up-crossing statistics for three different measurements under the same wind
condition. Channel 1 is for LDA aqueous flows measured at different depths from the still water
surface. Channel 2 is for surface displacements measured at nearly the same location. Statistics for
channel 2 can basically be regarded as results from repeated measurements. Comparisons of data at
channel 2 for different cases indicate that the wave field is in good stationary. This is certainly not
true when viewed from spectral perspective, as shown in subsequent figures.

Case B £f0w6030.dat ( £1 p3 cl 89 )
Date : 01/05/96
Time : 02:19:05.48 Sampling frequency : 40 Hz

Specifics : Sampling time length : 240 Sec

Ch *w H.1 H.2 H.3 H1/10 H1/3 H1/2 H.ave H.rms T1/10 T1/3 - T1/2 T.ave T.rms

1. S54 26.74 23.67 23.04 20.20 17.38 15.92 12.03 12.93 .44 .44 .44 .43 .44
2. 572 2.90 2.69 2.61 2.33 2.04 1.89 1.44 1.54 .44 .44 .43 .42 .42
Case : £0w6040.dac  ( £1 p3 cl 89 )
Date : 01/05/96
Time : 02:14:05.76 Sampling frequency : 40 Hz
Specifics : Sampling time length : 240 Sec

ch W H.1 H.2 H.3 H1/10 H1/3 Hl1/2 H.ave H.rms T1/10 T1/3 T1/2 T.ave T.rms

1. 546 22.81 20.65 20.52 17.04 14.48 13.32 10.35 11.01 .45 .44 .44 .44 .45
2. 563 2.98 2.88 2,72 2.35 2.04 1.89 1.46 1.55 .44 .43 .43 .43 .43
Case H £0w6050.dat ( £1 p3 cl =9 )
Date H 01/05/96
Time : 02:00:30.72 Sampling frequency : 40 Hz
Specifics H Sampling time length : 240 Sec

Ch [ H.1l H.2 H.3 H1/10 H1/3 H1/2 H.ave H.rms T1/10 T1/3 T1/2 T.ave T.rms

1. S46 17.62 16.49 16.30 14.02 11.54 10.97 8.22 8.88 .45 .44 .44 .44 .45
2. 562 2.83 2.4 2.72 2.36 2.06 1.91 1.45 1.55 .44 .44 .44 .43 .43
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Figure 1.2: Spectra for the surface displacement and aqueous flow measurements. The top
sub-figure shows power spectra of the repeated measurements of water surface displace-
ment. The bottom sub-figure shows power spectra of the LDA aqueous flows at different
measurement depths. Compared with table 1.3, it is seen that the repeatability of power
spectra is rather poor even though the zero up-crossing statistics has indicated the existence
of a good stationary condition. This also implies the likelihood of poor performances of
spectral coherence and signal deconvolution for two signals acquired at different batches,
either under the same wind condition or not.



L.e, there exists high coherence between the displacement and aqueous flow measurements
within the same case run. The points here give lucid illustration of the effects of phase noise
on spectral outcomes, since the displacement and aqueous flow measurements are acquired
at almost the same location (with 1 cm horizontal distance) there is no phase noise between
the two spectra for a single case run, on the contrary, we just don’t have any control over
the phases for different case runs.

In calculating these power spectra standard treatments of FFT are employed. Related
processing parameters are shown in the figures. For all cases the total length of the data
is multi-segmented with 50% overlapping and Blackman window is applied to each sec-
tion. Figure 1.3 shows the results using segment length of 512 points (with an approximate
degrees of freedom of 36). Power spectra using a different segment length of 1024 points
(with an approximate degrees of freedom of 17) are shown in figure 1.3. While the spectral
resolution of the former figure is inferior, the repeatability of power spectra in the latter
is significantly worsen. These behaviors also somewhat manifest the statements given in
previous sections. ‘

A more direct explanation for this repeatability problem can be simply given as the
rapid diminishing as well as the irregularity of the auto-correlation coefficient function (or
distribution) as shown in Figure 1.4. In the figure the auto-correlation coefficient functions
of two wave gauges located at up-wind and down-wind positions are shown. Their correla-
tion levels are quite low, and the physical interpretation for it is that wind waves lose their
identities extremely fast and they reflect typical phenomena related to transient or pulse
natures.

1.4 Natural Frequency of the Wind Wave Tank

Well controlled experiments can often yield informative results as well as fine scale char-
acters that are unexpected and generally not quite obvious. Example shown in this section
might sound miscellaneous but it severs to illustrate several intrinsic aspects related to ex-
periments. These aspects include: the response characters of the instruments, the accuracy
of the measurements, awareness of the degree of control in the experiments. In addition, this
example also illustrates different inherent properties between numerical results calculated
from auto-correlation coefficients and those from power spectral estimates, even though
theoretically the Fourier transform of the auto-correlation function is the power spectrum.
When the wind is blown in the oval tank energy might be picked up by the natural
frequency of the tank through some gradual process or some kind of rapid excitation. Our
experimental data shows that, if the oval tank is not blocked there does exist an energy
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Figure 1.3: Spectra for the same data as in the previous figure but with different FFT pa-
rameters. Here a 1024-point segmentation is used. The degree of freedom is approximately
halved. The resolution is improved whilst the standard deviation increases.
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Figure 1.4: auto-correlation coefficients of wind wave signals (up- and down-stream) in the
oval tank. The correlation level is low and diminishes rapidly. A reasonable argument is
that these wind waves lose their identities extremely fast
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pickup from the relatively short wind waves by the relatively low natural frequency which
is about 30 times less than typical peak frequency of the wind waves in the tank, as will be
illustrated in the followings. And in all cases there is no sign of rapid excitation.
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Figure 1.5: A noisy wave form where the wave of the natural frequency of the tank imbeds
within.

Figure 1.5 shows a noisy wave form (which is the worst for the wave gauges we used)
where the wave of natural frequency is actually imbedded. The data was acquired after
the short wind waves dies away rapidly when the wind was stopped. As is seen the signal
is relatively weak and almost completely submerged in the noise from the instruments.
However, when the signal is smoothed and auto-correlation coefficients are calculated the
period for the natural frequency is easily identify as 13.3 sec, which is in good agreement
with the time needed to travel the tank using the shallow water wave limit according to the
formula of Cg = C = /gh, where C, is the group speed, C is the celerity of the wave, g
is the gravitational acceleration, and h is the water depth. In the figure the tapering of the
curve is associated with zero padding when calculating the coefficients.

This natural frequency can also be seen using convolution filtering. Figurel.7 shows the
low-passed signal, where minimum degree of filtering using a Blackman type filter with a
cutoff frequency of 3 points per cycle is adopted. As can be seen the amplitude of the wave
is approximately equal to 0.15mm. The figure also indicates that most of the noise comes

from relatively high frequencies and has little influence on frequencies where water waves

11
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Figure 1.6: The auto-correlation coefficient function of the noisy wave form which shows
the natural frequency of the oval tank.

mainly concern (about less than 10 Hz).
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Figure 1.7: The natural frequenéy can also be seen from low-passing the signal. Here Black-
man filter with minimum degree of filtering is used. Compared with figure 1.5 one see that

most of the noise is associated with relatively high frequency, in reference to those of water
waves.

Since power spectrum is the Fourier transform of the auto-correlation function, let look
at the frequency domain results. Figure 1.8 shows two spectral curves using two different

12



segmentation lengths. It may not be as easy as the auto-correlation curves in identifying the
natural frequency mainly because the peak is dispersed and possibly not located near the
resolution point. A few practical limitations associated with numerical aspects of discrete

Fourier transform such as segmentation length, frequency leakage, edge effects, window-

ing, and spectral resolution, again play the important roles; while the auto-correlation is
implemented in the time domain and have different features in these regards.

Some additional points for this section are given in the followings.

There are intricate details in the numerical processes that render differences between
the two seemingly identical implementations of a single formulation, that is to say,
we have an additional concern that different implementations of a single formulation
may yield results that should be intuitively the same. And this is in addition to those
differences between discrete and continuous transforms.

The noise level is generally higher than that of measurement accuracy. In our ex-
periments the wave gauges were calibrated using a vernier with 0.05mm accuracy.
Response characters of instruments, including resolution and time responses of ac-
quisition hardware and pre-filtering instruments are verified using a WaveTek signal
generator. No deterioration of signals can be identified for the instrument setups.

Noise are of high frequency and can mostly be filtered out.

In the case shown here the end of the oval tank was not blocked by wave absorber; if
the tank was blocked no such frequency could be detected, it is therefore anticipated
that there is no adverse effects of resonant excitation from the tank.

Wave reflection coefficients are also estimated by separating incident and reflected
waves using the wave separation technique proposed by Goda and Suzuki [6]. Several
cases in which mechanically generated waves of longer wave periods are analyzed.
The estimations from these cases should yield conservative values when compared
to wind wave cases. Table 1.4 shows numerical results of an estimation, in which
the energy reflection is about one percent. It is anticipated that for wind wave con-
ditions the reflection should be milder. In our view we regard this energy reflection
level as possibly having the same degree of uncertainty associated with the numerical
calculation, since the processing method basically uses FFT tactics.

13
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Figure 1.8: Power spectral curves for signal shown in figure 1.5. Since power spectrum is
the Fourier transform of the auto-correlation function of the signal, the comparison with
the auto-correlation curve indicates the existence of intricate differences between the two
numerical implementations for a single formulation.
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Table 1.2: Energy reflection level for a mechanically generated wave in the oval tank based on
Goda and Suzuki’s method [6] for separation of incident and reflected waves.

Case Kx_Oval.dat { slp3cl )
Date 04/29/95
Time 13:50:27.84
Specifics Oval tank Kr
Ch W H.1 H.2 H.3 H1/10 H1/3
1. 110 31.95 30.77 30.61 30.61 29.09
2. 106 31.10 30.60 28.11 28.84 26.41
3. 112 3.47 3.40 3.35 3.27 3.o1
4. 106 3.4 3.43 3.38 3.38 3.27
5. 108 3.42 3.17 3.13 3.18 2.99
Energy reflection level (%): 0.8424
Program parameters etc.
Kr .0918 r.chl
depth
L.min 20.0000 T.min
L.max 180.0000 T.max
smo. flag 1 £.cut
£ft.point : 4096 b.pnt
Reconstructed incident and reflected waves :
Ch w H.1 H.2 H.3 H1/10 H1/3
4 42 3.79 3.55 2.85 3.26 2.28
4 42 .34 .31 .26 .28 .21

H1/2

27.69
25.82
2.88
3.2l
2.90

2

H.ave

23.31
24.05
2.48
2.96
2.65

4
4.0000
.3581
1,2983
67

1

H1/2 H.ave H.rms

1.85
.16

1.45
.12

Sampling frequency
Sampling time length

H.rms T1/10 T1/3 T1/2
23.99 .49 .48 .48
24.17 .48 .48 .48
2.54 .47 .47 .48
2.97 .47 .48 .48
2.67 .49 .49 .49
r.ch2 3
del.L 9.0000
M.max 57
M.min : 16
aR.8q : 57.6631E 3
al.sq : 68.4510E S
T1/10 T1/3 TLl/2
1.59 .48 .48 .48
.14 .49 .48 .48

200 Hz
52 Sec

T.ave T.rms

.46 .47
.48 .48
.45 .46
.48 .48
.48 .48

T.ave T.rms

.48
.47

.48
.47
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1.5 Spectral Comparison and Signal Deconvolution

Let suppose we have an input signal and an output signal. The input signal is, say, an
original signal without being influenced by external factors, or a signal measured before it
s affected by some sort of structure. And the output signal is, say, the altered signal due
to the introduction of those external factors or structures. One simple intuitive thinking
regarding the identification of the effects of these influential factors or structures on the
constituent components of the signal is to compare the input and output spectra. In this
section we will explain why this approach is generally problematic. In fact the idea of
this spectral comparison is just a concept manifesting a deconvolution process and can be
illustrated with an extremely simple blackbox mechanism as shown in figure 1.9. The basic
reasoning comes from the convolution duality property of Fourier transform,

h(t) < H(w) 1.4
h@)x f(1) = H(w)F(w). (1.5)

Here again the double arrow sign means that the role of 7 an w can be inter-changed. Refer-

Input #t) Output g(t)
BlackBox Mechanism
> B S
vs.
Ftw Impulse Response &)

Figure 1.9: The simple blackbox here is to illustrate the following problem: Does direct
quotient of spectral coefficients of two spectra physically significant? If direct division of
the two spectra is taken then this blackbox implies that the output is the convolution of the
input signal and a certain impulse response function, or alternatively speaking, the black-
box mechanism is the deconvolution between the output signal and the input signal. The
concept is intuitively simple, but it is generally of little use due to the fact that the process
is extremely error prone as explain in the text. The figure also indicates the inherent prob-
lems conceming making direct detail comparison of two spectra when there exists possible
randomness.
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ring to figure 1.9, if one assumes that
H(w)F () = G(w), (1.6)

it seems, therefore, quite straightforward to say that individual effect on each frequency
component is simply the division of two spectra,

_ G(w)
H(w) = _F(w)' (1.7
And the response function A(t) is simply as
o G(w)
h(t) =F [—F(w)]' (1.8)

The problems here are manifolds, both practically and analytically. They all arise from
the occurrence of F(w) in the denominator. Practically, as are indicated in the earlier
sections, due to finite resolution and discrete nature of data processing, the spectral pe-
riodogram estimate is only the expectation value of the power spectrum of a continuous
distribution and this estimator suffers severely from having large variance, with efforts to
improve it being rather inefficient [17]. Analytically, if only there exists a single frequency
resolution point where there is no power content then the inverse transform is simply non-
existent. Moreover, in many physical situations the power spectra are often quite narrowed
banded, or stated otherwise, peaked only around a small region within the whole range of
frequency axis, therefore, for frequency components with little energy the division of two
spectral coefficients is extremely error prone. This symptom is generally referred as am-
plitude equalization in radar imaging terminology. The amplitude equalization results in a
high-pass window function in the frequency domain. In the presence of additive noise, this
window further amplifies the noise [18]. Being aware of this fact, one should avoid direct
source deconvolution; nevertheless, it was not uncommon to see that similar algorithm of
taking direct division of two power spectra is used to make judgements when dealing with
somewhat complicate problems where phase noisy and transient effects are significant.

When viewed from the impulse response point of view, the above mentioned direct de-
convolution has a physical interpretation in the time domain as being the prbcess of a finite
impulse response model (FIR) (equation 1.8, [1]). In this regard there is one related model
called infinite impulse response model (IIR). For these two methods it seems that up until
now we can say little about one method being superior to the other. The finite impulse re-
sponse (FIR) model has the advantage of being with finite support in the response function,
i.e., the number of convolution weights is finite. The disadvantage is that the response func-
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tion basically states that not only previous input will have influence on the output signal but
also that the parts of signal that will only happen (or created) in the future will have influ-
ence on signal right now or even far a long time ago. These implications of FIR are simply
unrealistic and questionable. For infinite impulse response model the advantage is that it
is somewhat more reasonable because only one side of the response function exists, which
means that only previous parts of the signal will leave traces on its following signal con-
tents. However, there is severe disadvantages too. The IIR is a non-linear model and there
is no simple formulation exists for deriving response functions, and there seems to be no
fully automatic procedure for computer implementation. Moreover, they need fundamental
assumptions which are generally of personal preference, in some sense this means that the
choice of the infinite impulse response function is somewhat subjective and suffering from
no unique numerical algorithm.

1.6 Motivations and the Modulation Perspective

The wordings of these several sections up until now seem not to favor the adoption of
power spectra in making detail comparison of two signals. This is by no means to say that
power spectral tactics is not powerful. It just implies that different approaches have differ-
ent realms of strength as well as their own frailties. The overall summary of the weak point
of traditional Fourier analysis is its deficiency in characterizing local or transient phenom-
ena. In fact, Fourier analysis should not be blamed for this deficiency for we know at the
very beginning that all spectral components are certainly not varying in spatial or temporal
domain (since all are sinusoids with constant amplitudes and frequencies). If spectral ap-
proach is forced to cope with this situation it will mimic the signal with many additional
components and severely increases the tangling of spectral components; and practically,
the finite resolution in discrete Fourier transform will let the spectral results suffer harshly.
Therefore, for studying signals with many local and transient properties one’s obligation is
to find additional stratagems.

The intention of this report is to view signals, especially for water wave related signals,
in somewhat different ways, mainly from modulation perspective. We will only concern
what is termed as the “analytic signal procedure”, which in more plain terms is studying the
modulations of waves. There seems to be no clear definitions for the terms of modulations.
Modulations imply vague ideas of temporal or spatial variations, such as amplitude mod-
ulation, phase modulation, and frequency modulation. Related concepts are instantaneous
or local amplitude and frequency. In fact, the word “modulation” tells the basic difference
between this study and general spectral analysis. In spectral analysis the two corresponding
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domains are time and frequency, respectively, i.e., each domain has only one single variable
and the correspondence is one to one (we mean the number of coefficients in both domains),
therefore they are all uniquely defined. From modulation perspective if the signal is in time
domain then the corresponding domain has variables both in time and frequency; but the
correspondence is not truly from one to two dimensions under the analytic signal proce-
dure (not all frequencies exist at a particular time as is the case of general time-frequency
analysis '). Concerns regarding the natures of this mapping naturally arise. And, these are
the primary tasks that will be worked on. Related questions like: Is there unified approach
within the analytic signal method? Are the results unambiguous and how are they inter-
preted? Are they physically explainable and practically meaningful? And, what can be said
when comparing this method with spectral analysis?

Before the end of this chapter we give several words on our own limited understanding
of the broad aspects of signal analysis. It is proper for us to be aware that there exist many
different perspectives in the studies of signal and within individual perspective there may
also exist different regimens. Acknowledging this, we could wish to be somewhat more
objective and be giving our judgements more cautiously and unbiasedly. So, we make it
clear that the present study only occupies a small territory in the field of time-frequency
analysis; and time-frequency analysis is further encompassed within a board category of
time-scale analysis. Furthermore, the present study will mainly use a procedure devised by
Gabor in 1946, which is generally referred as the analytic signal approach”. To the author’s
knowledge this method was only scarcely used in our field of water wave related signals and,
in some sense or other, the interpretations of the results [12, 15] were not without doubts.
These skeptics are associated with the present interests as well as the desires to have a
general idea of the usefulness of the method. Both modeled numerical example and data
from experiments 2 will be used to illustrate various aspects in these regards.

lOocasionally one may band-pass filter the signal. This will give several frequencies at a particular time,
such as examples given later.

2Applications to experimental data or wave characterizations from this perspective will be mainly given in
the second part of this report.
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Chapter

The Analytic Signal and the

Instantaneous Frequency

The usefulness of a particular method of data analysis is highly signal dependent. Not only specific
features exist for each individual method, but also tradeoffs and complications are all over to be
found either among different methods or even among different schemes within a single category.
The scope discussed here covers only a small spot in the field of signal analysis. In fact the term
“modulation” just reflects a very vague idea of “changing”, but it seems intuitively beneficial if we
can characterize what are changing using simple concepts of local frequency, local phase, and local
amplitude, especially if it is possible to view a signal as a single modulated wave form with a single
time-varying amplitude and a single time-varying frequency. However, the plain facts of its fate are
Jjust not that simple and straightforward; that is why we have to bear with a variety of approaches
and to open our eyes to broader outlooks. It is hoped that every single step helps in moving toward

next advance.

2.1 The Complex Signal

Measurable signals are certainly real. However, it is often advantageous to associate a real
signal s, () with a sensible imaginary counterpart s;(z). The real and imaginary parts form
a complex signal z(t). A complex function allows us to define its modulus (or amplitude)
function a(#) and phase function ¢(¢) of a complex exponential. The derivative of the
phase yields the natural definition of instantaneous frequency w;(¢) (this is viewed from the
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time and temporal frequency domains, if it is viewed form the space and spatial frequency
domains the equivalent term is local wavenumber). The simple mathematical description is

2(t) = s5,(t) + si(t) = a(2)e"®?, 2.1)

with
w;(t) = ¢'(1). (2.2)

The main concern here is what is the sensible imaginary part and how to define it and this
concern is sure to influence the exploitation on instantaneous frequency. Up until now it
is generally regarded as an open question regarding the proper definition of the complex
signal [3]. Here we should also point out that in the realm of signal analysis most re-
searchers still regard instantaneous frequency as merely a primitive concept rather than a
question of mathematical definition. The issues are, at best, whether a particular definition
can match our intuitive thinking; whether their results can provide adequate explanations
for the physics that might be of our own logical reasoning only; and whether the intuitive
assumptions induce additional concerns which might be counterintuitive and possibly bring
us to new discoveries.

There are basically two methods to define the complex signal. One is the method of
quadrature model and the other is the method of analytic signal. Any real signal s(¢) can be
expressed as

s(t) = a(t)cos ¢(t). 2.3)

For the quadrature model method the complex counterpart, z(¢), of the signal should intu-
itively be

z(t) = a(t)e'*®. (2.4)

Problems arise concerning the uniqueness of the representation of equation 2.3. And in fact

there are an infinite number of ways to devise the complex form. In 1946 Gabor proposed a

definition for the complex signal [5] which avoided the uniqueness problem and his method
is generally called the analytic signal procedure. He introduced the complex signal as

s@) = Sw),
1 o -
() = 2—= / S(w)e'“dw, : (2.5)
V2 Jo
where S(w) is the spectrum of the real signal s(r). The factor 2 in the equation is introduced

so that the real part of the complex signal is equal to the original signal. As is clear from
this definition, the complex signal z(z) is the inverse Fourier transform of a single-sided
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spectrum with no components in negative frequency but with the same positive spectral
components as those of S(w); in other words, the Fourier transform of the complex signal
defined in this way will have only positive frequency components. This somewhat matches
our fondness that no negative frequency should ever occurs, even though at this time we do
not have a real signal. In the following section we will give somewhat detail descriptions on
how the analytic signal method is implemented, so that one might have as clear as possible
understanding of the natures of this approach, especially when it turned out that the situa-
tions (or the computational results) were far complicate and hard to be answered from the
author’s prior understanding in a preliminary stage or during its first encounters.

2.2 The Analytic Signal Procedure

The form of the analytic signal in terms of the real signal is [3]

s(t)

t—1

z(t) = s(t) + il’P /w dt. (2.6)
T —00

The symbol P in the equation means that the integration is carried out based on the rule
of Cauchy principal value. In the following we will go through the process of how the
analytic signal method is treated and, when possible, give its physical implication from
experiences acquired. By doing so we do not mean to duplicate the work of the previous
authors. But rather, only when one is aware of the details of manipulation and actually
implements them that one is more equipped with forthright understanding of the intrinsic
nature of the approach. And this is also helpful in gaining clues to the explanations of any
unexpected outcomes and in clearing skeptical issues that might be bothering — whether
they are associated with numerical aspects or they are of analytical natures, or they may be
Just caused by bugs in the computer program. In fact, the process described below had been
somewhat gone through in the early stage of programming. But at that time more thoughts
were put on derivation aspects, and little attention was put on their implications and practical
considerations. It was when many hard-to-explain results were found that the author came
back to have a thorough reexamination of the processes and put more thought on what the
details might imply and implemented more numerical simulations. It was finally conceived
that there was no bug ! as can be found by the numerous checks in the most early program
written long ago; but rather, some of the outcomes as well as a few “paradoxes” known in
literatures are explainable since then, at least to the scope of our knowledge.

UIn fact, if not being fully considerate is considered as a bug, then, practically, there is something wrong in
the program. An example of this is the need of base band conversion as will be given in the second part of the
report.
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The imaginary part of equation 2.6 is the Hilbert transform of the signal, H[s(¢)],

Hs()] = 50 =—P [ s@ , @7

t—‘L’

The principal value operation means that the integration is implemented in way of
o0
/ = hm ( f ) , (2.8)
t+€p

1
f@) = > (2.9)

with €; = €;. Let

and using the duality relation of eq. 1.4, the Hilbert transform is simply the convolution of
s(t) and £ (),

— 1

s(t) = ;(s*f)(t) 2.10)
It’s Fourier transform is .
FIs®O] = S(w) = —S(@)F(@). (2.11)

After separating S(w) and F(w) the Cauchy principal value operation is associated with
f(t), whose Fourier transform is

—iwt

FIF ()] = F@) = P / ” =
P / ” °°sf“”)dt —i f - Si"(t“")dt. 2.12)

The integrant in the real part of this equation is antisymmetry and the Cauchy principal
value integration is zero. The latter integral does not need the principal value sign because
sin(wx)/x is finite for all x in particular at x = 0. With a symmetrical integrant, since

/‘ smwxdx —sgn(w)/ smu 2.13)
0

one basically know that F(w) does not dependent on the variation of w. But this integration
is no trivial task and the known way is to invoke the complex integral calculus and using the
residue theorem for integration, as can be found in the well written textbook by Greenberg

[7]. The final result is a simple relation, which only depends on the sign of w:

(2.14)

F o) ={ —insgn(@) @ #0
0 w=0.

23



Therefore, the Fourier transform of the analytic signal A[s(r)] is

2 0
FLAIs]] = S(@) + i FIHIs()])w) = { S o> 2.15)
0 w<0.
The above equation yields
~ —iS(w) w>0
= 2.1
S@) I 1S(w) w<0. (2.16)

Making use of this relation the Hilbert transform is efficiently calculated by a simple word
in ASYST language (which is equivalent to a subroutine in some programming languages).
Table 2.2 lists the word. Detail manipulation of analytic signal approach is given here not
for mere analytical interest; but rather to disclose the intrinsic nature of this method 2. The
hope is that the arguments given later will be more precise as well as more objective. The
algorithm stated above and the program piece tell us that the basic tactic is composed of a
few processes that manipulate the contents of the resuits of FFT on the original signal. This
probably inscribes our doubts that properties for the FFT, as are discussed in the previous
chapter, are going to be enlisted in this approach. Examples and explanations for both
acquired data and modeled signals will be given.

2.3 Local Implication of the Analytic Signal

If a signal is expressed as a complex form then it is easy to have intuitive idea about the
local information on amplitude and phase. The terms “local” has very distinct implication
when compared with that of spectral concept, for we know that every spectral component
has constant amplitude (but with different phase) at all time. Therefore all local features of
a signal are all induced by the complication of phases from spectral point of view. From the
point of view of the analytical signal method amplitude and phase are all single valued at a
particular time. Therefore, these local values are anticipated to be the results of some sorts of
combinations from all the spectral constituents at their own particular times. This statement
highlight the motives of the present study to look into the features of these combinations.
What can be expected? It would be fair to state that our standing point is that one should
not favor the present method simply because the method is currently used. We should
discuss both its merits and its drawbacks. Therefore, we will first give a brief summary
of a few known paradoxes or counterintuitive properties regarding the analytic signal. We

2 An alternative approach implemented in the time domain is given in later section.
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Table 2.1: An ASYST word (equivalent to subroutine in some other computer languages) that cal-
culates the Hilbert transform of an array. The word takes a one dimensional input argument. As can
be seen in the program, the basic tactic is related to several processes which manipulate the contents
of the FFT on the input signal. Are these going to inscribe the properties related to FFT into the
results of the analytic signal approach? Examples and explanations will be given.

\ A small program piece which finds the imaginary part of the real signal
\ based on the analytic signal method.

\ The program makes use of the final results of complex calculus based on
\ Cauchy principal value integration.

\ The length of the array will be automatically truncated to some

A maximum allowable power of 2.

my.hilbert
fft [lsize n.fft.pts :=
dup becomes> tl1

dup sub{ 1 , n.fft.pts 2 / }

[+] +1 zEx+iy .
tl sub( 1 , n.fft.pts 2 / ] :=
subl n.fft.pts 2 / 1 + , n.fft.pts 2 /7 1]
0 -1 zox+iy -
tl sub( n.fft.pts 2 / 1 + , n.fft.pts 2 / ] :=
tl ifft

then present a few numerical experiments and try to provide explanations for some of the
paradoxes. In some cases, to the author’s knowledge, I have not learned of the existence of
well furnished explanations for them. Before we go further let state the basic differences
between quadrature signal and the analytic signal.

2.4 Frequency Contents of the Amplitude and Exponential Mod-
ulation Parts of the Complex Signal

The analytic signal is complex as is given by equation 2.6; therefore, for both the quadrature
model and the analytic signal procedure the signal can always be put into polar form

z(t) = a(r)e®V (2.17)

In the quadrature model a(t) and ¢(¢) are not uniquely determined and the pair can assume
arbitrary forms. In the analytic signal approach a(t) and ¢(z) are unique and have very
specific feature. This specific feature has the physical interpretation which states that the
low frequency content of z(z) is relevant to amplitude modulation part a(r) and the high
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frequency content is in its complex exponential /*). Since the Fourier transform of an
analytic signal does not have negative frequency components, the above feature is just the
manifestation of the property of “shift versus modulation”, f(f)e®®) <= F(w — w,). If
the amplitude term has a frequency higher than that of the exponential term then the shift
will not be able to move the spectrum to the right hand side of the frequency axis (being
aware that spectrum of a real function is double sided with conjugate symmetry). It is
therefore clear that the amplitude function of the quadrature model has a higher degree of
variation than that of the analytical signal method; otherwise the quadrature model signal
is simply the analytic signal, except, there might be a shift in frequency. The energy of
the difference (not the difference of the energy) between the analytic signal and quadrature
signal gives an indication of the closeness of the two signals. Its value is twice the energy
in the negative part of the spectrum of the quadrature signal. But in general the quadrature
signal can be put in a form close to analytic signal so that both have similar implications.

A brief summary of this section is: without concerning the difference of units, the
degree of frequency modulation of amplitude is generally milder than that of phase. This
also implies that the variation of instantaneous frequency is anticipated to be more violent.
And the analytic signal yields a least modulated wave amplitude envelope.

2.5 Hilbert Filters in Time and Frequency Domains

In a previous section we gave a short program piece which does the Hilbert transform of the
signal and the algorithm used is based on processes of frequency domain operation. As is
also clear from equation 2.10 that the transform can also be implemented in the time domain
in way of convolution if we can devise an impulse response function for the equation f(t) =
1/t. Based on its Fourier transform, equation 2.14, as well as on the Parks-McClellan
algorithm for finding a “minimax” fit to a desired frequency response [14] the finite impulse
response function can be designed (the discontinuity at the origin must be avoided). The
minmax method minimizes the maximum deviation of the actual response from the desired
response according to three parameters: the length of the filter in time domain, the start
and end frequencies of the window in frequency domain. The differences between the
results calculated from the previous program piece and those using the Parks-McClellan
algorithm again are tradeoff properties. There are greater edge effects using the former
method whereas there will be wiggling above and below the desired frequency response
windows in the latter. Figure 2.2 shows envelope curves for a signal derived from the
Hilbert transforms implemented in time and frequency domains, respectively. The length
of the convolution filter weights determines the relative role between the wiggling and the
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edge effects. A figure for a set of parameters is shown in figure 2.1. Where the number of
convolution weights is chosen to be 25 and the start and end frequencies are chosen to be
1.1 and 18.9 Hz, respectively, for a data scheme with Nyquist frequency of 20 Hz. In fact,
we have seen again that numerical results from the analytic signal procedure are certainly
not without artifacts due to its discrete and finite resolution natures both in the time and
frequency domains, just as what we have encountered when dealing with Fourier transform.
The points here partly explain the doubits listed at the beginning of this chapter.

2.6 Incompatible Concepts of “Instantaneous’ and “Frequency”

To the author’s own intuitive thought, the concept associated with “instantaneous” is just
not compatible with that associated with “frequency”. For “frequency” we mean that it is
the intrinsic nature of sine and cosine functions; and sine and cosine functions simply resent
to be “instantaneous” — at least there should exist a few cycles for the “frequency” to be
meaningful. So, what are the resulting phenomena that are both intuitive and counterintu-
itive, and, what kind of message can the instantaneous frequency deliver for us? Besides,
the complex form of a(t)e'*")* may give us strong and straightforward indication that the
instantaneous frequency should be relatively independent of the amplitude since the instan-
taneous frequency is the derivative of phase. Moreover, what we generally heard of are
more on the instantaneous frequéncy and it seems that much less attention was pay to the
amplitude function a(t). Is the situation really so, or, to what degree the inter-connection
between the amplitude and phase functions should be emphasized? Subjects given in the
next chapter will focus on these. Where we will first state some of the paradoxes, both
known or from points based on our own experience and understanding. Phenomena will
be illustrated using simple examples. Characterizations of their properties and explanations
for their behaviors will be attempted.

Before ending this chapter, let restate that the proper description of changing frequency
is not a settled question. Therefore there might exist alternative definitions for the instanta-
neous frequency [3]. In the present study the complex signal is restricted to that of Gabor’s
analytic signal procedure. And the instantaneous frequency is defined to be the derivative
of the phase. Under this definition the average frequency is given by the time average of
the instantaneous frequency weighted by the local energy density. This feature is consistent
with the concept of geometrical moments that we are familiar with.
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Figure 2.1: The Hilbert transform filter pair based on Parks-McClellan minimax algorithm.
The length of the convolution filter is 25-point and the start and end frequencies are 1.1 and
18.9 Hz, respectively, for a data scheme of Nyquist frequency of 20 Hz. There are tradeoffs
between this algorithm and that shown in table- 2.2. The present method results in wiggling
of the response window function in frequency domain, which in effect causes up and down
ripples of the envelope of the amplitude function; the latter has more edge effects.
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Figure 2.2: The envelope curves derived from the Hilbert transforms implemented in time
(solid line) and frequency (dashed) domains, respectively.
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Chapter

The Interplays Between Frequency and
Amplitude Modulations and Their
Characterizations

Paradoxes can sometimes be the many faces of an object, as well as be the same look of different
issues. In the first situation different perspectives give different interpretations. In the second sit-
uation a certain feature can be associated with events of different natures. It is therefore true that
they provide us more opportunities to characterize signals. However, one is also likely to be trapped
in dilemma and riddled with flaws. In our view we regard that these paradoxes are relevant to the
incompatible concepts between the “instantaneous” and the “frequency”’, since for “frequency” we
mean there should be at least a few cycles for it to be meaningful, and this situation is simply not

“instantaneous”.

3.1 Paradoxes Regarding Instantaneous Frequency

The phenomena related to the paradoxes given here had long been bothering me in interpret-
ing computational results of experimental wave data, but it was until I read some literatures
that I formally grasped the existence of these difficulties or only partially understood prob-
lems. And they also intrigue me to refresh my own understanding and to do more works on
this topic. In this section brief descriptions of these paradoxes will be given. In Addison,

additional concerns which seem have not been well illustrated are also discussed. It is im-

30



portant for us to understand these difficulties so that our interpretations are not misleading.

Numerical simulations as well as practical data will be used to explain these concemns. First

let list the paradoxes mainly given in [3]:

Instantaneous frequency may not be one of the frequency in the spectrum.

Instantaneous frequency of a signal with discrete line spectrum (i.e., the signal is
composed of only a finite number of discrete frequencies,) may be continuous and
range over an infinite number of values.

For a band-limited signal the instantaneous frequency may well go outside the band,
both higher or lower.

Although there is no negative frequency components for the analytic signal, the in-
stantaneous frequency may be negative.

While we start out thinking the instantaneous frequency as a local concept, why must
we use the whole signal at all time, as is revealed by the definition for the Hilbert
transform, to calculate the instantaneous frequency?

Additional points are:

The last point in the paradoxes listed above indicates the dependency between am-
plitude modulation and frequency modulation. And if they are dependent, to what
degree will one affect the other? That is to say, the point is how instantaneous fre-
quency is affected by amplitude distribution. The question here is relevant to the
intuitive thought that the instantaneous frequency should not concern too much on
the amplitude function, since the instantaneous frequency is simply the derivative of
phase.

As were stated in the last chapter that there are complications in discrete Fourier
transform when compared to continuous analysis, as well as differences between time
domain and frequency domain operations. The question here is whether similar com-
plications remain when dealing with the analytic signal. Considerations like these
may lead to characterization of the approach.

To illustrate these paradoxes detail investigations by numerical modeling are helpful.

First let us consider the analytic signal of a real signal with three sinusoidal components,

5(2) = ae™ + be' + ce', 3.1
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This example is basically the same as that given in Cohen [3] but with an additional third
term; in addition, further considerations for cases with various combinations of parameters
are given. The enhanced modeling gives additional information regarding these paradoxes.

Ifa,b,c,a, B, and y are all taken to be constants, the spectrum of this signal consists
of three delta functions (or distributions) at «, 8, and y,

S(w) =ad(w — a) + bs(w — B) + cd(w — y). (3.2)
If «, B, and y are further taken to be positive, then the signal is analytic. Solving for the
phase and amplitude functions, one has

_ a sin(at) + b sin(Bt) 4+ ¢ sin(y 1)
o) = arctan(a cos(at) + b cos(B1t) + c cos(y t)) 3-3)

A1) =
a> + b +c* +
2abcos((a—p) t)+2accos((@—y) t) +2bc cos((B—y) 1), (3.4

and taking the derivative of the phase we obtain

. —_ 1 2 2 2
wi(t) = Az(t)[a a+bp+cy+

(¢ +B)ab cos({a— B) t) +
(B+vy)occos((B—y) 1)+
(@ + y)ac cos((a — y) 1)]. (3.5)

Figure 3.1 shows the instantaneous frequency and the amplitude modulation of the com-
plex signal for the parameter set of [a, b, c; @, 8, ¥] =[—1.2, 1, —1; 1.6 x 27, 3.2x 2mr, 3 x
2rr]. This figure illustrates the first three paradoxes listed above.

Figure 3.2 shows the results where there are slight modifications to the frequencies of
the three sinusoids as [a, b, ¢; @, B, y] = [~1.2, 1, —1, /1.592 x 27, 3.183 x 2, 3.024 x
2m]. As can be seen the positions of occurrences of the sharp variations of instantaneous
frequency do not change very much, but the general shape of frequency modulation changes
dramatically. It also shows that the instantaneous frequency may go negative.

Other interesting phenomena are also shown by considering a few additional parameter
sets, such as those shown in figures- 3.3 and 3.4. Here all the three parameter sets have
the same frequency components and the same values of modulus (absolute values). The
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Figure 3.1: The instantaneous frequency and amplitude function for the parameter set
la,b,c;a, B,¥1=1[-1.2,1,-1, /1.6 x 271,3.2 x 27,3 x 2r].
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only differences are on their relative phases. The relative phases in these examples are
given as the negative signs associated with the amplitude, which is equivalent to a phase
shift of  radian. Figure 3.3 shows the modulations corresponding to two parameter sets
asfa,b,c;a, B, v} =[-2,1.5,2, /25 x 27,2.75 x 27,3 x 2] and {a, b, c; «, B.v] =
(-2, -1.5,2, /2.5 27, 2.75 x 27, 3 x 27 ]. Figure 3.4 shows those for [a, b, c; a, B, y] =
[-2,-1.5,-2,/2.5 x 27,2.75 x 27,3 x 27]. As can be seen both the amplitude and the
instantaneous frequency in the two figures have totally different behaviors. It is also shown
that there are points near which the instantaneous frequency may approach infinity, both in
positive and negative directions.

3.2 Effects of Support Length and Differentiability of the Am-
plitude Function on the Instantaneous Frequency

The terms “support length” and “differentiability” (and many others as mentioned below)
concern more on continuous functions distributed over the whole real line and are analyt-
ically oriented; but they serve well in fulfilling the purpose of the present chapter for ex-
plaining features from discrete numerical computations, in which these terms are basically
of no significance.

The previous examples clearly illustrated the first four paradoxes. But there seem to be
few clues for the other points. Let us consider a different case using a chirp signal

2(t) = a(r)e'@+h), (3.6)

For this case, if a(t) is finitely supported in time axis then z(t) may not be qualified as
analytic signal, since the spectrum of a(r) stretches the whole frequency axis and the mod-
ulation term may not be able to shift the negative frequencies fully toward the positive part.
For z(t) to be analytic a(t) is better to be band limited. For clearing this point let use a
bell shape normal distribution a(t) = ¢~°* ? as an example. Since Fourier transform of a(z),
Fla(t)l(w) = A(w), has the same Gaussian distribution as a(t), the amplitude function is
infinitely supported in both the time and frequency domains, therefore, the complex signal is
a quadrature model signal rather than an analytical signal. However, it is reasonable to take
an envelope function as close as to the Gaussian function in the time domain such that it is
only finitely supported in the frequency axis (one can just does it in reverse way by assum-
ing a spectrum very close to the infinitely supported Gaussian bell spectrum). We therefore
see that a slight change can change the status of analytic signal from being existent to being
non-existent. And this point clearly explains why the “local instantaneous frequency” is
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Figure 3.3: The frequency and amplitude modulations for two different sets of parameters,
l[a,b,c;a,B,¥] = [-2,15,2, /2.5 x 271,275 x 27,3 x 2r}and [-2,-1.5,2, /2.5 x
27, 2.75 x 27, 3 x 2m]. Relatively, there is a constant phase shift in one of the sinusoidal
components. The figure is to be compared with the following one.
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Figure 3.4: The frequency and amplitude modulations for another set of parameters
la,b,c;e, B, v] = [-2,1.5,-2, /2.5 x 27, 2.75 x 27,3 x 27]. Again, there is only a
constant phase shift in one of the sinusoidal components. This figure together with the
previous one indicate the sensitivity of the instantaneous frequency on the relative phases
of the spectral components. One concludes that the analytic signal procedure also suffers
severely from the phase noise effects just like the power spectra does. (The tick labels for
the y axes of the instantaneous frequency are all of the same value; this is to reflect that the
instantaneous frequencies are basically the same except that there exist unbounded points
under machine-precision.)
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certainly related to the parts of signal that might be million years ago or will only happen in
several generations later. Moreover, the instantaneous frequency for the chirp is

w; = a + pt. 3.7

This instantaneous frequency is simply independent of a(¢); and, this independence is cer-
tainly opposite to the “dependence” shown in the previous examples. And it seems that we
can somewhat arbitrary change the shape of a(t) without losing this property of indepen-
dence. However, one should pay attention that arbitrary change of amplitude may cause
the analytic signal to become a quadrature model signal only. It is therefore concluded that
there are interplays between the amplitude and the instantaneous frequency.

In fact the statements above is relevant to a complicate issue of differentiability, or regu-
larity, of the amplitude function. There is a lore of analytical topics involved in this question
as can be found in Daubechies’ wavelet treatise [4]. Features of regularity, differentiability,
support length, band width, and decay properties are intertwined and tradeoff properties of
signals. The points here are: if a(r) has poor regularity (a more formal term is Lipschitz
regularity) than A(w) spreads over a broad range of w, and from the shift versus modula-
tion property we know that we’ve got to have a very high frequency modulation to shift the
whole band to positive axis of w; if a(t) is not differentiable at certain points then there is
no chance for z(¢) to become an analytical signal. It is also noted that most of these math-
ematical complications seem to be of analytical significance for continuous functions only;
it might be relatively rare to find their practical implications in discrete numerical applica-
tions. The situation here is similar to a case in which the values of entropy of the wavelet
coefficients of a signal calculated using Meyer wavelet and Battle and Lemerié wavelet can
hardly be differentiated (Lee & Wu’s [10, 11]. While the Meyer wavelet is finitely sup-
ported and only partly differentiable the Battle and Lemerié wavelet is infinitely supported
and differentiable for all values on the real line, they have the same visual look. From com-
plex signal point of view, the situation is likely to analogous to the discussion of the “energy
of the difference” between the analytical signal and the quadrature model signal, which can
be of no significance.

Let us give another explanation regarding the localization of the instantaneous fre-
quency. In other words the question is: if we need the signal at all time to calculate a
local instantaneous frequency then what is the degree of influence on the local frequency
from parts of signals that are some distance away. We shall discuss this question form two
perspectives. Firstly, taking the basic equation for the Hilbert transform, P f_°° sWygr, we

o0 -1
know that the imaginary part of the complex signal is derived from inversely weighting
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the signal in accordance with the separation distance measured from the point where local
values are desired. And by analogy to Gibbs phenomenon we know that there is more wig-
gling near sharp variation points when inverse Fourier transform is carried out. With greater
variations under greater weighting at sharp variation points it is anticipated that there are
extreme behaviors at these points. The sharp variation points are generally associated with
occurrences of small wave envelope amplitude’. Secondly, examples also show that ampli-
tude envelope of large scale have little influence on the instantaneous frequency. Figure 3.5
shows the amplitudes and envelopes at several separated frequency bands for a wind wave
signal. The individual bands are obtained by band-pass filtering the signal with center fre-
quencies indicated in the figure. Figure 3.6 shows the windowed amplitudes and envelopes
at corresponding frequency bands. The Hamming window is used in this case and is shown
as one of curves in figure 3.7. Figure 3.8 shows the frequency modulations at four indi-
vidual bands with and without such a data window as labeled in the figure. As are seen,
they have almost identical variations except enhancements of singular features at a few lo-
cations. It is concluded that the variations of instantaneous frequency is mostly determined
by sharp local variations rather than magnitude of envelope function. Furthermore, since
the local variations are not symmetric with respect to the point of interest for most of the
cases, therefore, the instantaneous frequencies may well go extremely large as well as go in
the opposite direction, i.e., run negative, as is also partly implied in the Hilbert transform
equation.

In all cases, both from numerical simulations and physical data, the locality of the sin-
gular region ( or sharp variation region) is in proportion to the locality of the amplitude
modulation; that is to say, rapid change of instantaneous frequency lasts a shorter time span,
and milder variation of instantaneous frequency last longer. This reflects the symptom that
the concept of “instantaneous” is not compatible with that of “frequency”.

To end this chapter we conclude that the paradoxes and the skeptics mentioned earlier
have been mostly explained, and we have also pointed out that the analytic signal procedure
have many properties, such as phase noise, ambiguity effects, edge effects, filter lengths,
finite resolutions, etc., that are similar to those of Fourier transform. This also implies
possible limitations or difficulties when studying a broad band process using the analytic
signal procedure.

IThis feature is related to a character that roughness elements of the wind waves are more commonly found
to situate at low wave displacements, supposed there is no obvious breaking, as will be studied in part II.
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Figure 3.5: Amplitude modulations at four different bands for a wind wave signal.
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Chapter

Conclusions

We first illustrate the problems of using a direct deconvolution process in making compari-
son of wind wave spectra for data acquired in an experimental water tank. The difficulties
are referred as the repeatability problems of spectra and their main causes are attributed to
the ambiguity effects due to transient phenomena and phase noise due to relative timing of
events.

We then motivate the study of signals from modulation perspective using Gabor’s an-
alytic signal procedure. The known paradoxes as well as additional concerns or difficul-
ties associated with this specific method are listed. Though we are not going to say that
their causes are answered in satisfactory way; we do provide explanations and reasons for
their existences through detail numerical modeling and thorough implementations of the
procedure. A few intrinsic differences among different numerical schemes, such as those
associated with discrete or continuous approach, those related to time domain or frequency
domain processing, are also illustrated using practical data form experiments.

It is found that there exists profound interplay between local amplitude modulation and
the instantaneous frequency, and the occurrences of singular behavior of the instantaneous
frequency are associated with local irregularity of the amplitude function. That is to say,
violent variations of instantaneous frequency are caused by local sharp variations of am-
plitude envelope. And since the occurrences of sharp variation of envelope distribution are
associated with locations of small amplitude (we have not formally provided proof of this
statement, but our numerical simulations as well as experimental wave data all show this
tendency without exceptions), the sharp variations of instantaneous frequency always hap-
pen at points that are of little local energy. This point highlights the possible shortcomings
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for the analytical signal when applied to broad band processes. Besides, the analytic signal
remains seriously entangled with the features of transient effects and phase noise as found
in spectral analysis.

A few subject topics, mainly on the applications of the analytical signals to experimental
wave data, such as characterizing the wave growth and decay time spans, frequency aliasing
and base band conversion, surface roughness, bound wave system [8, 9, 19] and multiple
Stokes waves, etc. will be worked on in subsequent studies.
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