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Abstract

In two earlier studies we have basically identified the most appropriate function basis for
uses in the studies of water wave related signals, specifically, those from wave tank exper-
iments [17, 18]. However, the two papers are basically of numerical experiments and no
conclusive evidences from practical applications were given. In this report, based on the
results of the studies on the coherence features in the multi-scale wave and current fields
in wave tank experiments, we provide definite evidences of the superiority of the identified
function basis and its related analyzing scheme. The present report covers three main sub-
ject topics concerning: best Riesz basis for our signals, continuous wavelet transform using
adapted time-frequency windows, and the coherences in wave and current fields — as are
indicated by three individual chapter titles. The major links among the three topics are: the
proximity between signal and the minimum entropy Riesz wavelet that is associated with
discrete wavelet transform; the choice of a corresponding continuous wavelet transform ba-
sis that is closely related to the best Riesz basis; and the devising of a refined algorithm
for analysis that help clarify the links and also reveal the factors that lead to the success
in coherence investigations. We discuss a few key issues: different intrinsic properties of
frame wavelet schemes and the continuous transform approaches; the extreme redundant
basis functions associated with a continuous transform versus the tight or relatively tight
bases associated with wavelet frames; the sizes of sample space of transform coefficients;
effects of linear filtering; and the flexibility in adapting the time-frequency windows of a
continuous wavelet transform and its implication of better physics. Due to further under-
standing of the intimate connections among the three subject topics, the contents of the two
earlier papers are mostly incorporated, but ambiguities and abstract parts are clarified and
restated. Finally, the identification of coherent features for various water wave related sig-

nals solidifies the serviceability of the function basis and the associated analyzing scheme.



Chapter

Introduction

In our minds, there is simply neither a full-fledged analyzing function basis nor a all-purpose nu-
merical scheme for all sorts of signals or applications; the usefulness of a particular methodology is
highly case dependent. To our knowledge, the appropriate and more realistic descriptions for water
wave signals, even for those that look quite regular at first place, should base on modulation concept
(cf. [4, 14, 15, 19, 20, 22, 23, 26, 30, 32, 35] as well as an example given in a later section on
coherence). This is most obvious or particularly true for waves with short wavelength.

From the somewhat traditional spectral perspective to the more recent wavelet viewpoint, we
have: Fourier transform, short time Fourier transform (STFT), Hilbert transform (or analytical signal
approach), various time-frequency transforms associated with different distributions (such as Wigner
Distribution, Page distribution, Choi-Williams distribution, and etc. [8]), as well as the discrete
wavelet transform (DWT) and continuous wavelet transform (CWT) (sometimes CWT is referred as
integral wavelet transform, but we prefer to use continuous wavelet transform as will be explained
in the text). In this introduction chapter we will basically focus on the comparison among Fourier
transform, short time Fourier transform, and DWT and CWT. A closely related topic on Hilbert

transform in the current interest was studied in a previous report [16].

1.1 Non-stationary Effects

It is well known that Fourier transform is suitable for characterizing stationary signals and
not quite satisfactory for studying transient local phenomena. The reasons can be illustrated
by the following properties of the transform.

e Functions cannot be both time- and band-limited. If a function is limited (finitely



supported) in one domain, then the independent variable of its corresponding function
in the other domain stretches the entire real line (R). In real world situations, however,
signals are almost always limited in time and space; meanwhile, hardware’s capability
is generally band-limited. This simply implies that there is not going to be a function
basis that perfectly match theory to practice. A slight variation of Fourier transform is
the STFT, which is just the Fourier transform of the windowed signal (signal capped
or multiplied with a window). In STFT this property is indicated by the Balian-Low
theorem, which basically states that if the window function g(¢) of a Gabor type frame

Emn(t) = e M g(t — p), (1.1)

where m,n € Z, is well localized in time, then the associated Fourier transform
window can not be well localized in frequency. The point here sounds a bit abstract,
but, in reality, it is the trait of the following intuitive points.

e The Gibbs phenomenon states that, if there is a jump in signal, then the overshoots,
occurring at both sides of the discontinuity when the inverse Fourier transform is
implemented, can never disappear and remain at constant. This is equivalent to say
that it takes quite a many spectral components to make up a sharp transient feature
and that a local variation affects a broad range of the spectrum just as the Fourier
transform of the delta function (more precisely, delta distribution) covers the whole

frequency axis.

e Fourier basis functions are periodic and extend bi-infinitely; thus, signals studied are
better periodic and sampled infinitely. The unavoidable side effects for not fulfilling
this are many: frequency leakage, smoothing errors, edge effects due to data trunca-
tion; aliasing due to under-sampling or non-periodicity (figure 1.1 is actually a case
of under-sampling, where a linear chirp is two times under sampled, i.e., sampled at

arate twice slower than Nyquist rate); and spectral variance due to finite resolution.

1.2 Windowed transforms

Most of the syndromes listed in last section can be referred as (or is related to) non-
stationary effects. Both short-time Fourier transform (STFT) and wavelet transform (WT)
try to remedy Fourier basis’s deficiencies in characterizing transient phenomena by analyz-
ing the set of localized signals (such as formed by varying » in equation 1.1), and they both
yield local spectral information (or more precisely, local scale information, if the term fre-
quency”, “Hz”, or “spectrum” is strictly reserved for sinusoidal functions). However, due to



the Balian-Low theorem mentioned above, the waveform associated with STFT can never
be truly local in time since in reality the frequency domain of discrete Fourier transform
is always band-limited by obeying the Nyquist law. Whereas, wavelets can be of exactly
local, at least, they must have suitable decay and without zero frequency component.

Let outline a few properties of these two transforms:

¢ Both STFT and WT are windowed transforms. In STFT there exist two quite distinc-
tive operations. The first operation is applying a suitable time-window to the signal;
the second operation is performing the Fourier transform for the capped signal. The
corresponding inverse transform (or reconstruction process) of STFT is naturally as-
sociated with a frequency-window and involves two similar distinctive operations too.
However, in WT these two distinctive steps are not clearly observable — rather than
using the very distinctive “window (either time- or frequency-window)” and “Fourier
basis function (i.e., sine and cosine function)”, the “window” and the “basis func-
tion” are synthesized in an inseparable specific form called “wavelet”. In fact, one
can clearly solidify this notion by comparing the Gabor type frame (equation 1.1)
with the Morlet wavelet (equation 3.7 when the window function g(z) of equation 1.1
in assumed to be a Gaussian bell and the second term in equation 3.7 is practically
neglected due to its smallness. The intended purpose of either the combined operation
or synthesized operation is completely the same: to provide a mechanism (or kernels)
for projecting a signal into modulated or oscillating wave constituents.

e The time-frequency windows in STFT keep rigid for different scales since the win-
dow function g(¢) in equation 1.1 does not depend on m, i.e., their widths (usually
referring to time) and heights (usually referring to frequency) do not change for all
frequencies. In WT the windows are adaptive to different scales, but the sizes of dif-
ferent windows still keep fixed, i.e., each window’s height and width are inversely
proportional and the product remains constant (either for DWT or CWT). The con-
cept of fixed size windows is illustrated by the phase planes shown in Figures 1.1
and 1.2. The windows show the results of the discrete wavelet packet transforms of
a chirp signal using different bases associated with a wavelet packet. In the figures,
since orthonormal bases are used, all time-frequency windows do not overlap. As to
continuous wavelet transform various time-frequency windows severely tangle with
each others, and we generally do not show the actual sizes and shapes of various win-
dows — rather, each window is represented by a point (or a small area depicting the
time-frequency resolution) having coordinates corresponding to its centroids in the
time and frequency domains.
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e The function basis of STFT is the unique orthonormal Fourier basis comprised of sine
and cosine functions; whereas, for WT, apart from the very loose constrain that the
basis function (or the mother wavelet) satisfies the admissibility condition (for CWT)
or stability condition (for DWT), there is virtually no restriction on the choice of ba-
sis functions. The Fourier coefficients of STFT represent local spectral information, .
which still have the precise meaning of “frequency”. In WT a wavelet coefficient
refers to a specific scale rather than a specific “frequency”. And we generally suffer
from its physical interpretability due to the following reasons: (1) No unique basis.
That is to say, the analyzing function or mother wavelet can be designed in a plenty of
ways, and the basis functions related to the mother wavelet can be either dependent
or independent (orthogonal or non-orthogonal). (2) Scale does not have unit. This,
together with point (1), severely hampers out ability to directly perceive its size and
physical shape; and, (3) No fixed algorithm to implement wavelet transform. Many
tricks and various adaptations exist: such as, the present adaptation using flexible
time-frequency windows for CWT (to be studied in a later chapter), multi-voice [12]
or multi-wavelet [11, 10, 33] frames, and discrete wavelet transform using different
dilation factors other than the most often seen value 2 [1]. It is noted that all these
various techniques may not be so disturbing in certain fields (such as fields in data
transmission or signal decomposition and reconstruction) as they may in our studies

focusing on physics.

o In general, the dilation lattice is in logarithmic measure for DWT (e.g., the ay’ in the
stability condition to be mentioned) and in linear measure for discrete STFT (e.g.,
the e~#2™* in the above mentioned Gabor type frame). Continuous transforms do
not involve lattice. The concept of lattice is associated with the the concept of time-
frequency density (which is defined as the inverse of the product of discrete steps
of dilation and translation) [12]. For STFT frames, due to the existence of Nyquist
frequency, the time-frequency density must not go beyond the value of generalized
Nyquist density, (27r)~!. For wavelet transform, however, there is no such a clear-
cut limit of time-frequency density [12]. Moreover, Balian-Low theorem depicts
thatthere is no good time-frequency localization for a STFT frame if constructed un-
der a strict time-frequency lattice; on the contrary, numerous wavelet bases with good
time-frequency localization have been given [6, 12, 27]. These physically imply that
WT may provide better zoom-in. The existence of a lattice structure may be conve-
nient as well as inconvenient. For water waves, since we don’t expect any significant
gaps in the scale contents in any reasonable physical process, besides, an interaction

process should always involve scopes of time and spatial scales that are “changing”
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or “evolving” at least in a relatively continuous sense, we will see that we generally
do not appreciate the use of frames.

Both CWT and DWT implement a process of integral wavelet transform over the real
line R in a continuous sense. Maybe, we can say that the difference is due to the use of
different integration symbols: }_ and /. Digitally sampled signals are certainly discrete,
but this “discrete” is not relevant to the methodology of CWT or DWT. The main differ-
ence, from application point of view, is that there is no practical interest of reconstruction
(or inverse transform) for CWT due to the redundant or non-orthogonal nature of its wavlet
coefficients. Both methods are capable of decomposing either functions defined over the
real line or signals sampled discretely. In reality, applying CWT to sampled data is imple-
mented in discrete manner; vis-a-vis, doing DWT for an unlimited ladder, such as that of the
standard multiresolution analysis of Meyer and Mallat [24], is able to describe any function
in infinite detail, i.e., over the whole real line. In fact some of the formulas in DWT are quite
helpful in the explanation of our present interests by providing concepts for generalization
in the limit sense. The concept of unlimited ladder of DWT is illustrated by examples of the
blow-ups of a segment of wavelet curve as shown in Figure 3.1, in which we also illustrate
the possible bizarre behaviors of certain wavelets.

We note that we restrict our scope to L%(R) Banach space for all the contents in the
present report, i.e., the Hilbert space, since some of the statements may not apply to other
function spaces or (sub)classes {12, 27]. Nevertheless, most of the intricacies that are differ-
ent for different spaces are only of analytic interest (e.g., on the existence of multi resolution
analysis (MRA), on the regularity and differentiability of wavelets and the associated scal-
ing functions). For practical applications it is far enough to restrict to the Hilbert space, i.e.,
a space of functions with finite energy contents.

1.3 The motivation

The most intuitive footing to use localized transforms in our applications can be stated
as: if we perceive our signal as composed of waves which are limited in life span, i.e.,
constituent waves are evolving with time and in space, then it is natural to adopt wavelet
as our analyzing function; furthermore, in addition to this modulation nature, if we also
acknowledge that intrinsic instability due only to nonliner surface boundary condition is
everywhere to be found for even regular water waves, then it is still quite possible that
wavelet decomposition can provide better descriptions of physics for stationary signals than
what can be provided by Fourier decomposition. Besides, one clear advantage of using
wavelets is the possible flexibility in constructing their wave forms.



In fact the three major subject topics — the titles of the next three chapters — recognized
initially only these notions and set out quite independently; the apprehensions of their links
are gained sornevlvhat by chance and, of course, by going through more readings. We hope
that this report well serves the chore: explanations of reasons and outcomes concerning the
search of a better analyzing function basis for our water wave related signals.



Chapter

The Best Riesz Wavelet for Laboratory
Water Waves

In any experimental setup it is almost always true that various modeling laws (or scaling laws)
can at best be partially satisfied. The situation is further complicated in a diversified multi-scale
system. In the current wave tank experiments for a wind, wave, and rain coupling system significant
distortions are also acknowledged since limitation in space in experimental setup imposes severe
restrictions upon the developments of the interaction process. Results of earlier researches as well as
our experiences indicate that the identification of the interaction features requires the deployment of
optimized analyzing schemes using sensitive and appropriate basis functions . The present chapter
serves to provide initial justification of the method that will be used to analyze the data acquired.
More specifically speaking, we are going to identify the most appropriate basis among Riesz wavelet
bases for our signals. The wavelets of this basis are the DWT counterparts for the analyzing basis
functions used in CWT and have maximum similarities to our signals

In fact, if we had not found conclusive results from applying the analyzing function basis to our
experimental data and also had not seen the obvious superiority of wavelet coherences in contrast
to spectral coherences, the decency of the topic of this chapter would not be fully appreciated and
the factors leading to the usefulness of the basis functions would not become as ostensible as they
should.

2.1 Introduction

The powerfulness of wavelet analysis comes from its flexibility in devising the analyzing
wavelets as well as its adaptability in forging the algorithms. However, versatility does not



come without ambiguity. For example, the power spectrum of a function is shift-invariant;
whereas, wavelet spectra are highly shift-variant [12, 25]. Figure 2.1 shows such a property.
Moreover, in thé investigations of wavelets, It seems that the bearing of wavelets’ physi-
cal implications is not in proportion to that of their analytic interests. In addition, intrinsic
properties of different signals in different applications are quite different and individual ob-
jectives are also rather specific; therefore, the bonding between wavelets and signal analysis
is more established in some fields than the others.

In studying the physics of certain phenomena using wavelets one of the most intriguing
questions is how to choose the analyzing wavelet(s). The concern here is quite in contrast
to a few studies where they are mainly numerically or analytically oriented. For example,
in coding of images and acoustic signals the goals are simple: maximum compression,
minimum overhead of handling, as well as highest effectiveness and lowest distortion; in
his situation mathematical relevance between signal and wavelet may be materialized in
higher degree than physical pertinence needs to be unfolded {9, 10, 12].

For our interests in characterizing the physics of water wave related phenomena, it
seems, at first, that the aspiration is certainly not on “efficiency” or “‘compactness”. How-
ever, with the understanding that compactness of a coding means closeness between signal
component(s) and analyzing function(s) and that wave forms which are not resemble to our
signals (or signal components) are unlikely to yield any significant information on physics;
it is, therefore, justified for us to find the wavelets that provide the most efficient or most
economical representations for out signals. This viewpoint is related to the concept of en-
tropy.

The works here are mainly numerical experiments on measuring the “distances” be-
tween our signals and various Riesz wavelet bases given in several wavelet treatises [6,
12, 27, 29]. No attempt to make new constructions of bases or to extend the existing con-
structions is made (for each wavelet sub-group mentioned below different mother wavelets
with different support lengths can be constructed using the same algorithm for that sub-
group, but we will come to realize that this is actually not necessary when the associated
two-scale scaling function or father wavelet is not changed.) Nevertheless, we have tried
to include various categories of Riesz wavelets that we are aware of. These wavelets are
dyadic wavelets with “mathematical sampling rate” 1 (no unit). They are of most practical
interests in applications for discretely sampled signals. Furthermore we restrict our scope
to laboratory water waves. The criterion used is the entropy statistics of discrete transform
coefficients.

10
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still shift-variant. This property is linked to the poor performance of coherences associated
with orthonormal cases as to be explained in a later chapter.
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2.2 Wavelet bases tested

The Riesz wavelet bases used here can basically be divided into four categories: orthonor-
mal (ON), semi-orthogonal (SO), bi-orthogonal (BO), and orthonormal wavelet packets
bases. Within the first orthonormal category there are several different groups: Daubechies
wavelets (both most asymmetric and least asymmetric), Coiflets, Meyer wavelet, and Battle-
Lemarié wavelets.

No effort is made to give detail accounts of all the wavelets used here; only main prop-
erties will be briefed. But first, let us state the related notations and conventions. Let a func-
tion or a signal be dehoted by f(z); the two-scale scaling function of a Riesz basis be ¢ (¢);
the associate mother wavelet be ¥ (¢) and its Riesz wavelets be y; 4 (1) = V2i w2t — k),
where j, k € Z, i.e., the space V; (formed by ¥, k € Z for a given j) in the multireso-
lution ladder are nested in --- C V_; C Vy C V) ---, and the finest and the coarsest scale
space, say, for a 1024-point signal, are V)o and V), respectively; the number of filter co-
efficients or the number of convolution weights be N if the associated wavelet is finitely
supported (support length equals N — 1); the dual wavelet and dual scaling function, if ex-
ist, be ¥(¢) and ¢ (2); the inner product be (-, -); and the Kronecker delta be 8, . j, k € Z,
which is equal to O for j # k and 1 for j = k.

Up until now, all practical wavelets of discrete transform are associated with the the-
ory of multiresolution analysis (MRA) [24]. And when talking about Riesz wavelets there
always exist dual wavelets except orthonormal wavelets which are self-dual. Any discrete
wavelet transform involves two convolution operations: one yields detail information; an-
other yields smooth information [29]. Convolutions can either be implemented in direct
way in time domain for compactly supported wavelets or in indirect way in frequency do-
main. We list the basic properties (restricted to real-valued wavelets) and give the symbols
of representation for each category and subgroup as follows.

1. Orthonormal wavelets (denoted as ONxxS, ONxxA, ONxxC, Meyer, and B&L,
where x is an integer related to support length):
v =y,
¢=9,
(Vi Veum) = 81.e8k.m,

£O =Y A ¥

J.k

One MRA ladder (single set of frame bounds),

12



One filter pair (one smooth and one detail).

Within this category we have

e Daubechies most compactly supported wavelets (ONxxA): The wavelets in this
group have maximum number of vanishing moments for given compatible sup-
port width. Or stated otherwise, they are the most compactly supported wavelets
for given compatible number of vanishing moments. The famous most com-
pactly supported continuous wavelet belongs to this group and has only four
filter coefficients. These wavelets are quite asymmetry (sd, the “A” in ONxxA).
The vanishing moments and the number of filter coefficients are, respectively,

o0
/ t'y(t)dt =0, £=0,1,---,x,

-0
N = 2x,

where x is the integer number in ONxxA. The minimum number of x is 2.

e Daubechies least asymmetric wavelets (ONxxS): For a given support width,
these wavelets, in contrast to those of the ONxxA subgroup, are the most sym-
metric ones (so, the “S” in ONxxS). They have the same representations of
vanishing moments and number of filter coefficients as those of ONxxA. But
the known minimum number of x is 4.

e Coiflets (ONxxC): The Coiflets have vanishing moments for both ¥ and ¢;
therefore, from Taylor expansion point of views [12], they have high compress-
ibility for fine detail information (i.e., a great portion of the fine scale wavelet
coefficients are relatively small); and henceforth, they have simple quadrature
rule to calculate the fine smooth information (i.e., the calculation of the in-
ner product of a function and the fine-scale scaling functions is more efficient).
Since every discrete wavelet transform involves both smoothing and detailing
operations, there may exist some advantages from these two prbperties for cer-
tain applications, such as those applications that do not stress lossless of signal
contents [11, 34]. Now the vanishing moments and number of filter coefficients

are

xQ
/ ty(t)dt =0, £=0,1,---,x,

/oo ¢(t)dr =1,
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/ tto(t)dt =0, £=1,---,x,

o0

N = 6x.

e Meyer wavelet (Meyer): The Meyer wavelet is one of the first constructed or-
thonormal wavelets and is the wavelet with most compact support in frequency
domain (if without any assignment “finitely supported” refers to time domain).
Therefore, due to contrast properties between the two Fourier domains stated in
the introduction chapter, the wavelet is infinitely differentiable in time domain,
i.e., has an infinite Lipschitz regularity C* and does not have exponential decay.
The support length N — oo.

e Battle and Lemarié wavelet (B&L): The Battle and Lemarié wavelet of m™ or-
der is constructed from the orthonormal scaling function derived by applying the
standard orthonormalization trick to the m™ order cardinal B-spline N,, [2, 6].
For m = 1, it is exactly the Haar wavelet. The Haar wavelet is the only finitely
supported wavelet in this group (also a case of BO110=BO11D to be men-
tioned below) and is the most compactly supported discontinuous wavelet; all
other wavelets in this group are infinitely supported. They all have exponential
decay and possess C™~2 regularity. Figure 2.2 shows a comparison of Meyer
wavelet and the Battle-Lemarié wavelet of fourth order. They look quite the
same even though their constructions, or derivations, or formula involved are

completely different.

2. Semi-onhogonal.wavelets (SOx0O and SOxD):
V£V
¢=9,
(Vik» Yem) = (Tt Yem) = )4
fO =Y Y000 =D_(f ¥k

ik jk
One MRA ladder ,

Two filter pairs ,

N =3x—-1 forSOxD,
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Figure 2.2: Two wavelets with similar looks but of quite different constructions and an-
alytic properties (such as regularity, differentiability, rate of decay, support length, etc.)
Many complicate aspects of discrete Riesz wavelet seem not to reflect their associations
with practical concerns. The Battle and Lemarié wavelet and the Meyer wavelets are shown
in(a) and (b), respectively; their corresponding scaling functions are shown in (c) and (d).
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N — oo for SOxO.

The semi-orthogonal wavelets are inter-scale, but not inner-scale, orthogonal. Their
scaling functions are cardinal B-spline N,,. Although there are two distinctive (inde-
pendent) filter pairs (one for decomposition one for reconstruction), there is only one
MRA V;-ladder. It was shown by Chui [6, 7] that cardinal B-spline wavelet of order
higher than m = 3 is almost a modulated Gaussian (however, a modulated Gaus-
sian is not a wavelet). We therefore use only B-wavelet of fourth order (i.e., Cubic
B-spline wavelet where m = 4).

3. Bi-orthogonal wavelets (BOxyO and BOxyD):
v#EY,
¢ #4.
ik Vem) = (D) k> Brm) = 8;.e8k.m»
FO=Y V0= Y Afi 00k
Jk ik
Two MRA ladders,
One filter pair,
N =2y+4+x—1 forBOxyO and x odd,
N = 2y +x — 2 for BOxyO and x even,
N=2y+x—1 forBOxyD and y odd,
N =2y+4+x—2 forBOxyD and y even.

The wavelets in this category are also constructed by Daubechies and sometimes
called non-orthogonal wavelets. As is well known, no real-valued orthonormal com-
pactly supported wavelet, except the Haar wavelet, has symmetric properties. How-
ever, from point of view of reconstructing a signal from its partially truncated wavelet
coefficients, symmetry is a desired property of the filter to yield a more natural or
smooth perception. The symmetry can be achieved by giving up orthogonality; if this
is the case one has dual pairs for both wavelets and scaling functions. It is obvious that
the semi-orthogonal case is more general than orthogonal one, and the bi-orthogonal
case is even more general, as is clearly indicated by the additional freedom of dual
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scaling function, reflected in the x and y in the notation BOxyO and BOxyD. Nev-
ertheless, the wavelets in this category need only one pair of independent filters for
decomposition and reconstruction even though they have two different MRA lad-
ders with different sets of Riesz bounds. This is quite opposite to semi-orthogonal
wavelets where they have one MRA ladder but with two filter pairs.

. Wavelet packets: The wavelet coefficients derived form an orthonormal wavelet de-
composition can be further decomposed by using either the same set of filter coeffi-
cients (called two-scale sequence in Chui [6]) associated with that original wavelet or
by using another set of filter coefficients from different orthonormal wavelets. So, ba-
sically there can be infinitely many wavelet packet decompositions. The decomposi-
tions are of a tree-like refinement process and is called wavelet packet transform. The
wavelet packet coefficients generally give better frequency resolutions with longer
time supports. There are no simple formulas to describe this tree decomposition, but
a schematic plot is convenient for elucidating the mechanism. Figure 2.3 shows this
tree-like decomposition and gives some explanations. Due to its tree-like processing
the execution time is dramatically increased. Within the length of the coefficients the
number of branches and branch patterns can be chosen in any way so long as there is
no overlap within any column. That is to say, any column, wide or narrow, must have

one and only one contribution from all levels (rows).

In this category we have two standards for selecting our best basis. One is just called
by the same name “best basis”; another called “best level basis”. For a 1024-point
signal the finest level occurs at j = log, 1024 = 10 and there are 2!° different
choices of bases. Within these 2'° choices the one which yields the minimum entropy
is called “best basis”. And if we enforce the restriction that all wavelet packets be
at the same level j, then we have 10 levels (0 to 9) to choose from, and the one
that yields minimum entropy is called best level basis. The indexes of the wavelet
packet coefficient, including both subscript and superscript of U in the figure, i.e., its
location within a specific level, determine the location (time of occurrence or support
length and frequency band) of the coefficient’s time-frequency window in the phase
plane. Concepts regarding this wavelet packet transform can be seen in figure 1.1.
The characteristics is that areas of individual windows are all equal.
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Figure 2.3: Schematic representation of the tree structures of the wavelet packet decompo-
sition. S(=V in the text) and D stand for smooth and detail information, respectively. U
with superscript larger than 1 stands for further decomposition of D by wavelet packets.
All subscripts mean scale levels. All superscripts mean relative locations of the frequency
bands for compatible subscript.

2.3 The entropy criterion

Entropy is a terminology of statistical physics. Since it is of statistics, it gives indication
without assurance. The entropy can be viewed as a measure of the “distance” between a
signal and its reconstructed one using partially truncated transform coefficients. We shall
give straightforward descriptions rather than somewhat mystified notions as given in some
of the readings. We therefore go through the actual procedures first and give the descriptions
of its statistical meanings next. Let suppose that we have a 1024-point sampled data, then
there is a set of 1024 wavelet coefficients (C={c;}). We take the absolute or squared value
of these coefficients, sort them, and then divide the sequence into M (say, 100 or 200 or
300) divisions which are equally spaced from 0 to the maximum value of the coefficients.
Then we have the statistics of occurrence for each division, and the distribution of these
normalized occurrences is the probability density distribution or probability density function

(denoted by pdf), say {p1, p2, -, Pm-1, Pm}. The entropy is

H(p) =~ pilog pi. R
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Where, when p; = 0, it is assumed that 0log0 = 0, since in reality one can assumed
that there exists an almost zero probability in that interval without affecting the total sum
of probability practically, after all it is only a statistics and the modification virtually has
no effect on the norm value. If absolute values of ¢; are taken, H(p) is called L'-norm
entropy; if squared value are taken, it is squared L2-norm entropy. Of course another power
can be used, but the squared L2-norm, being the energy, is physically the most significant.
The physical implication of this definition of entropy is described as follows: let suppose
two probability distribution functions sorted in decreasing order are p and g, if p decreases
faster than g, then H (}J) < H{(g) [34). Though this statement is only one-way correct
(the reverse is not always true), it means that smaller entropy indicates that more energy is
concentrated within a smaller number of wavelet coefficients. And hence, if only a certain
number of terms is kept, the truncated error, i.e., the distance, will likely be smaller for
sequence with smaller entropy.

There is another notion (sometimes referred to as the geometric notion [34]) for cal-
culating the entropy. Again, we describe the procedures first and give the simple physi-
cal interpretation later. By setting the number of divisions to be the same as the number
of coefficients and by defining probability density to be the normalized (with respect to
the total power) value of the squared wavelet coefficient, that is to say, the total energy
ICII?> = Y, lei]* and the probability density p; = |c;|?/[|C||>. Substituting into equation
2.1 one has the entropy as

Y leif? loglcil?

H(p) =log|C|* -
(p) =log|ICI Tep

2.2)
The notion here is simple: if one just put more weight on coefficients of small energy
and less weight on coefficients of large energy (all coefficients being normalized), then the
weighted energy is an indication of entropy. And since taking the log of a value is sort of
a weighting operation and since the total energy is finite, small entropy therefore means
that the number of significant coefficients is small, or stated otherwise, more energy is
concentrated in fewer coefficients. \

One equivalent indicator to entropy of a pdf is the theoretical dimension D(p) and is
defined as [34]

D(p) = HP — l—[ (pi—m) . (2.3)

i
As was mentioned, entropy does not yield how conclusive the result is. But our numer-

ical results show little ambiguity regarding the one with minimum entropy.
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2.4 Results and discussions

To increase the definiteness in the comparisons, we calculate entropy based on several se-
tups: direct coefficient entropy related to L2-norm based on equation 2.3 (column.1 in
tables 2.1 and 2.2), pdf entropy related to L2-norm with 300 (column 2) and 200 (column 4)
divisions, and pdf entropy related to L'-norm (column 3), based on equation 2.1. Theoret-
ical dimension for one of the setups is also given (column 5). The Tables show the results
using a wind wave signal in an oval tank. It is noted that if peak frequency (or primary scale)
of other signal is significantly different, then, to be consistent in comparison, the analyzed
signal lengths and the sampling rates should be properly adjusted according to its peak fre-
quency. This is because in discrete wavelet transform we need to keep track of the actual
physical size of translation so as to have physical perception of the wave forms. Table 2.1
give results from all orthonormal wavelets (including B&L, Meyer, ONxxA, ONxxS, and
ONxxC), semi-orthogonal wavelets (Cubic B-spline, SO30 and SO3D), as well as spectral
results. Table 2.2 give results from bi-orthogonal wavelets. Many distinctive features can
be derived from the tables.

o Where there are duals, the dual wavelets always give much smaller entropy than as
given by their corresponding wavelets. This certainly verifies that, for our water wave
signals, using

F@O =Y {f V)% (2.4)
Jk

provides much better efficiency in decomposition and reconstruction than using

FO =D A VWi 2.5)
ik

This also points out that dual wavelets rather than their counterpart wavelets should
always be used in the analysis for yielding better physics and for possible computa-
tional efficiency. We note that a check of the shapes of all the listed bi-orthogonal
wavelets clearly shows that these wavelets with small x and y are quite impractical
(such as those shown in figure 3.1). Furthermore, for these bi-orthogonal wavelets,
we doubt that there is going to be any significant improvement by further extending
the support width related to y without extending support width related to x. Since,
according to Daubechies [12], increasing the width (y) from some point on, gives no
effect on the shapes of the dual wavelets (such as y = 7 or 9 for x = 3), and since it
is the dual wavelet not the counterpart wavelet that provides better approximation.

¢ Entropy values of all groups of orthonormal wavelets do not fall to those of other
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wavelets. Besides, difference in entropy values of long and short supports can barely
be seen with only very slight indication that entropy related to longer support perhaps
being smaller.

For all orthonormal wavelets, the Meyer wavelet is infinitely smooth, the B&L is
second order differentiable, and the others have various degrees of differentiability
or regularity [12]; but, there is not much difference in entropy among all these or-
thonormal wavelets. It is therefore concluded that regularity or differentiability may
be only of analytical interests for currently available orthonormal wavelets; since non
of the orthonormal wavelets distinguish itself from various categories, and since no
tendency within any subgroup is clearly observable.

The most striking feature is that the dual Cubic B-spline wavelet yields obviously a
far smaller entropy, even slightly better than that from spectral coefficients. A com-
parison of the cumulative probability distribution curves for several wavelets, includ-
ing that of spectral entropy, is given in figure 2.4. The striking feature is reflected
by the extreme flatness of the SO3D curve, nearly horizontal up until 90 percent of
energy ratio. At about 96 percent energy ratio there is a crossing between spectral
curve and the SO3D curve. Figure 2.5 shows the reconstructions of a section of a
signal from its spectral and SO3D wavelet coefficients by keeping 35 percent of the
coefficients. It is seen that the wavelet provides a better description of the details.
The reasons for SO3D’s strong performance might be associated with the following
characters: total positivity of the scaling function, i.e., no oscillation or zero crossing
of scaling function; and, complete oscillation of the wavelet, i.e., no unnecessary os-
cillation - no oscillation without zero crossing. And this, in other words, practically
implies that our laboratory water waves are far less transient when compared with or-
thonormal or bi-orthogonal wavelets, and also indicates that the life span description
of the waves is more likely to be up to the physics.

We mentioned that we also test wavelet packet category for both best basis and best
level. We probably have got an idea that chance is small for getting a better basis.
The reason should be due to the inherent limitation of wavelet packet transform since
they must use orthonormal wavelets as their primitive analyzing functions. And since
orthonormal wavelets do not have good performances as stated above, it is there-
fore hard to anticipate the same strong performance as that from semi-orthogonal
wavelets; nevertheless, wavelet packets do show improvements. Figure 2.4(b) gives
the wavelet packet best bases using B&L and Meyer’s wavelets, they show improve-
ments when compared with figure 2.4(a), but certainly not to the degree of semi-
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orthogonal wavelet or that of the spectral curve.

o Figure 2.6 shows cumulative distribution curves of wavelet packet coefficients at var-
ious levels as well as best level, best basis, and also the corresponding orthonormal
wavelet basis (all using ON778S). Again wavelet packet best basis and best level yield
smaller entropy than that of counterpart wavelet basis, but still their curves are far
away from that of SO3D. And the curve for the best level comes quite close to that
for the best basis.

e Up until now we haven’t seen clear differences arising from different degrees of
symmetry (least asymmetric, most asymmetric, and symmetric) among orthonormal
wavelets. However, semi-orthogonél and bi-orthogonal are symmetric or antisym-
metric and they have lower entropy levels. Since symmetry or antisymmetry implies
linear phasé of the two-scale sequence. This probably indicates linear phase is de-
sired and without linear phase filtering visual impairment may occur, such as the
non-symmetric distribution of time-frequency windows shown in figures 1.1 and 1.2.
But it’s degree of influence is still not clear at present stage and should be case de-
pendent. (e.g., Meyer and B&L wavelets are also symmetric but their entropy values
are not comparable to that of the ideal one). » v

2.5 Summary

Using entropy statistics of transform coefficients, it is found that, except the semi-orthogonal
wavelets, there is not a wavelet basis tested here which can reach the level of approximation
given by spectral analysis for our laboratory water waves. Still, many of the properties of
these wavelets are more of analytical interests and hard to be physical significant. The strong
performance of the semi-orthogonal wavelets indicates the usefulness of a modulated Gaus-
sian wavelet or the Morlet wavelet, which are to be used in an adapted continuous wavelet
transform for our signals. However, without a few features specific to CWT to be studied
in next chapter the closeness between the best Riesz wavelet and our signals will not fulfill

the final maximum usefulness.
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Table 2.1: Entropy of orthonormal and semi-orthogonal wavelet coefficients as well as spec-
tral coefficients under various statistic criterions.

L**2 coefficient - L**2 probability =~ L**I probability - L**2 probability Theotetical
entropy entropy entropy entropy dimension
(0 division) (300 divisions) (300 divisions) (200 divisions)  (L**2 300 divisions)
4,691 1330 3417 1.179 3.782
4,647 1.294 3.365 1.132 3.646
4,833 1.669 3.756 1.488 5.307
1.823 0219 1.306 0.1712 1.245
2.809 0.270 3.044 0.244 1310
4,993 1.761 3.891 1.516 5.815
4773 1384 3.499 1.225 3.975
4790 1517 3.596 1.363 4559
4819 1.553 3.631 1367 4727
4790 1373 . 3.456 1.203 3.946
4675 1.355 3.461 1.203 3.877
4.645 1.229 3.283 1.082 3418
4719 1412 3.501 1252 4.106
4787 1423 3511 1.244 4.149
ON44S 4335 1.461 3.557 1.281 4311
ON358 4758 1.492 3.576 1.298 4.426
ONG66S- 4754 1.402 3.501 1.225 4,065
ON778 4751 1336 3.331 1.188 3.804
ONB88S 4714 1.366 3481 1.224 3918
ON99S 4.755 1.469 3.570 1.288 4345
ON00S 4,635 1278 3378 1.134 3.591
ON1IC 4938 1.696 3.832 1.457 5452
ON22C 4827 1.468 3.520 1.284 4342
ON33C 4756 1.488 3573 1.333 4.427
ON44C 4.690 1.297 3.337 1.157 3.658
ON35C 4.644 1309 3.405 1.154 3.703
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Table 2.2: Entropy of bi-orthogonal wavelet coefficients under various statistic criterions.

Wavelet: || - L**2 coefficient: “ L2 probability L**] probability - L**2 probability - * Theoretical
entropy;, - entropy entropy ’ - entropy dimension
- (Odivision):- . (300divisions) (300 divisions) - (200 divisions) " (L**2 300 divisions)

BO110. 5.395 2623 4.502 2.299 13777
BO1ID. 5.395 2623 4502 2299 13777
BO130 4943 1.806 3.883 1.627 6.084
BO13D 5.266 2371 4373 2.053 10.708
BOI50 4.866 1.678 3755 1.495 5.357
BO15D 5.227 2.291 4327 1.987 9.882
BO220. 5282 2362 4363 2083 10.609

~ BO2D 4434 1.181 3284 1.034 3.257
B0240 4.963 1.862 3.985 1.634 6.438
BO24D . 4359 1.090 3.220 0.962 2975
BO260 4881 1703 3.835 1492 5.490

~ BO26D 4332 1.064 3.174 0.940 2.899
B8O 4857 1624 3782 1452 5.073
BO28D 4318 1.069 3157 0.941 2914
BO3I0 - 5.824 3.174 4741 2.835 23.894
BO3ID 4377 1.058 2655 0.936 2.880
BO330 5.084 2.001 4,062 1756 7.393

 BO33D. 4.205 1102 2827 0.965 3.011

 BO3SO 4.850 1.697 3847 1.506 5457
BO3SD. 4125 1.026 2.776 0.908 2.789
BO370 4790 1.658 3821 1.442 5.247
BO37D 4,106 0.986 2737 0.873 2679
B0390 4776 1.660 3.835 1432 5.258
BO39D 4,098 0.967 2713 0.866 2629
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Figure 2.4: The cumulative probability distribution curves for various sets of transform co-
efficients derived from different function bases as indicated in the figures. The top figure
shows those of the wavelet group as well as a curve for spectral coefficients; the bottom
figure shows those of wavelet packets.
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Figure 2.5: Reconstructed signals using truncated transform coefficients. Where 35% of the
coefficients are kept. The original signal is shown in (a). Spectral coefficients in (b) and
SO3D wavelet coefficients in (c). The semi-orthogonal wavelet is seen to better portrait the
original signal, especially the small scale transient features.
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Figure 2.6: The cumulative probability distribution curves of the sorted wavelet and wavelet
packet coefficients (L?-norm squared, i.e., energy content) for various bases which all orig-
inate from a single mother wavelet. These bases include various wavelet packet levels,
wavelet packet best basis, as well as the originating wavelet basis ON77S; as indicated in
the legend.
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Chapter

The Continuous Wavelet Transforni
Using Adapted Time-Frequency
Windows

The fundamental thought for this chapter is rather simple: if time-frequency windows of fixed shape
and size (STFT) are less suitable for characterizing transient signals or multi-scale phenomena than
time-frequency windows of fixed size but with flexible shape (WT), then time-frequency windows
with flexibility both in shape and in size should provide even better adaptiveness. In fact, if we
are willing to disregard a lot of seemly complicated and impractical analytical points of wavelet
analysis, particularly those of DWT, we are just as free as an artist to portrait our desired wave
forms; and might not ever need to link this chapter to the previous one, but the two chapters do have
links regarding the best analyzing method. The links enrich our fundamental thought and lead to

usefulness.

3.1 Introduction

In the previous chapter we identified the most suitable Riesz wavelet basis for use with our
data. However, it is not the wavelet that we directly use in our data analysis. The main differ-
ences are in two aspects. First, the previous chapter concerns the discrete wavelet transform
which has a translation step of an integer multiple of the dilation scale and the dilations

are in logarithmic measurement; while the actual scheme we use concemns the continuous
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wavelet transform which might have a translation step as small as the sampling interval for
all scales and the scales can be specified almost arbitrarily. Second, the wavelets in the pre-
vious chapter handle bases with frame bounds that are either tight or relatively tight, while
the wavelet used here does not involve frame bounds (and might not have frame bounds at
all when applied in the sense of discrete wavelet transform, i.e., not even qualified to be a
Riesz wavelet). Nevertheless, we shall illustrate that the wavelet we use is a close proxim-
ity of the best Riesz basis identified. In this chapter we put efforts on clarifying these two
points and try to illustrate the related advantages and disadvantages. Furthermore, we do
this through the devising of a refined process of continuous wavelet transform using adapted
time-frequency windows, which put emphases on its possible enhancements to physical im-
plications.

3.2 Adaptability in association with the redundancy

If a function ¥ (¢) is to be qualified as a wavelet of CWT, then the only requirement is that
¥ (¢) meets the “admissibility condition,”

o\ 2
271'/ "”l(“’)' do = Cy, (3.1)

-0 o

where Cy is a constant dependent only on ¥, and $ (w) is the Fourier transform of v (z).
Here, among the several definitions of the Fourier transform pairs, the following system:
V(w) = 715—-; [0 w(e ™ dt and ¥ (1) = J% o ¥ (w)e'“dw is chosen. The admis-
sibility condition is the integration of power spectrum weighted by the inverse of the ab-
solute value of frequency; therefore, it indicates that the wavelet should have little power
at low frequency and is total nil at zero frequency, i.e., the area between the curve and the
abscissa integrates to zero. This feature of reasonable decay or finite support is the rea-
son why wavelet is called wavelet. The dilated and translated versions of this wavelet are
Yap(t) = 'ﬁ‘/’(%)’ where a > 0,a,b €R are the dilation and translation parameter,
respectively, and Z}_Z is normalization factor for L2-norm. The ¥, ; satisfies admissibility
condition too. The admissibility condition is a very loose constrain; however, it does not
provide a clear concept of the redundancy associated with applying CWT to discretely sam-
pled signals. To illustrate this redundancy let us use the discrete wavelet frame (since frame
wavelet certainly qualifies as a wavelet for CWT): Yy 5y j4(t) = a0~/ *¥(ay It — kby),
where we have restricted a to set of discrete dilations aé and b to set of discrete translations
aékbo, and j, k € Z, and gy # 1 and by > 0 are fixed positive constants. For such a discrete
wavelet frame we need to impose a more restrictive condition on (¢) for it being admitted,
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i.e., the stability condition,

boA <27 ) [F@ad )|’ < boB, (32)
jeZ

where A and B are positive constants and 0 < A < B < 00. The fixed constants by and
27 are kept since we are dealing with normalized wavelet basis and since the magnitudes
of A and B are related to the redundancy of the basis. The stability condition may look
quite abstract, but We give its physical implication as: in order for a function to be able
to be reconstructed from its wavelet coefficients, i.e., the operation is reversible, we need
a process which is convergent when summing all its scales or frequency components. It is
therefore necessary that the sum of the power of all the constituent elements can neither be
nil or infinity. If it sums to zero, then the elements are all of zero measure — nothing exists.
If it sums to infinity, then the elements are significantly overlapping in time and in frequency
— there is either too much dependence or too much ambiguity and tangling (just as two
vectors which are too parallel to each other are not belonging to a good choice of basis
vectors). Speaking of reconstruction of a function from its wavelet coefficients one always
involves a dual wavelet except for orthonormal basis where the wavelet is its own dual
(self-dual). But since the roles of a wavelet and its dual can always be interchanged in both
decomposition and reconstruction, the above statements apply equally well for dual wavelet
(but their bounds will generally be different since the sets of coefficients are different as
hinted by the different entropy values studied in the previous chapter).

If the basis functions are normalized and the inequality of the stability condition are
optimized for both the greatest lower bound and the lowest upper bound, i.e., when A, B
are defined as

2 —_
A = inf| =Y [ao) |, (33)
by
jeZ
2 o~ R 2
B = sup| =) [Waw)l |, (3.4)
0
jeZ

A+B
2

and B are close to each other (almost tight). We elucidate the possible extreme redundancy

then an indication of the redundancy is the average value or A and B, , supposed that A

of CWT as follows. If the dilated and translated versions a function originating from a

certain set of discrete steps (ag, by) constitute a frame with frame bounds A and B, then

the frame bounds of the basis using the same function but with finer discrete steps, say
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ap/2 and by/2, are going to contain the bounds of coarser discrete steps; therefore, the
new lower and upper bounds both grow together. This nested relation can be extended
infinitely and in the limit sense it is included in the algorithm of CWT. This is the reason
why there is no practical value of numerically reconstruction in CWT, although CWT is
reversible analytically. Another intuitive explanation is even easier to comprehend: when
apply CWT to discretely sampled signal, since for each scale there is the same number of
wavelet coefficients as the number of data points and since we can specify scales in whatever
resolution we like, we virtually have an unlimited number of wavelet coefficients. The sum
of the powers of these coefficients can be unimaginatively huge, or even unbounded; On the
other hand, the sum of signal energy is fixed. The ratio between the two sums indicates the
degree of redundancy. But we guess that the information content or usefulness associated
with the redundancy may behave like a cumulative pdf curve of a Gauss function which
may saturate at a later stage.

Redundancy may be a nuisance in certain applications, such as those for the purpose of
perfect reconstruction of signal or for the efficiency of coding and decoding; however redun-
dancy has also shown the promising characters in several applications. First, redundancy
does not mean that a whole bunch of coefficients are needed to represent the original signal,
that is to say, that significant signal contents can be retrieved from only a comparatively
amount of coefficients to that of tight or almost tight wavelet frame. Second, redundancy
means that effects of noise either due to those embedded in the sampled signal or those aris-
ing from the nature of numerical processes (such as frequency leakage in discrete transform)
might be reduced by taking advantage of the vast sainple space of transform coefficients.
One example related to the first character is Mallat and Zhong’s [13, 25] signal reconstruc-
tion from local maxima using a quadratic spline wavelet. In fact, the wavelet they used
is basically a loose wavelet (i.e., not really qualified as a wavelet), but they were able to
recover images quite well from local peak values of wavelet coefficients and the transform
was only performed at dyadic scales. The results of the present study on the coherence
features in the wind, wave, and rain coupling system can serve as an example related to the
second character.

To be more specific, a few questions which are natural extensions of the two previous
characters and related to the objectives of the present work are stated as: (1) Can we utilize
this redundancy to improve the relationship between the analytical form and its physical
interpretability? (2) How well does the adaptation preserve the information content of the
signal studied? (3) Is the adaptation efficient and easy to implement? Question one will
be dealt in the next section. A short answer to question two in practical terms (proof for a
special case using Morlet wavelet will be given in a later section) is that, if one just apply the
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adaptation to finite range(s) of scale, then what is lost or unaccounted for in the adaptation
process can still be recovered from some dilated and translated versions of some finer scale
wavelets originating from the same v (¢) in the CWT. Another explanation is the implication
of Mallat and Zhong’s case just mentioned. Question three is dependent on the adaptation
scheme. For now, based on the somewha§ intuitive adaptation as related to question one, it
is stated that nothing complicate is introduced. Furthermore, one practical point is: when
analyzing signal we are almost always interested in only finite scale range(s), so what is
really needed is to implement the adaptation locally. Hence the point is: use a scheme that
is numerically with the same easiness and physically more sound, and don’t be stuck with
stubborn time-frequency windows. ‘

Comparing the admissibility condition of CWT with the stability condition of DWT
one is likely to acknowledge the great difference in flexibility between the two. In addi-
tion, the stability condition is a necessary condition, and not all choices for ¥/, ag, by lead
to wavelet frames; furthermore, stability may not guarantee good numerical behaviors. Fig-
ure 3.1 shows the results of numerical experiments on the blow-ups of wavelet curves and it
indicates such a phenomenon. In the figure blow-ups of two bi-orthogonal wavelets around
respective points using refinement cascade show the possible intrinsic absurdity for wavelets
with peculiar analytical properties. The top sub-figure indicates a case where the DWT fails
numerically to characterize itself even though its associated wavelet frame qualifies theoret-
ically as a Riesz basis. The bottom sub-figure shows strange inclinations of wavelet curves.
In fact, this figure also illustrates the point that most of the fancy wavelets with bizarre wave
forms are not of our choice for studying water wave related physics, as is also indicated by
their entropy values. Here two bi-orthogonal wavelets with four and twenty filter weights,

respectively and constructed from quadratic spline scaling function [12] are used.

3.3 Degrees of freedom and the uncertainty relation

The flexibility of constructing wavelet function basis, i.e., the possibility of the adaptation,
is associated with the number of degrees of freedom of the ti-me-frequency window. The
degrees of freedom of the time-frequency window is generally defined as the total area of
the phase plane divided by the area of the time-frequency window corresponding to that
determined by the Heisenberg uncertainty relation (or Heisenberg’s inequality) [3]. Here
we shall see that, even though it is impossible to increase the limiting degrees of freedom,
there is no further limitation imposed upon present adaptation. In fact the present section
also serves two purposes: (1) provide the description that illustrates the basic functionality
of the modulation mechanism for a STFT, which in turn is conceptually the same as the
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dilation mechanism in WT. (2) outline the relation between redundancy and the Heisenberg
uncertainty using distribution of time-frequency windows within a phase plane.

The uncertainty relation states that the product of bandwidth A, and duration A, of a
signal cannot be less a minimum value of % The A, and Aw are the standard deviations,
with reference to their centroids, of packet energy | f ()] and power spectrum lf(w)lz,
respectively,

2 (e =D f)2de

Alz [} .
7O (33
2 (0 — @) f(o)Pdo
ALl s - , 3.6
7@ 3.6)

where 7 = [ 1| f()IPdt/If@)]l and B = [, 0l Fl@)lPdo/I F@)ll. The way to get
round of the uncertainty relation is to go through a modulation process (i.e., multiplying
a basis function with a complex exponential). Since a modulation in one domain corre-
sponds to a shift in the other domain in Fourier analysis, the new variance A, increases
dramatically. Figure 3.2 shows the mechanism for this operation, where it is seen that
AA, > A,D,. Now that the new value of A,A,, is significantly large than the limiting
value of Heisenberg uncertainty relation for the un-modulated envelope, we therefore have
quite a lot of flexibility to devise the time-frequency windows. Furthermore, as pointed
out by Bracewell, there exists no theorem depicting the lower limit of A,D,, i.e., no new
restriction is imposed on D,,. Therefore the uncertainty relation will not induce further re-
striction on the number of the degrees of freedom. That is to say, we have the same freedom
to draw time-frequency windows which generally do not violates the uncertainty relation
when we express a signal in its two dimensional phase plane, especially when considering
the similarity between the Morlet wavelet (which is used for the present adaptation) and the
modulated Gaussian, as will also be stated later.

3.4 Time-frequency windows of flexible size and the physics

An easier way to describe the algorithm of adaptation of time-frequency windows is go-
ing through examples. Here we choose the Morlet wavelet as our analyzing wavelet. The
Morlet wavelet is almost identical to a modulated Gaussian. And a modulated Gaussian
matches almost exactly with cardinal B-spline wavelet of order greater than or equal to 3
(quadratic spline-wavelet). As is given in Chui [6], the cardinal spline (scaling function) and
its associated wavelets possess the nice properties of “total positivity” and “complete oscil-
lation”, respectively. We note that these two properties physically imply that its wave form
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Figure 3.1: Wavelets with fancy analytical properties are often of bizarre wave forms and
not of our choice for studying water wave related physics, either judging from they entropy
values or form their stability condition — the blow-ups of bi-orthogonal wavelet BO310
{Top) and BO350 (Bottom). Related data for BO310 is: {Blow-up point: 150 (located at
the dotted line in figure (d)); Origin: level 2, position 12 (i.e., U212 in figure 2.3); Length:
512 (the curve in figure (d)). Figures (a), (b), and (c) show successive blow-up scale of
25. The blow-ups diverge rapidly, i.e., the wavelet fails to identify itself numerically in
refinement cascade.} Related data for BO350 is: {Blow-up point: 256 (located at the dotted
line in figure (d)); Origin: level 2, position 12 (i.e., U212); Length: 512 (the curve in figure
(d) that occupies part of the abscissa). Figures (a), (b), and (c) show successive blow-up
scale of 2%. The blow-ups converge but with peculiar inclinations. }

34



T T T 5 T T T
0 U .
l e e e -
5 ;? 3_ .......... ]
¢ ;
o el
3 £ ir }
& 3
9 a I .
0
L1 | 1 | | |
-100 0 100 L0.10 005 000 005 0.0
Time Frequency
05 ISR - L - L 3
© R e T S S
04 - - ] A e B
g i
) = N
[ 2
b 2,
g .
& 0 - -
3
o]
“ &
01 | | ]
-100 0 100 0.10
Time

Figure 3.2: The uncertainty relation and the modulation versus shift property (adapted from
Bracewell 1986). It is seen that a modulation process renders A;A, > A,;D,. The new
value of A, A, is significantly larger than the limiting value of Heisenberg uncertainty rela-
tion for the un-modulated envelope; we therefore have quite a lot of flexibility to devise the
time-frequency windows.
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are relatively smooth and without extremely rapid transient variations when compared with
some fancy wavelets such as that shown in figure 3.1. Moreover, the cardinal B-wavelet
is either symmetric or anti-symmetric; therefore, it benefits from linear-phase filtering (this
physically implies that a slight difference in wavelet coefficients will not cause significant
difference in their reconstructed wave forms, i.e., the variations of the wave forms are in-
tuitively more natural or its impact to human visualization is smaller. Figure 1.1 shows
the phase plane associated with wavelet without linear phase filtering.) Due to these rea-
sons, when applied to discretely sampled data using CWT, the Morlet wavelet is likely to
have better computational efficiency (in the sense of wavelet coefficients with smaller en-
tropy) and lesser distortion (when some coefficients are dropped) in comparison with other
wavelets. The Morlet wavelet is given by

Vo) = a7 e — e/ e, 3.7)

where the term e~0/2 is for justifying the condition of admissibility. Its Fourier transform

is almost a shifted Gaussian and is given by
J(ﬂ)) — n.—l/4[e—(w—a)())2/2 _ e—w2/2e—w6/2]’ (3.8)

in which wy is a constant. The wy is the modulation frequency. And it also has the physical

implication of amplitude ratio r that is the relative magnitude of the second highest peak

to highest peak of ¥ (¢), i.e,, r = ¥ (t;)/¥(0), in which 1, is the abscissa of the second

highest peak. A fairly good estimation of #, can be obtained by dropping the second term in

the above equation (the exact value involves solving transcendental equation numerically)

since the second term is generally of five order of magnitude less than the maximum value
- of the first term. Therefore,

2 2 \?
Wy~ — | —— . 3.9)
15 Inr

The higher the w( the smaller the ratio r. If wg is constant, then the ratio r for differ-
ent wavelet dilations or scales keeps constant too. Here one naturally asks: is it true that
constituent wave components of different scales or time spans all possess this fixed decay
feature?

To show that this is not true, let examine water wave decay due to viscous damping. For
deep water waves with a clean surface, the energy losses due to viscous dissipation arise
almost entirely from the straining of the irrotational motion in the water column, and the

part of contribution from viscous stresses in the surface layer is negligible. It was shown
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[28] that the time rate of change of the energy density is

= —2ucla,’k, (3.10)

where u, o, a,, and k are the dynamic viscosity of the water, the wave frequency, wave
amplitude, and wave number, respectively. Since in deep water E = (2k) ' po2a,,?, where
p is the water density, the attenuation coefficient

E
W=—sp = 2vk?, (3.11)

where v is the kinematic viscosity of the water. Therefore the energy density of the wave
evolves as

E = Cje™ ", (3.12)

where C| is a constant, and the amplitude decreases with time in accordance with

C12k
pa?

a, = e = Cre~ P, (3.13)
where C; is a constant if o does not vary. Comparing the decay of wave amplitude of Morlet
wavelet with the decay of the physical model, one see both similarity and dissimilarity. The
similarity is that the attenuation coefficients in both models have inverse square dependence
on scales (the former in (1/a)?, the latter in k%). The dissimilarity is the time dependence of
the exponent in the exponential: in Morlet wavelet it is in > dependence, while the physical
model has linear dependence. It is therefore anticipated that a fixed shape Morlet wavelet is
not going to have good universal similarity to water waves of different scales and it either
overestimates the viscous decay of water waves at lower frequency end or under-estimates
at high frequency end. This effect is probable more significant for waves with longer life
spans. The simple reasoning provides the basis for the present adaptation: by adjusting the
amplitude ratio r in the Morlet wavelet we are trying to adapt the evolutions of waves of
different scales to flexible time-frequency windows. This in turn uses a variable wy. The
general guideline is to use a larger wp with narrower frequency band for waves of longer
time support; and vice versa, a smaller wy with wider frequency band for shorter life span.
Here wy is assumed to be a function of scale, i.e., wg = wp(a). The varying shapes and sizes

of the time-frequency windows can be seen from

,,,a(ﬂ) =14 [e-if’".f—"’U—b) - e—am<u>2/2] R (3.14)
a
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Another advantage of using Morlet wavelet is that one is easy to have the physical percep-
tion of the size or property of a “scale”. We have seen a lot of ambiguity or abstraction in a
few studies for not involving the physical perception of scales, even when they were dealing
with the simple case of Morlet wavelet. Earlier we mentioned that the wavelet coefficient
generally refers to “scale” not “frequency”. Scale does not have dimension, but frequency
has precise physical unit. Furthermore, scale might be corresponding to complicate com-
bination of several frequency bands, such as the compactly supported orthogonal wavelets
used in figure 1.1. In order to have a clear picture of a “scale” one needs to know: what the
basic wavelet looks like; what the actual support is; and, what the sampling interval is. All
These tangle one’s thoughts a lot, and we get lost easily. Take as an example: the numerical
processes for both discrete Fourier transform and DWT care nothing about the units, only
the index is important; however, there is an easy conversion from index to frequency for dis-
crete Fourier transform, whereas there is no easy way to visualize the corresponding object
from the index of a wavelet coefficient. This difficulty is avoided for Morlet wavelet since
it is almost a modulated Gaussian and a modulated Gaussian is associated with another pre-
cise and physical unit named “carrier frequency”, which for our adaptation is easily seen to
be w = wy(a)/a, supposing that wy(a) is large enough, say above 5. This further points out
that using scale parameter a can be confusing and misleading, since the same a may corre-
spond to different scales or frequencies when different adaptations or different wavelets are
used.

The remaining problem is how to define a suitable decay parameter wy. As stated in the

previous section that the present adaptation can always be applied to finite scale range(s) and
the transform only needs to be implemented for scale range(s) that we are interested in. Still,
since one can always regards that the set of sampling points of a signal is associated with,
or derived from, a certain function, but there are basically infinitely many functions which
can pass all these sampling points and since these functions may be either band-limited
or band-unlimited but sampled signal are always band-limited (i.e., it is always true that
numencal analysis is always associated with finite scale range); therefore, this indicates
that we are quite free to make adaptation for wg. This in fact also hints the origin of the
possible redundancy when CWT is applied to the sampled signals.
" Both numerical simulation and experimental data are used to illustrate the adaptation.
For the simulated data we use a parabolic chirp where the frequency range of interest cov-
ers the whole range of simulation, i.e., from almost zero to that corresponding to Nyquist
sampling rate. For the experimental data the water wave measured in the wind blowing oval
tank is used, in which the reasonable frequency range should be about 1.5 to 10 Hz

For the chirp signal we assume a linear variation of wy(a) from 10 to 7 in contrast to
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the commonly adopted value of 5.3 (corresponding to r & 0.5). Figure 3.3 shows such a
comparison.

It is seen that the adapted one gives better frequency localization for aimost all frequen-
cies except the lowest one (in fact it can be further adjusted). A phase plane of the complex
wavelet coefficients is also shown.

Earlier we mentioned that the Morlet wavelet is likely to overestimate, for the wave tank
signals, the decay of longer waves in the long run; therefore, relative to higher frequency
waves, we should reduce the decay parameter wy for low frequency ones . We heuristically

4 o
Erfc (E (-a— —2)3+5) = aw (3.15)

where Erfc is the complimentary error function and w is the carrier frequency. This equation

assume

may be modified according to the type of signal studied or according to the frequency range
of one’s interest. Figure 3.4 shows the curve of the function. The logic for the choice of
its constants is self explained in the attached program piece. Figure 3.5 shows the time-
frequency maps of the signal. Again there is less smearing effects at the lower portion of
the phase plane, since we mainly adjust the decay parameter for low frequency end. A few
results and associated physics can be explained from the figure: (1) The dominant (carrier)
frequency is about 2.5 Hz; (2) Waves of all frequencies keep constantly evolving, since
there are always light and dark interlaces; (3) There are significant grouping effects, and
the life spans of waves of significant energy are seen more enduring (the duration of the
darker bands is longer); (4) There is obvious bifurcation among scales, especially for the
intermediate frequency range of about 3 to 5 Hz. This indicates the phenomenon of energy
cascade from where the energy concentrates to higher frequencies. Judging from these
characters it seems that the energy phenomenon in a wave field is quite similar to that in a
turbulent flow field [31].

3.5 Existence of admissibility condition

Earlier we gave physical description on how the present adaptation manages to provide
an almost “loseless” operation. Loseless means that the full information of a function is
preserved during the transform and we can recover the function from its wavelet coefficients,
i.e., there exists a reverse operation. In the following we give a formalism through checking
its admissibility condition, which is equivalent to verifying the existence of the resolution
of the identity. For earlier adaptation we have a family of wavelets which originates from
the ¥ (¢) and has the parameter wy in it. Where wy is basically adjusted according to dilation
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Figure 3.3: Phase plane characters for a parabolic chirp (bottom right) with (top left) and
without (bottom left) adaptation of time-frequency windows. Top right shows the map of
phase using a newly devised wavelet variant, which has properties quite in contrast to those
of Morlet wavelet and has refined ridge extraction capability (under preparation).
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obeg=11.; oend=5.;
fcenter=2.5; fdilation=10/4; fshift=2. ;
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Figure 3.4: The assumed wave decay parameter wy as a function of carrier frequency. The
curve can be adjusted according to several parameters: approximate peak frequency, signif-
icant range of frequency, range of decay parameter, as well as a shift adjustment parameter;
as are indicated in the attached program piece.
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Figure 3.5: Phase plane characters of a water wave signal measured in a wind blowing oval
tank (Top left: without adaptation; Bottom left: with adaptation; Top right: phase map;
Bottom right: wind wave signal.) Since the assumed adaptation mainly adjusts the decay
coefficients for low frequency part, one sees there is less smearing there. The phase map
using the wavelet variant (cf. figure 3.3) provides clearer identification of ridges of main
power; as is almost impossible using phase map of Morlet wavelet.
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parameter a (depending on one’s preference, one may specify a first or w first); however,
judging from the fact, as explained in the previous section, that the carrier frequency =
wy/a, i.e., wy = aw, we therefore assume wy = wp(aw) for reasons as needed in the
following verification of formulas. Moreover, we regard using a single variable (aw) which
combines aw and wy(aw) should have more freedom in choosing the adaptation than using
two variables in wp(a, w). So,

YV (8) = ¥ (1 5 wo(aw)). (3.16)
Its dilated and translated versions are given by

1 t—b
Vabag(t) = 7[7_[11] (-—a— wo(aa))> . (3.17)

And the wavelet coefficients of a function f(¢) are given by

wao(a, b) = (fv "l’a.b:wo)

© 1 t—b
= [ w50
_ / Al F (@) T (@@)e " dw, (3.18)

in which ﬁ(w) = 1'/7 (w; wo(aw)) since wp(aw) is independent of . We follow the formal-
ism to check that the inner product two functions f and g, (f, g), can be recovered from
the integration of the projection of W f(a, b; wg) into Wg(a, b; wo) along both real lines of
dilation and translation variables. That is, if

/ fw %Wf(a, b; wo(aw))
o0 Jeoo @
Wg(a, b; wg(aw))dadb = C,,,w“(f, g), (3.19)

where C%o is a fixed constant, then, when g is taken as a Gaussian fuﬁction with variance
approaching the limit zero and being almost the delta distribution 3(¢), the inner product
(f(), g — 1) = (f(t"),8( — 1)) recovers f(t). The right hand side of the above
equation equals

® LT[R e m———
f f g[/ \/Ia—lf(w)e_'bwllf(aw;wo(aw))dw]x

[ / ” Jal Z@)e ¥ (aw'; wo(aw'))dw'] dadb. (3.20)

-0
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Let define

Fa(t, wo(aw))
1 R -~
= «/_Z?f e"”“\/ﬁf(w)w(aw; wo(aw))dw

e " F (w; wolaw))dw,

Gq(t, wo(aw))

1
= 7= " e fal @ | Z(@)¥ (aw; wo(aw))dw

"G, (w; wolaw))dw.

=72—;/_m

One has

/ / F (t; a)o(aw))G (t; wo(aw))dadt

/ f 27 Fo(w; w0(aw))

G, (w; wglaw))dadw

f / ﬁf(w)g(w)

ll}\(aw wolaw))|*dadw

2
=2 / f(Hgnat / ¥ (aw; wo(aw))| i

jal
= 27{f, £)Cy,,,

where the resolution of identity is given by the condition

/°° ¥ (aw; wo(aw))|?

laf

da = C'I’w()'

(3.21)

(3.22)

(3.23)

(3.24)

This condition is more restrictive than equation (1) in that 1’,5 0, wg(u)) = 0forallu € R;

Otherwise there is no other restriction since what is changed in the integration is limited

to finite range and is anticipated to be finite. Fortunately, the above example using Morlet

wavelet satisfies this condition. In fact, we even believe other wavelets might be adapted

either in the present sense or in a sense similar to that using multi-voice or multi-wavelet in

44



DWT.

3.6 Summary

Based on the minimum entropy Riesz wavelet we look for its CWT counterpart for better
descriptions of our water wave signals. With the intent to enhance its significance in phys-
ical implications we exploit the redundant (or non-orthogonal) feature of CWT coefficients
and propose flexible constructions of the time-frequency windows with better adaptation
to physics. An example of wave decay was use to justify the concept of this adaptation.
Numerical results using chirp signal and experimental data were used to show the overall
improvement of time-frequency resolutions in their phase planes. With slight modification
to the original prove we verify that the resolution of the identity is generally obeyed under
the adaptation, at least for the Gaussian-modulated wavelet used here; that is to say, there
is no loss of information using this adaptation. And using Morlet wavelet as the analyz-
ing wavelet we illustrate that the decay parameter wyq or carrier frequency can be modified
for different scales in virtually unlimited ways. Even though at the current stage the forms
of adaptation are mostly intuitive, they are conceptually reasonable and fit into the nature
of wave modulations in multi-scale systems. In short this chapter illustrate the additional
flexibility of wavelet analysis as well as the possible usefulness of the redundant nature of
the CWT coefficients, and these lead to the success of its application to the investigation of
signal coherences in the wave and current fields.
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Chapter

Wavelet Coherences and Spectral
Coherences in the Wave and Current
Fields

When we embarked on the wavelet studies for the interests of physics regarding water wave related
signals we did not foresee most of the results of the current three main subject topics; not to mention
that we had any idea about the close links among them. In fact, for the first subject topic on wavelet
bases, we initially focused almost entirely on seeking meaningful, and somewhat “fancy”, wavelet
packet phase plane representations of our signals, which turned out to be an effort in vain from
physics point of view up until now. And, for a period of time, the semi-orthogonal wavelet with
minimum entropy did not catch much of our attention since only orthonormal wavelets have two
dimensional phase plane representations and the cardinal B-spline wavelets simply don’t have. For
the second subject topic, we were only wondering that the following sequence should be a very
natural evolution process regarding adapting time-frequency windows — an adaptation form fixed
shape and size to varying shape with fixedsize, and further to varying shape with changing size.
And this process should be working for any wavelet not just for the Morlet wavelet. The reason
why it was chosen was because it is simple and the scale information it conveys has the most easily
understandable physical unit as the carrier frequency. For the third subject topic, we were just curious
to clarify our doubts on the presentations of a paper [21] that we read. In that paper the definition of
coherence and the explanation of the results look awkward to us and we somewhat got lost.

To us, significant information comes most often in surprise. It seems that the intricate links of
the three subject topics come to our minds all of a sudden. Of course, this should be attributed to the

accumulation of further understandings when more or repeated readings have been gone through.
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4.1 Wavelet coherence and spectral coherence

The coherences among different target quantities manifest the degree of mutual interactions
in a multi-scale coupling system. By studying their variations for different experimental
setups or parameters it is possible to identify the evolutions of different scales and to isolate
key influencing factors and their main effects.

In this chapter both spectral and wavelet coherences will be used to study the scale fea-
‘tures in the wind and current fields in a wind, wave, and rain coupling system. A few points
on the energy phenomena in the system will also be explained. Let first have a few back-
ground information of the two methods and highlight their advantages and disadvantages.

Earlier we mentioned the effects of non-stationary or local transient variations. And in
a related study focusing on Hilbert transform’s viewpoint [19] the repeatability problems
of Fourier spectra were also addressed . Further evidences of the drawback caused by this
phenomenon will also be seen here by comparing the performances of spectral coherence
with those of wavelet coherence. It is a bit to our surprise that wavelet coherences are able
to provide much better information that is unambiguous in outcomes and economical in
amount of data needed. Numerical results to be shown later shall state these all. But let first
cite the basic differences in two aspects. First, from the viewpoint of their origins, wavelet
coherence has a closer similarity to its analytical counterpart than spectral coherence does.
Or stated more specifically, the wavelet coherence is a direct and natural extension of the
wavelet resolution of identity and, therefore, involves less artificial intervention. Second,
the wavelet coherence is derived from an extremely redundant set of coefficients; while
spectral coherence is associated with a set of coefficients derived form orthonormal basis
functions. The redundancy provides a fine resolution of scale as well as a huge population
space. These factors minimize noise effects and yield clear coherent tendencies. In the
following we illustrate these points by going through a few related formulations.

The cross correlation function of two functions g(¢) and h(¢) is the following inner
product c(t)

c(t) = (gt + 1), h(7)), 4.1

where 7 is a dummy variable. The correlation coefficient function r;(¢) is

c(t)
() = —————. 42
G PRTTTGY @2
For real g(¢) and h(t), its Fourier transform is
Fllgt+1),h(1)]  GlwH(w) 43)

leOIAOI IG@IH @)
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The artifacts to be introduced in spectral coherence are associated with the form of expected
values as well as the introduction of a normalization as given by
|E[G (0)H (@)

R} () = ’ »
X (E[IG()PIE[ H ()[21) (4.4)

where the symbol E stands for taking expected value. This equation is identically unity
for all frequencies if data sequence is not segmented and arranged in an array with one
additional dimension, since expected values take no action without introducing one more
dimension. The process of this segmentation is just like that commonly implemented in cal-
culating the power spectrum. The purpose is to reduce the uncertainty or standard deviation
of the spectrum. There is no doubt that the inherent properties of discrete Fourier analysis
are imposing similar limitations to the conclusiveness of spectral coherence.

As to wavelet coherence the derivation is even simpler along with fewer artifacts. The
wavelet resolution of identity of two functions is

1 *® 1 o —
bt == [ = [ e von)Th Vanidbda 45
Sy Jo 4" J-wo
For a fixed scale a
11 Rt ——
(o ha) = —— [ (g Vu)Trr Fasldb. 4.6)
: Cy A% J oo

Here the integration with respect to the translation parameter b is physically as well as
intuitively similar to the operation of taking an expected value by summing up the elements
in the population space. It is therefore quite straightforward to define the wavelet coherence

as the the natural extension of the normalized equation of resolution of identity:

IEbL(8, V) T, Van) ]I
(Es[1(8, Vas)PTE 1R, Y0 ) 12]) /2

R2(a) =

w 4.7
where the subscript b in E,, stands for taking average with respect to the translation param-
eter. It is clear that wavelet coherence has a more direct linkage to its analytical relevance
than does spectral coherence. Unlike spectral coherence, there is no need to segment the
data. The expected values can be obtained in a sense of summing up the results of sim-
ple convolution through proper imaging and sign change of the functions and variables.
Therefore the population size of the sample space of wavelet coefficients is generally two
or three order of magnitude larger than that for spectral coherence. That is to say, for al-
most any practical data acquisition scheme and any specific scale the amount of summable
coefficients is much bigger.
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For wavelet coherence we can focus only on the portion of scale range that is significant
or meaningful to us. But for spectral coherence we have no control at all over the frequency
range of interest, so a great portion of the spectral results might be entirely irrelevant to our
interests. Judging from the fact that for all practical cases we generally only want to, and
are just able to, focus a finite range of frequency, we know that spectral approach wastes
resources in the unwanted while wavelet coherence does just the most right, even though
non-orthonormal cases take much longer computation time. Finally, we like to mention
again that the wavelet used here is the adapted modulated Gaussian wavelet discussed in the
previous chapter.

4.2 Coherence in the wind, wave and rain coupling system

4.2.1 Experiments

The experiments were performed in an oval tank equipped with wind-blowing facilities and
mechanic wave generator. The tank is 35cm wide and 45cm height with a straight observa-
tion segment of Sm. The water depth is 24 cm and a two-meter rain module was mounted
atop the tank (figure 4.1). Major experimental setups involve changing the combination
of wind speeds, rain intensities, and mechanic wave parameters. Three kinds of data were
measured: average wind speeds, wave heights, and LDA aqueous flows. Further details of

measurement will be mentioned when case requires.

4.2.2 Wind wave cases

The wavelet and the spectral coherences between waves and aqueous flows at different
depths with and without rain (68 mm hr~! rain with 6.0 m sec™! wind) for a data length
of 1024-point are shown in figure 4.2. Figures 4.3 and 4.4 show results using 2048- and
4096-point data length, respectively. It is quite amazing that, even for such non-stationary
wind wave conditions the curves of wavelet coherence using 1024-data data length have
yielded quite consistent shapes as those using longer data length. It is also interesting to
note that, when extremely long data lengths are used the spectral coherence curves are seen
to approximate the wavelet coherence curves, as can be seen from figure 4.5 when compared
to the previous figure. Besides, these curves further evidences that the improvements with
the lengthening of data length for spectral curves are very slow, especially for scale ranges
with smaller energy contents. Moreover, judging from the fact that the two function bases
are different, but they somewhat close to each other, we regard that our water waves are
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Figure 4.1: The experimental setup

Pressure transducer

somewhat relatively “regular” when compared with other wavelet basis functions, such as
what was said in figure 3.1. It has been clear that these figures demonstrate the usefulness of
the redundancy of wavelet coefficients associated with a continuous transform when applied
to discretely sampled signals. In an alternative perspective, they point out the large variance
values and slow convergence when orthonormal function basis is used. In fact, keeping in
mind that the actual frequencies (or scales) of main power may not locate exactly at discrete
resolution points in the frequency axis, these disadvantages can be expected form the serious
shift-non-invariant property shown in 2.1, where the wavelet transforms are associated with
either orthonormal (tight) function basis or relatively tight frame.

The above statements do not focus on the factor of rain. To see more clearly the effects
of rain on the wave-current coherences for aqueous flow measured at different depths, let
compare the curves for each individual depth as shown in figure 4.6. It is seen that rain
has greater influence at high frequency region (about > 3.5 Hz) and significantly lower the
coherences in this frequency range for aqueous flows measured in the near-surface region (2
and 3 cm below the still water surface); while for deeper depths (4 and 5 cm below the still
water surface) the coherence curves widens and their values somewhat increase. However,
at further depth (9cm) the overall coherence is significantly reduced. This strongly indicates
that, under the action of rain, scales of main power contents do not as well penetrate as those

without rain do, and also implies that the scales in deep region are de-tuned. Another set
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of figures similar to figure 4.6 but under a different wind speed of 5.1 m sec™! is shown in
figure 4.7. It shows basically the same tendencies.

Figure 4.11 shows wave-current coherences under different wind speeds for depths 2
and 5 cm with and without rain. It is seen that for higher wind speed the peak coherence
increases and also shifts toward lower frequency. The reasons can be explained from the
point of view of wave development. Since these are measured at the same cross section in
the oval tank higher wind induces a more mature stage of development.

4.2.3 Stokes wave cases .

The coherent features for Stokes wave cases also provide interesting and informative ac-
counts for the evolutions of different scales within the coupling system. Figures 4.12 shows
the wave-current coherences under different rain intensities for Stokes wave with funda-
mental harmonic at 1.4 Hz and wave slope of 0.06, as are judged from Fourier spectrum
shown in 4.9 and envelope curve for the band of fundamental harmonic shown in figure
4.10. It is seen that rain enhances and broadens wave-current coherences near the funda-
mental harmonic for aqueous flows measured at various depths. For the second harmonic,
the coherence curves generally somewhat broaden too and also shift to the right. These ten-
dencies indicate the diversification of scales due to rain within a relatively simple wave field.
And the phenomena agree with the argument that the impact of rain provides the impetus of
tuning and de-tuning among waves of different scales within the interaction system.

It should also be noted that, even for this nearly stationary wave field, spectral approach
yields extremely poor behaviors of coherences as shown in figure 4.14, where the data and
its length are the same as the previous ones. Examples here further strengthen our under-
standing about the usefulness of the redundancy related to the non-orthonormal function
basis. Most importantly, they show that wavelet viewpoint provides better descriptions of
the intrinsic physics even for stationary signals. And this should formerly be attributed to
the appropriateness of depicting waves as modulated wave forms.

The wave-current coherences for aqueous flows measured at different depths (2, 3, 4,
and 5 cm below still water surface) for Stokes wave with fundamental harmonic of 2.7 Hz
and a high wave slope value of 3.0 is shown in the right hand part of figure 4.14 (the left
hand part shows those of the previous Stokes waves). And the top and bottom sub-figures are
without and with rain, respectively. For the right hand part sub-figures, due to the high wave
slope the coherences for aqueous flows measured in the near-surface region are significant
lower than those measured in deeper region. This is probably related to the high non-linear
effects due to the Benjamen and Feir side-band instability [19]. Another significant feature

due to rain for the high wave slope cases is the obvious increase of wave-current coherences
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point. In reference to the two subsequent figures using longer data lengths the usefulness
of the redundancy of CWT is most obviously seen since the wavelet coherence curves have

s
shown extremely good proximity to those using longer data lengths.
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Figure 4.2: The wavelet (Left) and spectral (Right) coherences between wave and aqueous
flow at each individual depth as indicated in the figures without (Top) and with (Bottom)

rain (68 mm hr~!) under 6.0 m sec
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Figure 4.5: The spectral coherences between wave and aqueous flow at different depths
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length of the data is 9472-point. Even though the function bases of spectral and wavelet
coherences are different the spectral coherence curves are seen to approximate those of
wavelet coherences; while, there still exists wriggling except in the peak coherence regions.
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Figure 4.6: Wavelet coherences between wave and aqueous flow with (Dashed) and without
(Solid) rain. The rain intensity is 68 mm hr~!, wind speed 6.0 m sec™!, and the aqueous
flows are measured at 2 (Top Left), 3 (Bottom Left), 4 (Top Right) , 5 (Bottom Right) cm
below the still water surface.
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Figure 4.7: Wavelet coherences between wave and aqueous flow with (Dashed) and without
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Figure 4.8: Rain’s effects on wave-current coherence for aqueous flow measured at 9cm
below still water surface. It is seen that rain reduces the overall coherence in deeper region.

at low frequency side for aqueous flow measured at depth S5cm. This probably indicates that
rain causes energy to propagate into deep region and since only internal waves can transfer
energy in the vertical direction we argue that there is a chance for the growth of internal

waves.

4.2.4 Non-concurrent or different localities cases

All the above figures focus on wave-current coherences using data acquired at a cross sec-
tion right behind the raining segment and the wave and aqueous flow are measured simulta-
neously. Let examine a few different kind of coherences where data are either not measured
simultaneously or not at the same cross section. Such as the cases of current-current coher-
ences between different depths and wave-wave coherences between different wave gauge
data (the results of the later are not shown here, since they mainly reveal the trivial infor-
mation of negligible coherences). Figure 4.15 shows the wavelet coherence between the
aqueous flows measured at different depths with and without rain for two different wind
speeds. Here the section of measurement is right under the raining segment (70 cm ahead
of the end of rain module). It is interesting to note that without rain the coherences basi-

cally are unimportant and there exists no significant feature; however, under the action of
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estimated from the envelope curve.
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Figure 4.11: Wavelet coherences between wave and aqueous flow under different wind
speeds without (Top) and with (Bottom) rain (68 mm hr!) for aqueous flows measured
at depths of 2 (Left) and 5 (Right) cm. Since under higher wind speed the wave and current
fields are more developed or in a more mature stage, the peak coherence increases and shifts
to lower frequency.
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Figure 4.12: The wavelet coherences between wave and aqueous flow under different rain
intensities for Stokes wave with fundamental harmonic at 1.4 Hz and wave slope of 0.06.
The aqueous flows were measured at 2 (Top Left), 3 (Bottom Left), 4 (Top Right), and 5
(Bottom Right) cm below the still water surface.
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Figure 4.13: Curves of spectral coherence using the same data set as last figure. It is in-

teresting to note that even for such an extremely stationary condition the performance of

spectral coherence is relatively poor. Together with the previous figure it can be concluded

that a redundant system has obvious advantages over an orthonormal system when study-

ing the coherence statics. Most importantly, the two figures together point out that wavelet
viewpoint can still provides better descriptions of the intrinsic physics even for stationary

signals, and this must be related to the appropriateness of the modulation nature of waves.

62



(9 IDEsO-FAO-EI<11 05.0>) ) ) 00980927 100 JUH90ERDFOEAICI05 5] 0N098-03:27
IDHLWC & | Y0 WDHLWC
—lm T
BUE S
9 o
17 1]
[ [
¢ T 2T
[ g
= £
-] [<]
9 ]
397 397
Y 9
2 3
2 T E 2
o AT 0 ' 1)
1B
Scale (- Frequency in Hz) Scale (~ Frequency in Hz)
100 JUSOEROFOEAESD) onossmar (.00 (O 90EsgD FIO B clLOS ) . Tnoss0sar
) L apave AlIDE2HC
o =lm —1m
—3 -3
-3 =4
§ - g -5
§ 5
] °
2 9
3 3
|4 Fl
2 2
3 3
.,
000 L i ! \M. -
Tk ! 2 ]
jiz]
Scale (- Frequency in Hz) Scale (~ Frequency in Hz)

Figure 4.14: The wavelet coherences between wave and aqueous flow measured at the spec-
ified depth without (Top) and with (Bottom) 45 mm hr~! rain for two Stokes waves, one
with 1.4 Hz fundamental harmonic and 0.06 wave slope (Left), the other with 2.7 Hz fun-
damental harmonic and a 3.0 high wave slope (Right). The high wave slope significantly
reduces the coherences near the surface regions.
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rain there are very consistent and unambiguous features for both wind speeds, as seen from
the two significant peaks corresponding to the main frequency of the wind waves. In the
figure we see that the coherences of aqueous flows at 3 and 4 cm depths are quite small;
while the coherences for 4 and 5 cm and for 3 and 5 cm both have similar sharp peaks for the
two wind speeds. In contrast, for current-current coherences with measurement cross sec-
tion right behind the raining segment these features disappear, as are shown in figure 4.16.
Overall, these features provide further support of our argument that rain has the role of a -
beating process that induces interactions and causes the development of waves of certain
scales. It is also noted that right now the level of coherence is very low when compared
with that of simultaneous measurements. We also mention that, at first sight, it seems that
the high coherence for aqueous flows at 3 and 5 may be intuitively dubious since the coher-
ences between 3 and 4 cm are low. But we argue that the reasons should be attributed to the
non-orthogonal wavelet constituents as opposed to the mutual exclusiveness of the orthog-
onal wave constituents, as related to an issue of the frequency leakage to be discussed in an
further study on a topic regarding a wavelet variant for refined ridge extraction.

4.3 Summary

It is probably not necessary for us to give the many figures just for showing the service-
ability of the chosen function basis and its associated method of analysis; but these figures
reveal many reasonable aspects of physics and justify the reasoning for a few energy phe-
nomena in the multi-scale coupling system concerning wind, wave, and rain interactions.
Overall, they help materialize the links of the main three subject topics and validate the ap-
propriateness of a best analyzing function basis. Most profoundly, we are further convinced
that waves are intrinsically modulating and instability [4, 5, 19] should be a common nature
of water waves; therefore, wavelet approach is a means with more natural perception even

for stationary wave fields.
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Figure 4.15: The wavelet coherences between aqueous flows measured at different depths
without (Top) and with (Bottom) rain (68 mm hr~!) under two different wind speeds of
5.8 (Left) and 5.0 (Right) m sec™!. Here the measurement cross section is right under the
raining segment. Since the aqueous flows were not measured simultaneously, the coher-
ences are relatively low. However, the two significant peaks show unambiguous tendencies
which indicate the tuning and de-tuning process related to rain drop’s beating effects on the
interaction process as explained in the text. Additional point regarding the effects of the

non-orthogonal wavelet constituents as opposed to the mutual exclusiveness of the orthog-
onal wave constituents is stated in the text.
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Figure 4.16: The wavelet coherences between aqueous flows measured at different depths
without (Top) and with (Bottom) rain (68 mm hr~!) under two different wind speeds of
5.8 (Left) and 5.0 (Right) m sec™!. Here the measurement cross section is right behind the
raining segment. In contrast to the cases where measurement cross section was right under
the raining segment, the two peaks disappear and no trend is observed.
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Chapter

Conclusions

Through the studies on the coherent features in the wave and current fields in a laboratory
water tank we tie their significant outcomes to the results of two earlier papers, which are
‘also mostly incorporated here, but with many refined statements. We explicate the close
links among the three subject topics and disclose the advantages and disadvantage of various
function bases, including Fourier basis and a vast array of wavelet bases. In all the context,
we have tried to put the most practical and physical touches — that we are capable of —
to the descriptions of the analytical counterparts and illustrate the reasons that facilitate the
usefulness of the proposed analyzing function basis and method of analysis.

In short, we first identify among discrete Riesz wavelets the most intimate counterpart
to the analyzing function we use, and then point out its affinity to the modulated Gaus-
sian wavelet based on continuous wavelet transform using adapted time-frequency win-
dows. The adaptation scheme serves two purposes: enhancing wavelet’s affiliations with
the physics of water waves and clarifying a few concepts related to intrinsic properties of
-wavelet analysis that lead to the success of the present application.

Besides, we are further convinced that waves are intrinsically modulating and instabil-
ity of water waves is quite common to various physical processes — even for stationary
conditions. Hence, descriptions based on localized wave constituents should reveal better
physics.

In the interests of further studies we also like to point out that effects of phase noise for
non-concurrent or displaced measurements are still serious and that the present adaptation
of time-frequency windows is still rather heuristic.
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