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ABSTRACT

A quasi-wavelet function basis with superior capability over the Morlet wavelet
basis in extracting the power ridges of a signal is devised. Various simulated and
experimental signals are used to validate the serviceability of this wavelet variant.
Analytical aspects of the devised basis, such as frequency leakage-in and -out, am-
biguity effects, phase noise, and the existence of local power minima, are studied
and compared to the corresponding counterparts of Morlet wavelet; these character-
izations manifest the usefulness of the wavelet variant basis for both modulus and
pﬁase renditions.



Chapter

Introduction

From time beginning of signal processing concerning the matching or simulation
of intrinsic signal constituents, we are constantly pursuing function bases as well
as their associated numerical processes that are not only precise but also easy and
efficient. The fact is that there is not a common basis that is optimum for all appli-
cajtions, nor does it exist a general scheme that best appeals to all situations.

Both the windowed Fourier transform and the wavelet transform project a func-
tion into a certain function basis mainly for characterizing the non-stationary fea-
tures of signals. In the former the basis is comprised of windowed Fourier eigen-
vectors; in the latter the basis is formed by wavelet atoms. Ideally, one would like
to have a transform that does not spread signal energy in time and frequency. Or
desirably, the transform should yield time-frequency distributions that have mini-
mum ambiguity due to time and frequency spreading as well as least interferences
among component signals (not necessarily Fourier components). However, due to
the restriction of the Heisenberg uncertainty principle as well as the many linger-
ing paradoxes (such as negative frequency, negative power, unallocated frequency
cofmponents, etc.) of various time-frequency analyzing kernels, the ambiguity and
the interferences can never be totally or simultaneously removed. There are always
trade-offs among different bases and different approaches.

In the interest of providing an improved time-frequency analyzing kernel for
those applications that mainly concern the continuous wavelet transform using the



Morlet wavelet function basis, the present study works on a new wavelet variant
function basis and peruses its related characterizations.

Due to the inherent imperfection associated with the “quasi” nature of the pro-
posed new “wavelet variant function”, when characterizing the new basis, more
emphases are placed on its practical usefulness in applications rather than its fulfill-
ments of various constraints in analytical aspects. Nevertheless, we shall somewhat
follow the formalism of time-frequency analysis in illustrating these shortcomings.
And, if appropriate, explain why these shortcomings can still provide practical use-
fulness. Besides, such a process acquaints us with analytical countenance as well
as applied demeanors and could possibly leads us to where efforts need to be made.

To show that the present tactic does provide easier and refined identifications
of component ridges for a broad spectrum of signals, either from the modulus or
phase perspectives of time-frequency characterizations, we put to tests various nu-
merically simulated signals and laboratory water wave signals of both wind and

mechanically generated waves.



hapter

The Wavelet Variant

2‘.1 Introduction

The Morlet wavelet through the use of a continuous transform is the most often
adopted wavelet methodology for water-wave related studies, where “physic” is the
main focal point [18] (and possibly, also the case in other disciplines that empha-
size the “total positivity and complete oscillation” of the wavelet and scaling func-
tion, respectively [3, 4, 14]) . Without exception, the extraction and interpretation
of features from this transform coefficients are influenced by the uncertainties and
interferences inherent to every time-frequency analyses as were mentioned in the
introduction chapter.

| In this chapter, with reference to the Morlet wavelet, we provide a quasi-wavelet
seeding function, which, on the one hand, possesses the same easiness in numerical
computation; one the other hand, holds an improved capability in extracting con-
stituent components of a signal. That is to say, we will be working on a function
basis that is capable of producing time-frequency planes that have smaller ambigu-
it§ effects (or frequency smearing) and also suffers lesser abstruseness from inter-
ferences of signal components.



2.2 The seeding function for the new quasi-wavelet

basis

The seeding function v (¢) for the new function basis is provided as:

Y(t) = —11— [sen(r) sinwot — i cos wpr e‘T’z, 2.1
w4
where wy is related to the modulation frequency of the counterpart Gabor transform
(or windowed Fourier transform), sgn(t) is the sign function, the exponential stands
for a Gaussian envelope, and the constant is just for the matching to the counterpart
constant of the Morlet wavelet (and somewhat for a unit norm). The shape of this
wavelet variant is shown in figure 2.1. It is given the name of a “quasi” mother
wavelet (to be explained in the next chapter). Except a sign function this definition
is basically quite similar to the simplified Morlet wavelet shown in figure 2.2.
The scaled and displaced versions of the wavelet is :

t—b t—b] -2’
[sgn(r) sin wg—— — i COS wy :l e 2, (2.2)
a a

1pa,b(l‘) -

1
am4

where a is a scale parameter and b is the translation parameter. The 20 has a physical

meaning of a carrier frequency.

2.3 The renditions of time-frequency planes

For a complex wavelet transform there are basically two types of time-frequency
renditions (may be expressed in 2- or 3-D): one refers to the modulus and the
other refers to the phase of transform coefficients. Generally speaking, different
transform categories or transforms using different bases might place different or
unequal weights on modulus of phase representations (for those transforms that
use orthonormal, bi-orthogonal, and semi-orthogonal wavelets, or wavelet packets
[3, 6, 26, 21], there is only the modulus representation). But it will be shown that
our proposed method yields somewhat equally useful information from both per-
spectives.



For our proposed wavelet variant (equation 2.1) we give the following possible
definitions for the renditions of modulus and phase.
For a function f (), the modulus of the transform coefficient is defined either as

1(f (), In (1)) + iH(f (1), Im¥ (2))] ], (2.3)

ori as
| @), Rewr (D)) + iH[(F (), Rer (£))]], (2.4)

where R and I represent real and imaginary part, respectively, and H represents the
Hilbert transform. Note that the implementation of wavelet transform in individual

definition is based on either real or imaginary part only.

The phase is defined as
Re(f(0), ¥ (1)) 7
T ntf O, vy T (7 o 9). -
o L(f (D), (1))
: e , T
an R (7). v (0) + (5 or O) . (2.6)

The difference of the two definitions and the presence of the optional constants will
come to light when we discuss the properties of the transform in the next chap-
ter; basically they act as a phase rotation and can be used to switch the pattern of
significant features associated with either the power ridges or the time-frequency
spreads.

The origins and implementations of these definitions will be explained in the
next chapter too, where we also give more than practically needed considerations
on various topics of time-frequency characterizations — since if we merely concern
about their applications, then simply the physical portrayal of modulus and phase
suffice to tell all that matter. Nonetheless, these additional efforts seem warranting
because we are comparing the new basis with that of the Morlet wavelet (or Ga-
bc;r’s short-time Fourier transform), where systematical and analytical exploitations
of time-frequency features are well established. Moreover, stepping through these
details enhances our understanding of the intrinsic natures of various function bases
and provide prospects for further investigations.
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Figure 2.1: The real and imaginary parts of the quasi-wavelet for use in wavelet time-
frequency renditions of modulus and phase as defined by equations 2.3, 2.4, 2.5 and 2.6.
This wavelet is not analytic.
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Figure 2.2: The real and imaginary parts of the Gabor type wavelet (the simplified form of
Morlet wavelet) for use in the calculation of the first definition of modulus (equation 2.3).
The wavelet is nearly analytic for most applications (when the carrier frequencies are not
too low).



Chapter

Time-Frequency Characterizations

3.1 Introduction

A general class of time-frequency energy density decomposition is the Wigner-Ville
distribution. The spectrogram of a windowed Fourier transform, the scalogram of
a wavelet transform, and all squared time-frequency density distributions related to
some inner products can all be associated with their specific forms of Wigner-Ville
distribution {5, 22]. A

It is not known whether or not one can associate the proposed quasi-wavelet
basis to a Wigner-Ville distribution (i.e., whether or not one can find the associated
Wigner-Ville smoothing kernel or convolution operator for any L? function), but we
are comparing its results to those of typical spectrogram and scalogram. Therefore,
we shall more or less follow the formalism of time-frequency characterization so
as to make contrasts for the various properties between the proposed quasi-wavelet
function basis and that of the Morlet wavelet or Gabor transform. More specifically,

the following topics will be considered:

e The wavelet admissibility condition as well as the concerns about the com-
pleteness, redundancy, and the stability of a transform;

e The analytic wavelet transform of a real signal and the wavelet transform of

the analytic counterpart (which is complex) of a real signal;



o Concepts of time-frequency resolution, frequency leakage, and phase ambi-
guity;

e ‘Local power maxima of an analytic windowed Fourier or wavelet transform
versus local power minima associated with the use of the current wavelet
variant. In particular, the phase and instantaneous frequency in association
with an analytic signal (i.e, the relation between instantaneous frequencies
and local ridge points of a scalogram or scalogram) versus the envelope or
modulus of the wavelet variant transform;

e Phase “randomization” in association with an analytic transform versus phase

“polarization” in association with the wavelet variant transform;

Elaborating on the above outlined items also helps to gain basic acquaintance
of different basis categories, their distinct features, as well as individual advantages
and disadvantages. This better prepares an intimate cognizance of the proposed
basis function and provides possible prospects.

3.2 The admissibility condition and the completeness

and redundancy

If a function ¥ (¢) is to be qualified as a wavelet for the continuous wavelet transform
(CWT), then the only requirement is that () meets the following “admissability

oo 2
2n/ le(a»l dw = Cy, 3.1)

0o o]

condition”,

where Cy, is a constant depending only on v only, and 1//; (w) is the Fourier trans-
form of ¥ (¢). Among the several definitions of the Fourier transform pairs the one
adopted here is:

V() = J% /_ _ Y (1)e ' dt (3.2)
() = \/;27 f_oo P (w)e® dw. (3.3)



The admissability condition is the integration of power spectrum weighted by the
inverse of the absolute value of frequency; therefore, to yield a finite value, the
wavelet should have little power at low frequency and is totally nil at zero frequency,
i.e., the area between the curve and the abscissa Integrates to zero. This feature
basically states that a wavelet should have reasonable decay or be finitely supported
— 50, it is a wave-let or a wavelet atom.

As to the origin of the constant Cy, it is a natural turnout of the derivation of
the completeness (such as in the L2 space) of the wavelet function basis, i.e., itis a
byproduct when proofing the following “resolution of identity” for two functions g
and &:

1 [*1 [ e
(8, h) = */ —2/ (81 Wa,p)(h, Yq,p)dbda, (3.4)
Cy Jo 4% J-x

where Y, 5 (1) = ﬁ v ( -’;—b) is a dilated and translated version of the mother wavelet
¥ (¢) with dilation parameter a > 0 and a € R and translation parameter b € R. The
ﬁ is for the normalization of L?-norm. The Va5 satisfies admissability condition
too. In general, ¥r(¢) is normalized such that ||y (2)|| = 1; therefore, v, ,(¢) also
has a unit norm.

The admissability condition is a very loose constrain; it does not provide a
clear concept of redundancy concerning applying CWT to either discretely sam-
pled or continuous signals. To illustrate this redundancy, let us use the discrete
wavelet frame (since the frame wavelet certainly qualifies as a wavelet for CWT):
Vao,bo: j k(1) = ao ™%y (ay 7t —kbg), where a belongs to the set of discrete dilations
aé and b to the set of discrete trémslations aé kbo; j,k € Z;and ag # 1 and by > 0
are fixed positive constants. For such a discrete wavelet frame we need to impose a

more restrictive condition on ¥/ (¢) for its admittance, i.e., the stability condition,

boA <27 Y [¥(a’ )" < boB, (3.5)

jel
where A and B are positive constants and 0 < A < B < oo. The fixed constants by
and 27 are intentionally kept since they are related to a normalized wavelet basis
and since the magnitudes of A and B are related to the redundancy of the basis.
The stability condition may look abstract, but we give its physical implication as:
in order for a function to be reconstructed from its wavelet coefficients, i.e., the

10



operation is reversible, we need a process which is convergent when summing all
its scales or frequency components. It is therefore necessary that the sum of the
power of all the constituent elements can neither be nil or infinity. If the sum is
zero, then the elements are all of zero measure — nothing exists. If the sum is
infinity, then the elements are significantly overlapping in time and frequency —
there is either too much dependence or too much ambiguity and tangling (just like
two vectors paralleling to each other do not constitute a good vector basis in two
dimensional vector space). If the basis functions are normalized and the inequality
o‘f the stability condition are optimized for both the greatest lower bound and the
lowest upper bound, i.e., when A and B are defined as

A = inf Z;w(ao o) |, (3.6)
jEZ

B = sup lewo )l |, (3.7)
]eZ

then an indication of the redundancy is the average value of A and B, A+B , sup-
posed that A and B are close to each other (almost tight). If A = B = 1, then
the basis is orthonormal, and the transform coefficients are without redundancy.
Based on this understanding we know that even a mother wavelet of an orthonormal
Riesz basis will produce a redundant system when it is applied in the continuous
sense. Therefore, continuous wavelet transforms are always redundant when ap-
plied to discrete signals and are complete when one likes to increase the resolution
indefinitely.

Having stated so much, it is time to give the corresponding attributes of the
proposed quasi-wavelet. If the real and imaginary parts of the quasi-wavelet is
considered separatively, obviously neither integrates to a zero value. This implies
that the formula for wavelet admissibility does not converge and therefore the func-
tic;n is really not a wavelet — This is the main reason why it is given the name of
a “quasi”-wavelet. But in reality, both the real and imaginary parts do decay as
exactly as those of the Morlet wavelet (again, more precisely, this should be the
“quasi” equivalence or simplified version of the Morlet wavelet, or the Gabor type

wavelet, as to be explained later). Therefore, practically we do not see any restraint

11



on its application; just as in almost all physical cases we use the simplified form of
Morlet wavelet rather than its full legitimate form (to be stated later too).

In another perspective since the new basis function is “loose” in its categoriza-
tion, i.e., it is neither a window Fourier transform nor a genuine wavelet transform,
the trace of completeness and redundancy of its transform coefficients has also lost.
However, from discrete (or finite resolution) point of view completeness and re-
dundancy are more of theoretical interests rather than of practical value, especially
when taking into account the fact that all signals embed uncertainty and all wave
experiments involved uncontrollable or undesirable factors. In this regard, it has the

same bearing as that of the Gabor type wavelet transform.

3.3 Transforms that lead naturally to ridge charac-

terizations

In the following a good deal of attention is paid to the characterization of the Morlet
wavelet. This is not only because we have mentioned it quite a lot of times but also
because we are basically comparing the features of the proposed basis with those
of the Morlet wavelet. Moreover, the Morlet wavelet play a unique dual role that
no other function has — it crossovers the border between the continuous wavelet
transform and the windowed Fourier transform. Due to this specific property, our
perception of various characteristics of time-frequency analysis can be realized or
threaded much more easily. Some of its significance in certain applications will also
be stated in later sections (a more detail account was given in a previous report by
the author [14]).
The Morlet wavelet is complex and is given by

1
V(1) = (e — /e, (3.8)

. . 2 . . . . .
in which wy is a constant and the term e~%0/2 justifies the admissability condition.

Its Fourier transform is almost a shifted Gaussian and is given by

¥(w) = 1/4["(“’ /2 _ gm? /2072 (3.9)

12



" The wy is the modulation (or carrier) frequency and has the physical implication
of the amplitude ratio r between the second highest peak and the highest peak of
Vv (1), ie., r = ¥ (1) /¥ (0), in which #, is the abscissa of the second highest peak.
The exact value of t; can be obtained by solving the transcendental equation numer-
ically, but a fairly good explicit estimation is obtained by dropping the second term
in;the above equation since the second term is generally five order of magnitude less
th:jfm the maximum value of the first term, i.e.,

2 9 1/2
Wy~ L n(——) . (3.10)
i Inr

The higher the wy is, the smaller the ratio r becomes. If wgq is constant, then the
ratio r for different wavelet dilations or scales keeps constant too.

By dropping the second term of equation 3.8 the v (¢) is strictly not a wavelet
but more of a scaled windowed Fourier atom, and the transform becomes more
of'a scaled Gabor transform, i.e., the Gabor transform with additional scaling of
its Gaussian window function. This basically states the dual role of the Morlet
wavelet. From the point of view of discrete numerics, the two transforms might not
use the same translation step. For the Gabor transform the step is in linear measure,
and for the wavelet transform it is in logarithmic measure. Nevertheless, from a
continuous perspective, the sense of translation step is trivial; therefore, they are
basically identical except that, in the former, the shape and area of time-frequency
windows are kept fixed; and, in the latter, the area is kept fixed but not the shape.

Based on the above understanding, there is a natural way to illustrate various
wavelet ridge concepts using the scaled Gabor transform since it provides simple
and clear illustrations through its intimate association with an analytic process and
since the analytic procedure is earthy to the characterization of ridges. The follow-
ing section describes these relations.

34 Analytic versus real function basis

We did not specifically mention in the above discussions that we had seemed to
focus on complex basis functions. So, what is the point of using a complex basis

when in reality there is no complex signal? An intuitive point for this is that the

13



sense of frequency can only be easily tackled by complex functions, which enable
us to separate amplitude and phase. However, there is a deeper concern about the
existence of negative frequencies since their occurrence retards our mental realiza-
tion. But, the Fourier transform of a real signal is certainly with both positive and
negative frequencies (so, the power spectrum is symmetrical). The desire to get
round of the negative frequency of a transform lies the fundamental purpose of the
use of an analytic basis.

There are two concepts here that are fundamentally significant. First, the Fourier
transform of the product of two functions (such as a signal and a window function)
1s associated with a linear convolution operator, and a convolution in one domain
corresponds to a multiplication in the other domain; therefore, if we can design a
frequency window which only localized in the positive frequency and then mul-
tiplies the spectral results of the signal with this window then we might have the
desire analytic signal. Second, since the frequency windows must not extend to the
negative frequency, its center should lie away from the zero frequency. And since
in Fourier transform a shift in one domain is equivalent to an oscillation in the other
domain. Therefore, the analyzing atoms of the analytic function basis should have
both reasonable oscillation and well regularity in its time domain such that they are
band-limited (or almost band-limited) windows in the frequency domain.

These explanations lead us to a basic and important understanding: Why, up to
the present time, for applications focusing on physics where positive frequency is
important, the most useful and most often seen analyzing function bases are associ-
ated with a modulated Gaussian shape function — Since these basis functions satisfy
the requirement of reasonable oscillation and are feasibly smooth [17, 14, 22].

With a phase it is natural to discuss the idea of instantaneous frequency. How-
ever, to the author’s knowledge, in identifying instantaneous frequencies the modu-
lus planes are ubiquitously used and the phase representations are almost rampantly
entertaining. This is partly because phases do not differentiate the relative impor-
tance of individual components such that a phase plane is always fully occupied
(this is well illustrated by the middle sub-figure of figure 3.1).

Here we shall illustrate three aspects based on the definitions given in the pre-
vious chapter. First, for a traditional analytic process, the instantaneous frequency
is associated with the local energy peak, i.e., ridge point of modulus. Second, for

14



the new process, the instantaneous frequency is associated with the local energy
trough. Third, our phase representation yields completely different but much infor-
mative picture as compared to the traditional one.

For the first two aspects, even though our definitions of time-frequency modulus
plane involve the Hilbert transform, which is related to an analytic process, the
analyzing function are not always analytic. Specifically, equation 2.3 yields nearly
e)%actly the same results as those of Morlet wavelet, which is almost analytic and the
injstantaneous frequencies are associated with ridge points; equation 2.4 provides
the new improved ridge extraction scheme, where the associated analytic signal is
not quite clear. Moreover we shall see that equation 2.3 is associated with the power
maxima, while equation 2.4 is for power minima.

For the third aspect, in addition to the fact that a time-frequency phase plane
is certainly fully filled with phases no matter what the values of modulus are, we
shall also illustrate that the phase values based on the Morlet transform are too
extremely varying such that they could hardly show any feature of practical signif-
icance. While in contrast, our phase rendition yields almost polarized phase distri-
buﬁon where phases are mostly seated at or out of phase by convenient separation
difstances (such as /2, m, 3w /2 or 2x); furthermore, contrast interfaces occur at
points of significant attributes such as minimum power points or transition points
featuring time and frequency spreading (or time-frequency resolution).

3.5 Instantaneous frequencies and the ridge or trough

points

The instantaneous frequency (or simply frequency) is generally defined as the time
derivative of phase. Let suppose we have a real wavelet function basis, then we have
two ways to derive the phases. One way is to devise an analytic wavelet function -
basis with real and imaginary parts as oppose to a basis of real functions only;
another way is to convert first the real signal into an analytic counterpart signal and
then apply a real function basis. It can be shown that the two approaches yield
exactly the same result (see e.g., [22]).

- The first definition of modulus, equation 2.3, is associated with an analytic func-
tién, and this function is almost the Morlet wavelet. As is seen from figure 3.1,

15



the Morlet wavelet, although, is not strictly without zero frequencies; it is nearly
analytic. Here the figure shows the difference between the results derived from
equation 2.3 and those derived from the Morlet wavelet, i.e., the difference between
(f (), A[¥]) and (f(z), ¥), where ¥ (¢) stands for the Morlet wavelet, A means
finding the analytic counterpart, and the f(¢) is an X-signal (a signal composed of
two linear chirps with a cross of frequency).

As to equation 2.4, the proposed quasi-wavelet is not analytic (there is no legit-
imate carrier) and might not be fully qualified as a Seeding function for a complete
set of basis functions; this is opposite to the cases of the Gabor or wavelet trans-
form; therefore, the arguments related to local energy ridge do not apply. Rather we
shall verify numerically that the current definition of equation 2.4 is associated with
the lowest trough point located nearly at the instantaneous frequency as is derived
from the analytic counterpart of the signal or an analytic wavelet transform.

Using the Mathematica programming language we numerically calculate the
frequencies of the trough points to be m time the values of the ridge points
associated with the Morlet wavelet. Here the wy is taken as the commonly adopted
value of 5, but different wq yield values little different than 0.9696. It is also noted
that in all comparison pairs (figures to be shown) the used parameters (such as
adaptive values of wp and integration limits) are the same.

As is clear from earlier statements, a function is analytic if we drop the negative
frequency components of its Fourier transform. Conversely, an analytic function
1s necessary complex but is entirely characterized by its real part. If a real and
symmetry window g(¢) is band-limited, than by applying a frequency modulation
to the window one could possibly derive (subjected to the admissibility condition
stated above) an analytical wavelet. Since equation 2.1 is not analytic, we take
a different approach in the designs of its modulus representation. For the second
definition (equation 2.4), the transform is performed on the real part only and then
the analytic signal procedure is applied to this transform result, finally the envelope
curve of the modulus is calculated accordingly.

In the following we give a brief description of the relation between the instan-
taneous frequency and the ridge point for an analytic signal (this applies to the first
definition for modulus):

Let g(r) be a window function which is centered around 0 and has unit norm

16
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Figure 3.1: This figure shows how analytic the Morlet wavelet (simplified form) is, i.e.,

it shows the difference between (f(¢), A[¥]) and (f(8), ¥r), where A means the analytic
copnterpart. Here an X-signal (composed of two linear chirps, see figure 4.6) is used.
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with reasonable decay on its support (i.e., g(0) = [ o &()dt is the maximum

value of g(w) and is of the order of 1). The windowed Fourier atom is

gue(t) = gt)e®. (3.11)

The Fourier atom scaled by s is

gt (t) = gs(1)e'”?, (3.12)

where g; = %g(?) has a support of g(¢) scaled by size s and is also with unit
norm.

The scaled windowed Fourier transform (or the wavelet transform using the
simplified Morlet wavelet, i.e, neglecting its second term) of a real function f(¢) is

(Fr gn) = f F)gs(t — weE'dr. (3.13)

Since any f(¢) can always be expresséd as f = a(t) cos¢(t), one has [28, 22]

(F, ) = La@e @950 (3 (sl -0 W)+ 0), G4

in which the € is an overall corrective term determined by the following four ele-

ments:

sla’ @)l .

la@)] »

o The relative variation of amplitude: €, 1 <

2,
s7la ().

e The relative curvature of amplitude: €, 7 < sup G

o The rate of variation of frequency : €4 2 < sups2|¢” (t)]; and

e The effects caused by the high frequency components of the window function,

i.e., the extreme of the high end part of |g(w)|: €, = SUPD| (> 54 (u)] g (w)]

From the above descriptions we know that, to apply the ridge identification cri-
terion of stationary phase (i.e., ¢(u) — Eu = O or & — ¢'(u) = 0), the f(¢) (which
can be viewed as a single component or combination of components) need to be

relatively smooth. Considering that various time-frequency transforms are simply
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implementing a projection mechanism such that we would like to have a set of
transform coefficients that has a minimum entropy [29, 30] (i.e., matching signal
components with the basis functions), We further understand why it is practically
important that the wavelet should be completely oscillating and the scaling function
should be totally positive [4, 16, 15] — With these properties the basis functions also
possess the various small corrective terms listed above.

‘ One more point to note is that even though individual components follow the
above restrictions, the combination of components might not follow the restrictions
1f there are interferences among components. Therefore, an entirely different class
of function basis (i.e., neither a windowed Fourier basis nor a wavelet basis) might
possibly avoid or be less influenced by these restrictions. Incidentally, the proposed
quasi-wavelet basis is luckily the one.

In the following section we focus on how to handle the analytic procedure; this
in turn deals with the Hilbert transform.

3.6 The analytic signal procedure and the Hilbert trans

| form

Having stated the usefulness of an analytic signal or analytic function basis in power
ridge extraction in association with the Gabor transform and Morlet wavelet trans-
form, we now work on what are involved in an analytic procedure that aims at
finding the analytic counterpart of a function. It will be clear that such a procedure
inherently involves the Hilbert transform.

Another direct relevance of this section to the present study is the used of the
Hilbert transform in equations 2.3 and 2.4, even though the perspective now is not
on the relation between instantaneous frequency and the ridge point (since the quasi-
wavelet does not meet the basic assumption of being a well band-limited function, as
is.the case for a Gaussian wavelet atom; nor is the proposed quasi-wavelet analytic).
Therefore, it warrants for us to work through the details that lead to a very easy
implementation of the Hilbert transform. This also helps to illustrate possible dif-
ficulties or uncertainties that quite often induce paradoxes due to non-conformance
to the above listed constraints.

' Let a real signal be f(t) and its sensible imaginary counterpart be f;(t). The
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real and imaginary parts form a complex signal z(z). A complex function allows
us to define its amplitude (or modulus) function a(z) and phase function ¢ (¢) of
the complex exponential. The derivative of the phase yields the natural definition of
instantaneous frequency (or local wavenumber in spatial domain) w; (¢). The simple
mathematical form is

2(t) = £ (1) + fi(t) = a(r)e?®, (3.15)

with
w; (t) = ¢'(1). (3.16)

The main concern here is what is the sensible imaginary part since its choice affects
our exploitation of instantaneous frequency. It is appropriate to point out that in
the realm of signal analysis most researchers still view the instantaneous frequency
as merely a primitive concept rather than a question of mathematical definition.
That is to say, the proper definition of the complex signal is still regarded as an
open question [5]. And the issues are, at best, whether a particular definition can
match our intuitive thinking; whether its results can provide adequate explanations
for the physics that might be of our own logical reasoning only; or whether the
intuitive assumptions induce additional concerns which might be counterintuitive
and possibly bring us to new discoveries.

Since any real signal f,(¢) can be expressed as
fr‘(t) = a(t) cos (1), (3.17)
The most intuitive realization of the complex signal z(z) should be
2(1) = a(t)e?®, (3.18)

Nevertheless, there are infinitely many ways to devise such a complex form. This
reflects the openness of the definition of the instantaneous frequency.

In 1946 Gabor [7] proposed a definition for the complex signal that is unique for

- any real signal and his method is generally referred as the analytic signal procedure.

Let Fr(w) be the Fourier transform of f,(¢), the corresponding analytic signa)
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Gabor introduced is,

(1) = 2% /O Fr(w)é'“ dw, (3.19)

where the factor 2 is introduced so that the real part of the complex signal is equal to
the original signal. As is clear from the basic properties of Fourier transform, z(1)
mhst be complex and is the inverse Fourier transform of a single-sided spectrum,
w]hich drops the negative frequency components but keeps the same positive spectral
cc;mponents as those of F,(w). Obviously, when the Fourier transform is applied to
z(7) again one gets only positive frequency constituents.

Next we illustrate how such a simple complex function can be used to calculate
the Hilbert transform of f,(¢). And, in fact, the Hilbert transform is the imaginary
part of z(z).

That is to say, we should verify the following identity [5]:

QNN (3.20)
it —1

1 oo
() = fr(t) + i—Pf
T —00
in which the Hilbert transform of the signal, H[ f, (£)] is

(1)

-7

——— 1 oo
HIf @] = 50 = P / dr. @3.21)

In the equation the symbol P means that the integration is carried out based on the
rule of Cauchy principal value, i.e.,

t—e€) o0
73/ = lim (/ +/ ) (3.22)
61=6—>0 \J_o 1+e

Let :
‘ g =, (3.23)
then the Hilbert transform is simply the convolution of f,(¢) and g(z), i.e.,
— 1
fr(@) = ’;(fr * g)(t). (3.24)
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By the Fourier duality property, the Fourier transform of the convolution is

FIf@O) = Hw) = —F ()G (). (3.25)

Now with F;(w) and G(w) being separated the Cauchy principal value operation is
related to g(¢) only. And the Fourier transform of g is

oo —iwt
Flg)] = G(w) =P f di =
P / COSE‘” D ar — i f Sin(t“’” ar. (3.26)

Since the integrant associated with the real part of this equation is antisymmetry
the Cauchy principal value integration of this part is zero. As to the integration of

the imaginary part, since is finite for all values of x, including x = 0, there

sin{wx)
X

is no need of the principal value sign. Of this part, the integrant is symmetrical;

therefore, only half of the integration needs to be considered, and through a change

of variable one gets

/ Smwxdx_sgn(a)) / Sinu . 3.27)
0

Here one basically know that G(w) does not depend on the variation of w since the
integration is independent of w. Though this integral looks simple, its integration
should not be treated as a trivial process; rather, a closed form of the integration
can be derived through the use the residue theorem of integration from the complex
integral calculus (see for example the well written textbook by Greenberg [8]). The

final result is a simple relation which only depends on the sign of w:

Glw) = { (;insgn(a)) w# 0 (3.28)

w=0.
Accordingly, the Fourier transform of the analytic signal A[ f,(¢)] is

28 0
FLALF O] = Fr(@) + i FIHLE (0] () = { @ o> (3.29)
0 w < 0.
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Here we see that this equation matches exactly with equations 3.19 and 3.20 com-
bined. And it further yields

Hw) = [ —iF@) ©>0 (3.30)
i Fw) w <0

Makmg use of this relation the Hilbert transform is easily implemented by a simple
word (subroutine) in ASYST language as is shown in Table 3.1.

. Detail manipulation of the analytic signal approach is given here not merely
for its analytical interest, but rather to disclose its intrinsic nature in association
with the Fourier transform properties. An alternative approach implemented in the
time domain based on Parks-McClellan minimax algorithm was given in an earlier
report on characterizing the amplitude and frequency modulations of water waves
measured in laboratory wave tank experiments [13]. In which trade-offs between the
two implementations were also illustrated. Here we add one point to the statement
given in the introduction chapter — that any numerical scheme is hardly optimum.

As is also indicated in the program one needs to exercise cautions related to
non-stationary effects since the basic tactic is related to several simple processes
that only manipulate the contents of the FFT of the input signal. And, additionally,
we must also acknowledge that the standard deviation of a spectrum is rather sig-
nificant and its refinement is quite demanding concerning the amount of data points
required.

- Overall, here we further illustrate that the ridge algorithm of a Gabor type
wavelet transform is only true when the various restraints listed in section 3.5 are
obeyed. In analytical term, if we regard the inner product of the transform of equa-
tion 3.14 as a linear operator L, then L must be of a weak continuity, i.e., Lf(z)
1s modified by a small amount if f(¢) is only slightly modified. Thorough numer-
ical experiments on this using laboratory wave data fully support these arguments
as are detailed by a previous report by the author [14] (which also includes refined
statements of two earlier related papers [16, 15]).

In reality, the above elaborations further manifest an important realization —
Due to the fact that the operations associated with an orthonormal transform or any
efficient transform are not in weak form, orthonormal function bases Just do not

provide as informative physics as what can be provided by the continuous wavelet
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transform using the Morlet wavelet — Redundancy is sometimes quite helpful [23,
14, 18].

Let us recap the scheme for the definition of equation 2.4. Rather than convert-
ing the signal into its analytic counterpart and then projecting it into a real wavelet
basis, or rather than directly projecting the real signal into an analytic wavelet ba-
sis, the signal is first projected into the real part of the wavelet basis and then the
analytic signal procedure is applied to the transform coefficients. In this way the
time-frequency energy density distribution is obtained as the envelop of the real
part wavelet coefficients, i.e., the modulus of the complex transform coefficients.

3.7 Time-frequency resolution, frequency leakage, and

phase ambiguity

Conventional time-frequency resolution measures a basis atom’s spreads in time
and frequency. If time and frequency distances between component signals are too
short and the overlapping of their energy is significant, or component signal’s power
is overshadowed by others’, then the identification of component signals is difficult.

Since a function can not be finitely supported both in time and frequency do-
mains, there is no precise time-frequency resolution; rather, we generally use the
second central moments in time and frequency of the basis atom to represent its
spreads or resolutions.

For the Morlet wavelet the wavelet atom is of a modulated Gaussian which has
an envelope centered and peaked at zero time, and the atom has an exact carrier
frequency. For the wavelet variant the envelope can be treated as either a singly
peaked bump (the same Gaussian envelope) or a bump with double peaks (Gaussian
envelope with a shift of peak of /2 so as to match the peaks of envelope to the
top points of the oscillation curve), but the atom does not have a carrier frequency;
nevertheless the waveform does have an oscillation parameter that is derived from
the carrier frequency of the Gabor transform.

Therefore, although it is fully legitimate to use time-frequency resolution win-
dows to study the smearing effects for the Morlet wavelet, it is more appropriate
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Table 3.1: An ASYST word (equivalent to a subroutine in some computer languages) that
calculates the Hilbert transform of a signal. The word takes a one dimensional array as the
input argument. As seen from the programming, the basic tactic is related to several pro-
cesses manipulating the contents of the FFT of the input signal. It is of no doubt that these
processes inscribe the properties related to FFT into the results of the analytic signal. This
isibased on the understanding that the standard deviation of a spectrum is rather significant
and its refinement is quite demanding concerning the amount of data points required. Alter-
natively, we practically illustrate that the ridge algorithm of a Gabor type wavelet transform
is ;only true when the constraints listed in section 3.5 are obeyed.

\" A small program piece which finds the imaginary part of a real signal

\ based on the analytic signal procedure.

\ The computation makes use of the final results of complex calculus based
\ on Cauchy principal value integration.

\  The length of the input array will be automatically truncated to the

\ maximum allowable power of 2.

: my.hilbert
fft  []size n.fft.pts :=
dup becomes> tl

dup sub[ 1, n.fft.pts 2 / ]
0 +1 Z=xtiy *
tl sub[ 1, n.fftpts 2 / ] :=

sub{ n.fft.pts 2 / 1+ , n.fft.pts 2/ ]
0 -1 z=xtly ¥

tl  sub[ n.fftpts 2 / 1+ , n.fftpts 2/ :=

tl ifft
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to discuss in terms of time and frequency leakages for the current wavelet variant,
as will be clear form the bumps of the figures shown later. But still, it is equally
legitimate to discuss time and frequency leakages for the Morlet wavelet.

For frequency leakage-out we mean the smearing brought by a unit scale wavelet
to its neighboring wave packets of various scales; conversely, there is a frequency
leakage-in which is induced by a neighboring scale. Note that here we use the term
“scale” rather that “frequency”, this is to emphasize that we are projecting wave
packet (rather than a constant sinusoidal wave) into the wavelet atom.

For time smearing we mean the ambiguity caused by the phase mismatch be-
tween a wave packet and the wavelet atom. That is to say, it is calculated by pro-
Jjecting a wave packet into a time-translated wavelet atom.

The Mathematica programming language is used to shed light on these argu-
ments. Its program is appended at the end of this chapter. The algorithms are
somewhat self-explained in the program.

Let us list a few important characterizations from the results:

e For the present wavelet variant the closed form representation for the leakage-

out is derived as

Pa,wy) =

— 1)%w} 1
\Fy 1;3;— (a = 1)7eg sgn(l—;)+ 3.31)

in which a is a scale, wg stands for a carrier frequency (in Morlet wavelet’s
term), and the | F) stands for a hypergeometric function. For wg = 5 the
frequency leakage-out has a root (i.e., zero value point) at scale 0.969621.

For the Morlet wavelet the maximum leakage-out is locates at its own scale,
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i.e., the self projection scale 1.

For the wavelet variant the two sides of the zero value point have sharp steep
slopes (when taking the modulus of the transform coefficient). Whereas, the
Morlet wavelet is associated with a peak with a zero derivative, and around
the peak the values are not in good contrast. Now it is clear that the most
significant feature for the wavelet variant is caused by the existence of zero
value modulus as well as the wherefore induced sharp contrast when com-
paring any neighboring value with a zero one (a non-zero number divided by
zero is infinity).

For the wavelet variant the energy leakage distribution of a wave packet has
two bumps at opposite sides of the root point; while the Morlet wavelet has a
single solid envelope. This explains why we use time and frequency leakages
rather than resolution windows in discussing the discriminating capability of
these wavelet atoms.

A leakage-in curve is also shown which gives consistent results to those of the
leakage-out. Note that here the values are not modified by the corresponding
scale factors.

The smearing (or contamination) of energy in time domain is calculated by
projecting a shifted wave packet into the wavelet atom. This kind of leakage
has the same meaning as the phase noise. Again, we have the same character-
izations as the previous items — there is a root point at the zero phase point,
and the modulus is also doubly peaked at the two sides of the zero phase
point. Overall, the ridge of maximum power is for the Morlet wavelet, and
its position corresponds (albeit the need of a multiplication factor of about
Eﬁ for scale adjustment) to the bottom point of trough of zero power for
the present wavelet variant.

Since at the bottom of the energy trough one of the real and imaginary parts
is of zero value (depending on the choice of a datum), and since the leak-
age are always in opposite signs with respect to the root point, furthermore
since there is a reflection point at each side of the leakage curve — the vari-

ous time-frequency featuring points have phase values located at convenient
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separation distances, and different visual patterns might show up through the
rotation of phase or by ad&ing a phase datum. These specific properties make
possible the un-matchable characterizations of time-frequency features using
the wavelet variant’s phase plane.
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Figure 3.2: (Shown as the first figure in the program) Frequency leakage-out of the wavelet
variant. The frequency leakage-out is the projection of a wave packet of a certain scale
(abscissa) into the unit scale wavelet atom. The root of the curve is 0.969621 for wy =
5. The zero value and sharp contrast around the root make possible the wavelet variant’s
successful applications.

Figure 3.3: (Shown as the second figure in the program) Frequency leakage-out of the Mor-
let wavelet variant. It lacks the benefit of a sharp contrast around the ridge points.

Figure 3.4: (Shown as the third figure in the program) Frequency leakage-in of the wavelet
variant. The frequency leakage-in is the projection of a wavelet atom of certain scale (ab-
scissa) into a wave packet of unit scale. It shows consistent results with the frequency
leakage-out (in contrast to leakage-out, here the value is not modified by the corresponding
scale)

Figure 3.5: (Shown as the fourth figure in the program) Phase noise of the wavelet variant.
The phase noise is the projection of a translated wave packet of unit scale into the unit scale
wavelet atom. There is a root at the zero phase. Again, the zero value and sharp contrast
around the root constitute the other half of the reasons for the wavelet variant’s successful
applications.

Figure 3.6: (Shown as the fifth figure in the program) Phase noise of the Morlet wavelet.
The phase noise is the projection of a translated wave packet of unit scale into the unit scale
wavelet atom. There is a peak at the zero phase. Again, the zero derivative peak is not a
good location for a phase identification.
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WV.nb (7/4/99 - 10:15:48)

<< "c:/lee/mat/SetNotebook_nbm.m" (+ Set notebock opTions *)
<< "c:/lee/mat/run-form miw";

<< "c:/lee/mat/fig-fram_nb-m.m";

<< "c:/lee/mat/000-word_nb-m.m";

myfont= "Times";

$TextStyle= {FontFamily-> "Times", FontSize-> myfontsizé;
timeflag="Y";

dynamictimeflag "N";

flabelflag= "¥Y";

flabelflag2= "Y";

abcdflag= "N";

llabelflag= "y";

gridlineflags "YY";

xyarisflag= "LL";

stringposflag1;

xshiftflag=0;

foréedstringaryflag"n";

Frmammm T Al N ET o Ml

doshowxy := {
moutt [flabel]l;
moutt [flabell];
myplot=ListPlot] dataxy
, PlotJoined->True
, PlotRange->Ail
, PletStyle->{Thickness[0.00C8] (* , Hue[0.01 *) }
, Frame->True
, DisplayFunc

ion->Identit

j
myshow;
(* Run{"mmawav.bat"j; *
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(7/4/99 - 10:15:49)

<<"c:/lee/mat/000-p2_nb-m.m"
bi

flabel2 := typestr<>"a=“<>StringTake[ToSt:ing[N[scapl, 9)i,I1f[StringLength!
ToString(N(scapl, 9]}1>=7, 7, 1] ]<>", B="<>ToString[N]

peakshiftpl, 2]1<>"n, £="<>StringTake|

ToString(N[xi,27],1)<>", (Oe"<>St:ingTakeiToString[N[xlimi:pl, 213,1)1<>"my,
B8="<>ToString [N{phapl, 3} ]<>"n";

» Leakage out (Wavelet variant)

(* ==——w--w Frequency
typestr="Wavelet Variant: “;

earage cut (Vt’ﬁ. ri ant ) R )

Projections at different wavelet scales™;
Ambiguity Effects : Leakzge OUT from a wave packet™;
<<"c:/lee/mat/000~-pi_nb-m.m";
frelkgout [peakshiftv_, scav_, xlimitv_, phav_, xiv_] :=
1 / {(scav) * NIntegrate{Cos[xiv*x]*Sin[xiv*x/scav]=*
Exp{-{(x - peakshiftv/xiv)~2/scav*2 - (x)"2)/(2)},
{%, 0, xlimitv)
; MinRecursion->3, MaxRecursion->10
1;
(* 1/ scav * Nintegrate([Cos[x]*Sinxiv * x/scav]~ (* a=sca/xi ~)
Exp[~((x/scav - peakshiftv/xiv )*2 + (x)"2)/(2)1,

*)
peakshiftpl=0.5;peakshift= peakshiftpl =~ Pi;
X1imitpl=7; xiimit=xlimitpl * Pi;
phapl=C;pha=phapl * Pi;
vi=5;
scapl=l;
datax= Takle! ni , {ni, 0.0825, 5, 0.0251);
datay= Table! frelkgout [peakshif:, sca, xiimit, pha, xij, {sca, 0.025 ,
5, 0.625 } J;
dataxy=Table{ {datax[[ i }], datay[[i]2}, {i,1 ,Length(datax]}];
doshowxy;

aqge OUT

=057, £=5,

1AL

L
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WV.nb (7/4/99 - 10:15:51)

Wavelet Varianc a=1. f=0.3x, £=5, (le71), =01 9807 /27021559
Ambiguity Effects : Leakage OUT from a wave packet
0.4
g
]
Z 03 J
2
v
H
02
g
g
£ o1 ]
p |
: \
s 0 i
g \
£ -0l
-02 ) B
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Scale
{1%9%g, 7, 27, 2, 1§, 0} CPI: (00, 00, PRAE (00, 06, 40)
8 Leakage out (Morlet)
————— e e . %

(* Frequency Leakage Qut
typestr="Morlet Wavelez: ";

xlabei="Scale";

ylabei="Projections at different wavelet scales";
flabel="Ambiguity Zffects : Leakage OUT from a wave packet™;
<<"c:/lee/mat/000-pi_nb-m.m";

(*

frelkginM{peakshiftv_, scav_, xlimitv_, phav_, xiv_] :=
NIntegrate[Cos[u/scav]*Cosi(u)i*
Bxp[-({uv -~ peakshiftv)"z+ (uz/scav)"2)/{(2%xiv"2)},
{u, 0, xlimitv}
, MinRecursion->3, MaxRecursion-»10

2 ooy

frelkgoutM [peakshiftv_, scav_, xlimitv_, phav_, xi

2* 1 / (scav) * Integrate(Cosixiv*x]*Ccsi
Expi-((x — peakshiftv/xiv)"2/scav”2 +
iz, 0, Infinity)

1;

peakshiftpl=0; peakshift= peakshifipl ~* Pi;
xlimitpl=7; xlimit=xlimitpl * Pi;

phnapl=0; pha=phapl * Pi;

xi=5;

scapl=1;

dofrelkgoutM=frelkgoutM [peakshift, sca, zlimit, pha, xi}{

datax= Table[ ni , {pi, 0.0060, 5, 0.025});

datay= Table[ N{dofrelkgoutMi, {sca, 0.000 , 5, 0.025 ) J;
dataxy=Table| {datax[[ i 1], datay([ii}]}, {i,1 ,Lengthldatax]}];
doshowxy;

32




WV.nb (7/4/99 - 10:15:52)

1
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Graphics::gptn :
Coordinate ComplexInfinity in {0.

<< "c:\\lee\\mat\\000-pl.m";

FindMini.mum[-l\t 1 /scas

» ComplexInfinity} is not a floating-point number.

00, 08)

-lesca)? acay?
E‘%T-l-_a!))—+g'%!)>— 1. : sca? /(2 (1+sca?)), (sca, 0.97}]
2 sca?

<< "c:/lee/mat/000-p2_nb-m.m"
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WV.nb (7/4/99 - 10:15:54) 5

n Leakage in (Wavelet variant) ‘ i

(¥ ———m Freqguency Leakage In (Variant) ~————-—- *)
typestr="Wavelet Variant: ";
xlabei="Scale";
ylabel="Projections from wave packets of different scales";
flabel="Ambiguity Effects : Leakage IN from different wave packets";
<<"g:/lee/mat/000-pl_nb-m.m";
frelkgini{peakshiftv_, scav_, xlimitv_, phav_, xiv_] :=
NIntegrate[Cos{u/scav]*Sin{(u)]*

Exp[~{{u — peakshiftv)”2+ (u/scav)"2)/(2*xiv"2)1,

{u, 0, xlimitv}

, MinRecursicn-»>3, MaxRecursion->10

(* gscalb_, &_, s_]) := NIntegrate{Cos[u/a}*Sini(
Exp[~{((u-Fi/2.)"2.+(u/2)"2.)/ (2

peakshiftpl=0.5;peakshift= peakshiftpl * ;

xlimitpl=7;xlimit=xlimitpl * Pi;

phapl=0;pha=phapl * Pi;

xi=3;

scapl=1l;

datax= Taklel ni , {ni, 0.025, 5, 0.025}];

datay= Table{ frelkgin [peakshift, sca, x=limit, pha, xi}, {sca, 0.025

5, 0.025 1} }1;

dataxy=Table{ {datax[[ 1 ]], datay([i]]}, (i,1 ,Length([dataxl)];

doshowxy;
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WV.nb (7/4/99 - 10:15:56) 6
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; m Leakage in (Morlet) j

(* —-~—=w—ww Frequency Leakage
typestr="Morlet Wavelet: ";
xlabel="Scale";
ylabel="Projections from wave packets of different scales";
flabei="Ambiguity Effects : Leakage IN fror different wave packets";
<<"c:/lee/mat/000-pi_nb-m.nm";
(* There cxists 3 . b
freikginMi{peakshiftv_, scav_, xlimitv_, phav_, xiv_] :=
2 * Integrate[Ccs{u/scav]*Cos ()]t
Exp{~((u - peakshiftv)"2+ (u/scav)*2)/ (2*xiv~2) 1,

{u, 8, Infinity}

(MOI— 1 et ) [ )

~

1;

peakshiftpl=0; peakshift= peakshiftpl * Pi;
xlimitpl=7; xlimit=xlimitpl * Pi;

phapl=C; pha=sphapl * Pi;

xi=5§;

scapi=i;

dofrelkginM=freikginM {peakshift, sca, xlimit, pha, xi) (*aralyti

¥

datax= Tabie[ ni , {ri, 0.000, 5, 0.C25}15;

datay= Table[ N{dcfrelkginM], {sca, G.000 » 5, 0.025 }
dataxy=Table]| {datax{{ i ]I, datay(:i1):, {i,1 s Length [datax] });
doshowxy;

1

1 1 2 .
e e = R b i S
2 Z ' fsw(-u‘—m) Cos(u] Cos[ u ]du]
(1 +sca?) , —
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{1298, 7, 27, 2, 16, 58}

6o, 08) SJ

, 47y Y
| << "c:/lee/mat/000-pl _nb-m.m" T"
FindMinimm[-1s 10+ |
[(E 2:5;1::'?)1 +E ’f(‘:’.'.'.-f.“’ff] \/z ." 1+ : sc32) /(2 (1+sca?)), {sca, 1.01}] J
2 sca?
<< "c:/lee/mat/000-p2_nb-m.m" ‘ J
{-4.47397, {sca-1.03926}) g
{1998, 7, 27, 2, 7, &} Ho08) ; 3]

= Phase noise (Wavelet variant) :]

e
wn
T

(R ———————— Phase Noi
typestr="Wavelet Variant: ";
xlabei="Phase";
ylabel="Projections from different phases";
flabel="Phase Noise : Related to differnet locations of a wave packe:z";
<<"c:/lee/mat/000-pl_nb-m.m";
integright [peakshiftv_, scaadiv_, xlimitv_, phav_, xiv_] :=
NIntegrate{Cos[u/scaadjv-phav]*8inlul*
Exp[-((u -peakshiftv )*2. + (u/scaadjv-phav)"2.)/(2*xiv~2)],
{u, 0, xlimitv}
; MinRecursion->3, MaxRecursion->10 ];
integleft [peakshiftv_, scaadjv_, xlimitv_, phav_, xiv_] :=
NIntegrate{Cos[u/scaadjv-phav]*Sin{-uj~*
Exp[-{{u + peakshiftv )”2. + (u/scaadjv-phav)2.)/(2%xiv"2)],
{u, -l.*xlimitv, 0}
, MinRecursion->3, MaxRecursion->10 ];
peakshiftpl=0.5; peakshift= peakshiftpl * Pi;
xlimitpl=7; =xlimit=xlimitpl * P
phapl=0; pha=phapl * Pi;
xi=%;
scaadj= 0.969621557058245997; =scapl=scaad?;
phaintpl=Table| integright(peakshif:, scaad:?, xiimiz, phav, xi}l,
{phav, 0.05 Pi, 6.5 Pi , 0.95 Pi } 1;
phaintp2=Table| integleftipeakshift, scaadj, xlimit, phav, xi},
{phav, 0.05 Pi, 6.5 Pi , 0.0%5 Pi } ];
phaintmid=2 * Taple{ integleft[peakshift, scaadj, xlimit, phav, xi],
{phav, 0.00 Pi, 0.00 Pi , 0.05 Pi } 1;
posshiftsum=phaintpi+phaintp2;
midintsum=phaintmid;
datax=Join|[ -1* Reverse[Table[ ni * Pi, {ni, 0.05, 6.5, G.05})1:, {0}, Table!
ni * Pi, {ni, 0.05, 6.5, 0.05}] i;
datay=Join| Reverseiposshiftsum], midintsum, posshiftsum];
dataxy=Table{ ({datax[[ i 3], datay[[i]]}, {i,1 ,Length{dataxl}];
doshowxy;

[V
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Wavelet Variant a=0.96962, B=0.5x, £=5, (0e7n), 0=0n WAT2T602:15.59
2 Phase Noise :/Related to diffemnet locations of & wave packet
1

/
/

b
/ .
|

LAl
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—_—
——

Projections from different phases

-2
-20 -10 0 10 20
Phase
{1998, 7, 27, 2, 17, &} CPUI (00, 0D, 3£.08); 33)
8 Phase noise (Morlet)
(e Fhase Noise (Morlet) me e %)

typestr="Morlet Wavelet: ";
xlabel="Phase";
ylabel="Projections from different phases";

<<"c:/lee/mat/000-pi_nb-m.m";
integrightM[peakshiftv_, scaadjv_, xiimitv_, phav_, xiv_} :=
NIntegrate{Cos[u/scaadjv—phav]*Cos{uj*
Exp{-((u -peakshiftv )*2. + (u/scaadjv—phav)”z.)/(2*xiv“2)],
{fu, 0, xlimitv)
+ MinRecursion->3, MaxRecursion->10 3
integleftM(peakshiftv_, scaadiv_, xlimitv_, phav_, Xiv_] :=
NIn:egrateiCos[u/scaadjv~phav}*Cosi-uj*
Exp[-((u + peakshiftv )»2, + (u/scaad:v-phav)"2.)/ (2*xiv~2) ],
{u, -l.*xlimitv, 0}
+ MinRecursion->3, MaxRecursion->10 1;
peakshiftpl=0.0; peakshift= peakshiftpl * EBi;
xlimitpl=7; xlimit=xlimitpl * Pi;
phapl=0; pha=phapl * Pi;
Xi=S5;
scaadj
scapl=scaadj;
phaintpl=Table| integrightM[peakshift, scaadj, xiimit, phav, xi],
{phav, 0.05 Pi, 6.50 Pi , 0.05 Pi } i;
phaintp2=Table| integleftM[peakshift, scaadj, xlimit, phav, xi],
{phav, 0.05 Pi, 6.50 Pi , 0.05 Pi )1

’

4

i {phav, (.06 Pi, (€.00 Pi , 0.05 Pi } ];
pesshiftsum=ph intpl+phaintp?;

midintsum=phaintmid;

datax=Join[ -1i* Reverse(Table{ ni * Pi, {n:i, 0.05, 6.50, 0.05}1],
Table!{ ni * Pi, {ni, (.05, €.50, 0.05%; 1;

datay=Join| Reverse [posshiftsum], ph =mid, posshiftsumj;
dataxy=Table’ /(datax([{ i }J], datay[iiiii, {i,1 rLengthdataxi}];
doshowxy;

flabei="Phase Noise : Related to differnet locaticns of a wave packet™;

phaintmid=2 = Taple! integleftM|peakshift, scaadj, xlimit, phav, xi],

{9},

wwea U

o L a wave packet

et
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Morlet Wavelet a=1, f=0.x, £=5, (0«Fx), 6201 G8i07727€02:15:59

4 Phase Noise : Related to diffefiyet locations of a wave packet 4

A A\

-2

Projections from different phases

-4

{1998, 7, 27, 2, 17, 4%}

<< "c:/lee/mat/000-pl_nb-m.m"

g[b_, a_, s_] := Integrate[Cos[u/a]=*Sin[(u)]w
Exp{-((u-Pi/2.)%2.+u"2.)/ (2%5"2}], {u, 0, b}]

FindRoot[g[5.«Pi, &, 5] ==0, {a, 0.95, 0.7, 1.2}]

<< "c:/lee/mat/000-p2_nb-m.m"

(a—>0.970672}

bet L A4

4

o N a4
{00, 00, 44,

{1998, 7, 27, 2, 18, 16}

~o
=
-

L.
{

<< "c:/lee/mat/000-pl_nb-m.m"

g[b_, a_, s_] := Integrate[Cos[u/a]wSin[(u)]»
Exp[-((u-Pi/2.)"2.+u”2.)/(2«8°2)], {u, 0, b}]

FindRoot[g[ 7.*Pi, a, 5] ==0, {a, 0.9696, 0.7, 1.2}]

<< "c:/lee/mat/000-p2_nb-m.m"

L A
1

{a—0.970672}

V4]

{1938, 7, 27, 2, 19, 0} CPU: (00, G0, 44.71); 06, 00, 43y %
<< "c:/lee/mat/000-pl_nb-m.m" Y;"
g[b_, a_, s_] := Integrate[Cos[u/a]+Sin[(u)]+ '
Exp[-{(u-Pi/2.)*2.+ (u/a)*2.) / (2%s~2)], {u, 0, b}] ‘
FindRoot[g[5.#Pi, a, 5] ==0, {a, 0.97, 0.7, 1.2}]
<< "c:/lee/mat/000-p2_nb-m.m"
(» Run["mmawav.bat"}; =) !
4
{a—»0.969622} g
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| 1 Close form integrations

()2 o2
g2(b_, a_, 8 )= J:cos(;) sin(u) e ¥ du ﬁ

<< "c:/lee/mat/000-pl_nb-m.m" N7
92[b_, a_, 8] = Integrate[Cos[u/a] »Sin[(u)] »

Exp[-((w) "2. + (u/a)*2.) / (2#5°2)], {u, 0, Infinity}]
<< "e:/lee/mat/000-p2_nb-m.m"

If[Im([ll—) == OAR{ (%):; : ] >0,

.5

@y

(@a-17s

3 (a-1y ¢ 1
e R -2 (i S|
(LY +1)a : '[ 2 2((%)'41)4:2)5@( “)
a2
_{:e zl? cos(%)sin(u)du]

{1898, 1, 18, 5, 15, 19)

2.
If[Im[%] == 0&& Re[#] >0,

(-1+a)°s?
—t7=*4) s

(‘ R (x_)zA) - Hypergeometricl?l[l., %, —\az] Sign[l— %] +
a

1372 ; !
Hypergeometricl}'l[l., %, —2—((ll+°+)sz)] sign[l + %]J / |
+(+ t

(1+1)7s2

1+ (H)®

{199¢&, 7, 2¢, 17, 2g, 31)

(08, GG, B0

<
vl

A

<< "c:/lee/mat/000-pl_nb-m.m"

g3[b_, a_, s_] = Integrate[Cos[u/a] « Sin[(u)]«
Exp[-((u-Pi/2.)*2.+(u/a)*2.)/ (2#8°2)], {u, O, Infinity}]

<< "c:/lee/mat/000-p2_nb-m.m"

S{=1.3TaReuE - () 20 u S

E 7 Cos[—] Sin[u] du |

] a =
{1998, 7, 7, z, i, 8) TEUL(L0, 08, a.vay; Ti S
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<< "c:/lee/mat/000-pl_nb-m.m"
gé4[a_, s_] := NIntegrate[Cos[u/a]=Sin[(u)]«
Exp{-((u-Pi/2.)*2.+ (u/a)*2.)/(2+s*2)], {u, 0, Infinity}]
g4[ 0.969621557058245997, 5]
<< "c:/lee/mat/000-p2_nb-m.m"

[ — |
]

2.76365x107¢

L4 L

Time: {00, 00, ©2)

m Appendix ]

The Unevaluatable
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Qhapter I

Tests on Numerical Simulations and

Wave Tank Signals

4.1 Numerical and experimental signals

Both numerically simulated and experimentally acquired signals are used to test
the performance of the wavelet variant and the Morlet wavelet. Note again that all
comparison pairs use the same parameters.

For numerical experimentation the following signals are used:

- e A parabolic chirp with a frequency range of zero to Nyquist rate of 100 Hz;

A signal composed of two liner chirps that have equal power and cross at a
point of half Nyquist frequency (it is here called an X-signal);

o An X-signal with a power ratio 0.01 between component signals;

A signal composed of two liner chirps that are parallel and have the same
power content;

A signal composed of two liner chirps that are parallel but with a power ratio
of 0.04.

- For test on experimental data, water wave signals generated by wind or me-

chanic wave generator in a laboratory wave tank are used. They include:
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e Short wind waves of spectral peak of 2.0 to 2.6 Hz;

e Stokes waves of different fundamental harmonic frequencies and wave steep-

4.2

ness.

Results and Discussions

Figures 4.1, 4.2, and 4.3 show the zoom-in of a section of the parabolic chirp
under several setups. The top two sub-figures in figure 4.1 are based on the
modulus definition of equation 2.3; these time-frequency renditions are nearly
identical to those of the Morlet wavelet. The bottom two sub-figures are as-
sociated with the wavelet variant transform, and the time-frequency modulus
and phase maps are rendered in accordance with equations 2.4 and 2.5. It
is quite clear that the current wavelet variant provides a much enjoyable and
also easier way in identifying the locations of the instantaneous frequency.
Moreover, it is hard to find any significant feature from the phase planes de-
rived from the Morlet wavelet coefficients; on the contrary, the phase plane of

the wavelet variant is just as informative as the corresponding modulus plane.

Figure 4.2 also shows the same time-Frequency zoom-in, but here they are
associated with different analyzing resolutions and also with different adap-
tations in its time-frequency windows (i.e., different ranges of wg). Even
though here the discrete resolution in numerics is coarser when compared
with the previous one and the resolution points might not fall exactly at those
of instantaneous frequency, the phase plane still provides very clear features
at all the interfacial resolution points. While in the mean time the modulus
plane locates the exact matches between instantaneous frequencies and nu-
merical resolution points.

Figure 4.3 shows additionally the usefulness of the wavelet variant phase ren-
ditions. Through the use of phase rotations or different phase definitions, one
sees from this figure as well as from the previous two figures that various im-
portant time-frequency features are glittered by the sharp contrast in phase.

In addition the alternating phase strips are capable of showing the troughs or
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peaks of a signal. One more point to note is that the contrasting phases are
mostly seated at convenient phase separations.

Figure 4.4 shows the whole parabolic chirp for both the Morlet wavelet and
the wavelet variant. Again, the phase plane of the Morlet wavelet has far more
unwanted features than anything that can be of practical significance. For the
wavelet variant, note that there is a slight up-shift of instantaneous frequency
when compared to that of an analytic Gabor transform. This up-shift factor is
approximately m.

Figures 4.5 and 4.6 show time-frequency characterizations of an X-signal
composed of two chirps of equal power using both the Morlet wavelet and
the wavelet variant. These figures feature identical depictions as were pro-
vided by those of the parabolic chirp.

4.7 gives the distribution of the time-frequency resolutions for the X-signal
using the wavelet variant. The middle sub-figure is done with a phase rotation.
Here they basically show the effects of frequency leakage and phase noise.
The saw-tooth shape peaks in the 3-D figure reflect the non-exact matching
of instantaneous frequency and numerical resolution.

Figure 4.8 shows the ridge extraction of a signal composed of a pair of par-
alle] chirps of equal power. The frequency separation between the two chirps
is one tenth of the Nyquist rate. The power ridge given by the Morlet wavelet
is entirely misleading; while for the wavelet variant the two lines between the
alternating dark band is mostly identifiable except near the Nyquist frequency
(top right sub-figure) and the two lines are represented by the two sharp peaks
in the 3-D piot (bottom right sub-figure, where the rendering is inverted, i.e.,
a trough in the 2-D plane turns to a peak in the 3-D figure). Quite obviously,
the devised wavelet variant provides a much easier and unambiguous identi-
fication of the two component chirps.

Figure 4.9 shows the ridge extraction of a signal composed of a pair of parallel
chirps with difference in their power contents (a ratio of 0.04) using both the
Morlet wavelet and the wavelet variant. Figure 4.10 shows the time-frequency
phase planes for an X-signal with power ratio of 0.01 between component
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chirps using the Morlet wavelet (top sub-figure) and the wavelet variant (bot-
tom sub-figure). In general, both transforms show difficulty in differentiating
such a large power difference for the two nearby instantaneous frequencies.
The weak component signal has been overshadowed by contamination. Nev-

ertheless, the wavelet variant phase plane is still a bit more informative.

Figure 4.11 shows time-frequency features of a water wave signal measured
in a wind blowing laboratory tank using the Morlet wavelet (left sub-figures)
and the wavelet variant (right sub-figures). Figure 4.12 shows the wavelet
variant time-frequency planes for a less developed water wave of small wind
speed (i.e., with a spectral peak located at higher frequency). Still the wavelet
variant yields better and easier identifications of instantaneous frequencies
from both modulus and phase representations. Besides, from the phase planes
of the wavelet variant one seems more likely to get an idea of where the higher
frequency ridge points locate.

Figure 4.13 shows time-frequency features of a mechanically generated Stokes |
wave using the Morlet wavelet (left sub-figures) and the wavelet variant (right
sub-figures). Again, the wavelet variant has obvious advantages over the
Morlet wavelet in identifying time-frequency features from both modulus and
phase representations. Interestingly, there might also be an indication of the
Benjamin-Feir side-band instability [1, 2, 31, 10, 12, 11, 19, 20, 9, 27, 24,
25, 17] at the second harmonic band as is evidenced by the rapidly oscillating
interfacial points in the phase plane based on the wavelet variant.

44



[ o db Below Peak [GCW L Amplitude] a0 I
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Figure 4.1: The time-Frequency zoom-in of a section of a parabolic chirp using the Morlet
wavelet and the wavelet variant. The top two sub-figures are based on the modulus definition
of equation 2.3; therefore, they are almost identical to those of the Morlet wavelet. The
bottom two sub-figures are associated with the wavelet variant based on equations 2.4 and
2.5. Various implications are stated in the text.
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Figure 4.2: The same time-Frequency zoom-in of a section of a parabolic chirp using the
wavelet variant. Here the adaptations of time frequency windows and the discrete step (nu-
merical resolution) are different from the previous ones. Even though the discrete resolution
is coarser now, the phase plane still provides the same clear contrast at all the interfacial
points; while the modulus plane locates the exact matches between instantaneous frequen-
cies and numerical resolution points.
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Figure 4.3: The time-Frequency zoom-in of a section of a parabolic chirp — effects of phase
rotations. Combined with the two previous figures one sees that time-frequency charac-
terizations are featured by the glittering of sharp contrast in phase. In addition, various
contrasting phases are seated at convenient phase separations.
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o db Below Peak [CWT Amplitude] & _40] 5 db Beiow Peak {CWT Ampiitude] ““I
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Figure 4.4: The ridge extraction of the parabolic chirp — sub-figures on the left are based
on the Morlet wavelet basis; sub-figures on the right are associated with the wavelet vari-
ant. Again, the phase plane from the Morlet wavelet has far more unwanted features than
anything that can be of practical interest. Note, for the wavelet variant, the frequency of the
featuring curve is about se== of that of the analytic Gabor transform.
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[Adapted CWT, x-lines2.dat (0.739.2)N) (1998/1/1- 143920
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Figure 4.5: The Zoom-in of the ridge extraction of an X-signal composed of two crossing
linear chirps of equal power. The sub-figures on the left are based on the Morlet wavelet
basis; the sub-figures on the right are associated with the wavelet variant.
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Figure 4.6: The ridge extraction of the X-signal using the Morlet wavelet (the sub-figures on
the left) and the basis of the wavelet variant (the sub-figures on the right). Here the figures
feature identical depictions as were provided by those of the parabolic chirp. The saw-
tooth shapes of the right 3-D plot reflect the non-perfect match due to a coarser numerical
resolution.
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Figure 4.7: Ridge extraction of the X-signal using the wavelet variant with phase rotation
— noting the capability of detecting the frequency leakage from the phase plane (the middle
sub-figure).
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Figure 4.8: The ridge extraction of a signal composed of a pair of parallel chirps of equal
power. The figures on the left are based on the Morlet wavelet basis; the figures on the right
are associated with the wavelet variant basis — noting the much easier and unambiguous
identification of the two component chirps when the devised wavelet variant is used.
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Figure 4.9: The ridge extraction of a signal composed of a pair of parallel chirps with sig-
nificant difference in their power contents. The figures on the left are based on the Morlet
wavelet; the figures on the right are associated with the wavelet variant. Here both trans-
forms show difficulty in differentiating such a large power difference. The weak component
signal has been overshadowed by ambiguity effects.
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Figure 4.10: The time-frequency phase planes for an X-signal with a power ratio of 0.01
between component chirps using the Morlet wavelet (top sub-figure) and the wavelet variant
(bottom sub-figure). The wavelet variant is still a bit more informative in identifying the
weak signal.
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Figure 4.11: Time-frequency features of a water wave signal measured in a wind blowing
laboratory tank using the Morlet wavelet (left sub-figures) and the wavelet variant (right
sub-figures). The wavelet variant yields better identifications of instantaneous frequencies
in both planes. Besides, the phase plane of the wavelet variant seems to be able to locate
higher frequency ridge points.
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Figure 4.12: The wavelet variant time-frequency planes for a less developed water wave
related to a smaller wind speed (i.e., with a spectral peak located at a higher frequency than
the one associated with the previous figure).
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Figure 4.13: The identification of instantaneous frequencies of a Stokes wave using the
Morlet wavelet (left sub-figures) and the wavelet variant (right sub-figures). As is evident,
the wavelet variant provide easier and more precise identifications. And there might be also
an indication of the side-band instability at the second harmonic band as is clearly evidenced
from the wavelet variant phase plane.
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Chapter

Conclusions

A wavelet variant as well as its associated time-frequency rendering methods are
devised. The reasons that lead to the usefulness of the wavelet variant are illus-
trated through the characterizations of the projections of wave packets of different
scales and phases into the wavelet variant, or vice versa. With reference to the Mor-
let wavelet in association with a continuous wavelet transform, we show that the
present quasi-wavelet provides easier and clearer identifications of instantaneous
frequencies using either the modulus or phase time-frequency plane. Most pro-
foundly, the phase plane of the wavelet variant provides far more informative high-
lights for various featuring elements — such as ridge points, extends of frequency
leakage and phase noise, the oscillating position of trough or peak of a component

signal, and better indication of high frequency constituents.
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