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Analytical solutions of the wave reflection phenomenon by currents

and their application to numerical computations

By Jinn-Hwa Shyu! and Chi-Chao Tung?

'Institute of Harbor and Marine Technology, Wuchi,
Taichung District, Taiwan, ROC
?Department of Civil Engineering, North Carolina State University,
Raleigh, North Carolina 27695, USA

Abstract

Surface waves superimposed upon a larger-scale flow are blocked and re-
flected at the points where the group velocities balance the convection by the
larger-scale flow. In this study, we first extend the theory of Shyu and Phillips
(1990) to the situation when short deep-water gravity waves propagate obliguely
upon a steady unidirectional irrotational current. In this case, the uniform
asymptotic and the WKBJ solutions of the wave reflection phenomenon by cur-
rents are derived from the Laplace equation and the kinematical and dynami-
cal boundary conditions. These solutions, except the expressions of the Class 2
terms (e.g., the imaginary terms in (2.16)), take the same forms as those derived
by Shyu and Phillips (1990). Furthermore, from considerations of the disper-
sion relation and the action conservation equation, the validity of which in the
vicinity of the caustic in a general situation has been verified by Smith (1975),
we demonstrate that even for waves in an intermediate-depth region and near a
curved moving caustic induced by an unsteady multidirectional irrotational cur-
rent, the solutions still take the same forms as those in Shyu & Phillips (1990),
although in this general case the expressions of the Class 2 terms in these solu-

tions cannot be obtained so that their values must be estimated in a numerical
calculation.

ESome of these Class 2 terms are responsible for the amplitude of the re-
flected wave being unequal to that of the incident wave in the vicinity of the
caustic, therefore the estimation of these terms in this region in a general sit-
~uation is crucial for a continuation of the ray solution after reflection. The al-
gorithm for this estimation is illustrated through numerical tests, which indi-

cate that while the error magnification phenomenon is very serious in the pre-
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vious estimates of the reflected wave in the vicinity of the caustic from a con-
sideration of the action conservation principle, this phenomenon can mostly be
avoided by the present algorithm by taking advantage of the explicit forms of
the present solutions. These estimates still represent an asymptotic approxi-

mation so that their accuracy is examined and the results are encouraging.



1. Introduction

The modulations and reflection of short surface waves by a variable current
or a long wave are of importance for predication of the wave fields in the regions
with strong non-uniform currents (see, for example, Peregrine 1976; Smith 1976;
Mei 1983; Holthuijsen & Tolman 1991), and for interpretation of the remote
sensing records (see Phillips (1988) for a review). Modern theories on the
dynamics of short waves on larger-scale currents were begun by Longuet-Higgins
& Stewart (1960, 1961), Whitham (1965), and Bretherton & Garrett (1968) (see
Peregrine (1976) for a review of these theories and many other de\}elopments),

in which the idea of radiation stress was introduced and the action conservation
equation established so that the evolution of the short waves can be determined

rigorously until a caustic is met, at which these theories characteristic of a ray
description all predict a singularity in the wave height and therefore are not
applicable there.

The short waves blocked at the caustic will virtually be reflected at a dif-
ferent wavelength, which leads to a more drastic change of wave slopes. There-
fore it is important to determine the amplitude of the reflected wave in terms
of that of the incident wave in the vicinity of the caustic which permits us to
continue the calculations of the ray solution after reflection. To achieve this -
goal, Smith (1975) has derived a uniform asymptotic solution of short surface
gravity waves near a curved moving caustic induced by an unsteady multidi-

rectional irrotational current. This solution can be expressed as

u = {AAi(p) + iC Ai'(p)} exp(is) (1.1)
with

p=-[30a-x))?, s=10n+x2),
4 ] ) (1.2)
A=xd(=p)i(a1+a3), C=7n3(=p)¥(a1-ay),

where u denotes any instantaneous properfy of the waves, Ai(p) and Ai'(p) rep-
resent respectively the Airy function and its derivative, and a,, a5, x; and x; cor-

-respond to the local amplitudes and phases of the incident and reflected waves



which even near the caustic have been proved by Smith (1975) to fulfill the ac-
tion conservation equation and the local dispersion relation. The above unified

formulae were summarized by Peregrine & Smith (1979).

In (1.2), the requirement that C remains finite and analytic at caustics
implies that a; and @, have equal singularities there. This, together with the
action conservation equation ‘enables us to conclude that the flux of wave action
normal to the caustic carried by the incident and by the reflected waves are
equal and opposite’ (Smith 1975). Thus, near the‘caustic, the amplitude of the
reflected wave relative to that of the incident wave can be determined in theory.
However, in the immediate vicinity of the caustic, the amplitude of the incident
wave itself cannot be solved accurately from the action conservation equation
by using any numerical methods (ray-tracing or gridded method), because q,
and x; are singular at the caustic. In the regions at a certain distance from
the caustic, the numerical solution of a; becomes reliable and the difference
between a; and a,, though small, is not negligible. Therefore from the action
conservation principle, we have in these regions,

a? a?
(UI+C,,2);§=—(U,+Cg,1)i+~~, (1.3)

where o, and o, are the intrinsic frequencies of the incident and reflected waves,
U, and Cy, the z components of the local current and group velocities, and the
z—axis (which might be curvilinear) is perpendicular to the caustic. In (1.3)
the extra terms denoted by dots (the contents of which will become clear in
section 7) are small comparéd with each of the fwo terms shown explicitly, but
otherwise are not negligible in a general situation in which the convergence of
the action flux in the y—direction or the local rate of change of wave action is
significant. From (1.3) it follows that
ax (Uz + Cyz1) /01 5

a; (Ur + ng2)/a2 ( )

in which ¢ again represents a small quantity, because

(Uz + ng‘l)/gl ~ "(Ux + ng’2)/‘72

4



in these regions. The relation (1.4) permits us, in theory, to determine the
amplitude of the reflected wave in terms of that of the incident in the vicinity
of the caustic. However, since for both incident and reflected waves, U, +C,. =0

at the caustic, we have

[Uz + Cyz1| < |Uy + Cyyr

(1.5)
le + ng2| < |Uy + ng2‘

in the regions not too far from the caustic provided that the components of ac-
tion fluxes in the y—direction are significant, which often occurs in the situation
when the waves and currents are not collinear. Consequently, slight misalign-
ment of the co-ordinate lines can cause large changes in U; + Cye1 and Ug +Cyz2 in
opposite directions, that will produce even larger percent change in ¢ in (1.4),
because ¢ « 1. Therefore a very serious error magnification phenomenon will
occur in the estimates of the difference between a; and a; in these regions in a
general situation if the action conservation principle is utilized directly. This
phenomenon will certainly become less severe in the regions far away from the
caustic, but in these regions the values of a;/a; in general cannot be determined
without a knowledge of a; itself, because in these regions the one-term asymp-
totic approximation of the parameter ¢ in (1.4) which can be inferred from the
solution values of a, alone will become invalid. Therefore it is of practical im-
portance to develop another theory for estimates of a/a; in the vicinity of the

caustic that can avoid the error magnification phenomenon.

The blockage and reflection of short waves by currents or long waves can also
occur to capillary waves with opposite characteristics as suggested by Phillips
(1981). The uniformly valid solutions of this capillary blockage phenomenon
weITe given by Shyu & Phillips (1990) and by Trulsen & Mei (1993) who even
derived a uniform solution near a triple turning point at which the two kinds of
reflection points coalesce to one. In these two theories, the expressions for a; and
a; take an explicit form instead of being described by the action conservation
equation or its equivalent, but these analyses were restricted to the case when
both the wave and current are unidirectional and are in the same or opposite

directions. (Shyu & Phillips’ (1990) theory also requires that the underlying
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current is steady in a moving frame of reference.) Thus an extension of the

theories to a more general situation is desired for practical applications.

In this paper we shall extend Shyu & Phillips’ (1990) theory first to the case
when short deep-water gravity waves propagate obliquely upon a steady unidi-
rectional irrotational current. In this case, a second-order ordinary differential
equation for the surface displacement of the short waves is again deduced from
the Laplace equation and the kinematical and dynamical boundary.conditions,

which can be written as

8? . o
5:2 ¥ [milkar + ksa) + Q]a—z + [—karksz + Pln = 0. (1.6)

The similarity between the forms of this equation and the equation (6.3) in Shyu
& Phillips (1990) is remarkable, although k, and k, in the latter are replaced
respectively by k., and k.. in (1.6) due to the fact that k; and &, in the present
case also contain k,; and k,, respectively, which are irrelevant to the variation

of 5 in the z—direction.

In (1.6), the terms —i(k,;; + k;2) and —k,1k,, arise from the fluctuation of the
waves and therefore specify their basic properties, while P and @ account for the
modulations of these local properties, including the local amplitudes. Thus the
terms in the coefficients of (1.6) (and in the analysis) can be divided into two
classes accordingly, and if the current field and therefore the local properties of
the wave trains vary slowly, one may expect that the Class 2 terms should be
small compared to the Class 1 terms in the same equation (for example, |P| is
smaller than |k; k.2|), but since these Class 2 terms have major effects on the

modulations of wave trains, they are not negligible in the present theory.

The expressions of P and Q in the present case are much more complicated
than those in Shyu & Phillips (1990), but still their regularities at the caustic
will be shown in section 4. On the other hand, although k;; and k., are the two
branches of a doublevalued function and therefore are singular at the caustic,
their singularities can apparently be cancelled out from —i(k;1 +kz2) and —kz1kzs.
Therefore equation (1.6) is regular at the caustic and its uniform asymptotic

solution and the corresponding WKBJ solution are derived in section 5, which



except the expressions of the Class 2 terms again take the same forms as those
in Shyu & Phillips (1990). All of these similarities lead us to hope that even for
waves in an intermediate-depth region and near a curved moving caustic induced
by an unsteady multidirectional irrotational current, the forms of the solutions
may still be the same. This anticipation, especially the regularities of the
resulting equation and its uniform solution, will in section 6 be verified through
considerations of the dispersion relation and the action conservation equation,
the validity of which in the vicinity of the caustic has been demonstrated by

Smith (1975) in exactly the same circumstance.

In this general situation, the expressions of the Class 2 terms in the solu-
tions cannot be obtained, though their Taylor series expansions with center at
the caustic are proved to exist in section 6. Since some of these Class 2 terms
are responsible for a; being unequal to a; in the vicinity of the caustic, their es-
timates in this region in a numerical computation is crucial for a continuation 7
of the ray solution after reflection. The algorithm for this estimation is devel-
oped and tested in section 7 through numerical simulations of a straight and a
curved caustics, but its validity in the case of a moving caustic is also obvious.
In this algorithm, by taking advantage of the explicit forms of the expressions
for @, and a,, the aforementioned error magnification phenomenon can mostly
be avoided. These estimates still represent an asymptotic approximation so
that their accuracy is examined through a comparison between the analytical
and numerical solutions in the case of a straight caustic in which the expres-

sions of the Class 2 terms exist.



2. The ordinary differential equation for a single wave component

In this section we shall derive an ordinary differential equation for short
deep-water gravity waves propagating obliquely on a unidirectional irrotational
current U(z)i where i denotes the unit vector in the direction of increase of
z. For a gravity-capillary wave propagating in the direction parallel to this
current, Shyu & Phillips (1990) have derived a third-order ordinary differential
equation in the surface displacement 5 of the short waves. This equatioh was
then decomposed into a second-order ordinary differential equation in which all
the coefficients are regular at the caustic so that a uniformly valid solution of the
wave reflection phenomenon by currents can be obtained. That this approach

was successful was because in this case, expansion of the dispersion relation

n=(g'k+vk%)3+ Uk (2.1)
takes the form
2 / 2
ks_U_k2+y_j'__2_7_l(ik_"_:0’
Y Y Y

which is a third-order polynomial equation in the local wavenumber k and its
coefficients coincide exactly with the Class 1 terms in the coeflicients of the
above-mentioned third-order differential equation (see (2.18), Shyu & Phillips
- (1990)). In (2.1), ¢ is the effective gravitational acceleration suggested by
Phillips (1981), n the observed frequency of the wave, and 4 the ratio of surface
tension to water density.

In case that the waves propagate obliqueiy upon the current and the effects

of surface tension are neglected, the dispersion relation becomes
n=lo(k2 + kD + Uk, (22)

where k, and k, fepresent respectively the z and y components of the wavenum-
ber vector k while the z-axis is chosen to ,be exactly opposite to the current (so
that in (2.2) U is always negative) and the y-axis be horizontal and perpendic-
ular to the z-axis. Notice that if the slope and curvature of the mean free sur-
face becomes significant, the z-axis is also curved and the gravitational acceler-
ation g in (2.2) should be replaced by ¢’ according to Phillips (1981), Longuet-
Higgins (1985, 1987) and Henyey et al. (1988). An expansion of (2,2) yields

U%k2 — 4nU3K2 + (602U — g2)k2 — 40Uk, + (n* — ¢%k2) = 0, (2.3)

8



which is a quartic equation. From it and from Shyu & Phillips’ (1990) analysis,
it is anticipated that a fourth-order ordinary differential equation is desired in
order to eventually obtain a second-order equation by decomposition that can

describe the reflection phenomenon as well as be uniformly valid.

To obtain such equation, certain results of the ray theory will be utilized.
The latter is invalid in the immediate vicinity of the caustic, but as long as
we can prove that the resulting differential equation is regular at this point
(meaning that the singularities inherent in the ray solutions of the incident
and reflected waves are completely offset from this equation), this equation can

virtually be applicable everywhere, including the caustic.

Also we emphasize that both the uniformly valid solution and the ray solu-
tion represent the first-order approximations of asymptotic expansions and in
these expansions each differentiation of the slowly varying parameters increases
the order by one (see e.g. Whitham 1974). Therefore, in the following discus-
sion, the derivatives of these parameters, except their first derivatives which
corresponding to the Class 2 terms in the solutions, and the products of any
two derivatives of these parameters can all be neglected, and if following this
ordering, there is no need to introduce explicitly an ordering parameter in the

“analysis.

For a slowly varying wavetrain, the distribution of k is irrotational (see e.g.
Phillips 1977) so that

ok, 0Ok, _
e~ 5o =0 (2.4)

On the other hand, since the current velocity is independent of y, we have

Oks Oky
3!7 =0 a.nd ay = 0. (25)

Frol‘n (2.4) and (2.5) it immediately follows that
| k, = constant

everywhere. Next, from the kinematic conservation equation,

8k
E'FV!I—O.
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Thus, if the current field is steady, we also have
n = constant = ng, say

everywhere. Therefore, the ray solutions of the surface displacement 5 and the

velocity potential ¢ of a single wave component can now be written as

n = a(z)exp [z / ko (z) dz:] exp i(kyy — not), - (2.6)

and

¢ = A(z)exp [i/k,(z) dzr + /02 I(z,2) dz] exp i(kyy — nat), (2.7)

where a(z), A(z) and k.(z) vary slowly in the z-direction and I(z, z) varies ‘slowly
in both z— and z-directions. For the sake of definiteness, we here take z = 0 to
be the mean water level. Notice that in the present case the roles played by &,
and no in the solutions are quite similar.

The relation between k, and I can be deduced from the three-dimensional

Laplace equation

(5-1:—2--{-5?4'@)(25—0. | (2.8)
Substitution of (2.7) into (2.8) yields
dk 1dA ol
2y ;O o 1dA o OO0 _
k‘”+lda: +2lszd:c ky +1 +3z 0 at 2=0, (2.9

in which the higher-order term (1/4)(d®>4/dz?) has been neglected. In (2.9),
both ! and 81/8z are unknown so that another equation is required for their
determinations. To obtain this equation, we may reconsider the simpler case

when the waves are exactly opposite the current. In this case, (2.8) reduces to

9z 9
(3::2 + 322) =0 | (210
or

CAYE I AV
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In addition, from the deep-water boundary condition and the fact that the
phases of oscillation of both incident and reflected waves increase in the positive
z-direction (because both k; and k, are positive), it is clear that the present

solution should satisfy

((% - i(;?—z) $=0 (2.11)

only, otherwise ¢ will grow exponentially as » — —oco (for a rigorous analysis,
see Shyu & Phillips 1990). Substituting (2.7) into (2.10) and (2.11) and setting

k, =0 and k, = k, we have at the free surface

dk 1dA ol
24 8 ) Wiliinkod 2, - .
B i 42k 4 Py o =0 (2.12)
and
. 1dA .

Squaring both sides of (2.13), neglecting the higher-order term (1/4)*(dA/dz)?,
and then subtracting the result from (2.12), we obtain

al
0z

~_;dk
z:O— d:L"

The above relation involves only smaller terms so that when the waves
propagate obliquely upon a unidirectional current, the small curvature of the
wave crests induced in this case will impose even smaller modification upon the
above relation, which is certainly negligible within the present approximation.

Therefore, for the present case,

al . Ok

E z=0= —15?, (214)

where k = (k2 + k2)!/? represents the magnitude of k and z’ is the co-ordinate
in the direction of k. This expression in the present co-ordinate system can be

written as

oy _ . kdk,

9zlizo™ "'k dz” (215)

11



because k, = constant and k, is independent of y. Substitution in (2.9) yields

1dA

kz
2] 2 BT O YA
Bl o= ¥ = 2ik, o — —i(1 = 25)
and its square root is
ks AT i :
o= k—ig 7 —3(-2) % (2.16)

within the present approximation. (In the following discussion we shall use a
prime to indicate differentiation with respect to z in certain circumstances.)

Notice that (2.16) can be reduced to (2.13) when &, = 0.

From (2.7) and (2.16) and neglecting the higher-order terms, one can obtain

at z=0

0 .k

5 = ’[1— coﬁ +zc1k'] a (2.17a)
m =gl 1¢ 1
g%‘-ﬁ- :i%’[l zc()le4 +103k']d Qg , (2.17¢)
glf = z’-"—[l —dco— 1 +zC4k']6 355 (2.17d)
where

co = kl_,(l - % , W

om )

¢y = —7:?(1 3:2 + %:—:-) L (2.17¢)

3= — k2(2 ‘;’:i+y—ci)

=g Gt g

These will later be applied to combine the two surface boundary conditions into
one equation. Note that when k, =0, (2.17a) also reduces to (2.11).

12



Since the z-axis is taken in the direction exactly opposite the current and
the latter itself is steady and unidirectional, the expressions for the approximate
kinematic and dynamical free-surface conditions in the present case take exactly

the same form as those derived in Shyu & Phillips (1990), which when v = 0 are

—ingn+Un' +9U' = g—f at z2=0, (2.18)
9
—ingd + gn + Ua_z =0 at z=0. (2.19)

These equations represent a linear wave approximation but otherwise are exact.

If the two-scale approximation is imposed further, we have

(—ing +2U" Y + Uy" = aa:gz, (2.20a)
(—ing +3U" )" + Uy = aaz?az (2.200)
(=ino + 4U)n" + Un!¥ = aas‘;z (2.20¢)
from (2.18), and
(—ing + U’)g¢ +g1 + U(9 f =0, (2.21a)
(—ing + 2U’ )a 5 +9n" + U83¢ 0, (2.21b)
(—ing + 3U’)% +gn" + Ug%f =0. (2:21¢)

from (2.19). These equations can be combined into one equation in n by virtue
of (2.17) to eliminate ¢ from the equations. Although there are many (actually
inﬁpite) ways to achieve this, according to Shyu & Phillips (1990), it will be
more useful to derive a fourth-order ordinary differential equation with the
Clats 1 terms in the coefficients coinciding with those in (2.3). Therefore, we
first substitute (2.17c,d) and (2.20b,c) into (2.21c), obtaining

k !
UV 49" |=i(@2noU + 1) + 00" + co%f% + (€3 — ca)noUE, — ik k']
z z

+1 [-ng — in2(cs — cq)k! — 6inoU'] =0. (2.22)

13



Next, substitution of (2.17b,c) and (2.20a,b) into (2.21b) yields

k kA’ k
Uy + 0" |—i(2noU + “,’c—) +5UU" + co-‘l’c—% + (cz — c3)noUkL — caj’c—kg]

+7' [—ng —ind(cy — ca)kl, — 4inoU'] =0.

Multiplying it by —2ino/U and igk/UZk, separately, we have

. 2n, 2ing gk A’
__2moUn"’—n"[ U oU+—)+10moU'+co UO‘(I]ct 1 + 2i(cq — ca)nikl
2ing gk ,, , 21 2ing nd , Uy
e ARy = +(c2—C3) Mok +8n OU]_O (2.23)
and
ﬁ " " . gk gk ﬁg/_ . Co gﬁ Zil . ng ’
BT [mk (2"°U+k$)+5'k, g tipe () T ek

2
—_ ! / n ng gk ! ng gk 2
- luz( ) k ] [ U2 k + (C2 C3) IE ks k' 4-U_2F-U] =0 (224)

respectively. Also, substituting (2.17a,b), (2.18) and (2.20a) into (2.21a) and
multiplying the result by —n2/U, we obtain

U no gk A’

n
—n2n +7 [z— 2n0U+ gk ) 3Ing 0 co 7z LA — (a1 — cz)—iok',

"o gk / ! 0 0]
+erg k]+ [ +z(cl—62) k +2U2U] (2.25)
Since from (2.17e),
k2
61—02202—63263—C4=p—1—2, (226)
the sum of (2.22)—(2.25) can be written as
. , »
UtV 4+ 9" [—4inoU + 70U + co-gfi + (3 — ca)noUkl, — c42£k’]
ky A k
") a2 Lk_ 2 _ . 9% N gk _.qic_ _ il_
+7 { 6ng + (Uk,) (16ino — 5: )U U (ka 2ng) v
+ [—31(02 - ca)no zca( ) +i(c2 + 03)n0 ]k'x}
4in} LU no gk n gk A’ nd ,
+ [ lln U U Uk C U Ukz- A 3(62—03)(]]&'1.
+ (22— ca)"'2 k’] + [ tier— ) 0k 42 —9—U’] =0. (2.27)
uvu U? vz* U? ’

14



Notice that if (2.6) is substituted into all the above ordinary differential
equations in 7, from the Class 1 terms of the resulting equations, one can always
obtain the dispersion relation (22) This is because the local dispersion relation
can essentially be achieved from the zeroth-order equation in the hierarchy
arising from an asymptotic expansion. Also we note that all of the above
equations in n can specify the variation of a single wave component, including
the modulation of its amplitude, in the regions away from the caustic. However,
in order to eventually obtain a uniformly valid second-order ordinary differential
equation which can thus describe the wave reflection phenomenon by currents,

we shall in the following restrict our consideration only to (2.27).

The Class 1 terms in the coefficients of (2.27) indeed coincide with the
coefficients of the quartic equation (2.3) if the operator 8/9z is replaced by ik,
at certain places in (2.27). The Class 2 terms in (2.27) can further be reduced

and written in terms of U’. To achieve this goal, the following relations should

be applied:
! k’ /
K =-7U, (2.28)
1 1k
1
A= —iig:la, (230)
a A kK
S=S+2 (2.31)

which can be derived straightforwardly from the dispersion relation (2.2) and
the boundary condition (2.18) as well as (2.16). In (2.30), all terms containing
a',k,, and U’ have been neglected, because in the present analysis, the relation
(2.:}0) will always be substituted into the Class 2 terms so that the terms ne-

gleéted will contribute to the even higher order terms only.

Using (2.28)-(2.31), replacing 5" with

o A k2
[2:k,; +ik; 1+ ﬁ) - ki]n

15



when necessary, and neglecting the higher order terms, (2.27) may finally be

reduced to

UtV 4 9" [—4inoU] +7" [—6ng + 3—22] +7 [41’—71—3-]

U
nd %2 gkk, | (gk)} g3k:
n[53 - T+l (-62 2 42 4 2k2)]‘° (@32)

Since in deriving (2.32), only a single wave component is under consideration
and k. cannot be eliminated from (2.32) through any further transfer of terms, it
is apparent that this equation can truly describe only one individual component
(though from the Class 1 terms it seems to have four independent solutions
corresponding to the k1, k2, k3 and k.4 components in figure 1) and is singular
at the caustic. Nevertheless, this equation will later be decomposed‘into a first-
order differential equation, which either for the incident or for the reflected
wave is again singular at the caustic, but a combination of them can result in

a uniformly valid second-order ordinary differential equation.
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3. The equation coupling the incident and reflected waves

The technique for decomposing a higher-order differential equation into a
lower-order one in a general asymptotic analysis was first given by Turrittin
(1952) (also see Wasow 1985). For the special case to decompose (2.32), one may
refer to Shyu & Phillips (1990). Since each time the procedure can decrease the

order of equation only by one, this procedure must be conducted three times.
The result is

n' — nlikey +iRy) =0, (3.1)
where
1 - . A .
Ry = r—k—(Px + ik Q1 + iky), (3:2)
zl — Azr2
P] = 1 _bl [kzak:4 - (kxl + k:z2)(k1:3 + kx4)
(kz3 — kz1)(kzs — kz2) (k:2 — kga)(kza — k1)
+kerkes + (62, + k)| + 77 (ke o+ Koy — 261 Rzl
.kz3 - k::l ’
+ 1m(kx3 + kx4 - 2kz2)kzlk::2 ) (3‘3)
x T
A 1 Zbl kz2
kz + kz - kz‘ L
Ql (kz3 - zl)(kza - .1:2) { (k::2 - kz4)(kz4 - k )( 3 4 2T tl) 34 - k::l
kz3 — ks
. (kzs + kg4 - 2k31)k k—4—_—k——1—(k,3 + k,,-4 2k32)k;2}, (3.4)
and
by = iU’ [6”""‘" - (”’“)° ] (3.5)
U%*

Sin{ce the four eigenvalues of the matrix composed of the Class 1 terms in the
coéﬁcients of (2.32) are identical with the four roots k.1, k2, kr3 and k.4 of (2.3)
muhtiplied by i = v—1, these four wavenumber components have entered into
(3.1) symmetrically.

To obtain (3.1), the parameter k. in (2.32) has been fixed as the wavenumber
component k.; of the incident wave such that (3.1), including its Class 1 and

Class 2 terms, can truly describe the incident wave in the regions away from
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the caustic. The corresponding equation for the reflected wave can directly be
obtained from interchange of k., and k., in (3.1)-(3.4) and from replacement of
k; and k;y by k, and k., respectively in (3.5), giving
7 — nliks2 +iR3) =0 (3.6)
with
1 . )
Ry = ———(P2 + iks2Q2 + iks,), (3.7)

k1:2 - kxl

where P, and @, take the same forms as (3.3) and (3.4) except that b, is replaced
by

gkakzo _2(9’62)% B 49%k§z]

— gI7!
by = iU’ [6£2 Ea |

(3.8)

Both (3.1) and (3.6) are singular at the caustic where k;; = k;2 (see figure
1), which is not unexpected as the reflection phenomenon cannot be described
by a first-order differential equation. Nevertheless, a combination of them into
a second-order equation can couple the incident wave with the reflected wave
and in the meantime cancel out the singularities from the equation. Note that
during the decomposition we have already obtained a second-order equation
before (3.1) was reached, but this equation cannot describe the incident and

reflected waves simultaneously, therefore is singular at the caustic.

Intuitively, we may combine (3.1) with (3.6) as

{ g~ ither + Rl { =~ ilber + Rl =0, (39)

but it can describe only the k; component, because the coefficient k., in (3.9)
is not constant (the differentiation of the Class 2 term R; with respect to z is
however negligible within the present approximation). An expansion of (3.9)

yields

0" — [ike1 + ikzsz + i(Ry + R2)| 0 — [ke1ks2 + (kz2R1 + ko1 R2) + ikl |0 = 0, (3.10)
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which is obviously not symmetric with respect to k.; and k.;. To solve this

problem, we add, from (3.1) and neglecting the products of two Class 2 terms,

kpy —kye o o k3 =k,
Ly L Fep— A1
kzo — kzy m -tk kzo — ks n=0 (3.11)
to (3.10), resulting in
7'” + [_i(kxl + kz‘?) + Q]ql + [—kzlkz2 + P]ﬂ = 0) (312)

where

keokly — koK.
P = —(kg2Ry + kp1 Rp) — i—22-21 —_=1722
k$2 - kzl
kyy — ks
kz2 - k::l '

(3.13)
Q= —i(R1+ Ry) +

Since (3.10) and (3.11) can both be fulfilled by the %, component and on
the other hand, (3.12) together with (3.13) is symmetric with respect to k., and
k2, it is obvious that the two independént solutions of (3.12) will correspond to
the k, and k» components. Furthermore, in the following section we shall prove
that all singularities can be cancelled out from (3.12) so that as a multiple-
scale asymptotic approximation, this equation can virtually be valid everywhere
including the caustic. Remark that in view of (3.2)-(3.5), (3.7), (3.8) and
(3.13), the parameters P and Q in (3.12) again represent the Class 2 terms of

the coefficients.
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4. Proof of regularity
The sufficient condition for (3.12) being regular at the caustic is that the

coefficients in (3.12) are all regular at this point. Since k.1 and k., are a pair
of the solutions of the quartic equation (2.3) which become identical with each
other at the simple turning point (the following argument will not hold for a
triple turning point suggested and investigated by Trulsen & Mei (1993)), they

can be divided into two parts:
kzgi=M~—-N, kzo =M+ N, (41)

where N and —N are two branches of a doublevalued function, say ¢!/2, which
equals zero at the caustic, and M and v are both regular at this point. From

the above,

N%=y, NN' = %W, (4.2)

so that N* NN' N 4,N3N’ , etc. are all regular at the caustic. Therefore we shall
in the following prove that when (4.1) are substituted in (3.12) and (3.13), only
this kind of terms and the terms devoid of N can survive cancellation.

First, from (4.1),
ket + ko2 = 2M, koikey = M? — N,

Therefore the Class 1 terms in (3.12) are obviously regular. Next, from (3.13),
(3.2) and (3.7), we have

-1 . S A A
P= ———[(ke2 Py — k1 Py) + ikz1kz2(Q1 — Q2))],
. kzy — k-‘t?

-1
kzl - kzZ

(4.3)

Q= [1(131 - Pz) - (kxlél - kx2Q2)] -

Recall that the only difference between P, and P, or between @, and Q, is that

the former involves b, while the latter involves b, in (3.3) or (3.4). Thus we have

- - 1
Pl - Pz ='Ij [-—kzakm + (kzl + kz2)(k1-3 + kz4) - kzlkz2 - (kzl + kz2)] (bl - bZ)’ (4'4‘1)

Ql - QZ =‘2'(ka:3 + k:4 - kz‘2 - kzl)(bl - bz), (4.4b)
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kPt = ko Py = { [akon + (Kot + Koo + ko) — Bk = (K2 + £29)] (ke — kurbo)
 i(ker = koa) (kas + ket — 2ks1)(kes ~ ks2)(kos — kz2)kzakly

+ (ko3 + koq — 2kz3)(kzs — kg1 )(kza — kzy)kzikl, }, (44¢)
and

R .1,
ko1Q1 — k22Q2 =Z{t(kz3 + kza — kg2 — ke1)(kz1dy — kz2b2) + (ko1 — kg2) [(kza + krq — 2kz1)

(ks = kea) e = Bl + (b + et = Dhen)(hes = Ror) ke — ) .
(4.4d)

where
= (kg3 — kz1)(kzs — kr2)(kz2 — kza)(kza — kz1). (44¢)

From (3.5) and (3.8) and by using (2.2), we also have

. U' (12
bl - bz =1(k,1 - k,g)m{ﬁng +8UT - 18no(k,;1 + k,z) [4]02 flo (kzl + k,z)

k2k2 yp?2

+ 12n0k2S — 12k2';]°T AUK(KL, + kby) — AURZ ko koo T

+ 12n0k2, k2, (kpy + kop — -’I‘]—") - 4Uk31k32T] } (4.5a)
kzaby — kz1by =i(ksy — ko2) 75 B {SUka:lk::2(kzl + kz2) — 18nokz1kz2 + 2U2 kfllcg
[4 e  korkes + 12n0k2ks1koaT — 126220 U° kotkoo(koy + ks2) — 4URk, kopS
475 L ENTIN 12n0k3, K2, — 4UKZ K, (ker + kso)| } (4.5b)
and
k,lb; kesby =i(kn1 — kea) 7 {12"° (ks1 + k,z) +8US - 18n,T — 2U2 k21k2

[4822

e mo, 12n0k2(k2, + ki) + 12ngkZky kT — 126218 S +45s 5 2 2

U2 z1%z2

2
— QUEZ(K3, + k2,)T + 12n0k2,k2,T - 12%%&::11:32(1:,1 + kz2) —'4Uk31k§25] }

(4.5¢)

21



where

S = (kz1 + kz2)(k2y + k25), }
(4.5d)

T = kﬁl + k:2 + kzlk:ﬂ-

Therefore, from (4.4) and (4.5) it is clear that the denominator k;: — k.2 in (4.3)
can be eliminated from both P and Q, after which they become symmetric about
k-1 and k,2 so that when (4.1) is employed, all terms containing odd power of
N (including N’) will be cancelled out, ensuring that (3.12) is regular at the
turning point. Hence one may expect that (3.12) is uniformly valid near and
away from the turning point.

The values of P and Q at the caustic can be calculated exactly by using
(4.3), (4.4) and (4.5), but in order to do that, it is necessary to substitute (4.1)
into (4.4c) and (4.4d) to eliminate k., and k;, (which become infinite at the
caustic) in favour of M’ and NN’. Both M’ and NN’ are regular at the caustic

as mentioned before, and since at this point,
it is not difficult to obtain from (2.28), (2.29) and (2.2)

ng — UMy Mﬁ(]’
ng+2UoMo Up '

1(no Mo 2 M, n}— UEME
"=zl - B S i ok e B i DO Y 4 4.
M [3 (Uo SMO) no + 2Ug M) + 3 Uo (no + 2UoMp)? ) (4.7)

NN' = (4.6)

at this point, where U; and M, are the values of U and M at the same point.

Hence the calculations of singularities can now be avoided completely.

Finally, we note that from (2.17a), (2.18), (2.19) and the relation

AI

> 2z0 (ik’ + 7)¢

dz

resulting from (2.7), one may directly obtain two first-order equations for the in-
cident and reflected waves, which are much simpler than (3.1) and (3.6). These
two equations can also be combined into a second-order equation and proven

regular at the caustic. However, in this second-order equation, the Class 2 terms
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of the coeflicients corresponding to P and Q in (3.12) cannot be calculated ac-
curately at the caustic, because after all substitutions and reductions, they still
contain two terms which are both singular at the caustic, though their singu-
larities can balance each other. Another disadvantage of this simpler equation
is that when k, = 0, the expressions of the Class 2 terms in this equation can-
not be reduced to those in (6.3) of Shyu & Phillips (1990), but (3.13) can be
reduced to (6.4) in Shyu & Phillips (1990).
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5. Solutions of reflection phenomenon

The equatioh (3.12) in terms of the parameters k1, kz2, P and Q takes the
same form as those derived by Shyu & Phillips (1990) so that the uniformly
valid asymptotic solution of (3.12) can similarly be derived using the treatment

suggested by the results of Smith (1975).

Following the precedent of Shyu & Phillips (1990), we first eliminate the first
derivative term from (3.12) by a change of the dependent variable 7, such that

n = (z)exp {—% / ik + ku2) + Q] dz} eilhuy=nat) (5.1)

where v(z) is the new dependent variable. Next, substituting (5.1) into (3.12)

and neglecting the higher-order terms involving @’ and Q?, we obtain

v +v(H +G) =0, (5.2)
where
1
= (ka2 ~ ks1)?, (5.3)
G =P+ ko + ke2)Q + 5 (kb + ko). (5.4)

Equation (5.2) is still regular at the caustic, and from Smith’s (1975) results,
we may expect that

v(z) & AgAi(—r) — CoAY(~r), (5.5)

where Ai'(-r) = {dAi(z)/dz},--, and

2 3 € 1 3
—_r2 = — 2
31' ./oH dz,

™ % £ 1 1 &
Aoz(ﬁ) cos | — §G/H2 dz ), (5.6)

0
Co=r"*H %¥sin (-/ %G/H%dz).
0 7

For the sake of definiteness, we have taken z = 0 to be the caustic and assumed

that H > 0 for z < 0, corresponding to a situation in which the reflected wave is
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shorter and its group velocity smaller than the incident wave (see figure 1 and
recall that C, = 80/0k).

The fitness of (5.5) and (5.6) can easily be verified by substituting them
into (5.2), which results in

d2
d2

d?Cy

+o(H+G) = "A°A( ") - SRA(-r) (5.7)

as Ai”(-r) is eliminated in favour of —rAi(-r). Since the coefficients 4, and C,
in (5.5) have been separated from the rapidly varying parts of the solution, the
terms on the right-hand side of (5.7) are again negligible so that the differences
between (5.2) and (5.7) are insignificant. Furthermore, if A, and Co are regular
and therefore remain slowly varying at the caustic, the solution (5.5) (and (5.1))
is also regular here and will satisfy the equation (5.2) everywhere, including the
caustic, within the present approximation. Therefore we shall demonstrate the

regularity of 4, and C, at the caustic in the following way.
In the vicinity of the caustic, from (4.1), (4.2) and the Taylor’s theorem, we

have

1
H=Z(kmz—kzl)z=N2=1/)1I+'/J2$2+-",

where ¢, = dy/dz|,—0 and 2¢, = d*/dz?|.—0. Thus

- [t ae=ueo [F 4 2a ]

(5.8)
*1 _ 1G 1y
-/ = Y dzr = Go(— b—z)} -2 .
/02G/H dz = Go(—9,) 7 (-2) [1+(3G 6¢1)2+ ],
where G = Gy + Gz + ---. Substituting (5.8) in (5.6), we obtain
| r= (cobeen) [1o g Be ] )
= (=)t 1= (1Y lﬁ) ]
Ao = () [1 (5¢’1+2 AR E L (5.9)
= Go(—y1)~} |1 - lﬂ_lﬂ) ]
Co = Gol=w1) [1 (15¢1 3Go) "t )
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in this region. Since the expressions in (5.9) represent the Taylor-series expan-
sions about z = 0 and their radii of convergence can be expected to be very large
for a slowly varying current field, Ao, Co and r are indeed regular at the caus-
tic. Therefore (5.1) together with (5.5) and (5.6) represents a uniformly valid

asymptotic solution.

At points away from the caustic, Ai(-r) and Ai'(~r) can be replaced by their

asymptotic approximations, which for r large and positive are

Ai(-r) = 7~ 3r % sin (%T% + %ﬂ'> ) (5.10)
y _11 2.5 1
Al (—r) ~—7 2ricos (57‘3 + Zﬂ’) . (5-11)

Thus from (5.1), (5.5) and (5.6), we have

T T
nzH"%exp [/0 %(—Q - iG/H%)dz] expi [/0 kg1 dz + kyy — not — %w]
+H-% exp [/ %(-—Q + iG/Hé)d:c] expi [/ krodz + kyy — not + %w] (5.12)
0 0

for <« 0. This solution represents the WKBJ approximation; it obviously
fails at the caustic where H = 0, but can nevertheless indicate the existence
of the incident and reflected waves, as well as show their relative amplitudes
and phases (an irrelevant constant common factor was neglected from (5.12)).

Consequently, we have the local amplitudes
H~Y%exp [f: %(-—Q—iG/H%)dz] (k: component);
a= (5.13)

H-Y4%exp [f: %(—Q+iG/H%)d:c] (k2 component).

(notice that G is pure imaginary while H and @ are real), which have been

proved to satisfy the action conservation principle at and away from the caustic.
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6. Extensions to general cases

A difference between Smith’s (1975) theory and the present theory is that in
the latter, the expressions for the amplitudes of the incident and reflected waves
take an explicit form while in the former, the variations of these quantities were
demonstrated to fulfill the action conservation principle everywhere, including
the caustic. The present expressions, especially those in (5.13), if also valid in
a general situation, will later prove of great use in the improvement of an error
magnification phenomenon occurred in the estimates of the amplitude of the
reflected wave in terms of that of the incident wave in the vicinity of the caustic
during a numerical computation, which are required for the ray solution to be
continued after reflection at the caustic. To achieve this goal, we shall in this
section demonstrate that even when the water is of intermediate depth and the
underlying larger-scale irrotational flow is multidirectional and unsteady, the
solutions of the wave field in the vicinity of the caustic still take the same forms

as those derived in Shyu & Phillips (1990) and in the preceding section.

When the larger-scale flows are not unidirectional, the caustics are unlikely
to be straight. Thus it is necessary to derive the solutions in a set of orthogonal
curvilinear co-ordinates in which the z—axis is perpendicular to the caustic.
Therefore we define all the lines z = constant are parallel curves and z = 0
corresponds to the caustic (see figure 2), so that the scale factor A, in the z-
direction is independent of the position. On the other hand, if at the caustic
we set the scale factor in the y-direction h, = 1, the variation of h, in the z-

direction has the simple relation

4

hy=1- m—,—t—) (6.1)

whe‘ e R is the radius of curvature of the caustic which is large compared with
the lwavelength if the underlying current is slowly varying. This co-ordinate
system will certainly produce singularities\of the differential equations at certain
positions far away from the caustic, but since it is the present purpose to derive
the solutions in the vicinity of the caustic, these singularities can be avoided in

the present analysis.
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In this curvilinear co-ordinate system, the WKBJ solution of each wave

component can still be written as
= a(z,y,t)eX @Y 6.2
n

although the forms of the functions a(z,y,t) and x(z,y,t) in (6.2) are different
from those in a rectangular co-ordinate system. From (6.2), the z and y com-
ponents of the wavenumber and the observed frequency are
_Ox 1o Ox

k=5 BWER A "T e (63)
respectively. In (6.2) and (6.3), the dependence of a,k;,k, and n on z,y and ¢
are expected to be slow except that in the vicinity of the caustic, the variations
of a and k, with z will be rapid owing to the singularities at the caustic. Notice

that the variations of h, with z,y,¢ are also slow in view of (6.1).

From (6.2) and (6.3), equations (3.1) and (3.6) immediately follow with

Ry = —iL,
ay
(6.4)
!
Ry = _i22
az

The values of a}/a; and a}/a, cannot be determined without considerations of
the Laplace equation and the kinematical and dynamical boundary conditions,
which even in the vicinity of the caustic can result in the action conservation
equation as demonstrated by Smith (1975) in exactly the same circumstance,
who also derived the dispersion relation in this region which is again identical
with that in the regions far from the caustic. Notice that although the WKBJ
solution becomes invalid in the immediate vicinity of the caustic, the solution
values of a,,a,,k; and k, in this region determined frorﬁ the action conservation
equation and the dispersion relation are still meaningful, because a combination
of these parameters can represent the quantities in the uniformly valid solution

(see (1.1) and (1.2)).
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Next, following the same procedure as that in section 3, we again obtain
(3.12) together with (3.13). Thus if we choose

= semron S - [[ S}, e
0
which equivalent to (5.1) for a straight caustic, we can similarly achieve

v(z,y,t) = AgAi(~r) — CoAi'(~r) (6.6)

with

= - H%dz, (67)

ry\t 1 1 JIF P 1 L
Ao= (= -/ -GHed), Co=r-tH"% (—/ —GH=dz), 6.8
0 (H) cos( ) / z o=Tr sin 2 / (6.8)
in which

1
H= Z(k,z - k,l)z, (69)

G=P+ -;-(k,l +k22)Q + %(k’,l +EL,). (6.10)

The new variable r now depends on z,y and ¢, but its variations with respect to

y and ¢t will be slow.

The adequacy of (6.5)-(6.10) as a uniformly valid solution for the case of a
curved and/or moving caustic which occurred in a deep or intermediate-depth
region, depends on whether the singularities at the caustic can be cancelled out
from x; + x2,Q, G, etc., otherwise the above solution will become singular here
and the coefficients 4, and C, are no longer slowly varying in the vicinity of
the caustic, which will decline the use of the approximation implied by (5.7).
Thﬁarefore it is required in the following to demonstrate the regularity of (6.5)-
(6.10) at the caustic.

Since even for a curved moving caustic in an intermediate-depth region,
from the dispersion relation and the fact that U, +C,. = 0 at the caustic, one can

always prove that k;; and k,, represent two branches of a double-valued function
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with the branch point at the caustic z = 0. Therefore the phase function of the

incident wave can be written as

Ojw

X1 = [do + dyz + da? + - 14 5 [(=41)(-2) + 0(=?) (6.11)

(also see (9), Smith (1975)), where the coefficients of the Taylor series expan-
sions about z = 0 in the two square brackets are functions of y and ¢, which ex-
cept dy are slowly varying according to the discussion following (6.3). On sub-

stitution x; into (6.3) we have

ket = [dy + 2dyz + O(z%)] - [z + O(2)]E,

ddy  0d 19y 1 (6.12)
ks = |G+ S 1 07| - 3 38 (=) (- + 0

The other branches of (6.11) and (6.12) then provide respectively the phase and

wave-number components of the reflected wave:

ol

x2 = [do+ diz + oz + 1= 5 [(~4n)¥(=2) + 06D (6.13)

= [d1 + 22z + O(27)] + [r2 + O],
ddo ad1 ) 16:/)1 (614)
ks = |52+ G2 4 0h)] + 3 5 [(=00) =2 + O]
The above phase functions not only lead to the right forms of k;; and k.2, but
also ensure that V x k = 0 for both waves. However, the values of the series
coefficients dy,ds, ¢1, etc. can be determined only from the dispersion relation.
We notice in passing that for a curved caustic, even though &, is unequal to
ky2 when z # 0, their difference is much smaller than that between k.; and k.,
and is proportional approximately to (—z)%? (also with a smaller coefficient
(2/3)(—41)~1/20y, /8y) when the caustic is approached. A similar situation also
occurs to the observed frequencies n; and n, of the incident and reflected waves
for a moving caustic. These situations can benefit the numerical computations
of the reflected wave significantly as will be seen in the next section. Also we

emphasize that neglect of the higher powers of z in the Taylor series expansion
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of a slowly varying parameter is equivalent to neglect of its higher-order deriva-
tives with respect to z, because the series coefficients are closely related to the
derivatives of the same order.

From (6.11) and (6.13) it is immediately clear that x; + x2 in (6.5) is regular
at the caustic. On the other hand, from (6.12) and (6.14), we have in the

vicinity of caustic

H= %(k,g —kz1)? = 1z + O(2?). (6.15)
Consequently
- [ Hhde = 2wt + 0 (6.16)
4]
and
- [ 36114 s = Gal-w)H(=2)H1 + 0o (6.17)

if G is regular at the caustic and Go = G(z = 0). Substitution of (6.16) into (6.7)

results in

r= (=)} (=2)[1 + O(=)). (6.18)

Again the radius of convergence of the power series in the square brackets in
(6.18) can be expected to be large compared with the wavelength as long as
the underlying current is slowly varying. Therefore (6.18) indicates that r is
regular at the caustic. Furthermore, on substituting (6.15), (6.17) and (6.18)

into (6.8), we have

Ao = (—%1)"*[1 + O(z)], }
(6.19)

Co = Go(—¥1)~¢[1 + O(2)).

slowly varying) at the caustic. All of these results enable us to conclude that
the singularities at the caustic have been cancelled out from the solution (6.5)-

(6.10) provided that G and Q are also regular here, which will be demonstrated
as follows.

in :J]e vicinity of the caustic, so that A, and C;, are also regular (and therefore

Since the parameters G and Q also appear in the WKBJ solution, their

regularity can be proved through a consideration of the action conservation

31



equation, the fulfillment of which by the WKBJ solution even in the vicinity of
the caustic was demonstrated by Smith (1975). Thus, substituting (5.10) and
(5.11) into (6.6), using (6.7) and (6.9), and also taking (6.3) into consideration,
we obtain the WKBJ solution

-1 1 . 1 . 1
n =C(y,t)H 7 exp [/0 5(—Q - zG/H?)d:c] exp i (xl - Zﬂ')
+C(y,t)H Y exp [‘/: %(—Q +iG/H?) d:c] exp i <xz + lw) , (6.20)

4

where the common factor C(y,t) is independent of z. From (6.20), the local

amplitudes of the incident and reflected waves are

a; = CH ¥ exp [/ %(—Q - iG/H%)dz] ,
0

(6.21)
ay = CH™ % exp [/ %(—Q + iG/H%)dz] .
0
Therefore substitution of (6.15) for H and differentiation yield
ai 1 . i 1kgy — kzy
a; —2( Q lG/H ) 2kx2—ktl’
(6.22a,b)
ay 1 . 1 1 kgy — k2
ay 2(_Q+1G/H2) T 2kyy —kpy

The above expressions for a}/a; and d)/a; are exactly identical with those in
(6.4) if the expression (3.13) and the definition (6.10) for G are substituted into
(6.4) for R; and R,. This and the fact that (6.20) represents a rigorous asymp-
totic approximation of the solution (6.5)-(6.10) have put even more confidence
in the assumption that if the singularities at the caustic are completely can-
celled out from (3.12), this equation and the solution (6.5)-(6.10) will remain
valid uniformly in a region containing the caustic.

The variations of a; and a, have been proved by Smith (1975) to satisfy
the action conservation equation in the vicinity of the caustic. Therefore, the

regularity of the parameters @, G in (6.22a,b) at the caustic can be demonstrated
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through a consideration of the action conservation equation. First, from (6.12)
and (6.14) it immediately follows that

1kly — kL,

2h2_k1--—U+own (6.23)

near the caustic. Next, from the action conservation equation in the curvilinear
co-ordinates
0 (E; d E, 1 0hy ]
-2+ = = -7 2 =,
5 (=) + a2 [ v o 2] + L Rt [we v 2] + £ 2 [+ )2
(6.24)

in which the wave action density of the incident wave

Ey

_ L
o1 20’

where E, represents its energy density and p the density of water. Therefore,

substitution and expansion yield

@ _ 4} i(Uz'*'Cg:l)_ oy g(ﬁ)
a1 - 2(Ux + ng]) oz o0 20%((], + Cg,;l) ot (8

1 31 /] ajy 1 1
T T=2/R2aXU, + C,21) 8y [(U” + Con1) 0'1] Y R1-z/R

(6.25)

in virtue of (6.1).

The relation between ¢; and &, differs according to whether the water is
deep or of moderate depth, but in any cases, by using (6.12) and the dispersion

relation, one can always obtain the form of the expansion

Ur + Cg:l
g1

= V¥iz[ao + O(z)] + [e1z + 0(32)] (626)

in the vicinity of the caustic, where a¢ and e, are the leading coefficients of the
two Taylor series in the square brackets. The absence of e, from the second
series is simply due to the fact that U, + C,;; = 0 at the caustic. Thus from
(6.26), the first term on the right-hand side of (6.25)

oy 8 (Us + Cyzl [ﬂo + O(z)] (627)

1
TUs+Cpa) 0z \ ™ oy ) = g1+ 0@+

1
\/ Jl k4
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near the caustic. Since in the vicinity of the caustic, variations of wave proper-
ties perpendicular to the caustic are large compared to variations along the caus-
tic or with time, (6.27) represents the major contribution to a{/a; in (6.25) in
this region. Therefore, from a comparison between (6.27) and (6.23) it is imme-
diately clear that the term H-% in ¢, in the present solution (6.21), which leads
to the last terms in (6.22a,b) and therefore (6.23), is indeed consistent with the
predication by the action conservation principle as far as their first approxima-
tions are concerned. However, the values of G and @ cannot be obtained without

further evaluation of the second and third terms on the right-hand side of (6.25).

Since the first approximation a; ~ CH-% has been justified, from (6.15) we
have
CZ
vz

near the caustic. Also, from the dispersion relation, it is not difficult to see that

o~

(6.28)

the series expansions of o; and U, + Cyy1 Will possess the same form as that of
kz; in (6.12). Thus, using these series and (6.28) as well as (6.26), and recalling

that C and v, are slow functions of y and ¢, we obtain

71 0 af) &o
TR0 e\ ) E T 6.29
QaE(Ux+Cg;pl) at <0'1 1/}1:5) ( )
! bl 9 a?] __Go
“1=2/R2a%(U; + Cye1) Oy [(Uu +Cn) | T (6.30)

in which the Taylor expansion

is also used, producing the higher-order terms than that on the right-hand side

of (6.30). Consequently, from (6.27), (6.29) and (6.30) we have
—iGo = 2(Bo + €0+ (o), (6.31)

if (6.22a) and (6.25) are equal.

After the first term of the expansion for G was found, the next order terms

in (6.29) and (6.30) can be pursued by substituting G ~ G, into (6.21), which
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will result in the terms of zeroth power of z in (6.29) and (6.30). These terms
and the corresponding term in (6.27) as well as the term 1/2R arising from
the last term of (6.25), excluding those attributed to the series in (6.23), can
be identified with Qo = Q(z = 0) in (6.22a). This procedure can be continued
to determine subsequent terms in the expansions for G and @, and the results
show that these expansions indeed take the form of a power series with center
at z = 0. Although there is no way to estimate the radii of convergence of
these two series in a general situation, since the variation of the underlying
current is slow, it is not unreasonable to anticipate that these series will be
uniformly convergent in a large (compared with the wavelength) area centering
at the caustic. Therefore we conclude that G, Q (and P) are regular at the

caustic. This conclusion can also be drawn from a consideration of the action
conservation equation for the reflected wave, because in this case, following the

same procedure, one can obtain the same results except that the signs of the
terms containing /¥;z in (6.27)—(6.30) become opposite, which also occurs to
(6.22b) compared with (6.22a), so that the parameters G and Q in (6.22b) have

the same values as those in (6.22a) and are indeed regular at the caustic.

In summary, by investigating the power-series expansion about the caustic
and therefore the regularity at the caustic of each parameter in the equation and
solutions, we have demonstrated that even for a curved moving caustic and for
waves in an intermediate-depth region, the uniform asymptotic and the WKBJ
solutions in the vicinity of the caustic take the same forms as those derived
in Shyu & Phillips (1990) and in the preceding section. Since the existence
of the series expansions is proved from the dispersion relation and the action
conservation equation which themselves were deduced by Smith (1975) from the
Laplace equation and the kinematical and dynamical boundary conditions, the
presient solutions are not independent of the dynamics. These solutions have
provided explicit expressions for the amplitudes, although the Class 2 terms G
and @ in them can be determined only numerically. This explicitness will in

the next section prove of great use to a practical numerical computation of the

reflection phenomenon.
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7. An application to numerical computations

In this section, we shall conduct numerical simulations in two cases: a
straight caustic and a curved caustic. Since it will later become clear that
estimates of the reflected wave from the incident wave in the vicinity of the
caustic at each instant involves only the instantaneous values of various variables
and their derivatives with respect to z, and since the difference between n,
and n, near a moving caustic is as small as that between ky, and ky2 near a
curved caustic (see the discussion following (6.14)), any conclusions drawn from
the simulation of a curved caustic about the application of the present theory
may have implications for the case of a moving caustic. To eliminate other
complication without loss of generality, we also assume that all waves are in

deep water.

Since we have in the earlier sections derived the analytical solutions, includ-
ing the expressions of the Class 2 terms, in the case when a straight caustic 1s
caused by a deep-water gravity wave propagating obliquely upon a steady uni-
directional current, the results of the present numerical computations for this
case can be compared with the analytical solutions to show the accuracy of the
numerical schemes applied in both cases of a straight and a curved caustics. To
achieve this purpose, even for a straight caustic, we deliberately take the direc-
tions (denoted by z’ and y') of the computational grid not along U so that no
simplifications which may originally suitable to this special case will be made

and the extension of the numerical model to the case of a curved caustic 1s
straightforward. Also we note that although the analysis in the preceding sec-

tion was made in a curvilinear co-ordinate system, without a prior knowledge
of the location of the caustic, the differential equations can be solved numeri-
cally only on a rectangular grid for the incident wave, after which and after the
caustic was determined numerically, the components of each vector relative to
the curvilinear co-ordinate system defined in section 6 can be calculated from
those referred to (z',y), that will be utilized to determine the reflected wave in

the vicinity of the caustic.

Determination of the incident wave and the caustic
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Since in the present simulations the underlying currents are steady, the

action conservation equation can be reduced to
0 a? e} a?
w [(Uzl + ngl)7] + a_y’ [(Uyl + ngl)F] = 0, (71)

and the apparent frequency n remains constant (denoted by ny again) every-
where so that the wave-number components k.. and k,, can be determined en-

tirely from the irrotationality

Ok, Ok
—_— e —— = 7.2
dz! oy 0 (72)
and the dispersion relation
2 2144
no = [g (k2 + £2) ] + Upky + Uykyr. (7.3)

The partial differential equations (7.1) and (7.2) are solved by using a finite
difference scheme. Since it is not the present purpose to develop an efficient
model, an explicit difference equation of first-order accuracy is used to approx-
imate (7.1) and (7.2). As this solution scheme marches towards caustic (in the
y'-direction, say), the derivatives with respect to y' should certainly be replaced
by the forward difference. On the other hand, the derivatives with respect to '
are replaced by the forward difference or the backward difference depending on
whether U,. + Cy. is negative or positive. This choice is important to the stabil-
ity of the present difference scheme, and according to the Courant-Friedrichs-
Lewy (C.F.L.) condition, this scheme will be stable only if the ratio of the grid
spacing Ay’ to Az’ is smaller than the ratio of U, + Cyy| to Uy + Cyer|. There-
fore, to ensure that the numerical solutions are accurate even in the vicinity of
the caustic, the grid spacings Az’ = 20 cm, Ay’ = 0.0625 cm are chosen for both

simylations of a straight and a curved caustics.

When the difference formula for (7.2) is solved at each mesh point, we
first obtain the solution of k. at this point. Then the numerical solution of
ky at the same point is calculated from (7.3) by using the Secant Method.

Consequently, all the quantities related to the kinematics of the incident wave,
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including the characteristic velocity U+ Cg, can be determined, after which the
action conservation equation (7.1) will be solved for the amplitude a at this
point.

The above computations can be continued until at a certain point,the sub-
routine for the Secant Method fails to return a reliable and real root of (7.3)
which signifies the occurrence of the blockage phenomenon at this point. If this
occurs to point A in figure 3, the solution values at the points on the same row
but on the right side of A can still be pursued. However, since point A is ex-
cluded from the integration domain, the solution values at point D on the next
row cannot be computed with the present difference scheme as U, + Cyor > 0
at this point. This difficulty can be overcome by using the forward difference
instead of the backward difference to approximate k, /92’ in (7.2) at point D
and at the points above it and in the same column. This enables us to continue
the calculations of k (but not a) beyond the row containing A until the Secant
Method fails again or U, + C,, became negative at another point, E say, which
always occurs in the column next to point A. Consequently, the line AE in fig-
ure 3 can approximate the true caustic satisfactorily if Ay is sufficiently small.
Note that U, +C,, here represents the component of U+ C, in the direction per-

pendicular to the estimate caustic.

After the caustic at point E was decided, the numerical solution of a at
point F can be calculated reliably by using the backward-difference scheme for
the derivative with respect to z' in (7.1), and using the solution values at points
B and C. This difference equation has a larger value of Ay but can however
fulfill the C.F.L. condition for stability even in the immediate vicinity of the
caustic, because the characteristic velocity U+ Cq of the incident wave at points
B and F always have a component towards the caustic (see figure 3). The
numerical solution of a at the rest of the points on the same row as point F can
be calculated without difficulty by using the solution values at the points on
the same row as points B and C. Therefore we now have all the informations
required for a repetition of the above procedure to determine the next position
of the caustic and calculate the solution values of the incident wave on that row.

The above strategy for estimates of the location of the caustic can be justi-

fied directly by a comparison between its numerical and analytical solutions in
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the case of a straight caustic (an indirect justification for the case of a curved
caustic will also be given later). In this case, the conditions of the incoming
wave prescribed on the boundaries AB and BC in figure 4 are determined from
the requirements that k, = —-0.94 rad/m, n, = 3.62 rad/s, the component of the
action flux in the z-direction is equal to 1 everywhere, and the velocity distri-

bution of the underlying current is
U, = —0.6882 — 0.0077z (m/s), Uy = 0.

In this situation, one may easily prove that k, = 4.9 rad/m and C,, = 0.6882 m/s
at z = 0, so that the true caustic coincides with the y—axis. However, in the
simulation, to make the calculation more realistic, the fact that k, = constant
everywhere has not been invoked in the computations of k in the integration
domain, so that equations (7.2) and (7.3) have been solved simultaneously, and
by using the above strategy, the caustic has been located, which as shown in

figure 4 coincides with the true caustic extremely well.

On the other hand, to simulate the calculations for a curved caustic, we
assume that the streamlines of the underlying larger-scale current are circles

and the magnitude of the velocity at each point

U] = _4'037r/i— 9 100

— (m/s),

where (r,0) represents the polar coordinates of this point (see figure 5). This
velocity distribution has zero vorticity everywhere except at the point r = 0,
which represents a singular point but will be excluded from the integration do-
main because of the wave blockage phenomenon. Another feature of this dis-
trlbutlon is that when r is very large, |U| becomes vanishingly small. There-
fore a uniform deep-water wavetrain with frequency no = 1.7 rad/s propagating
in J single direction can be prescribed on the boundaries AB and BC in figure
5 wilich are very far from the origin. From these boundary conditions and by
using the numerical scheme, the variation of the wave-number of the incident
wave in the integration domain was solved until a blockage point was first met.
After this, the calculations were restricted within a much smaller area specified
in figure 6, in which the blockage point A had been located at the previous stage
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and the numerical solutions of the wave-number components at each point on
line AB had also been estimated. Thus, to calculate the wave-number as well
as the amplitude of the incident wave in this small area, it is only necessary to
prescribe the value of a; at each point on line AB in figure 6. In consideration

of (6.21) and (6.15), the particular boundary condition of a; chosen here is
a; = (%)~

where —i represents the distance from each point on AB to the dashed straight
line in figure 6 which approximates the estimate caustic. Note that since a
slowly modulated incoming wave is allowed by the theories, the above arrange-

ment is convenient for development and tests of the present algorithm.

The amplitude and wave-number of the incident wave, including the location
of the caustic, in the integration domain in figure 6 can therefore be estimated
by using the above schemes and strategy; the resulting caustic as shown in
figure 6 is indeed curved. Also we remark that in the present simulation of a
curved caustic, the wave-number components k,, k, and the component U, of the
current velocity in the z-direction, including its derivative with respect to z, in
the region near the caustic and the dotted line in figure 6 are all approximately
equal to those in the simulation of a straight caustic. The extra convection
in the y-direction by the current in the simulation of a curved caustic has
caused a discrepancy between the observed frequencies in these two simulations.
Therefore the non-dimensional modulation rates |1/U,k,||0U,/dz| in both cases
in these regions have pretty much the same value and are both equal to 0.2%
approximately. Hence any errors aﬁéing from asymptotic expansions might
have the same order of magnitude in these two simulations, which in the case of
a straight caustic can be estimated from a comparison between the numerical

and analytic solutions.

Determination of the reflected wave

After the incident wave field and the position of the caustic were determined,
we proceed to estimate the reflected wave in the vicinity of the caustic using

Smith’s (1975) theory and the present theory. The results can serve as the
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boundary conditions for calculations of the reflected wave in the regions away
from the caustic.

Since the difference between k,; and k,; is very small near a curved caustic
(see the note following (6.14)) and is zero in the case of a straight caustic,
we let ky; = ky; at each point in the vicinity of the caustic and then calculate
the value of k., as another root of equation (7.3) which coalesces with k,, at
the caustic. The accuracy of these estimates can more or less be seen from a
calculation of vorticity of the resulting k; as shown in figure 7. (In this figure
and in the following figures, the results presented are along the dotted lines
in figures 4 and 6 for a straight and curved caustics respectively, and also the
values of /¥1z estimated from (6.15) by neglecting the higher powers of z are
chosen as the abscissas of these figures.) The results in figure 7 indicate that
the irrotationality is approximately fulfilled by the estimates of k; in the case
of a curved caustic and this fulfillment is even more satisfactory in the case of

a straight caustic as might be expected.
Next, we shall calculate a; in terms of a; in the vicinity of the caustic by
using Smith’s (1975) theory. According to Smith (1975), the flux of wave action

normal to the caustic carried by the incident and by the reflected waves are

equal and opposite at the caustic, so that we have

[(Uz + an)g] i [(U, + C,,,z)%] (7.5)

z=0

Also integration with respect to z of (6.24) and of the corresponding equation

for the reflected wave and substitution of (6.1) yield

(1 - %) [(Uz + Cytl):_f] - [(Uz + Cg:l)g] /t Fi(z,y,t)dz,

=0 (7.6)
(1-2) [(Uc + c,,z)j—f] - [(U, + cm):’;f-]uo -/ " Fa(z,9,1) dz,
where |
n=- (35 () - [ reandl]
(7.7)



Since F; and F; represent the Class 2 terms, it is only required to calculate

their first approximations, which are

70
vV Jll
in view of (6.28)—(6.30) and due to the fact that each of a, ¢ and U, + Cy, for the
incident wave has the same one-term approximation as that for the reflected
wave in the vicinity of the caustic. Thus, substituting (7.5) and (7.8) into (7.6)

and carrying out the integration and expansion, we obtain

=F=

(7.8)

(U: +C, )ﬁ ~-|(U:+C )‘L'f +42\/z (7.9)
T gz2 o ~ T gzl 71 " 1z . .

at each point in the vicinity of the caustic. In (7.9), the terms containing the
radius of curvature R of the caustic are of higher powers of x than tI;e last term
so that they were neglected consistently. The relations (7.7)-(7.9) together
indicate that the ratio a;/a; at each grid point near the caustic can in theory
be estimated from the solution values of a;, k; and k, obtained earlier. Also
we emphasize that since the coefficients of the higher powers of z in the series
expansion of a slowly varying parameter are proportional to its higher-order
derivatives and therefore are very small, the approximation (7.9) can be very
accurate even for a moderate value of z. A similar situation will also occur in
the application of present theory.

When the present theory is under consideration, from (6.21) and (6.17) it

immediately follows that
2 - exp [/I iG/H% da:] A exp [—QiGo(—wl)_%(—x)%] . (7.10)
ay o

Since

exp [-QiGo(—wl)-%(-x)%] ~ 1 - 2iGo(—1)" ¥ (~2)3, (7.11)

it is clear that the parameter G, (or strictly speaking, —iGo(—v1)~'/?) is closely

related to the difference between the amplitudes of the incident and reflected

waves in the vicinity of the caustic. From (6.22a,b) and (6.15), we also have
a _ @

22 _ 2 —iG/HY ~iGo/ iz (7.12)

a2 ay
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so that the value of —iGo(~4;)~/? can be estimated from the solutions of a}/a;
and a}/ay, which themselves can be calculated respectively from (6.25) and from

the corresponding equation for a)/a, as follows.

The first terms on the right-hand side of equation (6.25) and on that of the
corresponding equation for a}/a; can be computed solely from the numerical
solutions of k; and k, respectively. On the other hand, the second and third
terms represent the Class 2 terms and their one-term approximations are pro-
portional to 1/v/¥;z according to (6.29) and (6.30). Therefore, each of these
terms in a}/a; and in a%/a; should be equal in magnitude and opposite in sign
within the present approximation. Hence, even without solving (7.1) for a;, the
approximation of a/a, at each point near the caustic can still be estimated in
theory. Consequently, the value of —iGo(~#:)"'/? in (7.12) and eventually the
values of a3/a; in (7.10) in the vicinity of the caustic can be calculated. Notice
that the last terms in (6.25) and in the corresponding equation for aj/a; are

equal to each other and therefore are cancelled out from (7.12).

Figure 8 shows the estimates of a;/a; using Smith’s (1975) theory and the
present theory in the simulation of a straight caustic, which coincide with each
other very well. However, to make sure that no common errors (e.g., the dis-
cretization errors) have occurred to both estimators, in figure 8 we also calcu-

late az/a; directly from the expression

a_2 . (Uz + Cg:l)"Z] %
a (Uz + Cgr2)al

in which the values of ¢,, 72, C;z1 and C,.» at each point are determined simply by
substitution of k, = —0.94 rad/m and n, = 3.62 rad/s into the dispersion relation
(2.2). The results in figure 8 indicate that the present numerical schemes with
sufficiently small grid spacings are indeed very accurate (the deviation of the

curve in figure 8 from a straight line near its left end is due to the errors of

V¥iz instead of ay/a;).
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In figure 9 we also compare the numerical solutions of —iGy(=;)~!/? and Q,
with their analytical solutions, in which the numerical solution of @, at each

point in the vicinity of the caustic was calculated by using the relation

@, . Gy k,—k,
~—-2— - - = =2 14
QO 2al ' "/)113 k:l:? - kz‘l (7 )

in view of (6.22a) and (6.15). The results in figure 9 are indeed very satisfactory
except that in the immediate vicinity of the caustic, the numerical schemes have
produced significant errors owing to the singularities of a;, k; and k, at the
caustic. This comparison has provided a valuable check on the expressions of
the Class 2 terms, including (4.6) for y;, which are available only for a straight
caustic.

In the simulation of a curved caustic, this comparison is not feasible be-
cause of the absence of these expressions. However, when (7.9) is utilized to
estimate as/a; in this case, it is found that the values of (a3/a;)? at all points
in the vicinity of the caustic have become negative, which is impossible, mean-
ing that significant errors have occurred to the estimates. On the other hand,
when the present theory is applied, especially when (7.12) is invoked, the val-
ues of —iGo(—¢;)~!/? also become negative and more importantly, they are far
from being constant (see figure 10 and note that the ordinate now represents
iGo(—41)~Y? instead of —iGo(—v1)~1/2). Therefore it is evident that in the sim-
ulation of a curved caustic, if the relation (7.12) is invoked, large errors have

also occurred in the application of the present theory.

To identify the sources of these errors, we temporarily neglect the second
and third terms on the right-hand side of (6.25) and neglect the last term in (7.9)
correspondingly (by assuming that d[(U, + C,y,)a?/0]/8y = 0 and d(a2/s,)/8t = 0).

Therefore, if the resulting quantities are designated by a bar, we have

(. o] w19

from Smith’s (1975) theory, and

('5) ~ exp [~2iT5(~v1)H(=2)}] (7.16)
ST

a)
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from the present theory, in which

- 7
iGo/ e 2 -4 (7.17)
ag ay
where
z__ 7] i(Ux"'nyl)
ai - 2(Uz + ngl) az g1 ’
(7.18)
E___ a2 i(Uz'*'Cg:ﬂ)
az B 22U, + Cg:2) Oz o2 ‘

The results in figure 11 show a large discrepancy between (as/a;)sy and (az/a;)sr
in the simulation of a curved caustic, contrary to the prediction by the theories.
However, if the exponent in (7.16) is determined from (7.17) multiplied by 2z
instead of 2z, where

k:2 - k:l

Sl

(7.19)

and therefore approximates 2z in theory according to (6.23), then the consis-
tency between (az/a;)sm and the new estimates of (ay/a;)sr is improved signifi-
cantly in figure 11, implying that the errors in iGy//¥iz and in 2z have mostly
been cancelled out from (7.16). This cancellation will become even clearer in

the following discussion.

If the error in aj/a; - a7/a; can be offset by that in 2z, this situation, though
not exactly the same, may actually occur to each of &/ /a; and a/a;. Therefore,
by using the ratio B = #/z, the errors in a[/a; and }/a, can be remedied.
Figure 12 shows the results of a/a,/R and a}/a;/R which are much closer to
the dominant term —1/4z (cf., (6.27)) than the original estimates. Thus large
errors have occurred to the estimates of the first terms on the right-hand sides
of (625) and of the corresponding equation for a)/a, which represent a//a; and
mhrespectively. Nevertheless the results in figure 13 indicate that the sums
of the estimates of the first and third terms can be very accurate as they are
not only close to the dominant term —1/4z but also coincide very well with the
values of a)/a; estimated directly from numerical differentiation of a, obtained

earlier. Therefore the estimates of the third term also contain a large error
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which offsets that in the estimates of the first term, but can however lead to
significant errors in the estimates of —iGo(—1)~"/? in (7.12) (and mo(—¢1)~1/? in
(7.9)) if the values of aj/a, in the vicinity of the caustic are estimated using the
method described above.

The above results lead us to believe that all these very large errors have
originated from misalignment of the curvilinear co-ordinate lines. Since in the
vicinity of the caustic, the values of |Us + Cyz1| and |U; + Cyso| are sfnall (recall
that U, + Cyzm1 = Us + Cyoz = 0 at the caustic) compared with |{Uy + Cyy1} and
U, + Cyy2} in the simulation of a curved caustic (see figure 14), very slight
misalignment of the z—axis can cause large relative errors in the estimates of
U + Cye1] and |Us + Cye2l (and therefore in the estimates of a7 /a, and dj/as
according to (7.18)). Furthermore, while the major term -1/4z in a’/a; and
a,/a; are offset in (7.17), these relative errors will be magnified even further in
the estimates of —iGo(—1;)"Y/2 using (7.17). On the other hand, since in the
vicinity of the caustic, 8a,/dy and day/dy are very small compared with da;,/0z
and da,/dz, very slight misalignment of the co-ordinate lines can also produce
large errors in the estimates of da;/dy and 8a,/dy. These errors together with
those in |U, + C,z:1| account for the disproportionately large percent changes in
the third term on the right-hand side of (6.25) and in the last term in (7.9).
However, for those quantities (for example, aj/a;) which are insensitive to a
slight rotations of the co-ordinate axes, their estimates, no matter which method
is applied, will remain nearly unchanged under slight misalignment of the co-
ordinate lines, that can explain why in figure 13 the sum of the estimates of
the first and third terms on the right-hand side of (6.25) coincides very well
with that obtained directly from numerical differentiation of a which itself 1s

the numerical solution of (7.1). -

Since equation (7.1) was solved on a rectangular grid which is independent
of the location of the caustic, and since a} = da,/dz > da;/dy, slight misalignment
of the co-ordinate lines has obviously no effect on the solution values of a; and
has only a very small effect on the estimates of a}/a; obtained straightforwardly
from numerical differentiation of a;. Therefore the estimates of a}/a; in figure

13 should be very accurate, except that in the immediate vicinity of the caustic
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large discretization errors may occur due to the singularities at the caustic.
Incidentally, the small differences between a}/a; and -1/4z in figure 13 have
provided evidence that the position of the curved caustic (from which the values

of = were measured) had been located accurately.

From the above discussion it is clear that in a general situation, the error
magnification phenomenon will render the relations (7.9) and (7.12) useless.
Even the values of (az/a;)su—1 cannot be estimated reliably from (7.15), because
as |U, + Cye1l/01 and |U; + Cyz2l/o2 are small in the vicinity of the caustic, their
difference, which divided by their mean value is responsible for a;/a; being
unequal to unity, is even smaller so that the error magnification phenomenon
also occurs to the estimates of (az/a;)sp —1in (7.15). This can be substantiated
by showing the relation between the estimates of (az/a;)sy and (—z)!/? in figure
15 which is far from being linear (see figure 8 for a comparison) and therefore
should be incorrect. The linear relationship between the estimates of (az/a;)sum
(or (az/a1)sr) and (kg3 — ka1)/2 (~ iz in theory) in figure 11, both of which
containing significant errors, just shows another invariant under rotation of the
axes by a small angle. The development of the analytical theories for all these

phenomena would be extremely difficult if not impossible, therefore we here

rest content with the discussion of the consistency between the results.

The error magnification phenomenon will certainly become less severe in
the regions far away from the caustic, however in these regions the one-term
approximations given in (7.8), (7.10), (7.12), etc. may become insufficient. On
the other hand, although the approximation az/a; ~ 1 can be accurate enough
in the immediate vicinity of the caustic, the estimates of a; themselves in this
region may contain significant errors due to the fact that ¢; and k, are singular
at the caustic. Besides, when the caustic is curved and the reflected wave
field is still solved on a rectangular grid for convenience, it is often required to
dete%r'mine the boundary conditions of the reflected wave at the grid points with
diverse values of z. As a consequence, the approximation a;/a; ~ 1 cannot be
applied equally well on these points. Therefore another effort should be made

to avoid the error magnification phenomenon.
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Since both a}/a; and 1/4c can be estimated accurately and from (6.22a),
(6.23) and (6.15) we have

_ 1G0 o~ .a_ll_ + ..!:.

2\/1/)127 = a 4:!:,

(7.20)

the approximation of —iGo(—;)~"/? can therefore be estimated reliably from this
relation. By substitution of this value into (7.10), we may finally obtain the

approximation of a;/a; at each point in the vicinity of the caustic.

In (7.20) the zeroth power of ¢ has been neglected which in (7.12) is com-
pletely cancelled out. This cancellation also occurs to the first power of z in
(7.9) (recall that (7.9) was derived by integration of the action equation with
respect to z). Therefore it seems that the estimates of —iGo(—v;)~1/? by using
(7.20) represent a lower-order approximation than those by using:(7.12), but
this is true only if the second and third terms on the right-hand side of (6.25)
are vanishingly small, otherwise the estimates of a}/a; in (7.12) and (470/4:1)V¥12
in (7.9) using the method described above will introduce the truncation errors
of the zeroth and first powers of z respectively, because of the use of the one-
term asymptotic approximations in this method. Hence, in a general situa-
tion, even without considerations of the error magnification phenomenon, it is
still impossible to achieve the same accuracy as that shown in figures 8 and 9
for a straight caustic, although one may expect that the truncation errors in
(7.20) will decrease if the modulation rates of the current field get progressively
smaller. Nevertheless, even in the present simulation of a curved caustic, since
the error magnification phenomenon has mostly been avoided in the applica-
tion of (7.20), the resulting estimates of —iGo(—%,)~'/? in figure 16 approach to

a constant far more satisfactorily than those in figure 10.

Since the true value of —iGo(—¢;)~'/? in figure 16 is unknown, for a com-
parison between the numerical and analytical solutions, we also estimate this
quantity by using (7.20) in the simulation of a straight caustic. The results in
figure 17 indicate that the new estimates of —iGo(—~+;)~1/2, though less accurate
than those in figure 9, can fit the analytical solution to within 256%. Therefore,

if the true value of a;/a; at a certain point is 1.25, then neglect of the exponent
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in (7.10) produces a relative error of 20% in a,/a;, but this figure can be reduced

to about 5% by an application of the present theory.

After the approximation of a;/a; (and therefore a,) at each point in the
vicinity of the caustic has been determined, these values and the values of k;
in the same region obtained earlier can serve as the boundary conditions for
calculations of the reflected wave in the regions away from the caustic. This

task is just routine and therefore requires no elaboration here.
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8. Conclusions

When short deep-water gravity waves propagate obliquely upon a steady
unidirectional irrotational current and are reflected by the latter, a second-order
ordinary differential equation for the surface displacement of the short waves is
derived from the Laplace equation and the kinematical and dynamical bound-
ary conditions. This equation takes the same form as that derived by Shyu
& Phillips (1990), although the expressions of the Class 2 terms in the coeffi-
cients of the present equation are much more complicated than those in Shyu &
Phillips (1990). The regularity of this equation at the caustic is demonstrated
and its uniform asymptotic solution and the corresponding WKBJ solution are
subsequently derived. The satisfaction of the action conservation principle by
this WKBJ solution at every point including the caustic has also been proved

elsewhere.

Except the expressions of the Class 2 terms, Shyu & Phillips’ (1990) so-
lutions and the present solutions take the forms valid even for waves in an
intermediate-depth region and near a curved moving caustic induced by an un-
steady multidirectional irrotational current. This suggestion is verified in a
curvilinear co-ordinate system from considerations of the dispersion relation
and the action conservation equation which themselves have been deduced by
Smith (1975) in the vicinity of the caustic in exactly the same situation. In this
general situation, the Class 2 term in the solutions which is responsible for the
amplitude of the reflected wave being unequal to that of the incident wave in the
vicinity of the caustic, can be estimated in a numerical calculation. The algo-
rithm for this estimation is developed and tested in the numerical simulations of
a straight and a curved caustics, but its validity in the case of a moving caustic

is also obvious. The results of these simulations indicate that for a curved caus-

tic, while the errors due to misalignment of the co-ordinate lines are magnified
very seriously in the previous estimates of the amplitude of the reflected wave in
the vicinity of the caustic from a consideration of the action conservation princi-

ple, this situation can be improved significantly by using the present algorithm.

The cause of the error magnification phenomenon is that when the charac-
teristic velocity component U, + C,y in the direction along the caustic is signifi-

cant, very slight misalignment of the co-ordinate lines will in the vicinity of the
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caustic produce large percent changes in U, + Cyz1 and Uz + Cye2 and in those re-
lated to the convergence of the action flux in the y-direction; the latter is con-
strained by the action conservation equation. Therefore, in this situation, any
efforts to evaluate the difference between the amplitudes a; and a, of the inci-
dent and reflected waves in the vicinity of the caustic using the action conser-
vation principle directly will inevitably fail. However, in the application of the
present theory, since the forms of the expressions for a; and @, have been estab-
lished, the term in these expressions which is responsible for a; being unequal
to a; in the vicinity of the caustic can therefore be estimated straightforwardly
from the numerical solutions of a, and da,/dz, which even in the vicinity of the
caustic are insensitive to a slight rotation of the co-ordinate lines and therefore

are devoid of the error magnification phenomenon.

Finally, we note that since the extension of the theory to the general case in
section 6 is based on the dispersion relation and the action conservation equation
and their properties, especially those which are essential to the analysis, are
common in many situations, the conclusion in section 6 about the forms of the
solutions might also be drawn for the capillary blockage phenomenon (Phillips
1981), for waves propagating on a rotational current with uniform vorticity,
or for an even more general situation. However, to verify these conjectures
rigorously, the validity of the dispersion relations and the action equations in the
vicinity of the caustic in these situations should be demonstrated by extensions
of Smith’s (1975) theory. Also we notice that the dotted line in figure 1 implies
that a different type (the curve in figure 1 changes from convex to concave near
the point at which the dotted line is a tangent to this curve) of the gravity
blockage phenomenon may occur in the regions with much weaker currents
and smaller k,. This situation, if it is true, would make it possible for double
reflection and eventually a triple turning point of the gravity waves to occur,
sl lilja.r to those of the capillary/gravity waves which were suggested and solved

by Trulsen & Mei (1993).
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Figure 1.

aption of Figure

Solutions of the dispersion relation (2.3) for given no. The dashed line

. represents the situation occurred at the caustic where the solution

Figure 2.
Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

points A and B coalesce and therefore k,; = k;5. The dotted line repre-
sents another tangent of the curve, signifying the occurrence of the
blockage and reflection phenomenon of a different type.

Definition sketch.

A diagram for illustration of the strategy to locate the caustic and
compute the incident wave near the caustic.

The domain of integration and the true (y~axis) and predicated
(dashed line) locations of the caustic in the simulation of a straight
caustic. All test results described below are along the dotted line.

The domain of integration and the directions of the incoming wave

-and the current field in the simulation of a curved caustic.

A part of the integration domain in figure 5 in which the caustic
(solid curve) is located and the reflected wave estimated. All test
results described below are along the dotted line.

Dimensionless vorticity of the estimate wave-numbers of the reflected
waves in the simulations of a straight caustic (circles) and a curved
caustic (triangles).

Estimates of a»/a; by using Smith’s (1975) theory (©) and the present
theory (x) in the simulation of a straight caustic. The curve represents
the true values calculated from (7.13).

Estimates of —iGy(~v,)~"/? (circles) and Q, (triangles) in the simula-
tion of a straight caustic by using (7.12) and (7.14) respectively and
comparisons with their analytical solutions (horizontal lines).
Estimates of iGy(—;)=1/2 (circles) and Q, (triangles) in the simula-
tion of a curved caustic by using (7.12) and (7.14) respectively.
Estimates of a,/a; in the simulation of a curved caustic, A = (az/a;)sar;

+ = (az/a1)sr (using z); © = (az/ar)sr (using z).

Estimates of a{/a; and 4}/a; with and without using the error reducing

strategy (e.r.s.) and comparisons with —1/4z, x = aj/a; (without using
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Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17.

e.r.s.); ® = a/a; (using e.r.s.); ¢ = ay/a; (without using e.r.s.); A =aj/a,
(using e.r.s.); + = —1/4z.

Comparisons between two kinds of estimates of a}/a; and between

a,/a; and —1/4z (+). The circles and the triangles are the estimates of
a,/a; obtained respectively from numerical differentiation of ¢, and
from summation of the estimates of a}/a; (x) and (6.30).

Values of (U, + Cyz)/(Uy + Cqy) of the incident (©) and reflected (x)
waves in the simulation of a curved caustic.

Same as figure 11 except that the values of (-z)!/? are chosen as the
abscissa.

Estimates of —iGo(—1;)~1/2 by using (7.20) in the simulation of a curved
caustic.

Estimates of —iGo(—v1)~1/2 by using (7.20) in the simulation of a straight

caustic. The horizontal line represents the analytical solution.
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