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Chapter 1
Introduction

1.1 Background

The usefulness of a particular data analysis methodology is highly case dependent; there

simply exists neither a full-fledged analyzing function basis nor an all-purpose numerical

scheme for all sorts of signals or applications.

Chronically, from the somewhat traditional and well established spectral perspective

to the more recent wavelet viewpoints, we have: Fourier transform; Short time Fourier

transform or windowed Fourier transform; The Gabor’s analytical signal procedure and

the revelent Hilbert transform; Various time-frequency transforms associated with indi-

vidual distributions, such as Wigner Distribution, Page distribution, Choi-Williams distri-

bution, and etc. [5]; The discrete wavelet transform; and, The continuous wavelet trans-

form or the integral wavelet transform. We note here that, unlike discrete and continuous

Fourier transforms, which are basically identical in both function bases and formulations,

the discrete wavelet transform and continuous wavelet transform are essentially two dif-

ferent categories in that, first, they may use completely different function bases, second,

they involve relatively quite independent formulations.

Applying to a one-dimensional time series signal, the Fourier transform yields an-

other one-dimensional data in frequency domain. The transform correspondence is one

independent variable to another independent one. For short time Fourier transform, it
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yields somewhat localized frequency contents; and, when the capping window is shifted

along the time axis, it provides time-dependent spectral information. Through such a

multiple processing the correspondence is from the time variable to the time and fre-

quency variables. For Gabor’s analytical signal procedure [10], it yields instantaneous

frequency and envelop distribution curves along the time line. Here the frequency and

the envelop cannot be regarded as independent variables. The independent variable in the

two corresponding domains is time. For various time-frequency transforms associated

with individual distributions, they also provide time-varying frequency contents that are

conceptually identical to the short time Fourier transform, except that the involved ana-

lyzing kernels are related to individual distributions rather than the Fourier kernel. For

the discrete wavelet transforms, the one-dimensional time series yields directly another

one-dimensional coefficient series that contains the information that covers both time and

scale (or representative frequency). The correspondence is one independent variable to

two in one process. As to the continuous wavelet transform, the one-dimensional time

series yields a two-dimensional coefficient series that contains the information that is also

varying both in time and in scale (or representative frequency). But here, every time point

has a scale distribution components and every scale may play a role at a specific time.

And the transform is a multi-process numerical scheme similar to the short time Fourier

transform, except the core difference of the capping windows.

1.2 Non-stationary effects

It is well known that Fourier transform is suitable for characterizing stationary signals

and not quite satisfactory for analyzing transient local phenomena. The reasons can be

illustrated by the following properties of the transform.

• Any Function cannot be both time- and band-limited. If a function is limited

(finitely supported) in one domain, then the independent variable of its correspond-

ing function in the other domain stretches the entire real line (R). In real world
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situations, however, signals are almost always limited in time and space; mean-

while, hardware’s capability is generally band-limited. This simply implies that

there is not going to be a function basis that perfectly matches theory to practice. A

slight variation of the Fourier transform is the short time Fourier transform, which

is just the Fourier transform of the windowed signal, i.e., the original signal capped

with or multiplied by a window function. In short time Fourier transform this prop-

erty of mutual exclusivity in time and frequency localizations is indicated by the

Balian-Low theorem, which basically states that if the window functiong(t) of a

Gabor type frame

gm,n(t) = e−2π imtg(t − n), (1.1)

in which m,n ∈ Z, is well localized in time, then the associated Fourier transform

window can not be well localized in frequency. The point here sounds a bit abstract,

but, in reality, this is conceptually equivalent to the following points.

• The Gibbs phenomenon states that, if there is a jump in signal, then the overshoots,

occurring at both sides of the discontinuity when the inverse Fourier transform is

implemented, can never disappear and remain at constant. This amounts to say

that it takes quite many a spectral components to make up a sharp transient feature

and that a local variation affects a broad range of the spectrum just as the Fourier

transform of the delta function (more precisely, delta distribution) covers the whole

frequency axis.

• Fourier basis functions are periodic and extend bi-infinitely; signals thus studied

are better to be periodic and sampled infinitely. The unavoidable side effects for not

fulfilling these requirements are many: frequency leakages, smoothing errors, edge

effects due to data truncations, aliasing due to under-sampling or non-periodicity

(figure1.1is actually a case of under-sampling, where a linear chirp is sampled at a

rate half of the Nyquist frequency), and, uncontrollable spectral variance due to the

finite resolution or histogram processing.
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Overall, the syndromes associated with the above listed items can be referred to the

non-stationary effects.

1.3 Windowed transforms

Both short-time Fourier transform and wavelet transform try to remedy Fourier basis’s

deficiencies in characterizing transient phenomena by analyzing the set of localized sig-

nals. For the short time Fourier transform this can easily be executed by varyingm and

n in equation1.1. For the wavelet transform this can be illustrated through the use of the

Morlet wavelet by varying its translation and dilation variables.

Both transforms yield local spectral information – more precisely, local scale infor-

mation, if the term ”frequency”, “Hz”, or “spectrum” is strictly reserved for sinusoidal

functions. However, due to the Balian-Low theorem mentioned above, the waveform as-

sociated with short time Fourier transform can never be truly local in time since in reality

the frequency domain of discrete Fourier transform is always band-limited by obeying

the Nyquist law. In this regard, wavelets can be of exactly local; at least, they must have

suitable or better decaying property such that they contain no zero-frequency component.

Let us further outline a few specific properties pertaining to individual transform:

• Both short time Fourier transform and wavelet transform are windowed transforms.

In short time Fourier transform there exist two quite distinctive operations. The

first operation is applying a suitable time-window to the signal; the second opera-

tion is performing the Fourier transform for the capped signal. The corresponding

inverse transform (or reconstruction process) of the short time Fourier transform is

naturally associated with a frequency-window and involves two similar distinctive

operations too. However, in wavelet transform these two distinctive steps are not

clearly observable — rather than using the very distinctive “window (either time- or

frequency-window)” and “Fourier basis function (i.e., sine or cosine function)”, the

“window” and the “basis function” are synthesized in an inseparable specific form

4



called “wavelet”. In fact, one can clearly solidify this notion by comparing the Ga-

bor type frame (equation1.1) with the Morlet wavelet when the window function

g(t) of equation1.1 is assumed to be a Gaussian bell. The intention for either the

combined operation or synthesized operation is completely the same: to provide a

mechanism (or kernel) for projecting a signal into modulated or oscillating wave

constituents.

• The time-frequency windows in short time Fourier transform keep rigid for different

scales since the window functiong(t) in Equation1.1 does not depend onm, i.e.,

their widths (usually referring to time) and heights (usually referring to frequency)

do not change for all frequencies. In wavelet transform, the windows are adjusted

to different scales, but the sizes (or areas) of different windows are still fixed, i.e.,

each window’s height and width are inversely proportional and the product remains

constant (either for discrete wavelet transform or continuous wavelet transform).

The concept of fixed size windows is illustrated by the fixed area of the gray blocks

in the phase planes shown in Figures1.1and1.2, where the discrete wavelet packet

transforms are performed for a chirp signal using different bases originating from

the same seeding mother wavelet. In the figures, since the bases are orthonormal, all

time-frequency windows do not overlap. As for the continuous wavelet transform,

various time-frequency windows severely tangle with each others. And we gener-

ally do not show the actual sizes and shapes of various windows — rather, each

window is represented by a point (or a small area depicting the time-frequency res-

olution) having coordinates corresponding to its centroids in the time and frequency

axes.

• The function basis of the short time Fourier transform is the unique orthonormal

Fourier basis comprised of sine and cosine functions; whereas, for wavelet trans-

form, apart from the very loose constrain that the basis function (or the mother

wavelet) satisfies the admissibility condition (for continuous wavelet transform) or

5
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stability condition (for discrete wavelet transform), there is virtually no restriction

on the choice of basis functions. The coefficients of short time Fourier transform,

which represent local Fourier spectral information, still have the exact meaning

of “frequency”. In wavelet transform, wavelet coefficients refer to specific scales

rather than “frequencies”. Here, we generally suffer from their physical inter-

pretability due to the following reasons: (1) No unique basis — the analyzing

function or mother wavelet can be designed in a plenty of ways, and the basis

functions related to the mother wavelet can be either dependent or independent

(orthogonal or non-orthogonal); (2) Scale does not have unit — together with the

first point, it severely hampers out ability to directly perceive the wavelet’s size

and physical shape; and, (3) No fixed algorithm to implement wavelet transform

— many techniques and various adaptations exist, such as, the treatment using

flexible time-frequency windows for continuous wavelet transform (Lee[9]), multi-

voice (Daubechies 1992) or multi-wavelet (Coifman 1992a, b; Wickerhauser 1992)

frames, and discrete wavelet transform using different dilation factors other than

the most often seen value of 2 (Auscher 1992). Generally speaking, these varieties

may not be as disturbing in certain application fields (such as data transmission or

signal decomposition and reconstruction) as they are for our studies focusing on the

water wave physics.

• In general, the dilation lattice is in logarithmic measure for discrete wavelet trans-

form (e.g., thea0
j in the stability condition to be mentioned) and in linear measure

for discrete short time Fourier transform (e.g., thee−i 2πmt in the above mentioned

Gabor type frame). Continuous transforms do not involve lattice. The concept of

lattice is associated with the concept of time-frequency density, which is defined as

the inverse of the product of dilation and translation steps (Daubechies 1992). For

short time Fourier transform frames, due to Shannon sampling theorem, the time-

frequency density must not go beyond the value of generalized Nyquist density,

(2π)−1. For wavelet transform, however, there is no such a clear-cut limit of time-
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frequency density. Moreover, Balian-Low theorem depicts that there is no good

time-frequency localization for a short time Fourier transform frame if constructed

under a strict time-frequency lattice; on the contrary, numerous wavelet bases with

good time-frequency localization have been given (Chui 1992a; Daubechies 1992;

Meyer 1992). These physically imply that wavelet transform may provide better

zoom-in.

• The existence of a lattice structure can be either practical or impractical. For water

waves, if we don’t anticipate any significant gaps in the scale contents, that is to

say, the physical process involves time and spatial scales that are “changing” or

“evolving” in a relatively continuous sense, we generally do not appreciate the use

of frames. Here a continuous transform may provide better chance of success.

• Both continuous and discrete wavelet transforms implement a process of integral

wavelet transform over the real lineR in a continuous sense but they analytically

emphasize the use of different integration symbols:
∑

and
∫

. Digitally sampled

signals are certainly discrete, but this is irrelevant to the methodology of contin-

uous wavelet transform or discrete wavelet transform. The main difference, from

the application point of view, is that there is no practical interest of reconstruction

(or inverse transform) for continuous wavelet transform due to the redundant or

non-orthogonal nature of its wavelet coefficients. Both methods are capable of de-

composing either functions defined over the real line or signals sampled discretely.

In reality, applying continuous wavelet transform to sampled data is implemented

in a discrete manner; vis-à-vis, doing discrete wavelet transform for an unlimited

ladder, such as that of the standard multiresolution analysis of Mallat (1989), can

describe any function in infinite detail, i.e., over the whole real line. The concept of

unlimited ladder of discrete wavelet transform is illustrated by two examples shown

in Figures2.21through2.28where the blow-ups of individual segments of wavelet

curves are shown. The figure also illustrates possible bizarre behaviors of certain
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wavelets and indicates that mother wavelets with short support lengths might not be

of ideal choices. In addition, a few discrete wavelet transform formulas when gen-

eralized in the limit sense are quite helpful in explaining a few continuous wavelet

transform characters.

• We note that the present scope focuses on theL2(R) Banach space, i.e., the Hilbert

space, since some of the statements here may not apply to other function spaces or

classes (Daubechies 1992; Meyer 1992). Nevertheless, most of the intricacies that

differentiate different spaces are only of analytic interest up until now (e.g., on the

existence of multiresolution analysis (MRA), on the regularity and differentiability

of wavelets and its associated scaling functions). From the practical point of view,

it is far enough to restrict to the Hilbert space, i.e., a space of functions with finite

energy contents.

1.4 The objectives

The foothold to use localized transforms in our water wave applications can be stated quite

simply, as well as intuitively — if we perceive our signal as composed of waves which

are limited in both life span and covering distance, i.e., constituent waves are evolving

with time and in space, then it is natural to adopt wavelet as our analyzing function;

furthermore, in addition to this modulation nature, if we also acknowledge that intrinsic

instability due to nonliner effects or boundary conditions is everywhere to be found for

even regular water waves, then it is still quite possible that wavelet decomposition can

provide better descriptions of physics for stationary signals than what can be provided

by Fourier decomposition. Besides, another advantage of using wavelets is the possible

flexibility in adapting their wave forms to our desires; this is related to the modifications

of time-frequency windows for better physical implications.

In this study we mainly focus on discrete wavelet categories. And the covered cat-

egories should be quite comprehensive — in the sense that they have included all the
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extreme analytical properties in wavelet designs. And it is the author’s belief that if you

ever find an individual wavelet you have great chance to assign it into one of these cate-

gories, and if not, you have great reason to say that its properties fall within (or between)

the covered characterizations and thus its possible usefulness (or destiny) trapped accord-

ingly. The revelent characterizations and intrinsic properties for all the categories are

extensively illustrated through the depictions of their mother and farther wavelets, the

translations and dilations of wavelets, the zoom-ins or blowups of any kind of wavelets,

the linear phase filtering features. Physical counterparts of analytical aspects are provided

when possible. Finally the entropy criterion is applied to the whole set of wavelets for

signals obtained from wave-tank experiments. And the optimal wavelet basis is judged to

be the semi-orthogonal dual wavelet.
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Chapter 2
The Wavelet Bases Tested and Their

Characterizations

2.1 Introduction

In almost all modeling experiments various modeling or scaling laws can at best be par-

tially satisfied. The situation is further complicated for multi-scale and multi-dimensional

phenomena. In the introduction chapter we noted the problems of proper scaling for

the transient phenomenon that involves diversified scales. For water wave experiments

it is acknowledgeable that there may be significant distortions concerning the coupling

mechanisms targeted. For example, a limitation in space as well as the lack of scale di-

versification in the tank may hinder the development of certain mechanisms and impose

restrictions upon the evolutions of certain interactions. With these understandings, as

well as the cognizance regarding the inadequacy of the Fourier spectral approach in our

applications as discussed in the first chapter, it is understandable that, if the modeling of

the proposed physics is at all possible, the deployment of an optimized analyzing scheme

using sensitive and appropriate basis functions is desired. Specifically speaking, we shall

select among a broad array of functional bases the most appropriate one for our signals

and describe the proper analyzing method. Akin to the interest of such an attempt, it war-
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rants to give more systematical descriptions of different properties of various categories

of wavelet function bases. Herein we cover a comprehensive set of discrete wavelet cat-

egories that has essentially included all the extreme and opposite analytical properties in

wavelet designs.

2.2 The numerical programming

We develop the wavelet numerical analysis and all the revelent data processing from the

ground up using the Asyst programming language. It is our desire that the program should

provide full coverage of various wavelet bases and it should also capable of exploring any

related characterizations of wavelet revelent functions. Besides, it should be quite flexible

yet user-friendly. And it is our belief that any keyboard input of data or information

should be minimized to none (cut and paste might in rare cases be unwillingly tolerated).

To achieve such goal, several program add-ins and application auxiliaries are integrated;

notably, these include:

• The Postfix language — This enables the generation of high quality Encapsulated

Postscript figures directly form the core programming, and this much improves the

overall code writing efficiency, as well as eliminates the painful task of plotting the

numerous figures during testings. Besides, full annotations of parameters for all the

figures are much possible and thus analyses are confidently error free.

• The on-screen real time display of PCX format figures — The Encapsulated Postscript

figures is mainly for quality printing, but it forms in the background and dose not

display in real time during the running process of the program; therefore, the on-

screen real time display of figures should greatly enhance the debugging efficiency

and make possible the writing of a huge and complex program that is also user-

friendly, easy to maintain, as well as interactive and extremely flexible.

• The data spreadsheet interface — The input or output of data from and to Excel or

13



Lotus-123 compatible worksheet is integrated. In cases that articulate figures are

desired such a function is readily convenient.

• The data interface to Mathematica programming language — This eliminates hu-

man intervention for the transferring of results of Asyst analyses to the post gener-

ation of various two-dimensional phase plane figures.

• The WinEdt macro programming language — The language is specifically used to

develop the shell environment or the development platform for the Asyst program

code writing. With this all the code components are displayed in much a scientif-

ically organized and eye-pleasant way. Missing such an integrated part the editing

and the debugging of the programs must be quite painful and exhausting.

2.3 Wavelet bases tested and the revelent notations

The Riesz wavelet bases tested here can basically be divided into four categories: or-

thonormal (ON), semi-orthogonal (SO), bi-orthogonal (BO), and orthonormal wavelet

packets bases. For the orthonormal category it is divided into several different subgroups:

Daubechies wavelets (both the most and least asymmetric), Coiflets, Meyer wavelet, and

Battle-Lemaríe wavelets.

No detail accounts of these wavelets will be given; only the main criteria and core

features of each categories will be briefed. Let first state the related notations and conven-

tions needed for the context that follows. Let a function or a signal be denoted byf (t);

the two-scale scaling function of a Riesz basis beφ(t); the associate mother wavelet be

ψ(t) and its dyadic wavelets beψ j,k(t) =
√

2 jψ(2 j t − k), where j, k ∈ Z andk stands

for translation andj for dilation. The concept of translations and dilations are illustrated

in Figures2.1through2.6.

The spaceVj (formed byψ j,k, k ∈ Z for a given j ) in the multiresolution ladder are

nested in· · · ⊂ V−1 ⊂ V0 ⊂ V1 · · ·, and the finest and the coarsest scale space, say,
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for a 1024-point signal, areV10 andV0, respectively; the number of filter coefficients or

the number of convolution weights beN if the associated wavelet is finitely supported

(support length equals toN − 1); the dual wavelet and dual scaling function, if exist, be

ψ̃(t) andφ̃(t); the inner product be〈·, ·〉; and the Kronecker delta beδ j,k, j, k ∈ Z, which

is equal to 0 forj 6= k and 1 for j = k.

Up until now, all practical wavelets of discrete transform are associated with the theory

of multiresolution analysis (MRA) (Mallat 1989; Daubechies 1992). For Riesz wavelets

there always exist dual wavelets except for orthonormal wavelets, which are self-dual.

Any discrete wavelet transform involves two convolution operations: one yields detail in-

formation; another yields smooth information (Press et al. 1992). Convolutions can either

be implemented in a direct way in the time domain for compactly supported wavelets or

in an indirect way in the frequency domain. We list the basic properties (restricted to

real-valued wavelets) and give the symbols of representation for various categories and

subgroups as follows.

2.4 Orthonormal wavelets

The orthonormal wavelets covered here include the following categories: Daubechies

most compactly supported wavelets (denoted as ONxxA); Daubechies least asymmet-

ric wavelets (ONxxS); Coiflets (ONxxC); Meyer wavelet (Meyer); Battle and Lemarié

wavelet (B&L). Here in all the subsequent annotationx is an integer related to support

length (physically, the span of mother wavelet curve).

ψ = ψ̃, (2.1)

φ = φ̃, (2.2)

〈ψ j,k, ψ̃l ,m〉 = δ j,l δk,m, (2.3)
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Figure 2.1:The wavelet translation concept within the scale range of level 3.
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Figure 2.2: The wavelet dilation concept from scale level 0 to level 7 for the BO22O wavelet.
Each wavelet curve corresponds to an individual translation location.
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Figure 2.3: The wavelet dilation concept from scale level 0 to level 7 for the BO22D wavelet.
Each wavelet curve corresponds to an individual translation location.
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Figure 2.4: The wavelet dilation concept from scale level 0 to level 7 for the BO31D wavelet.
Each wavelet curve corresponds to an individual translation location.
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Figure 2.5:The wavelet dilation concept from scale level 0 to level 7 for the BO370 wavelet. Each
wavelet curve corresponds to an individual translation location.
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Figure 2.6:The wavelet dilation concept from scale level 0 to level 7 for the ON66A wavelet.
Each wavelet curve corresponds to an individual translation location.
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f (t) =

∑
j,k

〈 f, ψ j,k〉ψ j,k, (2.4)

One MRA ladder (single set of frame bounds),

One filter pair (one smooth and one detail).

2.4.1 Daubechies most compactly supported wavelets (ONxxA)

The wavelets in this group have maximum number of vanishing moments for given com-

patible support width. Or stated otherwise, they are the most compactly supported wavelets

for given compatible number of vanishing moments. The famous most compactly sup-

ported continuous wavelet belongs to this group and has only four filter coefficients.

These wavelets are quite asymmetry (so, the “A” in ONxxA). The mother and farther

wavelets for the group corresponding to the originating points of 12 (boundary point based

on level 2) and 6 (boundary point based on level 3), respectively, for this group are shown

in Figures2.7and2.8. The vanishing moments and the number of filter coefficients are,

respectively, ∫
∞

−∞

t lψ(t)dt = 0, l = 0,1, · · · , x, (2.5)

N = 2x, (2.6)

wherex is the integer number in ONxxA. The minimum number ofx is 2.

2.4.2 Daubechies least asymmetric wavelets (ONxxS)

For a given support width, these wavelets, in contrast to those of the ONxxA subgroup,

are the most symmetric ones (so, the “S” in ONxxS, but still not symmetric). They have

the same representations of vanishing moments and number of filter coefficients as those

of ONxxA. But the known minimum number ofx is 4. The mother and farther wavelets

for this group corresponding to the same originating points as the previous ones are shown

in Figures2.9and2.10.
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2.4.3 Coiflets (ONxxC)

The Coiflets have vanishing moments for bothψ andφ; therefore, from Taylor expansion

point of views (Daubechies 1992), they have high compressibility for fine detail informa-

tion (i.e., a great portion of the fine scale wavelet coefficients are relatively small); and

henceforth, they have simple quadrature rule to calculate the fine smooth information (i.e.,

the calculation of the inner product of a function and the fine-scale scaling functions is

more efficient). Since every discrete wavelet transform involves both smoothing and de-

tailing operations, there may exist some advantages from these two properties for certain

applications such as applications that do not stress lossless of signal contents or perfect

reconstructions (Coifman et al. 1992a; Wickerhauser 1994). Their vanishing moments

and number of filter coefficients are

∫
∞

−∞

t lψ(t)dt = 0, l = 0,1, · · · , x, (2.7)

∫
∞

−∞

φ(t)dt = 1, (2.8)

∫
∞

−∞

t lφ(t)dt = 0, l = 1, · · · , x, (2.9)

N = 6x. (2.10)

For this group the mother and farther wavelets are shown in Figures2.11and2.12.

2.4.4 Meyer wavelet (Meyer)

The Meyer wavelet (denoted as Meyer or ME in figures) is the wavelet with most com-

pact support in frequency domain (here, if without any specific assignment, “finitely sup-

ported” refers to time domain). Therefore, due to contrast properties between the two

Fourier domains, the wavelet is infinitely differentiable in time domain, i.e., has an in-

finite Lipschitz regularityC∞ and does not have exponential decay. And the support

lengthN → ∞. The associated mother and farther wavelets corresponding to the same
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originating points are shown in Figure2.13.

2.4.5 Battle and Lemaríe wavelet (B&L)

The Battle and Lemarié wavelet (denoted as B&L or LE in figures) ofmth order is con-

structed from the orthonormal scaling function derived by applying the standard orthonor-

malization trick to themth order cardinalB-spline Nm (Battle 1992; Chui 1992). For

m = 1, it is exactly the Haar wavelet. The latter is the only finitely supported wavelet

in this group (also the case of BO11O=BO11D to be mentioned below) and is also a

discontinuous wavelet with the most compact support. All other wavelets in this group

are infinitely supported. These wavelets have an exponential decay and possessCm−2

regularity. The mother and farther wavelets for the Battle-Lemarié wavelet are shown in

Figure2.14. Compared to the curves of Meyer wavelet (Figure2.13), they look quite

identical even though their constructions, or derivations, or formula involved (including

Lipschitz regularity and decay property) are completely different.

2.5 Semi-orthogonal wavelets (SOxO and SOxD)

The semi-orthogonal wavelets are inter-scale, but not inner-scale, orthogonal. Their scal-

ing functions are cardinalB-splineNm and have finite two-scale relations. Although there

are two distinctive (independent) filter pairs (one for the decomposition and the other for

the reconstruction), there is only one MRAVj -ladder. It was shown by Chui (1992a, b)

that the cardinalB-spline wavelet of an order higher thanm = 3 is almost a modulated

Gaussian (but a modulated Gaussian is not a wavelet). Therefore only the fourth order

Cubic B-spline wavelet (m = 4) is tested. It has the following characterizations.

ψ 6= ψ̃, (2.11)

φ = φ̃, (2.12)
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〈ψ j,k, ψl ,m〉 = 〈ψ̃ j,k, ψ̃l ,m〉 = δ j,l , (2.13)

f (t) =

∑
j,k

〈 f, ψ j,k〉ψ̃ j,k =

∑
j,k

〈 f, ψ̃ j,k〉ψ j,k, (2.14)

N = 3x − 1 for SOxD, (2.15)

N → ∞ for SOxO. (2.16)

One MRA ladder,

Two filter pairs,

The mother and farther wavelets of the fourth order and the associated dual wavelets

are shown in Figure2.15.

2.6 Bi-orthogonal wavelets (BOxyO and BOxyD)

The wavelets in this category are constructed also by Daubechies, and are sometimes

called non-orthogonal wavelets. As is well known all real-valued orthonormal com-

pactly supported wavelets, except the Haar wavelet, are not symmetrical. However, from

the point of view of reconstructing a signal from its partially truncated wavelet coeffi-

cients, the symmetry is a desired property of the filter when a more natural perception

or smoother variations is important. There is a very practical implication here: if non-

symmetrical function bases are used, then a small change in the wave form causes signif-

icant variations of scale information. In other words, to have minor impacts to the data

analysis, it is desirable to have bases as symmetrical as possible. Moreover, when consid-

ering that random errors, or noise, or uncontrolled factors are present, we should be able

to comprehend the significance of this property. In fact many of the figures given in this

study indicate such a feature. The symmetry can be achieved by sacrificing orthogonality;

if this is the case one has dual pairs for both wavelets and scaling functions. It is obvious

that conditions for semi-orthogonal cases are more general than those of orthogonal ones,
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and the bi-orthogonal cases are even more general. This situation is clearly indicated by

the additional freedom of dual scaling function, as is reflected by the two parametersx

andy in the notations of BOxyO and BOxyD. Nevertheless, the wavelets in this category

involve only one pair of independent filters for both decomposition and reconstruction

even though there involve two different MRA ladders that are associated with their own

individual sets of Riesz bounds. This is quite opposite to the case of semi-orthogonal

wavelets where they involve one MRA ladder but with two filter pairs.

ψ 6= ψ̃, (2.17)

φ 6= φ̃, (2.18)

〈ψ j,k, ψ̃l ,m〉 = 〈φ j,k, φ̃l ,m〉 = δ j,l δk,m, (2.19)

f (t) =

∑
j,k

〈 f, ψ j,k〉ψ̃ j,k =

∑
j,k

〈 f, ψ̃ j,k〉ψ j,k, (2.20)

N = 2y + x − 1 for BOxyO andx odd, (2.21)

N = 2y + x − 2 for BOxyO andx even, (2.22)

N = 2y + x − 1 for BOxyD andy odd, (2.23)

N = 2y + x − 2 for BOxyD andy even. (2.24)

Two MRA ladders,

One filter pair,

The mother and farther wavelets for this group and the associated dual wavelets are

shown in Figures2.16through2.19.
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Figure 2.7:The mother wavelets of the ONxxA group originating from the point location of 12.
Here the boundary point should be based on a level less or equal to 3.
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Figure 2.8:The farther wavelets of the ONxxA group originating from the point location of 6.
Here the boundary point should be based on a level higher or equal to 3.
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Figure 2.9:The mother wavelets of the ONxxS group originating from the point location of 12.
Here the boundary point should be based on a level less or equal to 3.
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Figure 2.10:The farther wavelets of the ONxxS group originating from the point location of 6.
Here the boundary point should be based on a level higher or equal to 3.
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Figure 2.11:The mother wavelets of the ONxxC group originating from the point location of 12.
Here the boundary point should be based on a level less or equal to 3.
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Figure 2.12:The farther wavelets of the ONxxC group originating from the point location of 6.
Here the boundary point should be based on a level higher or equal to 3.
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Figure 2.13:The mother(top) and farther(bottom) wavelets of the Meyer wavelet originat-
ing from the point location of 12 and 6, respectively, for the boundary point based on level 3. This
figure is to be compared to the next one.
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Figure 2.14: The mother(top) and farther(bottom) wavelets of the Battle and Lemarié
wavelet originating from the point location of 12 and 6, respectively, for the boundary point based
on level 3. Comparing the wavelet functions shown here with those shown in last figure (Figure
2.13), we see that two wavelets of similar looks but with quite distinctive constructions and analytic
properties (such as regularity, differentiability, rate of decay, support length, etc.) It therefore gives
rise the concerns that many complicated aspects of discrete Riesz wavelet seem not to reflect their
associations with practical concerns.
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Figure 2.15:The mother(top left) and farther(bottom left) wavelets, as well as their
duals(right) , of Chui’s semi-orthogonal wavelet [3, 4] originating from the point location of
12 and 6, respectively, for the boundary point based on level 3.
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Figure 2.16:The mother wavelets of the BOxxO group originating from the point location of 12.
Here the boundary point should be based on a level less or equal to 3.
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Figure 2.17:The mother wavelets of the BOxxD group originating from the point location of 12.
Here the boundary point should be based on a level less or equal to 3.
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Figure 2.18:The farther wavelets of the BOxxO group originating from the point location of 6.
Here the boundary point should be based on a level higher or equal to 3.
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Figure 2.19:The farther wavelets of the BOxxD group originating from the point location of 6.
Here the boundary point should be based on a level higher or equal to 3.
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2.7 Wavelet packets

The wavelet coefficients derived from an orthonormal wavelet decomposition can be fur-

ther decomposed by using either the set of filter coefficients (called two-scale sequence in

Chui (1992a)) associated with the original wavelet, or different sets of filter coefficients

associated with other orthonormal wavelets. Therefore, basically there can be infinitely

many wavelet packet decompositions. These further decompositions are of a tree-like

refinement process and are called the wavelet packet transform. The wavelet packet coef-

ficients give better frequency resolutions with longer time supports. There are no simple

formulas to describe the tree-like decompositions, but a schematic plot help elucidate the

mechanism shown in Figure2.20. The branch patterns and the number of branches can

be chosen in any way so long as there is no repeat occurrences within any column under

the stretch of the coefficients. That is to say, any column, wide or narrow, must have

one and only one contribution from all levels (rows). Due to the tree-like process the

computational works are dramatically increased.

For this category we have two criteria for selecting our best basis. One is still called

the “best basis”; another “best level basis”. Take for example, for a 1024-point signal, the

finest level occurs atj = log2 1024 = 10 and there are 210 different choices of bases.

And within these 210 choices the one which yields the minimum entropy is called the

“best basis”. And if we enforce the restriction that all wavelet packets be at the same level

j , then we have 10 levels (0 to 9) to choose from; the level that yields minimum entropy is

called best level basis. The indexes of a wavelet packet coefficient, i.e., the subscript and

superscript ofU labeled in the figure determine the time of occurrence of that coefficient

and also indicate the associated support length and frequency resolution, i.e., the shape

and location of the coefficient’s time-frequency window within the phase plane. Concepts

regarding the wavelet packet transform can be seen in Figure1.1. Again we also see the

effects of non-symmetrical filtering. One specific feature is that the areas of all individual

windows are all equal.
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Figure 2.20:Schematic representation of the tree-like structure of the wavelet packet decompo-
sition. S(=V in the text) and D stand for smooth and detail information, respectively. U with
superscript larger than 1 stands for further decomposition of D by wavelet packets. All subscripts
mean scale levels. All superscripts mean relative locations of the frequency bands for compatible
subscripts.
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2.8 Wavelet blowups

Wavelets are fractal in nature, that is to say, no matter how detail we zoom into the wavelet

curve its blowups all show similar characterization, and this is related to the wavelet

differentiability, regularity, support length, and decaying property.

The Asyst program is written to be able to blow any wavelet constructions, such as

mother and father wavelets, wavelet bases and wavelet packet bases at any point on any

level. A few examples are shown in Figures2.21to 2.28.

Her we note that wavelets with fancy analytical properties are often of bizarre wave

forms and not of our choice for studying water wave related physics — either judging

from they entropy values to be given in the next chapter or form their stability conditions.

Moreover, this blowup exercise hints the behaviors of several numerical and theo-

retical aspects of wavelet analysis, such as the edge effects, the possible differences of

function curves due to finite resolution, and the convergent or error propagation property.

Figures2.27and2.28show the blow-ups of bi-orthogonal wavelet BO31O and BO35O,

respectively. Relevant data for BO31O is: Origin of wavelet curve: level 2, position 12

(i.e., elementU12
2 in figure2.20); Blow-up point: 150; data length: 512. Each sub-figure

shows successive blow-up scale of 26. Here the blow-ups diverge rapidly, i.e., the wavelet

fails to identify itself numerically in the refinement cascade. Relevant data for BO35O is:

Origin of wavelet curve: level 2, position 12 (i.e., elementU12
2 in figure2.20); Blow-up

point: 225; data length: 512. Each sub-figure shows successive blow-up scale of 26. Here

the blow-ups converge but go with peculiar inclinations.

Figure2.26also exhibits the grouping tendency of wavelet packets.

2.9 Phase distribution of the waveletm0 function

It is out of the present scope to give a full description of the wavelet related function

m0(ξ) [8] studied here. Suffice it to say that it is comprised of the summation of the

wavelet construction convolution constants (or coefficients corresponding to the support
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Figure 2.21:The blowups of a few wavelets of the BO2xO group. Each successive blowup scale
is 23. The originating point of the wavelet function and the blowup location point are labeled in
individual sub-figure.
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Figure 2.22:The blowups of a few wavelets of the BO3xO group.
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Figure 2.23:The blowups of a few wavelets of the BO2xD group.
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Figure 2.24:The blowups of a few wavelets of the BOxyD group.
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Figure 2.25:The blowups of a few wavelets of the ONxxA and ONxxS groups.
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Figure 2.26:The blowups of a few wavelet packets of the ONxxA and ONxxS groups. Note the
grouping tendency of the wavelet packets.
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Figure 2.27:The blowups of the BO31O wavelet, noting the vast difference in the ordinate. Here
successive blowup scale is 26.
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Figure 2.28:The blowups of the BO35O wavelet, noting the difference of the inclinations of the
zoom-in curves. Here successive blowup scale is 26.
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length of a wavelet) times the complex exponential functions of various scales and that

it is intrinsic to the transcendental formulations of the mother and father wavelets. The

m0(ξ) function is linked to the linear phase filtering effects, which is generally a desirable

property for filtering efficiency.

Figures2.29to 2.36show the phase distributions of all the covered wavelet categories.

A few notable points are given below.

• Wavelets with similar visual appearance may show extremal phase difference, such

as those shown in Figures2.29and2.30.

• In view of the entropy results given in the next chapter, as well as the phase dis-

tributions of all the wavelet considered, we see that linear phase distribution is not

sufficient to guarantee a best performer for the water wave signals – and it seems

that a constant phase is required. The semi-orthogonal wavelet (Figure2.15) is the

one with such a property (Figure2.31).

• Most of the phase distribution curves for the bi-orthogonal wavelets and their duals

are the same not only within their subgroups but also crossing the subgroups. This

proves that lengthening the support length of the wavelet of this category provides

no benefit.

• The lengthening of support length of the orthonormal wavelets may still yield more

irregular phase distribution curves. Again this disproves any possible benefit that

may arise from further expanding the construction of these orthonormal wavelets.

• Judging from the last point, since two extremal categories of orthonormal wavelet

have been covered, we therefore don’t see any possibility that there exists other

orthonormal wavelet that may provide suitable and better characterization for water

wave physics.

51



 .000  200.  400.  600.  800.  1000
xE0

-4.00

-2.00

 .000

 2.00

 4.00

xE0

Point series

Ph
as

e
12/03/02-10:16[(5,1024) <m_0>]

Orthonormal (Meyer) (F)

ME

Figure 2.29:The phase distribution of them0 function of the Meyer wavelet.
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Figure 2.30:The phase distribution of them0 function of the Battle and Lemarié wavelet, noting
the difference from that of Meyer wavelet.
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Figure 2.31:The phase distributions of them0 functions of the semi-orthogonal wavelet and its
dual.
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Figure 2.32:The phase distributions of them0 functions of the wavelets of the most asymmetric
group.
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Figure 2.33:The phase distributions of them0 functions of the wavelets of the least asymmetric
group.
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Figure 2.34:The phase distributions of them0 functions of the coiflets.
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Figure 2.35:The phase distributions of them0 functions of the bi-orthogonal wavelets.
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Figure 2.36:The phase distributions of them0 functions of the bi-orthogonal wavelets.
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Chapter 3
The Entropies and the Best Wavelet Basis

3.1 The wavelet perspective of an optimum basis

Many of the points stated in the previous two chapters hint a core concept of wavelet anal-

ysis: the decaying properties of the basis functions both in time or frequency domains are

at the heart of all sorts of function bases, and different intricate analytical properties of

wavelets are just manifestations to these decaying features. And since two decay proper-

ties that are analytically quite differentiable may only have very minor visual differences

in their wave forms such as those shown in Figures2.13and2.14, in which, the Meyer

and the Battle and Lemarié wavelets, as well as their corresponding scaling functions,

are shown. one generally feels that the bearing of wavelets’ physical implications is not

proportional to their analytic interests.

Nevertheless, we still can benefit from the wavelet approach due to its flexibility in

devising the analyzing wavelets as well as its adaptability in forging the algorithms. But

versatility does not come without the price of ambiguity. For example, the power spectra

of a function are shift-invariant; whereas, wavelet spectra are highly shift-variant (Mallat

and Zhong 1992). Figure3.1 shows such a property and it gives us the idea of how sig-

nificant the phase effects may be. And this property should be regarded as the wavelet

counterpart to that of the ambiguity effect due to the add-up of constituent wave compo-
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nents or shift versus convolution effects of the Fourier analysis. Note that these figures

indicate the possible usefulness associated with the uses of non-orthonormal or redundant

function bases.

In studying the physics of certain phenomena using wavelets one of the most intrigu-

ing questions is how to choose the analyzing wavelet(s). The concern here is quite in

contrast to those studies where they are mainly numerically or analytically oriented. For

example, in coding of images or acoustic signals the goals are straightforward: the maxi-

mum compression with minimum handling and the highest effectiveness with least distor-

tion; under such circumstances mathematical relevance between signal and wavelet can

be materialized much more explicitly than physical pertinence needs to be unfolded for

our applications.

From this point of view, for our interests in characterizing the physics of water-wave

related phenomena, it seems, at first, that the aspiration is not on “efficiency” or “com-

pactness”. However, with the understanding that the compactness of a coding means the

closeness between signal component(s) and analyzing function(s) along with the concep-

tion that wave forms which do not look like our signals (or signal components) are ob-

scured from intuitive perceptions of physics, it is justified to find the wavelets that provide

the most efficient or most economical representations for out signals. And this viewpoint

is related to the concept of entropy — seeming to converge to the same objective for what

are emphasized in different disciplines.

The works in this chapter are mainly numerical experiments on measuring the “dis-

tances” between our signals and various Riesz wavelet bases given in several wavelet

treatises (Chui 1992; Daubechies 1992; Meyer 1992; Press et al. 1992). No attempt to

make new constructions of bases or to extend the existing constructions is made. Nev-

ertheless, we have tried to include various categories of Riesz wavelets. We will come

to realize that there is really no need to extend the existing constructions if the associ-

ated two-scale scaling function or father wavelet is not changed, and that a few sparse

fractal-oriented wavelets (Massopust 1994) are just as impractical as they may be in our
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applications.

The wavelets tested are dyadic wavelets with “mathematical sampling rate” 1 (no

unit). They are of most practical interests in applications for discretely sampled signals.

Furthermore, we restrict our scope to laboratory water waves. The criteria used are the

entropy statistics of discrete transform coefficients, including Fourier coefficients.

3.2 The entropy criteria

Entropy is a terminology in the statistical physics, thus it gives indication without assur-

ance. The entropy can be viewed as a measure of the “distance” between a signal and its

reconstructed signal using partially truncated transform coefficients. To avoid the some-

what mystified notions as one might get from some of the readings, it may be better to

give straightforward descriptions by going through the actual numerical process first and

returning to its statistical implication later. Let suppose that we have a 1024-point sam-

pled data, then there is a set of 1024 wavelet coefficients (C={ci }). Take the absolute or

squared value of these coefficients, sort them, and then divide the sequence intoM (say,

100 or 200 or 300) divisions which are equally spaced from 0 to the maximum value of the

coefficients. Then we have the statistics of occurrence for each division, and the distribu-

tion of these normalized occurrences is the probability density distribution or probability

density function (denoted by pdf), say{p1, p2, · · · , pM−1, pM}. The entropy is

H(p) = −

∑
i

pi log pi . (3.1)

Where, whenpi = 0, it is assumed that 0 log 0= 0, since in reality one can assumed that

there exists an almost zero probability in that interval without affecting the total sum of

probability, after all it is only a statistics and the modification virtually has no influence

on the norm value. If absolute values ofci are taken,H(p) is the L1-norm entropy; if

squared values are taken, it is squaredL2-norm entropy. Of course another power can be
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Figure 3.1:The shift non-invariant property of wavelet transforms. Top figure in each column
shows individual signal. The middle one shows the wavelet coefficients. The bottom one shows
the wavelet coefficients for the shifted signal (right column: 20 points to the left (using BO22D);
left column: 3 points to the left (using ON33A)). Note that even though Fourier power spectrum is
shift-invariant, Fourier spectral coefficients (without the second power) is still shift-variant. This
property is linked to the poor performances of coherence analyses using orthonormal bases.
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used, but the squaredL2-norm, being the energy, is physically the most significant. The

practical aspect of this definition of entropy is: let suppose two probability distribution

functions sorted in a decreasing order arep and q, if p decreases faster thanq, then

H(p) ≤ H(q) (Wickerhauser 1994). The above inequality of entropy is only one-way

correct and the reverse is not always true, but smaller entropy implies that more energy is

concentrated within a smaller number of wavelet coefficients. Therefore, if only a fixed

percentage of coefficients is kept, the truncated error, i.e., the distance from the total sum,

is likely to be smaller for set of coefficients with smaller entropy

There is another notion, sometimes referred as the geometric notion (Wickerhauser

1994), for calculating the entropy. Again, the procedures is given first and the simple

physical interpretation next. By setting the number of divisions to be the same as the

number of coefficients and by defining probability density to be the normalized (with

respect to the total power) value of the squared wavelet coefficient, that is to say, the total

energy is‖C‖
2

=
∑

i |ci |
2 and the probability density ispi = |ci |

2/‖C‖
2, we get the

alternative form of entropy by substitutingPi into Equation3.1:

H(p) = log‖C‖
2
−

∑
i |ci |

2 log |ci |
2

‖C‖2
. (3.2)

The notion here is simple: if one just put more weight on coefficients of small energy and

less weight on coefficients of large energy (all coefficients being normalized), then the

weighted energy is an indication of entropy. And since taking the log of a value is sort of

a weighting operation and since the total energy is finite, small entropy therefore means

that the number of significant coefficients is small, or stated otherwise, more energy is

concentrated in fewer coefficients.

One equivalent indicator of entropy of a pdf is the theoretical dimensionD(p) and is

defined as (Wickerhauser 1994)

D(p) = eH(p)
=

∏
i

(
p−pi

i

)
. (3.3)
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As was stated, entropy does not tell how conclusive the result is. But our numerical

results yield little ambiguity regarding the judgement that we can make.

3.3 Results and discussions

To increase the definiteness of the comparisons, we calculate entropy based on several

setups: direct coefficient entropy related toL2-norm based on Equation3.3(column 1 in

Tables3.1 and3.2), pdf entropy related toL2-norm with 300 (column 2) and 200 (col-

umn 4) divisions, and pdf entropy related toL1-norm based on Equation3.1 (column 3).

Theoretical dimension for one of the setups is also given (column 5). The tables show

the results using a wind-wave signal from a wave tank experiment. It is noted that if the

peak frequency (or the primary scale) of other signal is significantly different, then, to

be consistent in comparison, the analyzed signal lengths and the sampling rates should

be properly adjusted according to its peak frequency. This is because in the discrete

wavelet transform we need to keep track of the actual physical size of translation so as

to have physical perception of the wave forms. Table3.1 give results from all orthonor-

mal wavelets (including B&L, Meyer, ONxxA, ONxxS, and ONxxC), semi-orthogonal

wavelets (CubicB-spline, SO3O and SO3D), as well as from Fourier spectrum. Table3.2

give results from bi-orthogonal wavelets. Many distinctive features can be derived from

the tables.

• The dual wavelet always gives much smaller entropy than as given by their coun-

terpart wavelet. This certainly verifies that, for our water-wave signals, using

f (t) =

∑
j,k

〈 f, ψ̃ j,k〉ψ j,k (3.4)

provides a much better efficiency in decomposition and reconstruction than using

f (t) =

∑
j,k

〈 f, ψ j,k〉ψ̃ j,k. (3.5)
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This also points out that dual wavelets rather than their counterpart wavelets should

always be used as the decomposing basis for either better physical implications

or improved computational efficiency. It may also worth noting that the practical

shapes of all the listed bi-orthogonal wavelets, especially those with smallx and

y values, are visually quite unrealistical (such as those shown in Figures2.27and

2.28). Furthermore, for these bi-orthogonal wavelets, it can be concluded that there

is going to be very little improvement by further extending the support width related

to y without extending the support width related tox; since increasing the width (y)

from some point on gives no effect on the shape of dual wavelets (such asy = 7

or 9 for x = 3) and since it is the dual, rather than the counterpart, wavelet that

matters for better approximation.

• Entropy values of all orthonormal subgroups do not fall to the level of non-orthogonal

ones. Besides, difference in entropy values of long and short supports can barely be

differentiated, even though there seems to be a very slight indication that entropy

values related to longer support are somewhat smaller. Here the property reflects

the role of linear phase filtering as mentioned earlier.

• Among all the orthonormal wavelets none distinguishes itself from the others. And

we see no clear tendency within any subgroup. However, from the analytical point

of view, the Meyer wavelet is infinitely differentiable or smooth, the B&L is second

order differentiable, and the others have various degrees of differentiability or reg-

ularity (Daubechies 1992). It is therefore understandable that at the present stage

many analytical properties of orthonormal wavelets are of little practical interests

for our signals.

• The most striking result is that the dual CubicB-spline wavelet yields a far smaller

entropy value, even lower than that of the spectral coefficients. Figure3.2shows the

comparisons of the cumulative probability distribution curves for several wavelet

bases as well as for Fourier basis. This striking feature is reflected by the extreme
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flatness of the SO3D curve, nearly horizontal up until 90 percent of energy ratio. At

about 96 percent of the energy ratio there is a crossing between spectral curve and

the SO3D curve. These features practically imply that semi-orthogonal wavelet co-

efficients are better than Fourier coefficients in describing the details of the signals.

Figure3.3 shows the reconstructions of a section of a signal from its spectral and

SO3D wavelet coefficients of which 35 percent are kept. It is seen that the wavelet

basis yields truer details than does Fourier basis. Again, the reasons for the SO3D’s

strong performance can be attributed to the following characters: total positivity of

the scaling function and complete oscillation of the wavelet. That is to say, the scal-

ing function has no oscillation or zero-crossing; the corresponding wavelet has no

unnecessary oscillation, or no oscillation that is without zero-crossing. Physically,

the two characteristics hint that our laboratory water waves are far less transient

when compared with orthonormal or bi-orthogonal wavelets, and also imply that

the description of waves based on suitable support length or life span is more likely

to adhere to the physics.

• For the wavelet packet category we have the best basis and best level criteria. It

may not be difficult to gain a prior idea that the chance is slim for getting better

results using either of the bases. The obvious reason is due to the inherent limita-

tion of wavelet packet transform — wavelet packet transforms are associated only

with orthonormal bases. Since the primitive analyzing functions are orthonormal

and since orthonormal wavelets perform poorly as just given above, it is therefore

hard to anticipate the same strong performance as that of semi-orthogonal wavelets.

Nevertheless, both wavelet packet criteria do show improvements when compared

with the original orthonormal basis, and the performance of the best basis is cer-

tainly better than that of the best level. Figure3.2–(b) gives the wavelet packet

best bases and best level curves for B&L and Meyer’s wavelets; they do show im-

provements when compared with the corresponding curves in Figure3.2–(a) using

regular wavelet transforms. It is quite certain that the improvement is not to the
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degree of semi-orthogonal wavelet or that of the Fourier spectrum.

• Figure3.4 shows cumulative distribution curves of the best level, best basis, and

a few different levels bases wavelet packet coefficients, as well as the curve for

the corresponding regular wavelet transform coefficients; here, all the curves are

associated with ON77S. The curve for the best level comes close to that for the best

basis. Again, wavelet packet best basis and best level yield lower entropy values

than other relevant wavelet bases, but still their curves are far away from that of

SO3D.

• Among orthonormal wavelets, we do not see clear differences arising from different

degrees of symmetry (least asymmetric ONxxS or most asymmetric ONxxA); how-

ever, semi-orthogonal and bi-orthogonal wavelets are symmetric or antisymmetric,

and their entropy values (concerning dual wavelets) are comparatively lower. It

therefore indicates that the linear phase filtering is desired since symmetry or anti-

symmetry implies linear phase of the two-scale sequence (Chui 1992; Daubechies

1992). Without the linear phase filtering visual impairment may occur. The non-

symmetric distribution of time-frequency windows shown in Figures1.1 illustrates

such a significant impact. Though symmetry is desired, it is hard to describe its in-

fluence since there are other factors that need to be considered (such as the support

length and regularity, e.g., Meyer and B&L wavelets are also symmetric but their

entropy values are not comparable to that of the ideal one).

3.4 Summary

Using various criteria of entropy statistics of transform coefficients we identify among a

vast array of Riesz bases the best basis for our signals. It is found that, except theB-spline
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Table 3.1:Entropy of orthonormal and semi-orthogonal wavelet coefficients as well as spectral
coefficients under various statistic criteria.

Wavelet L**2 coefficient
entropy

L**2 probability
entropy

L**1 probability
entropy

L**2 probability
entropy

Theotetical
dimension

(0 division) (300 divisions) (300 divisions) (200 divisions) (L**2 300 divisions)

B&L 4.691 1.330 3.417 1.179 3.782
Meyer 4.647 1.294 3.365 1.132 3.646
SO3O 4.833 1.669 3.756 1.488 5.307
SO3D 1.823 0.219 1.306 0.172 1.245

Spectrum 2.809 0.270 3.044 0.244 1.310

ON22A 4.993 1.761 3.891 1.516 5.815
ON33A 4.773 1.384 3.499 1.225 3.975
ON44A 4.790 1.517 3.596 1.363 4.559
ON55A 4.819 1.553 3.631 1.367 4.727
ON66A 4.790 1.373 3.456 1.203 3.946
ON77A 4.675 1.355 3.461 1.203 3.877
ON88A 4.645 1.229 3.283 1.082 3.418
ON99A 4.719 1.412 3.501 1.252 4.106
ON00A 4.787 1.423 3.511 1.244 4.149

ON44S 4.835 1.461 3.557 1.281 4.311
ON55S 4.758 1.492 3.576 1.298 4.426
ON66S 4.754 1.402 3.501 1.225 4.065
ON77S 4.751 1.336 3.331 1.188 3.804
ON88S 4.714 1.366 3.481 1.224 3.918
ON99S 4.755 1.469 3.570 1.288 4.345
ON00S 4.635 1.278 3.378 1.134 3.591

ON11C 4.938 1.696 3.832 1.457 5.452
ON22C 4.827 1.468 3.520 1.284 4.342
ON33C 4.756 1.488 3.573 1.333 4.427
ON44C 4.690 1.297 3.337 1.157 3.658
ON55C 4.644 1.309 3.405 1.154 3.703
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Table 3.2:Entropy of bi-orthogonal wavelet coefficients under various statistic criteria.

Wavelet L**2 coefficient
entropy

L**2 probability
entropy

L**1 probability
entropy

L**2 probability
entropy

Theoretical
dimension

(0 division) (300 divisions) (300 divisions) (200 divisions) (L**2 300 divisions)

BO11O 5.395 2.623 4.502 2.299 13.777
BO11D 5.395 2.623 4.502 2.299 13.777
BO13O 4.943 1.806 3.883 1.627 6.084
BO13D 5.266 2.371 4.373 2.053 10.708
BO15O 4.866 1.678 3.755 1.495 5.357
BO15D 5.227 2.291 4.327 1.987 9.882

BO22O 5.282 2.362 4.363 2.083 10.609
BO22D 4.434 1.181 3.284 1.034 3.257
BO24O 4.963 1.862 3.985 1.634 6.438
BO24D 4.359 1.090 3.220 0.962 2.975
BO26O 4.881 1.703 3.835 1.492 5.490
BO26D 4.332 1.064 3.174 0.940 2.899
BO28O 4.857 1.624 3.782 1.452 5.073
BO28D 4.318 1.069 3.157 0.941 2.914

BO31O 5.824 3.174 4.741 2.835 23.894
BO31D 4.377 1.058 2.655 0.936 2.880
BO33O 5.084 2.001 4.062 1.756 7.393
BO33D 4.205 1.102 2.827 0.965 3.011
BO35O 4.850 1.697 3.847 1.506 5.457
BO35D 4.125 1.026 2.776 0.908 2.789
BO37O 4.790 1.658 3.821 1.442 5.247
BO37D 4.106 0.986 2.737 0.873 2.679
BO39O 4.776 1.660 3.835 1.432 5.258
BO39D 4.098 0.967 2.713 0.866 2.629
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Figure 3.2: The cumulative probability distribution curves of the transform coefficients using
different bases associated with three different transform categories: wavelet, wavelet packet, and
Fourier transforms. Individual function bases are labeled in the figure. The top figure shows those
of the wavelet group as well as a curve for spectral coefficients; the bottom figure shows those of
wavelet packets best bases based on two orthonormal bases used in the top figure.
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Figure 3.3:Comparison of reconstructed signals using truncated spectral coefficients and semi-
orthogonal wavelet coefficients. Here 35% of the coefficients are kept. The original signal is
shown in (a), signal reconstructed from spectral coefficients in (b), and that from SO3D wavelet
coefficients in (c). The semi-orthogonal wavelet is seen to better portrait the original signal, espe-
cially the small scale transient features.
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Figure 3.4:The cumulative probability distribution curves of the sorted wavelet and wavelet packet
coefficients (L2-norm squared, i.e., energy content) for various bases which all originate from a
single mother wavelet. These bases include those of various wavelet packet levels, wavelet packet
best basis, as well as the seeding wavelet basis ON77S; as are indicated in the legend.

72



semi-orthogonal wavelets, no wavelet basis tested here can reach the level of approxima-

tion given by Fourier spectra. Still, many of the properties of the wavelets studied here are

more of analytical interests and hard to be physically significant. The strong performance

of the semi-orthogonal wavelet indicates the usefulness of modulated Gaussian wavelets

(or the Morlet wavelets) for our applications. Coupling with a few additional features that

are specific to continuous wavelet transforms – such as its redundancy nature, the flexible

time-frequency resolutions, and the desirable conciliatory segment of interest – promising

uses in future applications might be anticipated.❖
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Chapter 4
Conclusions

A comprehensive set of discrete wavelet categories is studied for the interests of the water

wave related physics. The revelent characterizations and various specific or intrinsic prop-

erties are illustrated. The wavelet numerical analyses and the associated data processing

are developed from the ground up using the Asyst programming language, as well as sev-

eral add-in components. Using such a tool we provide extensive depictions of the wavelet

natures, such as their mother and farther wavelets, the translations and dilations concepts,

the zoom-ins or blowups of any kind of wavelets, and the linear phase filtering features —

more importantly, their possible physical implications, their practical usefulness, as well

as their advantages and disadvantages in water wave applications

Various criteria of entropy statics are applied to the whole set of wavelets for signals

obtained from wave-tank experiments. Results fully identify that the sole optimal wavelet

basis is the dual semi-orthogonal cardinal spline wavelet.

And the author firmly believes that if you ever find an individual wavelet you have

great chance to assign it into one of these categories; and if not, you have great reason

to conceive that its properties must fall within (or between) the covered characterizations

and thus, in water wave applications, its fate or possible usefulness is decreed accordingly.

❖
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