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E—~FHEMNEEMEECREERRERX , EXEEFFERWR
7 BT R (Model WH21) ~ HIRTER AR (Model WE21) ~ 4
PRz i (Model WP21) K HH 287k TEBRFT (DHI) 5| HR=
350 MIKE 21 OSW ,NSW,PMS & EMS £ Ju{F#4H -

Model WP21 X EEAB#ERRRIMBEEEERBRN IS
i, MEBERRTRVE, RHETHEZEY , 5| AR B RRERK
FEABUCEREZSFEAEREA - 8 BRGEEFEEE, X
BAZERE BEERES CRER BEERITREEARE ° Model
WH21 X E e R E SR RSk BB L R A SR R et
B EtRE L, BB RTREEAEE SR ZTRERE
BRIEREE M =ZAFTRAE - Model WE21 EEERBHEB KR
RREML I R R R dE 2 B2 55 2 M B S iR 8L FEHE R B 5
JIREHEAEREZS SR (M REEGTER) -

Mike21 OSW 4 = B FE I R SR BT FE A B BRK Sl 2 VR i 1T
BRERBEEERS - OSWEHAZIREEHERCEL(R) ~ T4 -
B~ TRSEREEREREFRE, W LA LR R SR ry i i B
M, BEEAZER(FEERE) TRARIECER(BEKRE)F -
MIKE 21 NSW X EER RN BT BBRET - RREBESEHE
£, NSWEHZHRERFRZELE(RN) ~ T4 - Bt BE - B
PREEHR - HERMA LIRS, WARRRI BRI RR e R R [ RE
EARAERSBECERERS - RERREAERBESHELREE L
T R, B bt W $E S0 & FE 7 (radiation stress) ©

MIKE 21 PMS EXHEAR YR EBBRFEHEN REFER
EA FWASTH KRR ERUE, Rt PMS I E EEAREN SF D
RBBERERBY LR E R EB{L - MIKE 21 EMSEAXTGER
EREELREREAER, RS RSN - 75 (B/b) RIE, RTHALRR
o~ ¥R - O BEHCE - AL EMS SH X EE AP RE
BYIERRERN, RS RKAARARIBE

BT ECHEEIERTFREREBHRRETRITREEA,
FORAEE _HERAEARES A EACEERS BRI 0 T
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MG IR R G S BO LR AR &R - AEE T TEN—#ZRE
JHEELS T EEEBEREERETAES SR, MEEHECBER
FHESBER - 25 5 1E %R Galerkin B Petrov-Galerkin fiRE T
BB BEELRER, % TG4 IR Dirichlet 38 55 & {4 K& Neumann 3
FARERE - ZBRAXUHECERBERAG T, DN EA e ERE
BRBEEENXZEEE -

E=TFErESrERNEE T UEE BRI » BIEK Stokes# ~ Fi¥ Kelvin
W~ ¥ F Kelvin I » BB U7 (Edge Wave) B GG IR ML HRRETH
B e RBARNRERS » BB T 5B LL Korteweg-de Vries(KdV)
7% ~ Kadomtsev-Petviashvili(KP) J7# ,nonlinear Schroedinger(NLS) 5
BEEPN—ERMERERT AR ECEEE = RN R
Higt  HXEREERNYEEE S FIR R -

FEREEIL T ECHES  BRRHESNRBNEFEHEHRER
RS HEANRER - B2 UEZBEFRRRN R L e R E
- ERNAEBRGEHE  RYESELERAESHE - B BR A
RARELFENEE > EATUNE—FHEAZEEAEAHEERK
BAfR - HERIAI R R ERERMANE R EAER BN
REMER - 4t EHEARNEE MBS RS - &k > ZHRMEH
BEEEESN  WETVSNEBEERR  ELBEERNERT I HEER
STENEREHEEE - AMETOLAXNCES » A AR EERE
Maple » DAIF|EI R ERE BLHERE -
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TR ERNTEEREZESEERER X CELAFESHEY
H#IUTREBEER (Model WH21) ~ BFRTTHREER (Model WE21) ~ B[R
ZAEHEER (Model WP21) REfIEE/K THRERFT (DHD) 5[ # 2 BRESH
X MIKE 21 OSW,NSW ,PMS & EMS £ U {E &4 -

Model WP21 EEEAR#EFRRIEI BERELERRZIKES
i ARBERRTRYVE, RAEKTHARZIEY 5| Hiumg B e
ATEABIUCERESEENERER - EEFERGEE S, LTIy
BAZHERR, HHERSCTRE BERERTREENSE - Model
WH21 EREARHESKESKRBCAEBZ TR RS
ZaHREELRRL RERATREEARE—HEA L TRERKE
RITRELZ M =ABTRAE - Model WE21 T EFEABHEKE
RBECARUBREM RS MBS REML, R R
SIAEERRTRESEEX (MR GER) -

Mike21 OSW KA T BB AR R ENMEBR KM ESZ BB ET -
KREEBEEHESE - OSWHEEZREERRZEE(AN) « 74 -
Bt - TRARERREREERE, IS5 R85 B AR i 5 5
B, EEERCER (S EEE) TREXSESHE (REEE)S -
MIKE 21 NSW X BREARRE OB ECRRET - REARESH
R, NSWHEIREEEEREZEE(RN) - TH - 8L BE - E
PREESR ~ WK EAERE, X LI #R RISl 2 S8 52 3 5 S 3 10 2
RAFAERHSBCERERE - AFERERERERENEREEY
TR, B It W0 HE B0 & FE AT (radiation stress) o

MIKE 21 PMSEXHEARMIRIEBBEHFER, B HFER
EFXETRATHERHERE, A PMSEE T EEBARENSE N
REBEFREREBY I EMBEREHRL - MIKE 21 EMSEAHER
REEERREAER, RERRE - T (B1) 38, STMAKR
K&~ B RE - BOBHZHE - K EMS 48 X 2 AR ENE
BYRRERRH RERRABRLPEIEE
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AN

AR KRB BE BRI » Miles B Mumk (1961) #EET 4570 ¥ B8 O 425135 -
FNFREEOEENEZERRE  BEARS FEH SRR KERETEECEVRS
#it > BB HTED Green’sEHBIRT » M Green's B THAUFM RS LR RE - HE
REEENREVELNE - HEMGRELEEHOR/ N NREBERAREV NN ZED
7 J& i (Harbour paradox)  Ippen & Goda (1963) Dl B FIBEM Bk R BB OB S FIREE
RN RREACKE  EREEORR B EBERE  KERLR/NER
AURAEHBREREBERYE - R T (1982) 5] Ippen & Goda (1963) Z F N EF
HE SRR 30 SRR TR A MR 4 Ak R ¥ 1 BB A 7K U R KR R SRR VR R T B LR MY K B B
X BEWEEREY Miles & Munk (1961) RHUZ BOF EH » EREEPLTRI -

Chen (1986) & Tsay et al. (1989) S BIRN OESERRAERFERTHRAERAZ
BEAREERME  EREBESORECHEGED - REREE - FFUEEEERR
HIERC WRERBRE(L  MEEERREEKERER RS E - Chwang at al. (1990)
5| F Chwang et al. (1989) B K ENBSILEEC FEIPBBAE » STLBSTLEE
M—RTAEKENERGFZEVEHERERER  RERSIEZHRERBEBER €5t
ETAZAZESE G 3t » MR AREBENE (B ) THE G ERH
MRS > B G EZIEH » R HEAERENRN - HETEEKEEESIE
BRI CBRBRERRELE  MEARESHERREFBEAIZBE - |

B (1990) REP A BB EHANM K E B S TLRER G HELE - ZEXEAER
EERMAFR HRACEERE - S (1992) BN B b AERBS AR ERH AT
WERERBUSNE - I B S Bk RS LR BRI K RS FLE B2 S R SR
¥ ESABES G RBF A KERBSTLEEE - BRAREE 2 HARRRY
B SRS TS T EEAENES LR ERRERETRNS Y
—HEF  FRTANSARESBEARANNBNEYE - kRARRTEI LSS
TERNHEZ RE © T0E THERRHEREL EY - 5 (1993) BRI RE R &8 B KEHE
STHRER BN HERRRABENKRINY © Lot MBS IRS B A KR
AR « HE BT LR MEES AEFRERE  BEEEELE LESESL 5
ARESHR—EESE  EXAKMER  ARESHEORE—BEERERY - SHEE
BB ES RS ANERR  BREESD Y RSB RSIESE  BEER
BEZRA > hREARALENLME .

—RE BT R FTRE R B2 SR TEREAE (exact solution) FR M LK HE ML » 11

-1-
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AP KERER  EERNBEIERS  REBERTHRR  EREEEEEDEE
EEBRAR—EERR WRBEXEHERL  FHTISRERERSI— - MEEEER
& BERE  BECAKEEERARBREC ERERERINBINT @Y  BRHER
BIESE  LREBEERULEZERK -

HEEKRRBKEBLRERZEDRER  FREERIBEES  BEBHEST
US| AR % FE S (Helmholtz equation) fit - R TRER “HERNE » AR BK
LEBRATRRE  HERZBEREERES REESHE - Hvang & Tuck (1970) » Ho R
Bomze (1975) + Lee (1969 » 1971) ~ Lee B Raichlen (1971 » 1972) + Chwang et al. (1990)%
51 &R TR ¥ (boundary element method) EFEE S 512 ¥ (integral equation method) »
TEF A Weber 2 » HHBEHABRARESRI AR > MBALIEEREERATE BN
ERAATBRAR—EESFEAURSGE - Lee (1969) R KRR VEW BHILIRNE B8
ERBRRCEAR (ABEEEANES)  BEFEARERENARERLERS
ERERENERBEELRRN  HEREBEREERMIER - Chwang et al. (1990) 3]
FA%E Bl Lee (1969) 2 BB B FH 1 » HENAK Lee (1969) Z FEM B E S RIEHHES
TR BB R EE RIS (1986 » 1989 » 1992a » 1992b) fEFE 8 T REBITE BT
FOKBRZ BHKERE > TERETERAREREREENEM KEREWE  £38
ZIEHFRR - IR =#h %8 K 5 (Laplace equation) -

FEHPBETRIZ - AR ISR L BN - Berkhoff (1972) IR £ HER
(mild-slope equation) » 5 |BARTRE R B FTRESH HLFEIXE - FHEERERILL
EBRTRERE - Chen & Mei (1974) » Chen (1986) 88 —iE & 7T %1% (hybrid finite element
method) » FRIRBEAKFEHEARBEALER - HEEREARMD—REBRTREEE
P TR B O E R R DUETEE N ERE - Tsay & Liu (1983) - Tsay et al. (1989) » ik
B (1985) - PR EF(1985) - BriE(1990) B2 &k (1993) 45 A 82 Chen J; Mei (1974) @ B » LU
KEER S FTE o Chen (1986) - TS&Y et al. (1989) x BEER A LEREERRERRE
KA EFR KB ERBENE - BRE (1990) R & (1993) e BERERNERELRS
LBREECEKERE -

batEE Y W RS EER RS S B SR R B Sommerfeld 825138 R 16
B REBRERYEREECER  EESREZIERESRE AN BEETE (out-
going progressive wave) 77 7F - MAWE L ESA KL SESEFEHELEE 25
ORERENERLEBABE-MFER  MANSERNERESKEE ( Chen R Mei
(1974) ~ Tsay % Liu (1983) - B (1990) ) - EE RS EEZIER , ML EWEBER
TE, EFSRREST BERRE  BERENE  RIEEAREHEES TR/ EHD

) .
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REEKRRBEBTESER KRG  AHEBRHEEETHE -

BREKEE(1990) « RFEFE(IV)EERERNERETBERNZES BE - LB ERE
RAUACEEBERESGE  DEFARERLIBREKEEZBE - BRI (1990) B/
EENGEAERARHEEPEZIIBEERCER - B REERBERERERE
BERENEER  RTEFEALTESIIER - HFE(19]) BN R ARNEH EYE
REFECRRENANEH G  EREBERRHECER - MBI —SKEER BT IER
ME ARRRERL/SERR NTRHEEN S - EX L HEEH RN EEEAY
BR - KESH - BRREEYREANEER -  MEBREETHRABLRLEY, BHE
RERGRGEREREARESREFE—SHEN  RHRAREN GECFRERTRENE
SRR HFER -

EEKRRKEBETHEL BHRER  FREGHINFRES  BRBHEST
LA AR B R (Helmholtz equation) #ist - 8 RIT R4 - HERME « 75 E%
CEBRTRRE  HEBRIELREER > BEERHE - Hvang & Tuck (1970) * Ho R
Borize (1975) + Lee (1969 » 1971) + Lee } Raichlen (1971 » 1972) + Chwang et al. (1990) -
B2 (1992) &5 | FE & TLR vk (boundary element method) SR#B M 5 /712 ¥k (integral equation
method) » ZEF|F Weber g » HFBEFERARBHL FBR AL EIRERERAT
R AR FERAR—EESERXURERE - M55 (1986 » 1989 » 1992a » 1992b)
P AT R RAT E BT ROk Rz it K ) » W B R R R W R e
RBHKERE M - X5 A2EHHER - AR SR K AR (Laplace equation)

MEY RS FER, NS FERH NS, EER U BE CHE NS AE, FiExX
B - D EFERE BEER S EENNE, R EE RS EE R L BSEEE A
HEEG TETHEAHNEERREATEE C &S, HEAELBEN EREEMS,
EHAERERTEA BAFEF B EETIEEAE - L8 RTREER D@
ZBEBEEKIBL, SRS EHREIBA B, BRE T ERTEAR, —B—E
BHRERAEOMT ~ 10FTES, AR E AT HER, S5% R AR, A5 o ES
CEEBENE EREA RIETRANS BN, T — R E N TEREERIT - BIKE
MERFEARZBRH RN ESREEAB Y RS ERTREEAERLEA Z ERE
s EREERRANER, VTR E—HEBRRE IS T, MRE RS HEEN
DB EE B WEEES T

BRERFEEADRRKE, REMREEY L BE, AR EE S R3O, 0k
-3-
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BREESMBLR—EELF - REHELIBHEBCITHERBLRES, —R7 AR R
B gk (wave ray theory), B AR ERRBERFRLEZHHRET, FABR TR BB LYK
B RAREFRECERTERS, BRERTE, HRRMER), R REREA, KA
BREREREAER, RE X ERAR FRARASTAE, KA ARERESL
BRRBEHERS -

Booij(1981), Lozano and Liu(1980) & Radder(1979), 2 8 33| F Hh ¥ & B #7 1 (parabolic
approximation) BN RIEAF S RBHE S T Wi , 73] A 4748 512 R (parabolic wave
equation), WEH MR ER THEANEARELIES, EERES BUMR A BN KR,
‘Liu(1986), Liu(1989), Liu et al (1980) S B A Y15 MEHE , BRUEAIS i R0 B S50, B S 85
HREEREERL -

Liu and Tsay(1985), Tsay and Liu(1982), Tsay et al (1989) &= Bl $+ %3/ K2 # B 2 R B
M R B, 5| AR BB %4 (curvilinear coordinate system), 37 DABG{E 5 5+ B AL B KB A
% #f (boundary-fitted curvilinear coordinate) , i FH M EEREE S EE LAY - BEE
YR ERRERERFEEEUESRE LEESFER - HEFEETERE
BARAREREEZ B E RIS E -

BB AR, ERS FEERYRE, E—R5 FEREs B USEER
MG EAEHREHEEEIRE - HYRERN, HERES LEEMARRE RHRE
ORISR AR/ NAS A (20°~30° ), R —i& R (Liu ,1989 ) « TBRKHY
BREXFECHEBERIRE R, REBEENERLI BT RTREERFER
LB R ES C BKETIEE -

R S B E S 03 R e R I S E S A
R, E AT EEEMRENEERTREER T AR B, DUSs S r RAT B (E I A 4
E(RESED)ZHE - '

FHRERSHEERERS BENWEXCELEFSEMELERTREER (Model
WH21) » BRITREER (Model WE21) - FIRZ S BEER (Model WP21) » REfAEAT
ABkAT (DHI) 5 [ FRES EEA N EEH: MIKE 21 OSW,NSW,PMS EMS& - fa=(#&
AEERRE  MESRRER AREANCEOHEERRIF, LR EFHER=ME
HEAK B KIHEF (DHD 5[ #Z MEEER —BREINE - LIIBFFHRERR
BR -



— K HREENE—
— K BRSEE—
2-1 4k M R AT
EREETREAREE x Bl o A (NE2-1-1) » KB ZEEETAR

CO (:Z:, Y, t) — aei(kz cos a+kysin a+c)e—iat (2.1.10')

& —

Colz,y,1) = ac’( ¥ Tte) it (2.1.1b)
K o BHRIE (wave ampltitude) , c REEA, 1 = \/——1,&@57? = (kcosa, ksina), fir
BERAET = (z,y), kK BB (wave number) ,k = 27/L L B & (wave length) , c B &
#& 3K (radian frequency) » ¢ = 27 /T, T R BB EA (wave period), ¢ = L/THEHH (wave

velocity) o

$o

Z
e %"
’ B[]
L —_—
2:'%_// NIz /\\X’
Fed
T G
X
W21 1T R RER
E 5
s(z,y) =kzcosa+ kysina+¢ (2.1.2a)

Afs(z, ) BRAEA - BHAEX(CLD)TRRR

-5~



— K BREENE—

Go(z,y,t) = ae™e ™™ (2.1.26)

=EE

no = Real[{s(z,y,t)] = acos[kz cosa + kysina + ¢ — ot] (2.1.3)

XFn REBRKA, cBRERERE, c REMA, FRER, o REBHEX > cRMEMNE -
Fa=00e=0,R1(HERE,MKH21-1)

no = acoslkz — ot] : (2.1.4a)

FEao=180%¢c=0,Rl(BERE)

nr = acoslkz + ot] (2.1.4b)

nr FE R no & R ET U (reflect wave) -
ko BEEKEE R, X B T 748 FE 5% 2 (dispersion relation)

o? = gktanh(kh) (2.1.5)

AR AR MW 5, 48 M 1T I & ¥ 8 (potential function)®o(, y, 7, ¢) A BK AL
Colz, y, t) T RAR B 738 R AR THUBIARR

9%
720 = = (2.1.6
5 t9=0  z2=0 (2.1.6)

48 M AT B & B H 8 (potential function)®o(z,y, z,1) A RFH

a9 i(kzcos sin a+¢ cosh & h+z -0
®o(z,y,2,t) = %6 (kzcosactkysin ot )—ng%ﬁ_le ¢ (2.1.7)
<
coshk(h+2) _;,
®o(z,y,2,t) = ¢o(~’ﬂ,y)m}6 ¢ (2.1.8)

N o FE I BB (wave function) R F



—X - EReETE—

¢0(.1,‘, y) g z(k: cos a+kysin a+e)

£
¢0(7‘ 9) i[k‘rcos(e_a)+5]
U

(z,y) B (r,0) Fa 2

z=rcosb, y=rsinf, r=+/22+y2, 9=ta.n_1(%)
pict -

éo(z,y,2) = Age'®

Ay = ag s=kzrcosa+ kysina+e
1o’

A Ao R EBUIRIE s RHEA

(2.1.9a)

(2.1.96)

(2.1.10)

(2.1.11)

(2.1.12)

NIREAR M W E R, R IEET R Z B (presure)p(z, , 2, t)EE'f’E%UMﬂCo(w y, 1) FE

Bernoulli equation, H T FIB{RER:

8%
p=—pgz—+ P ot

p=—pgz + pgKpn

K —pgz REEKE, T BY BB R FE B B (wave pressure) pq ¥

pa = pgKpn
H B K R F (the pressure response factor ) K, E# R

coshk(h + z)

Ky = cosh kh

¥ 71 (wave force ) F(x,y) EBR

K 1 tanh kh
F(x,y)=/hp(z,y,2)dz=§pg(h2+n2)+pgh 1]

-7-

(2.1.13q)

(2.1.13b)

(2.1.14a)

(2.1.14b)

(2.1.15)
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KEFEE u(z,y,2,1),9(z, 9, 2,1), w(z, ¥, 2,t) EH D

160
u(z,y,2,t) = _Bm—o
, 0®q
v(zr,y,2,1) = ———
(z,9,2,1) B9
od
w(z,y,z,t) = _Eg

7Kk F 617 (displacement (BB v =0) X(z, 2,1), Z(z,2,t) EHS

X(z,2,t) = /udt
Z(a:,z,t):/wdt

KUFNBESHR—HRETRTR:

() +(3) -

Hrh
. cosh k(h + z)
sinh kh
B sinh k(h + 2)
sinh kh

¥R Z I515 £ §E (potential energy) (B&Rv=0)5

ﬁ—_l_/z+Ld(PE)— i/HLl (h+n)?dz — =pgh? = Lpga?

IR Z 8 8E (kinetic energy) (BERv=0)%

. 1 z4+L pn 1 z+L pn 1 . ) 1 )
KE = —L—/z /_hd(KE)z fl /—h §p(u +w )dmdz:nga

FRZ TG EE (Total energy) (BRv=0)5%

(2.1.16a)

(2.1.16)

(2.1.16¢)

(2.1.17a)

| (2.'1.17b)

(2.1.18)

© (21.19)

(2.1.195)

(2.1.20)

(2.1.21)



—R - ERSENE—

o

E=PE+KE= §,oga2

BB RARE B (energy flux)

t+T
S:%/ /nhpd-udzdtzcgE
t -
T Oy TRBF B (group velocity) RIBRER MR HRERT R

1 2kh
Cs=”c=§(1+m)c

AP o BRE{LEF (shoaling factor) RiR R

_1(,, 2h
"=3 sinh 2kh

B I3 (group velocity ) 7] SE R

o=

ERZHHMN:

Q@ ¥ & (wave height) H = 2a -
Q ¥ 8 (wave number) k = 27 /L
Q@ E#E 3 (radian frequency) » 0 =27/T -
Q@ B (wave velocity) ¢ = L/Thn
. @ M IRIE (relative wave amplitude) : e= £ (=%)
@ L # B (wave slope ,steepness) : 6 = ¢ (=42).
al?

@ Ursell parameter : U, = &%

Q@ FEE7KEE (relative depth) : u = %.

(2.1.22)

(2.1.23)

(2.1.24)

(2.1.25)

(2.1.26)

@ K (shallow-water wave,long wave ): u(kh) << 1, coshkh = 1,sinhkh = kh ©
@ ¥EK B (deep-water wave,short wave ): u(kh) >> 1, coshkh = sinhkh = 1/2e** «



— X HARRENE—

BRL BT - HHC - BEEC, /KB ZB%:
Q@ Bk (Deep Water Wave), u = ho/Lo > 0.5 ,Lo = 1.57T¢ ,Co = 1.57Ty,0% = ghko,n =
1/2,C, =1/2C -

Q@ Bk ¥ (Shallow Water Wave), p = h/L < 0.05, C = +/gh n=1,C, = C »

iz'l'l H, h’T,La CZB@%{E

p=h/L h(m) T(sec) L(m) C(m/s)

0.21 1000 10 157 15.7
0.21 10 6 484 8.1
0.14 10 8 70.8 8.9
0.11 10 10 923 9.2
0.09 10 12 1132 94
0.36 20 6 55.0 9.2
0.23 20 8 88.7  11.1
017 20 10 1211 121
0.13 20 12 152.3  12.7
0.00001 10 12.4hr  440km 10.0

-10 -
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22 BT RHARESH

EREETHHARRE xBKo AR (WE2-1-1) » KB EBEERAR

i(kz cos e+ kysin o) e—icrt

Co(may7t) = ae

(2.2.1)

EREETRERR —ZEEHERY  IRFEC KB CEBRTRTIAR

i(kz cos a~kysin a+e,) e—iat

Cr(x, yat) =ar€
Kb o BREREEERIRE, > o BHEAME -
Ea=0%e=0,11

ne = acoslkz — at]

Nr = ar cos(kz + ot + €]
BREEYRTENHBla=a,He, =0 - B
ﬁo = acos[kz — ot]

nr = acoslkz + ot]

Ns =17o + Ny = acoskz cosot

ns BB (standing wave) -
ERBYTESRENEN BRI KB CEBTRTAR

Ct(m y t) _ atei(kzcosa+kysin cx+s,)e-—iat
YY) =

Rt o, BE B ERIEE, » o BELE .

—BREHRBREER
ar
Cr ==
ENREERRS
Co=2
a

- 11 -

(2.2.2)

(2.2.3a)
(2.2.3b)

(2.2.4a)

(2.2.4b)

(2.2.4¢)

(2.2.5)

(2.2.6a)

(2.2.6b)
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£ B % FLIB I B8 (porous wave absorber) & HE & 2b 2 & % 7L (porous structure)
URx-WAERPLREBR IS KERS, NE 2-2-1F7F,

incident
wave

. $,
Region I reflect
wave

¢,

B 2-2-1 ZFLIR BRI AR TEE

(X LEERx=0FEL) - EEERNTEE - v FEERFHEFEHL - BEE
ERSAERRE  ExHEANKEEFEER > ERAREE 8RO A  yH#H
HEERE  EEEASESE (WA LBE > hBFKE SR (KR
I 2<-b)RBEEAKR(BABRI » <z <b+dEZHRBER  BRHUERTE
4 - EEEME R IERE T T G - B EEAETR E 85 ( velocity potential) &;(z,y,z,t),j = 1,2
43 B ¥ B hr I H7 /2 5 2 = (Laplace equation) :

e, 0%; 03, | |
i e I A (2:27)

®1, P2 A FIRREEAR 1 R/ I NZIESS > KR 1 ROk I AZB P /MR
B 2 e 4 T i R AR 18 %5 1 /5 - R (Bernoulli equation) :

0%,

61+ Bilgz=0, -h<z<0, =12 (2.2.8)

Ko RACEE » gRENIMEE -

MRS EERFTBESREE RS » 5|5 Sollitt & Cross(1972) FLER M EH FLEE
EER  BRESABANTEERIBEE E‘EEEES‘LB%WZ:E@J%?FTE% FELEE TR
JEEZ T HE &3 (pore velocity potential ) 8B i & T 35 (seepage velocity) Z BRIRE
Vs = Us, » BlH B K EARNERTR

529, 8%°®; 0%,
- 0z2 T Oy? 022

=0 (229)

-12 -
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R EBAR & Lorentz’s & o [R B (Lorentz’s condition of equivalent work) (Sollitt & Cross
1972) » BIE—BRARDREHRBNAERERE YHEREEEHSRERET -
ESZANEBACESEREFERARNMNENACEBRERCHER > 15| BERRERARKT
(dimensionless friction coefficient) J 1B ¥: £ 8 s (inertial coefficient) FHE S B & FM e
ESABAZERERE  SIZANEHEBESHFER:

s%+&+gz+fa¢3 =0, —h<z<0 (2.2.10)
AF P REBRT|EZFBREB S (pore pressure) » o [ RBHRK, ‘Eﬁ{%ﬁs (Sollitt &
Cross, 1972) B ER

1—c¢

s=1+ . Cum (2.2.11a)

AFeRARE, CuBEEKEBYELECHNBERRE BHEBRE - sCEERL
NABFRE c RS BB CARER » — BB EI L, F140 Sollitt K cross (1972)
,Madsen (1974) , Dalrymple et al. (1991)& - 7fj Le Méhaute (1957) & Sulisz(1985) HE
ﬁ#ﬁﬁmEﬁ%%% (rubble-mound porous structure) » RIFER s HEBER?2 - s{EF
RE—SEN FNEDERE=-IREHE  EBEABIAFRAERZTYE - THER
Vi 48 2 Ak B Y (discharge velocity) Us(T's = €U's,) - Sl EBI M IRI v BB AREM
M A BKEe « FE/KE Kp(intrinsic permeability) - 8L J%FE B %8 C¢(turbulent resistance
coefficient) EFH , EHRBHERPAZRE » —BREZSABSE (., K, Cr) R 2H
(v, Us) , E—SFLERY m— BT T VIS TR EH B (Solitt K Cross, 1972)

Jydv f”T(J—ﬁ—*"i + SEITSP)dt
[, dv [T | U, 2at

@%%%Ifﬁﬁﬁﬁﬁgﬁﬁ%ﬂ%%ﬁﬁiﬁﬁﬁﬂﬁ ' HREZRIZE BEKEEY

 RELHERNER - (EERLTHSEREBER  —REZAZRBHERZBERR

O(1) - BRESAMIMBENRRER (=0) REERETRLE (=) USATEHRBA
BHHEAQ2210)TRIERKEREFT N HEK(2.2.8) -

EAFFEAREE x Bip 6o A B (AE 2-2-2) » KA B L CHBETAR

= (2.2.118)

1
o

7)0(1', y,t) = aoe—i[trt+ko(x+b) cos 8o+ koy sin o) (2212)

A ao BHEIE (wave ampltitude) , 1 = /=1, ko £ #¥ 8 (wave number) ,ko = 2 /L LR HE &R
(wave length), o % 5B #53K (radian frequency) » ¢ = 27 /T, T 1R # R B #A (wave period) e

- 13-
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Region | o
O, incident
wave

CE2-2-25FLRRERE ERAEE

BB AT BT F A% (Morse & Ingard ,1968) o B ¥ E R M3 /M (Yeh
1988) L FEFIRSH - RMERBEANFESLEEN - REBSTEE AR
= XFBEWETZEPTABR y 877 E ST HB (Snell’s law)(Dalrymple o al. |,
1991)  BIETE ] - DRI ZAESD, TRRE:

®;(z,y,2,t) = ¢pj(z,z)e”{ottkeysinbo) ;1 93 - (2.213)

B221I)YX/AR2NHRR2)RBETE

2 L. 2 4. |

KK I REWKE T S5 RiR Y E BE 787 (DBC) REE) % Rik# (KBC):

_6%1 +gn; = 0, z =0, j= 1,2 (2215&)
EZATEHR

28 . .

Bazg +g% =0, z=0, j=1,2 (2.2.15¢)

KFn(z,y,t),n2(z,y,t) D BIFTRAKE I BRI Z KA 8L -

EAREMAFARBEE FEREBYREERELIRAE S B8, =
® - P, HF S BARE, O ERESEE (z - —oo), BRE T 54 5 64 (radiation

condition) :

—14 -
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(— ~ iko3;) =0 (2.2.16)

I—’—OO

BN %, R 48R B (out-going Wave) ’

EZAEAN (BRI ) CBREBERE(,v,t) » WRREBIEFARERERS
Ffrf

s-aét& +gns + fo®s =0, z=0 (2.2.17a)
3773 6<I>3
— | ——— = o b
7~ =0  2=0 (2.2.17b)

RAE_—ATEHR

5*®, 0d; 0%;

s+ 9t + fogt =0, 2=0 (2.2.18)
MABKEERAKRER
9% _0,  z=-h, j=1,23 (2.2.19)
Oz :

D, FEMEIRE (z — o0), R B T %48 &F 56 {4 (radiation condition) :

fim (‘9‘1’ +iko®s) = 0 (2.2.20)

Z—0o0

ERARERERRERR  RATAEBERBREERRERR

Pj(x,y, z,t) — ;pj(:r,z)e-i(at+koysinoo), J — 1,2’3 (2'2'21)

ES AW (x=-b) AR (x=+b) FHRER I RER T , BRI RER 112 R
R - 5% R B

@1 = —1:")’@3, z=-b (2222(1)

&, = —iy®;, z=++b (2.2.22b)

ki E EER R

—15 —
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0%, 0% _
e = es—az , T =-=b (2.2.22¢)
0%, . 0%; _
_5:1: =€ P T = +b (2.2.22d)

e RILIREK (porosity), RESFLBAMATIEZEBMELE, v = f +is REHKE

(impedence) -

ELZAMCEERE (b= Ab—0) » ZFLMEILE LTI (porous plate) » RIBHE
H222) B EBEEETNRER

&y =—iv®;, o=-Ab (2.2.230)

By = —in®;, z=LAb (2.2.23b)
ERBEEEEEE: |

%%1 = e%—q;i, z=—Ab (2.2.23¢)

%i—z = e%, = +Ab (2.2.23d)

HER(22B)BrARESAREETRS  EX LAERERNANHE, REAT
WeBORFELEA—EHR - BEEEGRAUFLIREK /53R , R K ¥ 2 25885 (potential
flow) ¢ MEFERE, REGRAMEBEE, EWUBELTEE -

Chwang (1983) BR AN (BB LUREERE A =0)RWEREZEEE B
ERFECABEEREURRAABIEZERELMG  ERRZEE  ERAKBEER
EHEEREE  ERAEEEBRIZRTR

U= %0(13l —P), z=0% (2.2.240)
. 6@1 . 6@2 . +
U=—=>=, z=0° (2.2.24b)

Ko u BRBB R ERE, b BHREETZSARSEAR(SREEY)  BER
REEEHEEREEAHFRERTZIHER -

- 16 -



—X - BRSENE—

H8& Sollitt J Cross (1972) F BLEE S FLME R (L2 £ FLAR M E R4 (2.2.23) B Chwang (1983)
ZEARNERE C2U)WMELKARKTYERERUTE2HEAE » RFAFEALE
TR

HHER (2.2.10) BN 5~ TEE

8 6U3 1 8P3 f _
Pl + ;gz— + ~6—0U3 =0, (2.2.25)

Rl = RERERE U v EERELE -
ZRE|U; = uze’, FER (2.2.25) T L&

—E& 0P3

3

Eb=AbB/IEF, TURBE-Ab<z < AVEE 52 AU TESREM

or, 1

—a-;- = E(Pz - P1), —Ab<z < Ab (2227)
Atk
| )
Us = ;°(P1 -B), —Ab<z<Ab (2.2.284)
& o oL
Us = -53%1,=_Ab = —a—$—2-|z=Ab, —Ab< z < Ab (2.2.28b)

Kby = pih e BERETTZ SRS AR (RRER) - BAKE: - BHAFH
Y EEE R s RER RN ) BN > R EEER TR R EEA R T
LB bR -

b S FLMR (L 2 % FLAR ST T R4 (2.2.28) X K Chwang(1983) Z & FLIR r E R 4
(2220) WEBZH A » EZHZSABRGERE b R b REZWERERH b REE
(FEFIRE Y ERF R Z ) b R (PR (REBy B8 BEHEE 7 R B 13K 8 ) -
ELAREHERLEE, KRE B NEE, B IREREE  BIRE T EER
ABBEED (LR ECBEZGEE )R >> s M E G (2.2.28) KB LR Chwang(1983)
ZEFRAE MR (2.2.24) R, » e BIRER Sollitt F Cross (1972) 2 [R # §2 Chwang(1983) &
FE—HH o Chwang(1983) 5| ARG IERE b A p, TEZABZRERBREREE
2b - fLERX e - EERERERRBIE  EFLEARCERESARRECH R R
LB - SABERBEE, SARNEREE B RESNMZIBERTEEEEEL —

-17-
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BEEFGE, FREER LMEE - Chwang(1983) IEZ SR HERTR (2.2.24) ,—# 5
BABG I ARAEER GG KRERRELYERE B2 T RUSEERE G55

-

RAFBEZIER %ﬂ%%ﬁ'&*ﬁ&%%l’?*ﬁ%ﬁ&% K EEE - BHiEF AR
R (2.2.14) R A S HES (2.2.12) 58 - BREE (22.15) + (2.2.16) + (2.2.18) » (2.2.19) -
C (22200 XK BB ARG (2.2.13) » BRI, IR I Z B8 6; (wave function) AT 5>

BIRARER -

¢1(z, 2) = Acoshlko(h + z)]e_m’(zﬂ) + RoA coshlko(h + z)]eiz°(”+b)

+ 3 RuAcoslkl(h + 2)jeF= (=19

n=]1

zS—b, —hSZSO

$2(z,2) = Z TnAcoshlkn(h + ‘z)]e“izn(z—b)

n=0

bSl‘, '—hSZSO

$3(2,2) = > {AmAcosh[Kpm(h + 2)]e” Km(z+D)

m=1
+ B Acosh[Kp(h + 2)]eiEm(=b)}
—bS$S+b, _hSzSO
HRR(2.2.20) EHABE —IE ¢ BESRI AL E

$o = A coshko(z + h)]e—iFo(IH))

HPEBAERR oo
- o cosh(koh)
hERETEE

-E'o = ko CcOSs 90
ko 3 i & T 71 45 8 Bl 4R = (dispersion relation)
0’2 = gko tanh(koh), ko >0

- 18 -

(2.2.29)

(2.2.30)

(2.2.31)

(2.2.324)

(2.2.320)

(2.2.32¢)

(2.2.33a)
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= 1
— = kohtanh(koh), ko >0
Co

(2.2.33b)

B Co=g/hBEER T EBRE E 28 (dimensionless wave-effect parameter) e

C22)AEREEE "H - RER I KE B (reflected wave) :

1 = RoA coshlko(z + h)JetFo(=+0)

AP R RARERE

222 REFRLEEE=TF 1, REIR | ZF B (evanescent waves) :

= =t
10 =Y RnAcoslkl(h + z)]ekn(=+D)

n=1

A R RRERB =123 > kL. MR TIIRBAIER

- 0% = —gk! tan(k} h), n=1,23..

-1 / '
— = k. h
C k;htan(k, k)

Fn = \/k;,2 + k2 sin? 6,

$1s ZIRIBERRKFEERER M EREGE R, ERTBRE , BRE TIIRG

lim ¢1, =0

(2230) REWEBE—HE =0 RS AL W ZEBETH b2 :
@2t = To A cosh[ko(h + z)]e-izo(z-b)

Ty RRERE
(23 AEREEE—RHEn 2 IRSAMEHACE BB 42, :

by = Z TnAcoshlkn(h + z)]e"iz"(’_b)

n=1

-19 -

(2.2.34)

(2.2.35)

(2.2.360)
(2.2.365)

(2.2.37)

.(2.2.38)

(2.2.39)

(2.2.39b)
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T, B 6o KM KR A ERBHESR - K FANSEBER -
FRR (22.3]) SRABE —H by, THR

bar = Z AmAcosh[Kn(h+ z)]e_’?’"(”'b) -~ (2.2.40a)

m=1

B TR AR AR A RAE S T PO A S 1T D B S B 98 BHE 7T ( exponentially

damped sinusoidal propagating waves ) -

LI AEMEBE_FIuEER

ds1= Y BmA cosh[Km(h + z)]e (== (2.2.408)
m=1 .

BRSBTS T A AR T 2 M E T KA BT - FEBEETE, BRE
BRETE, EERERBXFERIIENEREER - —RonBARZRGEIEERAN,
BERAR - MERSEHRELK. RTIRELGERNZR

—i0%y = gKptanh(Kph)  ,m=1,2,3... (2.2.41a)

9
=7 = Kphtanh(Kmh) (2.2.41b)
Co |
Ko B K 7 B Kone > 0 > B8 Koni < 0 » 458 Dalrymple et al. (1991) 2 f247
T REEBREIAR(DBRL2MUT)  RERBRFER —HS8E K HE(2.2.31)
F—EREEE, EE—ERIERE, WHEREIER, EEREGR —EREETE
HEX(22.3) FREN L REER, HRRIRURT 28 . BETRE S EE
FE T MERE RIS -

Kpn= \/f(,zn — kZsin? 6y (2.2.42)

R_;m %ﬁgaff—m ZE%B—K—mr _>_ 0 E%sz S 0 :
B E ko, b, B K SRWM— , EH b = —ik, BT, = —~ikn 0=1,23. AIEHET
- %l cosh(knz) = cos(k, z), tanh(knz) = —tan(k; z) ZRBAEE . | ‘
TEEKAI R » R IERFEF] cosh[kn(h + 2)],n = 0,1,2,3... & cosh[Kn(h + 2)},m =
1,2,3... ZE7K B (-h,0) 2 XM » HRRR(2.2.29) + (2.2.30) & (2.2.31) RAAEEE G
#£(2.2.22a) ~ (2.2.22b) + (2.2.22c) % (2.2.22d) » EEEA SRR SEE [°, () cosh Km(z+
h)dz ,RlI5>BIH] &

-90 -
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g |
Nom+ Y NamBn = (5 = if)MmmAm + (s = if ) MmmE;Bm (2.2.43a)
n=0
> NumTn = (s = if)MmmErpAm + (s = if)MmmBm (2.2.43b)
n=1
—%oNom + > knNumBn = —eKmMmnmAm + €K mMmnmEq,Bm (2.2.43¢)
n=0
oo
= NumkaTyn = —eKmMmmErAm + €K mMomm B (2.2.43d)
n=0

HHF .
Nom = / . coshlkn(h + z)] cosh[ K (h +2)]dz

2 ——1K2 [kn sinh(knh) cosh(Kmh) — K sinh( K mh) cosh(knh)]

n=01,23. m=123.. (2.2.44q)

0 1  sinh(2K,A)
~ \ _ gl sinh(2Knh)
Moy = / oSt [Km(h + 2)]dz = hiz + — ]

m=1,23.. (2.2.44b)

EEf=¢f?Km o123, (2.2.44¢)

B BB (2.2.432) - (2.2430) 8 FE A + B (SER B (2.2.43¢) - (2.2.43d) 8

2 Nom [ —
2 o Rn+;E s_ime]T,,
= (ko — K.), m=1,2,3.. (2.2.45a)

s —

Z Kn)Rn + z E} [k + K, T,
n=0 n=0 Zf
= (ko + - £ f?m), m=1,2,3.. (2.2.45b)

- 21 -
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T4 BIER (2.2.432) ~ (2.2.43c) 3 B, RB R B (2.2.43b) + (2.2.43d) 3= A, (RELTT
BTIEERANBEAL KB 0T :

1
Am = 2e(s —if)Mmm

{3 Numle = (s = if)Fn/Em)Rn + Nomle + Fo(s — if)/Km]}

m=123... (2.2.46a)
1 ad C— —
B = 5™ PV ;Nnm[e — (s~ if)kn/Em)Tn
m=1,23... (2.2.46b)
ST R eSS
Cr = |Ro| (2.2.47)

RARZ IR (x=-b) KT WIRIEE A S P IRIELLE -

SABERRBERR
Cy = | To| (2.2.48)

RIEBFEEZ MG (x=+b) ZIRIEE A FIREELLE -
ELSABBAEnEZRREC,, REnBRSEREC,,  RFISIEER

Cl.i=1(s = if)Am cosh(Knh)|/ coshkoh (2.2.49a)

Cl.r = |(8 = if)Bm cosh(K )|/ cosh koh (2.2.490)

Omt R Crnr FRIRTES ALHEEPA - S IR (x=-b) B m [EFER B B RIER
AR FRIBILE » RES LR (x=b) B m H KA REEHRERA N KRELE -

BB (2.2.29) - (2.2.30) & (2.2.31) B SRS - ZEEEEE - THRKHZ
HEWERE » m=1,23..M » n=0,1,2,3....N-1 -

ELFLERI (AR I )REABRCKKD ) 2 KB, THREESHE AR
ZFRTAR (2.2.15) ROAAREIEEGRE (2.2.13) XKE
—1i0

niz,y,t) = ——g—@,-, z=0, J=12 (2.2.50)

—-9292 -
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ESFMT (x=-b) Z KA B THRTR

n1(=b,y,1) = D, e~ i(ot+koysino) (2.2.51a)
a
= R KRB R DL B
> h(knh
Di=1+) Rn (c;:hgkoh; (22:51)
n=0

EZAME (x=+b) 2K B TRTR

772(+b)y7t) — Dze—i(at+koy3in90) (2.2.52&)
a
AFRERRERED2 R
cosh(knh)
ZT Cosh(koh) (2.2.52b)

EASRZ KA R LA R R (2.212) 2 BREE S, T RRR
no(z,y,t) = acos[ot — kg cosfp(z + b) — ko sinbyy] (2.2.53)
ST (x=-b) Ktz Bty THRTIK (2.2.5]) NEHE I KB
m(=by,t) = Dj cos(ot — ko sinbpy + €1) (2.2.54a)

a

A FREXRRERE D R Z e S BIR

cosh(k h) .. —1( Du .
1+ ZR cosh(koh) €1 = tan (Dh) (2.2.54b)

KD kDo HIRD CEREED -
ESFER (x=1b) Z KA B0, TEHBRR (2.2.52) NEBL S KB

772(+b7 Y, t)
a

AFREXRRERE D, REMZe HFIR
cosh(k h)
Z " cosh(koh)

-93 -

= D3 cos(ot ~ ko sinbpy + €2) (2.2.55a)

e, = tan~! (DD”> (2.2.55b)
2r
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HAF Do Do SBIR D2 Z B K ER

EZFEA (BRI ) ZBEEERE 7:(z,v,1) » THREE ISR A (2.2.172)
KEREERE R (2.2 13)ART

3z, y,t) = %@s, —b<z<b  z=0 (2.2.56)

FERZEEBRERBEERE, AT RESCEEIDERHERE, BHE—ME
ERERCHUAEEREEERE - ERU—REBENZTRBBERER T ZHE
RERECH . BRTHARE - EREZNE  HZARKBEIRABEREEB 2 ik
DT T R - |

BN TN ERAR B/ BEERB-BIEREL SANERBESHIIER
(2.210) B EEFHAEX Q2 HEFK  IEHEREXKGEEE/) > FEEEA
CEREZBRTHE (LETEERER) » HEN=1M=1- AIX(2.2.29) + (2.2.30) -
(22.31) LR : |

$1(z, z) = A coshlkq(h + 2)]e~ o+ 4 Ry A cosh[ke(h + z)]eFo(z+D

z<—b —h<z<0 (2.2.57)

¢2(.’L‘, Z) = TOA COSh[ko(h + z)]e"ixo(:-—b)

b<z, —h<z<0 (2.2.58)

¢3(z,z) = A1 A cosh[K;(h + z)]e_’?l(z"'b) + B; A cosh[Ki(h + z)]e’?l(z'b)
—b<z<+b, —-h<z<0 (2.2.59)
SREB B Ro, To, A1 & B1 AT EA (2.243) X2 BERBT:

(1~ Q2)sin(2F.1b)

Ry = = =
TS cos(2K1b) + (1 + Q2)isin(2K1d)

(2.2.60a)

2Q

Ty = _ S (2.2.600)
2Q cos(2K1b) + (1 + Q2)isin(2K 1 b)
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— N01[e - (S - Zf)Eo/Fl]Ro + N01[E +7€o(8 — zf)/?l]

4 25(s — if) M (2.2.60c)
_ No[e cos(kod) + (s — i f)ko sin(kod) /K1 ])To
B, = 2e(s ~if) M (2.2.60d)
=F
h . .

Np; = b = (Rih) [koh sinh(koh) cosh(K7h) — Ky hsinh(Kih)cosh(koh)] (2.2.61a)

.1 sinh(2K;h)
M = h[§ + W] (2.2.61b)
Q= cfGh (2.2.620)

Eoh(s —if)

b* = 2b/hK R (2.2.62b)
AE = Ef =t (2.2.62¢)
M=1+0Q (2.2.62d)
2 = —isin(kod) + Q cos(kod) (2.2.62¢)

# Ro, To, A1 & B1 &R EERR (2.2.60) ~ (2.2.61) & (2.2.62) aTHHEEE H & FRE A
80,2b/h(b*) e, s-if(7) ,Co (koh), K1 h EBEEM - TERHFRE R REHFELROK
2RO EE, OBEIE L TR EE (admittance of the porous structure), X EE %
RAMEARSAMEEC ERARERBALE, RERS At Y ERANEAE
R - 0" R—ER XS AMEE (dimensionless width of the structure) B~ EEE S,
AR ERRZLE - E0 =1, REFRERSE/ME EEARSABC ERFiEEA
BOHEE - EERENTFEHERET . SABEENREREC,, BRREC: REAE
R—REEERE CL,, — R REC, SHRELBEE 20/, ARKESHC. SEEXY
HECHR RELCHEHE, SABIEERE:  EERERARESS2HEER
RER M e=04,s=1,f = 0.5({ERERAE) B EHE -
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EAR P KB IEBARERTR (2.2.12) T REES0(2.2.53) K, HER 1
ZHEE 4 RFRA (2.2.5)) ERERE _FRER [ KEE 61 KA B 7, TTEE (2.2.57)
RAQ20)AMEHEASEZERE

ne(z,y,t) = a|Ro| cos[ot + ko cos fp(z + b) — ko sinboy + €., (2.2.63a)

|Ro| = 4/R%,. + R3,, & =tan™" ( §2i> (2.2.63b)

AF Ror B Roi IR Ro K EEHKEE
B I KA BEn TRRE

n1 =no+7r ' (2.2.64)

 EIHE S FLIERT (x=-b) Z KB T RRE

—bouy.t v
ﬂl(#’—) =D cos(ot — ko sin oy + €1) (2.2.65)

RPERTIFIE G D, REMEa AHR

Dy =1/1+|Ro[* +2|Ro| cose, (2.2.66a)
1 |Ro| sine,

_ |fo|sine, 2.2.66b

€1 = tan (1 + |R0[coser> ' ( 6b)

BRI & H B ¢o SOk A7 B e TTEA (2.2.58) A A (2.2.50) A E BEH S K%

n2(z,y,1t) =.a_ITo| cos(ot — kg sinfoy + €32), (2.2.67a)

‘ T
[To| = +/TE + TE, g2 =tan™! <T§r> (2.2.67b)

A Tor K Toi 53 BIR To < BE R ETR
EHILER (x=b) ZKUBLTRTR

%b;yiﬂ = Dy cos(ot — kg sinbpy + €32) (2.2.68a)

RPBRARIRE R D, KA Z e 2FIR

Dy = |Tycos(kod)|, €2 = tan™! (T‘”) (2.2.68b)
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— X EREENE—

ESABER(ERT) ZBEEHEREKUB(z,y,t) » TTH(2.2.59) A (2.2.56)

- ANEBTLRE

"73(17 yat) =

eK1i(z+b)

[Aa(s = if) cosh(Kah)la s

cos(ot — Kircosby(z + b) — ko sinboy + €4)

e—Kri(z=b)

+|B1(s — i f) cosh( K, h)]am

cos(ot + K1 cosbp(z + b) — ko sinfoy + €s)

—b<z<b (2.2.69)

A e. Kes A RIRMBALE ©

EFEEEL EREET, A EREE, BRRE Y  SERERSLENR
2 WA M E T (2.2.60a) + (2.2.60b) + (2.2.492) & (2.2.51b) SMATRRR , EHE
BRRESSE - EREMEEER, TERS A, REEZBEREA, I ESKEK
LR -

R(2274) BT ESLETEREQ = 1R, REFRBRo=0, KA B2 R, SIL#
ZEREWPEES - HBES A (x=-b) TKUBETRTR (2243) X, AFLZ R
EHEM(2.2.74a) - BESFLIER (x=b) ZKABERTR

9—2-(17(’1& = D, cos(ot — ko sin by + £2) (2.2.70a)
Dz = lTol, €g = tan"l <%§—I> (2270b)

LIRS —H K, RERS SR RERET, —REKERERTE
HHERRE—EER  EEANHFEERER, UZIWERA , BHRFERINK
HEAK, B R EKERRAEL 2 REFEERREBREFRIR SR, RILEE N HLARE
RAEEREBHR—EEENRA - B82-2-3,Co = 0.58, Bn KEEMEEEINTE
K, EEER2EKEREIER, ERFAIREEZBRTRD, REBK - RERKR
WE—% HE—AHEER,FIZINCo =058 Co =5 EEEREEREI/L =044
BASHABEE, EFA—ETRERHRYC, MEFE—REREE(NEH2-24) - BEZ
UK AR Cr, RIRE B B KT/, AR M 5k (H 2-2-5), T B R4 (Co HBM),
ERAR BESHEERRZBEEYE - £FEREAEG 2% Sollitt K Cross(1972)
, FE#41E fE I 740 7' 8 % Dalrymple et al. (1991) -
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— R EREEMNE—

2.0
e=0.4 s=1 f=0.5 =0 G=0.5
l.B—\\
-« \
1.6 \\ ‘,——""—L—-__,_---_---______.._..
q 1.4—‘
C 24
cl’rl.O—
C;‘o.a—-
0.8 -
0.4 —
0.2 —
0.0 RS PR S S M e SRR e B SR S
0.1 0.8 1.1 1.8 2.1 2.8 3.1 3.6 4.1 4.6 5.1
2b/h
2235 FLIBEBEH R Cr, C,
Cir, C1 BB 25 FL G B FE 20/ h i AE R i 4%
1.0
1e=0.4 s=1 f=0.5 =0
0.9 —
0.8 —
_{ .
0.7 —
-------- S
e J—
0.0 1.0 2.0 3.0 i 4.|0 ' 5.]0 ’ S.IO I 7.IO ' B.IO ’ 9.'0 10.0
2b/h

B 2-2-4 %5 FLIL B B2 B K F B 1 2 B O

53 (R84 Cr 822 FLE L B 20/ h AS R th A%
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£=0.4 s=! f=0.5 &=0

0.0 L S FENL R A
0.0 1.0 20 3.0 4.0

T T T
.0 7.0 8.0 8.0 10.0

2b/h
[ 2-2-5 % FL18 6 M 4E % R T R B 8 Co
TR C RS TR A 20/ h A AR
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o — R HBRBENE—
23R FAL

BROEFBERSFHELSARERER (V) BT, EREEEABEERAES
R, R R R R EE BB LHR S (shoaling) - REZERTTEE, BTL

BETE, BBATE - EFERERESERBHES, IR R RS EC, FRARK
PR —EE AHETHKEZERFETRRS

EyCyy = EoCyo (2.3.1)

=
1 1
(g9 HDIm Cr = (59 H)noCo (2.3.2)

R By, Ho, Coo AFIRBERKBEZ R, W R BT, B, B, Co B RINETEER 2
WEZER, BRFEE, HiERFX(23.1) TS

_ Hl _ noCo
- Ho - n101

K T Bt 8 (shoaling coefficient), — it F ¥E/KE no = 12, E Btk En=1, T EHE
ERKERBKEEXN, HREEABELBBEAEES S AR EETEARLEST
FERREABKEREEEA, EBEABRBKERBLEF @A (HER 1), S ThE
B -

K,

(2:3.3)
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— K ERRENE—

REY & L& 23

ETZREE IRRLBLABREKFEERENEEX, CEREERERFE
- R R ERKEABKERERRE AT ELRERERS , R Miche, Danel and
Hamada B i 2 BK A RRER

(T) = (Wmaz = 0.142 tanh kh (2.4.1)
MR McCown K FRESHER * REBFEKEEREHER
() = IZ—: ~ 0.78 (2.4.2)
iﬂdﬁiﬁ%@kigﬁhzﬁlfﬁ'é%kiﬁﬁ °

BERBEMRE, RERE, AFEEERAE , BEZABFARAMA2BREERY
(spilling breaker), # #7 2 B #% (plunging breaker) J 1 i B B i (surging breaker) =& -
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—K  BBREETE—
25 B I 4t
FRERKBEARKE, REFRKEYE, BEREEETRE, MERETH
MEFEEMNTR, FERELELBHES BRI EFBREXT S HEHEESE

ROEARZURTEARFRETHE - BREKREEERTT, AR Snell &
BERAREERZ |

sin o sin ag

s (2.5.1)
A MR R H AR 2 B ST E R
"VxK=0 (2.5.2)
= 9 9 o
%(k sina) — a—y-(k cosa)=0 (2.5.3)

FRBINEREERTT EERNEEABAER, FAS BB REEREE
E-RBEETERE EFRSANEABER EXEEEREERNRERS, IIRE
FIAR 2 BE B N8, Bl '

E1Cyrby = E2Cpoby (2.5.4)

RHFE1,Cp1,01 (B, Cya, b)) ABIREF RN BLER BEERE RS MGE -
AEMEEELRITERE

Hy/H; =, /%i » /Z—l =K, K, (2.5.5)
g2 2 :

AHF K, = %ﬁﬁﬁ{b{%gﬁ, K. = \/%Xﬁﬁ%{%g(refration coefficient) o
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—X - HARENE—
2-6 B B X B4t

EEREBRHER  ERRAR, MERGCHRFE, LR BH (Diffraction) H e, —#
Rl TT DA I8 5 IR EE AR AT , P W R B IR S Ak (Sheltering) R , MARZHEREA
5 R L E R RS & (R K o(Diffraction coefficient), AR WARRARELBHERR,
—RUERARBEFEARELTRARS -

FRER IR, ERIAMORERHN (BREHEE), ANKERANEEMREREE
ERE U EREEREARE - FEHEARMEARNEBRRIRE, TEXER
HEEEN, KEARANAESE, ARHERERA KR LERR KR8 R(Reflected
coefficient) R H REM 0 1 2 M, MR R B R EHEMR , HERBERRBE, K
HRBEB -

H2-6- 1 RREAPSTEBRREZLTIEHR

R —ZE KM P ER KRR (semi-infinite cushion type Breakwater), R 5f fREf (reflection
coeficent) & R1(R; < 1), B R xy-ZFE L (Z0H# 2-6-1) , SREME (20, ¥0), BREEx-Bi K o
BELREERE0,0)EBEx-BRKSE - BREAHEEE (z,y)R
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— X WERRETE—
¢0($,y) — ¢0(7‘, 9) - aoe-i(kzcos atkysina+te) _ aoe—i[krcos(e—a)+s] (2.6.1)
ZAER T, st (diffration) + K8 (reflection) R #k84 (scatter) S , 2 W 2 B AL
R

¢1(.’IZ’ y)l=¢l(r1761) = aeis

o T 1 1

=\/§exp{—i[kr1 cos(6; —a1) + 1 + 1]} x {[c(611) + 5] +1i[s(611) + 5]}
» +R; %emp{—i[krl cos(by — o) + -Z— +e1]} x {[e(b12) + %] + i[s(612) + %]} (2.6.2)
HHF
a=a-F (2.6.3)

_ 4:](:7"1 (91 - 011)
611 = \/ - COs D) (264)
b12 = \/4]::1 cos (6 -}2->a1) (2.6.5)

1
e(611) = A cos(5o%)da (2.6.6)
§
3(812) =/0 sin(gmz)dz (2.6.7)
€1 = bk cos(y; — @) ’ (2.6.8)

— RO 2ESRUNE-IZABRECEZ=HEESR:
AB: oy <6 <7m—0
BE: 7—a1 <6, <rm+4+a
CB:mrd+oa1 <6 <2r+p
R=EBRREGERFERRE, B oURR

d1(2,9) =¢1(r1,61) = ae’*
=aoe:1:p{—i[k7‘1 COS(€1 - 011) + 51]}
+%exp{——i[kr1 cos(6, — a1) + % +e1]} x {[e(611) — %] + [s(611) — %]}
+Rjagezp{—i[kricos(f; — a1) + €1]}

%emp{—i[krl cos(b; —a1) + % +e1]} x {[e(b12) - %] +1[s(b12) — %]} (2.6.9)

- 34—
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— X BREENTE—

BROEDTE bo,0r,0a K 6. 3BT

$o = apezp{—ilkr; cos(f1 — a1) + £1]} (2.6.10)

s

7 all x {le(6u) - 5] +ils(en) - 31 (2611)

ba = %emp{—i[krl cos(by — aq) +
¢r = Rlaoezp{—i[krl COS(91 - Oll) + 81]} (2612)

1

80 = By 2 cap{—ifkr; cos(6y ~ 1) + § +erl} x {[e(62) = 5] +ils(6ra) - -;-]} (2.6.13)

2
HoF g BAKE, ¢ BREW, do + da BAM WA S B RBTEEZ BEE, 6.+ ¢,
B RSB0 R W R R T 2 4 % B S -
ABRCEEERZ EERGESBRRMT:
BIRA g4 = AHE+ KEE+ REERETESE 2R K -
BB ¢p = AME+ AHBERTEEZBHE -
EHC dc =AREREMEEZBHY -
F 3R 1 % 3% R B (transsmision coefficient) B T, IEBIRC REFEFTEZRE ¢: :

¢: = Tyapezp{—ilkr; cos(f; — a1) +€1]} (2.6.14)

HEBKCHR e = AHKRREMELEZBHE+ BB -

ERRAE—EZ R o RASE ZIRIE oo tiH ki = £ BRHFY - HEEAR
Bir R, EMmeEEEL QIR + T2 = |, EF T ReEERL QIRI+ T2 <1 -

Z B E ZE K LB & 3R (semi-infinite cushion type Breakwater), R 3 2 5 5 R &
(reflection coeficent) 351 R & Re, BB xy- FH _LAIE 2-6-2 , S ERAE L BERAE
- AR EH A E B 2-6-1 -

FEAR FHEHE bo(z,y) R

¢o($,y) — aoe-i(kzcos a+kysin ate) _ aoe—i[krcos(e—a)+e] (2615)
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—K - HERENE—

B2 62 B AR YL ERER T REH

ZIERT , B 5 (diffration) ~ K5 (reflection) B B & (scétter)%%z@,%ﬁZigz@gE_]’
FlAREBIMFERXRE - BRWOT:

HEFRE-FEAHR-ZERERTR:

b1(r1,61) =aye
:.—%e:rp{—i[kn cos(b1 — 1) + % +ex]} x {[e(611) + %] +i[s(b11) + %]}
+R1%“P{“i[’“’"l cos(f — an) + § + &1} x {lel12) + 5]+ ils(612) + $13(26.16)

E=ls! ‘
a1 = o — B, g1 = b1k cos(a; — a) (2.6.17)

EETRR_FENHRE-IHEERTR:

$2(r2,8) =aqe’®?

=%exp{—i[kr2 cos(f2 — a2) + Z— + &)} x {[e(621) + %] +1[s(b21) + %]}

+R2%e$p{_—i[kr2 cos(fy — az) + -Z +e2]} x {[c(822) + -;-] + i[s(822) + %]}(2.6.18)
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= H
Qg = @ — ,32, €9 = bzk COS(Q2 - Ol) (2619)

RERIEFAETRARERZEERR, LREERH—BEHF X FEEBEARE—
R, RERZHBEMZBET - —BRIEHETFEERPES —R (W0 2-6-2) - 1
PERCHEEBFIARKRERNEE Y REERCANETRRE:

$ =1+ ¢2 — ¢o = ae’ | (2.6.20)

% B BR 4% 3% (finite-length cushion type Breakwater), & [Z &1 {% 8k (reflection coeficent )
8 Ry, B xy- S E LAH 2-6-3 BRI E L BES (21,v1) ~ (v2,3:) RIMARE S
0 B 2-6-1 -

—_—— e - = = - - —_ - - . ]

(271,‘ Y1) (-ﬂgz,-yz)

EB

H2-6-3BRIEARERREIBRH ER

EREREZEEHETBERAMEBZ LEREENT HERESRARLERER
RERE, FREETCAR —RCEBTH - EHHBEARRZECHERF AR
ERMFE TREEBCARNETRRE:

ERA :
¢ =¢1+d2— o~ ¢r (2.6.21)

EI%B :
¢ =1+ ¢2 (2.6.22)

B 2-6-4 ~ @ 2-6-6 3 FIR L MRRE - MLEBRERFRRR|ZSHRHRBSHHE -
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Diffraction coefficient (K )
a= 80° R,=1.00 T,=.00

4.0

2.0

Y/L

0.0

-4.0 A
-4.0 -2.0 00 X/L 20 4.0

2-6-4 RMEARPLERRRE SR RB K 46 H
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- 240
1 2.30
| 2.20
§ 2.10
2.00
100
1.80
1.70
1.60
1.50
1.40
1.30
1.20
1.10
1.00
0.90
0.80
0.70
3 0.60
§ 0.50
0.40
0.30
0.20
0.10
0.00

-2.5 0.0 X/L 2.5 5.0

B 2-6-5WRIEAPRMPRERECERH RB K3 H
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25

Y/L

0.0

-2.5 §

25 00  X/L 25

B 2-6-6 HRIEABERERZEBARBMLAGE
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— X HRSHENE—
2T BRII R B EER

ERUTEKEFER CHRAEREVRELR, ORE2-7-1, yHR ERE, REE
i LSRN A ERE, BEBRRREKEL -

TOTTETERR =% HESS\S= T RS ey * X X

N

N

RE iR

M X

i

3 X

Rig

3]

§

BREERE N - B RIERZGREHE L FEIHE S ( velocity potential)
&(z,y,2,t) a2 =P R K HER (Laplace equation)

86 e  0%9
57t o T =0 (2.7.1)

ABFES B RBREE BREE B R RERERER A, BT

o 0% _
_6-{ —_— -5; = 0, 42 = 0 (272(1)
& :
AF((z,y, ) RREKRZ KA B » e RESIINEE -
EEXTEHR
2% 0® '
aat_2 +ego =0, ,z=0 (2.7.2¢)

EpRtER RARRKUBC(RBRAERE, TRFR
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— & WERRESE—
((z,y,) = f(z,y)e™"" ' (2.7.3)

H o f B K& (wave function) -
EFKRE, BREERZEXK AW

0%

= =

IR TR (27.0), BT B R (2.7.4) R Bk KB (LR e (2.7.5)
EQ ) Eum%% @(Z‘, Y, 2, t) ﬂ%ﬁ%% :

0, z=-h (2.7.4)

®(z,y,2,t) = Ag coshlko(h + 2)] f(z,y)e*"" (2.7.5)

Hhi=+/-1, ko B3B8 8 (radian wave number), kg = 21/ Lo, Lo B ¥ & (wave length), ¢
B SE¥E 3R (radian frequency), o = 27 /T, T B BB EH (wave period), KB A TR T B

. 1gag ’
Ao = o cosh(koh) (2.7.6)

. 0o B R IFIE (wave amplitude), B H B F(x,y) W2 T FIR 8 2 HE R (Helmholtz

eqution)

8°f  8f |
a§+a%+%f=o (2.7.7)

BB ko ¥ 2 2 8 B8 4% (dispersion relation)

0% = gko tanh(koh) (2.7.8)

BREBMWANEREITUEER, ISR DB ST GRE

g%mw)=g£@w)=0 for —£<y<0 (2.7.9q)
g_i(xao) = g—i(z,—ﬂ) =0 for O<z<b (2.7.9%)

5| 7> B ( the method of separation of variables) B , IR T (2.7.6) 2
AR
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—X - HREENE—
f(z,y) = X ()Y (y) (2.7.10)

BHEFRGBEAQINE  BRAGHFQLTNER BAZKEEfTRRR

flz,y) = ZZ Amn cos(ﬁ%zx) cos(%y) (2.7.11a)

m=0n=0
KFAmn RRERE - ERGEITETR

mm mmn

fmn(2,¥) = Amn cos( 2 :c)cos(Ty) (2.7.11%)

HRRA(2.7.5)RAFTER(2.7.1) L5 /A (2.7.11) RABRFAR (2.7.8) ERFEZBR
T (0® = gkdh) I RBELEAREHT

= 7297;“l<m/b>2 +(n/0y72, mn=01,2. (1.12)
XFLRELRE  RENEE > cRENINEE » hRKE -

R R 2 ET N (REOEBARERED) Z B REEEDT » Merian’s A3 (Wil-
son, 1972) TR :

T = , n=0,1,2.. 2.7.13
ook (2.7.13)
MURE RSB/ LTRRR:
£ n 113 _ 537
f = Z = Z, 5, Z,l,-4—7 ‘5, Z (2714)

AFLRER - MEEREZRER  BRZEPEUREFAURRENGHRE(KURE
VREHRE (KA BEEK) - THERLEZHIRFERS IR 42 R4/3ERER4/H. ...
FEBCHBHRE -

FEHERO—#TNEKEVEL(REBARERED) ZERFRBEIAT » Merian’s
AR (Wilson, 1972) =R 5 -

- %

(2n +1)Vgh

MMERR BB/ LTRTR:

n=0,1,2.. (2.7.15)
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— X HReErE—

Comrl 23878l (27.16)

L~ 4 8844

AFLRER - MELHLEC GER  BOREEFRHE > IBOBAKNUESR  BBE
MREHRE  BEREKIBEREA -  THEBECHERES R 4RL/30R4/50R
4/70... EEBTELEE -

FRUTEKERERET ZEIRRE, 20 B 2-7-2, B R 18 R T B RS 2E x B
TRILM, yHAABRE, RREEEOREHN A ELRE, A EEREEERERE
REKEL - ARRAENBREEHBAGE, —BETFREEHEERIRABE(
B RSN E (BRI ), SR 3 DI O AB R E /M E (0 B 2-7-2) -

H2-7-2 BREOERERTEERTER

BER L R N T BHE - SRR R IE TR o R 15 B L 7 7R T 33 3% ( velocity potential)
®;(z,y,2,t), j=1,253 B B =#E R ¥ 51 K 5 R (Laplace equation)



— K HRBENME—
0*®; 0'%; 9,
o
0z? 9y? 0z°

0, 2 ARIRTERR I REKIZIES - BRAFK (EEFAPEBER (xB
), J0M2-7-1, KEMETAR: '

=0, j=1,2 (2.7.16)

Cole, v, ) = age™ Foy =) (2.7.17)

A oo R PR IRIE (wave amplitude),i = V-1
ko BB ¥ B (radian wave number), ko = 27/ Lo, Lo 5 ¥ & (wave length)
o BB #H 3K (radian frequency), 0 =27 /T, T B B E #H (wave period)

BRI RBERIZHEE S R ELHREREEERES TERGRERERDS
FiR 4, BD

96 _ 0% _ _ _
Si-Z21=0, =12 ,z=0 (2.7.18a)
%‘? +9¢ =0, j=1,2 ,z=0 (2.7.18b)

AP G(2,9,1), (o, y, ) FFRREER I KEHIZ KB sREIMEE -
EZHXTAEHR
2H . .
aaf:’ +‘ga—z’ =0, j=1,2 ,z=0 (2.7.18c)
Eﬁél%iﬁﬁ#&ﬁﬁ@%ﬁ,&ﬁﬂﬁﬁﬁmﬁﬁﬂ: (G EREEER, TRERR

Cj(mayat) = f](m$ y)e—ia't, .7 =1,2 (2719)

RPhH, LOBBEERI RER I Z & B (wave function) -
EEKRE, BREERZXK, NIHER

0%,

0z

EARE (B, RBEMAERK (2.7.16), ARFEESG 2.717) X, BRETEKER
Bt (2.7.20) R B K AL LB R (2.7.19) K, RITEE S 01(2, v, 2, 1) TRTR:

=0, z=-h (2.7.20)

®1(z,y,2,t) = Ag cosh[ko(h + 2)] fi(z,y)e'" (2.7.21)
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— X BRSEE—

KTEHBAECER
_ 19ag
T cosh(koh) (27.22)
= oh E M 1 (x,y) ¥ & TSI 5 578 5% (Helmholtz eqution)
| 025, &
| gf—l 5 ’;1 +kifi=0 | (2.7.23)
B8 ko ¥ B 2 81 B8 #% = (dispersion relation)
o? = gko tanh(koh) (2.7.24)

&L f RN ENEZ EHE R 2 %R TR 2R (Helmholtz eqution)

o* 0 '
s Iy afj +kf =0 (2.7.25)

Hefko RAFFE IS -

BRI EERRTEAMARRE S, KEERETARAEE, LOCKR, A /L £
FREESERRE

%ilco, on AC and BD (2.7.26)
n .

SBHEIEEE H,REBEASE /0, RETEBERRHA CRAE /- REEE
NEBORAEHZBEHE S, FZTRR

h=fo+fr+7s (2.7.27)

EhE S EEERE , W E E 5 4 (Sommerfeld radiation condition)

lim  +/r( ofs +ikofs) = (2.7.28)

kor—o0 or

EER I RERICAEEAD B RREEBREEBZ SR ASBERE
e

fi1 =f2 on AB - (2.7.29a)
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of __ 0k . up

AT 1R T AHRTES | RERIEREANERFAZEMNARE, 7 = -7

EREBANEREUTTEER, KSR L (LIOB%RT) B 2R &G

Of2 _0f2 _
8_m(0’y) = %(b,y) =0 for —-£4<y<0 (2.7.30a)

%—]’;2(:2, ~0)=0 for 0<z<b (2.7.300)

3t it SR PR AD, FE W R 1 BRI ER AR S e

%<x,o>=%<z,0)=0(z> for 0<z<b (2.7.30¢)

. BWERARERRMAEBEREALER T CRIEHEDNZAHEZRENLE
RTAT ¢

— ITI2| _ |f2|
I7: +nel  |fi + frl

5| FA BB 5> B 5 ( the method of separation of variables) [ E , W& HFE R (2.7.22)
IBURRE

= |fo] (2.7.31)

fa(z,y) = X(2)Y (y) (2.7.32)

BRI IR (2.7.25) BB R (2.7.30) » BMAZHEEf, TRTR

fa(z,y) = i Ap cosanz cosh fa(y + £) (2.7.33)

n=0

fra, =152, B, = [(BE)2 ~ K2, An BREIRE -

REA(Q273B)Hy#a TR

aa—];z(z, y) = Z ApBn cosanz sinh fr(y + £) (2.7.34)

n=0
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&y =0,H1(2.7.34)THE

9fs

E(:c, 0) = —Aoksinkf+ > Anpn sinh L cos ane (2.7.35)

o n=]

RE A B Ann=123. BE | HEXFF cosamz,m = 0,1,2,3. EEOEO< 7 <
by=0 2 IEZRME » DAKEE - %ﬁﬁ?ﬁ(2-7-35)’E@ﬁﬂﬂﬂf&ﬁ%ﬁ%f;( ) cos anzdz , RIHAT
=

’ 8L (z,0)dz

— _Jo By
Ao = — =t (2.7.36a)
b8
2 [0 8L z,0)cosanyzdr :
A, = Jo 3y(@,0) ., n=1203... (2.7.36b)

bfn sinh fnf

38 R R (2.7.300) 41 52 (2,0) = C(2), 80 < = < by=0, 1841 C(z) R BRIRES fo
BUTTRYS - B EBSBITEN, % C(0) B—¥BERTE Co 81 42(5,0)= C , &
O<z<b A

—Cy

Ay = Y, (2.7.37a)
_ 2Cpsinapb _
An = m, n= 1,2,3 ..... (2737b)
KRR (2.7.37a) B (2.7.37b) R A B B B (2.7.34) T 15
fa(z,y) = Co - Q2(z, y) (2.7.38a)
RPQ EES
_ —cosko(y+4) 2. 2sinapb
Q2(z,y) = T sin ko + ; R Y, cos anz cosh Bn(y + £), (2.7.38b)

HBHBZEHE 1 REEAREK o, AZTEBERRECREHE f- , BEEE
NEEODAA BN ZBHHAE S RTER

f1=f0+fr+fs (2'7'39)
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ARAHE fo RBRRKE ZRHEHRE

Fi(2,y) = fi(z,—y) (2.7.40)
AHBHEEEERIHE

af,
on

WEER | RER T2 RER AB, B (2.7.29b) S i BRI 2 B B 80Z AR 05 i
R

=0 on AC and BD (2.7.41)

O0fs __8_f_2
on ~  On

WA B RE , W E i 5 %4 (Sommerfeld radiation condition)

n AB - (2.7.42)

lim \/F( fa +ikofs) =0 (2.7.43)

kor—oo

AR X HAR GRECHBEFER (2.7.23) & Weber BEER [ BHE f. TRTR
T 5845 #2 (Baker F Copson ,1950):

H(l))(kr) ) fs(:co, 0],

| fo(z,y) = b A [fa(xo,O) — B (kr) 22— (2.7.44)

R OB FRRABEZEREFER, b= ¥ (2, ) EBBIAK(y > 0) « b= F
E (z,y) EEx8h L (y=0) - Hél)(klr) BE - FEEEETEE (first kind the zeroth order
Hankel function) o r = /(2 — 20)? + ¢?, (20, 0) B R LT &, (z,y) RS AR LRERRE
—g ‘
B (x,y) BExE AN y=0R(
9 (),
6_n[H° (kr)]=0 on y=0 (2.7.45)

B Itk
fs(z,0) = —% /ﬁHé”(kr)%]ds (2.7.46)

0 R R BRI O, BN 52 (2,0) = Co ,ZE0 < = < b,
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fo(z,0) = —%Co /EHSI)(kr)ds (2.7.47)

R fi + f BEB, Tk — TS

fi+fr=1 on 4B (2.7.48)
Hit f1(z, 0) T RR B
fi(z,0) =1 - fo(2,0) =1~ Co - Q1 (2.7.49a)
HEES
. T b—z
Q= 2—‘5[ /0 HY (kr)dr + /0 H® (kr)dr] (2.7.490)

TR f R (2.7.38) R EM f TR (2.7.49) RAES | RERI 2 RER
S AR O (2.7.292) T 48

Co . Qz(x, 0) = 1-— Co . Ql(x, 0) (2.7.50)

R (2.7.50) FEEES B S EE [0( )de , BIRT 8

Co-Qp=1-0C,-Q, (2.7.51)
i b pz b—z
0,=+ / [ / HO (kr)dr + / " HO(kr)dr)dz (2.7.52a)
‘ 2b 0 0 0

— - —cotksl 2bsin® apb

@ = k. + ngl (nm)?B, tanh 8,2’ (2.7.526)
B (2.7.51) R AT KA C
 Co= ! (2.7.53)
T+ 0, h

FIHEER SRR (2.7.38) TRE
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fa(z,y) = a—i—@ - Qa(z,y) (2.7.54)

HRPRTR Q2(z,y) , B Q, R Q, A FIEHAN(2.7.38b) + (2.7.522) K (2.7.52b) «

ERMELR (=12.25 30 , b =2.483E I, F/KkEL=10.128 N 2 PR O E L M , B
NBIBERKEMNERNEKEILE, AxMRAFEEMS - HREEN IR
EEBERANCARABHRBRERT, WS ELR PR wit iR s, B 2-7-3
REVELRERBRERERSBB W/ EEARRIAMERE, BRATEREC &R
B R A BRITREER (Model WE21) & 3% AT R LR (Model WH21) 2 &R, BEEA]
Rlee (19609 2 HBHER HEEREABERERSYS -

HEO—AZKRELER(REBAPEE ) CEHARA{LEEH T » Metan’s AR,
(Wilson, 1972) =R 5

2%

-~ _ n= 2.17.
T sy 9,1,2 (2.7.55)
AFIREBHERE  ¢cRENINEE > hBKE - IUERXSEL/ LTERS:
£ 2m+1 13_.1.3_.1.3
=1 = prlplplplie (2.7.56)

APLRER - MEERRZGER  BORRENAE > MEORAKIES  BHE
GEREEN R > EREKABERA - TREBEZRIRERS IR 4R4/3084/50
4. EEBEERRE -

RSB EEREE ERF SRR (REE S AR 5) BB 2 245 (5
ORHEA SRR - AAEEEA N BEERRABRL = L B
¢/L =5 B Merian’s AREHEL/L = } RO/L = I HREF » {E88/ -

REREEXEE—TEKERELZE - RIRERECREN, HUBBRBHE
I BARBAIR S(ME 2-7-3) » A RRERCERTREKEZZS » BEEES
BHIRRBRBAREIENGS > HHE/ - HEREFTERERRRIKE  —RE
BRZARBBEEERRK - KR—REEBCEE » LA S SN KR EEY ST
® o BKRRERBERMYBRERECEE  TEEABRNRRERE » BHEHN
HERRATEARARBETR  EREPCHEARAT B SERRE » REKE
HRERERE  EMBEHZEA  FREURPESEERER BB EHKREE
HEZHE-RBEPEERA  HEREE -
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o« Lee(1968) experiment

— EXEHWE

"0k 10 15 20 25 30 35 40 45
R KXIBEE k(

H2-7-3 ERENIERRERRERS B kol fEAE R MR E
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— 2 FHRERRERGHEEEAME —

TR HERERER AR CEBAREBLIATERRASEMRIERTR
B (Model WH21) + R TR &R (Model WE21) » HREZ 5 B (Model WP21)
E=%¥,23MBUE -

-1 R A EF# KX -MODEL WH21
3-1-1E i

FRUZEKERERH CTHANTRER, O E3-1- 1, BRIEBERTEMEL <
KBZEMH, yBHAARRE, RREEEOIT LK HMA LRE | BRBERBERRER

SKEL - AERFE/NMERBENEREE, —RENRERHERRS RIBE(E
B ERENE (BRI ), KRB UEDABRWE SN E (WK E3-1-1) -

lim ﬁ(%f;- tikofy) =0

kor—oo0

HEE(ERD

FHBEEAT

B3l BATREHEESTER

BB T B - T RIEIE & R H L F E F S ( velocity potential)
®;(z,y, 2,t), j=1,2 73 Bl W B = #Eh1 # H7 I 572 K (Laplace equation)
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0*®;  0°®;  9%%; :
63:2J + 8y2] + 6z2J =0, j=1,2 (3.1.1.1)

2, 2 DRIRTEREK I KEHI ZFESE - BRAFE (o EAREExHK6 A
B (N 3-1-1), KEBERRAAR:

Co(z,y,t) = age ™ Ikolzcosbotycosto)iot] (3.1.1.20)

B
Co(r, 8, 8) = age ™ Ikorcos(6=Fo)+ic] (3.1.1.20)
EQEP ao B IR EE (wave amplitude), z = rcosf,y = rsiné,1 = 1/~1
ko 5538 ¥ B (radian wave number), ko = 27/ Lo, Lo B & (wave length)
o B #R =K (radian frequency), o = 27 /T, T BB B XA (wave period)

BRI RERIZHESE S RS REREEBREE ISR GG RERE
R, BN '

a¢; 0%, . _
% 5, 0 J=L2  ,2=0 (3.1.1.3a)
0%, :

=7 t9G=0, =12 ,z=0 (3.1.1.3b)

RF G(z,9,1), (2,4, ) PRIRTREER I RER T ZKuB(L > cBRENIMEE -
EEATEHR

32@]' 0%; oo,
5 +ga_z _0, J =1,2 ,Z—O (31136)

ERARERERREER WATERRKMCBLEG RERERE, TRRR

(i(z,y,t) = fi(z,y)e ™, j=1,2 (3.1.1.4)

AFf1, L AHERER I RERK I Z F & B (wave function) e
KRR, BRBETEK, ML
0%,
8z
EABE(ERD), RBEHHGRAGLLL, AREREAGG.LLYX, BETEKER
fBefr (3.1.1.5) NEK AL AL BIA M RAF (3.1.1.4) X, RITLE S 1 (2, v, 2, ) TRTR:

=0, z=-Mk (3.1.1.5)
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®1(z,y,2,t) = Ag cosh[ko(hy + 2)] f1(z,y)e'"? (3.1.1.6)
EhEBABER
Y

AP EEE H(xy) WE TFIHRE T ER (Helmholtz eqution)

d? o
_a;;l + ____ajzl +Ef =0 (3.1.1.8)

B B8 ko T & 73 B BR 4% = (dispersion relation)

0'2 = gko ta,nh(kohl) (3119)

|  ENABR(BRD)ZEHER Cr = Lo/T , BEHE (group velocity) & Cy = £1Ch
AHFERER

Ky = (3.1.1.10)

1 2koh,
2 sinh 2koh,

R f TR A SR Rl f2 B THIH #8375 82 = (Helmboltz eqution)

02 2
aT]? + %—y’? +kif, =0 (3.1.1.11)

ek RAH B -

B AFI51 A Booij(1981) Z W ERE B WBOHIE , REU T I Z B EH B LK FER (modified
Helmholtz eqution)

O*f: O%f: ,
ax];] + ay];] + kffj =0, j=1,2 (3.1.1.12qa)
R o F
(128
kf =k + gho (3.1.1.12b)

Hp ko RARE R B 0 KB (radian frequency), By REEMKEBEZ SEEEH -

BRABERRTEAMARRES, KEBREYFRARE, LOCEKR, M HER
EREESBWRE
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%J;l =0, on 0C (3.1.1.13)

AEHBECHEE [, REEAFE L. KETEBERRNCIRHEE f- , BEOEE
NEBEOAABSRE CBEE S . BB

hi=fo+frt+ s (3.1.1.14)

EhEHEERERRE, W E N &4 (Sommerfeld radiation condition)

8fs . B
5+ ikofs) =0 (3.1.1.15)

ERRIEERETEHARUERES KES2BEERE A EBEREES
BEmE
9f

% = —kof1, on 60 | v (3.1.1.16)

R EE T RN R f =0, 5ER(3.1.1.15)KE:

fi=fo+rfe (3.1.1.16)

BREMDUSARERRHIRAE AU ER L (LIOBERTF) ERWES FLER Y

0 .
6—};2 = ——7,af2 on OB (31117)

= H o BB FE fA B (impedance coefficient) ©

EWNEERTS KHE, RBH(1998)ENSER, BEEEEM BEBETE
EFE /B 4R BY (impedence) o R EH W E S HEAY R —EH  EEESWEEHAE
EREE B (resistance) , FEREFERAPBERERSI RHFERE A/ KEFA
HENERE L B (reactance) , EEREFAKNFERH BT AAME - EoBEDRER
ERRELEH, F(1993) BRBHERASREBARETEIR, o L ENTERE
HIFELC B, HERANE, B ERERREY, SENERAIEBRA, K £E
B, SREEE AR HEHERARB LA BEUBEREA/N, Higg
ERAEERRBLRA - EEREENEREAREEZGET  HE ARER R R
C. 2RISR R EBER (1993) TRF R

1= G 0<C, <1 (3.1.1.18)

a=—kom, >
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EES | RER I 2 FEE AB, 5517 2 5 SR 3 5 B vl 75 18 S R 1o

-
fi=fp on AB (3.1.1.19a)
%:—% on AB (3.1.1.195)
1 2

RF T IR AHRFER I REBRIEREANERTAZEM AR, 7 = -7

REBFF(1993), ERBEHEFRREZTREFTERN (3.1.1.8) & Weber ## 1£ & 35 18U
B f RERITERE 23 RR R T 5 7512 (Baker K Copson ,1950):

(
@)= [, [ﬂ( )911)—(—@ HO (ky )‘W‘”") ds (3.1.1.20)

(1) | ]
| fz(f)=bo/ [fz(_ )—Qg—"—%@ HV (ky )af"’(”") ds (3.1.1.21)

RXF OB ROB AR BN BELERENER (0B, = 0C + AB)REAEC HHASER
(B, =8B +4EB) -

by =3 ETEBERAE -

=3 ETETRERER L -

b=ST BTERNARLZBAEL -

HM (kyr) B — 38 2P B 75 5 8 (first kind the zeroth order Hankel function)

r=T I, T BERLIH, IRER LRERNE—8 -

RAFER(31L1L2) KB LI2) XBEFHRARI R BT B RETEREITE, LE
KFRERTRERRBEE -
3-1-2 BRTRE

W NE S, 457 0B, , &R N Y, N B 4B (mid-node)( Bfm 3-1-2),§@ﬁ
BRE—ETE RS EERTE, BRE— @ﬁéﬁtﬁ@%&Zh& 2 o S
TR R E s ERETRE Mok EHD, 2L v e mRsrmes s, EEt
B TR I=1,2,3. NSt — i LUHRGE 5 A s gk (20 3-1-2) - B AR (3.1.1.21)
TIHRBRLER ATLETHEEFER
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M M- Y 2 A —

— o b . g -

z z %
v

- 1%

LN )
[a]

>

_<<S ~< Mh.w‘

N
N

[3-1-2 BATRSETEHR
[Ho{F2} = [G2}{ P} ‘ (3.1.2.1)
HF [H), [Go] ER N x NEE , REBETR [(Haiy, [Ga]i; £ B EHE R THIHRM S (line

integral ) TR =,
Q1
[Hz)i; = bo/ -@%@d&' —6;; (3.1.2.2a)
‘ r;

)
N2
(Galis = be / HO (kyr)ds, (3.1.2.2b)
Tj
AP REFAOB EEERER,r = 7.7 , T RERIER OB, L TRZHER,

i=1,23..N 7, RT; TR EE—B, §;; R E B (Knonecker delta function), i {F2}
E{RIBNx1HE EAETR{RL:{RLSIERE

{Fr}i = fo(z) (3.1.2.3)
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(P} = 222 (3.12.4)
HESR I ZAROBME XM I TEEEAGOICEREOAB SR FTI1ZFA
REYMER,EFERXGLINZ IR XM LB Mr FEHBEXMET, BE, (YHE
JEE FHE#ZE
8H (kir)
8n1

AFr =2 -3 L RXM EE—FR TR, TR EE—8 -
BREBERRAEKETERLRE

8f,() _
87’1.1

0, on 0B, (3.1.2.5)

0, on 0OC (3.1.2.6)

FIEF| &R TR EELRE, %0 AB YI#I R METE (HE 3-8), TR EES I
B RERE, (=12, MM <N - BRBLI20)RFTRHRBR AB LE—EE,
RIS FEGLI2D) AR TIHEREFER

{F,} = —[G1){P,} (3.1.2.70)
RFP[G|ERM x Mgk, ERTR(C.); EER LR
Lj

RHr =2 -7 , T BAB L& #£81=1,2,3....M, T, RT, TR EE—8 - {F}E{P}
RMx1AE,EAEBTR{F}L{PLANESES

{F_,}i = f_,(’a_:,') (3.1.2l8)
{P.}:= a]:;éfi) (3.1.2.9)

RBENRN B B R EEEMEMSF(3.1.1.192) X (3.1.1.19b) A FI T RAREE R TR

{F7} = {F} + {Fs} (3.1.2.10a)

(PF} = —{P,} (3.1.2.108)
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R E (R) BANER R IR ER R, (FF) R (P FHES S RaERIER
EROERAD T BB FURM x L A&, X% (G, (B, (F) & (PY) FES0,%5
EESIER LSO AB BB BRRN x (V - M)EER(N - M) x 1H£, &
HTES

[G2) =[G3 G3l,  [Ha)=[H; Hj (3.1.2.11q)
0
{P} = {;}, {F2} = {1};0} (3.1.2.11b)
BERENMIUSFLIBEERHH BB AR, RIFERE TR AR
{PP} = [A]{FD} (3.1.2.120)

AFEE A ZTTR[Al; EER

[A);j = —ia?6ij,  14,j=12.N-M (3.1.2.12b)

JREIETR LB EESAEIRE -
B35(3.1.2.1) (3.1.2.7) R (3.1.2.10) T {A & 5% -

0 z z on '

[%z # gi] {52;; } - {Igt} (3.1.2.13)
RFPIREMNERE, B QA EER

Q3] = [H3] - [G3][4] (3.1.2.14)

RS (3.1.2.13) BFE N+ MEFER B AER L HEE £, 8 NERMOERED
B 2 M{ERME, TR AEHEEERE - MENE— B2 HER L@ THRFR
(3.1.121) K&, AEAEE—BZ FEE /1(Z) THERS (3.1.1.20) £ REHHE /,(2)

RS HEVE £=12.25 TN, B by =248 M, SOk BEL=10.128 X 2B O EW B, B
e RS R AR R KEIE, A xR AR - HRSEN SRR
EEREEANCTRBEREBERT, SR ST R B iR d s, B 2-7-
BAETY e e B R R R B B B ko LB AR R R, B RS B RES R
\EREERTREER (Model WE21) K # R TR EER (Model WH21) Z #5 5, BB
Blee (1969) 2 BB R, HELRARBERERYE -
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3-28 Mk kX -MODEL WE2!
3-2-1 B i B Hr

FREBEEETHRIT R 1 R 8B 8L 255 B Y, 2 3-2-1 TEREHR,
HERBERLE FEREEAR - EEY FEyB@EfEsE - FRELE(SEERN
ERBORPRR ZLEE)BERI ,KEh(z,y) BEEB(L T FEAEE 4N
(BER] )RIABEREE, BSKEE (KEWN), BRI HERT ZHEHEERRPLE
RZPE (B EFT—ERLHE), UOART - BRWRTTELE - MEERIERERZ
BRI R L F T ( velocity potential)®;(z,y,2,t),i = 1,2 3 BIW B = ¥R B H K HE

= (Laplace equation)

0%®; 0*®;, 9%%;
6:!:2J + 6y2] + 6zZJ
1, P A RIBRTERR ] RER T 7 FES - ﬁiﬁlé‘hﬁ Co WMIHRER IF x Bh 5K 60 B
B (A0 3-21), K EBR AR

=0, j=1,2 (3.2.1.1)

Co(2,y, 1) = age™ Tkolzeosotycoste) —iat] (3.2.1.20)

®
Co(r, 8,t) = ageilkor cos(6—bo)—ict] (3.2.1.25)

A a0 R F R IRIE (wave amplitude), z = rcosf,y = r sinf,7 = /-1
ko 52 B $ B (radian wave number), ko = 27/Lo, Lo RF & (wave length)
o RSB (radian frequency), o = 27/T, T B BB (wave period)

B I RERT ZHMES, O, MRS Eiﬁﬁﬂﬁﬁﬁ#&ﬁ@bé
LR, BD

o, 0%; .

— — -——— == -_— e - .1-

ot 8 > J=L2 ,2=0 (3:2.1.50)
6§j +9¢ =0, j=1,2 ,z2=0 (3.2.1.3b)

AF Clz,y,1), (2,4, 1) DFIRFEER I RES I ZKGB{L » g SEHMEE -
EZXTEHE

L b=t =0, j=1,2 ,z2=0 (3.2.1.3¢)
t4
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lim A(9L 4 ik fy) = 0

kor—aoo ar
oD
.-T_
FIIER .
temssm o=
(E 1) 9h of"
— Clcgl_ = —Cgcg-z - f2 Y
0A ony Ons

FRACE (B T)

;TG0 V) +(CryC) P =0
% RERE

H3-21 ERLTREHEERTEHR

ERAHERERRERR, RATRRIMIBLGREBRAERE, TRTR

Cj(may)t) = fj(xay)eiota .7 = 172

Kt f1, L L HBEERI EER I Z 3 &8 (wave function) -
EAEE(ESR] ) BEKEE, BREEREK, RIFWE

o0,
Oz

EERELE (BRI RIERE, REERREBETEXK, MIHER

-62 -
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0%, 0% Oh, 09, Oh, _ . _
5z oz 6z T dy Oy =0, z=-hy(z,y) (3.2.1.6)

EARE (BRI, BE S HERK (3.2.1.1), ASE A (3.2.1.2) K, B4 (3.2.1.5)
AR KA BB PR (3.2.1.4) K, AU FESS @1(2,y, 2,8) T RRR -

&1(z,y, z,t) = Ag coshlko(hy + 2)] fi(z,y)e™ (3.2.1.7)
HPFEBA BER
S |
= oo (R (3.2.1.8)

RPEEE A (xy) W TR 5B R (Helmholtz eqution)

2 32 ’
%_;;1 + gy}‘} + k2 =0 (3.2.1.9)

BB ko ¥ 2 4 8B 22 (dispersion relation)

o? = gko tanh(koh;) (3.2.1.10)

EAEE(ER)ZHEES C, = Lo /T , B (group velocity) & C1y = x1C)
ANFr EBR

_ 1 2kohq
K1=35 [ m} (3.2.1.11)
EEREBGWE (BRI, BREERSEB(L, WMES (2, y,2,) RTR:
®y(z,y, z,t).= Agda(z,y, z)e'" (3.2.1.12)

Kb RPEHE -
5] B Booij(1981) {& IE Berkhoff(1972) $f 4 2 — [ 45 IE &8 4% 5 18 =\ (modified mild

slope equation) :

V.- (Cnggiz) + (029/02 “+ iO’Eo)O’2f2 =0 (3.2.1.130.)

S fo(z,y) coshlk(ha + 2)| BHER $2(z, v, 2) Z—HE, fola,y) B RBER, B RIS
BTHEBEZERRYK - V = (2, &) SREEERT, C = L/TREE, k =2r/L,
B, Cry = 20y MEEEE (group velocity), 2 EH
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(3.2.1.13b)

1 2k2h2
2

*2=73 sinh 2k2 Py

Bk (shallow water wave), kahe < 1,02 = \/ghs,Coy = Co ,BIFER (3.2.1.13)
R

V- (hoVf2) +(c%/g++icEy/g)fa =0 (3.2.1.14)

TEBR K (deep water wave),kzshy > 1,Cs = g/0, Cay = 0.5C,, R FER (3.2.1.13) T
LREBERBREFER ‘

O%f, O & fa
Oz? T o Oy? + (B +

HREHER (3.2.1.9) REERKFER (3.2.1. 13)%EJ%%%E&’EB§%@EZE

REHGER -

- BRAAEBERRTERMAEREMF, i%%%ﬁl‘ﬂ*ﬂ?ﬁ yRLOCRR R fHL &R
FREESEWE

wEo

)fz =0 (3.2.1.15)

of
on

ABRECHEEE N BREEARE /O, RZTEBERRACRKHEE f((BREOR
HHE) BEERENBEBEOANMBR B K, RER

=0, on 0OC (3.2.1.16)

f1=fO+fr+fs (3.2.1.17)

Hoh¥ s e RR , e E5 &4 (Sommerfeld radiation condition)

lim \/_(

kor—oo 6

) =0 (3.2.1.18)

BREGBUSFLBEERHRRNE X SER L (LIOBRT) BRE S AEARE

af, . '

R o B [H B 4% B (impedance coefficient) o

EER | RESR T2 REEO0A B 5IHE BB R EEBZ SR S e
#:
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fi=fz on 04 (3.2.1.20a)
Clcﬁgr% = .—Cngzg—:; on OA (3.2.1.200)

RE T R AHERER I RERIEREAAEG AT EM AR, 7 = -1

3-2-2 - HRTREERX

A Hi# E F 1B & T 3% ¥ (hybrid finite element method) (Chen B Mei ,1974) , (Tsay &
Liu ,1983) AR L MW EEBRH FERACEAENE - EEREBEBER I RERE
B, VARERE=ZAPITR  URKETESR L ROEEE , B3-2 18— 10EBOHE
RHEAZ TRUERERGTF - A EER 1 BE

[ 3-2-1 0EBENEPEA=AF TRI/ETEE

FRESE , 2R FE AR e B B ( eigenfunctions) 7R ¥k (Tsay & Liu ,1983), B s fi &
ﬁifﬁ?ﬁfo N fr * faﬁ}ﬂﬂifﬁ‘ﬁﬂ?

fo(:z:, y) = fo(r, 9) = Aoe"ikorcos(o—eo)
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= Z 6"("i)n‘]r(zl)(k07") cos[n (8 - 6o)] (3.2.2.1a)

n=0

ff‘(xv y) = fr(T:’ 9) = A6~ikorcos(0+00)

= Z en(=1)" TN (kor) cos[n(6 + 6;)] (3.2.2.11))
fo(z,y) = fo(r,0) = Z pnH® (kor) cos(né) (3.2.2.1¢)
n=0

KB A FHAR (2.8), T8 (kor) £ 8 — 48 n ¢ B BB (first kind the n-th order Bessel
fumction), H,(,I)(kor) B % n 5 = 8 (first kind the n-th order Hankel function)

° pn RRARE - B BEER

_ {2, n=0
a =131, n=123.. (3.2.2.1d)

ABHE fo B (3.2.2.1a) MEAS T (2.2) 21, RE K - BRR(B2.21b) WESE
EWAEEREKE R, B, BRR(3.22.1c) BERA S RESE (218)K - £
MEEHR R HE R, B ETIERE -

RBW 43 5k (calculus of variation) Z B/MEFEE , EiiEH FRER, ERAGRERERS
IR E (e R EE M), T8 T 5 E RBIZ BB (stationary functional) Jg :

T3(fa f2) = / / L (0aCay(V £2)? = (Cy/Ca + i o) f21dA

0fs
+ [ Lleonf. af de

84 2
Ofs
+ CZCng2 f
9A

0
- Czczgf'rﬁdf

84

0 s g0
+/ C'zc'zgfo f
8A

- / —-CYC2C'2gf2 dl (3.2.2.2)
8B 2

MEERTRERE, HELERIZERSEARNEZAY TR BETRIER
DR 1/10 RR KA, 3 A — B H 4  ARE B (shape function) ¥§,i=1,2.3 R/NTTHe
KEEE f WHEC; RBFEREC, T

- 66 —



— 8 HREREANTE—

3
fi=) Uify, e=123.N (3.2.2.3a)
i=]1
3
Cs=) ¥iCs, e=1,238.N (3.2.2.35)
i=1
3
Csp=D WiCs,, e=1,2,3.N (3.2.2.3¢)
=1

RFCL RO, REXe  MEICEMERRBERE, f5; BTRe , HEIZRAH
B fH - HER ] HHE S, R ZEFRB22)RERIZE—RBTREE
B/ BOR O BB EH O, HRTR(3223),RAZEH(3222) R, BETETHRE
BB GER

T3 m) = S{EYinErl i f) s

+ 5 {8 F gl Elgxg s}

+ 8 o Kolpwa{tlasa

K p 3D

+ (K g D

S Kool Y aes (3:2.2.4)

AFE—HOCNYEEE (K RRAKEEAE (), B EREBHE (BRI )FHE
EATRCEREER (K RAE{f;}e=12. . NFTHK

it=3 [ [ loscs, v - (g0
= %{ff}ixs[Kf]sxa{ff}s X1 e=1,2..N (3.2.2.5)

AF {5V R {f5} B E (transposal matrix) 45/, M [Kf]| 2 TR EHR

3 3
ey _ 1 1 ¢ e
[Kl]ms = E ZZ m . C2ic2gj(bmb3 + CmCs)

1=1 j=1

2 3
-2 o O G2k(2+ Smebmibok + 6mik + 60k),  m,5=1,2,3 (3.2.2.6)
k N

=1
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H A BT Re ZER
bi; B 5L BR 75 BK BY (Knonecker delta function), é;; B 25
by = { o i
doi = Cayi/Cai + 10 Eoiyi = 1,2, 3
0 biyciri = 1,2, 3 e ERARETRER v 2 (R0, K EHR

Ye(z,y) = (ai + biz + cy)/24°, i=1,2,3 (3.2.2.7)

(2, ) RITReZEIER =123, BBk RRHRE T HZ = #ERERI

a; = T;Yr — YTk, 1=1,2,3 (3.2.2.8a)
b=y —vk, i=1,23 (3.2.2.80)
ci=zk—z;, i=1,23 (3.2.2.8¢)

XFF_HEMYEERE [ RRABNEHBEE (1} BHTXNER

1 o5,
L= [ 5C:Cafugtdl

= S{uH el Kalaxelidons (3:2.29)

Hi5  RENERTEHRN S EY, R AREOASEZ SR, Hj IR B 284 E
ﬂ’ j=0,1,2....,q-1 o ‘

BEK|CTREER

[K2)ms = mRokoC2Coy0.5H _ HE) (embms, m,s=1,2..q (3.2.2.10)
KRPEZECAHEEE (G RER A ERAMEHEAR {7} AIHTIIRRAE
5

. o,
I; = +/ C2Cayfa aidf
A n2

= {f;}ixp[I&’S]qu{ﬂ}qxl (3.2.2.110,)
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MK ZTREER

[KB]ms

= —koL,C2C2,H,[cos(s = 1)8,,_; +cos(s —1)0..],2<m<p—-1,2<s<gq
g m~-—1

=—kOLaC2C2gH(I), 2SmSP—1> s=1

= —0.5koLyCoCoH, cos(s — 1)1, m=1 2<s<gq

= —O.5ICQLa02ngH; COS(S - 1)9;_1, m=p
= —0.5koL,C2Co,Hy, m=1p s=1

HK

L, = ;—ffaﬁﬁﬁ 8A$_t§@ﬁ&2§s 02,1,9’2 """

BRERBEMIAE -
APFEOHREMEE{KI B THRTNESE:

_ Ofs
I = /a CiCagfagitt
= {K4}§.Xp{f;}1’)<1
FME{K I ZTERERER
{K4}m = _O-SkOLaCZC2g(um—1 + Um)a
= us, m=1
= Up-1, m=p

2<s<g

(3.2.2.115)

6,_, RFLE 0A L H Ep-1{E

(3.2.2.12q)

2<m<p-1

(3:2.2.13a)

Um = 1 cos(bm — Gg)eik°R“ cos(m—00) 4 ; cos(fm + Go)eik°R° c08(fm +60)

m=1,2,3...p—1

APELAHREAEE{KIRIBATHIRTNEE:

Ofs
15=/ czczgfoaf de
dA T2

= {K5}§Xq{.u’}9x1

HME{K} ZTREBER

(3.2.2.130)

(3.2.2.14a)

{Ks}m = 21koRoCyCs4i™ 1y Hy_ycos[(m—1)8y], 2<m<p

= 27l'koRaCZngJOH6, m=1
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m=JD(kRs), m=1,23..p—1 (3.2.2.14¢)

R B EE AN B AR (K] R# 0B LR AN EE R (), (BB ROB £
M fEfs i T & e=1,2,3.. ME S 4B RE [Kg) B {/F°) Frsdak:

It = — / 2 aC,yCo,f2dl
aB: 2

1 [ [ e
= U N alKeoo{ff o1, e=1,2..M (3.2.2.15)

KR S 2 ER TR |
1
20
1

e € 1 e €
C'22025;1 + %022025]2)

€ € 1 € e
C2ZC2g1 + '5‘0220292)

e . € 1 € e 1 ‘
[K§li = me(ngngl + 5‘6026102392 +

[3 . € 1 [} [ 1 € [
[Kgl22 = ‘aLb(%Cnngl + é—dCZICZgZ +

20
7€ ~ e 1 [3 (-2 1 e [ '1 € e 1 e [
(Kgliz = 2aLb(§602102g1 + §6C2102g2 + %CZZOZgl + 5602202572)
[K&la1 = [Kgl2, e=1,2,3..M (3.2.2.16)

Hf L RigETKe=12. MZRE -
Coi B Cogiyt = 1,2 3 BIRME TR -RMIGH R ZE, MRETRe CRRER Y], =

L2@ER
i(z) =1-/Ly, 0<z< Ly (3.2.2.17a)

$2(T)=%/Ly, 0<z<Ly (3.2.2.17b)

BHRRELCEEFEXRMABRAAE{LE v Bt R {cHxn:

{z}1wn = {2 xn{}1xd] (3.2.2.18)
Hin=N+q - |
B EMS EER (K], (K], [ R [Ks] (RERUESHRAYEERE K| TELT
0
[Klnxn = | K1(Ks) K (3.2.2.19)
0 Ks K
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BARREANAR (K} R{K}) &tRAE{b})
{0} xn = {0} x(v—p) {Ka} xp{ K5} ] (3.2.2.20)

R ERESER (3.224) THLR

Jo(z) = %{m}§xn[K]an{z}nx1 + {8} wni{z}nx1 + constant (3.2.2.21)
TEREEEJ BMLELER:
8J¢ ,
ax‘: =0, i=1,23.n (3.2.2.22)

ittiﬂx;,i =1.L23.nEBRE{z}ZEiETE -
#(3.2.2.21) {8 A (3.2.2.22) AT &

[K)axn{z}nx1 = {b}nx1 (3.2.2.23)

ER—EEEERAM s, nEAFEXNZEEAFER, THFEHTE EE (Gaussian
elimination) SR ## o

BHEEARKRRMACHEREACERET ZE@%‘%D%Z)\%&&&%&EZEH@
(EREORIEA)HE, RTRWT

R(z )_| m:;:_f)r(zo)| (3.2.2.24)

AP THAL—8, ToREONE—8 -

&5 BMER (=12.25 3, B b, =248, S KB h=10.128 3 2 BH CIAE T ¥,
BRABLBERIEVMANERTEKETE, AxHRAAFELMH - LREENES
REREERERAHCTEBEBERERT  ERETLER &< it iR b iR 8L
B 2-T-3 RV IR R BE R RS B bl RFE AR R ZAGMERE, RRATHR
BCER, BERRERTRERR (Model WE21) R 8 R TR EKK (Model WH21) 7 %
R, RRGAIR Lee (1969) e AR B R HERRABRBERERYE
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3-3# Ik £ & ik # X -MODEL WP21
3-3- 1 EBBT REREES B

BT A (T B H 3-3-1), MAK TR TR, kB (xy) S@2ES
(mild slope), B P B BT W R 1 S VS A SE B VB RIS 2 B 11

AT ER

& 3-3-1 EREHREER

fR#8 Tsay and Liw's(1982) Z B2, EiF BB BT 2 B AELMxy) TAB AR AE
;s \

h=h+h (3.3.1)

R o5 Rz, y) B E AR (modified depth) XBBEHR : EBEARIREZEHS
BT @R o TI—BGBINR 2 5 T 8% Lozano and Liu(1980) 2 %8l - AR A
BEEEh(y) B NMEER -

BRI B 2 W B B B (wave function)é(z, y, t) TRTRR

$(z,y,t) = F(z,y)A(z,y)e S0+ (3.3.2)
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A f Az, y) & S(z,y) 3 BIR B EEEKEh ZIRIE (amplitude) Z#84I (phase), o 8
EER  F(z,y) B#EH T (diffraction factor) T EE B E R KERBEKEE, B A K
BEECRERR -

HRIB YL TSR E R (the wave ray theory) 3RHE A(x,y) B ABAL S(x,y) £ BI¥ & F 51 eikonal

equation J transport equation:
(VSP =% (3.3.3)
V. (4?CC,VS) =0 (3.3.4)

U8 P 3 B (wave number)E ¥ 2 T 714 BUH %= (dispersion relation)
| 0% = gktanhBh (3.3.5)

70 2L 3 F 7 5 (phase velocity) C = o/k B BEE B (group velocity) C, = do/dk, o BRER
(radian frequency) -

Hrh i 89 & (wave number vedor)K, ¥ Eﬁ[ﬁﬁ%ﬁl{%{ff:
VxE=0 (3.3.6)

A

K = (kg,ky) = (kcos 0, ksin ), k = |K| (3.3.7)

RRARRA (3.32) RFIARMAR (3.33) K (3.34) RABERETER (2.132) , MW
Eo =0, 07 LR

2K -VF + (% + %—G) VF+V*F+EF=0 (3.3.8)
R k2 EHR
2,2 72, 3G (G VG VA V4
k*=k* % +Gv(a_> VS+ = —+— (3.3.9)
e
G=CC;,, G=CC, (3.3.10a)

= 7 ¥F I P 3K (phase velocity) C = o/k F B HE £ (group velocity) Cy = do/dk, § 8
(wave number)k ¥ & T 51 4 8 Bl 4% =, (dispersion relation)
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0% = gktanh kh (3.3.100)

E RN (3.3.8) ZRU LB AEITLER

-2

B2 =k % (3.3.11)

TR A0 EY B 4R BB B 3R %t (curvilinear co-ordinate system) (€,n) EEE R E A EER (x,y)
TR TFIERSR
= T.(6,7) (3.3.12)

=Ty({m) (3.3.12b)
RIEE (x,y) BEEE R~ 6 H 5 R (ellitic equation)(2.132) LB 1E (¢,7) BEXRHEZ
Y48 5 R (parabolic equation) fI T

0T, 1

oG oG, 2 0A 0A )} OF

0T, ~ -
[ 4( 5g F= g b T e (g, Jzag) 477 B5, ~ %) | 5y
aT, 8T, 1 le. oG 2 DA BA.] OF
+[ (an ke Ek) GJ2(J1 a¢ JQa )+ AJz(J1 o€ JZ%)J 3
PF F OF, .
(J;; 7 " g T g ) +kF=0 (3.3.13)
=
(‘3 L +( (3.3.14a)
8n 3.
9T, aTz aT, dT,
Jy = 3¢ on 3¢ on (3.3.14b)
0T\ 2
Js = ( 65) +(a_§) (3.3.14¢)
8T, 8T, 9T, 8T,
Ji =3 S o ot (3.3.14d)

RREE, ) FTEHLERRERPT, —RAEAER (phase line) H 4 & EEKRIR ST, B
DA (3.3.13) F F #f n & Z RS H T R, (LR

—0Ty—~ 0T+ oG
4( 5 ko + 3£k) GJ2(J3577
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2i 0Ty~ OTe— 1 ,.0G le; 2 ,. 0A 0A.] OF
TR Gk m renhge ~25) T i g — %) |
»*PF *PF, .,
+J2( 2025 af+‘71_652)+k F=0 (3.3.15)
FRE B SERN (3.3.6)F (&) BERHKITLRE
OT, Ok, , 0T, Ok, 0T, 0k, 0T 0k _ (3.3.16)

50 96 T oy B¢ Bt Bn B¢ o

T transport equation(3.3.4) £ (&, n) EERM LR

6T6 0T, 0

0Ty 8 = oT, o 2 (G@F. A2)+ xn —(Gky,4*)=0 (3.3.17)

oLy 0 2
on ag(Gk’A )- Bn O¢

(Gk A?) —

BEIAEREAREMEFENE, ERUEIANBRER, —RESEABER
B (x,y) FE LR RUARE I, ABRE B i iR B % % (boundary fitted curvilinear co-ordinate
system) MBRE (¢,n) FHEZ RS VESR, WREE3-3-2 - (xy) FEEWEE# CD,
B W Y8 B4 7 1 4R AB, RS (&, ) FE EZ BB CD(n = 0), R B AB(n = no),
(x,y) FTE 1 (M) B2 #hi% DA R CB, iSE#R A (6,0 FE LB E DAL = 0) RiRE
CB(¢ = &) » —BRETSAE Eno {8, no EA/NENESIEB R RE A/, BHEBC kDA, il
BEL=0RE=6 - MARSEERAE (339X, TR —LEEATRE, 2E
B EEEEEER -

Ui
A
n= -
B . A
TITIITTIIT I ¢
=0 '

3-3-2 EEEHTEE
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B HEIEGR A (conformal mapping) Z & T, RBEEBREET. R T, ¥ EREREH

T K 5 E R (Laplace equation)

o*T, 8T,

ez T35 =0
o*T, 82T
5t

8%

22
o
Oz?
T B % 2 Cauahy-Riemann f&&
9¢ _on
8z Oy’
Oz ?ﬂ
8¢~ 8n’

+ —

T

HFE(En) Z%ﬁ%ﬁﬁﬁ%ﬁ%ﬁﬁ%ﬁﬁiﬁ

o* 6
oy?

8%n

%3

oy

Oz

=0

=0

B =

_On
oz

Oy

o¢

(3.3.18q)

(3.3.180)

(3.3.19q)

(3.3.195)

(3.3.20q)

(3.3.200)

5| A Cauchy-Riemann g {4 (3.3.20), ﬂJ%FéﬁZ?@é%ﬂ?‘iEiﬁ@ 3.192) BRBEHER

(=&, on DA

=0, on BC

o -

B = 0, on AB
o¢ —_—
5_7—1— O, on CD

(3.3.21a)
(3.3.215)

(3.3.21c)

(3.3.21d)

R & = 7 VEREAMS (nomel derivative), @ W R AERAN L B -
F S F n 2 J 7 A2 (3.3.16D) A 8

n =0, on CD

n=mn, on AB
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on —
o _o, on Da (3.3.22d)
on e

lﬁ:ﬁ#@’?lﬁﬁ%ﬁiﬁ%&ﬁﬁ,*ﬁti&ﬁ%ﬁ%ﬁﬁﬁ%(&&w@ * (3.3.21) % (3.3.19b)
- (3.3.22) -

AR T (3.3.19) K (3.3.19b) 2 Weber BERIRA S I RRR TR 5
& (Baker B Copson ,1950):

E(T) = by /BR{faa—n[ln(r)] - [ln(r)]g—i}de (3.3.23a)

n(Z) = by /;R{naa—n[ln(r)] - [ln(r)]—g%}df (3.3.230)

HFORRIEEBRR R CEHFAER, OR=AB+BC+CD+ DA -
b= 3 W TEERAE -
bh=3% ETETHRERER L -
bo= SE,MTENARSZBABE -
In(r) B B AR B BB (natural logarithmic function) -
r=[T0~Z,To REFLCH, TRER LORKERRAE R -

WA HER (3.3.232 % (3.3.23b) RE T BT R 2 BB 5 REEFE, SFHERR
TERERBEEE - B (xy) TERERZB570B=AB+BC+CD+ DA ,2RII&IRNE
#2EY , N fE s #5 % (mid-node), SEMEB AR —HETHR, W | HEHTE, BRE—EHE
LEEEEn (R, L en e MIURE T HEERETRE, TR (), 250 >
(S| RS v, BT, T N (E s B B — A DA B G 5 Ak -

B FEHN(3.323) Pz HiRER LR, AR THEEFERX
GHP) = [H{Q} (3.3.24)
AF[H], [GIERN x N4EE , KER TR [Hji, (Gl 2 BIE R TFI4R 85 (line integral)

RTA

[H]jk = b /1" -a%ln(r)dek - 6jk, j,k=1,2,3.N (3.3.250.)
x ,
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[Gljk = bo/ In(r)déy, 5,k=1,2,3..N (3.3.25b)
T

AP BELELTR,r=7,-Z] ,Z, BERRTEAOR TR, j=1,23...N T
REKBETTED LE—8, 6 BB Bl (Knonecker delta function), 7§ {Q1} & {P1}
BNx1IRE XAETRSFERS

{@i};=n(z;), j=L2.N (3.3.26a)
{P}; = %, j=1,2..N | (3.3.26b)

FRTER(3.3.23b) P TRERE A L ISR, (I LR THIEREFER

([GI{P.} = [H]{Q2} (3.3.27)

{QRIE{RIRNx1HE KAETEAIFCER
{Q},=¢&3;), j=12.N (3.3.28a)
{PZ}J = 6€(z1)7

TRIFIRAEREGER (3.3. 24) Zéﬁﬁ# (3.3.21), IR s AR (3.3.27) ~ WA
( 3. 22) EDT*{?%%J:Z"-E) Bn Bn {E

EGERESFOR LEE(y)HEZ(En)ERESR, REZER (S n) KHEELZ (xy)
yINGIE: 31

j=1,2..N (3.3.280)

z = T,(¢,0), y =' Ty(€,0), on CD : (3.3.29a)

y=Tu(,,m),  y=Ty(&m), on AB ~ (3.3.200)
z =T:(0,n), y=T,(0,7), on DA (3.3.29¢)
y=Tu(lo,n),  y=7Ty(,n), on BC (3.3.29d)
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# Fi Cauahy-Riemann Codition, 5% & 52 #2457 1 ATl TR KA
8T, 0T, o7, 8T, 9T, T

o = o = o n = Bn = 5 on AB ‘ (3.3.30a)
0T, _ 0T, _ 07, or, 01, 0I; —

== s =g o CD (3.3.300)
0T, 0T. 0T, or, o1, T. =

el Tl 5n = on o on B (3.3.30¢)

0L _ 9T _ .1 o 9y _ % on AD (3.3.30d)

Bn  8E  on’ on 9 on’
BRENBERRANCENT =(T.,T,) THTARSE

T(E,m) = bo / {T——-[ln r)]—-——[ln(r)]}ds (3.3.31)

R ORRER(AB+BC+CD+ DA - r = /(€ =€+ (' —n), (¢'.0) R
BR EORZE—B -

E () FERZTHARES , 48 - A7 R A B dh iR R H (6, n) FE EZER
EIRAR, AR N, x Ny BER, REEERARIR AL x On - EHRFIAERES &
FIA= A& 52 (3.3.15) » (3.3.16) R (3.3.17) R IRIEA, BH A TF, A S
EEA (f) E=HBE -

HREEKEMEES RRTREERER, AT
or ok

— = — = .3.32
5E 0, B¢’ on n = const (3.3.32)

K (3.3.7)RA(3.3.16) M5 (3.3.32) L BARA LR

(aykcosé?—%—%Fs;inG)-}—(ai ksinf — 66161 so)g_:
_ 9T, 6k i oT. 0k oT, ok . oT, ok
=% on €+8_£6_nco sf— B 3£ sinf — B_T}EZCO s6 (3.3.33)
e A |
6] = 6(&in;) (3.3.340)
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= |
§i=14¢  nj=jln (3.3.34b)

BoE g% WETEE (formard-dif‘ference method)

86 it — ¢!

a’) ~n (3.3.35a)
, ﬁj{ﬁ}i mthﬁé}(centeral difference method)

89 6Ll —etl 1ol —6l,

3_5 YN (3.3.35D)
#(3.3.35) O A (3.3.33) RUET (L B THIES FER
—6It v bt 0l =+ 6] el — 0, (3.3.36)
- HA R, R REER
e = 4A§(a§é ksing — -aa%zcosﬁ) (%—?Fcos 861;;— i )_1 (3.3.37a)
_ANE Ok 0Ty . 0T, - %— 0T, — . -1

cy = —k——%—(?}?ksmﬁ+ o Zkco 9)( B k cos B ) (3.3.37b)

FHER(3.3.33) WBEFAAIMESEGEE, ES HER (3.3.36) BiERE
¥ (iterative numerical method) .Lj\j?ﬁ 0, %8 1, BERIEICEBEE, I2ELE—X
ZBRERAA -

EIREESE Al = A(€i,n;)i=1,2,..Nayj = 1,2..N, BI5HER (3.3.17) LB 24 HE

=
_ j+1 24&6 265 j+1 j+1 j C_44Af 2_c_5_ j ‘
A+ (2 Ry e AOAT T Al = Al + (] =t AE)AT — Al (3.3.38)
Ho R8s, co,cs FRIEHR
OT, - 8T, — .
cs =2(=2 o L% cosf — o ) (3.3.39a)
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OT ksing — Ty k cos6) (3.3.39%)

C4=-2(66 36

1.0T; & 0T, o
cs = [5 ag(GksmG)-i- 5% an

_0T: 8 6T 0
B¢ +—(Gk cos§) — (G’kcosG)]

=—(GEkcos é)

(3.3.39¢)

ERTERAGINHIREATER— ﬁ’l&ﬁﬁiﬁ BRAEK(3.3.36)FzEAAHo
RE, AR B s, 00, cs EREA

FAERAETFF ZAERRIES B EBMT

oF Fil., - F}

OF FITI_FJ
it S 3.3.40b
O*F 1 - i
0¢on = 2AZA (Fify = F/V = FL + FITY) (3.3.40c)
*’F J+l o+l j Jy il -l
B¢z 2(A§)2 (Fify — F{™ —-2F],, — 2F; + Fl+F7) (3.3.404d)
B (3.3.15) LB THZ4R
et AL s AL\ i _ 2c5(AE)? KA Lin
(_1+ 2¢q + CgAT])Fi_l * [2 coAn Co ]F'
1 C7A§ _ CsAf j+1 _ _ C7A£ CgAé.
+( L 2¢cg CgAn)E-Hl - (1 2¢co + C9An)
2cs(AE)?  KR(AE)?, ; UTAY I YaNS
—12 - F/ 1 F 3.3.41
[ + coAn cg ] it ( t o 2¢ qAn) ( )
HA{RBcs, cr,c8,co DT EBER
2 8Ty 0T, oG oG 2 0A (9A
cs—J—4(-—— B¢ k co s9+6—§k31 0)+G’J2(J3677 —J2 6{) GJZ(Jaan ) (3.3.42a)
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9T, Oz s 1 .86 .8G, 2 . 04 DA
cr = ]4( Bn Y% cos§— n né) + GJ? (1= B¢ Jza_) AJ2 (1== 5 26 ) (3.3.420)
2J |
s = J; (3.3.42¢)
o= iﬁ (3.3.42d)
J4

BEHERARTFFLUEER = REKK UHENEERR LFEYE TR
RARBFRL=0R{=6LTE

g—f=o, £=0 and E=é
EEHZIE A BEETT B RAA () SR S) SMERE , Bl (3.5.2)
TREFEK TR |

3-3-2 1 B

EZR—ERR/CERTE, FEFRITREET - NREE, ESEE M E
3-3-3 ,HEEA/NNIE (0 <y < 1000m), —400m < z < 400m), A F FEHEELH 10 Z
WE AAEUARA2° CHAEABERELEZHEDMH -

B (z,v) T R EE R Z M8 O 40 B 3-3-4a, 1AL B B RS EIRE (6, n)
ZSTE 7 MR M AN 3-3-4b, 7 (6, ) FEHZ S EEEES (0 < < 1000m,0 < ¢ < 800m),§¥
BRNGBIR AL = 9m, An = 10m - B3-3-5 REEE LS B R (k) A MR E , B 3-3-6
REEBEZSHAA (E)MiHRE -
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— &+ Mike 21 i B REERESNTE —

DHI MIKE 21 Wave Module & f+28 7k T %2 B (Danish Hydraulic Institute) BB 2 I
REHEER - EXERREETEN S TRBEHERCHE®L - —RTEAR
FFEEE-OR - BORMESERZEERE{ - MIKE 21 Linear Wave Module f1.3E
OSW + NSW - PMS  EMS &I , ST EFEN - BEFERFITFRE » BNMEW
|=R

4-15h R B EE 8 -MIKE21I OSW

AERREERBRNEANES, OSWEETERAPRNE/BEKEE AR
CET  RREBREEFRS - OSWEMEIIIEAEERZEL(RAS) - T8 Bk
TEFERMREERE RS LUAREI B ENELE RS, BEERZEBR(F
FAEE) TRERSBECER (EEFEHE)F - ARXTEERRBRZISRY - KE - BER
 BERBRENE AETEERAPEEESB A MERERZEEEBL -

OSWEEFEANRE,  BREEEREE\L, Bt OSWEES — B E
R MREEERREREEANERCED (BERRAR ), NTHEZRR - BtEZ
FREYE > BEER(HE) - BEREREYEER -

MIKE 21 iR B AR R R RE (R ORE - SRR - BEEE - FARALRE
VEBBRBSM(BRERER ), B OSWHEEER - R ERRAFEREE ZINEE -

OSWEREAXFEHESEETEH HER (The Energy balance equation)

OE | cosf §(ECCy) N sinf 8(ECCY) n Cy sinGQC—j- B cos@ac 0E

&0 T s c oy C infss o) =5 LD

HF E(x,y,1,6, t) B 5 ARy s (directional-frequency wave energy spectnﬁn), =%
R, IREAA, tBRE™M, C B, CRYE, S B ¥ YR H (net source term) - FERAE
HIEFRERZITHREC BT, FEXGRIBFERSEERACHERE - EEERE
TR Z BEB L, R 1R #L (disspation) ZBERIFRE -

OSW #4H =7 8 {8 75 ¥ {# F§ Semi-Lagrangian Explicit Higher Order Method, B£4f 22 3%
OSW i=FH E R =1 - _

DU 458+ B — ¥Rk 3 A FR A 3B (fetch-limited) & R B LR OSW R - #
BERS00AE(RER), EI25AR(FdiMm ), KB R 1000m Z B ¥ , (R 3% ESE 20m/s,
TR (270°) AR BEE , FEE MK K/NR 25km x 25km, WEER G 27 /K, e
MR E 12008 (F 82 R ) B RFHMBRERLE 1 H 12K% -
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B 4-1-1R 24N (1A 2H 120 C MBS HE , HEt EE RS ERS KRR, i)
SERBIEREREAEER, EERENEAREHAER, MK AR MM 8 4-1-2,
BMARENERRECRE DTS ESEAS (fetch) RER/N, BEE T HR LB/ - &
EURE % (5,3) RBLSURS, AU 4-1-3 R B: (5,3) T BB (T,) RGO 2 B Lok, BB SES
IR R, ERREETEEER - LEETERKER ZBEET, B SR Bt
& B4 1-4RE(5,3) FHER (Hmo) FERRT Z BL AR, I HIR G R SIS
F,ERMOREBVEABER - FEHBL— S5 (5,3) LHRERTREBTFHE
REHAEERBURKA - EEERMBER, £ REHES FIR 20m/sec, 15m/sec, 10m/sec
B Sm/sec, RIBRMBR Z FIGWR Hmo S BIR 892K, 5.1, 24K K 1.5k, TEBHT,
AR104%,84%, 630 K418 -
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....... - p(5'3) Tp [S] fet2
p(5.3) Tp {s] fet1

N & 0 @

16
12 a S—
. . "
4
0 T T T f
12:00 18:00 00:00 © 06:00 12:00 18:00
01/01 01/02
1890
[ 4-1-3 % (5,3) EEBH(T,) REERe G & 8 1L i A
- p(5.3) HMO [m] fet2
10- p(5,3) HMO [m] fet1
0 / T T T —==
12:00 18:00 00:00 06:00 12:00 18:00
01/01 01/02 .
1890

B 4-1-4 &5 (5,3) 3B (Hmo) BERE R & B L i R
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4-2 mERBRBEEHE 8 -MIKE 21 NSW

MIKE 21 NSWXEEARENIEHEZRRET KERRFESHS, NSWik
M2 RERRIELE(RN) 15 - Bt - B - BERER FERXELERSE,
WUARHAFEEABTEMRENCERETAERSECERER S - BERBER
ERERENEEEEIFEME, K H 7] # B i 5 & /7 (radiation stress) - {HERER,
TREFRZERN  REKREEEXELER AHTHESRAREBYEEERCARE
HEREEZERTE - NSWEHEOSWEHERMITEER AR ZETHE - NSW
BEXEALAFEXEFES®E Eﬁ‘u%? {8 5 2 = (the conservation equation for the spectral

wave action den51ty)

0(Cozmo) . OCoymo)  A(Como)
Oz Oy - 08

=T, (4.2.1a)

8(Cyzrma) 3(ngm1) 4 9(Coma)

R mo(z,y,0) Emi(z,y,0) 2 BIRE OREE %&%1 BERERE, Co: K Cyy T RIREERE
EC,ExRyFRAZAE, GRIBERCEIFACLE, HFRIBERIEZFaA, T,
& Ty B ¥EIE (Source term) o %n&%’ﬁ‘ﬁi—gmn(z,yﬁ) EBE

ma(z,y,6) = /00 frA(z,y, f,0)df, n=0,1,2 (4.2.2)

= i {55 @ 845 38 (the absolute frequency), A & E 8% FREEE (the spectral wave

action density) o

FREAU2)EREBERRITHEBEE, TR kT IBERT - BERE
REBRZBERARRIFBEFHIE -

NSW g4l 7 BU{E & FE 5| A Eulerian § [RE 4> ¥ 75 (finite difference technique)
o LT A linear upwinded differencing, central differencing &% quadratic upwinded
differencingZE 7 —E H ¥ -

ZR—&K 2000 (FFdbm ) RE 400K (RER ) ZEHHE , BEARBER RE
REBKER20K, SERTTER RERNZHEHER 1/20, 58 FRBRF R RENE
EANIOEERC TN RBLLER  ABATERBEGR His = 1K, TL,=558,BEAR
240°N( % ), St B AN D, =4%, D,=2002% - B4-2-1 B EESME, B4-2-28
BE(0,5) EBE(99,5) TE 2 A AR LE, H4-2-3AIRE (0,5) BB (95 EZATHE
mBML, B4 24ARRERNEN S.. 2 ESHME -
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4- 3 R B BRBEEBHK A -MIKE2] PMS

MIKE 21 PMSEX FEX R MW T~ 8% 5B =, (parabolic approximation to
the mild slope equation) « @ FERNEL FTAITH RBE S FE, B PMS 48
ERARRNESENRREERSFERYC TR E KE®(L -

PMSEUE C ShRERIERRS - T8 - B - Bl - ERBESRE T TERAHER
FHRAUY - EREFTEAREYBRIBALTOEERRN, MARFEEFREEL
EfER EREXREFRRANIEREE -

R4 7572 3K (the elliptic rild-slope equation) £

V- (CCyV )+ (K*CCy +iwW)é =0 (4.3.1)

Y = (L&, 2), e, ) BEE, Cy(c,y) BB, o(c,y) HER, KBEE, k= 2n/L, L
RER, WRIERREHE, v BAEERw=2r/T, TRAL -

FEHB (z,y) BIHE (2, y,2,t) THIZBREE
hk(z+h) _i,
®(z,y,2,1) = g/wé(z, y)%e"‘“ (4.3.2)
AT eRENINHEE, hEBAKE -
KBz, y,t) BEEE (2, v) B T ZHEF

n(z,y,t) = ¢(z,y)e /2 (4.3.3)

PMS &4 & 8 {8 5 % F B 5| F the Grank-Nicholson {8 75 &k DA SK 2 it ¥ Y REAS 37 5
EX . HRAEELR -

DUTRENR200E(FELR), K1AR (KRR ), Y FERFZENREEAME &
RABERFEATIHESGEY - tPROREEMFE43-1, FE2RREBER, Eil
FRBEBUKIR (KRR 20K), SR B ER T, HE RS 1/20, 5 B AN Sm X 5m,
NBAHBEZBRERER Hrm, = 2K, TEBHET, =98, ER50°N(KA) - B43-28
RS, B 4-3-3 IR ERR KA H -
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— B Mike 21 RMEWRENRANTB —
4-4 Bk kAL -MIKE2] EMS

MIKE 21 EMSE & FRER (4.3.1) BfHEEREE T FE A (the elliptic mild slope equa-
tion) FERMEERH FEEX LREZREN - iTH (BL)RE . EERERAEREXT2
REBRHEGER BERH  TMARRRE MoK - KRN ZE - Bt
EMSEHTEEAREN ERYEHEREN RERNKTHSBEBE CEE - EMSEH
ZIEERIERE T - B - K - BHRE - B0EN - B - BEREZEEEE -
FEAERESHEEGWHRERS - EAEEEEZRANBCHE , FREFRAEH#
B MEREREER HERRXEFRAEBANERAERBHEMAEZR -

SIAXRYSREAEP RQT  MIRETERATUEERSEFEIRAPARR

oP* 877

5 TCCig, = (4.4.1a)
oQ* .

-+ CC a (4.4.1b)

GeOn OFTOT (4.4.1¢)

Ccot ' ot oy

BB E R (Harmonic) REME » Aln » PPRQ*TFBIUTART ¢

n=5(z,y,t)e™" (4.4.20)
P* = P(z,y,t)e™"* (4.4.20)
@ =Q(z,y, 1) (4.4.2¢)
RFS P QuRHBEERRRERE > EFRAHE - KSR E - 8K
~IREBGER - BREEEEENE  REHAEXTLER
as oP 0 _
M 28+ o+ 53 (4.4.30)
A1%£ + X3P +C? gs 0 (4.4.319)
0 35
M —5? +XQ+C 5~ ey (4.4.3¢)
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Summary

In this report a brief literature review is given first to summarize the back-
ground and research approaches in studying harbor oscillations. Several existing
numerical models for calculating wave oscillations in a harbor are then reviewed.
The need for developing a finite element model for computing harbor oscillations
induced by nonlinear transient waves is firmly established. Vertically integrated
two-dimensional continuity and momentum equations, describing weakly nonlin-
ear and weakly dispersive waves, are the basis of the new numerical model. In
this report attention is focused on one-dimensional problems. Two numerical time-
integration schemes, an explicit Taylor-Galerkin finite element scheme and an im-
plicit (predictor-corrector) Galerkin finite element scheme, are employed. Numerical
instability and accuracy of different algorithms are discussed. For spatial-integration
the weighted residual method is used. Both Galerkin and Petrov-Galerkin meth-
ods, using different combinations of linear and cubic-spline functions as weighting

function and basis function, are tested. Both Dirichlet boundary condition (for

" " incident waves) and Neumann boundary condition (for a reflecting wall) are imple-

mented. Several examples are included in the report to demonstrate the range of

applicability and the accuracy of the model.
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1 Introduction

Harbor resonance is the phenomenon of trapping and amplification of wave energy
inside a semi-enclosed water body, such as a harbor or a bay. If low motions inside
a harbor are forced at one or more of natural frequencies of the harbor, which can be
determined from the harbor configuration, the amplitudes of harbor oscillations will
become rather large. These large amplitude oscillations could create unacceptable
vessel movements and excessive mooring forces leading to the breaking of mooring
lines. In designing a new harbor or modifying an existing harbor, it is essential to
have a good understanding of the natural frequencies of the harbor and the possible
sources of forcing for harbor resonance. Moreover, a model, either numerical or
physical model, should be used to examine the temporal and spatial variations of
wave amplitudes inside the proposed harbor under the design wave conditions.

Typical resonant periods for a reasonable sized harbor or a moored vessel are
of the order of magnitude of several minutes. Therefore, harbor resonance at this
frequency range is not caused directly by wind waves since wind wave periods are
of the order of magnitude of several seconds. Other possible sources of resonance
forcing include tsunamis, atmospheric pressure disturbances, locally generated in-
fragravity waves, and free infragravity waves generated at and radiated from dis-
tant shores. Tsunamis and atmospheric pressure disturbances have been shown
convincingly in previous studies as causes for harbor resonance (e.g., Carrier et al.
1971). However, they alone cannot account for the resonance problems existing
in many harbors around the world. Munk (1949) was the first one who observed
the infragravity waves associated with wind waves. Later, Longuet-Higgins and
Stewart (1962) gave physical and mathematical explanations for the generation of
the free and bound infragravity waves through nonlinearity. Recent field observa-
tions in three small harbors (two in Hawaii and one in California) have shown that
harbor resonance can be forced primarily by the free infragravity waves originated
in the offshore region (Okihiro et al 1993, Okihiro and Guza 1996). However, many
researchers have also shown theoretically and experimentally that the bound infra-

- gravity waves (associated with groups of wind waves impinging at a harbor mouth)
can cause harbor resonance (e.g., Bowers 1977, Mei and Agnon 1989, Wu and Liu
1990). Moreover, free infragravity waves can also be generated locally (inside or
in the vicinity of a harbor) through interactions of bound infragravity waves and
harbor boundaries.

For a simple harbor geometry and depth variations the natural frequencies and
the corresponding free surface oscillations can be predicted analytically. However,
for more complex harbor geometry, for transient excitations, and for cases where
nonlinear effects are important, the harbor response can be determined only from
experiments conducted in a hydraulic model or with a numerical model. Although
the usefulness of conducting a hydraulic model study should never be underes-
timated, there are several limitations. It is costly to construct and modify the



hydraulic model to collect data for a long duration with a fine spatial resolution.
The scaling of the hydraulic model is also a difficult issue when both short waves
and infragravity waves are of interest. Therefore, research efforts focused on the
development of numerical models for calculating the harbor oscillations induced
by nonlinear transient waves are essential.

There are several existing numerical models that could be used to calculate
the harbor oscillations with or without any modification. In this section only the
models which have been designed specifically for studying the harbor oscillation
problems and have been applied to field problems are briefly discussed. This brief
review should also provide justifications for proposing a new numerical model.

1.1 Finite element model based on the mild-slope equation

Using the linear mild-slope equation, several research groups have developed vari-
ous finite element models for harbor resonance (e.g., Chen, 1984, 1986, Tsay and
Liu 1983, Kostense et al. 1986, Xu, et al. 1996). These models calculate linear
monochromatic wave oscillations in harbors of arbitrary configuration and variable
bathymetry. The effects of bottom friction and boundary absorption (reflection)
are usually included. These models use a hybrid element solution method that in-
volves the combination of analytical (in offshore area) and finite element numerical
(near and inside the harbor) solutions to determine the harbor response to a small
amplitude wave with a single wave frequency. These models are the extension of
the original model developed by Chen and Mei (1974), which was based on the
linear shallow water equations. '

Because of their simplicity these models have been used for assessing the design
or modifications of existing harbors (e.g., Lillycrop et. al. 1993). However, the
most serious drawback of the model is the limitation of the linear theory. These
models can not be used to investigate harbor oscillations induced by nonlinear
transient waves.

1.2 Finite element model based on Boussinesqg-type equa-
tions |

Lepelletier (1980) developed a finite element model for solving the weakly nonlinear-
dispersive-dissipative equations of motion for variable depth (also see Lepelletier
and Raichlen 1987). Several dissipative effects such as bottom friction and entrance
losses, were included in the model. A time varying radiation condition at a finite
distance from the harbor entrance is used to simulate the open sea conditions.
Since the Boussinesq approximation was employed in the model, the weakly
nonlinear effects were included. However, the water depth must remain small rel-
ative to the wavelength throughout the entire domain of interest, including the
offshore region. Therefore, this model is not suitable for studying the problems



where the incident waves consist of short wave components. For example, in the
Haw-lien harbor situation, the dominating wave outside of the harbor has a wave-
length such that kh ~ 1 and cannot be considered as a shallow water wave. As
discussed in the previous section, these short wave components are responsible for
generating bound and free infragravity waves near and inside the harbor, which
might be resonated in the harbor.

1.3 Finite differences models based on Boussinesg-type equa-
tions

During the last twenty-five years scientists and engineers at the Danish Hydraulic
Institute (DHI) have developed a series of finite differences models based on either
the nonlinear shallow water equations or Boussinesq-type equations (e.g., Abbott
1979, Abbott, et al. 1978, Madsen, et al. 1991). These harbor models are compo-
nents of a much larger system called MIKE 21 for studying the flow phenomena in
estuaries and coastal waters. The disadvantages of these finite differences models
are primarily due to the inflexibility of finite-difference methods in modeling the
irregular boundaries as well as the complex bathymetry. Furthermore, the MIKE
21 is a commercial package. It is impossible to obtain the source program for any
further investigation and improvement.

From the brief review given above, it is clear that either the linear wave the-
ory (mild-slope equation) or the shallow water depth assumption (Boussinesg-type
equations) restricts the existing numerical models. It is the objective of this re-
search project to develop a finite element model, using the fully nonlinear and
weakly dispersive wave equations, to investigate the nonlinear transient harbor
oscillations.



2 Basic Equations for the Numerical Model

The objective of the research project is to develop a finite element model for com-
puting transient, nonlinear harbor oscillations. The theoretical foundation of the
proposed new model is based on the fully nonlinear and weakly dispersive wave
equations that can be applied in both intermediate and shallow water (e.g., Liu
1994, Wei et al. 1995). A brief review of the historical development of these
governing equations is given as follows.

Boussinesq-type equations provide a means for studying water wave propaga-
tion over a gradual varying bathymetry. The core of the Boussinesqg-type equations
is made of the shallow water equations for linear nondispersive wave propagation.
This basic foundation is expanded by adding terms that represent effects of non-
linearity and frequency dispersion.

Assuming that both the nonlinearity and the frequency dispersion are weak and
are in the same order of magnitude, Peregrine (1967) derived the standard Boussi-
nesq equations for variable depth with the depth-averaged velocity as a dependable
variable. Peregrine’s Boussinesq equations can be recast into similar equations in
terms of either the velocity on the bottom or the velocity on the free surface. While
the dispersion relationship and the wave celerity associated with these equations
differ slightly, the order of magnitude of accuracy of these equations remains the
same. Numerical results based on the standard Boussinesq equations or the equiv-
alent formulations have been shown to give predictions that compared quite well
with field data (Elgar and Guza 1985) and laboratory data (Goring 1978, Liu et
al. 1985).

The applications of the standard Boussinesq equations are limited to the shal-
low water depth because of the assumption of the weak frequency dispersion effects.
The standard Boussinesq equations written in terms of the depth-averaged velocity
break down when the depth is greater than one-fifth of the equivalent deep-water
wavelength. For many engineering applications including storm surge computa-
tions, where the incident wave energy spectrum consists of many frequency com-
ponents, a lesser depth restriction is desirable. Furthermore, when the Boussinesq
equations are solved numerically, high frequency oscillations with wavelengths re-
lated to the grid size could cause instability. To extend the applications to shorter
waves many modified forms of Boussinesg-type equations have been introduced
(e.g. Madsen et al. 1991, Nwogu 1993, Chen and Liu, 1995). Although the
methods of derivation are different, the resulting dispersion relations of the linear
components of these modified Boussinesq equations are similar, and may be viewed
as a slight modification of the (2,2) Pade approximation of the full dispersion re-
lation for linear water wave (Witting 1984). It has been demonstrated that the
modified Boussinesq equations are able to simulate wave propagation from deep
water to shallow water including the wave-current interaction (Chen et al. 1998).

Despite of the success of the modified Boussinesq equations in intermediate and



deep water, these equations are still restricted to weakly nonlinear interactions. As
waves approach shore, wave height increases due to shoaling and wave breaks on
most gentle natural beaches. The wave-height to water depth ratios associated
with this physical process become too high for the Boussinesq approximation. Of
course this restriction can be readily removed by eliminating the weak nonlinearity
assumption (e.g., Wei et al. 1995). Strictly speaking, these fully nonlinear equa-
tions can no longer be called Boussinesg-type equations since the nonlinearity is no
longer in balance with the frequency dispersion, which is the spirit of the original
Boussinesq assumption.

To be able to use the depth-integrated equations to simulate the surf zone
dynamics, energy dissipation due to wave breaking needs to be parameterized. For
the Boussinesq-type equations the simple eddy viscosity model has been used as
the turbulence closure model (Zelt 1991). Madsen et al. (1997) has also employed
the "roller model” with empirical coefficients.

Denoting 7 as the dimensionless free surface displacement and %, as the di-
mensionless horizontal velocity components evaluated at z = z,, the governing
equations in the dimensionless form can be expressed as (Liu 1994; Wei et al.
1995)
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In these non-dimensional equations two parameters have been defined

e= ®)
i = (koho)” ©)

where a is the characteristic scale of wave amplitude, ho the water depth and kg a
reference wave number. The continuity equation (1) and the momentum equations
(2) are obtained by assuming that ¢ = 0(1) and p? << 0(1). Therefore, these
equations are suitable for modeling finite amplitude waves with weakly dispersive
effects. By improving the linear dispersion characteristics of these equations with
an appropriate choice of z, value, these equations can be used in the intermediate
depth (e.g., Nwogu 1993, Chen and Liu 1995). For instance, Chen and Liu (1995)
suggested that the best value for z, should be approximately -0.52 h (See figure 1
for the comparisons). ,

If the assumption that 0(¢) ~ 0(u?) << 1 has been applied in (1) - (7), the
governing equations reduce to the Boussinesq-type equations. We should point out
that by including the higher order frequency dispersive effects and the nonlinear
effects the third order spatial derivatives are introduced in the conservation of mass,
V - M,, and the momentum equation, 5u217;, respectively. Special attention needs
to be focused on the treatment of these third derivative terms in the development
of numerical algorithms.

Once the horizontal velocity vector i, is obtained, the vertical profiles of ve-
locity components can be expressed as

@ =1ty + > {(Vza = 1)V (hila) + (2aV2a — 2a) V * U
+ (2= 2) VIV - (b)) + % (2~ 22) (V- aa)} Loty (10)

w= —p*[V - (hily) + 2V - Ty) + 0(p*) (11)

in which w is the vertical velocity component.

2.1 One-dimensional Governing Equations

In this report, only the one-dimensional problem will be discussed in detail. The

governing equations, (1) - (7), can be simplified for one-dimensional problems as:
on OM
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We reiterate here that in the above equations 0(c) has been treated as an order one
quantity. Note that the third order x-derivative terms appear in both governing
equations. If the assumption of 0(e) ~ 0(u?) << 1 is applied in (12) - (18), the
governing equations are reduced to the modified Boussinesq equations as follows:
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Note that the third order x-derivative terms appear in the continuity equation, but
not in the momentum equations. The conventional Boussinesq equations appear in
several different forms. They can be expressed in terms of the velocity on the free
surface, z, = 0, the velocity along the bottom, z, = —h, or the depth-averaged
velocity, u. Using the following substitutions:

Ug=1u, Ma=0 (25)

Vi=

2 93 2
A2 3®u KO (8u> (26)

6 Btdz? 208z \ Ot
the corresponding continuity equation and momentum equation can be expressed

by (19) and (20) in terms of the depth-averaged velocity. Note that the third order
x-derivative terms disappear in the governing equation.



3 Numerical Schemes

The major effort of the proposed research is to develop an efficient and accurate
finite element model to solve the governing equations (1) and (2) with a variable
depth and an arbitrary harbor configuration. We shall discuss several possible nu-
merical schemes for one-dimensional problems. Appropriate boundary conditions
will be discussed in a later section.

- The proper reasoning for the choice of time integration scheme and spatial
approximation scheme will be investigated carefully and will be the main focus of
attention for the present research.

3.1 Spatial Approximation Schemes

Two spatial discretization methods are examined. Although both methods are
finite element schemes, they use different weighting functions and basis functions.

3.1.1 Bubnov-Galerkin finite element method

We shall present first the Bubnov-Galerkin method, which is commonly referred
to as the Galerkin method (we shall adopt it henceforth). The Galerkin method
uses the same family of functions as the basis functions and the weight functions.
For simplicity, we discuss the method based on the case of constant depth. The
governing equations reduce to (in dimensional form):
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The weak forms of the above equations are

L (32)
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For spatial approximation, the computational domain is subdivided into J el-
ements of length Az; = z; — z;_1, 7 = 1,2,...,J. The unknown quantities are
expressed in terms of the basis functions (¢;(z)) and the corresponding nodal val-

ues ({n};‘, {ua}?) as follows:

: J
n(z,nAt) = E_% ¢i(z){n}7 (34)
(z,nAt) = Zqﬁj () {ua}} | | (35)

Since the Galerkin’s method has the same basis function and weighting function,
the substitutions of (34) and (35) and the weighting functions (¢,;(z), j=0,1,...J)
into the weak formulations, (32) and (33), lead to the following matrix equations:

[Mn]ij {77}? = {fﬂ}? + {qﬂ};} 1= 0> 17 ] J (36)
[Mu]” {’I.La}? = {fu}? + {qu}? 1= Oa 1) tery J (37)
(M7, Z / ¢ ¢J dz (38)

(M¥],; = Z /

¢Z¢J+ﬁh2¢z< ¢)] iz (39)

=%, (?)[w (el + 2 s el e+ 5 (55) 0 a}"}

(40)
=L (2) w3 6oa)] e @
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In the above equations the superscript n represents the time level based on a
specified time increment, i.e., t* = nAt and t"*! = (n 4 1)At. For the interior
elements the boundary terms {¢"}7, {¢“}? are canceled out from the contributions
from two adjacent elements. Only at the boundary points j = 0 and 5 = J nonzero
values exist for these boundary terms. The proper treatment of the boundary
conditions will be discussed in a later section.

In the above matrix equations, the integrands of ( [M “],; and {f"}} ) contain
second-order spatial derivatives. The usual linear or C%type element cannot be
used. The basis functions should be continuous up to the first derivative throughout
the computational domain (i.e., C'-type element). Therefore, we have chosen the
cubic B-splines as basis and weighting functions in this approach.

In our computational domain, 0 = 2 < 7, < zp- < 7y = J , the set of splines
{¢0, #1,...,4;} form the basis functions and the weight functions. As shown in
Figure 2, each cubic B-splines spans four elements; consequently each element
[zj-1,2;] is also covered by segments of four splines {0j—2, ¢j-1, ®j, d;+1} that are
given in terms of a local coordinate system ¢ by

1

$j-2 = gA—x?(ij ~¢)°
1
$i1 = -@:—? {Azf + 3Ax32-(Az,- — &) + 3Az;(Az; — £)? - 3(Az; — 6)3}
é; = sAng {8z} + 380% + 300,67 - 3¢%)
1
¢j+1 = GA:E? {63} (44)

where §; =2 —z;_; and 0 < & < As;.

3.1.2 Petrov-Galerkin finite element method

The Petrov-Galerkin method is another class of approximation methods in which
the set of weighting functions is different from that of basis functions. The advan-
tages of this method are that the computational effort is relatively less and that
the treatment of the boundary conditions is more straightforward. To apply the
Petrov-Galerkin method to the governing equations, we need to modify the weak
forms as presented in (32) and (33). The modified weak forms can be expressed
as:

11
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Noted that in (45) and (46), by trading second spatial derivatives to the weighting
- function, the dependent variables are now required to be differentiable only once.
In other words, we can now choose the basis function for the dependent variable as
piecewise linear with C° continuity and the weighting function as piecewise cubic
with C! continuity.

Now the dependent variables are approximated in the form of a linear combi-
nation of the basis functions (1;(z)), which is now different from the weighting

functions (¢;(z)) and the corresponding nodal values ({n};‘, {ua}?) as follows:

1
Mk.

LXIOESNACIO: (47)
ol n) & 32 y(a) (v} (49)

By substituting these approximations and the weighting functions, (44), into
the modified weak form, (45) and (46), we obtain the following matrix equations:

(MM {n}; = {7 +{d"}7 i=0,1,...,J (49)
M9, {6} = (P4 +{a"}  i=0,1,.,7 (50)
where
J
m.. = i ¥ dx 51
Mungyw (51)

(M), Z / [qbzwj <d¢>z<%>,} dz (52)
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Once again, we reiterate that the second derivatives are only required for the
- weighting functions. In the following discussions, we have chosen the typical linear
C°-type basis function and the cubic B-spline C'-type weighting functions. There
are two immediate advantages by using this combination of basis and weighting
functions. The first one is that we can reduce the computaional cost since the
bandwidth of [M"] and [M™] is reduced. Although the bandwidth reduction is
rather small for the one-dimensional problem (from 7, in the case of Galerkin
method to 5), the similar reduction in bandwidth for two-dimensional problems
will be significant. The second advantage for using the Petrov-Galerkin method
is the ease in implementing the boundary conditions, since the nodal values are
calculated directly.

3.2 Time Integration Scheme
3.2.1 An explicit Taylor-Galerkin finite element scheme

Katopodes and Wu (1987) developed an explicit scheme for solving conventional
Boussinesg-type equations. The concept behind their scheme is to update the
free surface displacement, 7, and the velocity vector, u,, by applying the Taylor’s
expansion over a small time step, At. Thus, in our previous one-dimensional case,

1+ = ()] + ()] + 2 (A92 (i) +0(80)° (57)
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{ua}?™ = {ua}? + At{u}7 + (At)z{ua}?+0(At)3 (58)

The first time derivatives, {}} and {tiq}} can be found from (36) and (37). The
second time derivatives can be obtained by differentiating (27) and (28) with re-
spect to time, i.e.

o*n 0 BB,

2 = 3, [htin + ﬁua + Nug] + K 523 (59)
9?2 \ 6%u 877 o |
2 (o] — [0
(1 + Bk z2> 52 95z 2 ( 51 ) (60)

After applying the same Galerkin finite element formulation to this system of
equations, we obtain

N G = L+ Y, =01, (61)

MY G = (] + {8 =017 (62)

where
=2/, (%) (ol + 3 esontitp
2 il (53) 0] } s (63

iy = gl L. (%) o503 + 5 (est0ay)”] e (64

Therefore we have four matrix equations (36), (37), (61), and (62) for four
unknown vectors {0}%,{#}}, {ta}}, and {u,}}. Notice that mass matrices for
equation (36) and (37) are the same as those of (61) and (62), respectively. Af-
ter solving (36) and (37) for {n}? and {ua}}, we can calculate {7j}7, {tio}} from
equations (61) and (62) since the right hand side vectors are functions of known
quantities {n}} and {u,}}. From equation (57) and (58), solutions are marched to
the next time level.

For the Boussinesg-type equations, 0(¢) = 0(u?) << 1, Katopodes and Wu
(1987) have shown that the explicit scheme is conditionally stable, but its stability
region is substantially larger than the typical discretization required for convergent
solutions by most of implicit methods. By calculating two-dimensional solitary
waves in a L-shaped channel with a constant depth, Katopodes and Wu stated that
the explicit scheme is approximately four times faster than the implicit scheme of
similar accuracy and requires only 50% of the real memory allocation.

14



3.2.2 An implicit Galerkin finite element scheme

In this section, we will describe an iterative time integration procedure, which is
similar to the one developed by Lepelleteir (1980) (also, Lepelletier and Raichlen
1987). From equations (36) and (37), we can express the first order time derivative
term by using the forward time difference:

[M*];; {uia}} = [M"]; ( {a}id ’(”A - tea)7 ) = {f*(n",v")}; (65)

where the value in the parenthesis in {ua}”("' )1 indicates that this is the first pre-
dictor value. The notation on the right hand side of the equation has been altered
slightly, i.e., from {f7}? to {f*(n™,u")};. The solution for {ua};‘("l‘)l, can be written
as:

{uaiily = {ua)} + AL MY {£*(7", u™)}; (66)

A weighted solution between {ua}jiy and {ua}} according to the weighting factor
B« can be expressed as:

{uadjlf" = Bu{uadil) + (1 = B {ua}} (67)
If 0.5 is used for B,, it is called the Mid-point rule.
The solution for {7 ;‘('{; can be obtained from equation (36)
Y n {”7 "1+1 - {17}” n n -
(7 () = (07 ( W) < o w69

Noted that {ua}" " has been used in the place of {uq}}.
In the second and subsequent corrector step (k=2,3,.. ) the following procedures
are followed until the error between two successive results reaches a required limit.

(g = BuAn}oes + (@ = B {m}? (69)

s ({““} iy~ (1) ) - (P ()
{ua}jiin = Bulual iy + (1 = B){a}} (71)

e, ( U ) = (PNl (1

for £k = 2,3,4.... If the convergenée requirement is satisfied, the solutions for the
next time step are updated, i.e.,
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{3 = (M
{ua}i™ = {ualfiiy (73)

3.3 Boundary Conditions

Appropriate boundary conditions are needed to obtain proper numerical solutions
for wave propagation in a finite computational domain. Here, we shall discuss two
kinds of boundary conditions, i.e., an incident wave boundary condition and the
" perfect reflection boundary condition. (

3.3.1 Incident wave boundary condition

At the incident wave boundary the time series of  and u are known. Since the
nodal value at the boundary is known, it is regarded as an essential boundary
condition. The following procedure is used to implement the boundary condition
in the Petrov-Galerkin method with the implicit time integration scheme.
Suppose that the nodal values of  and u at node number m are given through-
out the entire time history. As shown in the previous section, equation (65) is
solved for {ua}?al Since {ua}“m"zll) is known, the matrices [M*];, and vector
{f*(n",u™)}; should be modified. Specifically, the m-th row of [M*] are set to
zero, except for the element [M*]  that is set equal to unity. The m-th row of
the vector {f*(n™, u™)};=m is also replaced by the following known information:

P ™) = ({u;}::rl;t— {ua}:fn) (74)

where {u, }%!* is the known value at next time step. The m-th row of the matrix
equation, equation(65), becomes,

00 1---00] ({Ua m(1g; {Ua};) _ ({ua}an*At_ {ua}"m> (75)

in which the ’1’ locates at m-th column. Consequently, the boundary condition for
{uq }m has been applied. The same approach is applied to the equations for n and
the subsequent iterative procedure.

Since the B-cubic spline function is used as weighting function that is dis-
tributed over four elements (5 node) (See figure 2), the j-th node solution depends
on ¢;_p and @;—;. Therefore if the incident wave boundary is located at the left-
hand side of the computational domain (j = 0), nodal values at points j = 0, 1
are both needed.
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3.3.2 Reflective wall boundary

‘The horizontal velocity normal to a vertical, perfect reflecting wall is always zero.
The normal gradient of surface elevations is also zero up to the leading order of the
Boussinesq approximation. These conditions can be implemented by the method
of image.

Suppose that the node at j = J — 2 is the wall boundary. Therefore, the
following is true

{ug}s-2 =0. (76)
{ta}sr = —{ua}s-s (77)
{ta}s = —{ua}s_s (78)
{nts-1={n}s-s (79)

{n}ts = {n}s-« (80)

We can apply the essential boundary condition for {us}_2, and the natural bound-
ary condition for {n};;. To satisfy the natural boundary condition for {n},_s,
we treat two additional nodes j = J — 1, J as essential boundary condition. We
can solve for {n};_,.

The general procedure for dealing with the essential boundary condition is
similar to the incident wave boundary condition discussed in the previous section
except the fact that now the nodal value where the essential boundary is applied is
not known a priori. They should be solved together with the prescribed condition.

If we apply the iterative (implicit) time integration scheme, the boundary con-
ditions indicated above can be dealt with in such a way that (after modifying the
matrix for the corresponding row)

[MU]J_Q ; ({ua}.]—z(/c+1) - {an—z) = {f'(", un)}J_2

At
= <_._O - {Zz}7-2) (81)

= {fu(nn’ un)}-]—l

—{wa}i i = {#a}3-
( J (A’t J ) (82)

u {ua}’}ﬂ(kﬂ) ~{ua}j,
[M ]J—l 7 ( At
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[M¥]; ; <{u°‘ k1) ~ {u“}7}> = {f*(n"u")},s

At
"{ua}?ti(k) — {ual7
At

(83)

= {/"" v}

{n}7 5w — {1}
= ( = ) (84)

M), ({U}J—l(k+2t_ {"7}7}-1>

n+1 _ n
[M.,]]J ; <{n}.f(k+i)t {n}J> — {fn(nnaun-)}-f-
<{77 T}t}i(g)t— {T)}T}) (85)

where equations from (81) to (85) represent the conditions described in equations
from (76) to (80), respectively.
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4 Numerical Results

4.1 Solitary wave propagation over constant depth

The solitary wave propagation in a constant depth over a long distance was tested
to examine the stability and conservative property of the numerical schemes. To fo-
cus on the stability characteristics of different time integration scheme, the Galerkin
method with linear elements for the conventional Boussinesq equations was used
for this portion of the investigation. Furthermore, to avoid the potential complica-
tion caused by the boundary conditions, the surface profile and the velocity field
for solitary wave are used as the initial conditions. The computational domain is
large enough so that both the free surface profile and the velocity vanish at the
boundary vanish. Figure 3 shows the snap shots of a solitary wave with amplitude
0.1 m over constant depth of 1 m. The wavelength ()) is estimated as 13.5 m
and the corresponding wave period (T) is 4.3 sec. Az = 0.15 m, At = 0.02 sec
are used so that A\/Az = 90 and T/At = 215. Because Az and At are small, the
numerical results from different time integration scheme are almost identical to the
exact solution, which is also plotted in figure 3. By changing the number of grids
per wavelength and the number of time steps per wave period, the stability and
accuracy of different time integration scheme is also investigated The numerical
stability area in which the convergent solution can be obtained is shown in figure
4. The stability area of the explicit time integration scheme is smaller than that of
the iterative time integration scheme, indicating that the explicit scheme is more
sensitive than implicit (iterative scheme) especially when the T'/dt is less than 50.
During the soliton fission process in which the original soliton is split into sev-
eral smaller solitons (we will discuss in section 4.3 in more detail), the calculated
maximum wave height from the explicit time integration scheme shows continu-
ous growth as shown in figure 5. Therefore, the iterative implicit time integration
scheme is employed for the rest of the study.

If the initial wave amplitude of the solitary wave is increased to 0.7 m (e = 0.7),
a small oscillatory tail develops behind the main wave and the wave height decreases
by 10 % at the beginning of the computation (figure 6). The numerical results
were obtained by using the extended Boussinesq equation model with 7'/dt = 50
and A\/Az = 40. The oscillatory tails appears because the analytical solution for
solitary wave is no longer valid for such a large wave. The numerical model adjusts
the mismatch between the initial conditions and the model and finally produces a
numerical permanent-form solitary wave solution after propagating a long distance.
This numerical solitary wave solution is compared with that of different numerical
models with different governing equations (Figure 7). These models include the
boundary element method (BEM) of fully nonlinear potential flow by Grilli et
al. (1994), the finite difference method (FDM) of extended Boussinesq equations
by Nwogu (1993), and the finite difference method of fully nonlinear Boussinesq
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equations by Wei et al. (1995). The numerical results of the Galerkin finite element
model (FEM) and Petrov-Galerkin FEM are also plotted. The calculated results
from other numerical models are obtained by digitizing the plots presented in Wei’s
et al. paper. The results shows current finite element solutions are very close to
those of other numerical models.

4.2 Solitary wave shoaling on slopes

Numerical results for the shoaling of a non-breaking solitary wave are also obtained
using both Galerkin and Petrov-Galerkin methods. The wave height, ¢, of the
initial solitary wave is 0.2 and the beach slope is 1:35 (water depth at z/ho = 10
is 0.71 m and at z/ho = 28 is 0.2 m). In numerical computations, T'/dt = 100 and
AJAz = 80 are used. As shown in Figure 8, the present numerical solutions agree
well with those of other models in terms of wave asymmetry and the shoaling factor.
The snapshots of wave profiles at different time are plotted in Figure 9, 10 and 11,
respectively. The dimensionless time has been scaled by (gh,)'/?. The numerical
results of Galkerin and Petrov-Galerkin method are almost the same, even when
the wave is near the theoretical breaking point (Figure 11). The Galerkin and
Petrov-Galerkin results are lower than those of Nwogu’s FDM, but higher than
those predicted by the fully nonlinear models (Griili et al.’s BEM, Wei, et al.’s
FDM)

4.3 Fission of solitary wave

It has been found theoretically and experimentally that a solitary wave traveling
from one constant depth to another smaller constant depth disintegrates into sev-
eral solitary waves of varying sizes, which is called fission. Figure 12 shows the
evolution of a solitary wave propagating over a slope onto a smaller depth. The
numerical results are calculated from the extended Boussinesq equations model
using T'/dt = 50 and A\/Az = 50. The € of the incoming wave at z/h = 0 is 0.12
and the varying depth exists from z/h = 10 to z/h = 15 with the slope of 1 : 20.
The fission process is well demonstrated. In Figure 13, the numerical results of the
current models (Galerkin and Petrov-Galerkin) are compared to those of Navier-
stokes equations model (Lin and Liu 1998). The agreement among the numerical
results is excellent. The numerical solutions of the Galerkin and Petrov-Galerkin
method are almost identical, indicating that the accuracy of the Petrov-Galerkin
method is similar to that of the Galerkin method.

4.4 Propagation of deep water wave

A numerical experiment is performed to evaluate the ability of the current model
to simulate the propagation of regular waves in deep water. The wavelength of 3 m
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and the constant water depth of 1 m are used in the experiment so that u? = 4.3.
For this simulation, T'/dt = 80.and A\/Az = 50 are chosen. First, the conventional
Boussinesq equation model is tested (Figure 14). The vertical dotted line indicates
the location of a wave crest at different time according to the exact phase speed
calculated from the linear dispersion relationship. The numerically generated wave
propagates slower than the theoretical one. On the other hand, the phase speed
of extended Boussinesq equation model agrees very well the exact phase speed as
shown in Figure 15.

4.5 Wave-wave interaction

By simulating two solitary waves propagating in the opposite directions, the capa-
bility of the numerical model in dealing with nonlinear wave-wave interactions can
be tested. Two identical solitary waves with € = 0.6 are introduced in a constant
water depth (see Figure 16). In the computations, T'/dt = 100 and \/Az = 70
are used. Due to the inadequacy of the analytic solutions to describe the large
solitary wave, small oscillatory tails are generated initially. After these tails are
separated from the numerically generated solitary wave, the process of collision of
two solitary waves is well represented in Figure 16.

The time history of free surface elevation and velocity at the middle of the wave
tank is presented in Figure 17(a) and (b). The maximum elevation over depth at
the center is more than 1.2, which is the linear superposition of two colliding
solitary waves. In Figure 17(c) the total mass, kinetic energy, potential energy
and total energy are shown. All these values are normalized by their own value at
t = 0. When two solitary waves collide together the kinetic energy in the system is
zero, while the potential energy reaches its maximum value (When the maximum
elevation occurs.). The total energy that is the sum of the kinetic and potential
energy should be unchanged. This property and the conservation of mass over the
whole computational time are well presented.

4.6 Applications of the incident wave boundary condition

The incident wave boundary 'is applied to the left-hand side and the perfect re-
flecting wall boundary condition is set to the right-hand side of the computational
domain. First, a solitary wave of amplitude 0.1 m over the constant water depth
of 1 m is generated through the boundary. In the computations T'/dt = 100 and
A/Az = 70 are used (Figure 18). The numerical results show that the incident
wave boundary and reflective wall boundary works well for solitary wave of € = 0.1.
To test the suitability of the incident wave boundary for waves in intermediate wa-
ter depth, the sinusoidal wave of kh = 1.25,ka = 0.01 is generated (Figure 19).
The conventional Boussinesq equation model cannot properly simulate this type
of waves. The modified Boussinesq equation model predicts the general features of
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incident and reflected waves reasonably well. However, small element-size oscilla-
tions are generated near the incident wave boundary. These oscillations persist in
the whole computation period. ,

In Figure 20, with the intermediate water wave of kh = 1.25 a steeper wave
slope than the previous case (ka = 0.1) is used for the incident wave boundary.
The element-size wiggles also appear in this case.

4.7 Simulations of reflective wall boundary

To check further the accuracy of the reflected wall boundary condition, a solitary
wave is set free to propagate between two perfectly reflecting walls. Since the
reflection of solitary wave of € = 0.1 has been shown in Figure 18, the reflection
of a solitary wave of ¢ = 0.6 is shown in this section (Figure 21). The general
characteristics of this large amplitude solitary wave reflected from both ends wall
are calculated reasonably well.

If the numerical algorithm and the reflective wall boundary condition has been
perfect, the wave shape, the mass and total energy should be conserved. To verify
these properties, the time history of the free surface elevation and velocity at the
center of the tank (z = 0), the total mass and the total energy of the computational
domain are plotted in Figure 22. The computations were performed up to 40 wave
periods, during which time the wave has moved forward and backward seven times.
The computational domain is shown in Figure 21 and A\/Az = 70, T'/dt = 100 are
used here. As shown in Figure 22(a) and (b), the maximum amplitude and velocity
at different period remain almost constant over the whole computational period.
Small fluctuations are generated from the initial condition for a large solitary wave.
Figure 22(c) shows the conservation property of mass and energy. Once again all
properties are normalized by their own initial values. The total mass is conserved
over whole period. However the total energy is not conserved perfectly when the
wave hits the wall. One possible contributing factor to the inaccuracy is that the
reflective boundary condition is accurate up to the leading order of Boussinesq
approximation.

Figure 23(a) and (b) shows the results of the case where the initial solitary
wave has a smaller amplitude, ¢ = 0.1. The maximum amplitude and velocity at
different period show no fluctuations. However, similar pattern of the inaccuracy
in the total energy as the wave is reflected from the wall is also shown in Figure .
23(c). : :
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5 Concluding Remarks

In this report we have reviewed the state-of-arts numerical models for calculating
harbor oscillation. It is recommended that in order to investigate the nonlinear,
transient wave motions in a harbor, a new set of governing equations should be
used. These equations can describe wave propagation in both intermediate and
shallow water. The nonlinearity can also be added, if it is necessary. In anticipation
of encountering complex geometry in modeling a realistic harbor, the finite element
approach is suggested.

To investigate various time integration and spatial integration schemes, one-
dimensional problems are examined in this report. Using several well-known phys-
ical examples as benchmark cases, the following conclusions can be made:

1. The implicit iterative scheme should be used since its range of stability is
much larger than that of the explicit scheme. 2. Although the Galerkin scheme and
the Petrov-Galerkin scheme give similarly accurate solutions, the Petrov-Galerkin
method is recommended for the future development for two-dimensional problem,
since the Petrov-Galerkin scheme is more economical and is also easier to treat
the boundary condition. 3. Only the incident wave boundary condition and the
reflection boundary condition have been implemented at this point. Future study
will extend these conditions to include the dissipative effects.
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Chapter 1

Introduction to Weakly
Nonlinear Ocean Waves

Since G. G. Stokes studied nonlinear water waves over one hundred
years ago, the inclusion of nonlinearity in ocean waves had been
viewed as a minor modification of the linear theory. However, the
study of nonlinear wave theory in the last three decades has demon-
strated that the accumulation of nonlinearity may change wave be-
havior dramatically. For example, the Stokes wave is subject to the
so-called “sideband instability” due to the existence of nonlinearity.
Another phenomenon which does not occur in linear wave theory is
the existence of solitary waves.

To understand the effect of nonlinearity on ocean waves, it is
helpful to begin by using weakly nonlinear theories in which the
wave amplitude is small. Weak nonlinearity can be treated by the
perturbation method, while there is no general method for strong
nonlinearity. Just as the linear theory is the first step to the under-
standing of general wave problems, weakly nonlinear theory is the
first step to the understanding of nonlinear waves.

In this chapter, we will explain some methods which are useful in
the analysis of weakly nonlinear waves. In Chapter Two, the various
forms of weakly nonlinear evolution equations are discussed. From
Chapter Three to Chapter Six, four weakly nonlinear waves in the
ocean are discussed respectively. These four waves are the Stokes
wave in deep water, the edge wave, the equatorial Kelvin wave, and
the coastal Kelvin wave. These four waves can be divided into two
groups. The first two waves are not affected by the rotation of



the earth while for the last two waves are important only when we
consider large scale wave motions. To coastal and ocean engineers,
the Stokes wave is most familiar. In this review report, we try
to relate some features of Stokes wave to edge waves. Similarly,
the coastal Kelvin wave will be compared to the equatorial Kelvin
wave which has been analyzed exhaustively in the dissertation of
Chen. After the discussion in Chapter Seven, the eighth chapter
will introduce some available numerical nonlinear ocean wave models
which can be applied as tools for numerical experiments.

1.1 Analytic Method Applied in Weakly Non-
linear Ocean Waves

As mentioned previously, weakly nonlinear problems can be solved
by the perturbation method, either regular or singular. In the fol-
lowing, a brief introduction to the perturbation method is cited.
More details of perturbation methods and their application can be
found in the dissertation of Chen and its references.

1.1.1 Regular and Singular Perturbation

If the wave amplitude is small that the nonlinear term is small and
can be treated by a perturbation method with respect to a small
perturbation parameter.

The parameter perturbations gives a solution valid for the whole
domain when the perturbation parameter, say €, is small.

Ordering

The mathematical tool used in the perturbation method is asymp-
totic expansion. To understand the asymptotic expansion, some
ordering concept is necessary. Here the conventional order symbols
o and O are used to define the order of magnitude of some quantity
f(€) compared to a gauge function (e).

The small o is defined as

f(e) = o(Q(e)) (1.1)
if

lim o) (1.2)



The large O is applied in

f(e) = 0(Qe)) (1.3)
if there exists a constant k such that
121;)1f(e) <k 11_1}13(2(5) (1.4)

Asymptotic Sequences and Expansions

As gauges for the perturbation, an asymptotic sequence ,(e) sat-
isfies
Qn(€) = o(Qn-1(€)), e — 0. (1.5)

Poincaré power sequence is one of the éimplest asymptotic se-
quences. In it we have

Qn(e)=¢€". (1.6)
An asymptotic expansion of a function f is the expression
F(€) ~ > anfln(e) e—0 (1.7)
n=0
where a,, does not relate to € and can be computed as

_ . fle)

ag = 1'1_1’:% 90(6)1 (18)
_ g (6 = T amfm(e)

an = ll_{% e , n>1. (1.9)

There exists an infinite number of asymptotic sequences. How-
ever, the asymptotic expansion for a given asymptotic sequence
Q.(€) is unique. That is, as an asymptotic expansion, the per-
turbation solution is unique, see Nayfeh [1973], and BenderOrszag
[1978].

Uniformity and Singular Perturbation

Besides uniqueness, we also want to know if the asymptotic expan-
sion obtained by perturbation method is uniformly valid.
Denote the residue for an asymptotic expansion of order (N — 1)

as Ry. That is,
N-1

fle=)> ane®+Ry. (1.10)

n=0



This asymptotic expansion is uniformly valid if
Ry = O(") (1.11)

throughout the whole domain. Otherwise, the expansion is nonuni-
form or singular.

A perturbation series that is uniformly valid is called a regular
perturbation expansion. If nonuniformity occurs, the series is a
singular perturbation expansion.

To obtain a uniformly valid solution, we need to find out the
origin of nonuniformity and fix it. Several sources of nonuniformity
are frequently seen. For example, a small parameter multiplying the
highest derivative produces a boundary layer and the nonuniformity
manifests itself by failing to satisfy all the boundary conditions.

In some cases the physics itself comprises more than one space
scale or time scale. The straightforward perturbation will have secu-
lar terms whose error will grow with time. We can use the method of
multiple scales to include all scales of interest and apply the solvabil-
ity condition to eliminate secular terms. This method is frequently

applied in the study of nonlinear wave packets and the derivation of
NLS.

1.2 Symbolic Calculation Language

Perturbation methods have been developed for decades. However,
they are not easy to apply because the computation for higher-
order perturbation will become progressively more complicated and
hence is difficult to carry out by hand. For example, in the study
of Kelvin wave packets, we have to calculate more than 200 terms
at the sixth-order. Therefore, a'symbolic language like MAPLE or
MATHEMATICA is very helpful to the study of weakly nonlinear
waves.

Another advantage of a symbolic language is its accuracy. It can
avoid most errors because some complicated operations can be done
by just a few lines. The answer obtained can be easily checked, too,
by substituting into the original equation.

In reading a scientific paper, symbolic languages can also be uti-
lized to “repeat” the derivation so that any assumptions which are
implicitly imposed on the solution can be found out.



As an example, the derivation of Stokes wave in Appendix A is
prepared by Maple.

1.3 Numerical Method Applied in Weakly Non-
linear Waves '

The perturbation method gives a solution that is correct to a specific
order of the perturbation parameter. These analytic solutions are
very useful in understanding the property of a solution. However, we
still have to employ numerical computation in this study of weakly
nonlinear waves for the following reasons.

(a) For the perturbation method to be consistent, we have to
make some scale assumptions to make the perturbation pa-
rameter small. Therefore, the analytic solution is restricted
to some parameter range. To find out the applicable pa-
rameter range, we need to compare the analytic solution to
an “exact” solution. The most convenient “exact” solution

+ is from the numerical method.

(b) When we obtain a solution to some physical problem, we
do not know if it is stable. For example, the Stokes wave
1s unstable; but this is not well-known before the classic
experiment of Benjamin and Feir is done. Numerical ex-
periments provide a cheap way to check the stability of the
solution.

(c) Since the numerical model simulates the whole system, all
possible modes will be included. On the other hand, usu-
ally only a few modes are considered in the theoretical
study.

For the above reasons, lots of numerical calculation is conducted
even in the theoretical study of weakly nonlinear waves. These nu-
merical results are used as a check and extension of the theory, not
a substitute to the theoretical calculation.

Some commercial packages are right now available at the IHMT.
These packages have been exhaustively verified and referred. Among
them the Mike21 model developed by the DHI is broadly applied in
engineering problems and the results are widely accepted. There-



fore, 1t is a natural choice to apply the Mike21 model as long as the
problem under research is applicable.

One obvious advantage of these commercial packages is that they
can treat almost every possible bathymetries which have to be con-
sidered case by case in theoretical studies.



Chapter 2

Nonlinear Evolution
Equations

As has been mentioned in the previous chapter, one phenomenon
which does not occur in linear wave theory is the existence of solitary
waves. In this chapter, three nonlinear evolution equations, viz., the
Korteweg-de Vries (KdV) equation, Kadomtsev-Petviashvili (KP)
equation, and the Nonlinear Schrodinger Equation (NLS). All these
three equations allow solitary wave solutions. Besides, they are all
integrable and hence can be solved by the so-called inverse-scattering
method. -

The basic mechanism for solitary wave formation is the bal-
ance between nonlinear steepening and (linear) dispersion. The
Korteweg-de Vries (KdV) equation is the simplest equation which
includes both nonlinearity and dispersion. Therefore, we will discuss
KdV equation first.

Two generalizations of the solitary wave theory are also briefly
discussed. Each of them has a different relationship between dis-
persion and nonlinear steepening. The first generalization is the
envelope solitary wave. It occurs in a wave packet which has a
narrow banded spectrum in the frequency domain and hence mini-
mized dispersion. If the wave is strongly dispersive, the dispersion of
a wave packet can still balance the nonlinear steepening and form a
permanent envelope shape. Its behavior is governed by a nonlinear
Schrédinger Equation (NLS).

The second generalization is the two-dimensional solitary wave
whose evolution is the Kadomtsev-Petviashvili (KP) equation, a



natural two-dimensional extension of the KdV equation. In the
field with depth variations, nonuniform currents, and variable wind,
a two-spatial-dimensional model is more realistic.

2.1 The Generality of the Korteweg-de Vries (KdV)
Equation

The simplest solitary wave model which includes both dispersion and
nonlinear advection is the Korteweg-de Vries (KdV) Equation. By
the inverse scattering method, any disturbance in a system governed
by the KdV equation will evolve into one or more solitary waves and
a dispersing ripple, see Gardner [1967], Boyd [1980].

For systems which (a) are quadratically nonlinear and (b) are
weakly dispersive in the limit of long waves so that the linear dis-
persion relation is approximately '

w=cok+c K+ O(k°), k<O (2.1)

where ¢, is the phase speed, w is the wave frequency, and k is the
wavenumber, the KdV equation is a generic model.
To see this, we can introduce the substitution

w — —10; (2.2)
k — 10, (2.3)

into equation (2.1) and cancel out the ¢y term by introducing a
moving coordinate z — ¢ t, we obtain

Uy + C2 Uggpz = 0 (24)

In this linearized KdV equation, the nonlinear advective term is
neglected; it can be computed separately for a weakly nonlinear
wave. In fluid motion, the advective term u u, is the only nonlinear
term in the momentum equation. Therefore, the resulting evolution
equation will be of KdV type:

Up + p U Up + C Ugggy = 0. (2.5)



2.2 The Generality of the Kadomtsev-Petviashvili
(KP) Equation

Just like the derivation of the KdV equation, the KP equation starts
from the dispersion relation, too.
First, we can rewrite the dispersion relation (2.1) as

W= kP+2c k. (2.6)

As was shown in Grimshaw et al. [1997, p 6], the later expression is
more general and can be applied to a wide variety of waves in the
ocean.

Then, following Infeld and Rowland [1990, p8], we write k2 as
the sum of k2 and k2 and assume that

kz > k. : (2.7)
Consequently, by Taylor’s expansion, we have |
w=co ks +co k3 + %g (2.8)
After introducing the substitution
w— —10; (2.9)
ky — i0, (2.10)
ky — 10, (2.11)

and canceling out the ¢y term by introducing a moving coordinate
T — cp t, we obtain

Ugt + U Ugp Ugz + €2 Uzgzs T vy — 0 (212)

5 U
2.3 The Generality of the NLS

To study envelope solutions, we need to understand the nonlinear
Schrodinger equation (NLS) which governs the evolution of a general
wave packet . For a linear wave packet, the envelope amplitude A
can be expressed as a Fourier integral in the frequency domain and



the steepest descent method can be applied to evaluate the integral.
The result is a linear Schrodinger equation

A, + %w"(k) A =0 - (2.13)

whose dispersive coefficient 1s %w"(k). This computatioﬁ can be

found in solving the so-called Cauchy-Poisson problem, see ,e.g.,
Mei [1984].

For weakly nonlinear problems, the dispersion and nonlinearity
enter the governing equation independently; hence, the dispersion
coefficient is unchanged. After including the neglected weak nonlin-
earity, the governing equation becomes

iA, + %w"(k) Age + V] APA = 0, (2.14)
where the nonlinear coefficient v is the so-called Landau constant.

This nonlinear Schrodinger Equation (NLS) equation describes
the wave behavior best for some amplitude range in which the dis-
persive term (%w”(k) A“) and the nonlinear term (v|A[?A) are of
- the same order of magnitude. Under this magnitude assumption,
the behavior of the wave packet can be analyzed from the solution
of the NLS equation. '

If (w“(k)v) > 0, solitary wave solution is possible. This solitary
wave solution is an envelope solitary wave because the variable A is
the amplitude of the envelope. However, a threshold exists: to form
a solitary wave for NLS, the amplitude must be larger than some
critical value. Some phenomena like the sideband instability and the

Fermi-Pasta-Ulam (FPU) recurrence can occur only for (w"(k)u) >

If (w“(k)z/) < 0, solitary wave is impossible and the wave packet
will disperse.

The generality of the NLS can be further shown by assuming
the following nonlinear dispersion relation for a periodic wave of

amplitude a:
w = Ok, a?). (2.15)

The dependence on a? instead of a emphasizes that the wave velocity
depends on the absolute value of the amplitude. For a sinusoidal
wave train, the wavenumber is very close to some fixed value kg and

10



hence can be expanded as

N 1/3*Q 2 o
o=l + (7)o + 5 () b+ (53
(2.16)
. o0 8%Q o0
_ (9% L2 s otk
b= (ak)05k+2 (aw)o‘% ++(3a2>0 (2.17)
If we apply the correspondence
dw — —107 (2.18)
5k — 10x (2.19)
a — |A4], (2.20)

an NLS can be obtained. This derivation shows an NLS is very
general for the evolution of various wave packets.

11



Chapter 3

The Evolution of Finite
Amplitude Deep Water
Waves (Stokes Waves)

For water waves propagation over an infinite sea, we can assume
potential flow and hence the two-dimensional Laplace equation

2 2

(%3 (z, 2, 1)) + (5223 (z, z,t)) =0 (3.1)

has to be satisfied. Besides, the following exact boundary conditions
are used:

0C(e, )+ (2 8z, 2, 1) + - (2 (o = )" + 1 (5 6z, 7, 1)
- (3.2)
(26 =, )+ 9 (e b, 2 ) + (0w, 2, 1))
b2 (2 bl 2, ) (5, 2, 9)
1.9 9 , ~
—|—§ (&- #(z, z, t)) (b—zu (z, z,t)) =0. (3.3)

The first condition is the dynamic free surface boundary condition
or the Bernoulli equation. The free surface elevation ( can be ob-
tained from this equation once the velocity potential ¢ is solved.
The second condition is the combination of kinematic and dynamic
equations such that ¢ is the only unknown. The detailed derivation
of this condition can be found in Dingermans [1997].

12



The boundary condition at the sea bottom is that ¢ approaches
zero as z approaches —oo. Besides these three conditions, we also
assume the wave is periodic. That is, the lowest order solution is a
linear sinusoidal wave.

3.1 Dispersion Relation

The perturbation method applied in deriving Stokes wave solutions
adopt the wave amplitude as the perturbation parameter. Therefore,
the first step is to expand the boundary conditions with respect to
the mean water level z = 0. After introducing the series

¢ = e Pl(z, z, t)+e ¢2(z, z, t)+e3 ¢3(z, 2, t)+&? $4(z, 2, t) (3.4)
and

( =e(l(x, t) +€2¢2(a, t) + 3 ¢3(z, t) + e* (4(z, 1), (3.5)

we can solve this problem order by order.
After compute the wave to the third order, the dispersion relation
can be obtained as

w=1/g k(1 + %a2k2) (3.6)

The detailed derivation is given in Appendix A.

3.2 Nonlinear Schrédinger Equation (NLS) and
Sideband Instability

After we obtain the nonlinear dispersion relation, the method intro-
duced in section 2.3 can be directly applied to derive the NLS. We
can rewrite the dispersion relation as

w = Q(k,a?), (3.7)
where

Q(k,a?) == wy(1 + %asz) (3.8)

Wy = \/g‘k, (3.9)

13
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Therefore, we have

1 02Q 1 1(4.)0
<%) =v= —%wokz. (3.11)
0

Consequently, after scaling out the Ax term, the NLS governing

a Stokes wave packet in infinitely deep ocean is
iAT — %%’AXX - %wok2|A|2A = 0. (3.12)

As has been mention in section 2.3, if (w"(k)v) > 0, envelope
solitary wave solution is possible. However, a threshold exists: to
form a solitary wave for NLS, the amplitude must be larger than
some critical value. Some phenomena like the sideband instability
and the Fermi-Pasta-Ulam (FPU) recurrence can occur. These phe-
nomena had been studied in a series of papers by Yuen, Lake, and
their colleagues.

The conclusion that Stokes wave can be unstable is the most
striking. This phenomena is first found in the classic experiment of
Benjamin and Feir and hence is called the Benjamin-Feir sideband
instability.

14



Chapter 4

The Evolution of Nonlinear
Edge Waves

The theory of edge wave has a long history since Stokes first derive
a linear edge wave solution in 1846. Accompanying the increase of
our knowledge to it, more application of this special trapped wave
to the coast is discovered. The importance of edge waves in rip
current and coast formulation has long been recognized. From the
theory of Longuet-Higgens and the investigation of Ishii and Abe, it
was shown that tsunamis could be trapped by an island in the form
of edge waves. Besides, edge wave is found in Hwa-Lian, Taiwan,
to play an essential role in long-wave generation which are then
responsible for the harbor resonance.

4.1 Introduction to Edge Wave Theories

For most coastal engineers, edge wave is a brand new concept. The
basic mechanism of the trapping of edge waves, however, is simple.
As was given graphically in the book of LeBlond and Mysak, a wave
reflected by the shore will be refracted toward the shore again be-
cause the wave speed in the shallower region is slower than that in
the region away from the shore. The condition for the existence
of edge waves, therefore, is that the depth near the shore must be
somewhere less than the depth far from the shore. The mathemati-
cal explanation to this condition can be found in Sabatier [1991].
According to the governing equation utilized, the development of
the edge wave theory can be divided into two branches: the shallow

15



water model and the full Laplace equation model. Most papers
devoted to this topic is established on the shallow water equation
model which is much simpler to handle. The first complete linear
edge wave theory of Eckhaus, based on the shallow water equations,
gives the n-th eigenmode of a linear harmonic edge wave as

(=eFVL (2 k y)eiltto=D), (4.1)

Here the coordinate y is perpendicular to the shoreline, z is along
the shoreline, L, is the n-th order Laguerre polynomial, w is the
frequency of the wave, and k is the wavenumber in the z direction.
They are related by the dispersion relation

w2

k_(2n+1)sg' (4.2)
The slope s is assumed to be a constant.

Eckhaus’s solution sheded light on the structure of edge waves.
However, his assumption that the slope is uniform is not appropriate
for the governing shallow water equation. The water depth is no

longer shallow as the distance away from the shore, y, becomes large.

Therefore, another theory which deals with the Laplace equation is
developed by Ursell. The resulting dispersion relation is similar to
that of Eckhaus’s theory except the slope of the beach s = tan(«)
is replace by sin(a). Here « is the angle between the beach and
horizon. That is,

w?=(2n+1) gk sin(a). (4.3)

The comparison of these two theories can be found in Yeh [1987]
and Mok [1995].

However, the full theory is so complicated that it is rarely applied
except for the lowest mode, the so-called Stokes edge wave. This
mode of edge wave on an infinite beach of constant slope can be
represented by an ordinary water wave of infinitely deep water. This
is because a velocity potential

¢~ eThEREY (4.4)
automatically satisfies the Laplace equation

Ad = 0. (4.5)
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The linear edge wave theory is illuminating. However, since the
surface elevation and the velocity amplitude of an edge wave are
maximized at the shore where water depth is minimized, the non-
linear effect should not be neglected. Besides, Whitham [1976] had
proved that first mode edge waves do not radiate and hence do not
decay. This implies, at least for the first mode, the nonlinearity will
accumulate and cannot be ignored.

4.2 Dispersion Relation

The dispersion relation of linear edge wave can be summarized as
wWw=02n+1)gks, (4.6)

where s = sinfa) or tan(a) if the full theory or the shallow water
theory is utilized. : '

Whitham [1976] applied Stokes expansion, or the Poincaré-Lindstedt
technique, to nonlinear Stokes-mode edge waves. That is, the so-
lution is assumed to be periodic and, besides the unknown ¢ and
¢, the wave velocity should also be expanded in terms of the wave
amplitude. For more detail of this method, please refer to Appendix
A

The lowest-order solution is a sinusoidal edge wave of amplitude a
and wavenumber k. The higher-order problems are inhomogeneous
and the wave velocity perturbation is chosen to cancel any forcing
of wavenumber k in the right hand side.

For both the full equation and the shallow water equation model,

the nonlinear dispersion relation for Stokes edge wave is derived by
Whitham as

wWw=gks(l+ %azkz), (4.7)

where s = sin(a) or tan(a) depending on which theory is utilized.

The above dispersion relation includes nonlinearity. However, the
assumption that the beach has a uniform slope seriously restricts
the applicability of the theory. It is desirable to derive a theory
for arbitrary water depth variation. This theory can be established
only on the shallow water equation because the full theory is too
complicated even for the simplest geometry. Since the long edge
waves are of more interest to coastal engineers, adopting the shallow
water assumption is also reasonable.
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Based on a perturbation theory with the alongshore wavenumber
serves as the perturbation parameter, Grimshaw [1974] derived the
dispersion relation of linear edge wave for arbitrary bathymetries as

aﬂ=wgmu—@ﬁ+§m%@  (48)
or
w=ky/g holl = %(AZ + %)kzhg]. (4.9)
Here h is the water depth at infinity and A is defined by
A:i/ﬂ%_mmm. (4.10)
h2 Jo

Note that the integral part is just the area between the sea bottom
and the line z = —h,.

4.3 Kadomtsev-Petviashvili (KP) Equation

Mathew and Akylas [1990] had derived a Kadomtsev-Petviashvili
(KP) equation for a wide channel as

3/, 1 1

Mt +,Z (n)m_ + grla:a:za: + '2_77yy" (4'11)

This KP equation is directly applicable to the study of edge waves.
The linear dispersion relation can be derived by assuming

n = e FAvgilka—ut) (4.12)

where

1 e '
A:%A[M—MMM (4.13)

where hg is the depth at y — co. Substituting into the KP equation
(4.15), we obtain the dispersion relation which is exactly the same
as Grimshaw’s result in nondimensionalized form:
1 1
== (A —) k. 4.14
YT ( T3 (4.14)
In the one-dimensional approximation, the change in the y-direction

can be neglected and the KP equation 4.11 becomes the KdV equa-
tion

3 1
- Tz 4.15
M+ 570 + g7 (4.15)
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The corresponding linear dispersion relation is

1/71
=—-(z) k. 4.16
Y= (3) (4.16)
The difference between equation (4.14) and (4.16) is just —3 (A?) &®
which corresponds to the y-derivative term of the KP equation.
That is, the two-dimensional effect of the edge wave is represented
by the parameter A in the dispersion relation .

4.4 NLS of Edge Waves

Based on the nonlinear dispersion relation derived by Whitham

w=4/g ksin(a)(1 + %az‘kz), (4.17)

the nonlinear Schrédinger Equation (NLS) can be directly derived
by Yeh [1985] via the method of section 3.2. The result is
iAr— 290 4 = Lok?lAPA = 0 (4.18)
T = 3R XX — 7o . .
Note that the nonlinear coefficient is just half of that of the Stokes
wave. This is not surprising because, as has been shown by Yih, the
Stokes mode edge wave and the usual deep-water wave can be related
by a simple coordinate transformation. In the direction perpendic-
ular to the wave direction, a Stokes wave has uniform amplitude
distribution while an edge wave has exponential decay. This im-
plies the nonlinear self-interaction of edge waves is less then that in
the Stokes wave and hence the nonlinear cofficient is smaller. The
existence and sideband instability pf edge wave is the same as the
Stokes waves.
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Chapter 5

The Evolution of Nonlinear
Equatorial Kelvin Waves

5.1 Introduction to Equatoriai Waves

There are four species of equatorial waves: Kelvin waves, Rossby
waves, gravity waves, and mixed Rossby-gravity waves. They are
all trapped near the equator and can be treated as one-dimensional
waves propagating zonally only. These waves have quite different
latitudinal structures and dispersion relations.

When the governing equations of equatorial waves are linearized
about a motionless ocean, the Kelvin wave 1s nondispersive and has
nondimensional speed one toward the east , see Boyd [1980]. The
Rossby wave propagates toward the west and its velocity depends on
the latitudinal mode n as well as the wavenumber k. Gravity waves
can propagate either to the east or to the west. Their velocities also
depend on n and k. The mixed Rossby-gravity wave behaves like a
Rossby wave for a small wavenumber and like a gravity wave for a
large wavenumber. '

These equatorial waves propagate in the equatorial ocean which
is very complicated, and a model is very helpful to understand its
physics. The physical model commonly used to describe the equa-
torial wave is the “one-and-a-half-layer” model on the equatorial
B-plane. After nondimensionalizing, this model is represented by
the following nondimensionalized shallow water equations (see Boyd

[1983] and Moore and Philander [1977]).
Ut + UUgp + VUy — YV + @ =0 (5.1)
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v+ uvg +vvy +yu+ @y, =0 (5.2)
Be + uz + (ud), + vy + (vh)y, =0 (5.3)

where subscripts denote partial derivatives. Unknowns u and v are
the eastward and northward currents. The undisturbed mixed layer
thickness is one while the height field ¢ is its thickness variation.
Positive ¢ corresponds to down-welling internal waves. Note that
the nondimensional Coriolis parameter is just y in the equatorial
B-plane.

The dynamics of the Kelvin wave are unique among equatorially
trapped internal waves because it is nondispersive. This means that
even weak nonlinearity will accumulate and without a spreading
mechanism the wave will inevitably break. However, latitudinally
sheared zonal flow interacts with the wave and makes it dispersive.

Equatorial Kelvin and Rossby waves are frequently observed in
El Nifio and Southern Oscillation (ENSO), which is a global climate
change. In normal years, the trade wind piles up a huge amount of
warm surface water in the west of the Pacific Ocean. In El Nifio
years, the trade wind relaxes; hence, the warm surface water is re-
leased and moves to the east in the form of Kelvin waves.

5.2 Dispersion Relation

The linear dispersion relation of Kelvin wave for arbitrary zonal
mean flow U(y) and its corresponding height field ®(y) is derived in
the dissertation of Chen as

w={1+05+ 08} b+ 6%2, (5.4)

where the perturbation Pa,ra,meter d represents the amplitude of the
flow The constants ;, Q,, and @, all depend on U and ®. The last
term (©302%?) is the only dispersive term. Its coefficient is

== [ e Gem) +U0) - [ Awa (59)

where ) v
fsw)=-2 [ £(0)dj (5.6)

where

pw = [ {o -v@-e@) ey 6
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5.3 Korteweg-de Vries (KdV) Equation
From the dispersion relation, the linear evolution equation is

M = —Colle + 026 azs (5.8)

where 7 is the wave induced zonal velocity at the equator. Dispersion
of the Korteweg-de Vries (KdV) equation is exact up to O(6?). That
is, the Kelvin wave is described by a KdV equation for arbitrary
wavenumber k.

For a weakly nonlinear Kelvin wave, the nonlinear term is com-
puted separately from the nondispersive case by Boyd as \/%_ N Ng.
For a weakly nonlinear wave, the dispersion and nonlinearity appear
independently. Therefore, the governing KdV equation is

3 . L
N + ¢ Nz + \/; NNz — w25277x1:z =0 (45) (59)

Using a new variable A = 2 7, the KdV equation becomes

Ar+co Ag + \/g A Ay — 26%Agyy = 0. (5.10)

5.4 Nonlinear Schrodinger Equation (NLS) and
Envelope Solitons

The Korteweg-de Vries (KdV) equation of the Kelvin wave derived
in the previous section is weakly dispersive, O(8%). It is not re-
stricted to long waves because the dispersion is quadratic:

w= {1+Qla+9252}k+@252k3. (5.11)

Therefore, the “slow” zonal variable does not appear in the equation.

It has been pointed out by R. S. Johnson [1976] that the long
wave limit of NLS theory should be derived from KdV equation.
Johnson also demonstrate that the NLS equation derived from the
KdV is the long wave limit of the general NLS equation.

Because there is no long wave restriction in Kelvin-KdV theory,
at least when the dispersion is small and can be computed by the
perturbation of the flow shear, it follows we can always get the
NLS equation of Kelvin wave from the Kelvin-KdV. The reason is
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the resonance, which implies the lowest-order second harmonic and
long wave are dominated by Kelvin modes. This resonance dras-
tically simplifies the wave envelope problem to just Kelvin-Kelvin
interaction which is the object of Kelvin-KdV theory. Therefore,
Kelvin-KdV and Kelvin-NLS should be closely related to each other.

The method of Johnson, which is explained in more detail by
Boyd [1983], is to apply the method of multiple scales to the KdV
equation instead of the more complicated shallow water equations.
This approach is much simpler than the standard derivation of NLS
because there is just one dimension, the zonal coordinate, to deal
with. The detailed derivation will be given in Appendix B and the
resulting NLS is

1 4

i(A), + 50" (K) (A)ge + VAP A =0, (5.12)
where L g |
vE-—z oy (5.13)
2nd }-w"(k) _ _,8_2 _0.1875 (5.14)
2 . 2v v '

This NLS has exactly the same coefficients as the NLS derived
from the shallow water equations, which takes perturbation to the
seventh order in the dissertation of Chen.

Note that the coefficients (%w"(k)) and v are of different signs.
This means in any case the envelope solitary wave does not exist.
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Chapter 6

The Evolution of Nonlinear
Coastal Kelvin Waves

6.1 Introduction to Coastal Kelvin Waves

A geophysical wave solution which propagate along the coast and
has trivial velocity in the off-shore direction is first derive by Lord
Kelvin. This is how coastal Kelvin wave gets its name. Like the
Kelvin wave at the equator, the wave amplitude is an exponential
function in the offshore direction due to geostrophic balance. This
wave profile cannot exist unless a plane of symmetry exists. For
the equatorial case, the equator as a plane makes the wave profile
smooth ; in the coastal case, the coast plays the role of the symmetric
plaxne.

Most features of the coastal Kelvin wave is similar to the equato-
rial one. One minor difference is that instead of the #-plane approx-
imation adopted in the equatorial wave, the coastal Kelvin wave is
usually analyzed via the f-plane approximation. That is, the Cori-
olis parameter is assume to be a constant, which is correct when the
horizontal scale is not very large.

‘There are two other possible explanations for this difference.
First, the orientation of the coast varies from place to place. It
" is not possible for a general theory to include all possible cases. Sec-
ond, the f-plane approximation cannot be used in the equator If
this approximation is applied, the Kelvin wave cannot exist for the
lack of rotational effect.

Understanding of the coastal Kelvin waves is important to our
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knowledge of the coastal physics. Tidal waves occur as the form
of Kelvin wave because of the energy transfer when an incident
Poincare wave interacts with the coast. This has been verified by
the field data analysis and various mechanisms have been proposed
by Crease, Pinsent, Howe and Mysak, and other authors.

6.2 Dispersion Relation and Nonlinear Evolu-
tion Equations

Just like its equatorial counterpart, a coastal Kelvin wave is nondis-
persive. The paper of Bennett, the first paper which discuss the non-
linearity of coastal Kelvin wave, concluded with a one-dimensional
advection equation with forcing terms. Since the nonlinearity will
accumulate, this equation predicts that a coastal Kelvin wave will
inevitably break. '

However, this is true only when the bathymetry is not consid-
ered. If the wave length is very long, the dispersion relation can be
derived by perturbation method with the wavenumber k serving as
the parameter. This has been performed by R. Smith on 1972 and
the result is quite similar to the paper of Grimshaw [1974] on the
study of edge waves. That is, the dispersion for the wave velocity is
quadratic in k with a parameter similar to A of Grimshaw’s paper.

The fact that the dispersion of both long coastal Kelvin wave and
long edge wave is exactly the same as that of KdV equation is not
surprising. As has been pointed out by R. S. Johnson [1976], the
long wave limit of NLS theory should be derived from KdV equation.
Therefore, the KdV equation is a good model for very long waves.
Since the nonlinear term of the one-dimensional advection equation
is also the same as that of the KdV, we conclude that the long
coastal Kelvin wave is governed by a KdV equation.

However, the envelope evolution equation, possibly an NLS, for a
coastal Kelvin wave or an edge wave, cannot be derived directly from
the KdV because the quadratic dispersion relation is not generally
valid for all wavenumber k, as the case of equatorial wave does. A

more recent study on the topic of nonlinear coastal Kelvin wave can
be found in Fedorov and Melville [1995].
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Chapter 7

Discussion

7.1 Shallow Water Equation and the Korteweg-
de Vries (KdV) Equation -

As has been mentioned above, the long wave limit of various waves
can be represented by the Korteweg-de Vries (KdV) equation. Since
our mathematical model , the shallow water equation , is valid only
when the wave length is much longer than the depth, one may ask
if the KdV (or KP) equation can be directly applied for any wave
on the shallow water equation?

The answer is not. Take equatorial wave as an example. We do
have shown that KdV is a good model for Kelvin waves. However,
other equatorial waves based on the same shallow water equation,
1.e. Rossby waves, gravity waves, and mixed Rossby-gravity waves,
can be represented by the KdV equation only for very long period.
The NLS of their wave packet evolution cannot be derived from their
KdV equation.

7.2 Simplified Method in Determining the Non-
linear Coefficient of the Korteweg-de Vries
(KdV) Equation

The formal method of deriving the nonlinear coefficient in an evo-
lution equation is by perturbation, either the multiple-scale method
or the strained coordinates method. However, a simplified method
of determining the nonlinear coefficient for Kelvin-KdV has been
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proposed by Ripa [1982]:

The increase of celerity due to a finite amplitude wave is 7/2
which is just U/2 for Kelvin waves where the surface elevation n
equals the fluid velocity U. Besides, the Kelvin wave advects itself
and hence the total increase of the celerity is %U . This implies if the
evolution equation (KdV) is obtained from the dispersion relation ,
the nonlinear coefficient will be % However, since the KdV equation
1s one-dimensional while the physics is two-dimensional, we have to
average the variation along the wave front. This averaging gives

the nonlinear coefficient \/g for equatorial Kelvin waves and the

nonlinear coefficient 1 for coastal Kelvin waves. This is consistent
with the results of previous chapters.

7.3 Simplifies Method in Deriving the NLS from
the Dispersion Relation

The method discussed in section 3.2 shows how to derive the non-
linear from the dispersion relation in a simple and clear way. In
fact, we can derive the nonlinear dispersion relation for a periodic
wave from this method. For example, the Kelvin-NLS derived in
the thesis of Chen -

. 1 -
1.(A).,- - 160, % |AI2A + 30k (A)(( =0, (71)
implies
o« 1
(W)o Y (7.2)
and L (8%

Consequently, the nonlinear dispersion relation for equatorial Kelvin
can be obtained as

1
=, k® — 2, 7.4
W=k 166)2ka (7.4)

However, this method cannot be applied to all nonlinear wave
problems. The first problem is, the derivation of the nonlinear
dispersion relation usually is as tedious as the derivation of the
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NLS. The second reason is that this method consider only the self-
interaction of the wave mode we discuss. Sometimes the nonlinear
interaction with other modes is comparable with the self-interaction
and hence we have to include all possible modes in the nonlinear
term computation. This does happen in the derivation of the equato-
rial Rossby, Yani, and gravity waves. Therefore, this method should
be used with care.

7.4 Notes on the Nonlinear Coefficients due to
Change of Variables

The dispersive term of the nonlinear evolution equation is obtained
from the linear dispersion relation and can be universally applied.
However, some care has to be taken when we deal with the nonlinear
coeflicient, as has been stated in the previous section.

If fact, in the actual nonlinear coefficient computation, there is
something else to be noted. Since the nonlinear term of the KdV and
KP equations is quadratic and that in the NLS is cubic comparing to
other terms, these coefficient is subject to change when the unknown
variable changes.

For example, in the equatorial Kelvin-KdV equation, the nonlin-
ear coefficient is halved when we change the variable from u to u+¢.
In the NLS of edge waves, the same situation occurs: Akylas, Yeh,
and Sabatier all derived an NLS for the Stokes mode edge waves.
However, they use different variables. Therefore, these three NLS’s
have the same dispersive term, but the nonlinear terms are different.
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Chapter 8

Numerical Experiments

In these four waves discussed above, the Stokes wave had been thor-
oughly investigated and a lot of experiments have been done, say,
by Benjamin and Feir, Yuen and Lake, and others. Therefore, the
verification of the theory seems to be of little problem.

Some edge wave experiments can be found in papers by, say,
Ursell, Guza and his colleagues, and Yeh and his group. But the
experiment on the bathymetric variation is still unavailable. For
equatorial and coastal Kelvin waves, controlled physical experiment
is difficult or even impossible. Therefore, it is desirable to have some
numerical experiments to compare with the theory. In the following,
three models are introduced for the last three waves.

8.1 Mike21 HD Model

The Mike21 is a collective of two-dimensional models developed by
the DHI. Among these the Mike21 HD model and the Mike21 BW
model can deal with nonlinear problems. The Mike21 HD model
is a two-dimensional hydrodynamic model based on the primary
governing equations. This model also includes Coriolis force and
hence are perfect to simulate the coastal Kelvin wave.

8.2 Mike21 BW. Model

The BW model is an extention to the conventional Boussinesq equa-
tion. Therefore, it can be applied not only in the shallow water, but
also in the deeper water. For waves in deeper water, a deep water
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term (DWT) has to be included. The detail of the theory can be
found in a series of papers by Madsen and his colleagues.

The feature of an edge wave is that its amplitude is not uniform
along the wave front. Therefore, some skills have to be applied to
provide appropriate boundary conditions that the desired edge wave

can be generated. In the following, we will discuss how to generate
edge waves in the Mike21 BW model.

Generating Edge Waves through the Internal Generation
Lines

The internal generation line provided by the BW model does allow
the wave amplitude to be nonuniform along the line. However, this
function has to be applied only with some specific wave spectrum,
like Pierson-Moskowitz or Jonswap spectra. Therefore, we cannot
arbitrarily change the amplitude of wave.

However, since this model allows at most eight generation lines,
we can make a wave that has different amplitude for the eight sectlon
of the wave front and hence looks like an edge wave.

Generating Edge Waves through the Flux Boundary Con-
dition

This approach is possible only when the deep water term (DWT) is
not included. The DWT has a higher spatial derivative and hence
need more boundary conditions.

Note that the BW model is intended to be applied not only in
the shallow water, but also in the deeper water. When

Dmin
0.22 < < 0.5,

the deep-water term (DWT) has to be added to the model. When
Dmi'n

min

< 0.22,

this term is not necessary. Therefore, the minimum depth Dy, in
our numerical experiment should be as small as possible.

Since BW is a two-dimensional model, the flux boundary condi-
tion instead of the Neuman boundary condition (normal derivative
of the surface elevation) has to be given. That is, for the incident
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wave, we have to multiply the velocity of Eckhaus’s theory by the
local water depth to obtain the desired flux. For other open bound-
aries, the sponge layer is applied which is a convenient substitute
for the radiation boundary condition.

8.3 Spectral Method Model to Simulate Equa-
torial Kelvin Waves

Commercial packages utilize either the finite element or the finite
difference method that they can easily deal with irregular geome-
tries. For equatorial waves, however, we do not have to worry about
depth variation if the “one-and-a-half” model is adopted. Besides,
except at both ends of the ocean which is far from the place of in-
terest, the wave is not affected by the boundary. Therefore, the
boundary treatment is quite easy. _'

There.do exist some islands near the equator. But their sizes are
very small compared with the typical wave length and hence their
existence can be neglected.

The spectral method is appropriate to the study of wave prop-
erties when complicated computational space geometry is not re-
quired. Some benefits of the spectral method are that it is:

1. more accurate and efficient,
2. easy to treat higher-order derivatives,
3. easy for physical interpretation, and

4. easy to handle periodic boundary conditions, or any boundary
condition that is satisfied by the basis functions.

If face, for the problem of wave evolution at an infinitely wide ocean,
it is a good policy to replace the infinite boundary by the periodic
boundary condition. Therefore, the spectral method is a reasonable
choice to simulate equatorial Kelvin waves.

8.3.1 Model Set-up

Based on the equatorial shallow water equations with the S-plane
approximation, a spectral model can be set up. There are two as-
sumptions:
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1. The model is symmetric with respect to equator for zonal ve-
locity. Therefore, the computational domain can be halved.

2. The model is periodic in the zonal direction; thus, the boundary
condition is automatically satisfied by the basis functions.

Besides, hyperviscosity is applied every five hundred timesteps to
stabilize the model.

8.3.2 Numerical Experiments

The first numerical experiment performed is a Kelvin wave propa-
gating without shear background flow. The wave will break in 40
days even when the wave amplitude is just one-tenth of the thermo-
cline depth.

Then we add shear background flow to the same problem. The
wave will not break. Instead, two solitary waves are generated.
These two solitons may collide without changing forms.

The third experiment is to give a Kelvin wave packet as the initial
condition. After some initial adjustment, this wave packet propa-
gates steadily with its amplitude decays slowly. These experiments
show that our theory gives a good description to the equatorial
Kelvin waves. ‘
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Appendix A

Detailed Derivation of
Stokes Waves

- For water waves propagation over an infinite sea, the two-dimensional
Laplace equation

2 2

(3 8@ 2 ) + (a5 8z, 5, ) =0 (A1)

and both the dynamic and the combined free surface boundary con-
ditions:

900z, 1)+ (5 802, 2 ) + 1 (o dla, 2, O + 5 (o bla 2, 1))

z

] (A.2)
(55 (2, % ) + 9 (- d(z, 2, 1) + (222, 7, )
1.0 0 ,
+§ (% qS(a:, z, t)) (a_zu (23, Z, t))
1,0 0 4 —
+§ (b—z #(z, 2, t)) ('a_;u (z,2,1))=0 (A.3)

has to be satisfied.

The boundary condition at the sea bottom is that ¢ approaches
zero as z approaches —oo. Besides these three condition, we also
assume the wave is periodic. That is, the lowest order solution is a
linear sinusoidal wave.

This problem has been exhaustively investigated and the solution
can be found in most textbooks on water waves. However, we decide
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to redo this problem because the procedure can be applied to the
nonlinear edge wave problem. Besides, since this is the simplest
nonlinear wave problem, it is a good exercise and is very helpful for
the understand of nonlinear phenomena.

As the first step, we perturb the solution as

¢ =edl(z, 2, t) + e $2(z, 2, t) + € $3(z, z, t) + &* d4(z, z, t)
| | (A.4)
(=ell(z, t)+e>(2(z, t) +€3(3(z, t) +&* (4(z, t), (A.5)
where € is much smaller than one. Then after perturbing the free

surface boundary conditions, we can solve this problem order by
order.

First Order Solution

The perturbative governing equation and boundary conditions are

(o dle, 2 )+ (D elle, ) =0 (Af)
(g:—z d1(z, z, t)) +g(5£z $l(z, z,t)) =0 (A.7)
gCl(z, t) + (%gﬁl(m, z,t)) =0. (A.8)

The formal procedure for solving this boundary value problem is
to solve the Laplace equation by separation of variables. By assum-
ing a periodic wave form

(1(z,t) =acos(kz —wt) (A.9)

the lowest order velocity potential can be derived via the dynamic
boundary condition as

age*? sin(kz — wt)

¢l(z, z,t) =

The dispersion relation then is obtained via the combined boundary
condition and ‘the result is

w=uwy= \/g—k (A.11)

However, for a nonlinear wave, this solution cannot be extended
to higher orders. It had been observed by G. G. Stokes that the

(A.10)

w
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velocity of a nonlinear wave is a function of the wave amplitude.
Therefore, we have to include this amplitude dependence and as-
sume a dispersion relation as

w=uwp(l+a%e? ), (A.12)

where A is an unknown constant. This is to avoid secularity in
the higher orders. That is, we must choose perturbation of wave
velocity to cancel any forcing of wavenumber & in the right hand
side of higher order equations.

After applying this new w, we have

(1(z, t) = acos(kz —wo (1 +a?e? N)1), (A.13)

age®dsin(kz —w(l +a%e?N)t)

$l(z, 2,8) = oo (LT a2 )

(A.14)

Second Order Solution

The perturbative governing equation and boundary conditions are

(%2—2 $2(z, 2, t)) +((,],3—:2 $2(z, 2, 1)) =0 (A.15)

5 ,
902z, 1)+ (g 42(@, 7 ) + £ (5= 91z, 2, 1)

2 1,0
+(6z6t Pl(z, z, 1)) (1(z, t) + 5 (5, ¢z, 2, $))>=0 (A.16)
0 3 o?
g(gz— ¢2(m7 2, t))"'((m ‘751(‘7'" 2, t))+g(—6? ¢1($’ Z, t))) Cl(:l:, t)
2 g 1 ‘t > 1 t a—zgi>2( t))=10
+ (-5;¢(x,z, ))(%‘E¢(m>za ))+(6t2 T, z, ))_
(A.17)
The solutions can be easily verified as
(2(z, t) = %ka2 cos(2kz — 2wo (1 + a?e? ) 1), (A.18)
#2(z, z,t) = 0. (A.19)
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Third Order Solution

The perturbative governing equation and dynamic boundary condi-
tion are
o? 5?

(@ ¢3(1’) 2, t)) + ('67 ¢3($’ Z, t)) =0 (A‘ZO)

(55 6302, 7 1)) + (5= 10z, 7, ) (= 920, 7, )

0 8- 1
+g, L, 2, 1)) (52 42z, 2, 1)) + 5 (527
62

0z Ot

l(z, z, t)) (1(z, t)°

$1(z, 2 1) €2z, 1)+ (5= 41(2, 2, 1)) (g 61(z, 2, 1)

+ 0z?

2

0z Oz

+52 8102, 2, 0) (5 91, 5, 9)

+(3528t #2(z, z, t)))(l(x, t)>+g(3(3:, t)=0 (A.21)

Obviously, the Laplace equation is satisfied by the solution
$3 = 0. (A.22)

Substituting ¢3 and the lower order solutions into the dynamic
boundary condition, we have

(3= —:—aa k*cos(3kz —3wt) — %a3 k*cos(kz —wt). (A.23)

The combined boundary condition after expanding the free sur-
face with respect to z =0 is |

2

2(5-$1(z, 2, 1)) (o B1(z, 2, 1) (505= 8Lz, 2, 1)

0z 0z
) ) o
+9(5; ¢3("E7 2, t)) -+ (-8_1' (]51(.’13, 2, t))z (ﬁ ¢1($, 5 t))

3

(55 em

2

$1(z, 2, 1)) + 9 (55 91z, 2 )2z, ©)

83 2 2

bl 0
+((W (]52(.’13, 2, t)) + 2(62 833 ¢1($7 Z, t)) (ax 6t ¢1($’ Z, t))

H? 0 5°
+g (“6“;2‘ $2(z, z, t)) + 2(-3—2 ¢1(z, 2, 1)) (—32:2_(915 ¢i(z, z, t))
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2( 2 91z, 7 1)) (5 (e, 2, )
$2(2 (e, 2, 1)) (s 81, 2, D)KL, 1

2

12(2 41(a, 2, 1)) (05 920z, 2, 1)

2

0 0
+2(5- 923, 2 1)) (5 41z, 2, 1))

s, 8% -
+2(6_.'E ¢1($, Z, t)) (m ¢2(JJ, z, t))

2

22 g2z, 2, 0) (5 ¢1<x, 5 1))

Oz Ot
HZ 830z, 2 1) + (81, 2, D) (g b1, 2, )
ot? Oz .
3 4
59 (g 810z, 2, ) + 5 (e 91, 7 ) (1, 8 = 0

(A.24)
However, since w has been expanded with respect to a, the lowest
order combined boundary condition is satisfied only to the second

order. At the third order, a residue
s g?a®sin(kz —wt)k A

Wwo

(A.25)

will exist. After adding this residue to the third order combined
boundary condition and substituting lower order solutions, we have

_1kg*d®(4sin(kz —wt) A =2k sin(kz — wt))

=0. (A2
5 ” 0. (A.26)
Consequently,
A= %kz (A.27)
and the dispersion relation up to the second order is derived as
w = /g B(1+ %a2k2). (A.28)

Note that the parameter € is no longer needed to order the mag-
nitude and can be taken to be one. The amplitude a are now much
smaller than one for the consistency of this theory.
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Appendix B

Detailled Derivation from
KdV to NLS

The KdV equation can be written in the geﬁeral form as
Ai+BAA +vA,.,=0. (B.1)

In the following, we will try to derive the narrow-banded solution
via the singular perturbation method. The only small parameter is
e which represents the wave amplitude. Therefore, every quantity is
expanded in € and the slow space and time variables are defined as

¢ = e(z — cyt), (B.2)
T = €’t. (B.3)
These assumptions are associated with the following chain rules:
' 0 g , 0
PR 4
5= ot ““ac T o (B-4)
0 0 6}
— = — 4. B.5
0z Oz + 63( (B-5)
We then assume the solution form of A as
©© g+1
A=¢ed> > An((,T)E +cec, (B.6)
q=0 r=0
where .
E(z,1) = e'lkz—wo), (B.7)
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After applying the solution form and chain rules, the KdV equa-
tion (B.1) can be solved. It should be noted that

Aoo = ASO =0

because the leading order is assumed to be narrow-banded.
In the following, we will solve the perturbative equation order by
order.

O(e'EY)
The lowest-order equation is
—iAp (YK +w) =0, (B.8)
hence '
w=—k. (B.9)

This is the dispersion relation which is quadratic for the variation
of wave velocity.

O(€*E?)
The next order equation
—6ivk* A +ifk(An)? =0 (B.10)
has the solution
A = Mﬁkz (Ao1)? (B.11)
which is known as the second harmonic amplitude.
O(E°)
The solution to the O(e3E°) equation
37k (Awo)¢ + B Aot (Agy)¢ + B A (Ao)e =0 (B.12)
is
A = —3—{'6?51401‘43]. (B.13)

This is called the long wave amplitude. The minus sign of (B.12)
indicates the set-down of the mean water level which is due to the
radiation stress.

39



Note that both second harmonic and long wave are proportional
to the quadratic of the lowest-order wave amplitude and inversely
proportional to the group velocity.

O(e*E)
The perturbative equation of O(¢>E") gives the NLS equation
: 16% .
Z(Am).,- - 3’)’ k (AOI)Q( + 'é' —"—)/—Z-{:-AOI (A01>2 = 0. (Bl4)

The dispersion coefficient is just (%w"(k)) because w = —v k3 by
equation (B.9).
Let the nonlinear coefficient be the Landau constant v, i.e.

1 62 .
=—=— B.1
vE—gi (B.15)
then 1 32 0.1875
5w (k) = o= (B.16)

This NLS do not have soliton solutions.
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Appendix C

Why Envelope Solitary
Wave Does not Exist When

1!

(w (k)(v) <0

Solitary wave solutions exist for the NLS equation only when the
product (w”(k))(v) is positive. The reason can be briefly explamed
both physically and mathematically, in the following.

Physical Explanation
In quantum mechanics, the nonlinear Schrodinger equation

. 1 "
i(Ao1)r + v|Ao1|*Aor + 5@ (k) (Aor)ec =0 (C.1)

corresponds to the governing equation of the probability density
function with the potential energy proportional to [sgn(w" (k))v| Ao Iz] .

If (v) (w"(k)) < 0, potential energy < 0 everywhere. There is
at least one bound state in which the system is focusing. However,
if (v) (w"(k)) > 0, potential energy > 0 everywhere. There is
no bound state; hence, the system is defocusing. Therefore, the
existence of envelope solitary Kelvin wave is impossible.

Mathematical Explanation

If the envelope solitary wave exists, the envelope moves steadily
without change of form. That is, the rate of change of the amplitude
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Ao should be independent of the zonal coordinate (, or

52
d¢ ot

A01 = 0 . (CZ)

Differentiating the nonlinear Schrddinger equation (5.12) with
respect to {, we obtain

. l 1"
i(Aor)re + 5w (k) (Aot)eee + v(|Aa|*Aor)¢ = 0. (C.3)
If the envelope solitary wave exists, this'equation is simplified to .
1 .
g (F) (Aoi)ece + V(| Aor[*Aar)¢ = 0 (C.4)

by (C.2). .

In general, the variable Ao is complex. However, to discuss if a
solitary wave solution exists, we can assume Ag; to be real and posi-
tive. This assumption is justified because an envelope solitary wave
can always be represented by a positive amplitude Ag; multiplied by
a sinusoidal function. When this positive amplitude function Ag; is
imposed on the NLS as the initial condition, the envelope solitary
wave can exist if, and only if, the NLS equation can keep Ag; moving
without change of form. ' '

A feature of an envelope solitary wave is that the solution 1s
smooth and localized. This implies (Aop;)¢¢ > 0 near the edge of the
the envelope and (Ag;)¢¢ < 0 near the center of the the envelope.
Therefore, on the positive { side of the envelope, the dispersive term
(Ao1)ece > 0. On the other hand, the amplitude decreases with ¢
on the positive ¢ side of the envelope, hence the nonlinear term
(JAo1|?Ao1)e < 0. To satisfy equation (C.4), (%w”(k)) and v must
be of the same sign. ,

For the Kelvin-NLS equation, the coefficients (%w”(k)) and v are
of different signs. This means in any case equation (C.4) cannot be
satisfied and hence the envelope solitary wave does not exist.
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Figure 1: An equatorial Kelvin wave without shear
breaks at t=40
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