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1. Introduction

It is well known that a harbour or any partially enclosed basin is subject to frequency-
dependent oscillations when excited by incident waves of equal frequency through the en-
trance. For certain frequencies, the amplitudes of these oscillations may be far greater than
those of the incident waves, representing a resonant phenomenon. This phenomenon has
successfully been predicted by many analytical and numerical models often tested by labo-
ratory experiments. A thorough account on this subject, including an extensive list of the

literature, has been given by Mei (1983).

Although, as pointed out by Mei & Agnon (1989), effective numerical techniques now
exist and are used in practice to reliably estimate the long-period (several minutes to an
hour) oscillations in a harbour induced by incident waves of equal period, the physical
mechanism of the harbour resonances occurring in this case remains unclear. For example,
even for a simple rectangular harbour, when the resonances occur, it is unclear whether the
very large amount of energy inside the harbour is due to energy trapping by the harbour
or due to large incoming and outgoing energy fluxes through the entrance. The latter, if it
occurs, cannot be seen by inspection of the water surface oscillations in the vicinity of the
harbour entrance because of the existence of a node of a standing wave in this region in
the event of harbour resonances. On the other hand, the energy trapping by a rectangular
harbour with unconstricted mouth owing to the partial reflection of the waves within the
harbour by the sudden widening at the entrance has not been proved directly by any
mathematical or experimental means. In this study, an effort will be made to clarify the
linear mechanism of the harbour resonances occurring in a rectangular harbour induced
by incident waves through the entrance, which may have implications for more general
situations.

The difficulties mentioned above can be overcome by estimates of the amplitudes of the
radiated waves emanating from the harbour entrance. Since the radiated wave function is

defined as the difference between the true wave field outside the harbour and that consid-

ered to exist as if the harbour entrance were closed, this function includes the difference
between the real reflected wave due to the coast with the presence of the harbour entrance
and that with the harbour entrance being closed, which arises because of some of the in-
cident wave energy being diffracted through the entrance into the harbour. Therefore, in
a general situation, the incoming and outgoing energy fluxes through the entrance cannot
be distinguished in this function. However, when the incident wave is a regular progressive
edge wave train propagating along a straight coast, since there exists no reflected wave by

the coast, the radiated waves propagating along the coast and in the direction opposite to
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the incident edge wave can be expected to comprise only the waves truly emanating from
the harbour entrance. This outgoing energy subject to reflection and refraction will even-
tually become edge waves in the region far from the entrance (and on the sloping beach),
beyond which not much change in the amplitude will occur. Therefore this amplitude can

meaningfully and accurately be related to the oscillations inside the harbour.

When a regular progressive edge wave train is under consideration, an infinitely long
sloping beach should be assumed in the simulation. On the other hand, the aim to estimate
the amplitude of the radiated edge waves will render some artificial devices in the numerical
computations such as fictitious damping inapplicable. Therefore in this study, a large
domain is required for the conditions at infinity being satisfied at the outer boundary of
this domain (see, for example, Mei 1978). In this large domain, in order to save computer
storage space, the overall region is broken up into many portions (referred to as zones),
after which a condensation process will be performed to reduce the size of the mathematical
model in each zone. In order to obtain a unique solution, these individual condensed
equations will be put together by consideration of the continuity conditions on the interfaces
between zones. Since the boundary element method, when applied to each zone, can model
the interfaces and the conditions on the interfaces very naturally, the condensation process
has been utilized to advantage in the multizone boundary element analysis (Kane 1994).
The latter however cannot be applied to the solution of the two-dimensional mild-slope or
shallow-water equation so that even though the shallow-water approximation is applicable,
the three-dimensional Laplace equation will be solved here. To save even more computer
memory, a sequential condensation process will further be developed and implemented, by
which it is unnecessary to put all the condensed equations together at the same time so

that a final oversize equation can also be avoided.

Since near the shoreline, the edge waves may dominate in the frequency band between
0.006 and 0.025 Hz according to the field observations by Huntley, Guza & Thornton (1981),
and since many harbours may actually resonate at a frequency in this band, the numerical
techniques for the solutions of harbour oscillations induced by edge waves are important
not only for scientific research but also for engineering applications. Therefore in §2 a
general formulation is made for this problem so that the numerical method developed in

§3 permits solution for any complex topography in and near the harbour.

After the general theory has been developed, the problems with simple topography
will actually be solved in §5 to investigate the mechanism of the harbour resonances. The

topography under consideration is a rectangular harbour of constant depth open to a plane



sloping beach with a vertical seawall and connected to a horizontal shelf. In this case,
the profile and the dispersion relation of the edge waves on this beach can be determined
analytically in §4 by using an approach paralleling that of Eckart (1951), Mei (1983), Green
(1986), Neu & Oh (1987) and Schaffer & Jonsson (1992). The results will then be applied
to the numerical computations in §5 for the solutions of the oscillations inside and outside

the harbour induced by these edge waves.

Since in the present computations, the slope of the beach is as small as 0.05 and on the
other hand, according to Miles & Munk (1961), the response of a narrow harbour to the

incident waves is independent of the angle of incidence, the present numerical solutions,

after a convergence test, are compared with the analytical solution derived by Unliata &
Mei (1973) and Mei (1983) for the case of uniform water depth and normal incidence. The
results can both indicate the accuracy of the present numerical model and bear witness
to the soundness of the previous analytical theory. Furthermore, in the present numerical
solutions, the radiated waves in the region far away from the harbour and on the sloping

beach can indeed be shown to have a profile of edge waves.

The amplitudes of these radiated edge waves will in §6 be related to the oscillations
inside the harbour, which indicates that for certain lengths of the harbour, a fundamental
standing wave inside the harbour can coexist with the incident edge wave without disturbing
the latter (meaning that in this situation no radiated waves occur). For other lengths
of the harbour, the radiated edge waves arise and their amplitude can be found to be
linearly proportional to that of the difference between the overall standing wave and the
fundamental one inside the harbour. Since the amplitude of the fundamental standing
wave inside the harbour is fixed and equal to that of the incident wave, the above linear
relationship suggests that the harbour resonances are due to an increase of the incoming

and outgoing energy fluxes through the entrance.

The above phenomena can also be seen in Unliiata & Mei’s (1973) and Mei’s (1983)
solution, in which the amplitude of the discharge rate per unit depth at the harbour entrance
|Q| was derived, which can replace the amplitude of the radiated edge wave in the present
discussion. Furthermore, since this analytical solution is in closed form and the quantity
|Q|, unlike the amplitude of the radiated edge waves, can describes the total discharge at
the entrance, this solution can demonstrate that in a steady state, except the fundamental
standing wave, no significant amount of energy inside the harbour can be partially reflected
by the sudden widening at the entrance. Therefore, the resonances of a narrow rectangular
harbour excited by the incident waves through the entrance are indeed due to a drastic

increase of the incoming and outgoing energy fluxes through the entrance.
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2. Formulation for the problem of harbour oscillations induced by edge waves

Assuming that the fluid is inviscid, incompressible, and irrotational, there exists a
velocity potential ¢(z,y,z,t) which satisfies the Laplace equation
6%¢ 62¢ ¢
2 ve v, ve _ 2.1
Vi=mt gt 57 =0 (2.1)
everywhere in the fluid. We further assume that the waves are of small amplitude at each
point. Thus the kinematical and dynamical free-surface conditions become
o¢ 0¢ 0¢
b R bt = = 22
5 = 3, and =+ g(=0 at z=0 (2.2)
respectively, where ¢ is the surface displacement, g the gravitational acceleration, and z =0
corresponds to the mean water level.

Since the incident waves are monochromatic edge waves and only the steady state
excitation by these waves is of concern here, the linear solutions of ¢ and ¢ at each point
are simple harmonic functions with the same frequency w as the incident waves. Therefore
the two free-surface conditions in (2.2) can be combined into

0 _ v

5: = at  z=0 (2.3)

On the other hand, the no-flux condition
86/0n =0 (2.4)

is chosen as the condition on any rigid boundary surface, including those at the seawall
and seabed.
To determine the conditions at the outer boundary of a large but finite domain, the

function ¢ in the region outside the harbour is conveniently expressed as
¢ = ¢i + 4, (2.5)

where ¢; represents the incident edge wave function and ¢, the disturbance or the radiated
wave function due to the presence of the harbour and any other deviations from the simple
topography on which ¢; is considered to occur. Since ¢; satisfies the Laplace equation (2.1),
¢4 will also satisfy this linear and homogeneous equation. Similarly, we have

061 _ o



in view of (2.3).

Since in the regions far away from the harbour, the deviation of the actual topography
from the simple topography usually has little effect on the solution in and near the harbour,
simple topography with a straight coast and a uniform sloping beach can be chosen in
the regions far away from the harbour (see figure 1). On this simple one-dimensional
topography, the incident edge wave function ¢; can be determined analytically (see §4)
or by a very simple numerical computation, which satisfies 8¢;/8n = 0 at the seawall and

bottom. Therefore in this region and at the seawall and bottom, we also have
8¢a/0n =0 (2.7)

However, near the harbour, if the natural topography or the breakwater protrudes seaward
as shown in figure 1, the disturbance ¢, in this region (and therefore the oscillations in the
harbour) may alter significantly. Therefore these protrusions must be taken into account,

and at their boundaries the condition for ¢4 is
06a/0n = —é;/On (2.8)

in view of (2.4) and (2.5). Note that the incident edge wave function ¢; in (2.8) is the same
function as that determined on the one-dimensional topography according to the definition
of ¢4. Thus the boundary condition (2.8) is indeed applicable to the solution of ¢q.

Also in the vicinity of the harbour, there may exist inlet or bay which can also affect
the oscillations in and near the harbour. In these inlet and bay as well as in the harbour,
the total velocity potential ¢ will be solved numerically using the field equation (2.1) and
the boundary conditions (2.3) and (2.4). Furthermore, to obtain a unique solution, the

following continuity conditions on the interface 4B in figure 1 must be fulfilled:

¢ r=0" = ¢i =0+ + ¢d =0+ (29)
6¢ _ 6¢, %
nl,mo-  On|igr 0N |oox (2.10)
Recall that (8¢;/0n)|,=0+ = 0, therefore (2.10) can be reduced to
9¢ _ 9%
on|,g-  On | g4 (2.11)

The above relations have provided all the conditions on the interior boundaries for ¢

and ¢, in the regions inside and outside the harbour respectively. We next proceed to
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consider the conditions at infinity for ¢4, which in a numerical computation will be applied
to the outer boundaries of a large domain. For the sake of definiteness, it is assumed that
the incident edge wave train propagates in the y direction in figure 1. Also we assume that
the sloping beach is connected to a horizontal shelf which then extends to infinity in the
¢ direction. Therefore at infinity from the harbour, except in the regions on or very near
the sloping beach, the disturbance ¢4 contains only the waves of leaky modes, and in the
situation illustrated in figure 1, most of these leakages from the sloping beach occur in the
region not very far from the harbour entrance. Thus, at infinity but not on the sloping

beach, ¢, is outgoing and fulfills the Sommerfeld radiation condition
(kar)'/? (% - ikd) ¢4 —0 when ker — oo, (2.12)

where (r,6) represent the polar coordinates in figure 1 and k; the magnitude of the wave-
number on the horizontal shelf. Consequently, in practical applications, one may simply

impose the condition

¢d 3¢d or

at the outer boundaries on the horizontal shelf.
Contrarily, at infinity and on the sloping beach, only the edge waves of all possible
modes can exist and their amplitudes will remain unchanged. Therefore, for y — oo, the

disturbance ¢4 on the sloping beach can be written as

m

a =™y aju;(z, z)e WY, (214)
j=1

where k,; represents the alongshore wave-number of the edge waves of mode j, ¥;(z,2)
represents the distribution in the z— and z—directions of the velocity potential of this edge
wave mode, and qg; its complex amplitude. In (2.14), the function y;(z,z) and the dispersion
relation for determination of k,; in terms of w, as well as the number of possible modes m on
the one-dimensional topography can be determined analytically or by a simple numerical
computation. By using these results and considering a group of m points at which the

expression (2.14) is valid, one may obtain

(o=}

where the components of the column vector {¢4} are the values of ¢, at these m points,

the components of {a} are ai, a, ..., an, in (2.14), and the square matrix [C] is determined
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by substituting the coordinates (z,y,z) of the m points into the functions %;(z,z)e*w¥ for
i=1,2,..,m.
Since it follows from (2.14) that

8¢ ot :
5 d — e-—zwtZiajk,ijj(x’z)etkyjy’
Y i=1

one can similarly obtain

()1

where [D] is determined from the functions iky;¥;(z, z)e*w¥, j = 1,2,..., minstead. Therefore,

although the column vector {a} is unknown, from (2.15) and (2.16) we still have

-1
(Bl
dy
which can serve as the condition for y — co and on the sloping beach, so that it is satisfied

approximately at the corresponding outer boundary of a large domain.

Notice that in (2.14) the edge wave component with the same mode as the incident
edge wave may actually represent a deficiency of the latter owing to its diffraction into the
harbour, but the phase of this component still propagates in the y direction. Therefore

there is no ambiguity in the sign of k,; in (2.14).

On the other hand, when y — —c0, all the components of ¢, propagate in the negative

y—direction, so that we have

fa =Ty biyy(z, 2wy, (2.18)

i=1

definitely. From (2.18) one can similarly obtain the approximate boundary condition at

y ~ —oo and on the sloping beach, which takes exactly the same form as (2.17).



3. Numerical method

In the above formulation, the conditions at infinity are applied to the outer boundaries
of a large domain. In this large domain, in order to save computer storage space, the overall
region will be broken up into many portions, in each of which a boundary element analysis
will be performed, so that the field equation (2.1) should be replaced by an equivalent

boundary integral equation.

To derive this boundary integral equation, we consider a closed surface S which encloses

a volume V and the Green’s identity formula
/(bvza—av%)dv :/(bVa-n—aVb-n) ds, (3.1)
% s

where a, b are any two scalar functions which are reasonable enough to make the above

integrations possible. Now we let b = ¢ and
a=¢*=1/4nr, r=|x—d|, (3.2)

where x denotes the vector of position of each point in the field and d that of a fixed point.
Since V2%¢ =0 and

62¢* aqu 62(}5*
522 + + =—-é(x—d)

2 x _
Ve = dy? 022

where §(x — d) is the Dirac delta function with the source at d, substitution yields
1 [[g0 (1) _19¢
—ed(d) = 4 /5 [¢8n (r) T Bn] a5 (3.3)

d is outside S;

where

O

, disinside S; (3.4)

(SIS

, dison asmooth portion of S;

|=

~, dis at a sharp corner on § with a solid angle 4.

o

When the source point d is located precisely on S, the integrand in (3.3) becomes
singular at the point x = d. Therefore the last two relations in (3.4) are achieved when
the integral in (3.3) is interpreted in the Cauchy principal-value sense. In this situation,
the integral equation (3.3) involves only the values of ¢ and d¢4/0n on S. Thus, after

discretization of (3.3) for each d collocated at the nodes on §, we have an approximate set

of N linear algebraic equations

N

N

E, ,
> Hijéi - Gy (a_z):o’ i=12%.. N
i=1 J J

i=1
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or in matrix notation

o}~ [ {5} - o

where ¢; and (8¢4/0n); denote the values of ¢ and 84/6n at node j, and the coefficient
matrices [H] and [G], including the number of nodes N, depend on the specific details of
the discretization process which are not elaborated here.

After the equation (3.5) has been solved, the value of ¢ at any point within S can be
recovered by locating the source point d at this point and then performing the surface
integration in (3.3). However, in the present problem, if the wavelength is very large
compared with the water depth, the vertical variation of ¢ is weak so that the calculations

of the interior response is usually unnecessary.

Since the disturbance ¢4 also satisfies the Laplace equation, by the same argument, we

ool -

for estimates of the node-point values of ¢4 and 8¢4/0n on a closed surface outside the

also have

harbour. Now if the closed surfaces chosen for (3.5) and (3.6) are those which enclose
the entire regions inside and outside the harbour respectively in the domain, by using the
boundary conditions given in §2, the unknows 8¢/8n and 8¢4/9n at each node on these
surfaces, except that on the interface 4B in figure 1 can be eliminated. Furthermore,
by invoking the matching conditions (2.9) and (2.11), the unknowns ¢ and d¢/dn at each
node on AB in (3.5) can also be eliminated in favor of ¢; and 9¢4/8n at the same node.
Nevertheless, equations (3.5) and (3.6) must now be solved simultaneously so that if there
exist L nodes in (3.6), combination of (3.5) and (3.6) yields a set of L + N simultaneous
linear equations with L+ N unknowns, which is nonhomogeneous due to the existence of ¢;
in (2.9). Thus a unique, nontrivial solution can in theory be obtained by using an equation-
solving technique. However, the large domain used here will render the size of this system
of equations too large to be dealt with by a computer. Therefore a multizone analysis with
sequential condensation is needed.

In the above discussion, the domain has been divided at the harbour entrance into two
regions but without condensation. In order to condense (3.5), we reorder its degrees of

freedom and partition it into blocks (see Kane 1994):

o) freel Lo

loed ot [t} o
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where {4y} and {(04/0n)m} contain the node-point values of ¢ and d¢/9n on the interface
AB while {¢c} and {(d¢/dn)c} contain those on the remaining boundaries of the body of
water in the harbour. Therefore by substituting (2.3) and (2.4) in (3.7) and collecting

terms, we obtain

[ [HMM] [Hfuc] jl { {¢M} } [GMM] [ 0 ] ] { {(3¢/5")M} } | (3.80,5)
[tow] [ Hoe [ {oc}] L[ceu] [o]] 1 {o}
where [H}, ], [Hic] are different from [Huc], [Hee) in (3.7). Solving the matrix equation

(3.8b) for {¢c} gives

{tc} = ec]” (6o} {00r0me} - [ o) 59

Substitution in (3.8a) for {4c} yields

[F] {qu} - [E} {(a¢/an)M}, (3.10)
‘ 7 = ] - et [, on
5 e ] ] ] on

In (3.10), the unknown vectors {¢»} and {(8¢/0n)x} contain only the node-point values of
¢ and 8¢/0n on the interface AB in figure 1 so that the size of (3.10) is much smaller than
that of (3.5). Therefore equation (3.10) combined with that derived in the region outside
the harbour produces a smaller system of equations. Its solution can be substituted in (3.9)
to recover {¢c}.

Note that, as pointed out by Kane (1994), the condensation procedure embodied in the
above equations is an exact formulation, in which no terms have been neglected, nor has
any approximation been made. Therefore this procedure can repeatedly be applied in the
region outside the harbour, which is much larger than that in the harbour.

To reduce the size of (3.6) without sacrifice of the grid resolution, the domain outside
the harbour is broken up into many portions, referred to as zones, as illustrated in figure

2. Therefore, in zone-1, following the same procedure as that resulting in (3.5) or (3.6), we

o] o)~ (22,

10
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where {¢4}, and {8¢4/0n}, contain the node-point values of ¢4 and d¢4/0n on the boundary
surface of zone-1. Again, reordering the degrees of freedom and partitioning (3.13) into

blocks, we obtain

oot s e vt R

where {¢am}1 and {(8¢s/0n)ap}1 contain the node-point values of ¢4 and 8¢4/8n on the
interface between zone-1 and zone-2, and {¢sc} and {(84s/0n)c}1 contain those on the
remaining boundary surfaces of zone-1 on which the boundary conditions (2.6), (2.7), (2.13)
and (2.17) can be applied separately. Therefore the unknowns in {(844/0n)c}; can also be

eliminated entirely from (3.14) in favour of those in {¢ic}i, resulting in

(ool o il R B

Solving (3.156) for {¢ac}1 gives

(61}, = el ([owon] {0somia}, - [acu] o)) 020

Substitution in (3.15a) for {¢4c}; yields

) four), = £ Jowaonn), 1)

where
], = [, - [, ][], o2
6, = [Gavs], - e, [tic] [c] - o2

The achievement of (3.16)-(3.19) completes the first condensation outside the harbour.

Since equation (3.17) can be rewritten as

{0oatomin} = [Bd] . [Fa] {bam} (3.20)

it can serve as the boundary condition on the interface between zone-1 and zone-2 for the
solution in zone-2. Therefore the above condensation procedure can be repeated in zone-

2, and so on, until the numerically generated boundary condition on the interface between

11



zone-5 and zone-12 in figure 2 is obtained. Similarly, beginning with the condensation in
zone-6 and ending with that in zone-10 in figure 2, one can also obtain the numerically
generated boundary condition on the interface between zone-10 and zone-12. On the other
hand, equation (3.10) together with (2.9) and (2.11) provides another condition on the
interface between zone-11 and zone-12. Therefore, by using this sequential condensation
process, one can finally obtain a well-imposed boundary-value problem within zone-12 in

figure 2 that is much smaller than the actual domain.

After the node-point values of ¢4 and d¢4/0n on the boundary of zone-12 are determined,
the node-point values of ¢, and 8¢4/0n in other zones, including those of ¢ and d¢/8n in
the harbour can be recovered by using the equations (3.16)-(3.19) and the similar ones
in different zones. This task can however be accomplished in a separate effort so that

the entries of the coefficient matrices involved can be stored in a hard disk for later use.
Therefore the sequential condensation process can be done in place. That is to say, the

computer memory used to store the entries of the matrices in one zone can be reused to
store those in other zones. Hence, in this approach, the computer memory imposes no
restriction on the number of zones, and with less computer memory, smaller zones can be

used by breaking up the domain into more portions with various configurations.
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4. Edge waves on a sloping beach with a seawall and shelf

After the general formulation and the method of solution have been developed in the
previous two sections, a specific situation will be considered in this and the following
sections. In this situation, the topography outside the harbour is composed of a plane
sloping beach bounded by a vertical wall and connected to a horizontal shelf as shown in
figure 3. This topography, if the harbour entrance were closed, is one-dimensional so that
the wave profile and the dispersion relation of the incident edge waves can be determined

analytically in this section, which are required for the numerical computations in §5.

We note that the vertical wall at the shoreline can avoid the occurrence of the depth
discontinuities in the neighborhood of the harbour entrance when a harbour of constant
depth is open to this beach. Also, in this situation, the interface between the regions
inside and outside the harbour is vertical. All of these will later be proved to be crucial
for the solutions being of physical interest. On the other hand, the horizontal shelf in
figure 3 is required for the validity of the boundary condition (2.13). In addition, the
horizontal shelf can ensure that the water can stay shallow everywhere so that the shallow-
water approximation can be applied here. The present analysis parallels that in Eckart
(1951), Mei (1983), Green (1986), Neu & Oh (1987), and Schéffer & Jonsson (1992), but

is summarized here for completeness.

In linear shallow-water theory, the governing equation is

d%¢

V- (ghV¢) — T

=0 (4.1)

(see, for example, Mei 1983), where h represents the water depth at each location. The
relation between ¢ and ¢ is simply that

¢(£,y,2,t) = '—:—g'c(z)yyt) (42)
in view of (2.2) and the fact that in shallow-water approximation, the vertical variation of

¢ 1s negligible. Restricting ourselves to consider only the solutions which are harmonic in

time and in the alongshore (i.e. y) direction, we have

¢ = n(z)expli(kyy — wt)]. (4.3)
Substitution into (4.1) yields
d d
o < hﬁ) + (w? — ghk;)n =0. (4.4)



This equation will be solved in regions I and II separately and the results will be matched
at z = z; in figure 3.
Let us first consider the situation in region I, in which the beach slope h; is constant

and the water depth
h=h,z (4.5)

in accordance with the coordinates shown in figure 3, which are different from those in

figure 1. Substituting (4.5) in (4.4), we obtain in region I

d’n  dp w?
T <gh, - k§z> n=0. (4.6)

§ = 2kyz, n = exp(~£/2)f(€), (4.7)

equation (4.6) may be rewritten as

d2f df
fa?cg-f(l“f)ﬂ—alf-_—oy (4.8)
where
1 w?

Equation (4.8) belongs to the class of confluent hypergeometric equations (more specif-

ically Kummer’s equation, see Abramowitz & Stegun 1972), and its general solution can

be written as
f=AM(ay,1,€) + BU(ay, 1,£), (4.10)

where M and U are the Kummer function.
We next proceed to find the solution in region II. In this region, the water depth

h = const = hy, so that equation (4.4) reduces to

dzn w2 9
d_x2+<__ky>":0

gh1
or
% = MkZn =0,
where
A=1- 3}%2172 (4.11)



The general solution of (4.11) is
n = Cexp (—/\%ky:c) + Dexp (/\%]Cy.’l,')

or in terms of ¢

n=Cexp (-,\%5/2) + Dexp (A%g/2) : (4.12)

If X < 0, solution (4.12) together with (4.3) describes two progressive wave trains with
the phase velocity (ghi)!/? as expected. Since the amplitudes of these two wave trains are
constant in region II, these waves are not confined to the shoreline and therefore are not
edge waves. Thus edge waves can occur only if A > 0, signifying that for edge waves, w can at

most attain the value given by w? = gh,k2; this value is therefore called the cut-off frequency.
g y v

When A > 0, the last term in (4.12) gives exponential seaward growth and therefore

must be discarded by setting D = 0. Thus in region II, we have
1 = C exp (—,\%5/2) , (4.13)
while in region I, it follows from (4.7) and (4.10) that

n = Aexp(—£/2)M (a1, 1,€) + Bexp(—£/2)U(ay, 1,§). (4.14)

Two of the three coefficients in (4.13) and (4.14) and the parameter o which is allied to
the dispersion relation through (4.9), can be determined by using the boundary condition
dn/de = 8¢/0z = 0 at the seawall (see (4.2)) and the matching conditions n; = 5y and
(dn/dz); = (dn/dz) at = = z;. As a consequence, a homogeneous system of three linear
equations in 4, B and C can be established, and to get nontrivial solutions, the determinant
of the coefficient matrix of this system must vanish. This adds the constraint on the values
of a; and therefore defines the edge wave dispersion relation for the present topography.

The results for a particular situation are shown in figure 4.

Recall that in Eckart’s (1951) theory for an infinitely extended plane sloping beach
without a seawall, the dispersion relation of the edge waves follows from the requirement
that parameter a; must be a negative integer or zero, —a; = n. Thus, by using (4.9), this
relation can be written as

wzho kyho
ohz = (D5

n=0,1,2,...
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Therefore, if it is plotted in figure 4, there will be an infinite number of straight lines,
all passing through the origin; each represents the dispersion relation of a certain mode.
However, these straight lines have now become curved due to the presence of the seawall.
Moreover, the existence of the horizontal shelf can cause a cut-off of not only the frequency
but also the number of possible edge wave modes for a fixed w according to figure 4. Hence

the number of modes m in (2.14) is indeed finite.

After the value of k, for a fixed w and a fixed mode has been determined, one may
compute the values of the coeflicients B and C in terms of A by using any two equations in
the system of three equations mentioned above, which completes the solution of the edge
waves for the present topography. The resulting profile of the fundamental edge wave mode
under the circumstances corresponding to the intersection S in figure 4 is shown in figure
5, which indicates that dn/dz indeed vanishes at the seawall and the values of n and dy/dz

are continuous at ¢ = z;.
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5. Numerical solutions of harbour oscillations

In this section, we shall compute the oscillations inside and outside a rectangular har-
bour of constant depth open to the ocean with the topography considered in §4, which are
induced by an edge wave train with the frequency and wave-number corresponding to point
S in figure 4. In this situation, although the frequency is fixed as w = 2r/160 rad sec™", by
varying the length { and width % of the harbour, the phenomenon of harbour resonances

can still be observed in the numerical solutions which will then be compared with the an-
alytical solution derived by Unliata & Mei (1973) and Mei (1983).

Since according to figure 4, among the edge waves of period 160 sec, only the funda-
mental mode can occur in this situation, the condition (2.17) and the corresponding one
derived from (2.18) now reduce to

0¢ . 0¢ .
Ty = ikba = ik
respectively. These conditions, when applied to the boundaries AB and EF in figure 6, can

both be written as

0ba .
% = ik, ba, (5.1)

because the outward normal directions of these two boundaries are opposite to each other.
Notice that unlike (2.17), the boundary condition (5.1) as well as the matching condition
(2.9) can be applied without knowing the profile of the edge waves in the z direction, so

that the solution of the latter derived in §4 will later be utilized for comparison purposes.

The use of a fixed frequency in the present computations can also make the convergence
test of the numerical solutions much easier. To achieve this purpose, we calculate the
amplification factor R of a harbour with / = 1.4 km and b = 200 m but with different domain
length L in figure 6. The amplification factor R is now defined as the ratio of the amplitude
at point P in figure 6 to that at the shoreline of the incident edge waves. The results in
figure 7 indicate that after the outer boundaries are taken three wavelengths away from
the harbour entrance, further expansion of the domain gives rise to negligible changes of
the solution. This conclusion can be applied to the situations with different values of !
and b, because as long as the frequency and the topography outside the harbour remain
unchanged and the harbour width b is very small compared with L, it can be expected that
the condition when the boundary conditions (2.13) and (5.1) can be applied to the outer

boundaries accurately should be independent of / and .
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The validity of (2.13) and (5.1) for a large but finite domain as well as the accuracy
of the present model can also be checked by comparison of the numerical solution of ¢4 on
the interface between zone-1 and zone-2 in figure 2 with the analytical solution in figure 5.
The results in figure 8 indicate that when kqL/27 = 3.72 (i.e. L = 20 km), the disturbance
¢4 on the sloping beach and on the interface between zone-1 and zone-2 which in this case
is at the distance of 19.8 km from the center of the harbour entrance, can fit the profile
of the fundamental edge wave mode very well. Since this profile has never been utilized in
the present numerical computations, this fitness indeed provides a valuable check on the
validity of (2.13) and (5.1) and on the accuracy of the present model. Furthermore, it also
demonstrates that the disturbance ¢, in this region contains only the trapped mode edge
waves. This situation is general for the value of k4L/2r being larger than 3. Therefore in

the following computations we keep L = 20 km.

After the domain is decided, we compute the oscillations inside and outside the harbour
for different values of I under the situations that 5 = 200 m and b = 50 m. Therefore, in figure
9, the amplification factor R varies with / normalized by the wave-number in the harbour
k = w/(gho)'/?. These results are certainly not the so-called response curve of a harbour,
but can still show the resonant peaks in figures 9a and 9b. In each of these figures, the two
resonant peaks virtually have the same height, contrary to the situation of the response
curve, in which the height of successive resonant peaks decreases with the node number of

resonances (see, for example, Hwang & Tuck 1970; Lee 1971; Mei & Chen 1975).

The above phenomena regarding the height of the resonant peaks can be accounted
for by the analytical solution (6.20) in §5.6.2 in Mei (1983) deduced by using the method
of matched asymptotic expansions for a narrow rectangular harbour open to the ocean of

constant depth (also see Unliiata & Mei 1973). This solution, in the present notation, can

be written as
R = [cos kl + (kb/m) sin klIn(vkb/me) — i(kb/2) sin k]!, (5.2)

where Ine = 1, Iny =Euler’s constant= 0.5772157..., and R, is the complex amplification
factor. Thus in this solution

R = |R.| = {[cos kl + (kb/7)sin klln(ykb/me))? + [(kb/2) sin kl]?} ™"/ . (5.3)

From (5.3) it is immediately clear that if kb = constant, the variation of R with k! is periodic
with a period of , so that the occurrences of the resonant peaks will repeat with the same
height. In the more complicated situation when both kI and kb vary due to the change of &,
a close investigation into (5.2) made by Mei (1983) has shown that the height of successive
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resonant peaks in the response curve indeed decreases with the mode number (see (6.26)

in §5.6.2 in Mei (1983)).

The analytical solution (5.3) for 5 = 200 m and & = 50 m has also been plotted in figure 9
for comparison, which indicates that except in the vicinity of the resonant peaks, the present
numerical solutions agree well with the analytical solution. This might be attributed to
the situation that when ki ~ 7, the term coskl in (5.3) is dominant and the other terms
in (5.3) which all contain the small parameter kb are then responsible for the value of R
being slightly less than 1 when &l is slightly smaller than ; this slight deviation also occurs

precisely to the present numerical solutions.

Since solution (5.3) represents matched asymptotics, it will become more accurate when
the ordering parameter kb decreases. Therefore the improvement of the agreement between
the numerical and analytical solutions in figure 95 for a narrower harbour and the situation
that the circles in figure 9 can fit the curves extremely well when kI ~ =, both imply that
the very gentle slope, h, = 0.05, considered here, while allowing for the occurrences of the
edge waves, has little effect on the harbor response; the latter for a narrow harbour is also

independent of the angle of incidence, in accordance with Miles & Munk’s (1961) theory.
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6. Discussion

Since the disturbance ¢4 on the sloping beach and on the interface between zone-1 and
zone-2 in figure 2 represents the waves emanating from the harbour entrance and contains
only the trapped mode edge waves (see figure 8) which cannot be attenuated by energy
spread and leakage, the amplitude of ¢4 on this interface and at the shoreline (denoted by
Agr) will be related to the oscillations inside the harbour, that can eventually provide a

physical insight into the mechanism of the harbour resonances.

In figure 10, the abscissa is the amplitude Ap of ¢ at point P in figure 6 normalized
by the amplitude of ¢; at the shoreline Ay. Since the oscillations inside the harbour in the
present calculations are almost a perfect standing wave, the quantity Ap can describe the
oscillations inside the harbour in whole. However, from figure 10 it is clear that neither a
linear nor an one-to-one relation between Ap and Ag exists. The results in figure 10 also
show that Ap/A; = 1 when Ag vanishes. This and the situation that the event of Az =0
occurs when kI = = (see figure 11) indicate that if the standing wave inside the harbour
has an antinode at the entrance, this standing wave after its amplitude reaches the same
level as that of the incident edge wave, can coexist with the latter without disturbing it
(i.e. ¢4 =0 everywhere). This phenomenon is consistent with the matching conditions (2.9)
and (2.10) for a narrow harbour, because in this case, the value of ¢;|,—o+ at the harbour
entrance is near uniform and therefore itself can be balanced by ¢|.—o- approximately, while
(06/0n)|z=0- = (00:/0n)|z=0+ =0 if ki =m.

The above situation will become even clearer when the incident wave is of normal
incidence. This incident wave together with the reflected wave from the seawall forms a
standing wave outside the harbour. Therefore, if ki = n7, n =1, 2,3, ..., the standing waves
inside and outside the harbour with the same amplitudes can balance each other exactly.

The former will hereafter be referred to as the fundamental standing wave in the harbour.

When k! # nr, the oscillations inside the harbour will change from the fundamental
standing wave into a different standing wave to fulfill the no-flux condition (2.4) on the

backwall of the harbour which is now at a different distance from the entrance so that the

antinode of the overall standing wave may not occur at the entrance (but will always occur
on the backwall of the harbour). Consequently, in order to satisfy the conditions (2.9)
and (2.10) simultaneously, the disturbance ¢4 arises outside the harbour, accompanied by
a further change of the oscillations inside the harbour. Therefore one may expect that the
quantity Ag which describes the disturbance outside the harbour with a definite meaning
might be related to the difference between the overall standing wave and the fundamental

one in the harbour.
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Since for different values of kl, the standing wave in the harbour will change in amplitude
and phase as well as the locations of antinodes, the difference between the overall standing
wave and the fundamental one in the harbour in general cannot be represented by another
standing wave, but is composed of two wave trains propagating in opposite directions with

different amplitudes. These two wave trains can be estimated as follows.

First, for a certain value of kI and at a certain instant t = t,, if the value of ¢ at point
P in figure 6 is Ape’?, the overall standing wave within the harbour at this instant can be
written as

b = %ﬂei(ﬂ+k:c+kl) + ATPei(ﬁ_k”_kl). (6.1)

in the coordinates shown in figure 1. On the other hand, if ¢; = Age’ at point O in figure
6 and at t = t,, the fundamental standing wave in the harbour at this instant can be
represented approximately as

_ o

o = : ei(a+kz)+%ei(a'k1)_ (6.2)

Therefore, if without loss of generality, the two wave trains representing the difference

between the overall standing wave and the fundamental one in the harbour are expressed as

¢out — Bei(a+k:+9)’ ¢in — Blei(a—kz+9/)’ (63)
we have
Bei® — A_Pei(ﬂ+kl—a) — ﬂ, (6.4)
2 2
Bt - ézze-m—u—a) _ %, (6.5)

By using (6.4), (6.5) and the given values of 4, and « as well as the numerical solutions
of Ap and g, the amplitudes B and B’ (and also the phase shifts § and ¢’) can be determined
and related to Ar for different values of k! in the cases of = 200 m and & = 50 m. The results
in figure 12 show that the amplitudes of these additional oscillations inside the harbour
are indeed linearly proportional to Ag; the slight deviations from the straight lines in the
case of b = 200 m are likely due to the situation that the value of ¢; at the harbour entrance
becomes less uniform when the width of the harbour b increases.

The linear relations in figure 12 suggest that except the fundamental standing wave,
other wave components inside the harbour may escape the harbour directly without being

partially reflected by the sudden widening at the entrance. Even if these waves could be
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partially reflected, the proportion of them which are reflected at the entrance should be
independent of the length of the harbour, otherwise the relation between Ar and B or B’
could not possibly be linear for different values of I. Thus the energy trapping rate by the
harbour cannot be reinforced by an adjustment of the phase of various waves inside and
outside the harbour through a change of i. Therefore, the harbour resonances may not

be attributed to the trapping of energy by the harbour. This situation will become even
clearer in consideration of the analytical solution of Unlilata & Mei (1973) and Mei (1983).

In their solution, diverging slightly from Mei’s (1983) notation, the surface displacement

¢4, which can be related to ¢4 by (4.2), can be written as

w@

X (1) —twt
5 Hy /' (kr)e ™%, (6.6)

4=

where
wQ _ —Api(kb/2) sin k!
29 coskl+ (kb/7)sinklln(vkb/me) — i(kb/2)sin kl

(6.7)

and H{" is a Hankel function of the first kind and r the distance coordinate in figure 1.
In (6.7), since normal incidence is under consideration, 4, stands for the amplitude of the
standing wave at the shoreline resulting from a combination of the incident wave and the
reflected wave by the seawall. The above solution characteristic of matched asymptotics
is valid in the region far from the harbour entrance (the solution in the vicinity of har-
bour entrance has also been derived simultaneously in Mei (1983)), but the effects of the
harbour on this solution have been taken into account by the parameter Q as its magni-
tude represents the discharge rate from a source at the origin and therefore approximates
to the amplitude of the discharge rate per unit depth through the harbour entrance (see
Mei 1983, §5.6 for details).

Since the quantity |wQ/2g| is essentially proportional to the amplitude of the radiated
waves at each point far from the harbour entrance and is independent of the locations, this
quantity will be related to the oscillations inside the harbour, which in terms of the total

surface displacement has the solution

Agcosk(z +1) .
coskl + (kb/r)sin klln(ykb/me) — i(kb/2) sin ki

C — —iwt (68)

(see (6.18) in §5.6.2 in Mei (1983)). From (6.6)-(6.8) it is immediately clear that when kI =

nx, the disturbance ¢, in (6.6) vanishes completely and in the meantime the solution (6.8)
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has an antinode at the entrance z = 0 with the amplitude equal to 4;. Thus a fundamental
standing wave inside the harbour can also be seen in this analytical solution. Therefore one
may again expect that when kl # nw, the quantity jwQ/2¢| might be related to the difference
between the overall standing wave and the fundamental one in the harbour. This difference
can still be represented by two wave trains propagating in opposite directions with different

amplitudes, which can also be estimated by using (6.4) and (6.5).

In this case, it follows from (6.8) that at ¢t = 0 and in terms of ¢, instead of ¢,

Ap = Ao {[cos ki + (kb/r)sin ki In(vkb/7e)]? + [(kb/2) sin ki]?} ~/*, (6.9)

B = tan~" {(kb/2)sin kl/[cos kI + (kb/m)sin klIn(ykb/me)]} (6.10)

and since without the disturbance ¢4, the standing wave outside the harbour is ¢ = 4 coskz
at t = 0, we have a = 0 at this instant. Therefore, for w = 2r/160 rad sec”' and in the water

of 15 m deep, by using the analytical solution and by substituting different values of I, we

obtain figures 13 and 14, which are very similar to figures 10 and 12 respectively.
In figure 14, the results for b = 200 m can fit a straight line as perfectly as those for

b = 50 m, because in the present case with normal incidence, the fundamental standing

wave inside the harbour can exactly balance the standing wave outside the harbour at the

entrance.

Apart from the sample results shown in figures 13 and 14, the expressions (6.9) and
(6.10) for Ap and B can be substituded into (6.4) and (6.5) to obtain the expressions for B
and B’. On the other hand, the expression for |[wQ/2g| can easily be obtained from (6.7).

Comparison between these results yields

“;_f — kb[(L + kb/2) + (kb/7)? In®(ykb/me)] /2B, (6.11)
g‘ = kb(1 — kb/2)* + (kb/7)* In® (ykb/e)] '/ B’ (6.12)

exactly.

The absence of the term ki from (6.11) and (6.12) ensures a linear relation between

lw@/2g| and B or B’ for a fixed value of kb. Furthermore, from (6.11) and (6.12) we also have

w@

= kb B)/2
| = k(B + B/
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or

Q| = i—kb(B + B') (6.13)

approximately (but exactly when kb — 0). Since the right-hand side of (6.13) represents the
largest possible value of the volume flux (or discharge) per unit depth through the harbour
entrance induced by the waves ¢our and ¢;, in (6.3) (because the fluxes due to ¢out and ¢y,
individually may be out of phase), these waves are unlikely to be partially reflected sig-
nificantly at the entrance, otherwise the above relation cannot be sustained even approxi-
mately (because the components reflected at the entrance, like the fundamental standing
wave, will make no contribution to the volume flux through the entrance and therefore to
|Ql). Thus it now becomes clear that the harbour resonances excited by the waves outside
the harbour through the entrance are not due to the reinforcement of the energy trapping by
harbours, but due to large incoming and outgoing energy fluxes through the entrance. The
latter however cannot be seen by inspection of the water surface oscillations in the vicinity
of the harbour entrance, because in this region, when the harbour resonates, a node of a
standing wave always occurs. This is also the reason why a large amount of incident wave
energy can be diffracted through the entrance into the harbour as it is required to relieve

a rapid change of the wave field from a node to antinodes on either side of the entrance.
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