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1. Introduction

Previous studies of the wave-current interactions, well documented in the review articles
by Peregrine (1976), Jonsson (1990) and Thomas & Klopman (1997), may be divided into
two categories: the first is to study the interactions between the waves and the currents
that are all horizontally uniform. In these studies, much attention has been given to the
effects of the large amplitudes of waves and the strong shear of currents. Consequently,
certain numerical calculations are often needed (see, for example, Simmen & Saffman 1985
and Teles da Silva & Peregrine 1988). However an analytical solution in terms of an infinite
series in powers of a certain parameter, which characterizes the smallness of the deviation
of the wave motion from the potential motion, was derived by Shrira (1993) for linear waves
propagating obliquely on a steady, strongly sheared current. Since this series solution can be
rapidly convergent in a practical situation, this solution, as pointed out by Shrira (1993), is
useful to the study of the ‘gradually varying problem’, which is among the second category.

In the second category, the underlying current is allowed to vary slowly in horizontal
directions due to perhaps a slowly varying bed. These variations will certainly result in the
corresponding slow modulations of the wave amplitudes and wavelengths. Modern theories
on this problem were begun by Longuet-Higgins & Stewart (1960, 1961), Whitham (1965),
and Bretherton & Garrett (1968), in which the idea of radiation stress was introduced
and the action conservation equation established for the case of an irrotational current.
Although these theories can be applied to many practical situations (e.g. waves on the
majority of tidal flows), there are situations (e.g. waves on a wind-drift current) in which
a highly sheared current exists so that these theories may become invalid.

An extension of the theories from irrotational currents to rotational ones has success-
fully been made by Jonsson, Brink-Kjcer & Thomas (1978) in a two-dimensional analysis,
in which new definitions and expressions for the radiation stress, the wave energy density,
and the wave action density have been given to include the effects of the constant vortic-
ity in a steady current. By consideration of the integral properties of the combined wave
and current motion across a fixed vertical section, an analytical expression for the varia-
tion of the wave amplitude with distance was derived rigorously, which in the same paper
has also been proved to be equivalent to the action conservation equation in terms of the

newly defined wave action density.

The two-dimensional analysis made by Jonsson et al. (1978) results in the action
conservation equation that is only one-dimensional and therefore has a limited application.

To investigate the ray theory and the conservation of wave action in a three-dimensional
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wave-current field without the assumption of irrotationality, White (1999) applied a formal
perturbation scheme to the boundary-value problem to obtain the WKBJ description of
the modulations of linear waves. In this approach, the spatial scales of the current in the
horizontal directions and in the vertical direction are assumed to be the same, meaning that
the resulting solution is valid only if the current varies slowly not only in the horizontal
directions but also in the vertical direction. Consequently, except a new equation for
a spatially varying phase shift, the dispersion relation and the two-dimensional action
conservation equation derived here for a weakly sheared current are not different from those
for the case of an irrotational current. Therefore, the theory of White (1999) may not be
considered as an extension of the theory of Jonsson et al. (1978) from a two-dimensional
case to a three-dimensional one.

In this study, the variation of the current velocity with depth can be one order of
magnitude faster than that in the horizontal directions, a situation which has also been
considered by Jonsson et al. (1978) in a two-dimensional analysis instead of the present
three-dimensional one. In this situation, if the variation of the current with depth is near
linear and if only the first-order WKBJ solution is pursued, it is unnecessary to explicitly
introduce the ordering parameters to scale the equations as did by White (1999) (see Shyu &
Phillips 1990 and Shyu & Tung 1999), so that the difficulties with two length scales among
the underlying current itself in this case can be avoided. On the other hand, according to
Shrira (1993), if the deviation from a linear profile of the variation of the current velocity
with depth is small, the series solution derived by Shrira (1993) will converge very rapidly,
which renders a one-term WKBJ solution possible. Therefore, in §2, we shall temporarily
neglect the slow variations in the horizontal directions and the slight deviation from a linear
profile in the vertical direction of the underlying current to obtain an exact solution of
the linear waves in this situation, which coincides with the zeroth-order term of the series
solution derived by Shrira (1993) and will hereafter be referred to as the basic solution.
This solution, if allowing its parameters to slowly vary, represents the first-order WKBJ
solution of the slowly varying wave train, although the variations of these parameters,
especially that of the wave amplitude, remain to be determined, for which the discussion

in §2 can also provide important information.

After the basic solution being given in §2, the WKBJ solution for deep-water gravity
waves propagating obliquely on a steady three-dimensional, strongly sheared current with
non-uniform vorticity will be deduced in §3 by consideration of the effects of the slow

variations in the horizontal directions and the slight deviation from a linear profile in the



vertical direction of the underlying current on each term of the differential equations in
the boundary-value problem. The results indeed take the same form as the basic solution
given in §2, although their parameters are now slowly varying. The differential equation
for determination of the modulation of the wave amplitude with distance has also been
derived in §3, which completes the first-order WKBJ solution.

The resulting modulation equation is compared with the two-dimensional action con-
servation equation in §4 that represents a natural extension of the one-dimensional one de-
rived by Jonsson et al. (1978) and therefore takes the vorticity of the current into account
but ignores the rotational perturbation velocity which may have the same order of mag-
nitude as the irrotational part of the wave motion in the present case. This comparison
indicates that in three-dimensional flow, unless certain restrictions are imposed on the dis-
tribution of the underlying current, the wave action defined by Jonsson et al. without con-

sideration of the rotational perturbation velocity is not conserved.

In order to see the reasons why the validity of the action conservation equation is limited
to a certain range of situations and why the wave action density cannot be redefined to
include the rotational perturbation velocity, in §5, the approach of Jonsson et al. (1978)
will also be applied to three-dimensional flow. In this analysis, in order to obtain a useful
equation for determination of the variation of the wave amplitude with distance, it is
required to impose the same restrictions on the distribution of the underlying current as
those imposed in §4 to validate the two-dimensional action conservation equation. The
resulting equation is indeed identical with the reduced forms of the two-dimensional action

conservation equation and the equation derived by the present approach in §3.

In a general situation without the restrictions imposed, the differences between the
action conservation equation and the modulation equation derived by the present approach
are significant and will be illustrated in §6 by numerical simulation, which can also provide
numerical evidence in support of certain ideas in the present approach that remains valid

in a general situation.



2. The basic solution

In this section we shall describe the exact solution of the linear deep-water gravity
waves propagating obliquely on a steady current U{U,(z),U,(z),0} uniform in the horizontal
directions but strongly and linearly sheared (constant vorticity) in the vertical direction.
This solution is closely related to the WKBJ solution, because when the velocity and the
vorticity of the underlying current become slowly varying in the horizontal directions and
in both the horizontal and vertical directions, respectively, the parameters in this basic
solution will similarly vary slowly, resulting in the WKBJ solution which represents the first-
order term of the asymptotic expansion of the solution for the ‘gradually varying problem’.
On the other hand, the basic solution defined here is also identical with the zeroth-order
term of the series solution derived by Shrira (1993) for waves propagating on a horizontally
homogeneous but vertically sheared current. In this series solution, the higher-order terms
arises due to the variation of the vorticity in the vertical direction. Therefore, by neglecting
the terms containing the derivatives of the vorticity in the theory of Shrira (1993), one
may easily obtain the basic solution. However, to recapitulate the situation and to provide
important information for the analysis in the ensuing section, the complete basic equation
is derived here following the precedent of Shrira (1993).

Since in the present circumstances, considering the vorticity dynamics, especially the
effects of rotation and extension or contraction of the vortex-lines, one may expect that
the oscillatory wave motion is no longer irrotational, we start with the Euler equation for

perturbations of velocity u{u,,u,,u.} and pressure p linearized upon the flow U

% Ouy Ouy ou, 1 @ ~0

or "V T, T T T
Ouy Ouy Ouy ou, 10p
ot +U18:U+Uy8y * 0z p@yio
(2.1)
6’LLZ 6Uz a'U/z 1 6]7
— 4+ U,—+U,—+—— =0
8t+ 8z+y8y+paz+g
Ou, Ouy Ou,
y -0
ox * dy 0z

where p is the density of the water and g the acceleration due to gravity. In (2.1), the choice
of the z— and y — axes of the rectangular coordinates are at our disposal. On the other
hand, since the underlying current U is uniform in the horizontal directions, the waves will

not be refracted by the current. Therefore the y — axis can be chosen to be parallel to the



wave crests so that all variables are independent of y and the above system of equations

can be reduced to

Ouy Ouy 10p
_ Q —_—— =
En —I—Umax + U, y+p8z 0

ou, Ou, 10p
a4 - 2.2
ot o Ox + p 0z t9=0 (2.2a)

Ouy n Oou,
ox 0z

and

Ouy Ouy
o Ve

— U =0 (2.2b)
where Q{Q,,Q,,0} denotes the vorticity of the underlying current U with Q, = —9U, /9> and
Q, = 9U,/0z in the present situation. Notice that the variables u, and U, as well as the
constant Q, are absent from (2.2a), meaning that if this situation also occurs to the free-
surface boundary conditions, the solutions of u,, v, and p as well as the wave phase velocity
will not be affected by the convection in the y —direction U, and its shear Q.. Nevertheless,
if Q, # 0 and w, # 0, according to (2.2b), the oscillatory velocity component u, will occur,
which is important for the development of the WKBJ description in the next section.

The boundary conditions at the free surface » = n(z,y,t) transformed on the plane z =0

corresponding to the unperturbed free surface for linear waves can be written as

n on _ _

(see Shrira 1993) which are indeed free from w,, U, and Q,. Therefore, one can solve (2.2a)

and (2.3) without consideration of u,, after which u, can be determined from (2.25).

Differentiating the first and second equations in (2.2a) with respect to z and z respec-
tively, combining the resulting equations into one to eliminate the pressure terms, and us-

ing the third of equations (2.2a), we obtain

Qoy gy Doy _ 9.4
o Uy =0 (2.4)

where w, = du,/0z — du,/0x represents the vorticity component of the wave motion in the
y — direction. Thus if initially w, = 0 everywhere, from (2.4) it will remain so in an inviscid
fluid. Therefore a two-dimensional velocity potential é(z,z,t) can be defined such that

9¢ _9¢
ox’ Y=

Uy =



The third of equations (2.2a) then requires

0% 0%
Thus in deep water we have
¢ _ Aekzei(kw—not), (26)

where A is a constant, k the wavenumber and n, the observed frequency of a chosen Fourier

component, and if the surface displacement
n= aei(kxfnot)7 (27)

where the amplitude a is a constant, from the boundary conditions (2.3), we obtain

g

A= —ika (2.8)
and
plo=0 = pgae!**mon),
where
o =ng — Ugsk (2.9)

is the intrinsic frequency relative to frame of reference in which the mean surface velocity
equals zero, and U,, = U,|.—o. Substituting all these results into the first and second

equations of (2.2a), we have respectively the dispersion relation
gk = 0% + o9, (2.10)
and the pressure fluctuations

p = —pgz + pgaeFzelr—not) _ paﬂyazekzel(kz_""t). (2.11)

The last term in (2.11), arising from the fact that U, = U, +Q,z, cannot be found when
the underlying current is irrotational, and is important for the analysis in §5. On the other
hand, the dispersion relation (2.10) is identical with the zeroth-order term of the series
solution derived by Shrira (1993), and also consistent with those presented by Thompson
(1949), Biesel (1950) and Teles da Silva & Peregrine (1988) for waves in an intermediate-
depth region.



Finally, from (2.2b) we have

uy = %aekzei(k:“"“t), (2.12)
meaning that when the wave profiles propagate obliquely on a horizontally uniform shear
flow, a transverse rotational perturbation velocity will occur, which can be as large as d¢/0x
and 9¢/0z if Q, has the same order of magnitude as o. On the other hand, if Q, has the
same order of magnitude as o, the two terms on the right-hand side of (2.10) have the same
order of magnitude too. Therefore, in the following discussion we assume that Q,, Q, and

o all have the same order of magnitude, representing a strongly sheared current.

Notice that since w, varies with z and z, the vorticity components w, and w, of the
oscillatory wave motion in the z— and 2 — direction are non-zero. On the other hand, since
U, varies with depth, according to (2.12), the value of u, will become infinity at a critical
layer where ng — U,k = 0. To avoid this singularity, the perturbations may become unstable
(see, for example, Morland, Saffman & Yuen 1991; Shrira 1993; Miles 2001). This subject
however goes beyond the scope of this work. Therefore the situation that the critical layers

exist will be circumvented in this study.

Also we remark that although in the present case, the solutions of u,, v, and p as well
as the dispersion relation (2.10) can be determined without consideration of the transverse
velocity component u,, the existence of the latter will affect the slow modulation of wave

train when the underlying current becomes gradually varying.



3. The modulation theory

In this section, the underlying current considered in §2 is allowed to vary slowly in
both the z— and y — directions and its vorticity components 2, and Q, can gradually vary
not only in the horizontal directions but also in the vertical direction. In this situation,
since all these variations are slow in the sense that their length scales are large compared
with the wavelength, the solution described in §2, when allowing its parameters to slowly
vary, represents the first term of the asymptotic expansion of the exact solution for this
‘gradually varying problem’. The modulations of these parameters will be derived in this

section, which can complete the so-called WKBJ solution for this case.

When a wave train propagates on a horizontally non-uniform current, the magnitude
and direction of the wavenumber vector k will both change with distance. However, even
in this case, the » — axis of the rectangular coordinates can be chosen to be parallel to
the local k at the position under consideration and the y — axis is therefore parallel to
the local wave crest. On the other hand, when the underlying current is non-uniform in
the horizontal directions, the mean water surface may not be horizontal, but according
to Phillips (1981), Longuet-Higgins (1985, 1987) and Henyey et al. (1988), the effects
of its slope and curvature on the wave motion are equivalent to those with a level mean
surface and with the gravitational acceleration g being replaced by the effective gravitational
acceleration ¢’ defined by Phillips (1981). Therefore, by using ¢’ instead of g and by using
the coordinate system chosen above in which the zy plane is tangent to the mean water
surface at the position under consideration, the solutions described in §2 can still have

implications for derivation of the WKBJ solution.

Since the differentiation of the slowly varying parameters increases the order of mag-
nitude by one each time, to derive the first-order WKBJ solution, the second-order deriva-
tives of the slowly varying parameters and the products of any two first-order derivatives
of these parameters can all be neglected in the following discussion. Similarly, since the
underlying current velocity is slowly varying in the horizontal directions and its vorticity is
slowly varying in all directions , this treatment can also be applied to the derivatives with
respect to z or y of U,, U, Q, and Q,, and to the derivatives with respect to » of Q, and ,,.
In this way, there is no need to explicitly introduce an ordering parameter to formally ex-
pand each of the unknowns in powers of the latter in the following discussion (see Shyu &
Phillips 1990 and Shyu & Tung 1999). Also, we emphasize that when the first-order deriva-
tives of the slowly varying parameters and quantities are taken into account, the second

term of the asymptotic expansion of each unknown should also be considered implicitly.



As a result, each quantity that has been solved in §2 will now possess extra terms, which
though one order of magnitude smaller than that obtained in §2 and eventually negligible
within the present approximation, must be included in the analysis. This situation also
occurs in a formal perturbation scheme in which the second term of the asymptotic expan-
sion is considered to derive the secular condition which leads to the modulation equation
for the first term of the expansion. After this, the second term of the asymptotic expan-

sion can be neglected in the WKBJ solution.

In addition to the quantities appearing in §2, some quantities that vanish in §2 will now
become non-zero owing to the slow variations of the mean flow in each direction. These
quantities will certainly be one order of magnitude smaller than their counterparts defined
in §2 and therefore are distinguished from them by using the symbols with a hat. For

example, from the continuity equation

. 9,  9U.
Or oy 0z

—0, (3.1)

and from the situation that oU,/ox # 0 and oU, /0y # 0 it follows that the component of the

steady flow in the z — direction U., though still vanishing locally at the mean water surface
(because the zy plane is tangent to this surface at the position under consideration), has a
small but non-zero value at the depth on the order of one wavelength, at which the steady
flow has a direct influence on the surface waves. Also the non-uniformity of the steady flow

in the horizontal directions implies that the vorticity component

o, _ 9,

y
Or oy

Q.

£0

On the other hand, since the curvature of the mean water surface is usually very small, the
quantities (8U./dx).—o and (0U./dy).—o remain negligible locally. Finally, in the present case,
the perturbation vorticity component &,, though small, also becomes non-zero. Therefore,
in addition to d¢/0x and d¢/9z, the rotational velocity components of the wave motion .,
and 4, also exist and are one order of magnitude smaller than d¢/0x and 9¢/9z as well as u,,.

Notice that if 7, does not vanish at the mean water surface, since its fast variation in
the horizontal directions can locally be represented by the function expli(kx —not)] and since
its slow variation can be neglected within the present approximation, it is always possible
to define an irrotational velocity field ¢ which takes the same form as (2.6) locally so that

8¢/9z can have the same value as @, at each point on the mean water surface. Therefore,



after subtracting 8¢/8z from 4., subtracting 8¢/0x from @,, and in the meantime, adding ¢
to ¢, the new rotational perturbation velocity becomes horizontal at the mean water surface,
and the new velocity potential still takes the same form as (2.6) except that the second term

of the asymptotic expansion of A becomes different. Consequently, the boundary condition
u, =0 at z=0 (3.2)

can be applied to simplify the analysis significantly.

In order to describe both the fast and the slow variations, the total velocity potential

can be written as

¢ = A(z,y)exp [/0 l(x,y,2) dz} elx(@w0) (3.3)
with
3}
k=Viy,  no= fa—’;, (3.4)

where V;, = (8/0z,0/0y) represents the horizontal gradient operator, k{k, k,} the wavenum-
ber vector, and i(z,y, 2) a slowly varying function of position. Since in the present coordi-
nate system, k, = 0 at the position under consideration, and from the relation (3.9) given
below, 1|.—¢ ~ k, the expression (3.3) together with (3.4) is indeed identical with (2.6) lo-
cally if the higher-order terms in the asymptotic expansions of A, k, and [ are neglected

and their slow variations are ignored.

From the first of equations (3.4) it follows immediately that

ok _ ok
dr Oy’

(3.5)

Also, from (3.4)

ok
E + Ving =0,

which is the kinematical conservation equation (Phillips 1977). Since in the present case
the underlying current is steady, we have dk/dt = 0 so that from the above equation n, is

constant everywhere.

Substitution of (3.3) and (3.4) into the three-dimensional Laplace equation yields

ok . 10A .0k ol
T 491k, — o2 — )
+ 2ik, +1i . +12+ . 0 at 2=0 (3.6)

—kZ+1
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in which the terms (1/4)(6%4/02%) and (1/A4)(0?A/8y?) have been neglected and the fact that
k, = 0 locally has also been taken into account. Furthermore, since the variation of the
wave motion in the y — direction at the position under consideration is slow, the second-
order derivative (9%2¢/0y?).—o = i(c’)k:y/c’)y)AeiX + (82A/8y2)ei’< ~ 1(0k, /ay)AeiX should also be
negligible here, meaning that at the position under consideration

Oky

5 =" (3.7)

within the present approximation. This important suggestion will later be justified analyt-

ically and numerically.

In (3.6), since both I and 9l/0~ exist, one cannot express [ in terms of other parameters
and their derivatives without another equation. In Shyu & Tung (1999), the relation (see

their (2.14))
ol .0k

ozl ‘oz

has been derived from the Laplace equation for the exactly two-dimensional case in which
the wave crest is straight. Since this relation involves only the small quantities representing
the derivatives of the slowly varying parameters, the small curvature of the wave crest
occurred in the present case will impose a modification of this relation even smaller and

therefore negligible. Thus, in the present case, we still have

ol - ,j% - i (ﬁ% + @%) = 7181% (3.8)
0z|,_q Ox

k Oz k Oz Oz
because k = (k2 +k2)1/? and k, = 0 locally. Therefore, substituting (3.7) and (3.8) into (3.6),
we obtain

1 0A

1|0 = k2 — 21ky— —.
|==0 v A Oz

Squaring both sides of it and neglecting the term (1/2k,)(1/A4)%2(0A/0z)? and the even higher

order terms, we finally have

lomo = k— i 22, (3.9)

We next consider the kinematic free-surface condition, which in the present case can

be written as

o [0 an (99 o 99 . 5 _
3t+(3z+uZ+Uz)8x+(3y+uy+Uy gy~ 9. T TU. At z=m
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After Taylor series expansions about z = 0, we have the linear wave approximation

on O O 9% <3Um +%> at 2=0 (3.10)

EJFUI%JFUyG_yi 0z Or dy

in view of (3.1) and (3.2). Therefore if the surface displacement is
1= a(z, y)eX@vD), (3.11)

substitution of (3.3), (3.4), (3.7), (3.9) and (3.11) into (3.10) yields

A .o 1 Oa Oa 10U, 0oU, .1 0A
—=—1-+— | Up= — — — — . 12
a ! +akz<U 6x+Uy6y>+k:<6x+8y)+lak6x (3:12)

From (3.12), neglecting the smaller terms containing the derivatives of the slowly varying

functions, we have
A e
—~ —1-. 3.13
: (313)

Its differentiation with respect to z and y yields

0A  .0da .ado .iﬁkz

dr  koz 1k8m+lak2 oz

(3.14)

and

0A .0c0a .adoc . o Ok

S e A P 1

oy lk dy 1k dy +1ak2 dy (3.15)
(Recall that 0k/dx = 0k, /0x, Ok/dy = Ok, /dy.) Therefore, by substituting (3.14) into (3.12)
for 0A/0z, one can express A in terms of other quantities and their derivatives within
the present approximation. Note that without consideration of the second term of the
asymptotic expansion of each quantity, (3.13) is again identical with (2.8), though the

parameters A, a, o and k are now slowly varying.

Finally, the dynamical free-surface condition is imposed by the requirement that the
pressure in the water at the free surface is equal to the atmospheric pressure which is
assumed to be constant here. Therefore, if at the free surface, the component of the
equation of motion in the s —direction (see figure 1), which is tangent to the instantaneous
free surface and perpendicular to the local wave crest, is under consideration, the pressure
gradient in this equation will vanish. The rest of the terms, though originally involving the

components of the quantities in the s—, y— and n — directions, can all be transformed into

12



the terms containing the components in the z—, y— and z — directions. This can be done

because in figure 1

0
cosa =~ 1, s1nama—n
T

for linear waves. The resulting equation can then be expressed as Taylor series expansions
about the mean water surface » = 0 so that after neglecting the higher-order terms of the
asymptotic expansions Q,0¢/dy, 10U, /0x, (0U,/0x)d¢/dy and U,du,/dy, and neglecting the

nonlinear terms of the oscillatory wave motion, we have

¢ ou, U, ,0n 0% 9% OU, 0¢ Oy 0%¢

24U =24+ U = U,—— — + U, U,
{98x+ ox yay}+{gaz+8z3t+ 222 V0w or T " 0n T M onay

Ly s VLU, o OUs O, OULOy | OUs U, o 0°Us

*92 0z |« Oz 0z | Tozdz! | ot | 0z ot | By 0z Yoyds
aU, ay  oU,
oy Zxr — = 1
+U, 9z oy + 3y uy} 0 at z=0, (3.16)

where ¢ is the height of the mean water surface (see figure 1).

Notice that in deriving (3.16), the fact that the velocity component in the n—direction at
the instantaneous free surface equals dn/ot for linear waves has been utilized. Furthermore,
the situation that n represents the surface displacement of the waves in the 2 — direction
(see figure 1) results in the replacement of g by ¢’ in the second braces in (3.16), which
in the present case is defined as gcosf. Finally we remark that since the curvature of the
mean water surface is usually very small, the derivative of ¢’ with respect to = has been
neglected in (3.16).

The above equation can also be deduced directly from the component of the equation
of motion in the x — direction evaluated directly at the mean water surface (so that no
Taylor series expansion about z = 0 is required) if the validity of the second of equations
(2.3) is assumed here. However the present derivation involves no such assumption so that
it is preferred here and can serve as a proof of the validity of the second of equations (2.3)

in the present circumstance.

In (3.16), the terms in the first braces are time-independent while the expression in the
second braces represents a linear combination of the time-harmonic terms. Therefore the

latter itself should vanish, resulting in

on 9% 26 OU, 06 926 oU, Oy OU, dn . U, dn
I_ —_ —_ _ —_ —_
U il e T v R s L v L Pl i e T o

oxr 0z + $8z32+ dy E—FUyayaz

2 2
(aUz oU, o?U,  9U, dU, 9 Uz) n=R at  z=0, (3.17)
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where
O Ot UL
ot * Ox Y oy

R= (3.18)

also evaluated at » = 0.

In (3.17), the terms on the right-hand side represented by R all contain the rotational
perturbation velocity component @, or u,. The sum of these terms will later be related to
those involving only the steady flow and the irrotational part of the wave motion so that
even without knowing ,, the modulations of the wave train and the dispersion relation can
still be determined. To achieve this purpose, we consider the component of the vorticity
equation in the y — direction evaluated at the mean water surface for the entire flow. After
neglecting the higher-order terms of the asymptotic expansions 4,08, /0x, (0Q,/0y)d¢/0y,
©,0U, /8y, Q,0%0/8y?, (8U,/02)0u,/dy and Q.82¢/020y, and neglecting the nonlinear terms of

the oscillatory wave motion, we have

0z

ot oz oy

0%U, 0’U, oU,9U, 90U, dU, 0 (0u, Oty oU, oU, du,
Uspaz + Uyprs + 2L - ¥ 2 +Up—2
0xdz 0yoz Oy 0z dy 0z 0z 0z

+

2 2 2
92U, 06 02U, 96 mg6¢}zo at 20 (3.19)

0xdz dr = 022 9z = 0z dxdy

in view of (3.2) and the fact that

0,  Ou, I

8m+8y+6z =0

Notice that although .|,—o =0, (04./02).—0 is in general non-zero.

In (3.19), the time-independent terms and the time-harmonic terms have again been

separated so that we have for the steady flow

2 2
0*U, U, U, 09U, 90U, U, _ 0 at z2=0, (3.20)

Uxax62+ y6y62+ 0y 0z dy 0z

and for the oscillatory wave motion

N N N 2 2 2
9 ( O, . O 8UI)8U18UZ PUL 06  PUL06  OUy 6 o (5o

22\ ot "or oy 92 0z ' 0x020x | 922 9z | 9z dxdy

The expression in the parentheses in (3.21) is identical to that represented by R in (3.18).
From (3.3), (3.5), (3.9) and the situation that &, = 0 locally, it is not difficult to prove that

the solution

R =

2 2
Weg, 4 OUs; OUs 4, OUy (igd)) at z2=0 (3.22)
y

Euz + 0x0z (i¢) + 022 0+ 0z
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can satisfy (3.21) within the present approximation. On the other hand, the uniqueness of
this solution can be substantiated as follows.

First, the differentiation of (0U,/92)0¢/0> (instead of (9%U,/92%)¢ which appears in
(3.22)) with respect to » will result in not only the term (02U, /922)0¢/9z occurring in (3.21)
but also the term (90U, /92)8%¢/9z? which is absent from (3.21). The latter term is even one
order of magnitude larger than the former term. Next, the derivatives with respect to 2
of the terms (90U, /8z)0¢/0x and U,02%¢/0z0y, instead of (02U, /0x0z)(i¢) and (90U, /8z)(i0¢/dy)
chosen in (3.22), also contain each an extra term that is not negligible even if the steady
flow U becomes irrotational so that @,, u, and @, in (3.21) vanish, which is certainly im-
possible. Finally, the choice of (0U,/dz)u, rather than U,0u./0z in (3.21) is because the dif-
ferentiation of the latter with respect to z also produces two terms which have the same
order of magnitude but only one of them really occurs in (3.21), while the differentiation of
the term (0U,/92)u, with respect to z results in (0U,/0z)0u./0~ and (6*U,/dz?)u,; the latter
is indeed negligible or even vanishes at z = 0 according to (3.2). More important, the latter
term can also be found in the original equation that leads to (3.19). This and the fact that
the fast variations in the » — direction of the last three terms in both (3.21) and (3.22) are

simply specified by the function e** can put even more confidence in the solution (3.22).

Since ,|.—o = 0, the relation (3.22) reduces to

R

2 2
Uy o OUs 0T, <i%) at =0 (3.23)

= 920z (1) + 072 o+ 0z \ Oy
of which the right-hand side is indeed devoid of the rotational perturbation velocity.
Notice that the differentiation of the right-hand side of (3.18) with respect to y will

increase the order of magnitude of each term by one so that the differentiation of the
right-hand side of (3.23) with respect to y, which results in the term (0U,/92)i(8%¢/dy?).—o
among others, should also be negligible. This justifies (3.7) analytically as (8%¢/0y?).—¢ ~
1(0k, /o) Aelx. The numerical evidence of (3.7) can also be found in §6.

The equation (3.17) together with (3.23) involves only n and ¢ as the unknowns. There-
fore, substituting (3.3) and (3.11) into (3.17), using (3.12) and (3.14) to eliminate A in

favour of a, neglecting the terms containing the second-order derivatives of the slowly vary-

ing functions and the products of any two first-order derivatives of these functions, and

15



then crossing out the common factor, we obtain

oU\ 10

a 8_y ox 8_y ox dy

oU,\ 1 0a Jdo do oU, %
0z

oU, 0U,  OU, dU, 02U, U, 0 U, (0 10a 100 o akz) aUy}
0z

or 02 "oy 02 Powo: "Vaye:  kowo: \kady TRy 2oy

at  z=0. (3.24)

2
+i{g/k0208U”E gaUI}

0z + k 022

Since without loss of generality, the amplitude a(z,y) in (3.11) can be defined as a real
function, from the imaginary and real parts of (3.24) and by making use of (3.20), we finally

have the dispersion relation

o 0%U,

2
glk =0 + UQyS — EW o (325)
and the equation specifying the slow modulation of the amplitude «
1 da 10a do do ) au,
"4+2 Q —— + (2040 -— — — 4+ 20— —
(9" +20Uss + ysUzs)a ox + 20+ ys)Uysa dy + Uss Ox +Uys dy +eo ox to dy
OUgs  OUys o 9%U, cl0a 100 o Ok,

Qs — = A K Y 3.26
+(8x + 3y) Y kazazz_0+(ka8y+k8y k2 8y) (3:26)

where Uy, Uys, Qs and Q,; denote the values of U, U, Q, and Q, at the mean water surface

respectively, so that

_9U,

oU,
e =
dy

0z

ouU,
ox

_ 9y
.e0 0z

~_ 9y
0z

_oU,
=0z

; st
z=0

z=0

2=0 z2=0 z=0

Notice that since Q,, represents specifically the component of vorticity perpendicular
to the local k and the latter may vary in the z — direction, the quantities 9Q,/0x and
(02U, /0202),—0 are generally not equal to each other; their difference will be evaluated in
(4.7).

Also we emphasize that if the higher-order term —(o/k)(0%U,/02%).—¢ and those inherent
in ¢’ are neglected, the dispersion relation (3.25) is again identical with (2.10), though
the quantities k, o, and Q,, are now slowly varying. Since these higher-order terms, when
substituting in (3.26), become negligible within the present approximation, and since the

slow variation of k and ¢ can be determined from that of the underlying current by using
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(2.9), (2.10), (3.5) and the fact that no = constant, the last term in (3.25) can be discarded
and ¢’ can be replaced by g in the WKBJ solution. Therefore, we have

gk = 0® + 0Qy;. (3.27)

This approximation will cause a spatially varying phase shift suggested by White (1999)
which as pointed out by White is insignificant if one is only interested in modulations of

the waves over large spatial scales, i.e. scales much larger than a wavelength.

Using (3.27) together with (2.9) and (3.5), and considering that ny = constant every-
where, all quantities in (3.26) except the amplitude a become known so that the modula-
tion of a can be determined numerically from (3.26), after which the modulations of 4 and
the amplitudes of p and u, can also be determined by using (3.13), (2.11) and (2.12) re-
spectively. All of these represent the first-order WKBJ solution of the waves propagating
obliquely on a steady three-dimensional, horizontally slowly varying and vertically strongly
sheared current with non-uniform but slowly varying vorticity.

Incidentally we note that if the component of the equation of motion in the y—direction
evaluated at the instantaneous free surface is considered, following the same approach
which leads to (3.24) and using the component of the vorticity equation in the z — direction
evaluated at z = 0, one can obtain an equation similar to (3.24). This equation, upon using

the result
U, 9°Uy  0U, 90U, U, U, _

; = t = 2
v 0xdz Yoyoz = ox 0z dr 0z 0 & #=0 (3.28)

derived from the time-independent terms of the component of the vorticity equation in
the z — direction, can be cancelled out completely, meaning that the dynamical free-surface

condition can indeed be satisfied by the present solution.
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4. The action conservation equation

When the underlying large-scale current is irrotational, the modulation of the wave
amplitude is determined by the action conservation principle established by Bretherton &
Garrett (1968), in which the wave action density is defined as the wave energy density
divided by the intrinsic frequency. This principle has later been proved by Jonsson et al.
(1978) to remain valid for two-dimensional gravity waves propagating on a steady two-
dimensional, horizontally slowly varying current which can nevertheless vary rapidly but
linearly with depth. In their theory, a different definition of the wave energy and the
intrinsic frequency has been made, which coincides with that of Bretherton & Garrett only
if the vorticity in the current vanishes. However, as pointed out by a referee of the paper,
the result of Jonsson et al. (1978) can also be written in terms of the wave energy defined as
the sum of the potential and kinetic energies calculated respectively from the perturbation
surface displacement and the perturbation velocity, and in terms of the intrinsic frequency
defined by (2.9). This wave energy, as found by the same referee, is (1/4)pa?(2g — Qys0/k) s0O

that in this two-dimensional problem, the action conservation principle can be written as
1 5 o _

. (Ums—l—Cg)Zpa (QQ_stE) /a} =0, (4.1)

where C, = 90 /0k represents the group velocity. (The difference between U, and the ‘formal

surface velocity’ defined by Jonsson et al. (1978) is proportional to «? and therefore is

negligible in the above equation.)

Since the dispersion relation (3.27) for the three-dimensional case does not involve any
quantities that will vanish in the two-dimensional case, this relation can be substituted into
(4.1), resulting in
1 da do GUM aUzs

2 40 Ups)——
(9+20Uss + yéU“)aaz Ox ox ox

st = O, (42)

because in the two-dimensional flow of inviscid fluid, (92U, /020z).—o = 0 in view of (3.20), a
situation which has also been assumed in Jonsson et al. (1978). Therefore the comparison
between (3.26) and (4.2) indicates that for the case of U, = 0 and 9/9y = 0, the result
(3.26) coincides with the action conservation equation. (Recall that within the present

approximation, ¢’ can be replaced by g in (3.26).)
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When U, # 0 and Q. # 0, but the rotational perturbation velocity u, occurring in this
situation is ignored in the definition of the wave action density, the action conservation

equation in the present coordinate system becomes
0 1, o 0 1, o B
92 (Ugs + ng)zpa (2g - stg) /O':| + ay {(UyS + ng)zpa (2g - QySE) /O':| =0 (4.3)

representing a natural extension of (4.1). In this situation, from the kinematical conserva-

tion equation,

ong 0 o Oky  OU, Ok,

- a.. zskx sk = a_ s A k s/ = 4.4
or or (040, + Uysky) or +U. or + Or Uy oy 0 (44)
ong 0 Jdo Ok, OUyLs
— = — Uspske +Uysky) = — + Ups—— + k =0 4.5

in view of (3.5) and the fact that k, = 0 and 0k, /9y = 0 locally. Therefore, by using (3.20),
(3.27) and (4.4), the expansion of (4.3) yields

1 0a 1 0a Jdo Jdo OUys oU,
20U, + N V=== 4 (20 + Q) Upys— — — — 42 i ys
(g —+ UUZ& + ysUZ5)a ax + ( o+ yé)Uyéa ay + Umé agj + Uys ay + 20 az +o ay
OUgs  OUys 1o 9%U, 1 /00U, Uy, Ok o Ok,
R z _ — 4+ ——— | Qs =0, 4.
(8x+8y) Y 2k8z3zz_0+2(8y k 8y+k28y) 0 (4.6)

in which the terms (1/2)(0?/k?)0k,/0y and (1/2)(c/k?)(0U,/0z)0k,/dy have been neglected
in view of (3.7). Notice that since in (4.3) (and (3.26)) the quantity Q,, represents the
component of vorticity tangential to the mean water surface and perpendicular to the local

k, we have

0Qys 0 [0 (ke ky 0 |ky OU, ky 0U,
or  Ox {82</{:UI+ k:Uy)]Z_Oﬁx {kz 0z Z:0+ k 0z |,
LU 1ok oy,
- 0z0z o kOx 0z |,
0?U, 1 0k,
= — ——— Oy 4.
0x0z|,_, k Oy (47)

at the position under consideration, meaning that the quantity 99,,/0z arising from the
expansion of (4.3) is not equal to (0°U,/920z).—o. The relation (4.7), including that k, =0
and 0k, /0y = 0, which are all valid only locally, has been utilized in deriving (4.6) so that
in this form, (4.6) is valid only locally too and can therefore be compared with (3.26).
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The comparison between (3.26) and (4.6) indicates that in a general case in which Q,
and (0?U,/0x0z),-0 are not small compared with ¢ and do/dz respectively, the wave action
defined by Jonsson et al. (1978), which does not take the rotational perturbation velocity
u, into account here, is not conserved. Even if 0, ~ 0 (so that u, ~ 0 according to (2.12))
but (02U, /020z).—¢ has the same order of magnitude as do/dz, the wave action defined by
Jonsson et al. still cannot be conserved. This situation is consistent with the theory of
Jonsson et al. (1978) in which the wave action has been proved to be conserved under the

assumption that €, is constant in a two-dimensional flow.

If both Q,, and (8?U,/020z).—¢ vanish but the remaining terms in (3.26) and (4.6)
are non-zero, meaning that the flow is three-dimensional, equations (3.26) and (4.6) co-
incide with each other exactly. Thus the action conservation equation derived by Jons-
son et al. remains valid in a more general situation than that considered in Jonsson et al.
(1978). Therefore it is interesting to see whether this conclusion can also be drawn from
an analysis using their approach, which may also explained why the condition that Q,, and
(02U, /0202),—0 are both small compared with o and do/0z, respectively, is crucial for the

validity of the action conservation equation.
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5. Application of Jonsson, Brink-Kjoer & Thomas’ approach
The approach applied by Jonsson et al. (1978) is based on the integral properties of

the combined wave and current motion across a fixed vertical section. This approach was
first applied by Longuet-Higgins & Stewart (1960) in their derivation of the radiation stress
tensor and was applied by Phillips (1977) to derive the expressions for the conservation
of mass, momentum and energy when a wave train propagates obliquely on a variable
irrotational current. The special arrangement made by Jonsson et al. (1978) is suitable
for a rotational current. However, to make this approach successful, it is required that
any vertical integral from the bottom to the free surface involved in the analysis can be
evaluated in terms of simple functions so that their derivatives with respect to z and y can
avoid the special functions, like the exponential-integral function, which cannot be found
in (4.6). This requirement cannot be fulfilled when the rotational perturbation velocity u,
given by (2.12), in which the denominator varies rapidly, is not negligible. This is also the
reason why the wave action density cannot be redefined to include w, if the latter is not
negligible. Therefore, the condition that Q, = 0 everywhere (but U, # 0) is imposed here
first, which ensures that u, = 0 according to (2.12). This situation may actually occur when
a highly sheared flow with non-uniform vorticity is generated by a wind stress acting on
the boundary of an irrotational tidal flow and in the direction perpendicular to this flow.
The vertical integrals after being solved will be differentiated with respect to z and
y to establish the equations for the conservation of mass, momentum and energy. Since
each differentiation will increase the order of magnitude by one, these vertical integrals
themselves can be evaluated without consideration of the slow variations of the quantities
in the integrands. For example, although the slow variation of oU,/dz in the =~ — direction
can significantly affect the vertical integrals of the quantities involving U, if the water is
very deep, this slow variation influences the surface waves only slightly according to (3.25)—
(3.27). Therefore, for the sake of simplicity and without loss of the generality of the wave
modulation theory, the slow variation of 9U,/dz in the z—direction can be assumed vanishing
here. This argument can also be applied to the variation of U, in the » — direction which

can occur due to the slow variation of the mean flow in the horizontal directions but can
however be neglected in the vertical integrals by assuming that the value of oU, /0x +0U, /0y

is non-zero (but small) only in the region near the mean water surface in which the mean
flow can have influence over the wave motion. Therefore, in the following discussion it

is assumed that U, = 0 as did by Longuet-Higgins & Stewart (1960), Phillips (1977) and

Jonsson et al. (1978). Similarly, in this approach, it is unnecessary to consider the second
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term of the asymptotic expansion of each unknown, meaning that the components of the
rotational perturbation velocity %, and %, can also be disregarded in the vertical integrals.
Therefore, it suffices to substitute all the solutions in §2 except u, into the vertical integrals

for the local properties of the wave motion.

Following the precedent of Jonsson et al. (1978) (and Phillips (1977) for a three-

dimensional analysis), we first define the radiation stress

n 0 n o _
Sas :5ag/ pdzféag/ (—pgz) derp/ UaUg dz—p/ UUsgdz, (o,0=1,2), (5.1)
_h —h —h —h

where a overbar denotes averaging over the (constant) observed period, .5 is the unit

tensor (6,5 = 1 if o = g and vanishes otherwise), h the local mean water depth,
-~ _ . _ 09
+ Uy, UQEuyEa—erUy:Uy (5.2)

the total horizontal velocity components, and U, = U,, U, = U, the z, y components of a

‘formal current velocity’. The profiles of the latter are defined as

Up(2) = Ups + Qy2, Uy(z) = Uy, (5.3)

where U,,, ﬁys, and , are independent of z. The relations between U, and U, and between

U, and U, can be established from the requirement that

/%y@m:/zmam /ﬂ@@M:/%M@M (5.4)

—h —h —h —h

Substituting (2.6), (2.8), (5.2) and (5.3) into (5.4) and recalling that

Up = Ups + Q2. U, =U,s, (5.5)
we obtain
~ 2 9] ~
Uzs = Ugs + UZ;L ya2; Uys = Uys (56)

correct to the second order in (ak). To achieve these results, the mean water depth & is
assumed to be large compared with the wavelength so that the solutions (2.6) and (2.8) for

deep-water waves can be valid.

In order to solve the first integral in (5.1) to the second order in (ak), the mean pressure
distribution

D= —pgz — 502a2e2kz, (5.7)
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correct to the second order in (ak) and valid even for a vortical flow (see (3.2.17) in Phillips
(1977)) is also required in addition to (2.11). By substituting all these results and the

solutions given in §2 into (5.1), we obtain

Si1 = BgaQ + gﬂy(Qo + Qy)th

4

p
522 = EO‘an2 (58)
S12 =821 =0

correct to the second order in (ak).

Next the total mean energy flux per unit area

n
F, :/ [p+ pg(z+0) + 2@ + B+ B)| Tadz,  (a=1,2) (5.9)
—h

where

Us =u, = 09/0z+ U, = dp/0z (5.10)
and b = b(x,y) represents the height of the mean water surface above a reference level (see
figure 2) specified for determination of the potential energy. Notice that the term pgbi,
must be included in (5.9) to take into account the situation that the mean water surface is
not horizontal, because this term will result in the terms containing db/dx or 9b/dy in the
final energy conservation equation, which like other terms in this equation, contain only one

first-order derivative of the slowly varying quantities and therefore cannot be neglected.

By substitution and after some lengthy manipulations, we obtain

P 2 2 P 2, P s 3 5 2 2.2 2 Ls;2
Fy 7EJ Ugsa” + 4—ng¢1 + igUma — gpa <QJQyUmh + §Jth — QyUthr ngh
p [ = p [0 sam ~
+§/ U dz+§/ UU, dz + pgbhUnpy (5.11)
—h —h

0 0
p p 1 p ~or p ~ ~
Fy :§gUysa2 + 1“2 (ngUysh + 5(2§Uysiz) +5 /_h U2U, dz + 3 / . Usdz + pgbhUpy, — (5.12)

where Uy, = (1/h) 7, U, (2) dz = Uys — Qyh/2 and U,y = (1/h) [7, G, (2) dz = Uy (see (5.3) and
(5.4)), the average-over-depth velocity.

On the other hand, the mean total momentum flux M,z per unit area equals the sum
of the first and third terms on the right-hand side of (5.1). Thus

0

Mag = Sap + ggh%aﬁ + p/ U,Us dz, (a,8=1,2). (5.13)
h
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The horizontal components of the mean total pressure force acting on the fluid at the bed

per unit length in the z— and y — directions are

D D
P = pgha— and P, = pgha—,
Or dy

respectively; see figure 2. The equations —0M,,/0x — OM,2/0y + P, = 0,(a = 1,2) of total

momentum conservation therefore take the form

9Sy,  9S12  0 ERPU o ERPURS b
— U,U, d — U,U,d h— =0, 5.14
8x+8y+8z<p/h Z)+8y<p/h R AR (5:14)

885  0Sy O LRPURS o 0 - b
— U,U,d — U,U,d h— = 0. 5.15
O + By +8z (P/h y Z)+3y(p/h yUydz | + pg By ( )

Also the equation expressing total energy conservation is simply

oF, n OFy

el T e 1
dxr Oy 0 (5.16)

where F; and F, are given by (5.11) and (5.12) respectively.

The equations (5.14)—(5.16) can be combined into one equation to eliminate the terms
devoid of the wave amplitude a. To achieve this purpose, we multiply (5.14) by U,.. and
(5.15) by Uy, and then subtract the resulting equations from (5.16), so that the terms
originated from the last terms in (5.11), (5.12), (5.14) and (5.15) can immediately be

cancelled out in this operation, considering the mass conservation equation

0 ~ 0 ~

7 Umsh) + 52 (Unyh) = 0. (5.17)
The integrals in (5.11), (5.12), (5.14) and (5.15) can also yield the terms free from « in this
operation. However, by using (5.17) repeatedly and in consideration of (3.20), (5.3), (5.4)

and (5.6), it can be proved that

0 (1 [% ~4 1[0~ 9 (1 [0 5~ 1[0~ ~ 9 ([ ~,
- ) o _ - ) o _ . B 0~2
_ Umza—y (/h UzUydz) — Umy% (/h UmUydz) _U’”ya_y (/h U, dz)

Lsg 0

2049, 5, 1
S a2— =
12 Y ox 4h 2

Q,h ). (5.18)
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Therefore, if 0Q,/0x # 0, the terms originated from the integrals in (5.11), (5.12), (5.14)
and (5.15) cannot be cancelled out in this operation and will yield a term free from a which
cannot be eliminated by other terms, meaning that in this situation the integral approach
will fail for an apparent reason. Hence we here restrict our consideration further to the
case that 9Q,/0z = 0, which corresponds to the second requirement mentioned at the end
of §4 for the validity of the action conservation equation (since 9Q,/0x = (8°U,/d20z).—o in

the present situation when Q, = 0 according to (4.7)).

The rest of the terms in the resulting equation from this operation, all containing the
wave amplitude a, can also be divided into three groups. The first group is devoid of h while
each term in the second and third groups contains respectively h and h? as the common
factor. Since h can be very large compared with the wavelength and can be changed without
affecting the wave motion and the current field in the region near the mean water surface,
the terms in these three groups should be balanced separated, leading to three equations.
However, if 0Q,/0x = 0, the terms in the third group are completely cancelled out, and in
the meantime, the two equations from the first and second groups coincide with each other

exactly and can be written as

1 0a 19da do do ouU, ou.
2 xs Q xs) T o 2 Q s 5 rs oy s 2 - Yo
(94 20Uss + 2. )a6x+(g+ v)Uy a8y+U 6x+Uy 8y+ v to oy
ys  OU,,
Q, =0. 5.19

Therefore the condition 99,/0r = 0 is indeed important for the application of the integral

approach.

Since in the present analysis, Q, = Q,,, equation (5.19) is exactly identical with (4.6)
(and (3.26) if ¢’ is replaced by g in the latter) when Q. = 0 and 0Q,/0x = 0. Therefore, by
using the approach of Jonsson et al. (1978), we again prove that when Q. = 0 and 9Q,,/0x =
0, even if U, # 0 and 90U, /9y # 0, the action conservation equation remains valid. However,
in a more general situation in which Q,, = 0 but 9Q,,/0x # 0, although the rotational
perturbation velocity w, still vanishes so that the wave action density can be defined without
ambiguity and the vertical integrals can be evaluated in terms of simple functions, the
approach of Jonsson et al. (1978) may still fail and the action conservation equation
becomes invalid as shown in §4. However, in this situation and in an even more general
situation in which the underlying current varies slowly in the horizontal directions and its

vorticity components Q, and ©, are both large and vary slowly in all directions, equation
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(3.26) remains valid. In this general situation, the difference between the predictions by
(3.26) and by the action conservation equation (4.6) in which the wave action density is

defined without consideration of w,, will be illustrated numerically in the next section.
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6. Numerical computations

Since the differential equations (3.26) and (4.6) are derived in the specifically oriented
rectangular coordinates and since the forms of these equations are valid only locally, it is
convenient to solve these equations by using a special stepwise numerical integration as

illustrated in the following numerical simulation.

In this simulation, the velocity distribution of the underlying current is given as

U = —2.0 — 0.0020852" — 0.005049y’ + 1.5z’ + 0.000752'z" — 0.0013y'z’ (ms~) }
(6.1)

U, = 1.1547 — 0.00005z" — 0.004915y" + 0.8662" + 0.0004332"2" — 0.00075y"2" (m s™h

where 2/, 3/, 2/, unlike the coordinates z, y, z which move with the position under consid-
eration, represent a fixed rectangular coordinate system as shown in figure 3, and U, U}
the velocity components in the 2/~ and 3 — directions. This distribution under a rotation

of the coordinates by an angle 30° about the 2’ — direction also takes the form

Ul = —1.1547 — 0.0052" — 0.005y" + 1.7322" — 0.001732y"2" (ms™!) }
(6.2)

— —1
U, =2-0.002y" (ms™")

in terms of the new coordinates z”, y”, 2” and the new components U}/, U, in the z”"— and

y" — directions. In this form, this distribution can easily be proved to satisfy the vorticity
equations (3.20) and (3.28).

Notice that from (6.2), the quantities oU}/ /92" and 0*U}/92"0z" both vanish. There-
fore, if at a certain position the waves propagate in the z” — direction, the wave action can
be conserved according to both (3.26) and (5.19) compared with (4.6). However, for waves
propagating in other directions, equation (5.19) becomes invalid and the following compu-
tations will show that the wave action defined without consideration of the rotational per-
turbation velocity which has the same order of magnitude as the irrotational one in this
situation is not conserved.

To conduct the computations, the boundary conditions are prescribed on 2/ = 0 on
which the amplitude ¢ = constant = 1 m and the component of the wavenumber on the
y' — direction kj = constant = 0, meaning that at each point on z’ = 0, the axes of the
coordinates z, y, z applied in (3.26) and (4.6) are in the same direction as those of 2/, v/, 2/,
respectively. On the other hand, since ny = constant everywhere, from (2.9) and (3.27) it is
clear that the magnitude of the wavenumber k cannot remain constant as U,, and Q,, vary

on 2z’ =0 according to (6.1). However, since no = 0.5 rads~! is chosen here, these variations
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and that of k& are slow near the origin of the coordinates z’, ¢/, 2 at which the wavelength

is about 23.5 m in view of (2.9) and (3.27).

On 2/ = 0, the value of k, at each point has been prescribed so that the value of the
wavenumber component on the 2’ — direction &/ at the same point can be calculated by
using (2.9) and (3.27). Next, from the values of &/ at points 4 and C in figure 3, one can
estimate the value of 9k’ /9y’ at point B by using the approximation

ok,
Yy’

() KA KAC)

Since 9k, /0x' = 8k}, /0y’ and

ok, K,(E)-K,(B) kE)

8:6’( )~ Az’ Az’

the value of k) (E) can therefore be determined approximately from the values of £/, (A) and
k.,(C), and is usually non-zero. Substituting the value of k}(F) into (2.9) and (3.27), we also

obtain the value of k¥’ (E).

When &} (E) is non-zero, to directly apply (3.26) at point £, a new rectangular coordinate
system is required so that we next proceed to determine the components k,(G) and k,(G)
in the coordinates z, y, z in which k,(E) =0 (see figure 3). This can be done because from
(3.7) we have k,(D) =0 and k,(F) = 0 approximately, so that in this new coordinate system
the situation at point E becomes the same as that at point B in the old coordinate system.
Therefore, by using the same group of formulae and equations, one can estimate the values
of k(@) and k,(G). This procedure can be repeated to determine the variations of k along

the line whose tangent is everywhere parallel to the local k.

At each point on this line, after the values of k and therefore o as well as their derivatives
with respect to 2 and y are determined, all quantities involved in (3.26) except (1/a)da/ox
and (1/a)8a/dy become known. Therefore (3.26) can be integrated step by step along the
same line for the solution values of a along this line. The difference between this procedure
and that for the solution of k is that the solution values of a at the two neighboring
points on the adjacent lines on both sides of the line under consideration will be utilized
to estimate the value of da/dy at the point under consideration, which provides the last
data for determination of the value of a at the next point on this line, using (3.26). Thus
the values of a on each of the lines whose tangents are everywhere parallel to the local k

depend on the values of a on other lines, contrary to the situation that the values of k
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on each of these lines are independent of those on other lines. This is because these lines
do not coincide with the characteristic curves of equation (3.26), but on the other hand,
the equations (2.9), (3.5) and (3.27) represent a degenerate hyperbolic system in which all
directions are formally characteristic (see Whitham 1974, §5.1). Since the situation that
the values of k on each line are independent of those on other lines has been realized in the
present computations by using (3.7), equation (3.7) may therefore be consistent with the

set of equations (2.9), (3.5) and (3.27).

When point E is under consideration, since the points D’ and F’ in figure 3 are not on the
y—axis, the value of da/dy at point E can be estimated only by an iterative algorithm. This
algorithm starts with an initial guess (9a/0y)(E) = (a(D') — a(F"))/(2Ay") and then estimates
(9a/0x)(E) by using (3.26). These two quantities also satisfy the relation

a(D’) — a(F") da

Oa
li —————~ =sginf—(F —(F .
i VY, sm@ax( )—i—cos@ay( ), (6.3)

where 6 = 0; = 0, in this case (see figure 3). Therefore, approximating the value of

o a(D') —a(F)
Alylflgo 27y’
by (a(D") — a(F'))/2Ay" and substituting the first iterate of (9a/92)(F) into (6.3), we obtain

a new approximation for (9a/0y)(E) so that these computations can be repeated until the

iterates converge.

These computations will become a little more complicated when the iterative algorithm
is applied to the next point G and the points after, because at each of these points, its two
neighboring points on the adjacent lines usually cannot be connected with each other by
a straight line passing through the point under consideration, meaning that 6; # 6, now.

Therefore, instead of (6.3), we consider

. a(D)—a(E) . Oa da
dlllglO — 4 - sin 91£(E) + cos 6 ay (E),

. a(E)—a(F) . Oa Oa
dlzlglo & = sin 6y o (E) + cos b 9 (E),

where d; and d, represent respectively the distances between D’ and E and between E and
F'. By using these two relations, one may obtain two approximations for (9a/dy)(E) in each
iteration, but their mean value can eventually be applied in the iterative algorithm, which

may improve the stability of the numerical solution.
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The solution values of a along a single line are shown in figure 4, in which we also
compute the numerical solution of (4.6) by using exactly the same algorithm. The results
indeed indicate that in a three-dimensional, strongly sheared current, the variation of the
wave amplitude with distance is significantly different from that predicted by the action

conservation equation (4.6).

In order to check the computer program and to justify (3.7) which has been utilized not
only in the derivation of (3.26) but also in the above numerical computations, we also solve
the action conservation equation (4.3) and equation (3.26) on a rectangular mesh in the
coordinates z’, v/, 2/ in figure 3. In these computations, to determine k at the next point,
the value of 9k’ /0y’ at the point under consideration can always be estimated from the
values of &/, at the neighboring points which have been determined at the previous step of
the computations, so that it is unnecessary to make use of (3.7) here. Similarly, the second
term in (4.3) can be estimated from the data determined previously, so that this equation
can also be solved by ordinary stepwise numerical integration without using the iterative
algorithm. On the other hand, each quantity in (3.26) which represents the component of a
vector or tensor can be expressed in terms of the components of this vector or tensor in the
coordinates z’, 3/, 2’ through a transformation of axes at each point under consideration.
Therefore (3.26) can also be solved numerically by using rectangular grids at the expense
of introducing extra terms in the equation, which will complicate the equation significantly,
but can however avoid using the iterative algorithm.

By using a rectangular mesh in the coordinates 2/, 3/, 2/, the values of « and k at the
points marked with crosses in figure 5 have been calculated, from which the values of a and
k at the points marked with circles in figure 5 can also be estimated by linear interpolation.
These results as shown in figure 4 and 6 coincide very well with their counterparts obtained
by stepwise integration along a curve whose tangent is everywhere parallel to k. Therefore,
the use of (3.7) in the numerical computations has been justified. Furthermore, since in
deriving (4.6) from (4.3), two terms containing ok, /dy have been neglected, the situation
that the solution values of (4.3) and (4.6) at each point coincide with each other closely
can also justify the neglect of the terms containing dk,/dy in the analysis, although in the

present case both (4.3) and (4.6) cannot really describe the variation of the amplitude.
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7. Conclusions

By using an approach which is not separate from the traditional perturbation scheme
but can deal with the complicated situation in which a deep-water gravity wave train
propagates obliquely on a steady three-dimensional, strongly sheared current that varies
slowly in the horizontal directions and deviates slightly from a linear profile in the vertical
direction, the first-order WKBJ solution, including the modulation equation of the wave
amplitude, has been derived rigorously. This modulation equation is in general inconsistent
with the two-dimensional action conservation equation which represents a natural extension
of the one-dimensional one derived by Jonsson et al. (1978) and therefore take the vorticity
of the current into account but ignores the rotational perturbation velocity that may have
the same order of magnitude as the irrotational part of the wave motion in the present
situation. Thus, in a region with a strongly sheared current, the wave spectrum data
estimated from the action conservation equation may sometimes be misleading.

When the combined wave and current motion becomes two-dimensional and the vor-
ticity is constant, the modulation equation derived here reduces to the one-dimensional ac-
tion conservation equation deduced by Jonsson et al. (1978). Even if the underlying rota-
tional current is three-dimensional, as long as Q,, and (02U, /9x0z).-o are small compared
with ¢ and do/0x respectively, the present result can still coincide with the reduced form

of the two-dimensional action conservation equation in this case.

To explain why these two restrictions on the distribution of the underlying current are
both required for the validity of the action conservation equation, the approach of Jonsson
et al. (1978) considering the integral properties of the combined wave and current motion
across a fixed vertical section has also been applied in the three-dimensional flow. From
this analysis, it is immediately clear that if Q, has the same order of magnitude as o so
that the rotational perturbation velocity u, has the same order of magnitude as 9¢/0x and
0¢/0z, since the vertical integrals from the bottom to the free surface of the terms involving
u, cannot be evaluated in terms of simple functions, the wave action density cannot be

redefined to include the contribution of w, in the usual sense.

Similarly, in order that all the vertical integrals involved can be evaluated in terms of
simple functions, the condition that Q, is small compared with o is also required for the
approach of Jonsson et al. (1978) being valid. In addition, to cancel the terms unrelated
to the wave-current interaction to obtain a useful and consistent differential equation for
determination of the variation of the amplitude, it is also required that (02U,/0z20z).—¢ is

small compared with do/0z. The resulting equation is indeed identical with the reduced
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forms of the two-dimensional action conservation equation (4.6) and the modulation equa-

tion (3.26) in this case.

Finally we emphasize that even when Q, = u, = 0 so that the wave action density
can be defined without ambiguity, as long as (9%U,/010z).—¢ is not small compared with
do/0x, the wave action is not conserved, meaning that the failure of the conservation of
wave action cannot be attributed solely to the neglect of the rotational part of the wave
motion in the definition of the wave action density, which will increase the difficulties for a
physical interpretation of this failure and for establishment of a new conservation principle.
However, equation (3.26) can be utilized to determine numerically the variation of the

amplitude with distance in a general situation.
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