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Abstract

Surface waves superimposed upon a larger-scale flow are blocked and re-
flected at the points where the group velocities balance the convection by the
larger-scale flow. In this study, we first extend the theory of Shyu and Phillips
(1990) to the situation when short deep-water gravity waves propagate obliquely
upon a steady, two-dimensional, and irrotational current. In this case, the uni-
form asymptotic and the WKBJ solutions of the wave reflection phenomenon
by the current at a straight caustic are derived from the Laplace equation and
the kinematical and dynamic boundary conditions. These solutions, except
the expressions for the minor terms, take the same forms as those derived by
Shyu and Phillips. Furthermore, from considerations of the dispersion relation
and the action conservation equation, we demonstrate that even for a curved
and/or unsteady caustic induced by a three-dimensional and/or unsteady irro-
tational current, and for waves in an intermediate-depth region, the solutions in
the vicinity of the caustic still take the same forms as those in Shyu & Phillips
(1990), although the values of the minor terms can now be calculated only nu-
merically. The algorithm for these calculations is illustrated through numerical
tests, which indicate that while the error magnification phenomenon is very se-
rious in the estimates of the reflected wave in the vicinity of the caustic from
a consideration of the action conservation principle only, this phenomenon can
for the most part be avoided by the present algorithm by taking advantage of

the explicit forms of the present solutions.
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1. Introduction

The influence of long waves and currents on short waves has interested peo-
ple for more than half a century (see, for example, Unna 1942; Johnson 1947),
which recently received even more attention owing to the application of remote
sensing techniques. An important feature of the wave-current interaction is that
the wavelength and amplitude of the short waves both undergo changes during
propagation. The rates of changes for infinitesimal short gravity waves riding
on a long wave with a low amplitude have been calculated by Longuet-Higgins
& Stewart (1960) using a rigorous perturbation approach, while a more gen-
eral consideration was given by Bretherton & Garrett (1968) in terms of the
action conservation principle. More recent studies in this respect include the
detailed analyses of the modulations of linear short waves on a long wave of
finite-amplitude (Phillips 1981; Longuet-Higgins 1987; Henyey et al. 1988), the
prediction of the evolution of weakly nonlinear short waves on finite-amplitude
long waves (Zhang & Melville 1990; Naciri & Mei 1992), and the experimental
and numerical study of the interaction between a nonlinear wave and a current

possessing an arbitrary distribution of vorticity (Thomas 1990).

On the other hand, the wave-current interactions can also lead to reflection
of waves at the points where the group velocities balance the convection by the
current. This process can cause waves to change even more drastically because
the wavelength of the reflected wave is significantly different from that of the
incident wave at each point. In spite of its importance, an asymptotic theory
which is valid at the turning point and can take into account the reflection

phenomenon was not available until the publication of Smith (1975) for gravity
waves.

For gravity-capillary waves, a similar phenomenon but with opposite prop-
erties can also occur in the interaction between short wavelets and long waves
or between short wavelets and currents, as suggested first by Phillips (1981).
The uniformly valid solution of this capillary blockage phenomenon in a two-
dimensional field has been given by Shyu & Phillips (1990), and more recently
by Trulsen & Mei (1993) who even derived a solution near a triple turning point

at which the two kinds of reflection points coalesce.
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Though the effect of surface tension is disregarded, Smith’s (1975) theory
is valid for a more general case than the one considered by Shyu & Phillips
(1990). According to Smith, the uniform solution for gravity waves superim-

posed upon a slowly varying irrotational current, that can be three-dimensional

and unsteady, can be expressed as

u={AAi(p) +iC Ai'(p)} exp(is) (1.1)
with
p==[30V = x®]F, 5= 1 +x?), } (12)
A=73(=p)t (a4 a?), C=x¥(—p) ¥ (D - a®),

where u denotes any instantaneous property of the waves, Ai(p) and Ai'(p) rep-
resent respectively the Airy function and its derivative, and o) a® x(1) and
x® correspond to the local amplitudes and phases of the incident and reflected
waves satisfying various transport equations that apply to a ray solution. The

above unified formulae were also summarized by Peregrine & Smith (1979).

In (1.2), the requirement that C remains finite and analytic at the turning
point implies that «(¥) and «(®» have equal singularities there. This, together
with the action conservation equation ‘enables us to conclude that the flux of
wave action normal to the caustic carried by the incident and by the reflected
waves are equal and opposite’ (Smith 1975). Thus the amplitude of the re-

flected wave relative to that of the incident wave can be determined in the-
ory. However, in the immediate vicinity of the caustic, the amplitude of the

incident wave itself cannot be solved accurately from the action conservation
equation owing to the singularities at the caustic, and in the region at a cer-
tain distance from the caustic, the difference between the amplitudes of the in-
cident and reflected waves becomes significant, but as shown in the following,
when the action conservation principle is applied, this difference is featured of
an even smaller quantity divided by a small one so that an error magnification

phenomenon may seriously influence the estimates of this quantity.

On the other hand, the approach adopted by Shyu & Phillips (1990) can

directly lead to explicit solutions for p,s, A and C even without using the action
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conservation principle (though the satisfaction of the principle by these solu-
tions can easily be proved). This method first reduces the free-surface bound-
ary conditions to a third-order ordinary differential equation (or directly to a
second-order one if the surface tension term is neglected), which was then fac-
tored and reduced further to a uniformly valid second-order ordinary differen-
tial equation. The uniform asymptotic solution of this equation, essentially de-
void of any singularities in the expressions, can readily be obtained by using a

treatment suggested by the results of Smith (1975).

Shyu & Phillips’ (1990) analysis was still restricted to the case in which
the current and the waves vary in only one horizontal direction. In this pa-
per, we will show that this technique can be extended to the case when short
waves obliquely propagate upon the same current. This task is not trivial, but
more importantly, the analysis and the results will lead us to hope that even
for a curved and/or unsteady caustic induced by a three-dimensional and/or
unsteady irrotational flow, and for waves in an intermediate-depth region, the
solutions in the vicinity of the caustic, except the expressions for the minor
terms, should take the same forms as those in Shyu & Phillips (1990) and those
in the case when waves obliquely propagate upon a two-dimensional current (in
which the caustic is still straight). This suggestion will be verified by consid-
erations of the dispersion relation and the action conservation equation which
themselves have been demonstrated by Smith (1975) to be valid in the vicinity

of the caustic in a general situation.

In these solutions, the minor terms are responsible for the difference between
the amplitudes of the incident and reflected waves in the vicinity of the caustic,
but in the case of a curved and/or unsteady caustic and in the case when the
waves are in an intermediate-depth region, these minor terms can be calculated
only numerically. Therefore it is of practical importance to develop a numerical
algorithm to estimate these minor terms in a general case. This will be achieved
through simulation tests in which the strategies to avoid the error magnification

phenomenon by taking advantage of the explicit forms of the present solutions

will be developed.



2. Formulation of the problem in terms of ordinary differential equa-
tions

For a two-dimensional wave-current field including the effects of surface
tension, Shyu & Phillips (1990) first derived a third-order ordinary differential
equation in the surface displacement n of the short waves. This equation was
then decomposed into a second-order ordinary differential equation in which
all the coefficients are regular at the turning point. That this approach was

successful was because in this case, expansion of the dispersion relation
n=(g'k+vk%?% + Uk (2.1)

takes the form

2 ! 92 2
AT i LU Y
Y Y Y

k3

which is also a third-order polynomial equation in the local wavenumber k
and the coefficients coincide exactly with the leading terms in the differential
equation governing n (see (2.18), Shyu & Phillips (1990)). In (2.1), ¢ is the
effective gravitational acceleration suggested by Phillips (1981), n the observed
frequency of the wave, v the ratio of surface tension to water density, and U the

local current velocity.

In case that the waves propagate obliquely upon the current and the effects

of surface tension are neglected, the dispersion relation becomes

n = [g(k2 + k2)3]? + Uk, (2.2)

where k, and k, represent respectively the « and y components of the wavenum-
ber vector k while the z-axis is chosen to be exactly opposite to the current (so
that in (2.2) U is always negative) and the z-axis in the vertically upward di-

rection. An expansion yields
Uk — 4nU°kS + (6n*U? — g?)k2 — 4n®Uk, + (n* — ¢%k2) = 0, (2.3)

which is a quartic equation. From it and from Shyu & Phillips’ (1990) analysis,

it 1s anticipated that a fourth-order ordinary differential equation is desired in
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order to eventually obtain a second-order equation by decomposition that can

describe the reflection phenomenon as well as be uniformly valid.

To obtain such equation, certain results of the ray theory will be utilized.
The latter is invalid in the vicinity of the turning point, but as long as we can
prove that the resulting differential equation is regular at this point (meaning
that the singularities inherent in the earlier ray solutions of the incident and
reflected waves are completely offset from this equation), this equation can

virtually be applicable everywhere, including the turning point.

For a slowly varying wavetrain, the distribution of k is irrotational (see e.g.
Phillips 1977) so that

ok, Ok, _
Fx— - a—y' —_ 0. (2.4)

On the other hand, since the current velocity is independent of y, we have

T _ . (2.5)

From (2.4) and (2.5) it immediately follows that
k, = constant

everywhere. Next, from the kinematic conservation equation,

dk
'5t‘+Vn—-0.

Thus, if the current field is steady, we also have
n = constant = ny, say

everywhere. Therefore, the ray solutions of the surface displacement 5 and the

velocity potential ¢ of a single wave component can now be written as

n = a(z)exp [z/ ko () d:c] exp i(kyy — not), (2.6)

and
6 = A(z)exp [i / ko(z) dz + /0 “U(s, 2) dz] expi(k,y — not), 2.7)
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where a(z), A(z) and k,(x) vary slowly in the z-direction and I(z,z) varies slowly
in both z— and z—directions. For the sake of definiteness, we here take z = 0 to
be the mean water level. Notice that in the present case the roles played by k,

~and ny in the solutions are quite similar.

The relation between k, and I can be deduced from the 3D Laplace equation
32 32 82
(W-Fa—yz-i-a—zz')‘ll’zo- (2.8)
Substitution of (2.7) into (2.8) yields

dk; ... 1dA l
—k§+iﬂ+2qu%—k§+l2+%:o at z=0. (2.9)

In (2.9), the higher-order term (1/4)(d®A4/dz?) has been neglected. In fact, to
achieve the same level of accuracy as the ray solution, all derivatives with order
higher than 1 of the slowly varying parameters can be neglected. In (2.9),
since both I and 8i/8z are unknown, another equation is required. To obtain
this equation, we may reconsider the simpler case when the waves are exactly

opposite the current. In this case, (2.8) reduces to

o? o?
(W + W) ¢=0 (2.10)

N AY AV

In addition, from the deep-water boundary condition and the fact that the

or

phases of oscillation of both incident and reflected waves increase in the positive

z-direction, it is clear that the present solution should satisfy

8 .9\,
(2-52)o=0 e

only, otherwise ¢ will grow exponentially as z — —co. Substituting (2.7) into

(2.10) and (2.11) and setting k, = 0 and k, = k, we have at the free surface

dk 1dA ol
1.2 i o 1 an 2, 9 _ )
k+ldz+2lkAd:c+l+6z 0 (2.12)
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and

ik + —— =il (2.13)

respectively. Squaring both sides of (2.13), neglecting the higher order term,

and then subtracting the result from (2.12), we obtain

al
0z

_
=0  dz’

The above relation involves only smaller terms so that when the waves
obliquely propagate upon a two-dimensional current, the small curvature of the
wave crests induced in the present case will impose even smaller modification
upon this relation, which is certainly negligible within the present approxima-

tion. Therefore, for the present case,

ol _ .ok

35 lee™ Ti5a7 (2.14)

where k = (k2 + k2)/2 represents the magnitude of k and z’ is the coordinate

in the direction of k. This expression in the present coordinate system can be

written as
ol k2 dk
E z=0 k2 dl‘ (215)
because k, = constant. Substitution in (2.9) yields
1dA k2, dk
2 — 2 22 (1 — 2222
Pl o= ¥ =2k 2 —— — (1= 25) ==,
and its square root is
1 —k—z’i—il kz)k' (2.16)
z= kA 2 k27 k )

consistently. (In the following discussion we shall use a prime to indicate dif-

ferentiation with respect to z in certain circumstances.)



From (2.7) and (2.16), one can obtain at z = 0

where

¢
Oz

0%¢

az?

3¢

ox?

a%¢

ozt

ks

52 = p 1o +ink] 2,
= I;c[l—zcoi+lc2k’]
_ ’;C_x[l_wo%'msk']a i
= %[l—zcoﬁ +zc4k’]a 3
co-i(l—%,
o= gl )

3k2 1k

@=—pl-3E+3m)
0= Bl 3
I 1)

8z’

K
0z’

(2.17a)

(2.17b)

(2.17¢)

(2.17d)

(2.17¢)

These will later be applied to combine the two surface boundary conditions into

one equation. Note that when k, =0, (2.17a) reduces to (2.11).

Since the z-axis is taken in the direction exactly opposite the

current and the latter itself is steady and two-dimensional, the expressions

for the approximate kinematic and dynamical free-surface conditions in the

present case should take exactly the same form as those given in Shyu & Phillips

(1990), which are

—ingn + Un' +qU’ =

9¢
0z

—ino¢+gn+U(?—¢=0 at

or

(2.18)

(2.19)



From (2.18) we obtain

9%
. ! / "o
(—ing +2U"Y) + Un" = EPv (2.20a)
(mino + 30" )" 4 Uy = 28 (2.208)
: 0220z’
(—ino +4U " + Uy'Y = ¢ (2.20¢)
8238z’
and from (2.19)
, 0¢ ¢
(—ino + U')E + g1’ + U-é? =0, (2.21a)
ik B¢
. 1 11 _
. 63 " 64¢
(—zno+3U')b—z§+gn' +U%f =0. (2.21¢)

These equations can be combined into one equation in n by virtue of (2.17).
Although there are many (actually infinite) ways to achieve this, according to
Shyu & Phillips (1990), it will be more useful to derive a fourth-order ordinary
differential equation with the coefficients coinciding with those in (2.3). There-

fore, we first substitute (2.17¢,d) and (2.20b,c) into (2.21c¢), obtaining

k 1
U o [~i(noU + 35) 4 700" 4 02 2 4 (e — capmoUR, — o0 k]
k. kA ko
+ 0" [n} = ind(ca — cakl — binol’] = 0. (2.22)

Next, substitution of (2.17b,c) and (2.20a,b) into (2.21b) yields

k kA £
Uy 4 g [—i(QnOU + .Z_) + 50U + CO‘Z—% + (e2 — c3)noUky — cai—k’z

+7 [—ng —ind(cy — e3)kl — 4inoU’'| = 0.

Multiplying it by —2ine/U and igk/U2k, separately, we have



2n k ) 2ing gk A
—2inoUy" —of [70(2n0U+“;c—z)+101n0U'+ 0 UO-‘Z—II-{-%(Q—C;;)nO
2ing gk , 0 2ind 2nd U .
— C3 U Ekx] - [— U +(C2—63)7kz+8n0—l7 =0 (223)
and
ﬂc_ " " gk gr ﬁU_ o bl _Oﬂ !
11%77 +7 [ng (2"0U+ )+ k U ( ) +z c;;)Uk k!
gk 2 2 gk ng gk
Uz( )k’]+ [— U2k +(z—c3)U°2k Ic’+4U21c U']— (2.24)

respectively. Also, substituting (2.17a,b), (2.18) and (2.20a) into (2.21a) and
multiplying the result by —n2/U, we obtain

9 gk N "o gk A’ nd
—TI,OT]“ +7 { U2 (2710U + E) — 37107 UZ IC A - (C] - Cg)ﬁk’
k / ! 0 !
+czwk—k ] + [ +i(er — 62) k +2i7 U] =0. (2.25)
Since from (2.17e),
k2
61—02262—03303—64:E2yﬁ, (226)
the sum of (2.22)—(2.25) can be written as
kA k
UtV 4o [—4inoU +70U' + cog—— + (c3 — ca)noUkL, — C4g—k'x]
ks A ks
") g 2 _ _ / gk _ﬂ _ il
+7 { 6n0+( ) (16ino 51 )U ka(wcz no) v
gk . k
+ [—31(02 —c3)n2 — 103(Uk ) +i(er + cs)nglf—kz] k;}
4in} 2U no gk nZ gk A’ nd ,
+0 [T - Ml 4R gV - e e — e - g
k
+(2C2—ca)7;]0 gk K]+ [m +iler — )5 Okt 4 oi ‘;U'] = 0. (2.27)
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The dominant terms of (2.27) indeed agree with (2.3) if the operator 8/0z
is replaced by ik, at certain places. The minor terms in (2.27) can further be

reduced and written in terms of U’. To achieve this goal, the following relations

should be applied:

k

K= -0, (2.28)

V=U+Cp=U+ b4, (2:29)
1

A= _i("’:) a, (2.30)

@ A kK.

a_ A ks 2.31

=Tt 50 (2.31)

which can be derived straightforwardly from the dispersion relation (2.2) and
the boundary condition (2.18) as well as (2.16). In (2.29), C,. represents the z
component of the group velocity of short waves. We also note that in (2.30),
all terms containing o', k., and U’ are negligible, because as the amplitude, they

should be attributed to the next order term of the asymptotic expansion of the

solution.

Using (2.28)-(2.31), replacing 5" with

G A, Ic2 2
[21k,7+zkz(1 k2 -k ]1;

when necessary, and neglecting the higher order terms, (2.27) may finally be

reduced to

UV 4y [—4inoU] +q [—en?, + [91—22] + [41";]—3]

g?k2 N LI LL
gKkkg g9 g
+ [ T iU (-6LE 4 21 U2k%)] (2.32)

Since in deriving (2.32), only a single wave component is under consideration
and k, cannot be eliminated from (2.32) through any further transfer of terms, it

1s apparent that this equation can truly describe only one individual component
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(though from the dominant terms it seems to have four independent solutions
corresponding to the k,, kz2, k-3 and k4 components in figure 1) and be singular
at the turning point if this component is either the k; or the k; component.
However, this equation will later be decomposed into a first-order differential
equation, which either for the incident or for the reflected wave is again singular
at the turning point, but a combination of them can result in a uniformly valid

second-order ordinary differential equation.
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3. The equation coupling the incident and reflected waves

The technique for decomposing a higher-order equation into a lower-order
one in a general asymptotic analysis was first given by Turrittin (1952) (also
see Wasow 1985). For the special case to decompose (2.32), one may refer to
Shyu & Phillips (1990). Since each time the procedure can decrease the order

of equation only by one, this procedure must be conducted three times. The

result is
0 = nlikzy + iRy = 0, (3.1)
where
1 .
Ry = ———(P1 4 ikn1 Q1 + ik},), (3.2)
kzl - kr2
N 1 _bl
P = z3kza — (kz1 + kgo)(kes + ky
' (kz‘3 - k:l)(kz:a - k.t2) { (k 2 kx4)(k 4 krl) [ 3ted ( ! 2)( 3 4)

+ k::lkz'Z + (k 1 + k 2)] 4 _ kzz (kzs + k:4 - 2k:l)kz2k31

kes — k
+ lﬁ(k:;; <+ kz-.; - 2k1-2)k,_-1k;2}, (33)
~ 1 lbl k1'3 - k.‘t?
= T kz’ - k:: - kr - 1 1
Ql (sz - kxl)(kz'S - kzZ) { (kr2 - z4)(k 4 — k:l)( 3 t 4 2 l) kz-4 - krl
kz3 — ko
. (kza + k:4 - 2k1-1)k;1 - k4_—k1(k't3 + k r4 — 2kr2)k:2} (34)

and

3 2k2
by U,[6yk 1kzy (ykl) _ 49 ku]

L vy} (3.5)
{

To obtain (3.1), the parameter &, in (2.32) has been fixed as the wavenumber
component k,; of the incident wave such that (3.1), including its major and
minor terms, can truly describe the incident wave in the regions far from the
turning point. The corresponding equation for the reflected wave can directly
be obtained from interchange of k,, and k., in (3.1)-(3.4) and from replacement

of k&, and k;, by k, and k., respectively in (3.5), giving

7 —nlikzs +iRy] = 0 (3.6)

13



with
1

Ry = ————(Py + ikz2Qo + ikL,), (3.7)
kx2 - kz’l

where P, and Q, take the same forms as (3.3) and (3.4) except that b, is replaced
by

koks ko)3 $k2
g Zk 2 _2(9 2) _49 xZ] (38)

—
by = iU’ [6205 |

Both (3.1) and (3.6) are singular at the turning point where k.; = k2 (see
figure 1), which is not unexpected as the reflection phenomenon cannot be de-
scribed by a first-order differential equation. Nevertheless, a combination of
them into a second-order equation can couple the incident wave with the re-
flected wave and in the meantime cancel out the singularities from the equation.
Note that during the decomposition we have already obtained a second-order
equation before (3.1) was reached, but this equation cannot describe the incident

and reflected waves simultaneously, therefore is singular at the turning point.

Intuitively, we may combine (3.1) with (3.6) as

{6_61:_ — ifkyg + Rz]} {% — ks + Rl]} n=290, (3.9)

but it can describe only the k; component, since the coefficient &, in (3.9) is not
constant (the differentiation of the smaller term R; with respect to « is however

negligible). An expansion of (3.9) yields
77” hand [ikxl + ikxz + Z(Rl + Rz)] 7)’ - [kzlkx2 + (kszl + k,le) + lk;l]n = 0, (310)

which is obviously not symmetric with respect to k,; and k,,. To solve this

problem, we add, from (3.1), neglecting the minor term in it,

kll—k'Z / . kll—kl2
I T - - T xr —_ B 1
kzZ_krln lk 1kr2_kx1n 0 (31 )
to (3.10), resulting in
N + [—i(kz1 + kz2) + Q7 + [—kz1kz2 + Pl =0, (3.12)

14



where
kI?k:lr:l - krlk;,-z

P = —(k,gR] + kleQ) —1 k1'2 — k;,,-l s

(3.13)
. 71— kzo
Q=-i(Ri+R2)+ PRy

Since (3.10) and (3.11) can both be fulfilled by the k, component within
the present approximation, and on the other hand, (3.12) together with (3.13)
is symmetric with respect to k;; and k.2, it is obvious that the two independent
solutions of (3.12) will correspond to the k; and k; components. In the following
section, we shall prove that the singularities in (3.1) and (3.6) can completely be
cancelled out from (3.12) so that as a multiple-scale asymptotic approximation,

this equation can virtually be valid everywhere including the turning point.
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4. Proof of regularity

The sufficient condition for (3.12) being regular at the turning point is that
the coeflicients in (3.12) are all regular at this point. Since k;; and k., are a pair
of the solutions of the quartic equation (2.3), they will represent two branches

of a doublevalued function with the branch point at the turning point. Thus,

they can be divided into two parts:
k;1 =M — N, kg2 = M + N, (a.1)

where N and —N are two branches of a doublevalued function, say %!/2, which
equals zero at the turning point, and M and ¢ are both regular at this point.

From the above,

NZ =1, NN’ = %1//, (4.2)

so that N2, NN, N* N3N', etc. are all regular at the turning point. Therefore we
shall later prove that when (4.1) are substituted in (3.12) and (3.13), only this
kind of terms and the terms not containing N can survive cancellation. Also

the term k. — k;1 in the denominators of P and @ in (3.13) can be eliminated.

First, from (4.1),
k1 + koo = 2M, ka:lk:n2:M2_N2~

Therefore the dominant terms in (3.12) are obviously regular. Next, from (3.13),
(3.2) and (3.7), we have

-1

P = ——— (ko2 Py — ko1 Py) + ikorks2(Q1 — Q3)],
k:r:l - k:c2

;_—lk [i(P = Pp) = (ks1Q1 — k22Q2)].
rl 7 A2

(4.3)
Q=

Recall that the only difference between P, and P, or between Q; and @, is that

the former involves b, while the latter involves b, in (3.3) or (3.4). Thus we have

1

Pl - P2 == _kx3k1:4 + (kzl + ka)(ka + ka:4) - kz]kz‘2 - (kzl + kiz) (bl - bZ)) (44(1)
L
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Q1 - Q2 =%(k13 + kog — kzo — kz1)(b1 — b2), (4.4b)
. .1
ks = kot Py =Z{ [~ keskes + (Bor + kea) (ks + kea) = kerkes = (B2, + E23)] (kzbs = karba)
+ "(kzl - ka:Z) [(kxa + k:4 - 2krl)(k1'3 - kzZ)(kz4 - kz2)ka:2k;:1

+ (kz3 + kz“l - 2kz2)(kx3 - k:l)(kr4 - kxl)kzlk;,-z }v (446)
and

kz21Q1 — k22Q2 = {1(/6:3 + kza — kzo — kz1)(ke1b1 — kzaba) + (ko1 — kz2) [(kr3 + kzq — 2kz1)

: (kz3 - kzz)(kr4 - krz)k;q + (ka:s + kr4 - 2kr2)(k::3 - kzl)(kt4 - kzl)k/zz] }’
(4.4d)

where
L= (kxs e krl)(k:3 - kz’2)(k::2 - k:4)(k.r4 - kzl)- (443)

From (3.5) and (3.8) and by using (2.2), we also have

12 n2

bl - b2 =i(k::l ::2) Uz{ U

24 8UT — 18ng(ksy + ks) — [4k2 % (ko + kia)

k2k2 y U2

+12nk2S — 12k2 7;]0T AUEZ(kE) + k2y) — AURZk, koo T
+ l2nok31k 2(k::1 + k r2 — _‘) - 4Uk IZT] }, (450)

1

. v’
k.1:2bl - kz:lbz =1(kzl - kzZ)m{sUkrlk:Z(kzl + k::2) 18"0’%1":2 + 2U2 kzkz
1%2

2
[arz 2t Z‘; kerksz + 12n0k ks keaT — 1263 o kot oa(ket + ko) — AURZ ka1 k2o S

a2 T k2 k2, + 12m0k, kS, — AUKS KD, (kor + ko) } (4.55)
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except dy are slowly varying according to the explanation following (6.3). On

substitution x; into (6.3) we have

ko1 = [dy + 2dsz + O(2?)] - [z + O(z?)]?

(6.12)
ddy 0d 10 1
hyky, = [6_; + a_ylx + 0(22)] - ga_wyl. [(_wl)—l(_z)3 + 0(1:4)] 2

The other branch of (6.11) and (6.12) then provide the phase and wave-number

components of the reflected wave:

wlw

x2 = [do+ dr 4 doa 4 ] = 2 [(=41)F(~2) +0(7) (6.13)

kg = [di + 2daz + O(2?)] + [¢12 + O(2?))?

6.14
ddy  0dy (6.14)

1
hykys = [_ +—=—z+ 0(12)] + 19%

350 [0 (=2 + 0]

Jy Jy

The above phase functions not only lead to the right forms of k,; and kza, but
also ensure that V x k = 0 for both waves. However, the values of the series
coefficients d;,d,, ¥, etc. can be determined only from the dispersion relation.
We notice in passing that for a curved caustic, even though ky; is unequal to ky,
when = # 0 (if 8¢,/0y # 0), their difference is vanishingly small and proportional
to 23/ only (also with a very small coefficient (2/3y,)8+,/8y) when the caustic
is approached. A similar situation also occurs to the observed frequencies n,
and n, for an unsteady caustic. These can benefit the numerical computations
of the reflected wave significantly as illustrated in the next section.

From (6.11) and (6.13) it is immediately clear that x; +x» in (6.5) is regular
at the caustic. On the other hand, from (6.12) and (6.14), we have in the

vicinity of caustic

H= %(kzz —kz1)t = P12 4+ O(2?) ' (6.15)

Consequently

—/:H% dz = g(_zpl)%(_x)%[uou)] (6.16)
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After crossing out the denominator k,, — ks2 of the smaller coeflicients P
and Q in (3.12), they can be calculated straightforwardly by using (4.3), (4.4)
and (4.5), but in order to completely avoid singularity at the turning point, it
is necessary to substitute (4.1) into (4.4c) and (4.4d) to eliminate k;; and ki,
in favour of M’ and NN’. Both M’ and NN’ are regular at the turning point as

mentioned before, and since at this point,
U+Cgr] = U+Cg$2 = 0)
it is not difficult to obtain from (2.28) and (2.2)

no — U Mo _M_(?U,

NN = —————— 4.
no +2UoMo Up (46)
- 3Ing+2Uo My 3 Up (’no + 2[}()1\’!())2 ’ '

at this point, where U, and M, are the values of U and M at the same point.

Hence the calculations of singularities can now be avoided everywhere.
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5. Solutions of reflection phenomenon

The equation (3.12) in terms of the parameters k.1, k.2, P and Q takes exactly
the same form as that given by Shyu & Phillips (1990) so that its uniformly
valid asympﬁotic solution can similarly be derived using the treatment described

in Shyu & Phillips (1990), as suggested by the results of Smith (1975).

Using this procedure, we obtain

0~ v(z)exp {—% / [—i(kar + ku2) + Q] dx} eilksy=not) (5.1)

with

v(z) = AcAi(—r) — CoAi'(~7), (5.2)

where Ai'(-r) = {dAi(z)/dz}.=_, and

Sri=—f5 Hidz,
\ (5.3)
Ao = (F)* cos (— N %G/H% d:c) ., Co=r"%H %sin (— N %G/H% dl‘) ,
in which
H = f(ker — k), (5.4)
G=P+ %(kn + ke2)Q + %(lc;1 FEL). (5.5)

For the sake of deﬁnitenevss, we have taken z = 0 to be the turning point and
assumed that H >0 for z < 0, corresponding to a situation in which the reflected
wave is shorter and its group velocity smaller than the incident wave (see figure
1 and recall that C, = 9o /0k).

In the above solution, the parameters 4y,Cy, H,G and @ are all regular and
slowly varying at the turning point; it possesses a more explicit form than those
in (1.1) and (1.2). The implications of this fact, as they relate to the extension
of the solutions to a curved and/or unsteady caustic, will be discussed in the
last section. .

In the present case, 4, and Cp in (5.3) can be calculated straightforwardly

and everywhere; at the turning point where # = 0 and in the immediate vicinity
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of this point, the one-term Taylor-series approximations of 4, and C, may be

employed. From (4.1) we have in the vicinity of the turning point
H= 2k — ko) = N2 %z, say, (5.6)

where y; = dy/dz|,;=0 and from (4.2) and (4.6) it immediately follows that

= 9.0 — UM, M_OZU,

Y e 20 My Ts e
Consequently,
R 2 1 F]
—/ HZdr ~ E(—‘ll)l)z(—iﬂ)’, (58)
0
- /, -;-G/H% dz & Go(=v1)~ 3 (=)}, (5.9)
0
where Gy = G(z = 0). Substituting (5.8) in (5.3), we obtain
rx (—¢1)3(-z) (5.10)

in this region. Thus even both r and H as well as the integral — [ 1G/H?% dz go
to zero as z — 0, we have
Ao = (=) 4,
(5.11)
Co = Go(—¥1)"¢,

at the turning point, which are finite. Since (5.11) represent the first term of
the Taylor-series expansions about z = 0, the above results show that 4, and C,

are indeed regular at the turning point.

At points away from the turning point, Ai(-r) and Ai'(-r) can be replaced

by their asymptotic approximations, which for r large and positive are

Ai(-r) m 7~ 3r % sin (21'% + l7r> , (5.12)
3 4
N -3.1 25 1
Al (—r) ~ -7~ %r7 cos 3 + i) (5.13)
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(For r large and negative, both Ai(—r) and Ai'(—r) have a decreasing exponential
behavior; therefore (5.1) and (5.2) indeed represent the acceptable solution of
(3.12).) Thus from (5.1), (5.2), (5.3) and the above approximations, we have

nzH_%exp [/ %(—Q— iG/H%)dz’] exp i [/ ke1dz + kyy — not — iwjl
0 0

+ H % exp [/ %(—Q+iG/H%)dx] expi[/ kxzdz+kyy—n0t+;li7r] (5.14)
0 0

for 2 « 0. This solution represents the WKBJ approximation; it obviously fails
at the turning point where H = 0, but can nevertheless indicate the existence
of the incident and reflected waves, as well as show their relative amplitudes
and phases (an irrelevant constant common factor was neglected from (5.14)).

From (5.14), we have the local amplitudes
H-4exp [foz 1(-Q - iG/H%)dz] (ky component);
a= (5.15)

H'l/‘*exp[foz %(—Q+iG/H%)dx] (k2 component).

(notice that G is pure imaginary while H and @ are real), which have been

proved to satisfy the action conservation principle.
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6. Extensions to general cases

The above analyses provide explicit solutions for the special case when deep-
water gravity waves obliquely propagating upon a steady, two-dimensional ir-
rotational flow. These solutions will certainly become invalid when the water is
of intermediate depth and the underlying larger-scale irrotational flow is com-
pletely three-dimensional and/or unsteady. However, following the same pro-
cedures as those in sections 3 and 5, we may still reach similar results for the
general cases except that the smaller parameters G and @ must be determined
from the action conservation equation, which has previously been justified in
many other works (e.g. Smith, 1975). Since these results provide a far more de-
tailed account of the variations of the amplitudes, a feasible scheme for numer-
ical calculation of the wave field near the caustic, including the reflected wave,

can subsequently be developed in the next section.

When the larger-scale flows are not uni-directional in the (z,y)-plane, the
caustics are unlikely to be straight. Thus it is necessary and convenient to
derive the solutions in a set of orthogonal curvilinear co-ordinates, in which the
z co-ordinate is measured perpendicular to the caustic. Therefore we define all
the lines r = constant are parallel curves while z = 0 corresponds to the caustic.
Thus the scale factor A; in the z direction is independent of the position, and
on the other hand, if at the caustic we set the scale factor in the y direction

hy = 1, the variation of h, in the z direction has the simple relation

z

hy=1-goms (6.1)

where R is the radius of curvature of the caustic which is large compared with
the wavelength. This co-ordinate system will certainly produce singular points
of the differential equations at certain positions far away from the caustic, but
since 1t is the present purpose to determine the reflected wave from the incident

wave in the vicinity of the caustic, these singular points can be avoided in the

present analysis.

The above co-ordinate system can also be applied to an unsteady flow field.

In such case, the co-ordinate lines will move with the caustic so that the position
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with fixed coordinates may vary slowly from time to time in a fixed reference
frame. This variation, however, will have no influence on the following analysis,
because the major concern in this analysis is only about the variations in the
direction.

In this curvilinear co-ordinate system, the WKBJ solution of each wave

component can still be written as
n = a(z,y, t)ex(@vD) (6.2)

from which the z and y components of the wavenumber and the frequency
observed in this moving frame are
1 0y Jx

ky - ——— n = (63)

k.’l: = ) —a;
hy Oy ot

6_1',
where the dependence of a,k,,k, and n on z,y and ¢ are expected to be slow
except that in the vicinity of the caustic, the variations of a and k, with z will
be rapid owing to the singularities at the caustic. Notice that the variations of

hy, with z,y,t are also slow in view of (6.1).

From (6.2) and (6.3), equations (3.1) and (3.6) immediately follow with

Ry = —iZL,
ai
(6.4)
, ,
Ry = —i2
az

The values of a//a, and a}/a, cannot be determined without a consideration of
the dynamics, which in the present problem is described by the action conser-
vation principle. Next, following the same procedure as that in section 3, we

again obtain (3.12) together with (3.13). Thus if we choose

n=v(z,y,t)exp {%(n +x2) — / %dz} (6.5)
]
which equivalent to (5.1), we can similarly achieve

v(z,y,t) = AgAi(—r) — CoAil'(~r) (6.6)
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with

win

r%:—/lﬁda (6.7)
0

1 T _1 . ‘1
Ap = (%)‘ cos (—/0 EG/H% d:c), C0=T—"LH % sin (‘/0 §G/H%d1’)’ (6.8)

in which

H =tk — k)2, (6.9)
4
G =P+ 2 (ket + ke2)Q + 2 (key +Eo). (6.10)

The new variable r now depends on z,y and t, but its variations with respect to

y and t will be slow.

The adequacy of (6.5)—(6.10) as a uniformly valid solution for the case of a
curved and/or unsteady caustic which occurred in a deep or intermediate-depth
region, depends on whether the singularities at the caustic have been cancelled
out from x; + x2,Q, G, etc., otherwise the above solution will become singular
and the coefficients 4, and C, are no longer slowly varying in the vicinity of the
caustic (which will decline the use of the approximation implied by (4.8) in Shyu
& Phillips (1990)). Therefore it is required in the following to demonstrate the

above-mentioned regularity.

Since even for a curved and/or unsteady caustic in an intermediate-depth
region, from the dispersion relation and the fact that U, + C,; = 0 at z = 0, one
can always prove that k., and k., represent two branches of a double-valued

function with the branch point at the caustic. Therefore the phase function of
the incident wave can be written as

x1=[do+diz+daz?+ - ]+ ; [(—:/»1)%(—:) +0(z?) : (6.11)

(also see Smith (1975)), where the coefficients of the Taylor series expansions

about z = 0 in the two square brackets are functions of y and ¢, and all of them
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except dy are slowly varying according to the explanation following (6.3). On

substitution x; into (6.3) we have

ko1 = [dy + 2dsz + O(2?)] - [z + O(z?)]?

(6.12)
ddy 0d 10 1
hyky, = [6_; + a_ylx + 0(22)] - ga_wyl. [(_wl)—l(_z)3 + 0(1:4)] 2

The other branch of (6.11) and (6.12) then provide the phase and wave-number

components of the reflected wave:

wlw

x2 = [do+ dr 4 doa 4 ] = 2 [(=41)F(~2) +0(7) (6.13)

kg = [di + 2daz + O(2?)] + [¢12 + O(2?))?

6.14
ddy  0dy (6.14)

1
hykys = [_ +—=—z+ 0(12)] + 19%

350 [0 (=2 + 0]

Jy Jy

The above phase functions not only lead to the right forms of k,; and kza, but
also ensure that V x k = 0 for both waves. However, the values of the series
coefficients d;,d,, ¥, etc. can be determined only from the dispersion relation.
We notice in passing that for a curved caustic, even though ky; is unequal to ky,
when = # 0 (if 8¢,/0y # 0), their difference is vanishingly small and proportional
to 23/ only (also with a very small coefficient (2/3y,)8+,/8y) when the caustic
is approached. A similar situation also occurs to the observed frequencies n,
and n, for an unsteady caustic. These can benefit the numerical computations
of the reflected wave significantly as illustrated in the next section.

From (6.11) and (6.13) it is immediately clear that x; +x» in (6.5) is regular
at the caustic. On the other hand, from (6.12) and (6.14), we have in the

vicinity of caustic

H= %(kzz —kz1)t = P12 4+ O(2?) ' (6.15)

Consequently

—/:H% dz = g(_zpl)%(_x)%[uou)] (6.16)
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and

- /0 T 2G/HY dz = Go(—) "} (=)} 1 + O(z)] (6.17)

if G is regular at the caustic and Gy = G(z = 0). Substitution of (6.16) into (6.7)

results in

r=(~41)3(-2)[1 + O(z)] (6.18)
so that r is regular at the caustic. Furthermore, on substituting (6.15), (6.17)
and (6.18) into (6.8), we have

Ao = (=) ¥[1 + O(2)), }
(6.19)

Co = Go(—=¥1)™ #[1 + O(z)).

in the vicinity of the caustic. Therefore A, and C, are also regular (and therefore
slowly varying) at the caustic. All of these findings enable us to conclude that
the singularities at the caustic have been cancelled out from the solution (6.5)- |

(6.6), provided that G and Q are also regular here, which will be demonstrated

as follows.

Since the parameters G and Q also occur to the WKBJ solution, their regu-
larity can be proved by consideration of the action conservation principle which
is fulfilled by the WKBJ solution even at the caustic as demonstrated by Smith

(1975). Now, substituting (5.12) and (5.13) into (6.6), using (6.7) and (6.9),

and also taking (6.3) into consideration, we obtain the WKBJ solution

n =C(y,t)H"% exp [/0 %(—Q - iG/H%)d:c] expi (Xl - ;11—11')

+C(y,t)H * exp [/z %(—Q + iG/H%)d:c] expt (Xz + 4l1r) (6.20)
0

where the common factor C(y,t) is independent of z. From (6.20), the local

amplitudes of the incident and reflected waves are

a1 = CH texp [/r %(—Q - iG/Hé)dz] ,
0
(6.21)
Y ‘1 . 3
a; = CH 7exp [/ 5(—Q+ zG/H?)da:]
0
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Therefore substitution of (6.15) for # and differentiation yield

a{l 1 . 1 1 kl2 - k’l
_— = (=0 - H3) - %&£ %%
ay 2( Q lG/ ) 2 kzZ - kz‘l
(6.22a,b)
ay 1 . 1 1 kgy ~ kg
as - §(~Q + lG/H ) a 5 kx2 il k,;l

The above expressions for ¢)/a; and d)/a, are exactly identical with those
in (6.4) as the expression (3.13) and the definition (6.10) for G are substituted
into (6.4) for R, and R,. This coincidence will put even mdre confidence in the
assumption that if the singularities at the caustic are completely cancelled out
from (3.12), this equation and the solution (6.5)—(6.10) will remain valid uni-
formly in a region containing the caustic, since (6.22a,b) represent a rigorous
asymptotic approximation of the solution (6.5)—(6.10). Also, when (6.22a,b)
are identical with those in (6.4) in the ray solution, the regularity of the pa-
rameters Q, G (and therefore P in virtue of (6.10)) in (6.22a,b) can therefore be

demonstrated through a consideration of the action conservation principle.

From (6.12) and (6.14) it immediately follows that

Lkyy — Koy _

1
5"’1‘2 - k::l E[l + O(z)] (623)

near the caustic. Next, from the action conservation principle

6 El 6 E] 8 El _
H(E) dlurct] loecmE]e o

o o
in which the wave action density of the incident wave

B_1 a
Jq 2pgﬂ'

where E; represents its energy density, o; the intrinsic frequency, Cg,; the group '

velocity, p the density of water, and ¢ the gravitational acceleration. Therefore

Ell—-_ o) _?_(Uz+cgz1 _ o _3_ fli
a 22Uz + Cyz1) Oz o1 Qaf(U, + Cyz1) Ot \ 0y

S S [(U +C )ﬁ] (6.25)
2a3(Us + Cye1) 8y | ¥ wlig, ’
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In (6.24) and (6.25), the scale factor h, of the curvilinear co-ordinates has been
neglected as it will affect only the higher powers of z in the following Taylor
series expansions.

First, the relation between ¢, and k, differs according to whether the water
is deep or of moderate depth, but in any cases, by using (6.12) and (6.14), one

can always obtain the form of the expansion

U:r + ngl

- = Vi z[ag + O(z)] + [e1z + O(=?)) (6.26)

in the vicinity of the caustic, where ao and e; are the coefficients of the two
Taylor series in the square brackets. The absence of ¢, from the second series is
simply due to the fact that U, 4+ C;z1 = 0 at the caustic. Thus from (6.26), the
first term on the right-hand side of (6.25)

81

a1 0 (U:: + Cg.rl

_2(Uz " Cg:l) 3_:!: ) = —é[l + 0(1:)] + \/Tll—z-[ﬂo + O(I)] (6.27) ‘

near the caustic. Since in the vicinity of the caustic, variations of wave prop-
erties perpendicular to the caustic are large compared to variations along the
caustic, (6.27) represents the major contribution to a/a; in this region. There-
fore, from a comparison between (6.27) and (6.23) one may conclude that the
term H-% (or more precisely, z~%) in a,, a; in the present solution (6.21) is in-
deed consistent with the predication by the action conservation principle as far
as their first approximations are concerned.

The values of G and Q cannot be obtained without further evaluation of the
second and third terms on the right-hand side of (6.25), which represent the
higher-order modification. Since the first approximation a¢; ¥ CH-% has been
justified, we have

C?
Viiz
near the caustic. Also, from the dispersion relation, it is not difficult to see that

the series expansions of o; and U, + C,,; will possess the same form as that of

a? ~

(6.28)
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ks in (6.12). Thus, using these series and (6.28) as well as (6.26), and recalling

that C and v, are slow functions of y and t, we obtain

) d (a}\ _ &
—20%([]@' + ngl) a (-0'—1) = \/1/)11: (629)
o1 0 adl G
Consequently, a combination of (6.27), (6.29) and (6.30) results in
=iGo = 2(fo + &0 + Co), (6.31)

if (6.22a) and (6.25) are equal.

After the first term of the expansion for G was found, the next order terms
in (6.29) and (6.30) can be pursued by substitution, which are featured of
zeroth power of z. These terms and the corresponding term in (6.27), excluding
those attributed to the series in (6.23), can be identified with Qo = Q(z = 0) in
(6.22a). This procedure can be continued to determine subsequent terms in the
expansions for G and @, and the results show that these expansions indeed take
the form of a power series with center at z = 0. Although there is no way to
estimate the radii of convergence of these two series in the present situation,
since the variation of the underlying current is slow, one may expect that these
series will be uhiformly convergent in a large (relative to the wavelength) area
centering at the caustic. Therefore we conclude that G, @ (and P) are regular

at the caustic. This conclusion can also be drawn from a consideration of the
action conservation equation for the reflected wave, since in this case, we can

obtain the same results except that the signs of the terms containing ¥z
in (6.27)—(6.30) become opposite, which also occurs to (6.22b) compared with
(6.22a), so that the parameters G and @ in (6.22b) have the same values as

those in (6.22a) and are indeed regular at the caustic.

In summary, by investigating the series expansion and therefore the regular-
ity of each quantity evaluated in the curvilinear co-ordinates, we have demon-

strated that even for a curved and/or unsteady caustic and for waves in an
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intermediate-depth region, the uniform asymptotic and the WKBJ solutions in
the vicinity of the caustic take the same form as those in Shyu & Phillips (1990)
and those derived in the foregoing section. These solutions have provided ex-
plicit expressions for the amplitudes, although their minor terms G and Q can
be determined only from the action conservation equation and the dispersion
relation which themselves have been proved by Smith (1975) to be valid in the
vicinity of the caustic in the same circumstances. The explicitness of these so-
lutions will in the next section prove of great use to a practical numerical com-

putation of the reflection phenomenon.
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7. Application to numerical computations

In this section, we shall conduct numerical simulations in two cases: a
straight caustic and a curved caustic. Since it will later become clear that
estimates of the reflected wave from the incident wave in the vicinity of the
caustic at each instant involves only the instantaneous values of various variables
and the derivatives with respect to z, and furthermore the relation between n;
and n; near an unsteady caustic is analogous to that between k,; and k,, near
a curved caustic (see the discussion following (6.14)), any conclusions from the
present simulations will have implications for the case of an unsteady caustic.
To eliminate other complication and without loss of generality, we also assume

that all waves are in deep water.

Since we have in the previous sections derived the analytical solutions for
the case when a straight caustic is caused by a deep-water gravity wave prop-
agating obliquely upon a steady, two-dimensional current, the results of the
present numerical computations for this case can be compared with the analyti-
cal solutions to show the accuracy of the present numerical schemes. To achieve
this goal, even for a straight caustic, we deliberately take the = and y directions
(denoted by 2’ and y’ instead) of the computational grid not along U so that
no simplifications, which may originally suitable to this special case, will be

made and the extension of the numerical model to the case of a curved caustic
is straightforward. Also we note that even though the analysis in the foregoing

section was made in a curvilinear co-ordinate system, without a prior knowl-
edge of the location of the caustic, the differential equations can conveniently
be solved only on a rectangular grid, after which and after the caustic was de-
termined numerically, the components of each vector relative to the co-ordinate

system defined in section 6 can be calculated from those referred to (z',v').

Determinations of the incident wave and the caustic

Since in the present simulations the underlying currents are steady, the

action conservation equation can be reduced to

0 a? a a?
5;7 [(Ux’ + ny’);] + —3? [(Uy’ + ng’);] =0 (7-1)
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and the apparent frequency n remains constant everywhere (denoted by no
again) so that the wave-number components k. and ky can be determined en-

tirely from the irrotationality

Ok, Oky

oz’ oy’

=0 (7.2)

and the dispersion relation

1
ng = [y\/ kf-/ + k’::l + Uzikz + Uy’ky;' (73)

After their determination, the intrinsic frequency o and the group velocity com-

ponents Cy, and Cyy can also be calculated.

The partial differential equations (7.1) and (7.2) are solved by using a fi-
nite difference scheme. Since it is not the present purpose to develop an ef-
ficient model, an explicit difference equation of first-order accuracy is used to
approximate (7.1) and (7.2). As this solution scheme marches towards caus-
tic (in the y direction, say) one row at a time, the derivatives with respect to
y' are replaced by the forward difference. On the other hand, the derivatives
with respect to z’ are replaced by the forward difference or the backward dif-
ference, depending on whether U + C,,/ is negative or positive. This choice is
important to the stability of the present different scheme, and according to the
Courant-Friedrichs-Lewy condition, this scheme will be stable only if the ratio
of the grid spacing Ay’ to Az’ is smaller than the ratio of U, +Coy| to Uz + Cyer|.
Therefore, to ensure that the numerical solutions will be accurate even in the
vicinity of the caustic, the grid spacings Az’ = 20 cm, Ay’ = 0.0625 cm are chosen

for both cases of a straight and a curved caustics.

When the difference formula for (7.2) is solved at each mesh point, we first
obtain the solution of k. at this point. Then the numerical solution of k, at the
same point is calculated from (7.3) using the Secant Method. Consequently, all
the quantities related to the kinematics of the incident wave, including the char-
acteristic velocity U+ Cg, can be calculated, after which the action conservation

equation (7.1) can subsequently be solved for the amplitude a at this point.
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The above computations can be continued until at a certain point,the sub-
routine for the Secant Method fails to return a reliable and real root of (7.3)
which signifies the occurrence of the blockage phenomenon at this point. If this
occur to point A in figure 2, the solutions at the points on the same row but
on the right side of A can still be pursued. However, since point 4 is excluded
from the integration domain,the solutions at point D on the next row cannot
be computed with the present difference scheme as U, + C,,» > 0 at this point.
This difficulty can be overcome by using the forward difference instead of the
backward difference to approximate 9k, /8z' in (7.2) at this particular point and
at the points above D and in the same column. This enables us to continue the
calculations of k (but not the amplitude a) on the above rows until the Secant
Method fails again or U, + C,; became negative at another point, E say, which
always occurs in the next column. Note that U, + C,, represents the component

of U+ Cg in the direction perpehdicular to the estimate caustic.

The line AE in figure 2 can approximate the true caustic satisfactorily if
Ay is sufficiently small. Furthermore, the numerical solution of (7.1) at point
F (and at other points on the same row) can now be calculated reliably by
using the present difference scheme and the solutions at points B and C which
have previously been obtained without difficulty. As such, we have all the
informations required for the subsequent calculations using the same procedure.

The above strategy for estimates of the location of the caustic can be justi-
fied directly by a comparison between its numerical and analytical solutions in
the case of a straight caustic (an indirect justification for both cases will also
be given later). In figure 3, the conditions of the incoming wave prescribed
on the boundaries AB and BC are determined from the requirement that k, =
—0.2 rad/m everywhere and the component of the action flux in the « direction

is equal to 1 everywhere. The velocity distribution of the underlying current is
U, = —1.818 — 0.01z (m/s), U, =0,

while the apparent frequency ng = 1.4 rad/s. In this situation, the turning point

C in figure 3 is first detected when the subroutine for the Secant Method fails to
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estimate k, at this point. Then by using the above strategy, the other turning
points can successively be located, which as shown in figure 3 coincide with the

true caustic very well.

On the other hand, to simulate a curved caustic, we assume that the stream-
lines of the underlying larger-scale current are circles and the magnitude of the

velocity at each point

In/2-6
m

U = —4.0 2 (m/s),

where (r,8) represents the polar coordinates of this point (see figure 4). This ve-
locity distribution has zero vorticity everywhere except at the point r = 0 which
represents a singular point but will be excluded from the integration domain
because of the wave blockage phenomenon. Another feature of this distribution
is that when r is very large, |U| becomes vanishingly small. Therefore a regular
deep-water wavetrain with frequency no = 1.7 rad/s propagating in a single di-
rection can be prescribed at every grid point on the boundaries in figure 4 which
are far from the origin. From these boundary conditions and using the numeri-
cal scheme, the variation of the wave-number of the incident wave in the interior
was solved until a turning point was first met. After this, we restrict ourselves

to calculate the incident wave field and the location of the caustic in a small
area in figure 5, in which the turning point A has been located and the numeri-

cal solutions of the wave-number components at each point on the line AB have
been estimated in the previous stages. Thus, to calculate the wave-number as
well as the amplitude of the incident wave in this area, it is only necessary to
prescribe the value of a; at each point on line AB in figure 5. In consideration

of (6.21) and (6.15), the particular boundary condition of a; is chosen as
a; = (_5)—0.25

where 7 represents the distance between each point on AB and the dashed line
which approximates the estimate caustic. Note that since a slowly modulated
incoming wave is allowed by the theories, the above arrangement is particularly

suitable for tests of the present algorithm.
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Determinations of the reflected wave

After the incident wave field and the position of the caustic were determined,
we proceed to estimate the reflected wave in the vicinity of the caustic using

Smith’s (1975) theory and the present theory.

Since the difference between k,, and k,, is very small near a curved caustic
(see the remark following (6.14)) and is zero everywhere in the case of a straight
caustic, we let ky» = k,; at each point in the vicinity of the caustic and then
calculate the value of k,, as another root of equation (7.3) which will coalesce
with k,; at the caustic. The accuracy of these estimates can more or less be
seen by calculations of the vorticity of the resulting k, as shown in figure 6.
(In this figure and in the following figures, the results presented are along the
dotted lines in figures 3 and 5 for a straight and curved caustics respectively,
and also the values of ¥,z estimated from (6.15) by neglecting the higher
powers of z are chosen as the abscissas.) The results in figure 6 indicate that
the irrotationality is approximately fulfilled by the estimates of k; in the case
of a curved caustic and this fulfillment is even more satisfactory in the case of

a straight caustic as might be expected.

Next, we shall calculate a; in terms of a; in the vicinity of the caustic,
which can in principle be achieved by using Smith’s (1975) theory or by using
the present theory. According to Smith (1975), the flux of wave action normal
to the caustic carried by the incident and by the reflected waves are equal and
opposite at the caustic, so that we have

[(Uz + Cgﬂ)g] = - [(Uz + ngz)ﬁ] L (7.5)

z=0 02

Also integration of (6.24) with respect to z yields

2 2 z
[(Ux + nyl)a_l] - [(Ux + Cgm)a_l] = / Fi(z,y,t)d=
a1 (28] £=0 0
(7.6)
ag a% z
(Uz + Cyz2) == | = |(Us + Cye2) == = / Fy(x,y,t)dz
o2 02 =0 0
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where

_ 8 (d} 0 a%]
Fi=-g (&) - e remndt

9 (a? 0 a%]
fgi (52) - 3 (0 om0

Here the scale factor h, has again been neglected as it affects only the higher

(1.7)

powers of z in the Taylor series expansions of the minor terms.

From (6.28) and because of U, + C,y # 0 at z = 0, we have the first approxi-
mation of (7.7):

To

h=xF= . 7.8
1 2 \/1/)1—2 ( )
Thus, substituting (7.5) and (7.8) into (7.6) and carrying out the integration,
we obtain
a2 a? To
(U: + Cg::2)_ = - (U:: + ngl)_ —-4— V hz (79)
oy oy ¥

at each point in the vicinity of the caustic. Therefore, near a curved and/or
unsteady caustic, if F; in (7.7) can reliably be estimated from the numerical so-
lutions of the incident wave, the ratio ay/a; in the vicinity of the caustic can
be calculated from the solutions of k., and k., using (7.9). However, in prac-
tical applications, the errors inherent in the difference scheme will drastically
increase when the caustic is approached, owing to the singularities at the caus-
tic. Therefore, in the immediate vicinity of the caustic, even the estimates of
a; will become unreliable. On the other hand, away from the caustic, the val-
ues of ay/a; are significantly different from 1, but the values of |U. + Cy.1| and
[Uz + Cyz2| In (7.9) are small and their difference which responsible for a;/a, be-
ing unequal to 1 are even smaller. Therefore the errors due to the misalign-
ment of the curvilinear co-ordinate lines, which will not decrease when the dis-
tance from the caustic increases, will be magnified significantly in the estimates
of ay/ay. Lastly, in the region far away from the caustic, the one-term approx-
imations in (7.8) and in other relations are no longer valid. All of these have

forbidden the use of (7.9) in a general situation.
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Next, we consider the applications of the present theory. From (6.21) and
(6.17) it immediately follows that

2 _exp [/x iG/H* dx] 2 exp [2%\/11)@] . (7.10)
0 1

at

Remark that since

exp [2%\/1{)12] ~1-— 2%\/1&1.7: (7.11)
1 1

the parameter G, is closely related to the difference between the amplitudes of
the incident and reflected waves in the vicinity of the caustic. From (6.22a,b)
and (6.15), we also have

% _%

—:lG/H% ziGo/\/wll‘ (712)

az ay

so that the value of G, can be estimated from (6.15) and the solutions of d}/a;
and a)/as, which themselves can be calculated from (6.25) and the corresponding
equation for a/a,.

The first terms on the right-hand side of (6.25) and the corresponding equa-
tion for a%/a; can be computed solely from the numerical solutions of k; and k.
On the other hand, the second and third terms represent the minor terms and
their one-term approximations are proportional to 1/v/%;z according to (6.29)
and (6.30). Thus the values of these terms for a{/a; and for a}/a, are equal in
magnitude and opposite in sign within the present approximation. Therefore,
even without solving (7.1) for a,, the approximation of a}/a, at each point near
the caustic can still be estimated in theory. Nevertheless, since all three terms
in (6.25) involve U, + C,, and since 8a;/8y << 8a;/dz, the error magnification
phenomenon occurred in the application of the Smith’s (1975) theory also will

happen here.

To clarify and remedy this problem, we temporarily neglect the second and

third terms on the right-hand side of (6.25) and neglect F; and F; in (7.6)
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correspondingly. Therefore, if the resulting quantities are designated by a bar,

we have

from Smith’s (1975) theory, and

(E) a2 exp [2ﬁ\/¢lz] (7.14)
ST ¥

a1

from the present theory, in which

PV
iGo/\/ 1z ~ =2 — =L (7.15)
as ai
where
z__ (23] i(U:‘f'Cg:l)
ay - 2(U; + Cyz;l) Or o1
(7.16)
g:— o2 i(Ur'*'ngZ)
as 2(U,; + nyZ) Oz (/]

To determine the exponent in (7.14), the estimates of (7.15) should be multiplied
by 2z, where the values of z can be measured from the estimate caustic to the
point under consideration, however for a reason to do with the cancellation of

errors, the approximation

~ ler_ kzl

TR
2kzg — k2

=%, say (7.17)

is used in virtue of (6.23). Therefore we have

iGy o G0 .
2 \/¢1z~2mz (7.18)

Both (az2/a1)sm and (az/a;)st can be estimated from the numerical solutions

of k; and k; only, which have been obtained earlier. Figure 7 shows the results
of the simulation for a straight caustic, in which (a3/a;)sm and (az/a;)sr coincide

with each other very well. However, since the estimates of \/#;z may contain
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errors, the accuracy of these calculations is best seen from the comparison of
the numerical values of G, and Q, with their analytical solutions, where the

numerical values of @, are calculated from the relation

___2Z_i_ iGo
T 7% 22 iz

derived from (6.22) and (6.23). This comparison can be made because for a
straight and steady caustic, the second and third terms on the right-hand side of
(6.25) are essentially zero so that the true values of Gy and Q, should be identical
with G(z = 0) and Q(z = 0) in (5.5) and (4.3) respectively. The results shown
in figure 8 are indeed very satisfactory’ except in the immediate vicinity of the
caustic in which the discretization errors become large due to the singularities
at the caustic.

We note that in order to obtain Go, the values of (7.15) have been multiplied

by ¥z which as mentioned before was estimated from the relation

1
Viiz = 5(’%2 — kz1) (7.19)

in accordance with (6.15). Therefore it is also desired to check the accuracy of
the approximation in (7.19), that can be achieved by comparing # with the true
distance r measured from the estimate caustic to the point considered, since
the one-term approximations in both (7.17) and (7.19) originate from the same
function. The results of this comparison are also shown in figure 7, which are not
as satisfactory as the results of Gy in figure 8, indicating that the errors in the

estimates of iGy/v/#¥1z and ¥,z have been cancelled out in the calculations of Gy.

In figure 8, we also estimate ¢; by using the following relation

P = %(k:v?, —ke1)?/z. (7.20)

The results are again less satisfactory, but their approach to a constant is obvi-
ous so that from this constant and the estimate of G; one may determine a,/a,
at each point in the vicinity of the caustic, from which the whole reflected wave

field can be calculated numerically by solving (7.1)-(7.3).
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Before we proceed to present the results of the simulation for a curved
caustic, it is interesting to estimate the coeflicient in (6.30) for a straight caustic.
The results are also shown in figure 8, which are indeed very small compared
with |Go|, meaning that the misalignment of the co-ordinate lines and the error

magnification phenomenon are not severe in the case of a straight caustic.

In case that the caustic is curved, the coefficient ¢, in (6.30) and 7, in (7.8)
are in general nonzero, but when a particular distribution of «; is prescribed
on the boundary, it is still possible for ¢, and 7, to vanish. In such case, G, is
identical with G, and more importantly, the value of ¥, upon determination can
remain valid for any different boundary conditions of a;. Therefore it is still
worthwhile to consider (az/a;)su, (a2/a;)sr and Gy in this case.

Figure 9 shows the results similar to figure 7 but for a curved caustic. The
discrepancy between the estimates of (a3/a;)sm and (az/a1)sr is not unusual, but
the values of #/z in figure 9 do not approach to 1 when z increases, implying
that the errors due to the misalignment of the curvilinear co-ordinate lines have
been magnified significantly. In figure 9, we also show the different estimates
of (az/a;)sr when z in (7.18) is replaced by z, which are much worse than the
original ones. Therefore the errors in iGy/v4¥1z and & have for the most part
been cancelled out in (7.18), which is not surprising in consideration of the first
approximations of (6.26) and (7.19). This situation, though less dramatic, can
even be seen in figure 7 for a straight caustic.

The estimates of \/%,z are completely obscured by the errors in the case
of a curved caustic. This situation can be illuminated by calculations of ¥,
from (7.20), which as shown in figure 10 are indeed far from been constant.
Therefore, even the relation between (az/a;)sy and ¥z in figure 9 is perfectly
linear, these estimates may individually contain unproportionately large errors

and therefore lead to erroneous prediction of the amplitude of the reflected wave

even when ¢, 7o = 0.

However, since the estimates of a;/a; in figure 9 vary linearly with those of

Viiz, the values of iGo/¢; in (7.14) calculated from the expression

a;

2= (Z 1) jovam
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remain nearly constant as shown in figure 10, contrary to the results of Go/i in
the same figure. The constancy of the estimates of iG,/y1 from both (az/a1)sm
and (az/a))sr is certainly encouraging, but without knowing Gg; and #; sepa-
rately, no reliable solutions of a;/a; can be obtained in the vicinity of the caus-
tic. This difficulty can however be solved by using the following error-reducing
strategy.

When the misalignment of the co-ordinate lines occur, each quantity or
derivative is effectively calculated in a ‘new’ co-ordinate system so that its
influences on certain quantities might be small, though large on others. This can
explain why the estimates of iGy/4; remain nearly constant. The development
of an analytical theory for these phenomena would be extremely difficult if not
impossible; therefore we rest content with the discussion of the consistency of
the results.

From the numerical solutions in figure 9 and the expressions (6.26), (7.16),

(7.17) and (7.19), it is clear that the relative error in da}/a; —a}/a; is equal to the

inverse of that in #. This relation may actually occur to each of a//a; and da}/a,

for the same reason. Therefore, using the ratio #/z, the errors in a{/e; and a}/a,
can be remedied. Figure 11 shows the results of a]/a;/(1+¢) and d}/a>/(1+¢) where
1+ ¢ = #/z, which (especially those of the former) are much closer to the values
of —1/4z than the original estimates. The small difference between a7/a,/(1 +¢)
and —1/4z can be expected to equal -iGy/(2v/¥1z) approximately according to
(6.22a), where 41z ~ (ks2 — kz1)/2. Therefore the values of G, at each point
can now be estimated, from which and from the estimates of iGo/y¥: obtained
earlier, the solution values of ¢, immediately follow. These new estimates of Gy
and 4, are also shown in figure 10 for comparison, which indeed approach to a
constant while a//a;/(1 + ¢) 4+ 1/4z get smaller and smaller.

From figure 10, the value v¥; ~ ~0.21 can be anticipated which is valid for
any wave-amplitude distributions, but the result Gy;/i ~ 0.02 is applicable to
the estimates of ay/a; using (7.10) only if the action flux in the y direction is
independent of y and the current field and the wave properties do not vary

with time, otherwise the second and third terms on the right-hand side of
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(6.25) should be included in the calculations of a)/a; to estimate G, in (7.10).
However, these two terms in general cannot reliably be estimated owing to the
error magnification phenomenon. This situation can be illustrated in figure 12
by comparing the sum of the estimates of (6.27) and (6.30) with the values of
a}/a; obtained directly from t.he numerical differentiation of a,, which itself has

been calculated from (7.1) using the present difference scheme.

Since equation (7.1) was solved on a rectilinear grid, the misalignment of the
curvilinear co-ordinate lines did not affect the numerical solutions of a,. Fur-
thermore, a' = da,/dz >> 8a;/dy. Therefore the estimates of a{/a; will introduce
only very small errors. On the other hand, although in the ‘new’ co-ordinate
system the value of each term on the right-hand side of (6.25) will change, their
sum will remain the same so that the very large ‘error’ in the first term should be
balanced by those in the second and third terms. This situation can be clearly
seen in figure 12. Also we emphasize that the small difference between the esti-
mates of a}/a; and —1/4z in figure 12 (and in figure 11) has provided the evidence
that the location of the curved caustic had been determined very accurately.

Again, the small difference between a/a, and —1/4z will contribute to —iGo/
(2v/¥:z) approximately, but to further estimate G,, the values of /¥;z should
now be calculated directly from the estimates of ¢, and z instead of (7.19),

because the errors in the approximation

iGo a'l 1

2\/$1$ N ay + 4_13

can be small (though not very small) and on the other hand, their cancellation

by those in (7.19) cannot be expected. The resulting estimates of G, are also
shown in figure 10, which indeed approach to a constant and are not very

different from those of G;.

After determinations of G, and v, the values of ay/a; (and therefore a,) at

each point in the vicinity of the caustic can be calculated from (7.10). These
values and the values of k; obtained earlier in the same region can serve as the
boundary conditions for calculations of the reflected wave in the region far away

from the caustic. This work is just routine and therefore requires no elaboration

here
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8. Conclusions

When short deep-water gravity waves propagate obliquely upon a steady,
two-dimensional, and irrotational current and are reflected by the latter, a
second-order ordinary differential equation for the surface displacement of the
short wave is derived from the Laplace equation and the kinematical and dy-
namical boundary conditions. This equation is similar to that derived by Shyu
& Phillips (1990) but with the coefficients much more complicated than those
in the latter. The regularity of this equation at the caustic is demonstrated
and its uniform asymptotic solution and the corresponding WKBJ solution are
subsequently derived. The satisfaction of the action conservation principle by
this WKBJ solution at every point including the caustic has also been proved
elsewhere.

Except the expressions of the minor terms, Shyu & Phillips’ (1990) solu-
tions and the present solutions take the forms valid even for a curved and/or
unsteady caustic induced by a three-dimensional and/or unsteady irrotational
flow, and also valid for waves in an ihtermediate—depth region, in the vicinity of
the caustic. This suggestion is verified in a curvilinear co-ordinate system from
considerations of the dispersion relation and the action conservation equation
which themselves have been deduced by Smith (1975) in the same situation in
the vicinity of the caustic. In this general situation, the minor terms in these
solutions which are responsible for the difference between the amplitudes of the
incident and reflected waves in the vicinity of the caustic, are solved numerically
by taking advantage of the explicit forms of these solutions to avoid the error
magnification phenomenon due to the singularities at the caustic. This algo-
rithm is developed and tested in the numerical simulations of a straight and a

curved caustics but its validity in the case of an unsteady caustic is also obvious.

The results of these simulations indicate that for a curved caustic, while the
errors due to the misalignment of the curvilinear co-ordinate lines are magnified
very seriously in the previous estimates of the amplitude of the reflected wave
in the vicinity of the caustic, this situation can be improved significantly by

using the present algorithm.
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Finally, since the analysis in section 6 is based on the dispersion relation
and the action conservation equation and since the properties of these two
equations, especially those which are essential to the analysis, are common in
many situations, the conclusion in section 6 about the forms of the solutions
might also be drawn for the capillary blockage phenomenon (Phillips, 1981) and
for waves propagating on a rotational current with uniform vorticity, or for an
even more general situation. However, to verify these conjectures rigorously, the
validity of these two equations in the vicinity of the caustic in these situations

should be demonstrated by an extension of Smith’s (1975) theory.
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Figure 1.  Solutions of the dispersion relation (2.3) for given no. The dashed line
represents the situation occurred at the turning point where the solu-

tion points A and B coalesce and therefore ks, = kza.
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Figure 4. The domain of integration and the directions of the incoming

wave and the current field in the simulation of a curved caustic.
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