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1. Introduction

Previous studies of the wave-current interactions, well documented in the review articles

by Peregrine (1976), Jonsson (1990) and Thomas & Klopman (1997), may be divided into

two categories: the first is to study the interactions between the waves and the currents

that are all horizontally uniform. In these studies, much attention has been given to the

effects of the large amplitudes of waves and the strong shear of currents. Consequently,

certain numerical calculations are often needed (see, for example, Simmen & Saffman 1985

and Teles da Silva & Peregrine 1988). However an analytical solution in terms of an infinite

series in powers of a certain parameter, which characterizes the smallness of the deviation

of the wave motion from the potential motion, was derived by Shrira (1993) for linear waves

propagating obliquely on a steady, strongly sheared current. Since this series solution can be

rapidly convergent in a practical situation, this solution, as pointed out by Shrira (1993), is

useful to the study of the ‘gradually varying problem’, which is among the second category.

In the second category, the underlying current is allowed to vary slowly in horizontal

directions due to perhaps a slowly varying bed. These variations will certainly result in the

corresponding slow modulations of the wave amplitudes and wavelengths. Modern theories

on this problem were begun by Longuet-Higgins & Stewart (1960, 1961), Whitham (1965),

and Bretherton & Garrett (1968), in which the idea of radiation stress was introduced

and the action conservation equation established for the case of an irrotational current.

Although these theories can be applied to many practical situations (e.g. waves on the

majority of tidal flows), there are situations (e.g. waves on a wind-drift current) in which

a highly sheared current exists so that these theories may become invalid.

An extension of the theories from irrotational currents to rotational ones has success-

fully been made by Jonsson, Brink-Kjœr & Thomas (1978) in a two-dimensional analysis,

in which new definitions and expressions for the radiation stress, the wave energy density,

and the wave action density have been given to include the effects of the constant vortic-

ity in a steady current. By consideration of the integral properties of the combined wave

and current motion across a fixed vertical section, an analytical expression for the varia-

tion of the wave amplitude with distance was derived rigorously, which in the same paper

has also been proved to be equivalent to the action conservation equation in terms of the

newly defined wave action density.

The two-dimensional analysis made by Jonsson et al. (1978) results in the action

conservation equation that is only one-dimensional and therefore has a limited application.

To investigate the ray theory and the conservation of wave action in a three-dimensional
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wave-current field without the assumption of irrotationality, White (1999) applied a formal

perturbation scheme to the boundary-value problem to obtain the WKBJ description of

the modulations of linear waves. In this approach, the spatial scales of the current in the

horizontal directions and in the vertical direction are assumed to be the same, meaning that

the resulting solution is valid only if the current varies slowly not only in the horizontal

directions but also in the vertical direction. Consequently, except a new equation for

a spatially varying phase shift, the dispersion relation and the two-dimensional action

conservation equation derived here for a weakly sheared current are not different from those

for the case of an irrotational current. Therefore, the theory of White (1999) may not be

considered as an extension of the theory of Jonsson et al. (1978) from a two-dimensional

case to a three-dimensional one.

In this study, the variation of the current velocity with depth can be one order of

magnitude faster than that in the horizontal directions, a situation which has also been

considered by Jonsson et al. (1978) in a two-dimensional analysis instead of the present

three-dimensional one. In this situation, if the variation of the current with depth is near

linear and if only the first-order WKBJ solution is pursued, it is unnecessary to explicitly

introduce the ordering parameters to scale the equations as did by White (1999) (see Shyu &

Phillips 1990 and Shyu & Tung 1999), so that the difficulties with two length scales among

the underlying current itself in this case can be avoided. On the other hand, according to

Shrira (1993), if the deviation from a linear profile of the variation of the current velocity

with depth is small, the series solution derived by Shrira (1993) will converge very rapidly,

which renders a one-term WKBJ solution possible. Therefore, in §2, we shall temporarily

neglect the slow variations in the horizontal directions and the slight deviation from a linear

profile in the vertical direction of the underlying current to obtain an exact solution of

the linear waves in this situation, which coincides with the zeroth-order term of the series

solution derived by Shrira (1993) and will hereafter be referred to as the basic solution.

This solution, if allowing its parameters to slowly vary, represents the first-order WKBJ

solution of the slowly varying wave train, although the variations of these parameters,

especially that of the wave amplitude, remain to be determined, for which the discussion

in §2 can also provide important information.

After the basic solution being given in §2, the WKBJ solution for deep-water gravity

waves propagating obliquely on a steady three-dimensional, strongly sheared current with

non-uniform vorticity will be deduced in §3 by consideration of the effects of the slow

variations in the horizontal directions and the slight deviation from a linear profile in the
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vertical direction of the underlying current on each term of the differential equations in

the boundary-value problem. The results indeed take the same form as the basic solution

given in §2, although their parameters are now slowly varying. The differential equation

for determination of the modulation of the wave amplitude with distance has also been

derived in §3, which completes the first-order WKBJ solution.

The resulting modulation equation is compared with the two-dimensional action con-

servation equation in §4 that represents a natural extension of the one-dimensional one de-

rived by Jonsson et al. (1978) and therefore takes the vorticity of the current into account

but ignores the rotational perturbation velocity which may have the same order of mag-

nitude as the irrotational part of the wave motion in the present case. This comparison

indicates that in three-dimensional flow, unless certain restrictions are imposed on the dis-

tribution of the underlying current, the wave action defined by Jonsson et al. without con-

sideration of the rotational perturbation velocity is not conserved.

In order to see the reasons why the validity of the action conservation equation is limited

to a certain range of situations and why the wave action density cannot be redefined to

include the rotational perturbation velocity, in §5, the approach of Jonsson et al. (1978)

will also be applied to three-dimensional flow. In this analysis, in order to obtain a useful

equation for determination of the variation of the wave amplitude with distance, it is

required to impose the same restrictions on the distribution of the underlying current as

those imposed in §4 to validate the two-dimensional action conservation equation. The

resulting equation is indeed identical with the reduced forms of the two-dimensional action

conservation equation and the equation derived by the present approach in §3.

In a general situation without the restrictions imposed, the differences between the

action conservation equation and the modulation equation derived by the present approach

are significant and will be illustrated in §6 by numerical simulation, which can also provide

numerical evidence in support of certain ideas in the present approach that remains valid

in a general situation.
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2. The basic solution

In this section we shall describe the exact solution of the linear deep-water gravity

waves propagating obliquely on a steady current U{Ux(z), Uy(z), 0} uniform in the horizontal

directions but strongly and linearly sheared (constant vorticity) in the vertical direction.

This solution is closely related to the WKBJ solution, because when the velocity and the

vorticity of the underlying current become slowly varying in the horizontal directions and

in both the horizontal and vertical directions, respectively, the parameters in this basic

solution will similarly vary slowly, resulting in the WKBJ solution which represents the first-

order term of the asymptotic expansion of the solution for the ‘gradually varying problem’.

On the other hand, the basic solution defined here is also identical with the zeroth-order

term of the series solution derived by Shrira (1993) for waves propagating on a horizontally

homogeneous but vertically sheared current. In this series solution, the higher-order terms

arises due to the variation of the vorticity in the vertical direction. Therefore, by neglecting

the terms containing the derivatives of the vorticity in the theory of Shrira (1993), one

may easily obtain the basic solution. However, to recapitulate the situation and to provide

important information for the analysis in the ensuing section, the complete basic equation

is derived here following the precedent of Shrira (1993).

Since in the present circumstances, considering the vorticity dynamics, especially the

effects of rotation and extension or contraction of the vortex-lines, one may expect that

the oscillatory wave motion is no longer irrotational, we start with the Euler equation for

perturbations of velocity u{ux, uy, uz} and pressure p linearized upon the flow U

∂ux

∂t
+ Ux

∂ux

∂x
+ Uy

∂ux

∂y
+ uz

∂Ux

∂z
+

1

ρ

∂p

∂x
= 0

∂uy

∂t
+ Ux

∂uy

∂x
+ Uy

∂uy

∂y
+ uz

∂Uy

∂z
+

1

ρ

∂p

∂y
= 0

∂uz

∂t
+ Ux

∂uz

∂x
+ Uy

∂uz

∂y
+

1

ρ

∂p

∂z
+ g = 0

∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z
= 0





(2.1)

where ρ is the density of the water and g the acceleration due to gravity. In (2.1), the choice

of the x− and y − axes of the rectangular coordinates are at our disposal. On the other

hand, since the underlying current U is uniform in the horizontal directions, the waves will

not be refracted by the current. Therefore the y − axis can be chosen to be parallel to the
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wave crests so that all variables are independent of y and the above system of equations

can be reduced to
∂ux

∂t
+ Ux

∂ux

∂x
+ uzΩy +

1

ρ

∂p

∂x
= 0

∂uz

∂t
+ Ux

∂uz

∂x
+

1

ρ

∂p

∂z
+ g = 0

∂ux

∂x
+

∂uz

∂z
= 0





(2.2a)

and
∂uy

∂t
+ Ux

∂uy

∂x
− uzΩx = 0 (2.2b)

where Ω{Ωx, Ωy, 0} denotes the vorticity of the underlying current U with Ωx = −∂Uy/∂z and

Ωy = ∂Ux/∂z in the present situation. Notice that the variables uy and Uy as well as the

constant Ωx are absent from (2.2a), meaning that if this situation also occurs to the free-

surface boundary conditions, the solutions of ux, uz and p as well as the wave phase velocity

will not be affected by the convection in the y−direction Uy and its shear Ωx. Nevertheless,

if Ωx 6= 0 and uz 6= 0, according to (2.2b), the oscillatory velocity component uy will occur,

which is important for the development of the WKBJ description in the next section.

The boundary conditions at the free surface z = η(x, y, t) transformed on the plane z = 0

corresponding to the unperturbed free surface for linear waves can be written as

∂η

∂t
+ Ux

∂η

∂x
= uz, p = ρgη, (2.3)

(see Shrira 1993) which are indeed free from uy, Uy and Ωx. Therefore, one can solve (2.2a)

and (2.3) without consideration of uy, after which uy can be determined from (2.2b).

Differentiating the first and second equations in (2.2a) with respect to z and x respec-

tively, combining the resulting equations into one to eliminate the pressure terms, and us-

ing the third of equations (2.2a), we obtain

∂ωy

∂t
+ Ux

∂ωy

∂x
= 0, (2.4)

where ωy ≡ ∂ux/∂z − ∂uz/∂x represents the vorticity component of the wave motion in the

y − direction. Thus if initially ωy = 0 everywhere, from (2.4) it will remain so in an inviscid

fluid. Therefore a two-dimensional velocity potential φ(x, z, t) can be defined such that

ux =
∂φ

∂x
, uz =

∂φ

∂z
.
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The third of equations (2.2a) then requires

∂2φ

∂x2
+

∂2φ

∂z2
= 0. (2.5)

Thus in deep water we have

φ = Aekzei(kx−n0t), (2.6)

where A is a constant, k the wavenumber and n0 the observed frequency of a chosen Fourier

component, and if the surface displacement

η = aei(kx−n0t), (2.7)

where the amplitude a is a constant, from the boundary conditions (2.3), we obtain

A = −i
σ

k
a (2.8)

and

p|z=0 = ρgaei(kx−n0t),

where

σ ≡ n0 − Uxsk (2.9)

is the intrinsic frequency relative to frame of reference in which the mean surface velocity

equals zero, and Uxs ≡ Ux|z=0. Substituting all these results into the first and second

equations of (2.2a), we have respectively the dispersion relation

gk = σ2 + σΩy (2.10)

and the pressure fluctuations

p = −ρgz + ρgaekzei(kx−n0t) − ρσΩyazekzei(kx−n0t). (2.11)

The last term in (2.11), arising from the fact that Ux = Uxs +Ωyz, cannot be found when

the underlying current is irrotational, and is important for the analysis in §5. On the other

hand, the dispersion relation (2.10) is identical with the zeroth-order term of the series

solution derived by Shrira (1993), and also consistent with those presented by Thompson

(1949), Biesel (1950) and Teles da Silva & Peregrine (1988) for waves in an intermediate-

depth region.
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Finally, from (2.2b) we have

uy =
σΩx

n0 − Uxk
aekzei(kx−n0t), (2.12)

meaning that when the wave profiles propagate obliquely on a horizontally uniform shear

flow, a transverse rotational perturbation velocity will occur, which can be as large as ∂φ/∂x

and ∂φ/∂z if Ωx has the same order of magnitude as σ. On the other hand, if Ωy has the

same order of magnitude as σ, the two terms on the right-hand side of (2.10) have the same

order of magnitude too. Therefore, in the following discussion we assume that Ωy, Ωx and

σ all have the same order of magnitude, representing a strongly sheared current.

Notice that since uy varies with x and z, the vorticity components ωx and ωz of the

oscillatory wave motion in the x− and z −direction are non-zero. On the other hand, since

Ux varies with depth, according to (2.12), the value of uy will become infinity at a critical

layer where n0 −Uxk = 0. To avoid this singularity, the perturbations may become unstable

(see, for example, Morland, Saffman & Yuen 1991; Shrira 1993; Miles 2001). This subject

however goes beyond the scope of this work. Therefore the situation that the critical layers

exist will be circumvented in this study.

Also we remark that although in the present case, the solutions of ux, uz and p as well

as the dispersion relation (2.10) can be determined without consideration of the transverse

velocity component uy, the existence of the latter will affect the slow modulation of wave

train when the underlying current becomes gradually varying.
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3. The modulation theory

In this section, the underlying current considered in §2 is allowed to vary slowly in

both the x− and y − directions and its vorticity components Ωx and Ωy can gradually vary

not only in the horizontal directions but also in the vertical direction. In this situation,

since all these variations are slow in the sense that their length scales are large compared

with the wavelength, the solution described in §2, when allowing its parameters to slowly

vary, represents the first term of the asymptotic expansion of the exact solution for this

‘gradually varying problem’. The modulations of these parameters will be derived in this

section, which can complete the so-called WKBJ solution for this case.

When a wave train propagates on a horizontally non-uniform current, the magnitude

and direction of the wavenumber vector k will both change with distance. However, even

in this case, the x − axis of the rectangular coordinates can be chosen to be parallel to

the local k at the position under consideration and the y − axis is therefore parallel to

the local wave crest. On the other hand, when the underlying current is non-uniform in

the horizontal directions, the mean water surface may not be horizontal, but according

to Phillips (1981), Longuet-Higgins (1985, 1987) and Henyey et al. (1988), the effects

of its slope and curvature on the wave motion are equivalent to those with a level mean

surface and with the gravitational acceleration g being replaced by the effective gravitational

acceleration g′ defined by Phillips (1981). Therefore, by using g′ instead of g and by using

the coordinate system chosen above in which the xy plane is tangent to the mean water

surface at the position under consideration, the solutions described in §2 can still have

implications for derivation of the WKBJ solution.

Since the differentiation of the slowly varying parameters increases the order of mag-

nitude by one each time, to derive the first-order WKBJ solution, the second-order deriva-

tives of the slowly varying parameters and the products of any two first-order derivatives

of these parameters can all be neglected in the following discussion. Similarly, since the

underlying current velocity is slowly varying in the horizontal directions and its vorticity is

slowly varying in all directions , this treatment can also be applied to the derivatives with

respect to x or y of Ux, Uy, Ωx and Ωy, and to the derivatives with respect to z of Ωx and Ωy.

In this way, there is no need to explicitly introduce an ordering parameter to formally ex-

pand each of the unknowns in powers of the latter in the following discussion (see Shyu &

Phillips 1990 and Shyu & Tung 1999). Also, we emphasize that when the first-order deriva-

tives of the slowly varying parameters and quantities are taken into account, the second

term of the asymptotic expansion of each unknown should also be considered implicitly.
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As a result, each quantity that has been solved in §2 will now possess extra terms, which

though one order of magnitude smaller than that obtained in §2 and eventually negligible

within the present approximation, must be included in the analysis. This situation also

occurs in a formal perturbation scheme in which the second term of the asymptotic expan-

sion is considered to derive the secular condition which leads to the modulation equation

for the first term of the expansion. After this, the second term of the asymptotic expan-

sion can be neglected in the WKBJ solution.

In addition to the quantities appearing in §2, some quantities that vanish in §2 will now

become non-zero owing to the slow variations of the mean flow in each direction. These

quantities will certainly be one order of magnitude smaller than their counterparts defined

in §2 and therefore are distinguished from them by using the symbols with a hat. For

example, from the continuity equation

∂Ux

∂x
+

∂Uy

∂y
+

∂Ûz

∂z
= 0, (3.1)

and from the situation that ∂Ux/∂x 6= 0 and ∂Uy/∂y 6= 0 it follows that the component of the

steady flow in the z −direction Ûz, though still vanishing locally at the mean water surface

(because the xy plane is tangent to this surface at the position under consideration), has a

small but non-zero value at the depth on the order of one wavelength, at which the steady

flow has a direct influence on the surface waves. Also the non-uniformity of the steady flow

in the horizontal directions implies that the vorticity component

Ω̂z ≡
∂Uy

∂x
−

∂Ux

∂y
6= 0

On the other hand, since the curvature of the mean water surface is usually very small, the

quantities (∂Ûz/∂x)z=0 and (∂Ûz/∂y)z=0 remain negligible locally. Finally, in the present case,

the perturbation vorticity component ω̂y, though small, also becomes non-zero. Therefore,

in addition to ∂φ/∂x and ∂φ/∂z, the rotational velocity components of the wave motion ûx

and ûz also exist and are one order of magnitude smaller than ∂φ/∂x and ∂φ/∂z as well as uy.

Notice that if ûz does not vanish at the mean water surface, since its fast variation in

the horizontal directions can locally be represented by the function exp[i(kx−n0t)] and since

its slow variation can be neglected within the present approximation, it is always possible

to define an irrotational velocity field φ̂ which takes the same form as (2.6) locally so that

∂φ̂/∂z can have the same value as ûz at each point on the mean water surface. Therefore,
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after subtracting ∂φ̂/∂z from ûz, subtracting ∂φ̂/∂x from ûx, and in the meantime, adding φ̂

to φ, the new rotational perturbation velocity becomes horizontal at the mean water surface,

and the new velocity potential still takes the same form as (2.6) except that the second term

of the asymptotic expansion of A becomes different. Consequently, the boundary condition

ûz = 0 at z = 0 (3.2)

can be applied to simplify the analysis significantly.

In order to describe both the fast and the slow variations, the total velocity potential

can be written as

φ = A(x, y) exp

[∫ z

0

l(x, y, z) dz

]
eiχ(x,y,t) (3.3)

with

k = ∇hχ, n0 = −
∂χ

∂t
, (3.4)

where ∇h ≡ (∂/∂x, ∂/∂y) represents the horizontal gradient operator, k{kx, ky} the wavenum-

ber vector, and l(x, y, z) a slowly varying function of position. Since in the present coordi-

nate system, ky = 0 at the position under consideration, and from the relation (3.9) given

below, l|z=0 ≈ k, the expression (3.3) together with (3.4) is indeed identical with (2.6) lo-

cally if the higher-order terms in the asymptotic expansions of A, k, and l are neglected

and their slow variations are ignored.

From the first of equations (3.4) it follows immediately that

∂ky

∂x
=

∂kx

∂y
. (3.5)

Also, from (3.4)

∂k

∂t
+ ∇hn0 = 0,

which is the kinematical conservation equation (Phillips 1977). Since in the present case

the underlying current is steady, we have ∂k/∂t = 0 so that from the above equation n0 is

constant everywhere.

Substitution of (3.3) and (3.4) into the three-dimensional Laplace equation yields

−k2
x + i

∂kx

∂x
+ 2ikx

1

A

∂A

∂x
+ i

∂ky

∂y
+ l2 +

∂l

∂z
= 0 at z = 0 (3.6)
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in which the terms (1/A)(∂2A/∂x2) and (1/A)(∂2A/∂y2) have been neglected and the fact that

ky = 0 locally has also been taken into account. Furthermore, since the variation of the

wave motion in the y − direction at the position under consideration is slow, the second-

order derivative (∂2φ/∂y2)z=0 = i(∂ky/∂y)Aeiχ + (∂2A/∂y2)eiχ ≈ i(∂ky/∂y)Aeiχ should also be

negligible here, meaning that at the position under consideration

∂ky

∂y
= 0 (3.7)

within the present approximation. This important suggestion will later be justified analyt-

ically and numerically.

In (3.6), since both l and ∂l/∂z exist, one cannot express l in terms of other parameters

and their derivatives without another equation. In Shyu & Tung (1999), the relation (see

their (2.14))

∂l

∂z

∣∣∣∣
z=0

= −i
∂k

∂x

has been derived from the Laplace equation for the exactly two-dimensional case in which

the wave crest is straight. Since this relation involves only the small quantities representing

the derivatives of the slowly varying parameters, the small curvature of the wave crest

occurred in the present case will impose a modification of this relation even smaller and

therefore negligible. Thus, in the present case, we still have

∂l

∂z

∣∣∣∣
z=0

= −i
∂k

∂x
= −i

(
kx

k

∂kx

∂x
+

ky

k

∂ky

∂x

)
= −i

∂kx

∂x
(3.8)

because k = (k2
x + k2

y)
1/2 and ky = 0 locally. Therefore, substituting (3.7) and (3.8) into (3.6),

we obtain

l2|z=0 = k2
x − 2ikx

1

A

∂A

∂x
.

Squaring both sides of it and neglecting the term (1/2kx)(1/A)2(∂A/∂x)2 and the even higher

order terms, we finally have

l|z=0 = k − i
1

A

∂A

∂x
. (3.9)

We next consider the kinematic free-surface condition, which in the present case can

be written as

∂η

∂t
+

(
∂φ

∂x
+ ûx + Ux

)
∂η

∂x
+

(
∂φ

∂y
+ uy + Uy

)
∂η

∂y
=

∂φ

∂z
+ ûz + Ûz at z = η.
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After Taylor series expansions about z = 0, we have the linear wave approximation

∂η

∂t
+ Ux

∂η

∂x
+ Uy

∂η

∂y
=

∂φ

∂z
− η

(
∂Ux

∂x
+

∂Uy

∂y

)
at z = 0 (3.10)

in view of (3.1) and (3.2). Therefore if the surface displacement is

η = a(x, y)eiχ(x,y,t), (3.11)

substitution of (3.3), (3.4), (3.7), (3.9) and (3.11) into (3.10) yields

A

a
= −i

σ

k
+

1

ak

(
Ux

∂a

∂x
+ Uy

∂a

∂y

)
+

1

k

(
∂Ux

∂x
+

∂Uy

∂y

)
+ i

1

ak

∂A

∂x
. (3.12)

From (3.12), neglecting the smaller terms containing the derivatives of the slowly varying

functions, we have

A

a
≈ −i

σ

k
. (3.13)

Its differentiation with respect to x and y yields

∂A

∂x
= −i

σ

k

∂a

∂x
− i

a

k

∂σ

∂x
+ ia

σ

k2

∂kx

∂x
(3.14)

and
∂A

∂y
= −i

σ

k

∂a

∂y
− i

a

k

∂σ

∂y
+ ia

σ

k2

∂kx

∂y
. (3.15)

(Recall that ∂k/∂x = ∂kx/∂x, ∂k/∂y = ∂kx/∂y.) Therefore, by substituting (3.14) into (3.12)

for ∂A/∂x, one can express A in terms of other quantities and their derivatives within

the present approximation. Note that without consideration of the second term of the

asymptotic expansion of each quantity, (3.13) is again identical with (2.8), though the

parameters A, a, σ and k are now slowly varying.

Finally, the dynamical free-surface condition is imposed by the requirement that the

pressure in the water at the free surface is equal to the atmospheric pressure which is

assumed to be constant here. Therefore, if at the free surface, the component of the

equation of motion in the s−direction (see figure 1), which is tangent to the instantaneous

free surface and perpendicular to the local wave crest, is under consideration, the pressure

gradient in this equation will vanish. The rest of the terms, though originally involving the

components of the quantities in the s−, y− and n − directions, can all be transformed into
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the terms containing the components in the x−, y− and z − directions. This can be done

because in figure 1

cosα ≈ 1, sin α ≈
∂η

∂x

for linear waves. The resulting equation can then be expressed as Taylor series expansions

about the mean water surface z = 0 so that after neglecting the higher-order terms of the

asymptotic expansions Ω̂z∂φ/∂y, ûx∂Ux/∂x, (∂Uy/∂x)∂φ/∂y and Uy∂ûx/∂y, and neglecting the

nonlinear terms of the oscillatory wave motion, we have

{
g
∂ζ

∂x
+ Ux

∂Ux

∂x
+ Uy

∂Ux

∂y

}
+

{
g′

∂η

∂x
+

∂2φ

∂x∂t
+ Ux

∂2φ

∂x2
+

∂Ux

∂x

∂φ

∂x
+ Ux

∂ûx

∂x
+ Uy

∂2φ

∂x∂y

+ Ux
∂Ux

∂z

∂η

∂x
+

∂Ux

∂x

∂Ux

∂z
η + Ux

∂2Ux

∂x∂z
η +

∂ûx

∂t
+

∂Ux

∂z

∂η

∂t
+

∂Ux

∂y

∂Uy

∂z
η + Uy

∂2Ux

∂y∂z
η

+ Uy
∂Ux

∂z

∂η

∂y
+

∂Ux

∂y
uy

}
= 0 at z = 0, (3.16)

where ζ is the height of the mean water surface (see figure 1).

Notice that in deriving (3.16), the fact that the velocity component in the n−direction at

the instantaneous free surface equals ∂η/∂t for linear waves has been utilized. Furthermore,

the situation that η represents the surface displacement of the waves in the z − direction

(see figure 1) results in the replacement of g by g′ in the second braces in (3.16), which

in the present case is defined as g cos θ. Finally we remark that since the curvature of the

mean water surface is usually very small, the derivative of g′ with respect to x has been

neglected in (3.16).

The above equation can also be deduced directly from the component of the equation

of motion in the x − direction evaluated directly at the mean water surface (so that no

Taylor series expansion about z = 0 is required) if the validity of the second of equations

(2.3) is assumed here. However the present derivation involves no such assumption so that

it is preferred here and can serve as a proof of the validity of the second of equations (2.3)

in the present circumstance.

In (3.16), the terms in the first braces are time-independent while the expression in the

second braces represents a linear combination of the time-harmonic terms. Therefore the

latter itself should vanish, resulting in

g′
∂η

∂x
+

∂2φ

∂x∂t
+ Ux

∂2φ

∂x2
+

∂Ux

∂x

∂φ

∂x
+ Uy

∂2φ

∂x∂y
+ Ux

∂Ux

∂z

∂η

∂x
+

∂Ux

∂z

∂η

∂t
+ Uy

∂Ux

∂z

∂η

∂y

+

(
∂Ux

∂x

∂Ux

∂z
+ Ux

∂2Ux

∂x∂z
+

∂Ux

∂y

∂Uy

∂z
+ Uy

∂2Ux

∂y∂z

)
η = R at z = 0, (3.17)
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where

R ≡ −
∂ûx

∂t
− Ux

∂ûx

∂x
− uy

∂Ux

∂y
(3.18)

also evaluated at z = 0.

In (3.17), the terms on the right-hand side represented by R all contain the rotational

perturbation velocity component ûx or uy. The sum of these terms will later be related to

those involving only the steady flow and the irrotational part of the wave motion so that

even without knowing ûx, the modulations of the wave train and the dispersion relation can

still be determined. To achieve this purpose, we consider the component of the vorticity

equation in the y −direction evaluated at the mean water surface for the entire flow. After

neglecting the higher-order terms of the asymptotic expansions ûx∂Ωy/∂x, (∂Ωy/∂y)∂φ/∂y,

ω̂y∂Uy/∂y, Ωy∂2φ/∂y2, (∂Uy/∂z)∂ûx/∂y and Ω̂z∂
2φ/∂z∂y, and neglecting the nonlinear terms of

the oscillatory wave motion, we have

{
Ux

∂2Ux

∂x∂z
+ Uy

∂2Ux

∂y∂z
+

∂Ux

∂y

∂Uy

∂z
−

∂Uy

∂y

∂Ux

∂z

}
+

{
∂

∂z

(
∂ûx

∂t
+ Ux

∂ûx

∂x
+ uy

∂Ux

∂y

)
+

∂Ux

∂z

∂ûz

∂z

+
∂2Ux

∂x∂z

∂φ

∂x
+

∂2Ux

∂z2

∂φ

∂z
+

∂Uy

∂z

∂2φ

∂x∂y

}
= 0 at z = 0 (3.19)

in view of (3.2) and the fact that

∂ûx

∂x
+

∂uy

∂y
+

∂ûz

∂z
= 0.

Notice that although ûz|z=0 = 0, (∂ûz/∂z)z=0 is in general non-zero.

In (3.19), the time-independent terms and the time-harmonic terms have again been

separated so that we have for the steady flow

Ux
∂2Ux

∂x∂z
+ Uy

∂2Ux

∂y∂z
+

∂Ux

∂y

∂Uy

∂z
−

∂Uy

∂y

∂Ux

∂z
= 0 at z = 0, (3.20)

and for the oscillatory wave motion

∂

∂z

(
−

∂ûx

∂t
− Ux

∂ûx

∂x
− uy

∂Ux

∂y

)
=

∂Ux

∂z

∂ûz

∂z
+

∂2Ux

∂x∂z

∂φ

∂x
+

∂2Ux

∂z2

∂φ

∂z
+

∂Uy

∂z

∂2φ

∂x∂y
at z = 0. (3.21)

The expression in the parentheses in (3.21) is identical to that represented by R in (3.18).

From (3.3), (3.5), (3.9) and the situation that ky = 0 locally, it is not difficult to prove that

the solution

R =
∂Ux

∂z
ûz +

∂2Ux

∂x∂z
(iφ) +

∂2Ux

∂z2
φ +

∂Uy

∂z

(
i
∂φ

∂y

)
at z = 0 (3.22)
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can satisfy (3.21) within the present approximation. On the other hand, the uniqueness of

this solution can be substantiated as follows.

First, the differentiation of (∂Ux/∂z)∂φ/∂z (instead of (∂2Ux/∂z2)φ which appears in

(3.22)) with respect to z will result in not only the term (∂2Ux/∂z2)∂φ/∂z occurring in (3.21)

but also the term (∂Ux/∂z)∂2φ/∂z2 which is absent from (3.21). The latter term is even one

order of magnitude larger than the former term. Next, the derivatives with respect to z

of the terms (∂Ux/∂x)∂φ/∂x and Uy∂
2φ/∂x∂y, instead of (∂2Ux/∂x∂z)(iφ) and (∂Uy/∂z)(i∂φ/∂y)

chosen in (3.22), also contain each an extra term that is not negligible even if the steady

flow U becomes irrotational so that ûx, uy and ûz in (3.21) vanish, which is certainly im-

possible. Finally, the choice of (∂Ux/∂z)ûz rather than Ux∂ûz/∂z in (3.21) is because the dif-

ferentiation of the latter with respect to z also produces two terms which have the same

order of magnitude but only one of them really occurs in (3.21), while the differentiation of

the term (∂Ux/∂z)ûz with respect to z results in (∂Ux/∂z)∂ûz/∂z and (∂2Ux/∂z2)ûz; the latter

is indeed negligible or even vanishes at z = 0 according to (3.2). More important, the latter

term can also be found in the original equation that leads to (3.19). This and the fact that

the fast variations in the z − direction of the last three terms in both (3.21) and (3.22) are

simply specified by the function ekz can put even more confidence in the solution (3.22).

Since ûz|z=0 = 0, the relation (3.22) reduces to

R =
∂2Ux

∂x∂z
(iφ) +

∂2Ux

∂z2
φ +

∂Uy

∂z

(
i
∂φ

∂y

)
at z = 0 (3.23)

of which the right-hand side is indeed devoid of the rotational perturbation velocity.

Notice that the differentiation of the right-hand side of (3.18) with respect to y will

increase the order of magnitude of each term by one so that the differentiation of the

right-hand side of (3.23) with respect to y, which results in the term (∂Uy/∂z)i(∂2φ/∂y2)z=0

among others, should also be negligible. This justifies (3.7) analytically as (∂2φ/∂y2)z=0 ≈

i(∂ky/∂y)Aeiχ. The numerical evidence of (3.7) can also be found in §6.

The equation (3.17) together with (3.23) involves only η and φ as the unknowns. There-

fore, substituting (3.3) and (3.11) into (3.17), using (3.12) and (3.14) to eliminate A in

favour of a, neglecting the terms containing the second-order derivatives of the slowly vary-

ing functions and the products of any two first-order derivatives of these functions, and
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then crossing out the common factor, we obtain

{ (
g′ + 2σUx + Ux

∂Ux

∂z

)
1

a

∂a

∂x
+

(
2σUy + Uy

∂Ux

∂z

)
1

a

∂a

∂y
+ Ux

∂σ

∂x
+ Uy

∂σ

∂y
+ 2σ

∂Ux

∂x
+ σ

∂Uy

∂y

+
∂Ux

∂x

∂Ux

∂z
+

∂Ux

∂y

∂Uy

∂z
+ Ux

∂2Ux

∂x∂z
+ Uy

∂2Ux

∂y∂z
−

σ

k

∂2Ux

∂x∂z
−

(
σ

k

1

a

∂a

∂y
+

1

k

∂σ

∂y
−

σ

k2

∂kx

∂y

)
∂Uy

∂z

}

+ i
{

g′k − σ2 − σ
∂Ux

∂z
+

σ

k

∂2Ux

∂z2

}
= 0 at z = 0. (3.24)

Since without loss of generality, the amplitude a(x, y) in (3.11) can be defined as a real

function, from the imaginary and real parts of (3.24) and by making use of (3.20), we finally

have the dispersion relation

g′k = σ2 + σΩys −
σ

k

∂2Ux

∂z2

∣∣∣∣
z=0

(3.25)

and the equation specifying the slow modulation of the amplitude a

(g′ + 2σUxs + ΩysUxs)
1

a

∂a

∂x
+ (2σ + Ωys)Uys

1

a

∂a

∂y
+ Uxs

∂σ

∂x
+ Uys

∂σ

∂y
+ 2σ

∂Uxs

∂x
+ σ

∂Uys

∂y

+

(
∂Uxs

∂x
+

∂Uys

∂y

)
Ωys −

σ

k

∂2Ux

∂x∂z

∣∣∣∣
z=0

+

(
σ

k

1

a

∂a

∂y
+

1

k

∂σ

∂y
−

σ

k2

∂kx

∂y

)
Ωxs = 0 (3.26)

where Uxs, Uys, Ωxs and Ωys denote the values of Ux, Uy, Ωx and Ωy at the mean water surface

respectively, so that

Ωxs ≡
∂Uz

∂y

∣∣∣∣
z=0

−
∂Uy

∂z

∣∣∣∣
z=0

≈ −
∂Uy

∂z

∣∣∣∣
z=0

, Ωys ≡
∂Ux

∂z

∣∣∣∣
z=0

−
∂Uz

∂x

∣∣∣∣
z=0

≈
∂Ux

∂z

∣∣∣∣
z=0

.

Notice that since Ωys represents specifically the component of vorticity perpendicular

to the local k and the latter may vary in the x − direction, the quantities ∂Ωys/∂x and

(∂2Ux/∂x∂z)z=0 are generally not equal to each other; their difference will be evaluated in

(4.7).

Also we emphasize that if the higher-order term −(σ/k)(∂2Ux/∂z2)z=0 and those inherent

in g′ are neglected, the dispersion relation (3.25) is again identical with (2.10), though

the quantities k, σ, and Ωys are now slowly varying. Since these higher-order terms, when

substituting in (3.26), become negligible within the present approximation, and since the

slow variation of k and σ can be determined from that of the underlying current by using
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(2.9), (2.10), (3.5) and the fact that n0 = constant, the last term in (3.25) can be discarded

and g′ can be replaced by g in the WKBJ solution. Therefore, we have

gk = σ2 + σΩys. (3.27)

This approximation will cause a spatially varying phase shift suggested by White (1999)

which as pointed out by White is insignificant if one is only interested in modulations of

the waves over large spatial scales, i.e. scales much larger than a wavelength.

Using (3.27) together with (2.9) and (3.5), and considering that n0 = constant every-

where, all quantities in (3.26) except the amplitude a become known so that the modula-

tion of a can be determined numerically from (3.26), after which the modulations of A and

the amplitudes of p and uy can also be determined by using (3.13), (2.11) and (2.12) re-

spectively. All of these represent the first-order WKBJ solution of the waves propagating

obliquely on a steady three-dimensional, horizontally slowly varying and vertically strongly

sheared current with non-uniform but slowly varying vorticity.

Incidentally we note that if the component of the equation of motion in the y−direction

evaluated at the instantaneous free surface is considered, following the same approach

which leads to (3.24) and using the component of the vorticity equation in the z−direction

evaluated at z = 0, one can obtain an equation similar to (3.24). This equation, upon using

the result

Ux
∂2Uy

∂x∂z
+ Uy

∂2Uy

∂y∂z
+

∂Uy

∂x

∂Ux

∂z
−

∂Ux

∂x

∂Uy

∂z
= 0 at z = 0 (3.28)

derived from the time-independent terms of the component of the vorticity equation in

the x−direction, can be cancelled out completely, meaning that the dynamical free-surface

condition can indeed be satisfied by the present solution.
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4. The action conservation equation

When the underlying large-scale current is irrotational, the modulation of the wave

amplitude is determined by the action conservation principle established by Bretherton &

Garrett (1968), in which the wave action density is defined as the wave energy density

divided by the intrinsic frequency. This principle has later been proved by Jonsson et al.

(1978) to remain valid for two-dimensional gravity waves propagating on a steady two-

dimensional, horizontally slowly varying current which can nevertheless vary rapidly but

linearly with depth. In their theory, a different definition of the wave energy and the

intrinsic frequency has been made, which coincides with that of Bretherton & Garrett only

if the vorticity in the current vanishes. However, as pointed out by a referee of the paper,

the result of Jonsson et al. (1978) can also be written in terms of the wave energy defined as

the sum of the potential and kinetic energies calculated respectively from the perturbation

surface displacement and the perturbation velocity, and in terms of the intrinsic frequency

defined by (2.9). This wave energy, as found by the same referee, is (1/4)ρa2(2g −Ωysσ/k) so

that in this two-dimensional problem, the action conservation principle can be written as

d

dx

[
(Uxs + Cg)

1

4
ρa2

(
2g − Ωys

σ

k

)
/σ

]
= 0, (4.1)

where Cg ≡ ∂σ/∂k represents the group velocity. (The difference between Uxs and the ‘formal

surface velocity’ defined by Jonsson et al. (1978) is proportional to a2 and therefore is

negligible in the above equation.)

Since the dispersion relation (3.27) for the three-dimensional case does not involve any

quantities that will vanish in the two-dimensional case, this relation can be substituted into

(4.1), resulting in

(g + 2σUxs + ΩysUxs)
1

a

∂a

∂x
+ Uxs

∂σ

∂x
+ 2σ

∂Uxs

∂x
+

∂Uxs

∂x
Ωys = 0, (4.2)

because in the two-dimensional flow of inviscid fluid, (∂2Ux/∂x∂z)z=0 = 0 in view of (3.20), a

situation which has also been assumed in Jonsson et al. (1978). Therefore the comparison

between (3.26) and (4.2) indicates that for the case of Uy = 0 and ∂/∂y = 0, the result

(3.26) coincides with the action conservation equation. (Recall that within the present

approximation, g′ can be replaced by g in (3.26).)
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When Uy 6= 0 and Ωxs 6= 0, but the rotational perturbation velocity uy occurring in this

situation is ignored in the definition of the wave action density, the action conservation

equation in the present coordinate system becomes

∂

∂x

[
(Uxs + Cgx)

1

4
ρa2

(
2g − Ωys

σ

k

)
/σ

]
+

∂

∂y

[
(Uys + Cgy)

1

4
ρa2

(
2g − Ωys

σ

k

)
/σ

]
= 0 (4.3)

representing a natural extension of (4.1). In this situation, from the kinematical conserva-

tion equation,

∂n0

∂x
=

∂

∂x
(σ + Uxskx + Uysky) =

∂σ

∂x
+ Uxs

∂kx

∂x
+ k

∂Uxs

∂x
+ Uys

∂kx

∂y
= 0 (4.4)

∂n0

∂y
=

∂

∂y
(σ + Uxskx + Uysky) =

∂σ

∂y
+ Uxs

∂kx

∂y
+ k

∂Uxs

∂y
= 0 (4.5)

in view of (3.5) and the fact that ky = 0 and ∂ky/∂y = 0 locally. Therefore, by using (3.20),

(3.27) and (4.4), the expansion of (4.3) yields

(g + 2σUxs + ΩysUxs)
1

a

∂a

∂x
+ (2σ + Ωys)Uys

1

a

∂a

∂y
+ Uxs

∂σ

∂x
+ Uys

∂σ

∂y
+ 2σ

∂Uxs

∂x
+ σ

∂Uys

∂y

+

(
∂Uxs

∂x
+

∂Uys

∂y

)
Ωys −

1

2

σ

k

∂2Ux

∂x∂z

∣∣∣∣
z=0

+
1

2

(
∂Uxs

∂y
−

Uxs

k

∂kx

∂y
+

σ

k2

∂kx

∂y

)
Ωxs = 0, (4.6)

in which the terms (1/2)(σ2/k2)∂ky/∂y and (1/2)(σ/k2)(∂Ux/∂z)∂ky/∂y have been neglected

in view of (3.7). Notice that since in (4.3) (and (3.26)) the quantity Ωys represents the

component of vorticity tangential to the mean water surface and perpendicular to the local

k, we have

∂Ωys

∂x
=

∂

∂x

[
∂

∂z

(
kx

k
Ux +

ky

k
Uy

)]

z=0

=
∂

∂x

[
kx

k

∂Ux

∂z

∣∣∣∣
z=0

+
ky

k

∂Uy

∂z

∣∣∣∣
z=0

]

=
∂2Ux

∂x∂z

∣∣∣∣
z=0

+
1

k

∂ky

∂x

∂Uy

∂z

∣∣∣∣
z=0

=
∂2Ux

∂x∂z

∣∣∣∣
z=0

−
1

k

∂kx

∂y
Ωxs (4.7)

at the position under consideration, meaning that the quantity ∂Ωys/∂x arising from the

expansion of (4.3) is not equal to (∂2Ux/∂x∂z)z=0. The relation (4.7), including that ky = 0

and ∂ky/∂y = 0, which are all valid only locally, has been utilized in deriving (4.6) so that

in this form, (4.6) is valid only locally too and can therefore be compared with (3.26).
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The comparison between (3.26) and (4.6) indicates that in a general case in which Ωxs

and (∂2Ux/∂x∂z)z=0 are not small compared with σ and ∂σ/∂x respectively, the wave action

defined by Jonsson et al. (1978), which does not take the rotational perturbation velocity

uy into account here, is not conserved. Even if Ωxs ≈ 0 (so that uy ≈ 0 according to (2.12))

but (∂2Ux/∂x∂z)z=0 has the same order of magnitude as ∂σ/∂x, the wave action defined by

Jonsson et al. still cannot be conserved. This situation is consistent with the theory of

Jonsson et al. (1978) in which the wave action has been proved to be conserved under the

assumption that Ωy is constant in a two-dimensional flow.

If both Ωxs and (∂2Ux/∂x∂z)z=0 vanish but the remaining terms in (3.26) and (4.6)

are non-zero, meaning that the flow is three-dimensional, equations (3.26) and (4.6) co-

incide with each other exactly. Thus the action conservation equation derived by Jons-

son et al. remains valid in a more general situation than that considered in Jonsson et al.

(1978). Therefore it is interesting to see whether this conclusion can also be drawn from

an analysis using their approach, which may also explained why the condition that Ωxs and

(∂2Ux/∂x∂z)z=0 are both small compared with σ and ∂σ/∂x, respectively, is crucial for the

validity of the action conservation equation.
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5. Application of Jonsson, Brink-Kjœr & Thomas’ approach

The approach applied by Jonsson et al. (1978) is based on the integral properties of

the combined wave and current motion across a fixed vertical section. This approach was

first applied by Longuet-Higgins & Stewart (1960) in their derivation of the radiation stress

tensor and was applied by Phillips (1977) to derive the expressions for the conservation

of mass, momentum and energy when a wave train propagates obliquely on a variable

irrotational current. The special arrangement made by Jonsson et al. (1978) is suitable

for a rotational current. However, to make this approach successful, it is required that

any vertical integral from the bottom to the free surface involved in the analysis can be

evaluated in terms of simple functions so that their derivatives with respect to x and y can

avoid the special functions, like the exponential-integral function, which cannot be found

in (4.6). This requirement cannot be fulfilled when the rotational perturbation velocity uy

given by (2.12), in which the denominator varies rapidly, is not negligible. This is also the

reason why the wave action density cannot be redefined to include uy if the latter is not

negligible. Therefore, the condition that Ωx = 0 everywhere (but Uy 6= 0) is imposed here

first, which ensures that uy = 0 according to (2.12). This situation may actually occur when

a highly sheared flow with non-uniform vorticity is generated by a wind stress acting on

the boundary of an irrotational tidal flow and in the direction perpendicular to this flow.

The vertical integrals after being solved will be differentiated with respect to x and

y to establish the equations for the conservation of mass, momentum and energy. Since

each differentiation will increase the order of magnitude by one, these vertical integrals

themselves can be evaluated without consideration of the slow variations of the quantities

in the integrands. For example, although the slow variation of ∂Ux/∂z in the z − direction

can significantly affect the vertical integrals of the quantities involving Ux if the water is

very deep, this slow variation influences the surface waves only slightly according to (3.25)–

(3.27). Therefore, for the sake of simplicity and without loss of the generality of the wave

modulation theory, the slow variation of ∂Ux/∂z in the z−direction can be assumed vanishing

here. This argument can also be applied to the variation of Uz in the z − direction which

can occur due to the slow variation of the mean flow in the horizontal directions but can

however be neglected in the vertical integrals by assuming that the value of ∂Ux/∂x+∂Uy/∂y

is non-zero (but small) only in the region near the mean water surface in which the mean

flow can have influence over the wave motion. Therefore, in the following discussion it

is assumed that Uz = 0 as did by Longuet-Higgins & Stewart (1960), Phillips (1977) and

Jonsson et al. (1978). Similarly, in this approach, it is unnecessary to consider the second
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term of the asymptotic expansion of each unknown, meaning that the components of the

rotational perturbation velocity ûx and ûz can also be disregarded in the vertical integrals.

Therefore, it suffices to substitute all the solutions in §2 except uy into the vertical integrals

for the local properties of the wave motion.

Following the precedent of Jonsson et al. (1978) (and Phillips (1977) for a three-

dimensional analysis), we first define the radiation stress

Sαβ = δαβ

∫ η

−h

p dz − δαβ

∫ 0

−h

(−ρgz) dz + ρ

∫ η

−h

ũαũβ dz − ρ

∫ 0

−h

ŨαŨβ dz, (α, β = 1, 2), (5.1)

where a overbar denotes averaging over the (constant) observed period, δαβ is the unit

tensor (δαβ = 1 if α = β and vanishes otherwise), h the local mean water depth,

ũ1 ≡ ũx ≡
∂φ

∂x
+ Ux, ũ2 ≡ ũy ≡

∂φ

∂y
+ Uy = Uy (5.2)

the total horizontal velocity components, and Ũ1 ≡ Ũx, Ũ2 ≡ Ũy the x, y components of a

‘formal current velocity’. The profiles of the latter are defined as

Ũx(z) = Ũxs + Ωyz, Ũy(z) = Ũys, (5.3)

where Ũxs, Ũys, and Ωy are independent of z. The relations between Ũx and Ux and between

Ũy and Uy can be established from the requirement that

∫ 0

−h

Ũx(z) dz =

∫ η

−h

ũx(z) dz,

∫ 0

−h

Ũy(z) dz =

∫ η

−h

ũy(z) dz. (5.4)

Substituting (2.6), (2.8), (5.2) and (5.3) into (5.4) and recalling that

Ux = Uxs + Ωyz, Uy = Uys, (5.5)

we obtain

Ũxs = Uxs +
2σ + Ωy

4h
a2, Ũys = Uys (5.6)

correct to the second order in (ak). To achieve these results, the mean water depth h is

assumed to be large compared with the wavelength so that the solutions (2.6) and (2.8) for

deep-water waves can be valid.

In order to solve the first integral in (5.1) to the second order in (ak), the mean pressure

distribution

p = −ρgz −
ρ

2
σ2a2e2kz , (5.7)
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correct to the second order in (ak) and valid even for a vortical flow (see (3.2.17) in Phillips

(1977)) is also required in addition to (2.11). By substituting all these results and the

solutions given in §2 into (5.1), we obtain

S11 =
ρ

4
ga2 +

ρ

4
Ωy(2σ + Ωy)a2h

S22 =
ρ

4k
σΩya2

S12 = S21 = 0





(5.8)

correct to the second order in (ak).

Next the total mean energy flux per unit area

Fα =

∫ η

−h

[
p + ρg(z + b) +

ρ

2
(ũ2

1 + ũ2
2 + ũ2

3)
]
ũα dz, (α = 1, 2) (5.9)

where

ũ3 ≡ ũz ≡ ∂φ/∂z + Uz = ∂φ/∂z (5.10)

and b = b(x, y) represents the height of the mean water surface above a reference level (see

figure 2) specified for determination of the potential energy. Notice that the term ρgbũα

must be included in (5.9) to take into account the situation that the mean water surface is

not horizontal, because this term will result in the terms containing ∂b/∂x or ∂b/∂y in the

final energy conservation equation, which like other terms in this equation, contain only one

first-order derivative of the slowly varying quantities and therefore cannot be neglected.

By substitution and after some lengthy manipulations, we obtain

F1 =
ρ

4k
σ2Uxsa

2 +
ρ

4k
gσa2 +

ρ

2
gUxsa

2 −
3

8
ρa2

(
−2σΩyUxsh +

2

3
σΩ2

yh2 − Ω2
yUxsh +

1

3
Ω3

yh
2

)

+
ρ

2

∫ 0

−h

Ũ3
x dz +

ρ

2

∫ 0

−h

Ũ2
y Ũx dz + ρgbhŨmx (5.11)

F2 =
ρ

2
gUysa

2 +
ρ

4
a2

(
σΩyUysh +

1

2
Ω2

yUysh

)
+

ρ

2

∫ 0

−h

Ũ2
xŨy dz +

ρ

2

∫ 0

−h

Ũ3
y dz + ρgbhŨmy (5.12)

where Ũmx ≡ (1/h)
∫ η

−h ũx(z) dz = Ũxs − Ωyh/2 and Ũmy ≡ (1/h)
∫ η

−h ũy(z) dz = Ũys (see (5.3) and

(5.4)), the average-over-depth velocity.

On the other hand, the mean total momentum flux Mαβ per unit area equals the sum

of the first and third terms on the right-hand side of (5.1). Thus

Mαβ = Sαβ +
ρ

2
gh2δαβ + ρ

∫ 0

−h

ŨαŨβ dz, (α, β = 1, 2). (5.13)
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The horizontal components of the mean total pressure force acting on the fluid at the bed

per unit length in the x− and y − directions are

P1 = ρgh
∂D

∂x
and P2 = ρgh

∂D

∂y
,

respectively; see figure 2. The equations −∂Mα1/∂x − ∂Mα2/∂y + Pα = 0, (α = 1, 2) of total

momentum conservation therefore take the form

∂S11

∂x
+

∂S12

∂y
+

∂

∂x

(
ρ

∫ 0

−h

ŨxŨx dz

)
+

∂

∂y

(
ρ

∫ 0

−h

ŨxŨy dz

)
+ ρgh

∂b

∂x
= 0, (5.14)

∂S21

∂x
+

∂S22

∂y
+

∂

∂x

(
ρ

∫ 0

−h

ŨxŨy dz

)
+

∂

∂y

(
ρ

∫ 0

−h

ŨyŨy dz

)
+ ρgh

∂b

∂y
= 0. (5.15)

Also the equation expressing total energy conservation is simply

∂F1

∂x
+

∂F2

∂y
= 0, (5.16)

where F1 and F2 are given by (5.11) and (5.12) respectively.

The equations (5.14)–(5.16) can be combined into one equation to eliminate the terms

devoid of the wave amplitude a. To achieve this purpose, we multiply (5.14) by Ũmx and

(5.15) by Ũmy, and then subtract the resulting equations from (5.16), so that the terms

originated from the last terms in (5.11), (5.12), (5.14) and (5.15) can immediately be

cancelled out in this operation, considering the mass conservation equation

∂

∂x
(Ũmxh) +

∂

∂y
(Ũmyh) = 0. (5.17)

The integrals in (5.11), (5.12), (5.14) and (5.15) can also yield the terms free from a in this

operation. However, by using (5.17) repeatedly and in consideration of (3.20), (5.3), (5.4)

and (5.6), it can be proved that

∂

∂x

(
1

2

∫ 0

−h

Ũ3
x dz +

1

2

∫ 0

−h

ŨxŨ2
y dz

)
+

∂

∂y

(
1

2

∫ 0

−h

Ũ2
xŨy dz +

1

2

∫ 0

−h

Ũ3
y dz

)
− Ũmx

∂

∂x

(∫ 0

−h

Ũ2
x dz

)

− Ũmx
∂

∂y

(∫ 0

−h

ŨxŨy dz

)
− Ũmy

∂

∂x

(∫ 0

−h

ŨxŨy dz

)
− Ũmy

∂

∂y

(∫ 0

−h

Ũ2
y dz

)

=
1

12
h3Ωy

∂Ωy

∂x

(
2σ + Ωy

4h
a2 −

1

2
Ωyh

)
. (5.18)

24



Therefore, if ∂Ωy/∂x 6= 0, the terms originated from the integrals in (5.11), (5.12), (5.14)

and (5.15) cannot be cancelled out in this operation and will yield a term free from a which

cannot be eliminated by other terms, meaning that in this situation the integral approach

will fail for an apparent reason. Hence we here restrict our consideration further to the

case that ∂Ωy/∂x = 0, which corresponds to the second requirement mentioned at the end

of §4 for the validity of the action conservation equation (since ∂Ωy/∂x = (∂2Ux/∂x∂z)z=0 in

the present situation when Ωx = 0 according to (4.7)).

The rest of the terms in the resulting equation from this operation, all containing the

wave amplitude a, can also be divided into three groups. The first group is devoid of h while

each term in the second and third groups contains respectively h and h2 as the common

factor. Since h can be very large compared with the wavelength and can be changed without

affecting the wave motion and the current field in the region near the mean water surface,

the terms in these three groups should be balanced separated, leading to three equations.

However, if ∂Ωy/∂x = 0, the terms in the third group are completely cancelled out, and in

the meantime, the two equations from the first and second groups coincide with each other

exactly and can be written as

(g + 2σUxs + ΩyUxs)
1

a

∂a

∂x
+ (2σ + Ωy)Uys

1

a

∂a

∂y
+ Uxs

∂σ

∂x
+ Uys

∂σ

∂y
+ 2σ

∂Uxs

∂x
+ σ

∂Uys

∂y

+

(
∂Uxs

∂x
+

∂Uys

∂y

)
Ωy = 0. (5.19)

Therefore the condition ∂Ωy/∂x = 0 is indeed important for the application of the integral

approach.

Since in the present analysis, Ωy = Ωys, equation (5.19) is exactly identical with (4.6)

(and (3.26) if g′ is replaced by g in the latter) when Ωxs = 0 and ∂Ωys/∂x = 0. Therefore, by

using the approach of Jonsson et al. (1978), we again prove that when Ωxs = 0 and ∂Ωys/∂x =

0, even if Uy 6= 0 and ∂Uy/∂y 6= 0, the action conservation equation remains valid. However,

in a more general situation in which Ωxs = 0 but ∂Ωys/∂x 6= 0, although the rotational

perturbation velocity uy still vanishes so that the wave action density can be defined without

ambiguity and the vertical integrals can be evaluated in terms of simple functions, the

approach of Jonsson et al. (1978) may still fail and the action conservation equation

becomes invalid as shown in §4. However, in this situation and in an even more general

situation in which the underlying current varies slowly in the horizontal directions and its

vorticity components Ωx and Ωy are both large and vary slowly in all directions, equation
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(3.26) remains valid. In this general situation, the difference between the predictions by

(3.26) and by the action conservation equation (4.6) in which the wave action density is

defined without consideration of uy, will be illustrated numerically in the next section.
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6. Numerical computations

Since the differential equations (3.26) and (4.6) are derived in the specifically oriented

rectangular coordinates and since the forms of these equations are valid only locally, it is

convenient to solve these equations by using a special stepwise numerical integration as

illustrated in the following numerical simulation.

In this simulation, the velocity distribution of the underlying current is given as

U ′

x = −2.0− 0.002085x′ − 0.005049y′ + 1.5z′ + 0.00075x′z′ − 0.0013y′z′ (ms−1)

U ′

y = 1.1547− 0.00005x′ − 0.004915y′ + 0.866z′ + 0.000433x′z′ − 0.00075y′z′ (ms−1)



 (6.1)

where x′, y′, z′, unlike the coordinates x, y, z which move with the position under consid-

eration, represent a fixed rectangular coordinate system as shown in figure 3, and U ′

x, U ′

y

the velocity components in the x′− and y′ − directions. This distribution under a rotation

of the coordinates by an angle 30◦ about the z′ − direction also takes the form

U ′′

x = −1.1547− 0.005x′′ − 0.005y′′ + 1.732z′′ − 0.001732y′′z′′ (ms−1)

U ′′

y = 2 − 0.002y′′ (ms−1)



 (6.2)

in terms of the new coordinates x′′, y′′, z′′ and the new components U ′′

x , U ′′

y in the x′′− and

y′′ − directions. In this form, this distribution can easily be proved to satisfy the vorticity

equations (3.20) and (3.28).

Notice that from (6.2), the quantities ∂U ′′

y /∂z′′ and ∂2U ′′

x /∂x′′∂z′′ both vanish. There-

fore, if at a certain position the waves propagate in the x′′ −direction, the wave action can

be conserved according to both (3.26) and (5.19) compared with (4.6). However, for waves

propagating in other directions, equation (5.19) becomes invalid and the following compu-

tations will show that the wave action defined without consideration of the rotational per-

turbation velocity which has the same order of magnitude as the irrotational one in this

situation is not conserved.

To conduct the computations, the boundary conditions are prescribed on x′ = 0 on

which the amplitude a = constant = 1 m and the component of the wavenumber on the

y′ − direction k′

y = constant = 0, meaning that at each point on x′ = 0, the axes of the

coordinates x, y, z applied in (3.26) and (4.6) are in the same direction as those of x′, y′, z′,

respectively. On the other hand, since n0 = constant everywhere, from (2.9) and (3.27) it is

clear that the magnitude of the wavenumber k cannot remain constant as Uxs and Ωys vary

on x′ = 0 according to (6.1). However, since n0 = 0.5 rad s−1 is chosen here, these variations
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and that of k are slow near the origin of the coordinates x′, y′, z′ at which the wavelength

is about 23.5 m in view of (2.9) and (3.27).

On x′ = 0, the value of k′

y at each point has been prescribed so that the value of the

wavenumber component on the x′ − direction k′

x at the same point can be calculated by

using (2.9) and (3.27). Next, from the values of k′

x at points A and C in figure 3, one can

estimate the value of ∂k′

x/∂y′ at point B by using the approximation

∂k′

x

∂y′
(B) ≈

k′

x(A) − k′

x(C)

2∆y′
.

Since ∂k′

y/∂x′ = ∂k′

x/∂y′ and

∂k′

y

∂x′
(B) ≈

k′

y(E) − k′

y(B)

∆x′
=

k′

y(E)

∆x′
,

the value of k′

y(E) can therefore be determined approximately from the values of k′

x(A) and

k′

x(C), and is usually non-zero. Substituting the value of k′

y(E) into (2.9) and (3.27), we also

obtain the value of k′

x(E).

When k′

y(E) is non-zero, to directly apply (3.26) at point E, a new rectangular coordinate

system is required so that we next proceed to determine the components kx(G) and ky(G)

in the coordinates x, y, z in which ky(E) = 0 (see figure 3). This can be done because from

(3.7) we have ky(D) = 0 and ky(F ) = 0 approximately, so that in this new coordinate system

the situation at point E becomes the same as that at point B in the old coordinate system.

Therefore, by using the same group of formulae and equations, one can estimate the values

of kx(G) and ky(G). This procedure can be repeated to determine the variations of k along

the line whose tangent is everywhere parallel to the local k.

At each point on this line, after the values of k and therefore σ as well as their derivatives

with respect to x and y are determined, all quantities involved in (3.26) except (1/a)∂a/∂x

and (1/a)∂a/∂y become known. Therefore (3.26) can be integrated step by step along the

same line for the solution values of a along this line. The difference between this procedure

and that for the solution of k is that the solution values of a at the two neighboring

points on the adjacent lines on both sides of the line under consideration will be utilized

to estimate the value of ∂a/∂y at the point under consideration, which provides the last

data for determination of the value of a at the next point on this line, using (3.26). Thus

the values of a on each of the lines whose tangents are everywhere parallel to the local k

depend on the values of a on other lines, contrary to the situation that the values of k

28



on each of these lines are independent of those on other lines. This is because these lines

do not coincide with the characteristic curves of equation (3.26), but on the other hand,

the equations (2.9), (3.5) and (3.27) represent a degenerate hyperbolic system in which all

directions are formally characteristic (see Whitham 1974, §5.1). Since the situation that

the values of k on each line are independent of those on other lines has been realized in the

present computations by using (3.7), equation (3.7) may therefore be consistent with the

set of equations (2.9), (3.5) and (3.27).

When point E is under consideration, since the points D′ and F ′ in figure 3 are not on the

y−axis, the value of ∂a/∂y at point E can be estimated only by an iterative algorithm. This

algorithm starts with an initial guess (∂a/∂y)(E) = (a(D′) − a(F ′))/(2∆y′) and then estimates

(∂a/∂x)(E) by using (3.26). These two quantities also satisfy the relation

lim
∆y′

→0

a(D′) − a(F ′)

2∆y′
= sin θ

∂a

∂x
(E) + cos θ

∂a

∂y
(E), (6.3)

where θ = θ1 = θ2 in this case (see figure 3). Therefore, approximating the value of

lim
∆y′

→0

a(D′) − a(F ′)

2∆y′

by (a(D′) − a(F ′))/2∆y′ and substituting the first iterate of (∂a/∂x)(E) into (6.3), we obtain

a new approximation for (∂a/∂y)(E) so that these computations can be repeated until the

iterates converge.

These computations will become a little more complicated when the iterative algorithm

is applied to the next point G and the points after, because at each of these points, its two

neighboring points on the adjacent lines usually cannot be connected with each other by

a straight line passing through the point under consideration, meaning that θ1 6= θ2 now.

Therefore, instead of (6.3), we consider

lim
d1→0

a(D′) − a(E)

d1
= sin θ1

∂a

∂x
(E) + cos θ1

∂a

∂y
(E),

lim
d2→0

a(E) − a(F ′)

d2
= sin θ2

∂a

∂x
(E) + cos θ2

∂a

∂y
(E),

where d1 and d2 represent respectively the distances between D′ and E and between E and

F ′. By using these two relations, one may obtain two approximations for (∂a/∂y)(E) in each

iteration, but their mean value can eventually be applied in the iterative algorithm, which

may improve the stability of the numerical solution.
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The solution values of a along a single line are shown in figure 4, in which we also

compute the numerical solution of (4.6) by using exactly the same algorithm. The results

indeed indicate that in a three-dimensional, strongly sheared current, the variation of the

wave amplitude with distance is significantly different from that predicted by the action

conservation equation (4.6).

In order to check the computer program and to justify (3.7) which has been utilized not

only in the derivation of (3.26) but also in the above numerical computations, we also solve

the action conservation equation (4.3) and equation (3.26) on a rectangular mesh in the

coordinates x′, y′, z′ in figure 3. In these computations, to determine k at the next point,

the value of ∂k′

x/∂y′ at the point under consideration can always be estimated from the

values of k′

x at the neighboring points which have been determined at the previous step of

the computations, so that it is unnecessary to make use of (3.7) here. Similarly, the second

term in (4.3) can be estimated from the data determined previously, so that this equation

can also be solved by ordinary stepwise numerical integration without using the iterative

algorithm. On the other hand, each quantity in (3.26) which represents the component of a

vector or tensor can be expressed in terms of the components of this vector or tensor in the

coordinates x′, y′, z′ through a transformation of axes at each point under consideration.

Therefore (3.26) can also be solved numerically by using rectangular grids at the expense

of introducing extra terms in the equation, which will complicate the equation significantly,

but can however avoid using the iterative algorithm.

By using a rectangular mesh in the coordinates x′, y′, z′, the values of a and k at the

points marked with crosses in figure 5 have been calculated, from which the values of a and

k at the points marked with circles in figure 5 can also be estimated by linear interpolation.

These results as shown in figure 4 and 6 coincide very well with their counterparts obtained

by stepwise integration along a curve whose tangent is everywhere parallel to k. Therefore,

the use of (3.7) in the numerical computations has been justified. Furthermore, since in

deriving (4.6) from (4.3), two terms containing ∂ky/∂y have been neglected, the situation

that the solution values of (4.3) and (4.6) at each point coincide with each other closely

can also justify the neglect of the terms containing ∂ky/∂y in the analysis, although in the

present case both (4.3) and (4.6) cannot really describe the variation of the amplitude.
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7. Conclusions

By using an approach which is not separate from the traditional perturbation scheme

but can deal with the complicated situation in which a deep-water gravity wave train

propagates obliquely on a steady three-dimensional, strongly sheared current that varies

slowly in the horizontal directions and deviates slightly from a linear profile in the vertical

direction, the first-order WKBJ solution, including the modulation equation of the wave

amplitude, has been derived rigorously. This modulation equation is in general inconsistent

with the two-dimensional action conservation equation which represents a natural extension

of the one-dimensional one derived by Jonsson et al. (1978) and therefore take the vorticity

of the current into account but ignores the rotational perturbation velocity that may have

the same order of magnitude as the irrotational part of the wave motion in the present

situation. Thus, in a region with a strongly sheared current, the wave spectrum data

estimated from the action conservation equation may sometimes be misleading.

When the combined wave and current motion becomes two-dimensional and the vor-

ticity is constant, the modulation equation derived here reduces to the one-dimensional ac-

tion conservation equation deduced by Jonsson et al. (1978). Even if the underlying rota-

tional current is three-dimensional, as long as Ωxs and (∂2Ux/∂x∂z)z=0 are small compared

with σ and ∂σ/∂x respectively, the present result can still coincide with the reduced form

of the two-dimensional action conservation equation in this case.

To explain why these two restrictions on the distribution of the underlying current are

both required for the validity of the action conservation equation, the approach of Jonsson

et al. (1978) considering the integral properties of the combined wave and current motion

across a fixed vertical section has also been applied in the three-dimensional flow. From

this analysis, it is immediately clear that if Ωx has the same order of magnitude as σ so

that the rotational perturbation velocity uy has the same order of magnitude as ∂φ/∂x and

∂φ/∂z, since the vertical integrals from the bottom to the free surface of the terms involving

uy cannot be evaluated in terms of simple functions, the wave action density cannot be

redefined to include the contribution of uy in the usual sense.

Similarly, in order that all the vertical integrals involved can be evaluated in terms of

simple functions, the condition that Ωx is small compared with σ is also required for the

approach of Jonsson et al. (1978) being valid. In addition, to cancel the terms unrelated

to the wave-current interaction to obtain a useful and consistent differential equation for

determination of the variation of the amplitude, it is also required that (∂2Ux/∂x∂z)z=0 is

small compared with ∂σ/∂x. The resulting equation is indeed identical with the reduced
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forms of the two-dimensional action conservation equation (4.6) and the modulation equa-

tion (3.26) in this case.

Finally we emphasize that even when Ωx = uy = 0 so that the wave action density

can be defined without ambiguity, as long as (∂2Ux/∂x∂z)z=0 is not small compared with

∂σ/∂x, the wave action is not conserved, meaning that the failure of the conservation of

wave action cannot be attributed solely to the neglect of the rotational part of the wave

motion in the definition of the wave action density, which will increase the difficulties for a

physical interpretation of this failure and for establishment of a new conservation principle.

However, equation (3.26) can be utilized to determine numerically the variation of the

amplitude with distance in a general situation.
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