台北港(92-94年)海岸漂沙調查及 海氣象與地形變遷監測作業

九十二年報告

....

交通部基隆港務局 委託 交通部運輸研究所 辦理

中華民國九十三年七月

台北港(92-94年)海岸漂沙調查及 海氣象與地形變遷監測作業

九十二年報告

交通部基隆港務局 委託

交通部運輸研究所 辦理

中華民國九十三年七月

台北港(92-94 年)海岸漂沙調查及 海氣象與地形變遷監測作業

計畫主持人	•	何良勝	科長
共同主持人	•	吳基	研究員
		林柏青	副研究員
		張富東	副研究員
協同主持人	•	廖慶堂	副研究員
		徐如娟	副研究員
研究人員	•	邱永芳	主任
		江玟德	副研究員
		林受勳	助理研究員
		蔡金吉	助理研究員
		蘇青和	研究員

交通部基隆港務局 委託

交通部運輸研究所 辦理

中華民國九十三年七月

及海氣象與地形變遷監測作業台北港(92-94年)海岸漂沙調查 九十二年 報告

港灣技術研究中心交通部運輸研究所

摘要

本報告為基隆港務局接續委託本所(運輸研究所)代為辦理台北港 相關計畫之第一年報告,報告內容主要涵蓋2003年1月至11月初風、 波浪、海流等海氣象觀測資料之蒐集與統計分析工作,並辦理平面流 況調查及雷達遙感監測作業,以資驗證比對現場觀測資料。同時進行 淡水河懸浮質調查與台北港附近海域地形測量,以及海岸地形變遷數 值模擬工作,用以瞭解台北港海岸漂沙情況及地形變遷過程。

由海氣象觀測資料之分析結果顯示,四月及五月之風速多數小於 5m/s,僅有一至二成比例大於 10m/s;而風向以 NE 及 ENE 向較為多 數,本年度有關風之觀測資料較為短缺之因素,如報告第四章論述。 波浪統計特性方面,秋、冬雨季因受東北季風與颱風影響,全季之平 均H1/3 波高值達 1.0m 左右,週期則以 5~7 秒居多數,冬季波向以 N~NE 之間為主,秋季則以 NNE~NNW 向最多。全年最大波高發生於一月份, 其極值達 3.73m,週期 8.3 秒,當時波向為 N 方向。海流統計特性方面, 台北港海域之海流以潮流為主要成份,全年之平均流速為 34.9cm/s, 而各季之平均流速介於 31~37cm/s 之間,流速分佈比例以小於 50cm/s 者為多數,約佔七成以上。各月份之最大流速除七月稍小外,其餘約 在 95~123cm/s 之間。流向分佈方面,冬、春雨季之流向主要集中於 ENE 及 WSW 方位,而夏、秋雨季退潮時以 ENE 向為主,但漲潮時則分散 於 W~SW 之間。

平面流況調查之結果,台北港現有港口附近海域表面海流運動方向,於漲潮時段大抵為東北往西南方向,表面流速如不受風向影響, 平均流速約在 0.3~0.4m/sec 之間;如受風向影響則增大至 0.6~0.9m/sec。退潮時段之流向則為西南往東北方向,表面流速如不受 風向影響,約在 0.6~0.7m/sec 之間;如受風向影響則平均流速減低至 0.1~0.3m/sec,調查結果大致和現場資料分析脗合。

淡水河水中懸浮質濃度受河川上游集水區降雨量影響甚鉅,平時

Ι

河川懸浮質含量並不高,若上游山區降下大雨,將使河川懸浮質含量 劇增達10倍以上。根據歷年來淡水海域斷面水深測量結果,總結全域 之土積量變化,發現近三年來有趨於穩定並受輕微侵蝕現象。

海岸地形變遷數值模擬方面,本年度著重於波流場模式之確立, 並初步作漂沙模式之驗證。台北港海域之流場受潮流影響,呈現 NNE ~SW 之走向,而波場方面,本區域波浪傳遞能量消耗較大,波高變化 較為明顯。有關漂沙模擬之概算結果,全區水域淨輸砂優勢方向為北 往南之趨勢。如以分區劃分,淡水河口至北防波堤海岸區域,原則上 在北防波堤近岸區有淤積趨勢;在台北港港址附近區域之淨輸沙率約 在1~100m3/yr/m 以內,呈現輕微淤積的狀態;而台北港以南至林口附 近海岸部份則有較多處明顯侵蝕的潛能。

有關雷達遙感測波方面,本年度工作除繼續維護並改進展示網頁 內容外,主要著重波向分析方式之改善,由分析結果顯示,雷達測波 所得之主要波向和現場觀測樁之觀測結果相互脗合。

Π

_	

錄

摘 要
目 錄
表目錄
圖目錄
照片目錄
第一章 前言1-1
第二章 海上觀測樁設置2-1
2.1 前言2-1
2.2 設計概念與結構分析2-1
2.2.1 設計條件2-1
2.2.2 細部設計2-2
2.2.3 結構分析2-5
2.3 觀測樁打設位置與施工步驟2-5
2.3.1 觀測樁打設位置2-5
2.3.2 施工步驟2-8
2.4 施工過程與實景2-9
2.4.1 主樁體下部結構施工2-10
2.4.2 主樁體上部平台施工2-10
2.4.3 主樁體下部結構海上打設2-11
2.4.4 主樁體下部結構與上部平台接合2-11

2.	.4.5 附屬設備安裝	2-12
2.	.4.6 施工完成全景	2-12
第三章	章 現場觀測作業	3-1
3.1	前言	3-1
3.2	海氣象觀測儀器說明	3-1
3.	.2.1 新觀測儀器系統採購作業	3-3
3.3	海氣象現場作業過程	3-7
3.4	懸浮質調查現場作業	3-13
第四章	章 風速及風向觀測資料分析	4-1
4.1	觀測方式說明	4-1
4.2	風速統計特性分析	4-2
4.3	風向統計特性分析	4-2
4.4	風極值統計分析	4-3
第五章	章 波浪觀測資料分析	5-1
5.1	波浪觀測方式說明	5-1
5.2	波浪資料紀錄	5-1
5.3	波高統計特性分析	5-2
5.4	週期統計特性分析	5-3
5.5	波高及週期聯合統計特性分析	5-4
5.6	波向統計特性分析	5-5
5.7	波高極值統計分析	5-6
第六章	章 海流觀測資料分析	6-1

6.1 海流觀測方式說明	6-1
6.2 海流資料紀錄	6-1
6.3 流速統計特性分析	6-2
6.4 流向統計特性分析	6-3
6.5 流速極值統計分析	6-4
第七章 平面流況調查	7-1
7.1 流況調查內容	7-1
7.2 調查量測系統架構及方法	7-3
7.2.1 量測系統架構	7-3
7.2.2 流況量測方法	7-6
7.3 調查結果分析	7-8
7.3.1 第一次調查結果分析	7-15
7.3.2 第二次調查結果分析	7-19
7.4 綜合分析結果	
第八章 懸浮質調查與海岸地形監測分析	8-1
8.1 淡水河流速流向觀測與懸浮質調查分析	8-1
8.1.1 淡水河水位及流速、流向觀測分析	8-1
8.1.2 淡水河懸浮質觀測分析	
8.2 海岸地形變遷監測分析	8-3
第九章 海岸地形變遷數值模式	9-1
9.1 自然環境條件	9-1
9.1.1 海氣象條件	

9.1.2 地形變遷概況	9-2
9.2 水動力模式 (MIKE 21 HD 模式)	9-5
9.2.1 控制方程式	9-5
9.2.2 模式參數之選定	9-6
9.2.3 數值方法及穩定條件	9-9
9.2.4 模式之建立	9-9
9.3 近岸波浪模式 (MIKE 21 NSW 模式)	9-10
9.3.1 模式之參數介紹	9-11
9.3.2 模式之數值方法及穩定條件	9-13
9.3.3 模式建立	9-14
9.3.4 波浪模擬的邊界及設定	9-14
9.4 漂沙輸送模式 (MIKE 21 ST 模式)	9-15
9.4.1 控制方程式	9-15
9.4.2 模式參數之選定	9-19
9.5 波流場數值模擬結果	9-20
9.5.1 波流場數值綜合計算結果	9-21
9.5.2 波流場數值計算檢核	9-34
9.6 海岸地形變遷數值計算結果	9-41
9.6.1 漂砂模式計算結果	9-41
9.6.2 海岸變遷綜合評估結果	9-41
9.7 模式檢討及建議	9-52
9.7.1 模式檢討	9-52

9.7.2 建議	
第十章 雷達遙感波浪監測	10-1
10.1 前言	10-1
10.2 雷達測波作業簡介	10-1
10.3 雷達測波影像處理原則	10-5
10.3.1 邊緣線之擷取	
10.3.2 邊緣線擷取之驗證	
10.4 監測作業過程	10-13
10.5 監測資料分析結果	
10.5.1 測波資料分析結果	
10.5.2 網頁展示系統維護	
第十一章 颱風資料分析	11-1
第十二章 結論與建議	
參考文獻	13-1
報告審查會議紀錄	

表目錄

表 2.1	50 年復現期颱風波浪水深 - 15M 及 - 20M 對應之波浪特
	性表2-6
表 4.1	2003 年台北港現場觀測風資料統計表4-1
表 4.2.1	2003 年 4 月台北港風速及風向聯合分佈表
表 4.2.2	2003 年 5 月台北港風速及風向聯合分佈表
表 4.3.1	2003 年 4 月風統計極值表4-6
表 4.3.2	2003 年 5 月風統計極值表4-7
表 5.1	2003年台北港現場觀測波浪資料記錄表
表 5.2.1	2003年1月台北港波高及週期聯合分佈百分比(%)統計
	表5-8
表 5.2.2	2003年2月台北港波高及週期聯合分佈百分比(%)統計
	表5-9
表 5.2.3	2003年3月台北港波高及週期聯合分佈百分比(%)統計
	表5-10
表 5.2.4	2003年4月台北港波高及週期聯合分佈百分比(%)統計
	表5-11
表 5.2.5	2003 年 5 月台北港波高及週期聯合分佈百分比(%)統計
	表5-12
表 5.2.6	2003年6月台北港波高及週期聯合分佈百分比(%)統計
	表5-13
表 5.2.7	2003 年 7 月台北港波高及週期聯合分佈百分比(%)統計
	表5-14
表 5.2.8	2003 年 8 月台北港波高及週期聯合分佈百分比(%)統計
	表

表 5.2.9	2003年9月台北港波高及週期聯合分佈百分比(%)統計 表	5-16
表 5.2.10	2003年10月台北港波高及週期聯合分佈百分比(%)統計表	5-17
表 5.2.11	2003年11月台北港波高及週期聯合分佈百分比(%)統計表	5-18
表 5.3.1	2002年冬季台北港波高及週期聯合分佈百分比(%)統計表	5-19
表 5.3.2	2003年春季台北港波高及週期聯合分佈百分比(%)統計表	5-20
表 5.3.3	2003年夏季台北港波高及週期聯合分佈百分比(%)統計表	5-21
表 5.3.4	2003年秋季台北港波高及週期聯合分佈百分比(%)統計表	5-22
表 5.4 2	2003年整年台北港波高及週期聯合分佈百分比(%)統計表	5-23
表 5.5.1	2003年1月台北港波高及波向聯合機率分佈	5-24
表 5.5.1 表 5.5.2	2003 年 1 月台北港波高及波向聯合機率分佈	5-24 5-25
表 5.5.1 表 5.5.2 表 5.5.3	 2003年1月台北港波高及波向聯合機率分佈 2003年2月台北港波高及波向聯合機率分佈 2003年3月台北港波高及波向聯合機率分佈 	5-24 5-25 5-26
表 5.5.1 表 5.5.2 表 5.5.3 表 5.5.4	 2003年1月台北港波高及波向聯合機率分佈 2003年2月台北港波高及波向聯合機率分佈 2003年3月台北港波高及波向聯合機率分佈 2003年4月台北港波高及波向聯合機率分佈 	5-24 5-25 5-26 5-27
表 5.5.1 表 5.5.2 表 5.5.3 表 5.5.4 表 5.5.5	 2003年1月台北港波高及波向聯合機率分佈	5-24 5-25 5-26 5-27 5-28
表 5.5.1 表 5.5.2 表 5.5.3 表 5.5.4 表 5.5.5 表 5.5.6	 2003年1月台北港波高及波向聯合機率分佈	5-24 5-25 5-26 5-27 5-28 5-29
表 5.5.1 表 5.5.2 表 5.5.3 表 5.5.4 表 5.5.5 表 5.5.6 表 5.5.7	 2003年1月台北港波高及波向聯合機率分佈	5-24 5-25 5-26 5-27 5-28 5-29 5-30
表 5.5.1 表 5.5.2 表 5.5.3 表 5.5.4 表 5.5.5 表 5.5.6 表 5.5.7 表 5.5.8	 2003年1月台北港波高及波向聯合機率分佈	5-24 5-25 5-26 5-27 5-28 5-29 5-30 5-31
表 5.5.1 表 5.5.2 表 5.5.3 表 5.5.4 表 5.5.5 表 5.5.6 表 5.5.7 表 5.5.8 表 5.5.8	 2003年1月台北港波高及波向聯合機率分佈	5-24 5-25 5-26 5-27 5-28 5-29 5-30 5-31 5-32
表 5.5.1 表 5.5.2 表 5.5.3 表 5.5.4 表 5.5.5 表 5.5.6 表 5.5.7 表 5.5.8 表 5.5.9 表 5.5.10	 2003年1月台北港波高及波向聯合機率分佈	5-24 5-25 5-26 5-27 5-28 5-29 5-30 5-31 5-32 5-33

表 5.6.1	2002年冬季台北港波高及波向聯合機率分佈	5-35
表 5.6.2	2003 年春季台北港波高及波向聯合機率分佈	5-36
表 5.6.3	2003年夏季台北港波高及波向聯合機率分佈	5-37
表 5.6.4	2003年秋季台北港波高及波向聯合機率分佈	5-38
表 5.7 2	003年整年台北港波高及波向聯合機率分佈	5-39
表 5.8.1	2003年1月波浪統計極值表	5-40
表 5.8.2	2003年2月波浪統計極值表	5-41
表 5.8.3	2003 年 3 月波浪統計極值表	5-42
表 5.8.4	2003年4月波浪統計極值表	5-43
表 5.8.5	2003 年 5 月波浪統計極值表	5-44
表 5.8.6	2003年6月波浪統計極值表	5-45
表 5.8.7	2003 年 7 月波浪統計極值表	5-46
表 5.8.8	2003 年 8 月波浪統計極值表	5-47
表 5.8.9	2003 年 9 月波浪統計極值表	5-48
表 5.8.10	2003 年 10 月波浪統計極值表	5-49
表 5.9 2	003年台北港每月波浪統計極值表	5-6
表 6.1 2	003年台北港現場觀測海流資料記錄表	6-2
表 6.2.1	2003年1月台北港流速及流向聯合分佈表	6-6
表 6.2.2	2003年2月台北港流速及流向聯合分佈表	6-7
表 6.2.3	2003年3月台北港流速及流向聯合分佈表	6-8
表 6.2.4	2003年4月台北港流速及流向聯合分佈表	6-9
表 6.2.5	2003 年 5 月台北港流速及流向聯合分佈表	6-10
表 6.2.6	2003年6月台北港流速及流向聯合分佈表	6-11
表 6.2.7	2003 年 7 月台北港流速及流向聯合分佈表	6-12

表 6.2.8	2003 年 8 月台北港流速及流向聯合分佈表	6-13
表 6.2.9	2003 年 9 月台北港流速及流向聯合分佈表	6-14
表 6.2.1	0 2003 年 10 月台北港流速及流向聯合分佈表	6-15
表 6.3	2003年1~10月份流速區間百分比例(%)表	6-2
表 6.4.1	2002 年冬季台北港流速及流向聯合分佈表	6-16
表 6.4.2	2003 年春季台北港流速及流向聯合分佈表	6-17
表 6.4.3	2003年夏季台北港流速及流向聯合分佈表	6-18
表 6.4.4	2003 年秋季台北港流速及流向聯合分佈表	6-19
表 6.5	2003年整年台北港流速及流向聯合分佈表	6-20
表 6.6	2003年台北港各季節流速區間百分比例(%)表	6-3
表 6.7.1	2003 年 1 月海流統計極值表	6-21
表 6.7.2	2003 年 2 月海流統計極值表	6-22
表 6.7.3	2003 年 3 月海流統計極值表	6-23
表 6.7.4	2003 年 4 月海流統計極值表	6-24
表 6.7.5	2003 年 5 月海流統計極值表	6-25
表 6.7.6	2003 年 6 月海流統計極值表	6-26
表 6.7.7	2003 年 7 月海流統計極值表	6-27
表 6.7.8	2003 年 8 月海流統計極值表	6-28
表 6.7.9	2003 年 9 月海流統計極值表	6-29
表 6.7.1	0 2003 年 10 月海流統計極值表	6-30
表 6.8	2003年台北港每月流速極值表	6-4
表 7.1	基地站控制點座標	7-7
表 7.2	第一次淡水地區潮汐表(中央氣象局預報資料)	7-8
表 7.3	第二次淡水地區潮汐表(中央氣象局預報資料)	7-9

表 7.5	第一次工作漂浮球施放時段	7-11
表 7.6	第二次工作漂浮球施放時段	7-11
表 9.1	水理模式相關參數設定值	9-8
表 9.2	近岸風波模式風波條件設定表	9-14
表 9.3	冬季各點底質樣品中值粒徑表	9-20
表 10.1	台北港雷達測波儀所收集測波資料清單	10-14
表 10.2	沙崙站雷達測波儀所收集測波資料清單	10-15
表 10.3	92(2003)年 6 月,台北港 2 號測站所測波向分佈百分	
	比統計表	10-20
表 10.4	92(2003)年7月,台北港2號測站所測波向分佈百分	
	比統計表	10-23
表 10.5	92(2003)年8月,台北港2號測站所測波向分佈百分 比統計表	10-26
表 10.6	92(2003)年9月,台北港2號測站所測波向分佈百分	
	比統計表	10-29
表 10.7	92(2003)年 10 月,台北港 2 號測站所測波向分佈百分	
	比統計表	10-32
表 10.8	雷達測站和觀測樁測站之主要波向比較表	10-16
表 11.1	2003年中央氣象局發佈颱風警報表	11-1
表 11.2	影響台北港颱風事件海氣象觀測數據極值表	11-3

圖目錄

圖 2.1	台北港觀測樁立面設計圖	2-4
圖 2.2	台北港觀測樁打設位置圖	2-7
圖 2.3	主樁體下部結構施工實景圖(88/07 於安平港)	2-10
圖 2.4	主樁體上部平台施工實景圖(88/07 於安平港)	2-10
圖 2.5	主樁體下部結構海上打設實景圖(88/07 於安平港)	2-11
圖 2.6	主樁體下部結構與上部平台接合實景圖(88/07 於安平港)	2-11
圖 2.7	附屬設備安裝實景圖(88/07 於安平港)	2-12
圖 2.8	施工完成全景(88/07 於安平港)	2-12
圖 3.1	台北港海上觀測樁現況	3-2
圖 3.2	Inter-Ocean 公司生產之 S-4ADW 潮波流儀	3-2
圖 4.1.1	2003 年 4 月台北港風資料逐時歷線圖	4-8
圖 4.1.2	2003 年 5 月台北港風資料逐時歷線圖	4-9
圖 4.2.1	2003 年 4 月台北港測站 1 風玫瑰圖	4-10
圖 4.2.2	2003 年 5 月台北港測站 1 風玫瑰圖	4-10
圖 5.1.1	2003 年 1 月台北港波浪資料逐時歷線圖	5-50
圖 5.1.2	2003年2月台北港波浪資料逐時歷線圖	5-51
圖 5.1.3	2003年3月台北港波浪資料逐時歷線圖	5-52
圖 5.1.4	2003年4月台北港波浪資料逐時歷線圖	5-53
圖 5.1.5	2003 年 5 月台北港波浪資料逐時歷線圖	5-54
圖 5.1.6	2003年6月台北港波浪資料逐時歷線圖	5-55
圖 5.1.7	2003 年 7 月台北港波浪資料逐時歷線圖	5-56
圖 5.1.8	2003 年 8 月台北港波浪資料逐時歷線圖	5-57

圖 5.1.9	2003年9月台北港波浪資料逐時歷線圖	5-58
圖 5.1.10) 2003 年 10 月台北港波浪資料逐時歷線圖	5-59
圖 5.1.11	1 2003 年 11 月台北港波浪資料逐時歷線圖	5-60
圖 5.2.1	2003年1月台北港波浪玫瑰圖	5-61
圖 5.2.2	2003年2月台北港波浪玫瑰圖	5-61
圖 5.2.3	2003年3月台北港波浪玫瑰圖	5-61
圖 5.2.4	2003年4月台北港波浪玫瑰圖	5-61
圖 5.2.5	2003 年 5 月台北港波浪玫瑰圖	5-62
圖 5.2.6	2003年6月台北港波浪玫瑰圖	5-62
圖 5.2.7	2003年7月台北港波浪玫瑰圖	5-62
圖 5.2.8	2003 年 8 月台北港波浪玫瑰圖	5-62
圖 5.2.9	2003年9月台北港波浪玫瑰圖	5-63
圖 5.2.10) 2003 年 10 月台北港波浪玫瑰圖	5-63
圖 5.2.11	L 2003 年 11 月台北港波浪玫瑰圖	5-63
圖 5.3.1	2002年冬季台北港波浪玫瑰圖	5-64
圖 5.3.2	2003年春季台北港波浪玫瑰圖	5-64
圖 5.3.3	2003年夏季台北港波浪玫瑰圖	5-64
圖 5.3.4	2003年秋季台北港波浪玫瑰圖	5-64
圖 5.4	2003 全年台北港波浪玫瑰圖	5-65
圖 6.1.1	2003年1月台北港海流資料逐時歷線圖	6-31
圖 6.1.2	2003年2月台北港海流資料逐時歷線圖	6-32
圖 6.1.3	2003年3月台北港海流資料逐時歷線圖	6-33
圖 6.1.4	2003年4月台北港海流資料逐時歷線圖	6-34
圖 6.1.5	2003 年 5 月台北港海流資料逐時歷線圖	6-35

啚	6.1.6	2003 年 6 月台北港海流資料逐時歷線圖6-36
圕	6.1.7	2003 年 7 月台北港海流資料逐時歷線圖6-37
圖	6.1.8	2003 年 8 月台北港海流資料逐時歷線圖6-38
圖	6.1.9	2003年9月台北港海流資料逐時歷線圖6-39
圖	6.1.1	0 2003 年 10 月台北港海流資料逐時歷線圖6-40
圖	6.2.1	2003年1月台北港海流玫瑰圖6-41
圖	6.2.2	2003年2月台北港海流玫瑰圖6-41
圖	6.2.3	2003年3月台北港海流玫瑰圖6-41
圖	6.2.4	2003年4月台北港海流玫瑰圖6-41
圖	6.2.5	2003 年 5 月台北港海流玫瑰圖6-42
圕	6.2.6	2003年6月台北港海流玫瑰圖6-42
圕	6.2.7	2003 年 7 月台北港海流玫瑰圖6-42
圕	6.2.8	2003 年 8 月台北港海流玫瑰圖6-42
圕	6.2.9	2003年9月台北港海流玫瑰圖6-43
圕	6.2.1	0 2003 年 10 月台北港海流玫瑰圖6-43
圕	6.3.1	2002 年冬季台北港海流玫瑰圖6-44
圕	6.3.2	2003 年春季台北港海流玫瑰圖6-44
圕	6.3.3	2003年夏季台北港海流玫瑰圖6-44
圕	6.3.4	2003年秋季台北港海流玫瑰圖6-44
圕	6.4	2003年台北港海流玫瑰圖6-45
圕	7.1	台北港(92年)漂流浮標追蹤調查工作測區圖7-2
圕	7.2	量測系統架構圖7-5
圕	7.3	2003年9月25日第一次實測潮位與漂浮球抛放關係圖7-9
圕	7.4	2003年9月26日第一次實測潮位與漂浮球拋放關係圖7-10

啚	7.5	2003年10月27日第二次實測潮位與漂浮球拋放關係圖7-10
圕	7.6	92年9月25日第一次工作風速風向氣壓觀測時間序列圖7-12
圕	7.7	92年9月26日第一次工作風速風向氣壓觀測時間序列圖7-13
圕	7.8	92年10月27日第二次工作風速風向氣壓觀測時間序列圖
圕	7.9	2003 年 9 月 25 日 17 號浮球漂流軌跡圖
圖	7.10	2003 年 9 月 25 日 18 號浮球漂流軌跡圖
圕	7.11	2003 年 9 月 26 日 17 號浮球漂流軌跡圖
圖	7.12	2003 年 9 月 26 日 18 號浮球漂流軌跡圖
啚	7.13	2003 年 10 月 27 日 17 號浮球漂流軌跡圖
圕	7.14	2003 年 10 月 27 日 18 號浮球漂流軌跡圖
圕	8.1	淡水河關渡測站位置圖(星號為海流儀施放地點)8-4
圕	8.2	淡水河關渡測站儀器安裝位置示意圖8-5
圕	8.3	92年7月下旬關渡附近河川水位變化8-6
啚	8.4	92年8月上旬關渡附近河川水位變化8-6
啚	8.5	92年8月下旬關渡附近河川水位變化8-7
啚	8.6	92年9月上旬關渡附近河川水位變化8-7
圖	8.7	92年9月下旬關渡附近河川水位變化
啚	8.8	92年10月上旬關渡附近河川水位變化8-8
啚	8.9	92年10月下旬關渡附近河川水位變化
啚	8.10	92年11月上旬關渡附近河川水位變化
圕	8.11	92年11月下旬關渡附近河川水位變化
圕	8.12	92年12月上旬關渡附近河川水位變化
啚	8.13	92年7月下旬關渡附近離底2米處水溫變化8-11

圖 8.14	92年8月上旬關渡附近離底2米處水溫變化	8-11
圖 8.15	92年8月下旬關渡附近離底2米處水溫變化	8-12
圖 8.16	92年9月上旬關渡附近離底2米處水溫變化	8-12
圖 8.17	92年9月下旬關渡附近離底2米處水溫變化	8-13
圖 8.18	92年10月上旬關渡附近離底2米處水溫變化	8-13
圖 8.19	92年10月下旬關渡附近離底2米處水溫變化	8-14
圖 8.20	92年11月上旬關渡附近離底2米處水溫變化	8-14
圖 8.21	92年11月下旬關渡附近離底2米處水溫變化	8-15
圖 8.22	92年12月上旬關渡附近離底2米處水溫變化	8-15
圖 8.23	92年4月下旬關渡附近水面下1米處流速變化	8-16
圖 8.24	92年5月上旬關渡附近水面下1米處流速變化	8-16
圖 8.25	92年5月下旬關渡附近水面下1米處流速變化	8-17
圖 8.26	92年6月上旬關渡附近水面下1米處流速變化	8-17
圖 8.27	92年6月下旬關渡附近水面下1米處流速變化	8-18
圖 8.28	92年7月上旬關渡附近水面下1米處流速變化	8-18
圖 8.29	92年7月下旬關渡附近水面下1米處流速變化	8-19
圖 8.30	92年8月下旬關渡附近水面下1米處流速變化	8-19
圖 8.31	92年9月上旬關渡附近水面下1米處流速變化	8-20
圖 8.32	92年9月下旬關渡附近水面下1米處流速變化	8-20
圖 8.33	92年10月上旬關渡附近水面下1米處流速變化	8-21
圖 8.34	92年11月上旬關渡附近水面下1米處流速變化	8-21
圖 8.35	92年11月下旬關渡附近水面下1米處流速變化	8-22
圖 8.36	92年4月下旬關渡附近水面下1米處鹽度變化	8-22
圖 8.37	92年5月上旬關渡附近水面下1米處鹽度變化	8-23

圕	8.38	92年11月下旬關渡附近水面下1米處鹽度變化	8-23
圕	8.39	92年12月上旬關渡附近水面下1米處鹽度變化	8-24
圕	8.40	民國 92 年淡水氣象站逐日雨量資料	8-25
圕	8.41	92年9月下旬關渡附近離底1米處之濁度變化	8-26
圕	8.42	92年10月上旬關渡附近離底1米處之濁度變化	8-26
圕	8.43	92年10月下旬關渡附近離底1米處之濁度變化	8-27
圕	8.44	92年11月上旬關渡附近離底1米處之濁度變化	8-27
圕	8.45	92年11月下旬關渡附近離底1米處之濁度變化	8-28
啚	8.46	92年12月上旬關渡附近離底1米處之濁度變化	8-28
圕	8.47	淡水海域斷面水深測線示意圖	8-29
圕	8.48	91年10月至92年10月淡水海域單位寬斷面測線底質	侵
		淤變化	8-30
圕	8.49	88 年 5 月至 92 年 10 月不同時段淡水海域單位寬斷面	測
		線底質侵淤總和變化	8-31
圕	9.1	線底質侵淤總和變化 M1 模式 2003/11/06 00:00:00 (第二期完工)	8-31 9-22
国国	9.1 9.2	線底質侵淤總和變化 M1模式 2003/11/06 00:00:00 (第二期完工) M1模式 2003/11/06 04:00:00(第二期完工)	8-31 9-22 9-23
周 日 日	9.1 9.2 9.3	線底質侵淤總和變化	8-31 9-22 9-23 9-24
991 1391 1391 1391 1391	 9.1 9.2 9.3 9.4 	線底質侵淤總和變化	8-31 9-22 9-23 9-24 9-25
18111111111111111111111111111111111111	 9.1 9.2 9.3 9.4 9.5 	線底質侵淤總和變化	8-31 9-22 9-23 9-24 9-25 9-26
る る る る る る る	 9.1 9.2 9.3 9.4 9.5 9.6 	線底質侵淤總和變化	8-31 9-22 9-23 9-24 9-25 9-26 9-27
B B B B B	 9.1 9.2 9.3 9.4 9.5 9.6 9.7 	線底質侵淤總和變化 M1 模式 2003/11/06 00:00:00 (第二期完工) M1 模式 2003/11/06 04:00:00(第二期完工) M1 模式 2003/11/06 08:00:00 (第二期完工) M1 模式 2003/11/06 12:00:00 (第二期完工) M1 模式 2003/11/06 16:00:00 (第二期完工) X1 模式 2003/11/06 16:00:00 (第二期完工) X1 模式 2003/11/06 16:00:00 (第二期完工) X1 模式 2003/11/06 16:00:00 (第二期完工)	8-31 9-22 9-23 9-24 9-25 9-26 9-27 9-28
Image: Second system Image: Second system Image: Second system Image: Second system	 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 	線底質侵淤總和變化	8-31 9-22 9-23 9-24 9-25 9-26 9-27 9-28 9-28 9-29
B B B B B B B B	 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 	線底質侵淤總和變化	8-31 9-22 9-23 9-24 9-25 9-26 9-27 9-28 9-28 9-29 9-30

圖 9.11	M2 臺北商港附近水域流場模擬情形(第三期、遠期工 程、倉儲區完成)9-32
圖 9.12	M2 臺北商港附近水域流場模擬情形(第三期、遠期工程、倉儲區完成)
圖 9.13	臺北商港附近水域波場模擬情形 (第二期)(入射波波高 1.0m、週期 8sec 和波向 NNE)
圖 9.14	臺北商港附近水域波場模擬情形 (第三期工程完成)(入 射波波高 1.0m、週期 8sec 和波向 NNE)
圖 9.15	臺北商港附近水域波場模擬情形(第三期工程、倉儲區、 填海區完成) (入射波波高 1.0m、週期 8sec 和波向 NNE)
圖 9.16	數值模式潮位數值解與測站實測值之比較
圖 9.17	數值模式流速數值解與測站實測值之比較
圖 9.18	數值模式定點流向數值解與測站實測值之比較
圖 9.19	臺北商港附近水域漂砂傳輸向量模擬情形 (第二期)(冬季,入射波波高 1.0m、週期 8sec 和波向 NNE)9-43
圖 9.20	臺北商港附近水域漂砂傳輸向量模擬情形 (第三期工程 完成) (冬季 , 入射波波高 1.0m、週期 8sec 和波向 NNE)
圖 9.21	臺北商港附近水域漂砂傳輸向量模擬情形(第三期、遠期
	工程、倉儲區完成) (冬季 , 入射波波高 1.0m、週期 8sec
	和波向 NNE)
圖 9.22	臺北商港附近水域平均輸砂潛量圖 (第二期)(冬季,入 射波波高 3.3m、週期 10sec 和波向 NNE)
圖 9.23	臺北商港附近水域平均輸砂潛量圖 (第三期工程完成) (冬季,入射波波高1.0m、週期8sec和波向NNE)9-47

XIX

圖 9.24	臺北商港附近水域平均輸砂潛量圖(第三期、遠期工程、 倉儲區完成)(冬季,入射波波高1.0m、週期8sec和波 向NNE)
圖 9.25	臺北商港附近水域年平均漂砂優勢圖 (第二期)
圖 9.26	臺北商港附近水域年平均漂砂優勢圖 (第三期工程完成)
圖 9.27	臺北商港附近水域年平均漂砂優勢圖(第三期、遠期工 程、倉儲區完成)9-51
圖 10.1	91年9月台北港外廓防波堤之雷達圖像10-3
圖 10.2	沙崙站雷達測波儀10-4
圖 10.3	沙崙站雷達測波儀擷取之影像10-4
圖 10.4	波向分佈量測流程10-5
圖 10.5	應用導數運作元的邊緣偵測10-6
圖 10.6	Sobel 梯度運作元10-6
圖 10.7	利用 CCD 所拍攝到之水面變化10-8
圖 10.8	將圖 10.7 用 Sobel 梯度運作元邊緣化後之結果(波向分佈
	曲線)10-9
圖 10.9	將圖 10.7 用影像軟體做邊緣化後之結果10-11
圖 10.10	雷達影像及分解後之 R , G , B 個別色階影像10-12
圖 10.11	92(2003)年 6 月,波流儀所測波向與台北港 2 號測站
	所測波向時序圖10-17
圖 10.12	92(2003)年7月,波流儀所測波向與台北港2號測站
	所測波向時序圖10-17
圖 10.13	92(2003)年8月,波流儀所測波向與台北港2號測站

圖 10.14	92(2003)年9月,波流儀所測波向與台北港2號測站 所測波向時序圖10-18
圖 10.15	92(2003)年 10 月,波流儀所測波向與台北港 2 號測 站所測波向時序圖10-19
圖 10.16	92(2003)年 11 月,波流儀所測波向與台北港 2 號測 站所測波向時序圖10-19
圖 10.17	92 (2003) 年 6 月,台北港 2 號測站所測波向分佈圖10-22
圖 10.18	92 (2003) 年 7 月,台北港 2 號測站所測波向分佈圖10-25
圖 10.19	92(2003)年8月,台北港2號測站所測波向分佈圖10-28
圖 10.20	92(2003)年9月,台北港2號測站所測波向分佈圖10-31
圖 10.21	92(2003)年10月,台北港2號測站所測波向分佈10-34
圖 10.22	台北港即時顯示雷達遙測波浪圖像網頁10-35
圖 10.23	台北港即時顯示雷達遙測波浪圖像網頁10-36
圖 10.24	沙崙站即時顯示雷達遙測波浪圖像網頁10-36
圖 10.25	沙崙站即時顯示雷達遙測波浪圖像網頁10-37
圖 11.1.a	柯吉拉颱風行徑路徑圖11-5
圖 11.1.b	蘇迪勒颱風行徑路徑圖11-6
圖 11.1.c	米勒颱風行徑路徑圖11-7
圖 11.2.a	2003年4月柯吉拉颱風台北港風、潮、浪、流歷線圖.11-8
圖 11.2.b	2003年6月蘇迪勒颱風台北港風、潮、浪、流歷線圖.11-9
圖 11.2.c	2003 年 11 月米勒颱風台北港風、潮、浪、流歷線圖11-10

XXI

照片目錄

基地站 DGPS 系統儀器7	-5
浮球的內部配置	'-6
潮位儀施放情況7	'-7
風速風向觀測作業7	-8

第一章 前 言

淡水河口外南岸八里、林口間海岸係屬沙岸地質,基隆港務局自 台北港第一期工程奉准實施後,即對該海岸進行監測調查及海、氣象 資料蒐集及分析等作業,為瞭解該區海岸地形變遷,基隆港務局委託 交通部運輸研究所辦理蒐集海氣象等觀測資料與其相關分析,以及監 測海岸地形變化,以提供環境影響評估資料、驗證數值模式計算成果 及研擬海岸地形變遷保護對策之依據。

民國八十五年及民國八十六年間基隆港務局首先委託台灣省交通 處港灣技術研究所辦理「淡水國內商港漂沙調查暨海氣象與海岸地形 變遷監測計畫」第一、二年計畫。八十七年繼續委託港灣技術研究所 辦理「淡水港外廓防波堤興建海岸地形及海象監測」計畫,持續觀測 水深、海氣象及漂沙現象。民國八十八年基隆港務局與港灣技術研究 所(現已併入交通部運輸研究所)簽訂「八里、林口海岸漂沙調查及海氣 象與地形變遷四年監測計畫」合約,繼續觀測水深、海氣象及漂沙現 象至九十二年三月止。

基隆港務局為持續提供環境影響評估資料,以及作為台北港第二 期工程相關海氣象資料之參考依據,乃以代收代付方式委託運輸研究 所(港灣技術研究中心)辦理本項計畫,於民國九十二年至九十四年 繼續執行海氣象觀測與地形變遷監測等相關性工作。本年度本計畫工 作內容除涵蓋前列計畫之風、波浪、海流等海氣象觀測資料收集與分 析、懸浮質(含關渡橋)與水深地形量測資料分析、以及相關雷達遙 感波浪監測與海岸地形變遷數值模式等延續性工作項目外,並增加平 面流況調查工作,用以比對佐證定點海流之觀測資料。另外,由於原 有外海觀測樁已傾斜 6~7 度,危及現場海氣象觀測作業安全,本年度 再規劃設置新觀測樁乙座,作為未來安置觀測儀器之用。

本報告內容共計十二章,第二章為新觀測樁設計之說明;第三章

為風、波浪與海流等現場觀測作業過程及使用之觀測儀器說明;第四~ 第六章則是風、波浪與海流等觀測資料之收集處理及其特性分析;第 七章係平面流況調查之結果;第八章說明懸浮質及海岸水深地形資料 處理與特性分析;第九章則是建立海岸地形變遷數值模式;第十章是 應用雷達遙感技術比較觀測波浪結果;第十一章為本年度內颱風之相 關資料分析;最後則為本報告作一結論與建議。

第二章 海上觀測樁設置

2.1 前言

基隆港務局於民國八十五年委託本所港研中心(當時為省交通處 港灣技術研究所)辦理海氣象資料蒐集等相關計畫,為執行計畫工作 所需,於淡水河南岸水深-15m 處打設海上觀測樁及平台乙座。原觀 測樁使用迄今已逾七年之久,歷經風、浪、流和颱風等海氣象條件作 用下,樁體逐漸傾斜,即至民國 89 年傾斜度已達 6~7 度。為維護觀 測作業人員與顧及樁體位置周邊之安全,基隆港務局乃於本計畫中增 列經費,重新設置新觀測樁及平台乙座,繼續執行台北港外海有關海 氣象資料蒐集工作。有關新觀測樁之設計概念、樁體結構及施工步驟 詳述如后。

2.2 設計概念與結構分析

為辦理「台北港海氣象觀測樁打設」工作,本所除就 貴局所提 供撰作之『台北港規劃設計報告書』中自然條件蒐集、研究與分析予 以整理外,另委請合力工程顧問有限公司針對觀測樁之打設工作,從 規劃設計概念及施工步驟等逐一分析,期使本次工作能更臻完善。現 就其設計條件、細部設計、結構分析等逐一說明之。

2.2.1 設計條件

依據基隆港港務局提供之台北港規劃設計報告,各項基本設計條 件定為:

- 1.設計波高:利用 50 年深海最大波高,推算至-20M 水深處,所得之 波高為 9.51 M
- 2.設計週期:13.08秒
- 3.設計潮位:
 - 最高高潮位 HHWL + 3.82M
 - 平均高湖位 MHWL + 2.48M
 - 平均潮位 MWL + 1.46M
 - 平均低潮位 MLWL +0.55M
 - 最低低潮位 LLWL -0.46M
- 4.設計流速:1.1m/sec
- 5.設計風壓:150級
- 6.地震力:地震水平加速度係數 z=0.23
- 2.2.2 細部設計
- 規劃之台北觀測樁立面設計圖如圖 2.1 所示,其細部設計有如下 之內容:
- 1.樁體海面上部份以鍍鋅處理外加環氧樹脂塗佈,海面下部份以鋁合 金電氣防蝕保護,潮間帶以防蝕帶包保護,以達完全之防蝕防銹效 果。
- 2.樁體制高點架設避雷針,樁體遭遇雷擊時可以高導電率銅心線將電 擊時之強大電流引導至海洋底床,以避免樁上各項設備遭受雷擊破 壞。

- 3.樁上明顯位置裝設4只符合國際航標準之指示燈,於夜間自動警示 來往船隻,避免撞擊,並利用太陽能及風力發電系統供電。
- 4.樁體具備周全之保全設施,具備鑰匙及特定工具方可進入,可避免
 人為破壞及盜竊。
- 5.樁體上用以架設太陽能板及各式儀器之支撐架於製造樁體時即一 併製造。
- 6.樁體上具備兩層甲板,下甲板 2.8mφ,上甲板尺寸 3.2m× 3.2m,為 維護工作人員安全,上甲板外緣裝設欄杆。
- 7.手動吊具,可起重 500kg。
- 8.樁體爬梯及潮間帶附近裝設防撞 H 型鋼護樁,上附橡膠碰墊,避免 維修工作船直接衝撞樁體及附屬設施。

圖 2.1 台北港觀測樁立面設計圖

2.2.3 結構分析

1.設計準則

(1)台灣省交通處"港灣構造物設計基準"。

(2)交通部運輸研究所"港灣結構物設計基準"。

(3)中國土木水利工程學會"港灣及海域工程"。

2. 觀測樁主體直徑

經參考設計準則後,運用海中直立圓柱波力分析之結果,求得觀測 樁主體所需圓柱直徑遠小於 1.0m,詳如合力工程顧問有限公司提 供之結構計算書。但為方便平台活動空間、儀器擺設與停靠船舶等 因素考量,本所決定採用 1.2m 為觀測樁主體圓柱直徑。

3.觀測樁主體貫入深度

決定觀測樁主體直徑後,再計算出其基本貫入深度為 14.78m(詳如 合力工程顧問有限公司提供之結構計算書)。因本打設工程採用沖 樁法施工,完工後須等待一至二月土壤才能充分回淤密實,回復計 算樁體磨擦力,為安全考量,本所決定觀測樁主體貫入深度採用 35m。

2.3 觀測樁打設位置與施工步驟

2.3.1 觀測樁打設位置

海上觀測樁宜設立於附近無任何海上或海下結構物之處,且其觀 測取得之各物理量資料須於該地區具有代表意義,並應避開航道及未 來發展區,亦應避免設置於波浪碎波範圍內以免觀測樁結構承受碎波 波力。依據台北港附近海象條件之颱風波浪特性推算其水深-15M 及 - 20M 之對應波高(H),波長(L)及碎波界限波高(Hb)如表 2.1。

外海	外海示性波	對應	水深 - 15M			水深 - 20M		
波向	局 (T=50year, M)	週期 (sec)	Н	L	Hb	Н	L	Hb
NE	9.70	13.08	9.51	159.42	10.73	9.21	176.96	13.71
NNE	8.80	12.46	8.51	150.72	10.59	8.27	166.90	13.48
Ν	7.50	11.50	7.11	137.12	10.33	6.95	151.15	13.05
NNW	6.40	10.63	5.97	124.63	10.05	5.87	136.67	12.59
NW	5.10	9.48	4.68	107.85	9.57	4.66	117.13	11.82
NWW	4.20	8.61	3.84	94.86	9.11	3.85	102.00	11.09
W	4.10	8.50	3.74	93.21	9.05	3.76	100.60	10.99
WSW	4.70	9.11	4.30	102.35	9.39	4.29	110.73	11.53

表 2.1 50 年復現期颱風波浪水深 - 15M 及 - 20M 對應之波浪特性表

註:碎波界限波高: $\frac{H_b}{L_o} = 0.17 \left\{ 1 - \exp \left[-1.5 \frac{h}{L_o} \left(1 + 15 \tan^{4/3} \right) \right] \right\}$

由表 2.1 知, 50 年復現期颱風波浪, 各外海波向對應之碎波界限 波高均大於外海示性波高,因此可判斷, 50 年復現期颱風波浪在水 深-15M 以上之海域並不致發生碎波情況。由於本區域主要受東北 向波浪影響以及考量台北港外廓防波堤波浪之反射作用,新觀測樁打 設位置仍以現有樁體處往外海位移至不受淡水河河水影響範圍,相關 預定打設位置如圖 2.2 所示,其水深約達-20M。

圖 2.2 台北港觀測樁打設位置圖

2.3.2 施工步驟

海上觀測樁基於樁體運輸性及打樁施工性之考量,於製造時將分 成兩部份,上部結構除7公尺長之120cmф鋼管樁本體外,尚包括兩 層甲板之塔屋;下部結構則為長59公尺,120cmф之鋼管樁。施工方 法如下:

1.製造

- (1)所有鋼構之組合製作將於工廠內進行。
- (2)上部結構包括 7 公尺長之 120cmφ鋼管樁及兩層甲板之塔屋,於 工廠內組立完成。
- (3)下部結構為總長度 59 公尺,120cmφ鋼管樁,於工廠製作時,分成 5 段(5@12M=60M),以便於運送。
- (4)焊接工作依施工規範之規定辦理。
- (5)上部結構鋼構材防蝕採用鍍鋅處理外加環氧樹脂塗佈。
- (6)上部結構於陸上組立完成後,進行各項儀器試裝,並依試裝結果,對上部結構作必要之改良。

2.海上打樁及組立

- (1)於碼頭處將下部結構焊接組立。
- (2)利用平台船運送上部及下部結構至現場。
- (3)利用打樁船打設下部鋼管樁。
- (4)打樁作業依施工規範規定辦理。
- (5)上部結構與下部結構組立,採法蘭式接合。
- 3.鋼管樁防蝕處理

(1)鋼管樁潮間帶部份防蝕帶包裹處理。

(2)鋼管樁海面以下鋁合金電氣防蝕處理。

4.平台設備安裝

(1)避雷針設施安裝。

(2)警示燈設施安裝。

(3)觀測樁甲板平台各項觀測儀器設備安裝及測試。

2.4 施工過程與實景

依前述擬定海氣象觀測樁打設位置與施工步驟後,接續將進行海 域現場實地樁體打設與各項附屬設備安裝,其預定之施工過程分別依 主樁體下部結構施工、主樁體上部平台施工、主樁體海上打設、主樁 體下部結構與上部平台接合、附屬設備安裝等項目依序實施;而目前 本海氣象觀測樁打設工程進度,僅完成其整體細部設計階段,其實際 之施工只能依本所過去受貴局與高雄港務局委託於台北港及安平港 等處所設置之海氣象觀測樁的實際施工經驗,舉其中之實例,就其施 工項目分別描述如下:

2.4.1 主樁體下部結構施工

圖 2.3 主樁體下部結構施工實景圖(88/ 07於安平港)

2.4.2 主樁體上部平台施工

2.4.3 主樁體下部結構海上打設

圖 2.5 主樁體下部結構海上打設實景圖(88/ 0於安平港)

2.4.4 主樁體下部結構與上部平台接合

圖 2.6 主樁體下部結構與上部平台接合實景圖(88/ 0於安平港)

2.4.5 附屬設備安裝

2.4.6 施工完成全景

圖 2.8 施工完成全景(88/ 07於安平港)

第三章 現場觀測作業

3.1 前言

本計畫如前章所述擬於台北港海域打設新觀測樁,持續觀測風、 波、流、水位現象,在新樁尚未打設完成前,如要展開現場觀測,勢 必要繼續利用八十五年打設之舊淡水觀測樁作為儀器載台,收取海氣 象觀測資料。舊觀測樁使用迄今已超過七年,歷經嚴苛之海氣象狀態, 遭季節風、浪、流和颱風等激烈天氣不斷衝擊,傾斜度有逐年增加之 驅勢,至民國 89 年傾斜度已超過6度。歷年來除執行一般防蝕、除鏽、 油漆等維修保養外,特別於90 年以環形混凝土塊加強海床基礎塊整理 與加固作業,以減緩樁體傾斜速度,確保觀測資料持續蒐集。淡水觀 測樁之現貌見圖 3.1,樁體垂直傾斜度約6至7度,方向為向東南。依 歷次出海所見觀測樁現況,固樁工程雖有一定成效,目前仍屹立未倒, 但傾斜程度已近7度,係無法恢復,如繼續強行攀登,人員與樁上儀 器設備之安全實無法確保無虞,在審慎考量後,為兼顧資料蒐集及人 員安全,故決定收回樁上之無線電傳輸裝備及風速計,作為新計畫觀 測裝備之備用品。僅保留水下自記潮波流儀,改以儀器自記方式,定 期回收下載內部紀錄,觀測浪、流、水位。

3.2 海氣象觀測儀器說明

本計畫 92 年度暫以歷年購置之 Inter-Ocean 公司生產之 S-4ADW 先行投入本計畫之觀測作業,該項儀器(參見圖 3.2)最初推出之型式為 單純電磁式海流儀,其工作原理為:當有水流通過儀器周圍時,儀器 內部產生之電磁場,會感應產生一變化之電壓,此電壓變化之大小反 應出相對之海流強度與方向。本所以往採購之儀器則已增加水壓力感

圖 3.1 台北港海上觀測樁現況

圖 3.2 Inter-Ocean 公司生產之 S-4ADW 潮波流儀

測器,經過轉換後可將壓力變化轉為水位變化,且在不同感測器取樣 方式上可作不同之設定,如波浪觀測可選擇每一小時取樣 17 分鐘,取 樣頻率 2Hz,而海流或水位變化可定為每六分鐘取樣二分鐘,如此可 充分描述物理現象,以一部儀器同時獲取潮位、海流、波浪及波向等 現象。儀器本身的紀錄可採自記之方式,亦得經由無線電系統傳至陸 上基地站。因樁體傾斜,為顧及現場作業人員安全上有顧慮,故暫採 自記方式,以不上樁為原則,定期雇用潛水人員回收水下儀器,俟下 載內部紀錄後再重新施放入水。未來新觀測樁打設完成後,將重新安 裝遠距無線電傳輸系統,以便遠距即時監控觀測系統。

3.2.1 新觀測儀器系統採購作業

針對本計畫之執行,本所於 92 年度內辦理「台北港 92 年海氣象 觀測傳輸系統」採購案,預定於民國 93 年 3 月底前採購新儀器系統到 貨驗收,待新觀測樁打設完成後,隨即安裝測試,日後將以無線電傳 輸方式隨時掌控台北港海域海氣象狀況。

品名	單位	數量
(一)、觀測儀器(自記式及即時傳輸兩用)		
1.方向性自記式潮波流儀(32MB)	套	2
2.方向性潮波流儀傾角補償裝置(± 45°)	只	2
3.方向性潮波流儀專用電纜線(40m)	條	4
4.風向風速計(0~60m/sec, 0~360°)	組	2
5.風速風向計資料記錄器	組	1

「台北港 92 年海氣象觀測傳輸系統」採購儀器系統品名及數量:

6.風速風向計專用電纜線(10m)	條	2
7.獨立式潮位即時傳送系統	套	1
(二)、觀測樁上儀器設備		
1.方向性潮波流儀介面裝置	套	1
2.風速風向計介面裝置	套	1
3.電力管理系統	套	1
4.太陽能電力供應系統(太陽能板、充電電池、充電控 制器、電力分電盤、連接電纜線、防潮防蝕保護箱)	套	1
5.太陽能電力系統避雷裝置	只	1
6.方向性潮波流儀避雷轉接線	只	1
7.風速風向計避雷裝置	只	1
8.雙向式無線電傳輸/接收系統(含天線與電纜線)	組	2
(三)、岸上基地站儀器設備		
1.可程式控制無線電傳輸/接收系統(含天線與電纜 線,基地站控制型)	組	2
2.可程式控制無線電傳輸/接收系統數據機含介面裝 置(基地站控制型)	套	2
3.桌上型資料擷取系統	套	1
4.資料不斷電裝置(UPS on-line 8 小時以上)	套	1
5.海氣象/海象資料擷取系統軟體	套	1
(四)、港研中心資料處理中心儀器設備		

1.桌上型資料擷取系統(含 office 作業系統 防毒軟體 等)	部	1
2.攜帶型資料擷取系統(含 office 作業系統 防毒軟體 等)	部	2
3.潮位站資料分析處理設備	組	1
4.潮位站資料即時傳送軟體	式	1
(五)、系統安裝、施工、測試與教育訓練		
1.系統安裝及施工	式	1
2.系統測試與操作	式	1
3.系統操作教育訓練	式	1

在新儀器到貨安裝後,海象觀測系統共包含海上觀測樁、陸上基 地台及遠端遙控中心三地,以即時監測之方式進行。海上觀測樁負責 各觀測項目之蒐集,然後將測得之數據以無線電 Modem 傳送至位於台 北港信號台之岸上基地站,岸上基地站可與海上觀測樁作雙向交通, 儲存樁上觀測數據,並依實際之需要改觀測之參數。港研中心則由專 用電話線及電話 Modem 與基地台連線,監控觀測數據之正確與否。全 部系統依任務之需求,於觀測樁、陸上基地站、運研所港研中心分別 配置儀器如下:

1.觀測樁上系統

(1)觀測儀器

a.方向性潮波流儀。

b.風向風速計及資料記錄器。

c.濁度計。

(2)輔助配備

a.系統故障偵知器。

b.太陽能電力供應系統。

(a)太陽能板。

(b)電力整流器。

©分電盤。

(d)電力線。

(e)防潮箱。

(f)可充電電池。

c.遙感電源裝置

(a)數位式微控制器。

(b)雙頻無線電數據機。

(c)天線。

(d)遙測介面。

(e)充電控制器。

(f)電力分配器。

2.岸上基地台配置

(1)無線電資料接收及發送設備

a.雙向性雙頻無線電機及介面。

b.天線。

c.纜線。

d.閃電過壓保護裝置。

(2)資料處理系統

a.桌上型電腦。

b.資料傳送數據機及數據固接專線雙重傳輸方式。

c.分析軟體,執行感測器數據收集、資料傳送、參數更改,統計、 輸出、展示等功能。

(3)不斷電系統

3.運研所港研中心資料處理中心配備

(1)資料操控及處理、展示系統

a.電腦及數據機(數據固接專線)。

b.資料分析、繪圖、展示軟體。

3.3 海氣象現場作業過程

現在將民國九十二年全年,本計畫各次現場作業時程及過程,敘述整理如下:

1.03月27日:天氣:多雲時陰,風:東南風4級,浪:約1公尺。

上午 0930 抵碼頭整理裝備,召集作業人員行前會議,並檢查潛水員 相關證照,辦理安檢報關手續。 1020 出港,本日天氣多雲時陰,東 南風風力4級,浪高約1.0公尺,尚可作業。船隻駛至觀測樁,因已 三個月未能出海,潛水員入水至下層潮波流儀儀器架,先割除儀器外 部附生物及樁體周圍大量纏繞漁網,並攝影照相。然後收取儀器 05962507,送交上船,略事休息後潛水員再下水清除表層漁網,同時 技術人員登樁擬下載風資料,因紀錄器內電源電壓過低,無法使用, 故擬待明日再上樁處理,水下作業完成後, 1215 返港、岸上清洗收 回儀器之表層,下午進行潮波流儀內部資料下載作業。

2.03月28日:天氣:陰,風:東北風5級,浪:約1.5公尺

上午 0920 抵碼頭,於岸上將儀器設定觀測參數妥當,進行昨日收回 潮波流儀之安放準備,1005 出港,本日天氣陰,東北風增強,浪高 1.5 公尺。海況不佳,抵樁後直接靠泊樁體,首先協助潛水員入水, 潛水員將儀器 05722474 順利安裝於原儀器架,將水面樓梯處纏繞漁 網割除。技術人員擬攀登樁體入艙內下載風資料,因風浪大,船頭顛 簸,險象環生,決定下次再行處理,1130 作業完成進港,清潔整理 裝備。

3.05月15日:天氣:多雲時陰,風:東北風4級,浪:約1公尺

上午 0930 抵碼頭整理裝備,召集作業人員行前會議,並檢查潛水員 相關證照,辦理安檢報關手續。 1010 出港,本日天氣多雲時陰,東 北風風力4級,浪高約1.0公尺,尚可作業。船隻駛至觀測樁,海流 大無法繫樁,潛水員由上游跳入水,泅至樁體再下潛到下層潮波流儀 儀器架,收取儀器 05962507,送交上船,水下作業完成後, 1110 返港、岸上清洗收回儀器之表層,刮除儀器附著生物,下午進行潮波 流儀內部資料下載作業。

4.05月16日:天氣:陰,風:東北風4級,浪:約1.0公尺

上午 0910 抵碼頭,於岸上將儀器設定觀測參數妥當,進行潮波流儀 之安放準備, 0935 出港,本日天氣陰,東北風略增強,浪高 1.0 公 尺,尚可作業。抵樁後直接靠泊樁體,首先協助潛水員入水,潛水員 將儀器 05722474 順利安裝於原儀器架, 1040 作業完成進港,清潔 整理裝備,下午返所。

5.06月12日:天氣:陰雨,風:西風6級,浪:約1.5-2公尺

上午 0930 抵碼頭整理裝備,召集潛水人員行前會議,並檢查潛水員 相關證照,辦理安檢報關手續。 1015 出港,現場天氣陰雨,東北風 強勁,風力6級,浪高約 1.5-2 公尺,岸邊觀浪,見波峰白頭洶湧, 海象不理想,但決定出海一試。幸船長操船經驗豐富,先頂浪航行, 脫離淺水激浪區再轉向觀測樁,船隻駛至觀測樁,波浪大無法靠泊繫 樁,操船至上游處,潛水員跳水,泅至樁體再下潛到下層潮波流儀儀 器架,收取儀器 05722474,送交上船,水下作業完成後, 1140 返港、 岸上清洗收回儀器之表層,下午進行儀器附著生物清理,及潮波流儀 內部資料下載作業。

6.06月13日:天氣:陰雨,風:西風5級,浪:約1.5公尺

上午 0820 抵碼頭,於岸上將儀器設定觀測參數妥當,進行潮波流儀 之安放準備,辦理安檢報關手續。 0850 出港,本日天氣陰,西風略 減,浪高 1.5 公尺,海象仍不佳,但尚可作業。抵樁後仍無法靠泊樁 體,首先協助潛水員入水,潛水員將儀器 05962507 順利安裝於原儀 器架, 0935 作業完成進港,清潔整理裝備,下午返所。

7.07月11日

0920 抵碼頭整理裝備,0940 出港,本日天氣陰時多雲,昨日剛解除 海上陸上颱風警報,天氣不穩定,吹西南風,風力不強,約四級,但 浪高不大,約0.5 公尺。作業無問題。駛至觀測樁,潛水員入水至下 層潮波流儀儀器架,經清理雜物後先收取儀器上船,然後再下水清除 上層儀器表面附生物,儀器公司工作人員上樁於艙內整理觀測傳輸系 統,更改資料傳輸速率為 9600,作業完成後,人員下樁,因船隻擺 盪,船首曾夾住爬梯護柱空隙,船體略有損傷,但不嚴重,1200 返 港、下午收回之潮波流儀於岸上進行內部資料下載。

8.07月12日

0920 抵碼頭,準備安放備用自記潮波流儀,將八里、林口計畫新購 置已驗收之儀器設定妥當,0930 出港,本日天氣陰,西風風約四級, 浪高 0.5 公尺。抵樁後,潛水員先於樁體上游處下水,將儀器順利安 裝於原儀器架。再進行水下攝影,1045 作業完成進港,下午返所。

9.08月14日:天氣:晴,風:西南風4級,浪:約1.0公尺

上午 0900 抵碼頭整理裝備,召集潛水人員行前會議,並檢查潛水員 相關證照,辦理安檢報關手續。 0930 出港,現場天氣晴,西南風, 風力4級,浪高約1.0公尺,船隻駛至觀測樁,海流平緩,靠泊繫樁 妥當,潛水員入水下潛到下層潮波流儀儀器架,首先收取儀器出水, 送交上船,再下水進行儀器架清理及調整作業,完成後, 1045 返港、 岸上清洗收回儀器之表層,下午進行儀器附著生物括除清理,及聯結 電腦處理潮波流儀內部資料下載作業。當場檢驗資料數據正常。

10.08月15日:天氣:晴,風:西風3-4級,浪:約0.5至1.0公尺

上午 0920 抵碼頭,於岸上將儀器設定觀測參數妥當,進行潮波流儀 之安放準備,辦理安檢報關手續。 0950 出港,本日天氣晴,西風可 以作業。抵樁後仍靠泊樁體,首先協助潛水員入水,潛水員將儀器 05722474 順利安裝於原儀器架,完成水下工作後人員上樁,逐項檢 查警示燈燈泡、電瓶及太陽能板狀況,功能正常, 1125 作業完成進 港,清潔整理裝備,下午返所。

11.09月08日

本日啟程實施台北港海象觀測現場作業,先至三重星池儀器公司討論 觀測系統更新事宜,再轉往淡水漁港,進行作業前準備工作。 12.09月09日:天氣:晴時多雲,風:東風4級,浪:約0.5公尺

上午 0900 抵碼頭整理裝備,召集潛水人員行前會議,並檢查潛水員 相關證照,辦理安檢報關手續。 0950 出港,颱風梅米(Maemi)在 臺灣東南方接近中,現場天氣晴時多雲,東風風力4級,浪高不高, 約 0.5 公尺,船隻駛至觀測樁,海流尚平緩,靠泊繫樁妥當,潛水員 入水下潛到-7 米潮波流儀儀器架,首先收取儀器 05722474 出水,送 交上船,完成水下工作後人員上樁,逐項檢查警示燈燈泡、電瓶及太 陽能板狀況,並作攝影, 1110 返港。岸上清洗收回之儀器,下午進 行儀器附著生物括除清理,聯結電腦處理潮波流儀內部資料下載作 業。檢驗資料數據正常。

13.09月10日:天氣:陰雨,風:東北風4級,浪:約0.5至1.0公尺

上午 0920 抵碼頭,於岸上將儀器設定觀測參數妥當,進行潮波流儀 之安放準備,辦理安檢報關手續。 0940 出港,颱風漸近,本日天氣 陰雨,東北風 4~5 級,浪高稍增,約 0.5 至 1.0 公尺,仍可以作業。 抵樁後靠泊樁體,首先協助潛水員入水,潛水員將儀器順利安裝於原 儀器架,完成水下工作, 1050 作業完成進港,清潔整理沖洗裝備, 下午返所。

14.10月01日

本日上午於基港局參加八里林口海氣象監測計畫驗收會議,下午轉往 淡水漁港,進行台北港海象觀測現場作業準備工作。

15.10月02日:天氣:晴時多雲,風:東北風4級,浪:約1.0公尺

上午 0900 抵碼頭整理裝備,召集潛水人員行前會議,並檢查潛水員 相關證照,辦理安檢報關手續。 0930 出港,現場天氣晴時多雲,東 風風力4級,浪高約1.0公尺,船隻駛至觀測樁,接近最低潮,海流 相當湍急,無法靠泊繫樁,操船至上游處,潛水員跳入水中,再下潛 游到觀測樁,-7 米潮波流儀儀器架,首先收取水下儀器出水,送交 上船,工作後人員再入水清除鍊條上附生物。1040 返港。岸上清洗 收回之儀器,下午進行儀器附著生物括除清理,及聯結電腦處理潮波 流儀內部資料下載作業。

16.10月03日:天氣:陰雨,風:東北風4級,浪:約1.0公尺

上午 0900 抵碼頭,於岸上將裝備整理妥當,進行潮波流儀之安放準備,辦理安檢報關手續後,0915 出港,本日天氣陰,東北風4級, 抵樁位置時正逢潮流轉向,水面浪高稍增,仍可以作業,惟無法靠泊 樁體,再次協助潛水員由上游入水,潛水員將儀器 05722474 順利安 裝於原儀器架,完成水下工作,1030 作業完成進港,清潔整理沖洗 裝備,下午返所。

17.11月05日

原定 11/3-5 日作業,因颱風米勒影響現場海象惡劣,延至本日始裝 載作業裝備,前往淡水漁港,進行台北港海象觀測現場作業工作。

18.11月06日:天氣:晴時多雲,風:東北風5級,浪:約1.0公尺

上午 0920 抵碼頭整理裝備,召集潛水人員行前會議,並檢查潛水員 相關證照,辦理安檢報關手續。 0950 出港,現場天氣晴時多雲,東北 風風力 5 級,浪高約 1.0 公尺,船隻駛至觀測樁,接近高潮,設法靠 泊繫樁,潛水員下潛游到觀測樁,-7 公尺潮波流儀儀器架,首先收 取水下儀器 05722474 出水,送交上船,工作後人員再次協助潛水員 入水,清除樁體纏繞漁網。將攜帶之第二台儀器 05962507 順利安裝 於原儀器架, 1125 返港。岸上清洗收回之儀器,下午進行儀器附著 生物括除清理,及聯結電腦處理潮波流儀內部資料下載作業,發現收 回儀器 05722474 紀錄後段有異常現象,需攜回處理。

19.11月07日:天氣:晴時多雲,風:東北風4級,浪:約0.5-1.0公 尺 上午 0900 抵碼頭,於岸上將裝備整理妥當,由於昨日下載檢視收回 之潮波流儀紀錄有異,今日無法進行 05722474 潮波流儀之重新安 放,決定將已攜來之錨鍊組合,仍依計畫於觀測樁先安裝新錨碇系 統,待下回再安排另台儀器安裝。0930 辦理安檢報關手續後,0945 出港,本日天氣陰,東北風4級,水面浪高稍降,可以作業,靠泊樁 體,以繩索吊放錨鍊,協助潛水員入水,潛水員將新錨碇系統順利安 裝於樁體儀器架,再入水清除樁體纏繞漁網,完成水下工作,1115 作業完成進港,清潔整理沖洗裝備,下午返所。

20. 11 月 14 日:天氣:晴時多雲,風:東風 6 級,浪:約 1.0~1.5 公 尺

上午 0920 抵碼頭整理裝備,召集潛水人員行前會議,並檢查潛水員 相關證照,辦理安檢報關手續。 0935 出港,現場天氣晴時多雲,東 風甚強,海上白浪處處,幸風向為自岸向西吹,否則勢必無法出海。 抵樁後,接近低潮,浪高約 1.0~1.5 公尺,因風勢太強,操船困難, 無法靠泊繫樁,三名潛水員由樁外圍入水,游往樁體,其中一人未警 覺風、流向相反,錯過樁體位置,致遠離目標,乏力而漂離海上,職 見狀立即指揮船隻前往救援,拖潛水員上船,由其餘二名潛水員繼續 執行任務,下潛游到觀測樁潮波流儀儀器架,將攜帶之儀器 05482414 順利安裝於原儀器架, 1035 返港。岸上整理清洗裝備後,返回港研 中心。

3.4 懸浮質調查現場作業

本計畫為瞭解淡水河河川輸砂對於海域漂砂活動之影響,於關渡 橋下設一懸浮質與流速測站,進行長期監測。由於淡水河本身由上游 眾多河系匯流而成,而河口區又受外海潮汐影響,為感潮河段,因此 流況複雜。淡水海域屬於半日潮範圍,一天中有兩次漲、退潮,在感 潮河段計算河川流量除了須注意流速、流向及水位之週期性變化外, 還須瞭解因海水逆流之鹽楔入侵所造成河川之分層不同流現象。垂直 剖面流場與懸浮質濃度分布之量測方法則以人工方式將儀器以每秒 4 至 5 公分之速度由水面緩慢垂降至水底後再拉至水面並週而復始的進 行。

關渡橋測站儀器以自記方式長期置放水中分別監測河川水位、流 速、流向及懸浮質濃度變化,大約一個月須收回一次,更換儀器內部 電池,讀取記錄資料,清除著生海蠣子,重新設定後再予安裝於測站。 尤其是夏季,水溫較高,海蠣子生長速度驚人,不但使儀器清洗困難, 還可能影響觀測數據,因此儀器置放水中時間必須縮短以維持觀測品 質。今年使用自清式濁度計,即在散射光感測器前裝置一雨刷式清除 器,可以定時刷除任何附著於感測器前之生物與雜質,以保持感測資 料的正確。每年五、六月之梅雨季節,夏季之颱風期及冬季之東北季 風期間常為淡水河上游帶來豐沛雨量,滾滾河水夾雜著人們棄置之垃 圾以及因水土保持不良被大水沖刷四處流竄之樹枝、雜草亦會對固定 於水中之儀器造成相當損害。

第四章 風速及風向觀測資料分析

4.1 觀測方式說明

本計畫中有關風速及風向觀測使用之風速計係採用 Inter Ocean 系統 Young Brand 風速計裝設於樁頂平台上,此風速計之施測範圍為 0~60m/s,最大陣風可測至 80m/s。並同時紀錄風向所紀錄之結果傳回 基地台儲存於電腦內。施測項目包括:平均風速、平均風向、最大陣 風、對應方向,由風資料調查所得之結果可製作下列之圖表加以分析:

1.風速、風向、N-E 分量等資料繪製逐時變化圖。

2.每日與每月風速資料之最大值、最小值及其相對應之風向、時間。

3.繪製風速向量強度變化圖。

4.風速、風向玫瑰圖。

5.風速與風向聯合分佈表。

由於本所今年 1~3 月份因僱用作業船隻與潛水人等協助現場觀測 作業之工作契約簽訂問題,致使相關現場作業於 3 月底方始展開。風 速計係定點安置於現有觀測樁上,用以配合其他波浪、海流等觀測資 料之比對驗證,由於如前第三章所述觀測樁已傾斜所致,為考量作業 人員之安全,本項風之觀測作業僅進行 4 月及 5 月中旬時間,以後月 份即暫停作業。此段期間之資料觀測紀錄如表 4.1 所示,4 及 5 月份之 逐時紀錄如圖 4.1 所示,以下並就有關風速及風向等相關統計特性詳述 之。

表 4.1 2003 年台北港現場觀測風資料統計表

序號	测站	槍名	年、月	啓止時間 (日,時:分~日,時:	- 觀測 分天数	観測 筆数	缺失 筆數	實際 筆數	資料缺失日
1	pi.	W030TP10.1HA	2003/04	01.08:00~30:23:00	30	712	224	488	$2\sim5$, $7\sim18$, $25\sim26$
2	pi	W035TP10.1HA	2003/05	01.00:00~12.09:00	12	274	73	201	$1 \sim 9$

4.2 風速統計特性分析

有關 2003 年台北港海域 4 月及 5 月之風速統計分析如表 4.2 所示, 由表中結果得知,4 月份本區域之平均風速為 6.4 m/s,最大風速則達 15.6 m/s(此值係 10 分鐘之平均值)。如以每 1 m/s 為區間分析風速之 分佈情況,則於 1~12 m/s 各區間之比例略顯均勻分佈,其中以 4~5 m/s 之風速稍多,計有 11.9 % 之比例。而風速大於 10 m/s 者仍有 19.5 %, 顯示本月份雖屬春季氣候,但仍受東北季風之影響。

5月份之平均風速為 4.6 m/s,最大風速則有 13.8 m/s,風速之區間 分佈以 5 m/s 以下居多,合計有 63.7 %,其中以 2~3 m/s 為最多,有 21.9 % 之比例,風速大於 10 m/s 者,則有 12.9 % 之比例。和 4 月份比較,5 月份之風速持續下降,其分佈情況較集中,屬於較為風平之時期。

4.3 風向統計特性分析

就本區域 4 月及 5 月之風向變化而言, 依圖 4.2 之風玫塊圖與前表 4.2 之風向分佈的統計分析, 4 月份之風向以 NE 及 ENE 兩方向合計有 35.9 之比例最多, 另外, W 及 WNW 方向合計亦佔 24.1 %。如以象限 區分, N~E 方向之第一象限合佔 42.2 % 之比例, W~N 向之第四象限則 有 26.6 %。由前述分析得知, 4 月份已轉換進入春季季節, 東北季風之 作用已減弱,雖然風向之分佈仍以東北向居多,惟其他方向之分佈機 率亦漸次增加。

5 月份之風向分佈型態,除了 NE 及 ENE 以 28.8 % 之比例佔較多 數外,其他各方向屬均勻分佈。以象限分佈區分, N~E 方向之第一象 限合計有 40.3 %,仍佔大多數。W~N 向之第二象限則有 20.9 % 比例, S~W 向之第三象限有 16.4 %, E~S 向之第四象限亦有 22.4 %,由此顯 示,5月份之風向實屬多變。

4.4 風極值統計分析

依據前述之風觀測資料的 10 分鐘平均風速加以統計比較,可瞭解 4月及 5月份各別之平均風速及極值變化趨勢。表 4.3 為此兩個月單日 之平均風速及其最大風速之極值統計結果,由表中數據可得知,4 月 份之月平均風速為 6.4 m/s,當月中最大風速則達 15.6 m/s,風向為 NE 方向。而 5月份以 12 天計算之月平均風速減低至 4.6 m/s,其中之最大 風速為 13.8 m/s,風向亦為 NE 方向。4 月份當中有九成之天數的日平 均風速低於 10.0 m/s,更有 1/3 天數的日平均風速低於 5.0 m/s。而 5 月 份之日平均風速均低於 10.0 m/s,更有半數之時間其日平均風速小於 5.0 m/s,且其最大風速值亦均小於 15.0 m/s。

表4.2.1 2003年 4月台北港風速及風向聯合分佈

風向 風速	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	sw	wsw	w	WNW	/ NW	NNW	合計 (%)
0m/s	4	۰ ۰	9	6	4	6		0		0			0		0		
1 m/s	.4	.2	.2	.0	.4	.0	.4	.2	.2	.0	.4	.2	.2	.8	.2	.0	5.1
.	.6	1.0	.4	.6	.2	.6	.4	.6	1.2	.8	.4	.0	.2	.4	.4	.4	8.4
2m/5	.2	.2	.8	.4	.2	.0	.2	1.2	.4	.0	.4	.4	1.4	.4	1.0	.8	8.2
3m/s			0							_	_	_					
4m/s	.2	.4	.0	.0	.0	.0	.0	.6	.4	.2	.0	1.0	1.6	2.3	.2	.8	8.4
	.2	.4	.2	1.0	.4	.4	1.4	.2	.6	.0	.6	.6	2.3	3.3	.2	.0	11.9
5m/s	.2	.6	.0	.8	.8	.2	1.4	.2	.2	.0	.8	.4	.8	1.2	.2	.0	80
6m/s	<u> </u>							_	_								0.0
7m/s	.0	.4	1.4	1.4	.2	.2	.6	.0	.2	.0	.0	.4	1.2	1.2	.0	.0	7.4
	.0	.2	2.0	1.4	.4	1.2	.8	.0	.0	.0	.4	.2	1.4	.0	.0	.0	8.2
8m/s	.0	.4	1.6	1.8	.2	.4	.8	.0	.0	.0	.2	.8	1.2	.0	.0	.0	7.6
9m/s			~ ~		_		_			-							
10m/s	.2	.0	2.3	2.7	.2	.4	.2	.0	.0	.0	.0	.4	1.0	.0	.0	.0	7.4
	.0	.0	2.5	1.0	.0	.4	.4	.0	.0	.0	.0	.0	.6	.4	.0	.0	5.3
11m/s	.0	.0	2.3	2.3	.0	.2	.0	.0	.0	.0	.0	.0	1.6	.0	.0	Ο	64
12m/s	_	_	_										1.0		10	.0	0.1
13m/s	.0	.0	.8	1.0	.0	.0	.0	.0	.0	.0	.0	.0	.2	.0	.0	.0	2.0
•	.0	.0	1.6	.8	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	2.5
14m/s	.0	.0	1.4	.4	.0	.0	.0	.0	.0	.0	.0	0	.0	A	n	0	18
15m/s		_								10	.0	.0	,0	.0	.0	.0	1.5
16m/s	.0	.0	1.2	.0	.0	.0	.0	.0	.0	.0	.0	.0	.2	.0	.0	.0	1.4
·	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
18m/s	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	0	0	0	Ω	Û	n	n
20m/s	_	_				•••									.0	.0	.0
200m/s	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
合計 (%)	2.0	3.9	18.9	17.0	3.1	4.7	6.8	3.1	3.3	1.0	3.3	4.5	14.1	10.0	2.3	2.0	100.0

[註1]: 風速介於 4.0m/s~ 5.0m/s 佔 11.9%。主風向 NE 佔 18.9%。

[註2]: 風速平均值 = 6.4m/s,風速最大值 = 15.6m/s,其風向為 NE。

[註3]: 風速小於5m/s 佔 42.0%; 介於5~10m/s 佔 38.5%; 風速大於10m/s 佔 19.5%。

[註4]: 風向介於 N ~ E 佔 42.2%; E ~ S 佔 17.6% ; S ~ W 佔 13.5% ; W ~ N 佔 26.6% 。

[註5]: 資料每小時記錄一次,合計 488筆,檔名: W034TP10.1HA。

表4.2.2 2003年 5月台北港風速及風向聯合分佈表

2003年 5月 1日 0時41分 ~ 2003年 5月12日 9時10分

風向 風速	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	sw	wsw	w	WNW	NW	NNW	合計 (%)
0m/s	25	5	к	15	E	0	15	15	1.0	5	1.0	5	1.0	1.0	 г	1.0	14.0
1m/s	2.0	.0	.0	1.0	.0	.0	1.0	1.5	1.0	.0	1.0	.0	1.0	1.0	.0	1.0	14.3
2m/s	.5	1.5	1.0	.5	1.5	.5	.0	1.0	1.0	.5	1.0	.5	.0	.5	1.0	1.5	1 2.4
	3.5	1.5	3.5	1.0	.5	2.0	.5	1.5	3.0	.5	1.0	1.0	.5	1.0	.5	.5	21.9
3m/s	.5	2.5	.5	1.0	1.5	.5	.0	.0	.5	.0	1.0	.0	.5	.5	1.0	.0	10.0
4m/s	0		-		~	2				-	2	2			~	<u> </u>	
5m/s	.0	.0	.5	1.0	.0	.ō	.5	.0	.0	.5	.5	.5	.5	.0	.0	.0	4.5
6 /a	.0	.0	1.0	1.0	.5	.0	.5	.0	.0	.0	1.5	.0	.0	1.5	.0	.0	6.0
om/s	.0	.0	1.0	.0	.0	.0	1.0	.5	.0	.0	.0	1.0	.0	.5	.0	.0	4.0
7m/s	.0	.0	.0	.0	.0	.5	3.5	.0	.0	.0	n .	.0	.5	.5	.0	.0	5.0
8m/s																	
9m/s	.0	.0	.0	.5	.5	.0	1.0	.0	.0	.0	.0	.0	.5	.0	.0	.0	2.5
10 /	.0	.0	1.0	1.5	.0	.0	1.0	.0	.0	.0	.0	.0	2.0	.5	.0	.0	6.0
10m/s	.0	.0	2.5	1.5	.0	.0	.0	.0	.0	.0	.0	.0	.5	.0	.0	.0	4.5
11m/s	n	a	15	15	0	n	n	0	n	0	n	0	5	0	n	n	35
12m/s	.0	.0	1.0	1.0	.0	.0	.0		.0	.0	.0	.0	.0	.0	.0	.0	5.5
13m/s	.0	.0	.5	2.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	2.5
,	.0	.0	2.0	.5	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	2.5
14m/s	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
15m/s	n	0	0	0	0	0	0	0	0	0	0	0	0	0	n	0	0
16m/s	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
1.8m/s	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
10.11/0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
20m/s	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
200m/s				-	-	_											
合計 (%)	7.0	6.0	15.4	13.4	5.0	4.0	9.5	4.5	5.5	2.0	6.0	3.5	65	6.0	3.0	3.0	100 n

[註1]: 風速介於 2.0m/s~ 3.0m/s 佔 21.9% 。 主風向 NE 佔 15.4% 。

[註2]: 風速平均值 == 4.6m/s , 風速最大值 = 13.8m/s , 其風向為 NE 。

[註3]: 風速小於5m/s 佔 63.7%; 介於5~10m/s 佔 23.4%; 風速大於10m/s 佔 12.9%。

[註4]:風向介於 N ~ E 佔 40.3%; E ~ S 佔 22.4% ; S ~ W 佔 16.4% ; W ~ N 佔 20.9%。

[註5]: 資料每小時記錄一次,合計 201筆,檔名: W035TP10.1HA。

表4.3.1 2003年 4月風統計極值表

日期	日平均風速	最大風速及對應風向
(月/日)	(m/sec)	(m/sec)(來向)(時間)
04/01	9.0	11.6 / W / 12:00
04/02	11 .1	15.3 / W / 15:00
04/03	7.7	10.2 / NE / 08:00
04/05	8.1	11.2 / NE / 16:00
04/06	6.1	10.8 / SE / 05:00
04/07	1.9	4.1 / S / 03:00
04/08	10.6	13.0 / ENE / 15:00
04/09	9.6	13.5 / ENE / 12:00
04/10	4.8	7.3 / SE / 09:00
04/11	1.8	4.2 / NNE / 10:00
04/12	5.6	8.7 / W / 12:00
04/13	6.4	9.7 / NE / 13:00
04/14	9.7	9.7 / ENE / 12:00
04/15	7.8	8.5 / ENE / 10:00
04/16	1.6	5.3 / SSE / 22:00
04/17	1.9	3.9 / NNW / 13:00
04/18	2.7	4.8 / W / 08:00
04/19	2.2	4.8 / WNW / 11:00
04/20	5.4	11.7 / NE / 22:00
04/21	14.1	15.6 / NE / 10:00
04/22	9.2	12.7 / NE / 00:00
04/23	4.4	11.0 / ESE / 00:00
04/24	4.8	9.9 / W / 23:00
04/25	7.3	12.1 / ENE / $22:00$
04/26	7.8	13.4 / NE / 12:00
04/27	7.9	11.3 / NE / 10:00
04/28	3.4	5.2 / SE / 02:00
04/29	5.0	6.9 / W / 08:00
04/30	9.2	14.3 / NE / 09:00

2003年 4月 1日 8時19分~2003年 4月30日23時41分

[註1]: 風速月平均值 = 6.4m/s。

[註2]: 風速月最大值 = 15.6m/s,其風向為 NE。

[註3]: 資料每小時記錄一次,本月合計 712 筆。

18 A.

表4.3.2 2003年 5月風統計極值表

日期 (月/日)	日平均風速 (m/sec)	最大風 (m/sec	東及對應風 :)(來向)(B	(向 寺間)
05/01	7.4	11.6 /	' ENE	/ 03:00
05/02	1.2	2.7 /	'N	/ 12:00
05/03	2.2	5.1 /	NE (/ 16:00
05/04	1.8	2.6 /	NE j	/ 15:00
05/05	3.1	6.0 /	WNW (/ 13:00
05/06	3.6	9.6 /	WNW	/ 13:00
05/07	6.1	11.7 /	W	/ 14:00
05/08	7.4	13.8 /	NE	/ 09:00
05/09	8.3	13.4 /	NE j	/ 11:00
05/10	5.5	11.0 /	NE	/ 11:00
05/11	3.2	9.2 /	SE ,	/ 22:00
05/12	3.9	8.3 /	SE ,	/ 01:00

2003年 5月 1日 0時41分 ~ 2003年 5月12日 9時10分

[註1]: 風速月平均值 = 4.6m/s。

[註2]:風速月最大值 = 13.8m/s,其風向為 NE。

[註3]: 資料每小時記錄一次,本月合計 274 筆。

4-9

第五章 波浪觀測資料分析

5.1 波浪觀測方式說明

波浪觀測使用 Inter Ocean Systems.Inc 的 S-4ADW 潮波流儀,裝置 於觀測樁之儀器架上。取樣頻率為 2Hz,設定為每小時取樣 17 分鐘, 所得之數據經由 14bit 之 A/D 可達到 1 公分以內之解析度。每次取得觀 測數據後即利用波浪處理軟體將壓力訊號配合同步之水粒子運動記 錄,得出波浪之波高及方向,可輸出 H_s、T_s、T_p、T_z、水位、波向等 統計結果。並可進一步作 FFT 分析。

利用 S-4 原廠提供之軟體及本所自行設計之波浪分析相關軟體製 作下列統計分析圖表。

 由每小時之波浪記錄進行相關統計分析求出波高、週期、波向等統計 結果,並列出時間及波數,繪製時間序列圖。

2.統計分析每日及每月各項之平均值及最大值。

調查記錄中選最大波浪及最常出現波浪之記錄、進行波譜分析。

4.製作波高、週期及波高、波向之聯合機率分佈表及波浪玫瑰圖。

5.2 波浪資料紀錄

本年度波浪觀測自 2003 年 1 月至 11 月份,其觀測資料紀錄如下 表 5.1 所示。

5-1

序制 觀測 觀測 缺失 實際 啓止時間 號 站 資料缺失日 棺名 年、月 (日.時:分~日.時:分天数 筆數 筆數 筆數 1 pi V031TP10.1HA 2003/01 01.00:00~31.23:00 744 743 7 32 . 2 pi V032TP10.1HA 2003/02 01.00:00~28.23:00 28 6720 6723 pl V003TP10.1HA 2003/03 01.00:00~31.23:00 744 610 31 134 $3 \sim 28$ V034TP10.1HA 2003/04 01.00:00~30.23:00 30 720 719 4 pi 1 11 V035TP10.1HA 2003/05 01.00:00~31.23:00 31 744 25 719 $15 \sim 16$ 5 pl 6 V036TP10.1HA 2003/05 01.00-00~30.23:00 720 25 $12 \sim 13$ pl 30 605 7 pl V037TP10.1HA 2003/07 01.00.00~31.23:00 718 $17 \sim 18$ 31 744 26 8 pi V038TP10.1HA 2003/08 01.00:00~31.23:00 744 31 26 718 $14 \sim 15$ 9 pi V039TP10.1HA 2003/09 01.00:00~30.23:00 30 720 25 695 $9 \sim 10$ 10 pi V03ATP10.1HA 2003/10 03.12:00~31.23:00 29684 0 684 11 pi V03BTP10.1HA 2003/11 01.00:00~06.10:00 131 0 6 131

表 5.1 2003 年台北港現場觀測波浪資料記錄表

如前第四章說明之現場工作契約簽訂作業問題,以及如前第三章 所述,因觀測樁傾斜相關觀測儀器改以自記方式辦理,儀器記錄容量 僅能持續記錄兩個月左右,致使3月份資料因之中斷,直至3月底後 相關作業方恢復正常。另外,11月份則因資料整理及報告編撰,僅提 供6天之紀錄資料。

此段觀測期間波浪資料各月份之逐時紀錄整理如圖 5.1 所示。以下 將就波高、週期與波向等相關統計特性詳述。

5.3 波高統計特性分析

表 5.2 為台北港 2003 年 1~11 月波高與週期聯合分佈之統計結果, 由各表的結果觀之,以 H_{1/3} 波高值而言,1 月份之波浪受東北季風影 響,波高 0~2.0m 之比例合計為 94.3%,其中又以 0.5~1.5m 之比例超過 六成,平均波高(H_{1/3})為 0.99m,最大波高則為 3.73m。2 月份之波浪仍 受東北季風影響,0~1.5m 之比例合計有 86.4%,仍以 0.5~1.5m 之 55.4% 為多數,平均波高為 0.87m,最大波高則有 2.88m。3 月份之波浪因觀 測資料較少,可作為參考之用。4 月份波浪已不受東北季風影響,波高 值降低,以 1.0m 以下之比例 81.5% 為大宗,平均波高為 0.67m,最大 值則有 1.96m。5 月份波浪依續以 1.0m 以下之比例 89.4%佔大多數, 其中 0~0.5m 波浪幾佔一半,其平均波高為 0.56m,最大波高為 1.7m。 6月份持續穩定,1.0m以下波浪佔93.6%,平均波高與最大波高值和5 月份相近。7月及8月份波浪更為平穩,0.5m以下之波高比例達八成 以上,平均波高分別為0.29m及0.37m,最大波高則分別有1.34m及 1.15m。9月份因季風逐漸轉換及受颱風影響,波浪作用逐漸增大,平 均波高增至0.7m,最大波高則有2.5m。10月、11月份開始,台灣進 入東北季風期,波浪作用情況逐漸類似前述1、2月份情形,波高值以 0.5~1.5m 為多數,其平均波高分別為0.98m及1.11m,最大波高則有 2.49m及2.63m。

將全年波浪以春、夏、秋、冬四季作區段區分,其聯合機率統計 結果如表 5.3 所示,其中表 5.3.1 之結果係包含 2002 年 12 月部份。就 冬季波浪情況而言,主要受東北季風影響,波高值以 0.5~1.5m 為多數, 整季之平均波高為 0.99m,最大波高則有 4.11m。春季之波浪較為穩定, 波高值大都在 1.0m 以下,有 88.1%之比例,全季之平均波高為 0.57m, 最大波高則是 1.96m。夏季期間雖開始有颱風侵襲,惟就全季狀況而 言,似乎影響較小,波浪更趨平穩,0.5m 以下之波浪超過七成,全季 之平均波高更減低至 0.45m,而最大波高則有 2.50m。秋季波浪則漸受 東北季風影響,再加上稍受颱風作用影響,波高值增大,以 0.5~1.5m 波浪為主,其平均波高達 1.0m,最大波高則方 2.63m。

如以全年波浪為整體考量,其統計結果如表 5.4 所示,波高值以 0.5m 以下佔 45.2%為最多,1.0m 以下之波浪則合計有 76.4%,而 2.0m 以上之波浪則僅佔 2.7%,全年之平均波高約為 0.71m。

5.4 週期統計特性分析

波浪週期(T_{1/3})之統計分佈特性方面,由表 5.2 之聯合分佈統計結果 顯示,2003年1月份的波浪受冬季季風影響,以 6~8 秒週期的波浪為 主,所佔比例合計 91.6%,其中又以 6~7 秒者為最多,計有 54.2%。2 月份波浪情況類似,6~8 秒週期者合計 89%,仍以 6~7 秒者最多。3 月 份資料短缺,原因如前說明。4 月份屬於春季氣候,主要的波浪週期較

5-3
前縮短,以5~7秒為主,比例合計80.3%,而7~8秒者仍有12.1%。5 月份仍以5~7秒週期為主,計有86.1%之多,而大於7秒之波浪僅有 3.2%。6月份波浪仍以5~7秒為主,合計有79%;而7~8秒者增至 18.7%。7月份波浪週期分佈較廣,雖然仍以5~7秒者為主,計有71.5%, 但4~5秒或7~8秒週期仍各有一成以上比例。8月份仍以5~7秒週期 者為主要,合計有87.2%,而9月份以後逐漸進入秋季氣候,波浪週期 漸長,5~7秒者有80.9%,7~8秒者亦有一成左右比例。10、11月份分 佈情況類似,5~7秒週期接近九成比例,7~8秒者亦佔有一成左右。

依據表 5.3 之春、夏、秋、冬等四季之週期統計結果顯示,冬季之 波浪情況以小於 6 秒之比例佔多數,約有 70.2%,然而 7~9 秒者仍有 近二成之比例。春季之波浪較為平穩,週期以 5~7 秒之 81.8%為大多 數。夏季波浪之週期分佈較為廣泛,但仍以 5~7 秒者居多,計有 79.8% 之比例。秋季之波浪仍以 5~7 秒者為最多數,計有 86.2%,其中 6~7 秒超過全部比例之 52.3%。

以表 5.4 之全年週期分佈情況觀之,週期小於 6 秒者,約有 57.4%, 而 6~8 秒者仍有 40.9%之比例。

5.5 波高及週期聯合統計特性分析

就本年度台北港波高及週期聯合統計之分析結果顯示,1月份之波 浪以波高在 0.5~1.5m,週期為 6~8 秒聯合發生之比例為最多,約佔有 六成左右。2月份之情況,波高小於 1.5m 者居多,週期在 6~7 秒者有 近六成比例為多數,此兩個月份屬於台灣冬季季風作用期,波高及週 期之聯合分佈比例較為分散。3月份資料缺乏,4月份主要發生在波高 為 1.0m 以下,週期為 5~7 秒之 62.7%比例。5 及 6 月份和 4 月份類似, 仍以波高為 1.0m 以下,週期 5~7 秒之波浪為大多數,各約有 75%之比 例。7 月份波浪較為平穩,波高大多數在 0.5m 以下,而聯合週期在 5~7 秒者即有 66.3%之比例。8 月份之波浪和 7 月份類似,波高在 0.5m 以 下,週期為 5~7 秒者亦有 73.1%比例之多。9 月份以後漸受東北季風及

5-4

颱風作用影響,波高及週期之聯合分佈較為寬廣,其分佈比例以波高在 1.0m 以下,週期為 5~7 秒之 64.8%比例較多。10 月及 11 月份受東 北季風影響更為明顯,其聯合分佈統計,以波高在 0.5~1.5m,週期為 5~7 秒為較多數,各有六成及五成之比例。

5.6 波向統計特性分析

在波向統計分析方面,由表 5.5 及圖 5.2 之結果得知,1 月份之波 浪主要受東北季風影響,波向集中於 N~NE 之間,比例合計有 78.7%, 主波向為 NNE 方向。2 月份波浪仍受東北季風影響,波向仍以 N~NE 間之比例 69.4% 居多,主波向仍為 NNE 方向。3 月份資料缺乏,不足 分析結果。4 月份屬春季氣候,雖仍以 N~NE 波向之 62.9%居多,惟 NNW~W 之間波向仍有 27.3%之比例。5 月份和 4 月類似, N~NE 波向 之比例有 55.5%, NNW~W 間之比例佔 28.4%。6 月份之波向逐漸偏西, 東北方向波浪之比例減少,波向也呈現較為散佈,在NNE波向仍有43% 之比例,惟 NNW~W 間波向之比例已增至 38.2%。7 月份之波向明顯 轉向西北方向,於NW~W 間之比例為 57.1%,主波向轉為 WNW 方向, 而 WSW 波向亦有 11.4%之比例。8 月份波浪呈現波向散漫多變之情 況,較難界定其主要波向,惟波向分佈之比例於NW~W 間較多。9月 份以後漸受季風影響,波向又偏北,以 NNW~NNE 之間比例 66% 較多, 主波向轉為 N 方向。10 月及 11 月波向分佈情況類似。以 NNW~NNE 之間居多,比例約有 85%左右,主波向皆為 N 方向,幾佔全部比例之 半數。

如以全年四季區分,其統計分析如表 5.6 及圖 5.3 所示,由其統計 結果得知,冬季波浪之波向主要集中於 N~NE 方向,分佈比例有 66.1%,主波向為 NNE 方向。春季波浪方向以 N~NNE 間佔較多數, 有 48.1%之比例,而偏西北方向之波浪逐漸增加。由於台北港地理位置 關係,夏季波浪之波向呈現較為散漫多變,無法界定主要之波向。秋 季之波浪再次受東北季風影響,波向以 NNE~NNW 間比例最多,計有

5-5

84.6%之比例,以N方向為主要波向,幾達半數之分佈比例。

如以全年波浪之波向作統計分析,其結果如表 5.7 及圖 5.4 所示。 由於台北港地理位置較易受東北季風波浪影響,而夏季西南季風波浪 又較少影響本區域,因此,全年度波向以 NNE~NNW 間之分佈比例較 多,合計有 57.8%,全年主波向為 N 及 NNE 方向。

5.7 波高極值統計分析

表 5.8 係每月份單日之波高(H_{1/3})與週期(T_{1/3})的平均值,及其最大 波高之統計結果,其中,因3月與11月份皆資料天數不足,不予列入。 表 5.9 則為每月份全月波浪紀錄之平均值與當月最大波高的相關統計 極值。

月份	月平均值(m)	月最大值(m)	當時波向
2003/1	1.20	3.73	N
2	1.08	3.30	SSE
4	0.67	1.96	NNE
5	0.56	1.70	NNE
6	0.49	1.72	N
7	0.29	1.34	NW
8	0.37	1.15	NE
9	0.70	2.50	Ν
10	0.98	2.49	NNE

表 5.9 2003 年台北港每月波浪統計極值表

由表 5.8 及表 5.9 之統計結果得知,2003 年台北港各月份之波浪以 1 及 2 月份受冬季峯面過境影響較大,全年最大波高 3.73M 亦出現在 1 月份。而 9、10 月份又逐漸受東北季風影響,月平均值逐次增大,其 最大波高亦達 2.5M 左右。其他春、夏月份波浪則屬平穩,月平均值約 在 0.5m 以下, 除少數天數外,大都時日之最大波高亦在 1.0m 以下。 今年度雖自 6 月份起即有颱風侵襲台灣,惟對台北港附近海域而言, 本年度之颱風並未對本區域造成太大影響,此可由表中各月份最大波 浪之極值統計得証。

表5.2.1 2003年1月台北港波高及週期聯合分佈百分比(%)統計表

$T_{1/3}$ 2 $H_{1/3}$	秒	3秒	4秒	5秒	6秒	7秒	8秒	9秒	10秒	11秒	12秒	13秒	14秒	15秒	50秒	合計 (%)
.0 m	.0	.0	.0	2.3	15.6	3.8	.0	.0	.0	.0	.0	.0	.0	.0		21.7
.5 m	.0	.0	.0	2.0	23.3	10.0	.1	.0	.0	.0	.0	.0	.0	.0		35.4
1.0 m	.0	0	Û	0	13.7	12.8	3	0		0	.0	.0	.0	.0		26.8
1.5 m	n	0		0	16	77	1 1	0	.0	.0	.0	.0	.0	.0		10.4
2.0 m	.ŭ 0	.0	.0	.0	0	7.7 2.9	1.1	0. A	.0	0.	.0	.0	.0	.0		10.4
3.0 m	.0	.0	.0	.0	.0	J.2	1.0	<i>U.</i>	.0	0.	.0	0.	.0	.0		4.8
4.0 m	.0	0.	.0	.0	.0	.0	.9	.0	.0	.0	.0	.0	.0	.0		.9
5.0 m	.0	.0	0.	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	0.		.0
6.0 m	0.	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	0.	.0		.0
7.0 m	.0	.0	.0	0,	.0	.0	.0	.0	.0	.0	.0	.0	0.	.0		.0
8.0 m	.0	.0	0.	0.	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
9.0 m	.0	.0	.0	.0	0.	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
10.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
11.0 m	.0	.0	.0	.0	.0	.0	0.	.0	.0	.0	.0	.0	.0	.0		.0
12.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
130 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
14.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
14.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
10.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
 合計 (%)	0. (.0	.0	4.3	54.2	37.4	4.0	.0	.0	.0	.0	.0	.0	.0		100.0

2003年 1月 1日 0時 0分 ~ 2003年 1月31日 23時 0分

[註1]: 波高H_{1/3}介於 .5m ~ 1.0m 佔 35.4%。週期T_{1/3}介於 6.0秒~ 7.0秒 佔 54.2%。

[註2]: 波高 $H_{1/3}$ 平均值 = .99m,最大波高 $H_{1/3}$ = 3.73m,其週期爲 8.3秒。

[註3]: H_{1/3}小於1m 佔 57.1%。H_{1/3}介於 1~2m 佔 37.1%。H_{1/3}大於2m 佔 5.8%。

[註4]: T_{1/3}(秒)小於6佔 4.3%;6~8佔 91.7%;8~10佔 4.0%;大於 10佔 .0%。

[註5]: 資料每小時記錄一次,合計 743筆,檔名: V031TP10.1HA。

表5.2.2 2003年2月台北港波高及週期聯合分佈百分比(%)統計表

$T_{1/3} = H_{1/3}$	3 2秒	3秒	4秒	5秒	6秒	7秒	8秒	9秒	10秒	11秒	12秒	13秒	14秒	15秒	50秒	合計 (%)
.0 m									_	-						
F	.0	.0	.0	4.8	17.6	7.0	1.6	.0	.0	.0	.0	0.	.0	.0		31.0
.ə m	.0	.0	.0	3.6	25.1	4.5	.3	.0	.0	.0	.0	.0	.0	.0		33.5
1 .0 m																00.0
15	.0	.0	.0	.3	16.1	5.5	.0	.0	0.	.0	.0	.0	0.	.0		21.9
1.0 m	.0	.0	.0	.0	2.2	6.3	.0	.0	.0	.0	.0	.0	.0	.0		8.5
$2.0~{ m m}$																
30 m	.0	.0	0.	.0	.0	4.8	.4	.0	.0	.0	.0	.0	.0	.0		5.2
0.0 M	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
4.0 m																
5.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
0.0 m	.0	0.	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
6.0 m		_	_	_												
70 m	0.	.0	.0	.0	0,	.0	.0	.0	0.	.0	.0	.0	.0	.0		.0
NO III	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
$8.0 \mathrm{m}$	D	0		0	0								_	_		
9.0 m	.0	.0	.U	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
	.0	.0	0.	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
10.0 n	1	0	0	0	0	0	0	0	0		~			<u>^</u>		
11.0 n	.u n	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
12.0 n	n n	n	0	0	0	~	0	0	0	0	0	0	0	0		•
13.0 n	 1	.0	0.	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
	.0	.0	.0	0.	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
14.0 n	ם ח	0	0	0	0	0	0	n	0	0	0	0	0	~		0
15.0 n	1.U	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
K 0 -	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
50.0 n	1															
ㅁ하	(%) .0	.0	0.	8.6	61.0	28.0	J 2.4	.0	.0	.0	.0	.0	.0	.0		100.0

2003年 2月 1日 0時 0分 ~ 2003年 2月28日 23時 0分

[註1]: 波高H_{1/3}介於 .5m ~ 1.0m 佔 33.5% 。週期T_{1/3}介於 6.0秒~ 7.0秒 佔 61.0% 。

[註2]: 波高 $H_{1/3}$ 平均值 = .87m,最大波高 $H_{1/3}$ = 2.88m,其週期為 7.4秒。

[註3]: H_{1/3}小於1m 佔 64.4%。H_{1/3}介於 1~2m 佔 30.4%。H_{1/3}大於2m 佔 5.2%。

[註4]: T_{1/3}(秒)小於6佔 8.6%;6~8佔 89.0%;8~10佔 2.4%;大於 10佔 .0%。

[註5]: 資料每小時記錄一次,合計 672筆,檔名: V032TP10.1HA。

表5.2.3 2003年3月台北港波高及週期聯合分佈百分比(%)統計表

$T_{1/3}$: $H_{1/3}$	2秒	3秒	4 秒	5秒	6秒	7秒	8秒	9秒	10秒	11秒	12秒	13秒	14秒	15秒	50秒	合計 (%)
.0 m	.0	.0	.0	4.5	40.3	7.5	2.2	.0	.0	.0	0.	.0	.0	.0		54.5
.5 m	.0	.0	.0	.7	22.4	13.4	. 1.5	.0	.0	.0	.0	.0	.0	.0		38.1
1.U m	.0	.0	.0	.0	5.2	.7	.0	.0	.0	.0	.0	.0	.0	.0		6.0
20 m	.0	.0	.0	.0	1.5	.0	.0	.0	.0	.0	.0	.0	.0	.0		1.5
3.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
4.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
5.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
6.0 m	.0	.0	.0	.0	.0	.0	.0	0.	.0	.0	.0	.0	.0	.0		.0
7.0 m	.0	.0	.0	0.	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
8.0 m	0.	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
9.0 m	.0	0.	0.	0.	.0	.0	.0	.0	.0	.0	0.	.0	.0	0.		.0
10.0 m	.0	.0	0.	0.	.0	.0	.0	0.	0.	.0	.U.	0.	0.	0.		.0
11 .0 m	.u 0	.0	.0	.0	.0	.u n	.U 0	.0	0.	.0	.U 0	υ. 0	.0	.0		.0
1 2.0 m	.0	0.	.0	0.	.0	.0	.0	.0	0.	.0	0.	.0	0.	0.		.0
13.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
14.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
15.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
<u>50.0 m</u> 合計 (%	5) .0	.0	.0	5.2	69.4	21.6	3.7	.0	.0	.0	.0	.0	.0	.0		100.0

2003年 3月 1日 0時 0分 ~ 2003年 3月31日23時 0分

[註1]: 波高H_{1/3}介於 .0m ~ .5m 佔 54.5% 。週期T_{1/3}介於 6.0秒~ 7.0秒 佔 69.4% 。

- [註2]: 波高 $H_{1/3}$ 平均值 = .52m,最大波高 $H_{1/3}$ = 1.61m,其週期為 6.8秒。
- [註3]: $H_{1/3}$ 小於1m 佔 92.5%。 $H_{1/3}$ 介於 1~2m 佔 7.5%。 $H_{1/3}$ 大於2m 佔 .0%。
- [註4]: T_{1/3}(秒)小於6佔 5.2%;6~8佔 91.0%;8~10佔 3.7%;大於 10佔 .0%。
- [註5]: 資料每小時記錄一次,合計 134筆,檔名: V033TP10.1HA。

表5.2.4 2003年 4月 台北港波高及週期聯合分佈百分比 (%) 統計表

$T_{1/3} 2^{2} H_{1/3}$	砂	3秒	4秒	5秒	6秒	7秒	8秒	9秒	10秒	11秒	12秒	13秒	14秒	15秒	50秒	合計 (%)
.0 m	.0	.0	1.5	17.7	11.7	7.8	1.1	.0	.0	.0	.0		.0	0		39.8
.5 m				200.0	10.4						.0	.0		.0		05.0
1.0 m	.0	.0	5.0	20.9	12.4	3.5	.0	.0	.0	.0	.0	.0	.0	.0		41.7
1.5 m	.0	0.	.0	4.6	8.5	.8	.0	.0	.0	.0	.0	.0	.0	.0		13.9
	.0	.0	0.	.3	4.3	.0	.0	.0	.0	.0	.0	.0	.0	.0		4.6
2.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
3.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	0.	0.	0.	0.	0		Ω
4.0 m	 Л	0	0			~								.0		.0
5.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
6.0 m	.0	0.	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	0.		.0
70 m	.0	0.	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
7.0 11	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
8.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
9.0 m	n	n	Ο	0	0	0	0	0	0	0	D	0	n	0		0
1 0 .0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
11.0 m	.0	.0	.0	.0	.0	.0	.0	0.	.0	.0	.0	.0	.0	0.		.0
1 2 0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	0.		.0
12.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
13.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
14.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	0.	0	0	0	0		n
15.0 m				.0		.0	.0	.0	.0		.0	.0	.0	.0		.0
50.0 m	.0	.U	.U	.U.	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
合計 (%)	.0	.0	6.5	43.4	36.9	12.3	L 1.1	.0	.0	.0	.0	.0	.0	.0		100.0

2003年 4月 1日 0時 0分 ~ 2003年 4月30日 23時 0分

[註1]: 波高H_{1/3}介於.5m~1.0m佔41.7%。週期T_{1/3}介於5.0秒~6.0秒佔43.4%。

[註2]: 波高 $H_{1/3}$ 平均值 = .67m ,最大波高 $H_{1/3}$ = 1.96m ,其週期為 6.5秒。

[註3]: H_{1/3}小於1m 佔 81.5%。H_{1/3}介於 1~2m 佔 18.5%。H_{1/3}大於2m 佔 .0%。

[註4]: T_{1/3}(秒)小於6佔 49.9%;6~8佔 49.0%;8~10佔 1.1%;大於 10佔 .0%。

[註5]: 資料每小時記錄一次,合計 719筆,檔名: V034TP10.1HA。

表5.2.5 2003年5月台北港波高及週期聯合分佈百分比(%)統計表

$T_{1/3}$ 2 ${ m f}$ $H_{1/3}$	沙	3秒	4秒	5秒	6秒	7秒	8秒	9秒	10秒	11秒	12秒	13秒	14秒	15秒	50秒	合計 (%)
.0 m																
۳	.0	.0	7.0	27.1	. 14.0	.3	.0	.0	0.	.0	.0	0.	0.	.0		48.4
.5 m	.0	.0	3.6	23.9) 11.0	2.4	.1	.0	.0	.0	.0	.0	.0	.0		41.0
1.0 m																
1 E —	.0	.0	.1	4.2	5.4	.4	.0	.0	.0	0.	.0	.0	0.	.0		10.2
1.5 m	.0	.0	.0	.0	.4	.0	.0	.0	.0	.0	.0	.0	.0	.0		.4
2.0 m																
20	.0	.0	.0	.0	.0	.0	0.	.0	0.	.0	.0	.0	.0	0.		.0
3.0 III	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
4.0 m																
50 m	.0	.0	.0	.0	.0	.0	0.	.0	0.	.0	.0	.0	.0	.0		.0
5.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
6.0 m		_	_													
70 m	.0	.0	.0	.0	.0	.0	.0	.0	0.	0.	0.	0.	0.	0.		.0
1.0 11	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
8.0 m	~		~	<u>,</u>							-	_		-		_
9.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
0.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
10.0 m		0	6					_		-		_	-			_
11.0 m	.0	.0	.0	.0	.0	.0	0.	0.	.0	.0	.0	.0	.0	.0		.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
12.0 m	0	0	~	0	0	0		•	0			0	0	0		0
13.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
14.0 m	0	0	0	0	~	0		0	0	0	0	0	0	0		0
15.0 т	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
50.0 m																
谷計 (%)	.0	.0	10.7	7 55.2	30.9	3.1	.1	.0	0.	0.	0.	0.	.0	.0		100.0

2003年 5月 1日 0時 0分 ~ 2003年 5月31日 23時 0分

[註1]: 波高H_{1/3}介於 .0m ~ .5m 佔 48.4% 。週期T_{1/3}介於 5.0秒~ 6.0秒 佔 55.2% 。

[註2]: 波高 $H_{1/3}$ 平均值 = .56m,最大波高 $H_{1/3}$ = 1.70m,其週期為 6.4秒。

[註3]: $H_{1/3}$ 小於1m佔 89.4%。 $H_{1/3}$ 介於 1~2m佔 10.6%。 $H_{1/3}$ 大於2m佔 .0%。

[註4]: T_{1/3}(秒)小於6佔 65.9%;6~8佔 33.9%;8~10佔 .1%;大於 10佔 .0%。

[註5]: 資料每小時記錄一次,合計 719筆,檔名: V035TP10.1HA。

表5.2.6 2003年 6月 台北港波高及週期聯合分佈百分比 (%) 統計表

秒 6秒	7秒 8	3秒 9)秒	10秒	11秒	12秒	13秒	14秒	15秒	50秒	合計 (%)
19.3 25.8	9.8	.7	.0	0.	.0	.0	.0	.0	.0		55.8
14.8 15.3	6.5	.7	.0	.0	.0	.0	.0	.0	.0		37.8
											0110
.3 3.0	2.0	.0	.0	.0	.0	.0	.0	.0	.0		5.3
.0 .6	.4	.0	.0	.0	.0	.0	.0	.0	.0		1.0
.0 .0	.0	.0	.0	.0	.0	0.	.0	.0	0.		.0
.0 .0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
0.0.	.0	.0	.0	.0	0.	0.	.0	.0	.0		.0
.0 .0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
	-	_	_	_	_		_	_			
0. 0.	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
0. 0.	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
0 0	0	0	0	0	0	0	•	~	0		0
.0 .0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
0. 0.	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
0 0	n	0	0	0	n	D	0	0	0		0
.0 .0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
0. 0.	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
0 0	n	0	0	Ω	0	0	0	Ω	0		n
.0 .0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
0. 0.	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
0.0	0	0	Ω	0	0	0	n	Ο	n		n
			.0	,0	.0	.0	.0	.0	.0		.0
0. 0.	.0	.0	.0	0.	.0	.0	.0	.0	.0		.0
34.4 44.6	187	1.4	0	0	0	0	0				100.0
	€ 6 € 19.3 25.8 14.8 15.3 .3 3.0 .0 .6 .0 .0 .0	● 6秒 7秒 8 ● 6秒 7秒 8 19.3 25.8 9.8 14.8 15.3 6.5 .3 3.0 2.0 .0 .6 .4 .0 .6 .4 .0 .0 .0 <td>● 6秒 7秒 8秒 9 ● 7秒 8秒 9 ● 8秒 9 19.3 25.8 9.8 .7 14.8 15.3 6.5 .7 .3 3.0 2.0 .0 .0 .6 .4 .0 .0 .6 .4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0<</td> <td> ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●</td> <td> ●●●● 7●● 7秒 8秒 9秒 10秒 19.3 25.8 9.8 .7 .0 .0 14.8 15.3 6.5 .7 .0 .0 .3 3.0 2.0 .0 .0 .0 .6 .4 .0 .0 .0 .0 .0 .0 </td> <td> ● 6秒 7秒 8秒 9秒 10秒 11秒 19.3 25.8 9.8 .7 .0 .0 .0 .0 14.8 15.3 6.5 .7 .0 .0 .0 .0 .3 .0 2.0 .0 .0 .0 .0 .0 .6 .4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0</td> <td> ● ● ● 7 秒 8 秒 9 秒 10 秒 11 秒 12 秒 19.3 25.8 9.8 .7 .0 .0 .0 .0 .0 .0 14.8 15.3 6.5 .7 .0 .0 .0 .0 .0 .0 .3 3.0 2.0 .0 .0 .0 .0 .0 .0 .0 .6 .4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .</td> <td>P 6 P 7 P 8 P 9 P 10 P 11 P 12 P 13 P 19.3 25.8 9.8 .7 .0 .0 .0 .0 .0 14.8 15.3 6.5 .7 .0 .0 .0 .0 .0 .0 .6 .4 .0 .0 .0 .0 .0 .0 .0 .6 .4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0</td> <td>か 6秒 7秒 8秒 9秒 10秒 11秒 12秒 13秒 14秒 19.3 25.8 9.8 .7 .0 .0 .0 .0 .0 .0 14.8 15.3 6.5 .7 .0</td> <td>P 6P 7P 8P 9P 10P 11P 12P 13P 14P 15P 19.3 25.8 9.8 .7 .0</td> <td>P 6 29 7 39 8 39 9 39 10 39 11 39 13 39 14 39 15 39 50 39 19.3 25.8 9.8 .7 .0</td>	● 6秒 7秒 8秒 9 ● 7秒 8秒 9 ● 8秒 9 19.3 25.8 9.8 .7 14.8 15.3 6.5 .7 .3 3.0 2.0 .0 .0 .6 .4 .0 .0 .6 .4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0<	 ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●	 ●●●● 7●● 7秒 8秒 9秒 10秒 19.3 25.8 9.8 .7 .0 .0 14.8 15.3 6.5 .7 .0 .0 .3 3.0 2.0 .0 .0 .0 .6 .4 .0 .0 .0 .0 .0 .0 	 ● 6秒 7秒 8秒 9秒 10秒 11秒 19.3 25.8 9.8 .7 .0 .0 .0 .0 14.8 15.3 6.5 .7 .0 .0 .0 .0 .3 .0 2.0 .0 .0 .0 .0 .0 .6 .4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	 ● ● ● 7 秒 8 秒 9 秒 10 秒 11 秒 12 秒 19.3 25.8 9.8 .7 .0 .0 .0 .0 .0 .0 14.8 15.3 6.5 .7 .0 .0 .0 .0 .0 .0 .3 3.0 2.0 .0 .0 .0 .0 .0 .0 .0 .6 .4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .	P 6 P 7 P 8 P 9 P 10 P 11 P 12 P 13 P 19.3 25.8 9.8 .7 .0 .0 .0 .0 .0 14.8 15.3 6.5 .7 .0 .0 .0 .0 .0 .0 .6 .4 .0 .0 .0 .0 .0 .0 .0 .6 .4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	か 6秒 7秒 8秒 9秒 10秒 11秒 12秒 13秒 14秒 19.3 25.8 9.8 .7 .0 .0 .0 .0 .0 .0 14.8 15.3 6.5 .7 .0	P 6P 7P 8P 9P 10P 11P 12P 13P 14P 15P 19.3 25.8 9.8 .7 .0	P 6 29 7 39 8 39 9 39 10 39 11 39 13 39 14 39 15 39 50 39 19.3 25.8 9.8 .7 .0

2003年 6月 1日 0時 0分 ~ 2003年 6月30日 23時 0分

[註1]: 波高H_{1/3}介於 .0m ~ .5m 佔 55.8% 。 通期T_{1/3}介於 6.0秒~ 7.0秒 佔 44.6% 。

[註2]: 波高 $H_{1/3}$ 平均值 = .49m,最大波高 $H_{1/3}$ = 1.72m,其週期為 7.1秒。

[註3]: $H_{1/3}$ 小於1m佔 93.7%。 $H_{1/3}$ 介於 1~2m佔 6.3%。 $H_{1/3}$ 大於2m 佔 .0%。

[註4]: T_{1/3}(秒)小於6佔 35.3%;6~8佔 63.3%;8~10佔 1.4%;大於 10佔 .0%。

[註5]: 資料每小時記錄一次,合計 695筆,檔名: V036TP10.1HA。

表5.2.7 2003年7月台北港波高及週期聯合分佈百分比(%)統計表

$T_{1/3} \ 2 \ H_{1/3}$	秒	3秒	4秒	5秒	6秒	7秒	8秒	9秒	10秒	11秒	12秒	13秒	14秒	15秒	50秒	合計 (%)
.0 m											-			···		
	.0	.0	9.2	41.2	2 25.1	10.0	1.7	.7	.6	.1	.0	.0	0.	.0		88.6
.5 m																
10 -	.0	.0	5.3	4.3	.0	.6	.1	.0	0.	.0	.0	.0	.0	.0		10.3
1.0 m	.0	.0	.3	.8	.0	n	n	n	0	n	n	0	0	Û		11
1.5 m						••			.0	.0	.0	.0	.0	.0		1.1
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	0.	.0	.0		.0
2.0 m				_	_											
30 m	0.	0.	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
5.0 11	.0	.0	.0	.0	.0	.0	0	Û	Û	n	n	n	0	0		Ω
$4.0 \mathrm{~m}$	-				10	.0	.0		.0	.0	.0	.0	.0	.0		.0
	.0	.0	.0	0.	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
$5.0 \mathrm{m}$		_	_	_												
6 () m	.0	0.	.0	0.	0.	.0	.0	.0	0.	0.	.0	.0	.0	.0		.0
0.0 III	.0	.0	.0	.0	.0	.0	n	n	0	0	0	n	0	0		n
7.0 m								10	10				10	.0		.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
8.0 m	0	0	0	0						~	_	_	_	_		
9.0 m	.0	.0	.0	0.	0.	.0	0.	0.	.0	.0	.0	.0	.0	.0		.0
5.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	0.	n		Ω
10.0 m											10		10	.0		.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
11.0 m	~	0	•			-				_	-					
120 5	.0	.0	0.	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
12.0 11	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	0	0	0	n		0
13.0 m												.0	.0	.0		.0
	0.	.0	.0	.0	.0	.0	.0	.0	.0	0.	.0	.0	.0	.0		.0
$14.0 \mathrm{m}$	0	0				-		_								
15.0 m	.0	.0	.0	.0	.0	.0	.0	0.	.0	.0	.0	.0	.0	.0		.0
10.0 11	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	0.	.0	.0		.0
50.0 m																
合計 (%)	.0	.0	14.8	3 46.4	25.1	10.6	1.8	.7	.6	.1	.0	.0	.0	.0		100.0

2003年 7月 1日 0時 0分 ~ 2003年 7月31日 23時 0分

[註1]: 波高H_{1/3}介於 .0m ~ .5m 佔 88.6% 。週期T_{1/3}介於 5.0秒~ 6.0秒 佔 46.4% 。

[註 2]: 波高 $H_{1/3}$ 平均值 = .29m,最大波高 $H_{1/3}$ = 1.34m,其週期為 5.0秒。

[註3]: H_{1/3}小於1m 佔 98.9%。H_{1/3}介於 1~2m 佔 1.1% 。H_{1/3}大於2m 佔 .0%。

[註4]: T_{1/3}(秒)小於6佔 61.1%;6~8佔 35.7%;8~10佔 2.5%;大於 10佔 .7%。

[註5]: 資料每小時記錄一次,合計 718筆,檔名: V037TP10.1HA。

表5.2.8 2003年8月台北港波高及週期聯合分佈百分比(%)統計表

$T_{1/3}$	2秒	3秒	4秒	5秒	6秒	7秒	8秒	9秒	10秒	11秒	12秒	13秒	14秒	15秒	50秒	合計
$H_{1/3}$. <u> </u>								(%)
.0 m	0	0	4.0	27.0		1 2	D	0	0	0	0	0	0	0		0.2.1
.5 m	.0	.0	4.9	51.9	9 30.Z	4.3	.0	.0	.0	.0	.0	.0	.0	.0		83.1
	.0	.0	.3	5.8	6.1	1.7	.4	.3	.0	.0	.0	.0	.0	.0		14.6
1.0 m	_	_			_											
15 m	0.	.0	.1	1.4	.7	.0	.0	.0	.0	.0	.0	.0	.0	.0		2.2
1.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
2.0 m																
20-	.0	.0	.0	0.	.0	.0	.0	.0	.0	.0	.0	0.	.0	0.		.0
3.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	0.	.0	.0	.0	.0		.0
4.0 m				10		.0	.0		.0		.0	.0	.0			.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
5.0 m	n	Δ	n	٥	ß	n	n	n	0	0	n	n	0	n		n
6.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
7.0 m	0	0	0	0	0	0	0	0	^	0	0	0	0	~		•
8.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
9.0 m	_	•														
10.0 m	.0	0.	.0	.0	.0	.0	.0	.0	0.	0.	0.	.0	.0	.0		.0
10.0 III	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
11.0 m																
10.0	.0	.0	.0	.0	0.	.0	.0	.0	0.	.0	.0	.0	.0	.0		.0
12.0 m	.0	0.	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
1 3.0 m			.0		.0	.0	.0	10		.0	.0	.0	.0	.0		.0
	.0	.0	.0	0.	.0	.0	.0	.0	.0	.0	.0	.0	0.	.0		.0
14.0 m	л	0	0	0	0	0	0	0	0	0	0	0	0	0		0
15.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
	.0	0.	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
50.0 m					_											
合計 (%	0. (.0	5.3	45.1	42.1	6.0	1.3	i .3	.0	.0	.0	.0	.0	.0		100.0

2003年 8月 1日 0時 0分 ~ 2003年 8月31日 23時 0分

[註1]: 波高H_{1/3}介於.0m ~ .5m 佔 83.1% 。週期T_{1/3}介於 5.0秒~ 6.0秒 佔 45.1% 。

[註2]: 波高 $H_{1/3}$ 平均值 = .37m,最大波高 $H_{1/3}$ = 1.15m,其週期為 6.2秒。

[註3]: H_{1/3}小於1m 佔 97.8%。H_{1/3}介於 1~2m 佔 2.2% 。H_{1/3}大於2m 佔 .0%。

[註4]: T_{1/3}(秒)小於6佔 50.4%;6~8佔 48.1%;8~10佔 1.5%;大於 10佔 .0%。

[註5]: 資料每小時記錄一次,合計 718筆,檔名: V038TP10.1HA。

表5.2.9 2003年9月台北港波高及週期聯合分佈百分比(%)統計表

$T_{1/3} \ 2 \\ H_{1/3}$	秒	3秒	4秒	5秒	6秒	7秒	8秒	9秒	10秒	11秒	12秒	13秒	14 秒	15秒	50秒	合計 (%)
.0 m			1.0		15 -	1.0										
.5 m	.0	.0	1.9	31.1	. 15.7	1.0	.3	.0	.0	.0	.0	.0	.0	.0		49.9
1.0	.0	.0	.6	8.2	9.8	3.5	2.7	.4	.0	.0	.0	.0	.0	.0		25.2
1.0 m	.0	.0	.0	1.6	9.8	2.6	1.6	0.	.0	.0	.0	.0	.0	.0		15.5
1.5 m	0									_	-			_		
2.0 m	.U	.0	.U	.4	3.6	1.4	1.2	.0	.0	.0	.0	.0	0.	.0		6.6
	.0	.0	.0	.0	.7	1.7	.1	.1	.0	0.	.0	.0	.0	.0		2.7
3.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
4.0 m	0	0		<u>,</u>									_			
5.0 m	.0	.0	.0	.0	U.	.0	.0	.0	.0	0.	.0	.0	.0	0.		.0
6.0	.0	.0	.0	.0	0.	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
6.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
7.0 m		0		0	-					_		_				
8.0 m	.0	.0	.0	.0	.0	.0	.0	.0	0.	.0	0.	.0	0.	.0		.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
9.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		n
10.0 m		_														
11.0 m	.0	.0	.0	.0	.0	.0	.0	.0	0.	0.	0.	.0	.0	.0		.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
12.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	0	0	0		0
1 3.0 m														.0		.0
14.0 m	.0	.0	.0	.0	.0	.0	.0	.0	0.	.0	.0	.0	0.	.0		.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	0.	.0		.0
15.0 m	.0	0.	.0	.0	0.	.0	0	0	n	n	0	a	n	n		Û
50.0 m							.0			.0	.0	v.		.0		.0
合計 (%)	.0	.0	2.4	41.3	39.6	10.2	2 5.9	.6	.0	.0	.0	.0	.0	.0		100.0

2003年 9月 1日 0時 0分 ~ 2003年 9月30日23時 0分

[註1]: 波高H_{1/3}介於.0m ~ .5m 佔 49.9% 。週期T_{1/3}介於 5.0秒~ 6.0秒 佔 41.3% 。

[註2]: 波高 $H_{1/3}$ 平均值 = .70m ,最大波高 $H_{1/3}$ = 2.50m ,其週期爲 7.6秒。

[註3]: H_{1/3}小於1m 佔 75.1%。H_{1/3}介於 1~2m 佔 22.2%。H_{1/3}大於2m 佔 2.7%。

[註4]: T_{1/3}(秒)小於6佔 43.7%;6~8佔 49.8%;8~10佔 6.5%;大於 10佔 .0%。

[註5]: 資料每小時記錄一次,合計 695筆,檔名: V039TP10.1HA。

表5.2.10 2003年 10月 台北港波高及週期聯合分佈百分比 (%) 統計表

$T_{1/3}$ 2 $H_{1/3}$	秒	3秒	4秒	5秒	6秒	7秒	8秒	9秒	10秒	11秒	12秒	13秒	14秒	15秒	50秒	合計 (%)
.0 m																. /
	.0	0.	.3	3.1	9.1	4.4	.4	.0	.0	0.	.0	.0	.0	.0		17.3
$.5 \mathrm{m}$																
10-	.0	0.	.6	20.6	12.3	3.9	1.5	0.	.0	.0	.0	.0	0.	.0		38.9
1.0 m	.0	.0	.0	8.6	18.6	12	n	0	0	0	Û	0	0	Ð		28.4
1.5 m					1010			•••		10			10	10		20.1
	0.	.0	.0	.3	11.7	.6	.0	.0	.0	.0	.0	.0	.0	.0		12.6
2.0 m	0	0							0	0	0			0		0.0
30 m	0.	U.	.0	0.	1.9	1.0	.0	.0	.0	.0	.0	.0	.0	.0		2.9
0.0 11	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
4.0 m																
	.0	.0	.0	0.	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
5.0 m	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
6.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
7.0 m																
80	0.	.0	.0	0.	.0	.0	.0	.0	.0	0.	.0	.0	.0	0.		.0
8.0 m	n	Û	n	n	Û	n	n	a	n	a	n	n	n	n		n
9.0 m		10	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
$10.0 \mathrm{m}$	~	_	_		_	_	_									
11.0 m	.0	.0	0.	.0	.0	.0	0.	0.	.0	0.	0.	.0	.0	.0		.0
11.0 m	.0	0.	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
12.0 m																
	.0	0.	.0	.0	.0	.0	.0	0.	.0	.0	.0	.0	.0	.0		.0
13.0 m	•	<u> </u>	0	0	0				0			0	0	0		0
14.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
15.0 m																
70 0	.0	0.	0.	.0	.0	.0	.0	0.	.0	.0	.0	.0	0.	.0		.0
<u>50.0 m</u>													r			
「青軒(%	0. (.0	.9	32.6	53.5	11.	1 1.9	.0	.0	.0	.0	0.	.0	.0		100.0

2003年10月3日12時0分~2003年10月31日23時0分

[註1]: 波高H_{1/3}介於.5m~1.0m佔38.9%。週期T_{1/3}介於6.0秒~7.0秒佔53.5%。

- [註2]: 波高H_{1/3}平均值 = .98m,最大波高H_{1/3} = 2.49m,其週期爲 7.2秒。
- [註3]: $H_{1/3}$ 小於1m 佔 56.1%。 $H_{1/3}$ 介於 1~2m 佔 40.9%。 $H_{1/3}$ 大於2m 佔 2.9%。
- [註4]: T_{1/3}(秒) 小於6佔 33.5%;6~8佔 64.6% ;8~10佔 1.9%; 大於 10佔 .0%。
- [註5]: 資料每小時記錄一次,合計 684筆, 檔名: V03ATP10.1HA。

表5.2.11 2003年11月台北港波高及週期聯合分佈百分比(%)統計表

$T_{1/3}$	2秒	3秒	4秒	5秒	6秒	7秒	8秒	9秒	10秒	11秒	12秒	13秒	14秒	15秒	50秒	合計
$H_{1/3}$			_		···-				_							(%)
.0 m	0	n	0	0.0	6 1	0	0	0	~	0	0	0	n	0		10.0
.5 m	.0	.0	.0	9.9	0.1	.0	.0	.0	.0	.0	.0	.0	.0	.0		16.8
	.0	.0	3.1	21.4	10.7	.0	.0	.0	.0	.0	.0	.0	.0	.0		35.1
1.0 m			_													
1.5 m	.0	Ū.	.0	6.9	12.2	.8	.0	.0	.0	.0	0.	0.	.0	.0		19.8
110 111	.0	.0	.0	2.3	11.5	3.1	.0	.0	.0	.0	.0	.0	.0	.0		16.8
2.0 m																
30 m	.0	0.	.0	.0	5.3	6.1	.0	.0	.0	Û.	0.	.0	.0	.0		11.5
5.0 III	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
4.0 m																
50	.0	.0	.0	.0	0.	.0	.0	.0	.0	.0	0.	0.	.0	.0		0.
5.0 m	.0	.0	.0	.0	.0	.0	.0	n	n	n	n	Ο	n	0		n
6.0 m														.0		.0
7 0	0.	0.	.0	0.	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
1.0 m	.0	.0	.0	0.	.0	.0	.0	.0	.0	0	0	0	Û	0		n
8.0 m																.0
	.0	0.	.0	.0	.0	.0	0.	.0	0.	.0	.0	.0	.0	0.		.0
9.0 m	n	Đ	n	٥	Ω	0	0	n	0	n	n	n	0	0		0
10.0 m	.0	.0	.0	.17	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
	.0	0.	0.	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
11.0 m	n	0	n	0	0	n	0	D	n	D	0	0	0	0		0
12.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
	.0	.0	.0	.0	0.	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
13.0 m	0	0	0	0	0	•	0	0	0							
14.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
15.0 m	~		0	0	-					_	-	-	_	_		
50.0 m	.0	.0	.U	.0	.0	0.	0.	.0	.0	.0	.0	.0	.0	.0		.0
合計 (%	0. (6	0.	3.8	40.5	45.8	9.9	.0	0.	.0	0.	.0	.0	.0	.0		100.0

2003年11月 1日 0時 0分 ~ 2003年11月 6日10時 0分

[註1]: 波高H_{1/3}介於 .5m ~ 1.0m 佔 35.1% 。週期T_{1/3}介於 6.0秒~ 7.0秒 佔 45.8% 。

[註2]: 波高 $H_{1/3}$ 平均值 = 1.11m , 最大波高 $H_{1/3}$ = 2.63m , 其週期為 7.1秒。

[註3]: H_{1/3}小於1m 佔 51.9%。H_{1/3}介於 1~2m 佔 36.6%。H_{1/3}大於2m 佔 11.5%。

[註4]: T_{1/3}(秒)小於6佔 44.3%;6~8佔 55.7%;8~10佔 .0%;大於 10佔 .0%。

[註5]: 資料每小時記錄一次,合計 131筆,檔名: V03BTP10.1HA。

表5.3.1 2002年 冬季 台北港波高及週期聯合分佈百分比 (%) 統計表

$T_{1/3} \ 2^{\frac{1}{2}} H_{1/3}$	₽	3秒	4秒	5秒	6秒	7秒	8秒	9秒	10秒	11秒	12秒	13秒	14秒	15 秒	50秒	合計 (%)
.0 m																
Б то	.0	.0	.0	2.7	15.6	13.4	4.5	.4	.0	.0	.0	.0	.0	.0		36.7
.5 m	.0	.0	.0	2.1	18.8	7.4	1.3	.6	.1	.0	.0	.0	.0	.0		30.3
1.0 m	.0	.0	.0	.1	11.5	7.4	.7	.8	.1	.0	.0	.0	.0	.0		20.4
1.5 m	.0	.0	.0	.0	1.5	5.4	.5	.7	.1	.0	.0	.0	0.	.0		8.2
2.0 m	0	0	0	0	0	21	9	1	1	0	0	0	0	0		4.1
3.0 m	.0	.0	.0	.0	.0	5.1		.1		.0	.0	.0	.0	.0		4.1
4.0 m	.0	.0	.0	.0	.0	0.	.4	.0	.0	.0	.0	.0	0.	.0		.4
5.0 m	.0	.0	.0	0.	.0	0.	.0	.0	.0	.0	.0	.0	0.	0.		.0
6 () m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
5.0 m	.0	.0	0.	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
7.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
8.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
9.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
10.0 m	n	n	n	n	n	n	Ο	Û	n	0	n	n	n	n		D
11.0 m			.0	.0	.0	.0 .0	.0	.0	.0 .0	.0	.0	.0	.0	.0		.0
12.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
13.0 m	.0	.0	0.	.0	0.	0.	.0	0.	0.	.0	.0	.0	.0	0.		.0
14.0 m	.0	.0	.0	0.	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
150 m	.0	.0	.0	.0	.0	.0	.0	0.	.0	.0	.0	.0	.0	.0		.0
10.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
50.0 m																
合計 (%)	.0	.0	0.	5.0	47.3	36.6	8.2	2.6	.3	.0	.0	.0	0,	.0		100.0

2002年12月1日0時0分~2003年2月28日23時0分

[註1]: 波高H_{1/3}介於.0m ~ .5m 佔 36.7%。週期T_{1/3}介於 6.0秒~ 7.0秒 佔 47.3%。

[註2]: 波高 $H_{1/3}$ 平均值 = .82m,最大波高 $H_{1/3}$ = 3.73m,其週期為 8.3秒。

[註3]: H_{1/3}小於1m 佔 66.9%。H_{1/3}介於 1~2m 佔 28.6%。H_{1/3}大於2m 佔 4.5%。

[註4]: T_{1/3}(秒)小於6佔 5.0%;6~8佔 83.9%;8~10佔 10.9%;大於 10佔 .3%。

[註5]: 資料每小時記錄一次,合計 1833筆, 檔名: V02WTP10.1HA。

表5.3.2 2003年 春季 台北港波高及週期聯合分佈百分比 (%) 統計表

$T_{1/3}$: $H_{1/3}$	2秒	3秒	4秒	5秒	6秒	7秒	8秒	9秒	10秒	11秒	12秒	13秒	14秒	15秒	50秒	合計 (%)
.0 m																(70)
	.0	.0	3.0	21.4	17.1	5.9	.6	.0	.0	.0	.0	.0	.0	.0		47.9
.5 m	_															
10 m	.0	.0	3.1	19.9	12.8	4.1	.3	.0	.0	.0	0.	.0	.0	.0		40.2
1.0 m	.0	.0	.0	3.0	5.7	1.1	.0	.0	.0	.0	.0	.0	.0	.0		9.8
1.5 m																
20 m	.0	.0	.0	.1	1.8	.1	.0	.0	0.	.0	0.	.0	.0	0.		2.0
2.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	0.	.0	.0	0.	.0		.0
3.0 m					-									•••		
10.	.0	.0	0.	.0	.0	.0	.0	0.	.0	.0	.0	.0	0.	.0		.0
4.0 m	.0	.0	.0	.0	.0	.0	n	n	n	n	n	n	Δ	0		Ω
5.0 m			10		.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
	.0	0.	.0	.0	.0	.0	.0	0.	.0	0.	.0	.0	.0	.0		.0
6.0 m	n	n	0	0	n	0	n	D	0	^	0	0	0	0		0
7.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
	.0	.0	.0	0.	0.	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
8.0 m	0	0	0	0	0	0	0	0	n	0	0	0	0	0		0
9.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
10.0 m	^	0	0	0		0				_						_
11.0 m	.0	.0	.0	.0	.0	.0	0.	0.	.0	0.	.0	.0	0.	.0		.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
12.0 m		~			-	_	_									
130 m	.0	.0	.0	.0	.0	.0	.0	0.	.0	0.	.0	.0	0.	.0		.0
10.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
14.0 m																
150 m	.0	.0	.0	.0	.0	.0	0.	.0	.0	.0	.0	.0	0.	.0		.0
10.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
50.0 m					_											
合計 (%	0. (.0	6.1	44.4	37.4	11.2	2.9	.0	.0	.0	.0	.0	.0	.0		100.0

2003年4月1日0時0分~2003年6月30日23時0分

[註1]: 波高H_{1/3}介於.0m ~ .5m 佔 47.9%。週期T_{1/3}介於 5.0秒~ 6.0秒 佔 44.4%。

[註2]: 波高 $H_{1/3}$ 平均值 = .57m,最大波高 $H_{1/3}$ = 1.96m,其週期爲 6.5秒。

[註3]: $H_{1/3}$ 小於1m 佔 88.1%。 $H_{1/3}$ 介於 1~2m 佔 11.9% 。 $H_{1/3}$ 大於2m 佔 .0%。

[註4]: T_{1/3}(秒)小於6佔 50.5%;6~8佔 48.6% ;8~10佔 .9% ;大於 10佔 .0%。

[註5]: 資料每小時記錄一次,合計 2133筆,檔名: V03NTP10.1HA。

表5.3.3 2003年 夏季 台北港波高及週期聯合分佈百分比 (%) 統計表

$T_{1/3}$ 27	64	3秒	4秒	5秒	6秒	7秒	8秒	9秒	10秒	11秒	12秒	13秒	14秒	15秒	50秒	合計
$H_{1/3}$																(%)
.0 m							_		_	_	_	_				
5	.0	.0	5.3	36.8	25.4	5.2	.9	.2	.2	0.	.0	.0	.0	.0		7 4.1
.5 m	.0	.0	2.1	61	53	19	11	2	0	Û	0	0	Û	ŋ		16.6
1.0 m					0.0	1.0				.0						10.0
	.0	.0	.1	1.3	3.4	.8	.5	.0	.0	.0	.0	.0	.0	.0		6.2
1.5 m	•	0	0		1.0	~		0	0		0	0	0	0		
20 m	.0	.0	.0	.1	1.2	.5	.4	.0	.0	.0	.0	.0	.0	.0		2.2
210 111	.0	.0	.0	.0	.2	.6	.0	.0	.0	.0	.0	.0	.0	.0		.9
3.0 m																
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	0.	.0	.0		.0
4.0 m	n	٥	0	û	0	n	Ő	n	Δ	п	0	D	0	0		0
5.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	0.	.0	.0		.0
6.0 m																
70	.0	.0	0.	.0	0.	0.	.0	.0	.0	0.	.0	.0	.0	.0		.0
7.0 m	.0	.0	.0	.0	0.	n	n	n	n	n	n	n	O	Û		0
8.0 m					10	.0			.0	.0	.0	.0	.0	.0		.0
	.0	.0	.0	.0	.0	.0	0.	.0	.0	.0	.0	.0	.0	.0		.0
9.0 m				0						_						
10.0 m	.0	.0	.U	.0	.0	.0	.0	.0	0.	.0	.0	.0	0.	.0		.0
10.0 111	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
11.0 m									-							
	.0	.0	.0	.0	.0	0.	.0	0.	.0	.0	.0	.0	.0	.0		.0
12.0 m	~	0	0	0	^	0	0	0	0	0	0	0	0	0		0
13.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
1010 111	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
14.0 m																
150	.0	0.	.0	.0	.0	.0	.0	.0	0.	0.	0.	.0	.0	.0		.0
15.0 m	Ω	n	٥	Û	n	0	n	n	A	n	D	n	n	0		0
50.0 m	.0	.0	.0	,U	.0	.0	.0	.0	0.	.0	.0	.0	.0	.0		.0
合計 (%)	.0	.0	7.6	44.3	35.5	8.9	3.0	.5	.2	.0	.0	.0	.0	-0.	-	100.0

2003年 7月 1日 0時 0分 ~ 2003年 9月30日 23時 0分

[註1]: 波高H_{1/3}介於.0m~.5m佔74.1%。週期T_{1/3}介於5.0秒~6.0秒佔44.3%。

[註2]: 波高 $H_{1/3}$ 平均值 = .45m,最大波高 $H_{1/3}$ = 2.50m,其週期為 7.6秒。

[註3]: H_{1/3}小於1m 佔 90.8%。H_{1/3}介於 1~2m 佔 8.4%。H_{1/3}大於2m 佔 .9%。

[註4]: T_{1/3}(秒)小於6佔 51.9%;6~8佔 44.4%;8~10佔 3.5%;大於 10佔 .2%。

[註5]: 資料每小時記錄一次,合計 2131筆,檔名: V03STP10.1HA。

表5.3.4 2003年 秋季 台北港波高及週期聯合分佈百分比 (%) 統計表

$T_{1/3}$ 2 $H_{1/3}$	Ð	3秒	4秒	5秒	6秒	7秒	8秒	9秒	10秒	11秒	12秒	13秒	14 秒	15秒	50秒	合計 (%)
.0 m															-	
	.0	.0	.4	4.2	8.6	3.7	.4	.0	.0	.0	.0	.0	.0	.0		1 7.2
.5 m																
	.0	.0	1.0	20.7	12.0	3.3	1.2	.0	.0	.0	.0	.0	.0	0.		38.3
1.0 m																
	.0	.0	.0	8.3	17.5	1.1	.0	.0	.0	.0	.0	.0	.0	.0		27.0
1.5 m																
	.0	.0	0.	.6	11.7	1.0	0.	.0	.0	.0	.0	.0	.0	.0		13.3
2.0 m																
	.0	0.	.0	.0	2.5	1.8	0.	.0	.0	0.	.0	.0	.0	.0		4.3
3.0 m	_	_														
	.0	.0	.0	.0	0.	.0	0.	.0	.0	.0	.0	.0	.0	.0		.0
4.0 m	_		_		_											
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	0.	.0		.0
5.0 m		-	-	-	-			_	_	_	_	_	_			
	.0	.0	0.	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
6.0 m	~	~	0		-	-		-	-		-	_	_			_
7.0	0.	.0	.0	.0	.0	0.	.0	.0	.0	0.	.0	.0	.0	.0		.0
7.0 m	~	0	0	0	0	0								<u>^</u>		
80 m	.0	.0	.0	.0	.0	.0	0.	0.	.0	.0	.0	.0	.0	.0		.0
6.0 m	0	0	0	0	0	0	0	0	0	0	0	0		0		0
0.0 -	.0	.0	.0	.0	.0	.0	0.	.0	.0	.0	.0	.0	0.	.0		.0
9.0 m	0	0	0	0	0	0	0	0	~	0	0	0	0			0
10.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
10.0 m	0	n	0	0	0	0	0	0	0	~	0	0		0		0
11.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
11.0 11	Λ	n	Ο	n	0	0	0	0	0	0	0	0	0	0		0
12.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
12.0 11	n	n	n	n	0	n	0	0	0	0	0	0	0	n		0
13 fl m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
10.0 m	n	Ω	٥	0	Λ	n	0	n	n	0	0	0	0	0		0
14 0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
A 110 111	.0	.0	0	0	n	n	Ο	n	n	0	n	٥	ń	0		Û
15.0 m		.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
	.0	.0	.0	.0	.0	.0	.0	n	e	n	0	0	n	0		n
50.0 т								.0	.5	.0	.0	.0	.0	,		.0
合計 (%)	n		1.3	33.0	59 2	10.0) 16		<u>_</u>	n	n			n		100.0
HPI (70)	.0	.0	1.0	00.3	04.0	10.5	7.U	.0	.0	.0	.0	.0	.0	.0		100.0

2003年10月 3日12時 0分~2003年11月 6日10時 0分

[註1]: 波高H_{1/3}介於.5m~1.0m佔38.3%。週期T_{1/3}介於6.0秒~7.0秒佔52.3%。

[註2]: 波高 $H_{1/3}$ 平均值 = 1.00m,最大波高 $H_{1/3} = 2.63m$,其週期為 7.1秒。

[註3]: H_{1/3}小於1m 佔 55.5%。H_{1/3}介於 1~2m 佔 40.2%。H_{1/3}大於2m 佔 4.3%。

[註4]: T1/3(秒)小於6佔 35.2%;6~8佔 63.2%;8~10佔 1.6%;大於 10佔 .0%。

[註5]: 資料每小時記錄一次,合計 815筆,檔名: V03FTP10.1HA。

表5.4 2003年 整年 台北港波高及週期聯合分佈百分比 (%) 統計表

$T_{1/3}$	2秒	3秒	4秒	5秒	6秒	7秒	8秒	9秒	10秒	11秒	12秒	13秒	14秒	15秒	50秒	合計
$H_{1/3}$																(%)
.0 m													<u></u>			
_	.0	.0	2.7	20.1	19.1	5.3	.8	.1	.1	.0	.0	.0	.0	.0		48.0
.5 m	0	0	1.0	11 6	10.0	4.0	-		0			~		~		
10 m	.0	.0	1.8	11.5	12.9	4.2	.7	.1	.0	.0	.0	.0	.0	.0		31.1
1.0 111	.0	.0	.1	2.4	8.4	2.8	.2	.0	.0	.0	.0	0	n	n		13.8
1.5 m									.0				.0	.0		10.0
	.0	.0	.0	.2	2.8	1.8	.2	.0	.0	.0	.0	.0	.0	.0		5.0
2.0 m																
2.0	.0	0.	.0	0.	.4	1.3	.2	0.	.0	.0	.0	.0	.0	.0		1.9
3.0 m	n	0	0	0	0	0	-	n	0	2	0	~	•	•		
4.0 m	.0	.0	.0	.0	.0	.0	.1	.0	.0	.0	.0	.0	.0	.0		.1
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
5.0 m																
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		<i>.</i> 0.
6.0 m		-		_												
70	.0	.0	.0	0.	.0	.0	.0	.0	.0	0.	.0	.0	.0	.0		.0
7.0 m	n	0	٥	0	ŋ	n	0	0	n	n	0	0	0	0		0
8.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
9.0 m																
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
10.0 т	-				_	_										
11.0 m	.0	.0	.0	.0	.0	.0	.0	0.	.0	.0	.0	.0	.0	.0		.0
11.0 m	Ω	ß	Π	n	n	Ω	0	n	0	n	0	0	0	0		0
12.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
13.0 m																
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0
14.0 m	~	Ē		_	_	_										
150 m	.0	.0	.0	.0	.0	.0	0.	.0	.0	0.	.0	.0	.0	.0		.0
19.0 m	0	n	n	n	n	Ω	n	n	n	n	n	0	n	D		0
50.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.u	.0	.0		.0
合計 (%	0. (.0	4.6	34.2	43.5	15.3	2.2	.2	.1		.0	.0	.0	.0		100.0

2003年1月1日0時0分~2003年11月6日10時0分

[註1]: 波高H_{1/3}介於 .0m ~ .5m 佔 48.0% 。週期T_{1/3}介於 6.0秒~ 7.0秒 佔 43.5% 。

[註2]: 波高 $H_{1/3}$ 平均值 = .66m , 最大波高 $H_{1/3}$ = 3.73m , 其週期爲 8.3秒。

[註3]: H_{1/3}小於1m 佔 79.2%。H_{1/3}介於 1~2m 佔 18.8%。H_{1/3}大於2m 佔 2.0%。

[註4]: T_{1/3}(秒)小於6佔 38.7%;6~8佔 58.8%;8~10佔 2.4%;大於 10佔 .1%。

[註5]: 資料每小時記錄一次,合計 6628筆,檔名: V030TP10.1HA。

表5.5.1 2003年1月台北港波高及波向聯合機率分佈

波向 H _{1/3}	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	sw	wsw	w	WNW	NW	NNW	合計 (%)
.0m																	
P	5.9	5.4	3.8	1.3	.8	.1	.0	.0	.0	.1	.1	.1	.1	.4	1.5	1.9	21.7
.011	8.2	16.7	5.1	.7	.1	.1	.0	.0	0	.0	.1	.1	4	.3	8	2.7	35.4
1.0m				••		•-						• •	• •		.0	2	00.1
	10.2	13.9	2.0	.3	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.4	26.8
1.5m	10	۳ A	4	0	0	0	0	•	0	0	0	0	0	0	0	0	10.4
2.0m	4.0	5.4	.4	.0	.0	.0	.0	.0	.0	0.	.0	.0	.0	.0	.0	.0	10.4
	2.4	2.4	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	4.8
3.0m																	
	.4	.5	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.9
4.0m	0	0	n	0	0	0	0	n	0	0	Û	0	n	Ω	0	n	Δ
5.0m	.0	.0	.0	.0	.0	.0	.0	.0		.0	.0	.0	.0	.0	.0	.0	.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
6.0m	0	~	0	0		0		0	0					<u>,</u>			-
7.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
, iour	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
8.0m																	
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
9.0m	n	Λ	0	n	Ω	0	0	n	0	0	0	n	0	D	Δ	D	0
10.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
11.0m			_		-	_	_	_	_	_	_	_	_	_	_		
19.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
12.011	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
1 3.0m																	
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
14.0m	0	0	0	0	0	A	0	0	0	0	0	~	^	0	•	0	0
15.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	u.	.0	.0	.0	.u	.0	.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
50.0m			<u> </u>														
合計 (%)	31.8	44.3	11.3	2.3	.9	.3	.0	.0	.0	.1	.3	.3	.5	.7	2.3	5.0	100.0

2003年1月1日0時0分~2003年1月31日23時0分

[註1]:波高H_{1/3}介於.5m~1.0m佔35.4%,主波向NNE佔44.3%。

[註2]: 波高 $H_{1/3}$ 平均值 = .99m,最大波高 $H_{1/3}$ = 3.73m,其波向為 N。

[註3]: H_{1/3}小於1m 佔 57.1%。H_{1/3}介於 1~2m 佔 37.1%。H_{1/3}大於2m 佔 5.8%。

[註4]: 波向介於 N ~ E 佔 80.2%; E ~ S 佔 .4% ; S ~ W 佔 .7% ; W ~ N 佔 18.7% 。

[註5]: 資料每小時記錄一次,合計 743筆,檔名: V031TP10.1HA。

表5.5.2 2003年2月台北港波高及波向聯合機率分佈

$H_{1/3}$	[/0]
.0m	
5.8 7.7 6.0 1.5 .9 .7 .0 .0 .4 .0 .0 .1 .1 1.2 1.6	4.8 31.0
.5m	inc oric
9.4 12.8 5.4 .7 .1 .0 .1 .1 .0 .1 .1 .0 .3 1.0	3.0 33.5
1.0m	000
5.4 12.4 3.3 .3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .1	.4 21.9
1.5m	
3.3 4.6 .6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 8.5
2.0m	
2.5 2.7 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 5.2
3.0m	
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	.0 .0
4.0m	
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	.0 .0
5.0m	
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	.0 .0
6.0m	
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	.0 .0
7.0m	
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	.0 .0
8.0m	
0. 0, 0. 0. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0. 0.	0. 0.
9.0m	
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0. 0.
10.0m	
	0 0
11.0m	
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0. 0.
12.0m	
	0 0
13.0m	
	0 0
14.0m	.0 .0
	0 0
15.0m	
	.0 0.
50.0m	
合計 (%) 263 402 152 25 10 7 1 1 4 1 1 3 1 15 28	8.2 1007

2003年 2月 1日 0時 0分~ 2003年 2月28日23時 0分

[註1]: 波高H_{1/3}介於 .5m ~ 1.0m 佔 33.5%, 主波向 NNE 佔 40.2%。

[註2]: 波高 $H_{1/3}$ 平均值 = .87m,最大波高 $H_{1/3}$ = 2.88m,其波向為 NNE。

[註3]: H_{1/3}小於1m 佔 64.4%。H_{1/3}介於 1~2m 佔 30.4% 。H_{1/3}大於2m 佔 5.2%。

[註4]: 波向介於 N ~ E 佔 77.5%; E ~ S 佔 1.6% ; S ~ W 佔 .7% ; W ~ N 佔 20.1% 。

[註5]: 資料每小時記錄一次, 合計 672筆, 檔名: V032TP10.1HA。

表5.5.3 2003年3月台北港波高及波向聯合機率分佈

波向 H _{1/3}	N	NNE	NE	ËNE	Е	ESE	SE	SSE	s	ssw	sw	wsw	w	WNW	NW	NNW	合計 (%)
.0m						_						-		_			
5	13.4	15.7	3.7	.7	1.5	.7	1.5	.0	.0	.0	2.2	.7	1.5	.7	4.5	7.5	54.5
.911	11.2	17.9	3.0	1.5	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	2.2	2.2	38.1
1.0m																	
	1.5	3.0	.7	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.7	6.0
1.5m	7	0	7	0	ß	n	0	a	a	n	n	n	n	n	n	a	15
2.0m		.0	••	.0	.0	.0	.0	.0	.0	.0	.0	10	.0	.0	.0	.0	1.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
3.0m	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
5.0m																	
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
6.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
7. 0m																	
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
8.0m	0	0	0	0	0	n	0	0	0	0	0	0	0	0	n	0	n
9.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
10.0m	_	_			_	_				_		_		_	_	_	_
11.0-	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
11.011	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
12.0m																	
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
13.0m	0	n	n	n	0	0	0	0	0	0	0	0	A	0	n	0	0
14.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
15.0m	0											0			6		
50.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
<u>合計 (%)</u>	26.9	36.6	8.2	2.2	1.5	.7	1.5	.0	.0	.0	2.2	.7	1.5	.7	6.7	10.4	100.0

2003年 3月 1日 0時 0分 ~ 2003年 3月31日 23時 0分

[註1]: 波高H_{1/3}介於 .0m ~ .5m 佔 54.5% , 主波向 NNE 佔 36.6% 。

[註2]: 波高 $H_{1/3}$ 平均值 = .52m,最大波高 $H_{1/3}$ = 1.61m,其波向為 NE。

[註3]: H_{1/3}小於1m 佔 92.5%。H_{1/3}介於 1~2m 佔 7.5% 。H_{1/3}大於2m 佔 .0%。

[註4]: 波向介於 N ~ E 佔 64.2%; E ~ S 佔 2.2%; S ~ W 佔 4.5%; W ~ N 佔 29.1%。

[註5]: 資料每小時記錄一次,合計 134筆,檔名: V033TP10.1HA。

表5.5.4 2003年 4月 台北港波高及波向聯合機率分佈

波向 H _{1/3}	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	ssw	sw	wsw	w	WNW	NW	NNW	合計 (%)
.0m	0.7	6.7						а				1.0		0.0	4.9	C D	10.0
.5m	9.7	6.7	3.3	1.7	.4	.4	.4	.ა	.4	.1	1.1	1.0	.8	2.9	4.2	0.3	39.8
	11.8	12.5	3.8	.8	.4	.1	.3	.3	.3	.0	.4	.7	1.4	2.6	2.2	4.0	41.7
1.0m	51	40	7	1	0	0	0	0	0	2	1	1	1.0	7	1	7	12.0
1.5m	0.1	4.9	.1	•1	.0	.0	.0	.0	.0	υ.	.1	.1	1.0	.1	• 1	.,	15.9
	1.7	2.2	.4	.0	.0	.0	.0	.0	.0	.0	.0	.0	.3	.0	.0	.0	4.6
2.0m	0	Ω	n	n	Û	Ω	0	Ω	n	Ω	n	n	n	n	Û	0	Û
3.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
4.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
5.0m																	
e 0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
0.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
7.0m																	
8.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
olom	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
9.0m		0					-	-									
10.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.U
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
11.0m	0	0	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0
12.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.U
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
13.0m	n	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
15.0m	n	n	n	n	0	n	0	0	0	Ω	0	Ω	n	0	0	0	Ω
50.0m	.0	.0		.0	.0	.0	.0	.0	.0		.0	.0		.0	.0	.0	.0
合計 (%)	28.4	26.3	8.2	2.6	.8	.6	.7	.6	.7	.4	1.7	1.8	3.5	6.3	6.5	11.0	100.0

2003年 4月 1日 0時 0分~ 2003年 4月30日 23時 0分

[註1]: 波高H_{1/3}介於 .5m ~ 1.0m 佔 41.7%, 主波向 N 佔 28.4%。

[註2]: 波高H_{1/3}平均值 = .67m,最大波高H_{1/3} = 1.96m,其波向為 NNE。

[註3]: H_{1/3}小於1m 佔 81.5%。H_{1/3}介於 1~2m 佔 18.5%。H_{1/3}大於2m 佔 .0%。

[註4]:波向介於 N ~ E 佔 57.2%; E ~ S 佔 2.4% ; S ~ W 佔 5.6% ; W ~ N 佔 34.9%。

[註5]: 資料每小時記錄一次,合計 719筆,檔名: V034TP10.1HA。

表5.5.5 2003年5月台北港波高及波向聯合機率分佈

波向 H _{1/3}	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	ssw	sw	wsw	w	WNW	NW	NNW	合計 (%)
.0m		_												•			
Erm	7.6	7.4	4.3	3.3	2.1	.8	.7	1.0	.8	.8	1.0	1.4	2.9	3.8	5.4	5.0	48.4
.om	11.0	12.7	3.5	.4	1.0	.3	.4	.0	.4	.3	.3	.8	1.0	1.4	2.1	5.6	41.0
1 .0m																	
	3.1	4.5	1.1	.1	.1	.0	.0	.0	.0	.0	.0	.0	.0	.1	.3	.8	10.2
1 .5 m	n	3	1	n	n	n	n	Ο	n	0	0	Ο	0	0	0	n	4
2.0m	.0	.0	,1	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.4
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
3.0m	0	0	0	0	0	0	0	0	0	~	0	0	0	0	0	0	0
4.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
5.0m					_	_		_	_								
6.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
0.011	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
7.0m																	
0 D	.0	.0	.0	.0	.0	.0	.0	0.	.0	.0	.0	.0	.0	.0	.0	.0	.0
8.011	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
9.0m														10		10	
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
10.0m	n	0	0	Û	0	0	n	0	n	0	0	0	0	0	0	0	0
11.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	0.	.0
12.0m	0	0	0	0		0			~								
13.0m	.0	.0	.U	.U	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
10.000	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
14.0m																	
18.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
19.ÚW	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	0
50.0m										.~							.0
合計 (%)	21.7	24.8	9.0	3.9	3.2	1.1	1.1	1.0	1.3	1.1	1.3	2.2	3.9	5.3	7.8	11.4	100.0

2003年 5月 1日 0時 0分~2003年 5月31日 23時 0分

[註1]: 波高H_{1/3}介於 .0m ~ .5m 佔 48.4% , 主波向 NNE 佔 24.8% 。

[註2]: 波高 $H_{1/3}$ 平均值 = .56m,最大波高 $H_{1/3}$ = 1.70m,其波向為 NNE。

[註3]: H_{1/3}小於1m 佔 89.4%。H_{1/3}介於 1~2m 佔 10.6% 。H_{1/3}大於2m 佔 .0%。

[註4]:波向介於 N ~ E 佔 52.0%; E ~ S 佔 5.0%; S ~ W 佔 6.8%; W ~ N 佔 36.2%。

[註5]: 資料每小時記錄一次,合計 719筆,檔名: V035TP10.1HA。

表5.5.6 2003年 6月 台北港波高及波向聯合機率分佈

波向 合計 Ν NNE NE ENE Е ESE \mathbf{SE} SSE s SSW SW wsw w WNW NW NNW $H_{1/3}$ (%) .0m 9.9 10.8 3.31.3.3 .4 .4 .1 .9 .9 1.6 3.74.25.55.96.6 55.**8** .5m 9.1 8.8 1.6.3 .0 .0 0. 4.23.0 3.2.0 .1 .4 1.0 1.64.637.81.0m 2.3 1.2 0. .1 .0 .0 .0 0. 0. .0 .1 .9 .0 .1.4 .15.31.5m .4 .6 .0 .0 .0 0. 0. .0 0. 0. 0. .0 0. .0 .0 .0 1.02.0m .0 .0 .0 .0 .0 .0 .0 .0 0. .0 .0 .0 .0 .0 .0 .0 .0 3.0m .0 .0 .0 .0 .0 .0 0. 0. 0. .0 0. 0. .0 .0 0. 0. .0 4.0m .0 .0 .0 .0 .0 0. .0 .0 .0 .0 .0 .0 .0 .0 0. 0. .0 5.0m .0 .0 .0 .0 .0 0. 0. 0. .0 0. .0 0. 0. .0 0. 0. .0 6.0m .0 .0 .0 .0 .0 0. .0 0. 0. .0 .0 0. .0 0. 0. 0. 0. 7.0m 0. .0 .0 .0 .0 .0 .0 .0 .0 0 0. .0 0. n 0. 0. .0 8.0m .0 .0 .0 .0 .0 .0 .0 0. 0. .0 0. 0. 0. .0 .0 .0 Ω. 9.0m .0 .0 .0 .0 .0 .0 .0 0. .0 .0 .0 .0 0. .0 0. .0 .0 10.0m .0 .0 .0 .0 .0 .0 .0 0. .0 .0 .0 .0 .0 .0 .0 .0 .0 11.0m .0 .0 .0 .0 0. .0 .0 0. .0 .0 .0 .0 0. .0 .0 .0 .0 12.0m .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 0. .0 .0 0. .0 13.0m 0. .0 .0 .0 .0 .0 .0 0. .0 .0 .0 .0 .0 .0 .0 0. .0 14.0m .0 .0 .0 .0 0. .0 .0 0. 0. .0 .0 .0 0. .0 .0 .0 .0 15.0m .0 .0 .0 .0 0. .0 .0 0. .0 .0 .0 .0 .0 .0 .0 .0 0. 50.0m 合計 (%) 21.7 21.35.01.6.3 .4 .4 .1 1.0 1.32.75.89.210.28.9 9.9 100.0

2003年 6月 1日 0時 0分 ~ 2003年 6月30日23時 0分

[註1]: 波高H_{1/3}介於 .0m ~ .5m 佔 55.8%, 主波向 N 佔 21.7%。

[註2]: 波高 $H_{1/3}$ 平均值 = .49m,最大波高 $H_{1/3}$ = 1.72m,其波向為 N。

[註3]: H_{1/3}小於1m 佔 93.7%。H_{1/3}介於 1~2m 佔 6.3% 。H_{1/3}大於2m 佔 .0%。

[註4]: 波向介於 N ~ E 佔 43.5%; E ~ S 佔 1.3%; S ~ W 佔 15.5%; W ~ N 佔 39.7%。

[註5]: 資料每小時記錄一次,合計 695筆,檔名: V036TP10.1HA。

表5.5.7 2003年7月台北港波高及波向聯合機率分佈

波向 H _{1/3}	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	sw	wsw	w	WNW	NW	NNW	合計 (%)
.0m																	()
	6.0	2.4	1.7	1.4	.1	.7	.6	.7	1.0	3.1	6.1	10.0	15.3	17.4	16.4	5.7	88.6
.5m	.1	.3	.0	.1	.0	.0	.0	.3	.0	.4	.4	1.4	2.4	2.6	1.9	.3	10.3
1.0m	.0	.1	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.8	.1	.0	1.1
1.5m	0	n	0	Û	n	0	0	0	0	0	0	0	.0	.0	0	.0	0
2.0m	.0	0	0	.0	0	.0	.0	.0	0	.0	0	.0	0	0	0	.0	0
3.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0 0	.0
4.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
5.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
6.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
7.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
8.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
9.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
1 0.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
11.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
1 2.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
1 3.0 m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
1 4.0m	.0	0.	.0	.0	.0	.0	.0	.0	.0	.0	0.	.0	.0	.0	.0	.0	.0
1 5.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
50.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
合計 (%)	6.1	2.8	1.7	1.5	.1	.7	.6	1.0	1.0	3.5	6.5	11.4	17.7	20.9	18.5	6.0	100.0

2003年7月1日0時0分~2003年7月31日23時0分

[註1]: 波高H_{1/3}介於.0m ~ .5m 佔 88.6%, 主波向 WNW 佔 20.9%。

[註2]: 波高 $H_{1/3}$ 平均值 = .29m,最大波高 $H_{1/3}$ = 1.34m,其波向為 NW。

[註3]: $H_{1/3}$ 小於1m 佔 98.9%。 $H_{1/3}$ 介於 1~2m 佔 1.1%。 $H_{1/3}$ 大於2m 佔 .0%。

[註4]: 波向介於 N ~ E 佔 8.5%; E ~ S 佔 2.5% ; S ~ W 佔 30.6% ; W ~ N 佔 58.4% 。

[註5]: 資料每小時記錄一次,合計 718筆,檔名: V037TP10.1HA。

表5.5.8 2003年8月台北港波高及波向聯合機率分佈

波向 Ν NNE 合計 NE ENE Е ESE SE SSE s SSW SW wsw w WNW NW NNW $H_{1/3}$ (%) .0m 12.3 3.9 1.8 .8 1.5 1.0 .6 .8 1.51.0 3.56.511.4 14.1 13.1 9.3 83.1 .5m 4.63.3.6 .0 .0 .1 .0 .1 .3 .3 .4 .4 .8 1.9 1.4 .3 14.6 1.0m .3 .0 .4 .10. .0 0. .0 .4 .1 0. .1 .1 .1 .3 .1 2.21.5m .0 .0 .0 .0 .0 0. 0. .0 .0 0. .0 .0 .0 .0 0. 0. .0 2.0m .0 .0 .0 .0 .0 0. 0. 0. .0 0. 0. 0. .0 0. .0 0. 0. 3.0m .0 .0 .0 .0 .0 0. .0 .0 .0 .0 0. .0 .0 .0 0. .0 .0 4.0m .0 .0 .0 .0 .0 0. 0. .0 .0 .0 .0 .0 .0 .0 .0 0. .0 5.0m 0. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 0. .0 0. .0 .0 .0 6.0m 0. .0 0. .0 .0 .0 .0 .0 .0 .0 .0 0. .0 .0 .0 .0 .0 7.0m .0 .0 .0 .0 .0 .0 .0 0. .0 .0 0. .0 0. 0. .0 0. .0 8.0m 0. .0 .0 .0 .0 .0 .0 0 n .0 0. .0 0. 0. 0. 0. .0 9.0m .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 0. .0 0. 0. .0 .0 .0 10.0m 0. .0 .0 .0 .0 .0 .0 0. .0 .0 .0 .0 .0 0. .0 .0 .0 11.0m 0. .0 .0 .0 .0 .0 .0 0. .0 .0 .0 .0 .0 0. .0 .0 .0 12.0m 0. 0. .0 0. .0 .0 .0 0. .0 .0 .0 .0 .0 .0 .0 .0 .0 13.0m .0 .0 0. .0 0. 0. .0 .0 .0 .0 .0 .0 .0 .0 .0 0. .0 14.0m .0 0. .0 0. 0. .0 0. 0. .0 ,0 .0 .0 .0 .0 .0 0. .0 15.0m 0. 0. .0 0. .0 .0 0. 0. .0 .0 .0 .0 .0 .0 0. 0. .0 50.0m 合計 (%) 17.1 7.7 2.5.8 1.51.1 .6 1.0 2.2 1.4 3.9 7.1 12.416.214.8 9.7 100.0

2003年 8月 1日 0時 0分 ~ 2003年 8月31日 23時 0分

[註1]: 波高H_{1/3}介於 .0m ~ .5m 佔 83.1% , 主波向 N 佔 17.1% 。

[註2]: 波高 $H_{1/3}$ 平均值 = .37m,最大波高 $H_{1/3}$ = 1.15m,其波向為 NE。

[註3]: H_{1/3}小於1m 佔 97.8%。H_{1/3}介於 1~2m 佔 2.2% 。H_{1/3}大於2m 佔 .0%。

[註4]: 波向介於 N~ E 佔 20.8%; E~ S 佔 4.5%; S~ W 佔 19.8%; W~ N 佔 55.0%。

[註5]: 資料每小時記錄一次,合計 718筆,檔名: V038TP10.1HA 。

表5.5.9 2003年9月台北港波高及波向聯合機率分佈

波向 H _{1/3}	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	ssw	sw	wsw	w	WNW	NW	NNW	合計 (%)
.0m	86	50	94	1.0	6	16	4	4	7	7	7	9 9	37	65	6.0	75	10.0
.5m	9.0	0.9	2.4	1.0	.0	1.0	.4	.4	• "	.,	. (4.4	0.1	0.5	0.5	1.0	43.3
1.0m	9.8	8.1	1.9	.4	.0	.4	.1	.0	.0	.0	.0	.0	.0	.9	1.0	2.6	25.2
1.011	5.9	7.5	.7	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.1	.0	1.3	15.5
1.5m	2.0	0.7	,	0	0	0	0	0	0	0	0	0	0	0	0	9	
2.0m	0.2	2.1	,4	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	0.0
	1.4	1.2	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.1	2.7
3.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
4.0m	<u>^</u>		~		6				~			~	~			_	_
5.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.U	.0	.0	.0	.0	.0	.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
6.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
7.0m	-	_	_	_	_	_	_										
8.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
9.0m	.0	.0	.0	.0	.0	.0	.0	0	n	0	n	n	n	0	n	0	0
10.0m		10	10	10		10	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
11.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	0.	.0	.0
1 2.0 m	n	n	0	n	n	n	n	n	0	0	0	n	0	n	Ð	D	0
13.0m	.0	.0	.0	.0	.0	,0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
1.4.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	0.	.0
14.00	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
15.0m	0	0	0	0	0	0	0	0	0	0	0	0	0	0	D	0	0
50.0m	.0	.0	.0	.0	.0	.0	υ.	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
合計 (%)	28.9	25.3	5.5	1.4	.6	2.0	.6	.4	.7	.7	.7	2.2	3.7	7.5	7.9	11.8	100.0

2003年 9月 1日 0時 0分~ 2003年 9月30日23時 0分

[註1]: 波高 $H_{1/3}$ 介於 .0m ~ .5m 佔 49.9% , 主波向 N 佔 28.9% 。

[註2]: 波高 $_{H_{1/3}}$ 平均值 = .70m,最大波高 $_{H_{1/3}}$ = 2.50m,其波向為 N。

[註3]: H_{1/3}小於1m 佔 75.1%。H_{1/3}介於 1~2m 佔 22.2% 。H_{1/3}大於2m 佔 2.7%。

[註4]: 波向介於 N ~ E 佔 48.9%;E ~ S 佔 3.6% ;S ~ W 佔 5.9% ;W ~ N 佔 41.6% 。

[註5]: 資料每小時記錄一次,合計 695筆, 檔名: V039TP10.1HA。

表5.5.10 2003年 10月 台北港波高及波向聯合機率分佈

波向 H _{1/3}	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	sw	wsw	w	WNW	NW	NNW	合計 (%)
.0m						• • • • • • • • • • • • • • • • • • • •											
	4.7	3.1	.7	.0	.1	.0	.1	.0	.3	.1	.4	1.0	1.2	.4	.7	4.2	17.3
.5m	174		0.0	~	1		0	0	•	0		0		1.0	٥ <i>٣</i>	- 0	20.0
1.0m	17.4	7.5	2.2	.0	.1	.1	.0	.0	.0	.0	.3	.0	.6	1.0	2.5	7.2	38.9
1.0111	15.5	6.7	1.3	.1	.0	.0	.0	.0	.0	.0	.0	.0	.0	.1	.7	3.8	28.4
1.5m																	
	5.7	4.7	.4	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.6	1.2	12.6
2.0m	1 5	1 5	0	0	0	0	0	0	n	0	0	0	0	0	0	0	
3.0m	1.5	1.5	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.U	2.9
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
4.0m																	
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
5.0m	^	n	0	0	л	~	•	0	0	0	0	0	0	0	0	~	•
6.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
01011	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
7.0m																	
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
8.0m	n	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	n
9.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
10.0m																	
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
11.0m	n	0	0	0	0	0	0	0	0	D	0	0	0	л	0	0	0
1 2 .0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
1 3. 0m																	
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
14.0m	0	0	0	0	0	0	0	0	0	0	~	^	^	^	•	0	~
15.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
50.0m																	
合計 (%)	44.7	23.4	4.7	.1	.3	.1	.1	.0	.3	.1	.7	1.0	1.8	1.6	4.5	16.4	100.0

2003年10月3日12時0分~2003年10月31日23時0分

[註1]:波高H_{1/3}介於.5m~1.0m佔38.9%,主波向N佔44.7%。

[註2]: 波高 $H_{1/3}$ 平均值 = .98m,最大波高 $H_{1/3}$ = 2.49m,其波向為 NNE。

[註3]: H_{1/3}小於1m 佔 56.1%。H_{1/3}介於 1~2m 佔 40.9%。H_{1/3}大於2m 佔 2.9%。

[註4]: 波向介於 N ~ E 佔 52.8%; E ~ S 佔 .6%; S ~ W 佔 3.1%; W ~ N 佔 43.6%。

[註5]: 資料每小時記錄一次,合計 684筆,檔名: V03ATP10.1HA。

表5.5.11 2003年 11月 台北港波高及波向聯合機率分佈

波向 H _{1/3}	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	sw	wsw	w	WNW	NW	NNW	合計 (%)
.0m																	()
	8.4	1.5	.8	.0	.0	0.	.0	.0	.0	.0	.0	.0	.0	.0	1.5	4.6	16.8
.5m	120		0.1	0	0	0	0	0	0		0		0	0		.	
1.0m	13.0	4.0	2.3	.8	.0	.0	.0	.0	.0	.0	.8	1.5	.8	.0	3.1	8.4	35.1
	6.1	5.3	.0	.0	.0	.0	.0	.0	.0	.0	.8	.0	.0	1.5	.0	6.1	19.8
1. 5 m										-	-						
2.0m	9.2	2.3	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	5.3	16.8
2.0111	5.3	3.8	.8	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.8	.8	11.5
3.0m		_	_	_													
4.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
4.0III	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
5.0m																	
6.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
0.011	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
7.0m	_	_	_														
8.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
olom	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
9.0m																	
10.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
10.011	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
11.0m																	
10.0	.0	.0	.0	.0	.0	.0	0.	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
12.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
13.0m																	
	.0	0.	.0	.0	.0	0.	.0	.0	.0	.0	.0	.0	.0	.0	0.	.0	.0
14.0m	.0	.0	.0	0	.0	.0	.0	.0	.0	.0	0	n	0	0	n	Ω	ß
15.0m									.0			.0		.0		.0	.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
50.0m 合計 /w/	49.0	17 6	90	0						0	1 -		-	1 5	F 0	05.0	100.0
13.0m 14.0m 15.0m 50.0m 合計 (%)	.0 .0 .0 .0 42.0	.0 .0 .0 .0 17.6	.0 .0 .0 .0 3.8	.0 .0 .0 .0 .8	0. 0. 0. 0.	0. 0. 0. 0.	0. 0. 0. 0.	0. 0. 0. 0.	0. 0. 0. 0.	0. 0. 0. 0.	.0 .0 .0 .0	.0 .0 .0 .0	.0 .0 .0 .0	.0 .0 .0 .0	.0 .0 .0 .0	.0 .0 .0 .0 .0	.0 .0 .0 .0

2003年11月1日0時0分~2003年11月6日10時0分

[註1]:波高H_{1/3}介於.5m~1.0m佔35.1%,主波向N佔42.0%。

[註2]: 波高 $H_{1/3}$ 平均值 = 1.11m,最大波高 $H_{1/3}$ = 2.63m,其波向為 NNE。

[註3]: H_{1/3}小於1m 佔 51.9%。H_{1/3}介於 1~2m 佔 36.6%。H_{1/3}大於2m 佔 11.5%。

[註4]: 波向介於 N ~ E 佔 38.9%;E ~ S 佔 .0% ;S ~ W 佔 3.1% ;W ~ N 佔 58.0% 。

[註5]: 資料每小時記錄一次,合計 131筆,檔名: V03BTP10.1HA。

	1聯合機率分佈	历及波向	台北港波	冬季	2002年	表5.6.1
--	---------	------	------	----	-------	--------

波向 H _{1/3}	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	sw	wsw	w	WNW	NW	NNW	合計 (%)
.0m		a 0	e		1.0			_							<u>.</u>		
.5m	6.2	7.8	5.3	2.0	1.3	.9	.5	.7	.7	1.0	.8	1.1	1.0	1.3	2.1	3.9	36.7
	7.0	1 2.2	4.8	.8	.2	.2	.1	.1	.4	.4	.4	.2	.4	.3	.7	2.2	30.3
1.0m				_													
1.5m	6.1	10.5	2.2	.3	.1	.1	.1	.2	.1	.1	.2	.1	.0	.1	.1	.3	20.4
1.511	3.2	4.1	.4	.1	.0	.1	.0	.2	.0	.0	.1	.0	.1	.0	.0	.0	8.2
2.0m																	
9.0m	1.9	2.1	.0	.0	.1	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	4.1
0.011	.2	.2	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.4
4.0m																	
E 0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	0.	.0	.0	.0	.0	.0
5.UM	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
6.0m																	
F 0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
7.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
8.0m																	
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
9.0m	.0	.0	.0	.0	0	Ω	0	n	0	0	0	n	n	n	۵	0	٥
10.0m	10				.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
11.0m	n	n	Ω	n	Δ	0	0	0	0	Δ	0	0	0	Δ	Ω	0	0
12.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
13.0m	0	0	0	0	0	0	0	0	0	0	0	~	0	~	0	0	0
14.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
15.0m	0	0	0	0	0	л	0	0	0	0	0	0	0	0	0	0	0
50.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.u	.0	.0	.0	.0	.0	.0
合計 (%)	24.5	36.9	12.8	3.1	1.6	1.4	.7	1.1	1.1	1.5	1.4	1.4	14	17	2.9	6.4	100.0

2002年12月1日0時0分~2003年2月28日23時0分

[註1]: 波高H_{1/3}介於 .0m ~ .5m 佔 36.7%, 主波向 NNE 佔 36.9%。

[註2]: 波高 $H_{1/3}$ 平均值 = .82m,最大波高 $H_{1/3}$ = 3.73m,其波向為 N。

[註3]: H_{1/3}小於1m 佔 66.9%。H_{1/3}介於 1~2m 佔 28.6%。H_{1/3}大於2m 佔 4.5%。

[註4]: 波向介於 N ~ E 佔 71.2%; E ~ S 佔 4.3% ; S ~ W 佔 5.5% ; W ~ N 佔 19.0% 。

[註5]: 資料每小時記錄一次,合計 1833筆,檔名: V02WTP10.1HA。

表5.6.2 2003年 春季 台北港波高及波向聯合機率分佈

波向 H _{1/3}	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	ssw	sw	wsw	w	WNW	NW	NNW	合計 (%)
.0m	Q 1	83	37	91		6	Ę	5	7	6	1.9	2.0	26	4.0	5.9	6.0	47.0
.5m	5.1	0.0	0.7	2.1		.0	.0	.0	.,	.0	1.2	2.0	2.0	4.0	0.2	0.0	41.5
1.0m	10.6	11.3	3.0	.5	.5	.1	.2	.1	.3	.2	.6	1.0	2.2	2.9	2.4	4.3	40.2
1.011	3.5	3.5	.7	.1	.0	.0	.0	.0	.0	.1	.1	.2	.6	.3	.1	.6	9.8
1.5m	7	10	2	0	n	n	n	n	n	п	n	n	1	O	n	n	20
2.0m		1.0	.2	.0	.0	.0	.0	.0	.0	.0	.0	.0	•1	.0	.0	.0	2.0
9.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
0.011	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
4.0m	.0	.0	.0	.0	.0	0	0	n	0	Ω	n	0	n	0	Ω	0	0
5.0m		10	10	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
6.0m	.0	.0	.0	0.	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
0.0111	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
7.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
8.0m	-																
9.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
10.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
1 1.0m																	
12.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
13.0m	.0	.0	.0	.0	.0	.0	0	0	0	n	n	0	Û	a	ถ	0	n
1 4.0m	10			.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
15.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
	0.	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
50.0m	01.0																
百訂(%)	24.0	24.1	7.5	2.7	1.5	.7	.8	.6	1.0	.9	1.9	3.2	5.5	7.2	7.7	10.8	100.0

2003年4月1日0時0分~2003年6月30日23時0分

[註1]: 波高H_{1/3}介於 .0m ~ .5m 佔 47.9%, 主波向 NNE 佔 24.1%。

[註2]: 波高 $H_{1/3}$ 平均值 = .57m,最大波高 $H_{1/3}$ = 1.96m,其波向為 NNE。

[註3]: H_{1/3}小於1m 佔 88.1%。H_{1/3}介於 1~2m 佔 11.9% 。H_{1/3}大於2m 佔 .0%。

[註4]: 波向介於 N ~ E 佔 51.0%; E ~ S 佔 2.9% ; S ~ W 佔 9.2% ; W ~ N 佔 36.9%。

[註5]: 資料每小時記錄一次,合計 2133筆,檔名: V03NTP10.1HA。

表5.6.3 2003年 夏季 台北港波高及波向聯合機率分佈

波向 H _{1/3}	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	sw	wsw	w	WNW	NW	NNW	合計 (%)
.0m	9.0	4.0	2.0	1.1	.8	1.1	.5	.7	1.1	1.6	3.5	6.3	10.2	12.7	12.2	7.5	74.1
.5m	4.8	3.8	.8	.2	.0	.2	.0	.1	.1	.2	.3	.6	1.1	1.8	1.5	1.0	16.6
1.0m	2.0	2.6	.3	.0	.0	.0	.0	.0	.1	.0	.0	.0	.0	.4	.1	.5	6.2
1.5m	1.0	.9	.1	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.1	2.2
2.0m	.5	.4	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.9
3.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
4.0m	.0	.0	.0	.0	0	0	n	0	0	n	n	n	n	n	n	0	0
5.0m	0	0	0	0	0	0		0	0	0	0	0	0	0	0	.0	.0
6. 0m	.0 N	.0	.0	.0	0.	.0	.0	.0	.0	.0 0	.0	.0	.0	.0	.0	.0	.0
7.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
8.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
9.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
10.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
11.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
12.0m	.0	.0	.0	.0	.0	.0	.0	.0	0.	.0	.0	0.	.0	.0	.0	.0	.0
13.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
14.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
15.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
50.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
合計 (%)	17.3	11.8	3.2	1.3	.8	1.3	.6	.8	1.3	1.9	3.8	6.9	11.4	14.9	13.8	9.2	100.0

2003年 7月 1日 0時 0分 ~ 2003年 9月30日 23時 0分

[註1]: 波高H_{1/3}介於.0m ~ .5m 佔 74.1%, 主波向 N 佔 17.3%。

[註2]: 波高 $H_{1/3}$ 平均值 = .45m,最大波高 $H_{1/3}$ = 2.50m,其波向為 N。

[註3]: H_{1/3}小於1m 佔 90.8%。H_{1/3}介於 1~2m 佔 8.4%。H_{1/3}大於2m 佔 .9%。

[註4]: 波向介於 N ~ E 佔 25.8%;E ~ S 佔 3.5% ;S ~ W 佔 18.9% ;W ~ N 佔 51.8% 。

[註5]: 資料每小時記錄一次,合計 2131筆,檔名: V03STP10.1HA。

表5.6.4 2003年 秋季 台北港波高及波向聯合機率分佈

波向 H _{1/3}	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	sw	wsw	w	WNW	NW	NNW	合計 (%)
.0m	5.3	2.8	.7	.0	.1	.0	.1	.0	.2	.1	.4	.9	1.0	.4	.9	4.3	17.2
.5m	16.7	7.0	2.2	.1	.1	.1	.0	.0	.0	.0	.4	.2	.6	.9	2.6	7.4	38.3
1.0m	14.0	6.5	1.1	.1	.0	.0	.0	.0	.0	.0	.1	.0	.0	.4	.6	4.2	27.0
1.5m	6.3	4.3	.4	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.5	1.8	13.3
2.0m	2.1	1.8	.1	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.1	.1	4.3
3.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
4.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
5.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
6.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
7.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
8.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
9.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
10.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
11.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
12.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
13.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
14.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
15.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
 合計 (%)	44.3	22.5	4.5	.2	.2	.1	.1	.0	.2	.1	.9	1.1	1.6	1.6	4.7	17.8	

2003年10月3日12時0分~2003年11月6日10時0分

[註1]: 波高 $H_{1/3}$ 介於 .5m ~ 1.0m 佔 38.3% , 主波向 N 佔 44.3% 。

[註2]: 波高 $H_{1/3}$ 平均值 = 1.00m,最大波高 $H_{1/3}$ = 2.63m,其波向為 NNE。

[註3]: H_{1/3}小於1m 佔 55.5%。H_{1/3}介於 1~2m 佔 40.2%。H_{1/3}大於2m 佔 4.3%。

[註4]: 波向介於 N ~ E 佔 50.6%; E ~ S 佔 .5% ; S ~ W 佔 3.1% ; W ~ N 佔 45.9% 。

[註5]: 資料每小時記錄一次,合計 815筆,檔名: V03FTP10.1HA。

表5.7	2003年	整年	台北港波高及波向聯合機率分佈
------	-------	----	----------------

波向 H _{1/3}	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	ssw	sw	wsw	w	WNW	NW	NNW	合計 (%)
.0m	00	e 0	20	1.0	0	c			0	7	1.0			* 0			10.0
.5m	8.0	6. U	3.0	1.3	.8	.0	.4	.4	.6	.7	1.6	2.8	4.3	5.6	6.1	5.7	48.0
	9.1	9.3	2.7	.4	.2	.1	.1	.1	.1	.2	.3	.6	1.2	1.7	1.8	3.3	31.1
1.0m					-		_	_	_		_		_				
1.5m	5.2	5.6	1.0	.1	.0	.0	.0	.0	.0	.0	.0	.1	.2	.3	.2	1.0	13.8
	2.2	2.2	.3	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.1	.3	5.0
2.0m		_	_		_												
8.0m	.9	.9	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	1.9
uuu	.0	.1	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	,1
4.0m	_		_	_													
5.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
0.011	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
6.0m	_																
7 0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
1.011	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
8.0m																	
9.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
9.0III	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
10.0m																	-
11.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
11.011	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
12.0m																	10
18.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
13.0m	.0	.0	.0	.0	.0	n	Ω	n	Û	0	0	0	n	n	n	0	n
14.0m						10	10	10		10		.0	10	.0	.0	.0	.0
	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
15.0m	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	0	Ω	0	a
50.0m													.0	.0	.0	.0	.0
合計 (%)	25.5	24 .1	7.0	1.9	1.0	.8	.5	.5	.8	1.0	2.0	3.5	5.7	7.6	8.2	10.2	100.0

2003年1月1日0時0分~2003年11月6日10時0分

[註1]: 波高H_{1/3}介於 .0m ~ .5m 佔 48.0%, 主波向 N 佔 25.5%。

[註2]: 波高 $H_{1/3}$ 平均值 = .66m,最大波高 $H_{1/3}$ = 3.73m,其波向爲 N。

[註3]: H_{1/3}小於1m 佔 79.2%。H_{1/3}介於 1~2m 佔 18.8%。H_{1/3}大於2m 佔 2.0%。

[註4]: 波向介於 N ~ E 佔 49.1%; E ~ S 佔 2.4% ; S ~ W 佔 9.7% ; W ~ N 佔 38.9%。

[註5]: 資料每小時記錄一次,合計 6628筆,檔名: V030TP10.1HA。
表5.8.1 2003年1月波浪統計極值表

2003年1月1日	3 0時 0分 ~	2003年	1月31日23時	0分
-----------	-----------	-------	----------	----

日期 (月/日)	日波高平均值 _{H1/3} (m)	日週期平均値 _{T1/3} (sec)	最大波高及對應週期、波向 H1/3(m)/T1/3(sec)/(來向)/(時間)
-01/01	1 37	7.0	$\frac{2}{2}$ 20 / 73 / NNE / 02.00
01/02	1.02	6.8	1.56 / 7.2 / NNE / 02.00
01/03	1.37	71	1.96 / 7.6 / NNE / 17.00
01/04	1.20	7.4	1.64 / 7.6 / NNE / 04.00
01/05	1.73	7.4	2.36 / 8.2 / N / 16.00
01/06	1.31	7.3	1.91 / 7.5 / NNE / 05:00
01/07	2.53	8.0	3.73 / 8.3 / N / 06.00
01'/08	1.91	7.6	2.93 / 8.1 / NNE / 05:00
01'/09	1.10	6.7	1.48 / 6.9 / NE / 07:00
01'/10	1.09	6.4	1.30 / 6.3 / NE / 07:00
01/11	1.03	6.7	1.32 / 6.6 / NNE / 23:00
01/12	.87	6.7	1.24 / 6.9 / NNE / 11:00
01/13	.41	6.4	.61 / 6.2 / NNE / 00:00
01/14	.43	6.2	1.39 / 6.7 / NNE / 22:00
01/15	1.47	7.3	2.08 / 7.3 / NNE / 02:00
01/16	.89	7.2	1.41 / 7.5 / NNE / 02:00
01/17	.45	6.8	.71 / 7.3 / NNE / 01:00
01/18	.47	6.2	.92 / 5.9 / NNE / 17:00
01/19	.53	6.1	.88 / 6.3 / N / 02:00
01/20	.77	6.9	1.30 / 7.3 / NNE / 05:00
01/21	.65	6.3	1.09 / 6.1 / NNE / 05:00
01/22	.52	6.6	.80 / 6.3 / W / 12:00
01/23	1.17	7.1	1.79 / 7.1 / N / 20:00
01/24	.78	6.8	1.14 / 7.4 / N / 00:00
01/25	.55	6.8	.75 / 7.2 / N / 07:00
01/26	.34	6.8	.44 / 6.8 / NNW/ 09:00
01/27	1.73	7.3	2.65 / 7.9 / NNE / 09:00
01/28	1.02	7.1	1.55 / 7.2 / NNE / 02:00
01/29	.61	6.6	.95 / 7.1 / NNE / 23:00
01/30	.82	7.0	1.34 / 7.0 / NNE / 01:00
01/31	.46	6.8	.69 / 7.1 / NNE / 01:00

[註1]: 示性波高月平均值 = .99m, 示性週期月平均值 = 6.9sec。

[註2]:示性波高月最大值 = 3.73m,其週期為 8.3s,波向為 N。

[註3]: 資料每小時記錄一次,本月合計 744筆。

表5.8.2 2003年 2月波浪統計極值表

日期	日波高平均値	日週期平均値	最大波高及對應週期、波向	最大波高及對應
(月/日)	$H_{1/3}(m)$	$T_{1/3}(sec)$	$H_{1/3}(m)/T_{1/3}(sec)/(來向)/(時間)$	$H_{1/3}(m)/T_{1/3}(se)$
02/01	1.22	7.1	2.88 / 7.4 / NNE / 15:00	2.88 / 7.4
02/02	1.78	7.4	2.86 / 8.3 / NNE / 04:00	2.86 / 8.3
02/03	1.19	6.7	1.75 / 6.7 / N / 04:00	1.75 / 6.7
02/04	.82	6.2	1.34 / 6.1 / NE / 06:00	1.34 / 6.1
02/05	1.20	6.8	1.69 / 6.9 / NNE / 18:00	1.69 / 6.9
02/06	1.14	6.9	1.79 / 7.3 / NNE / 06:00	1.79 / 7.3
02/07	.56	6.4	.66 / 5.9 / NNE / 14:00	.66 / 5.9
02/08	.29	6.3	.58 / 5.6 / NE / 17:00	.58 / 5.6
02/09	.30	6.1	.62 / 5.5 / NE / 22:00	.62 / 5.5
02/10	.28	6.0	.37 / 5.9 / NW / 08:00	.37 / 5.9
02/11	1.22	6.9	2.64 / 8.2 / NNE / 22:00	2.64 / 8.2
02/12	1.99	7.4	2.52 / 7.7 / N / 09:00	2.52 / 7.7
02/13	1.32	6.8	1.86 / 7.2 / N / 01:00	1.86 / 7.2
02/14	1.04	6.5	1.40 / 6.1 / NNE / 04:00	1.40 / 6.1
02/15	.66	6.6	1.22 / 6.6 / NNE / 03:00	1.22 / 6.6
02/16	.68	6.4	1.45 / 6.3 / NNE / 16:00	1.45 / 6.3
02/17	.96	6.7	1.92 / 7.1 / NNE / 04:00	1.92 / 7.1
02/18	.46	6.5	.79 / 6.5 / NNE / 05:00	.79 / 6.5
02/19	.97	6.3	2.74 / 7.5 / NNE / 18:00	2.74 / 7.5
02/20	1.06	6.8	1.60 / 7.2 / NE / 05:00	1.60 / 7.2
02/21	.63	7.5	.98 / 7.8 / NNE / 06:00	.98 / 7.8
02/22	.25	7.6	.35 / 8.1 / N / 07:00	.35 / 8.1
02/23	.39	7.0	.76 / 5.7 / NNE / 23:00	.76 / 5.7
02/24	1.11	6.6	1.61 / 6.8 / NNE / 10:00	1.61 / 6.8
02/25	.76	6.5	1.07 / 6.5 / NNE / 11:00	1.07 / 6.5
02/26	.41	6.8	.76 / 6.4 / N / 00:00	.76 / 6.4
02/27	.78	6.5	1.37 / 6.5 / NNE / 14:00	1.37 / 6.5
02/28	.79	6.7	1.26 / 6.7 / NNE / 02:00	1.26 / 6.7

2003年 2月 1日 0時 0分~2003年 2月28日23時 0分

[註1]: 示性波高月平均值 = .87m, 示性週期月平均值 = 6.7sec。

[註2]:示性波高月最大值 = 2.88m,其週期為 7.4s,波向為 NNE。

[註3]: 資料每小時記錄一次,本月合計 672筆。

а — ў

表5.8.3 2003年 3月波浪統計極值表

日期 (月/日)	日波高平均值 _{H1/3} (m)	日週期平均値 _{T1/3} (sec)	最大波高及對應週期、波向 H _{1/3} (m)/T _{1/3} (sec)/(來向)/(時間)
03/01	.54	7.4	.72 / 6.9 / NNE / 03:00
03/02	.86	6.8	1.61 / 6.8 / NE / 03:00
03/03	.31	6.8	.33 / 6.8 / NNE / 01:00
03/28	.97	6.3	1.53 / 6.5 / N / 13:00
03/29	.53	6.8	.82 / 6.7 / NNE / 01:00
03/30	.31	6.2	.46 / 6.4 / NNE / 03:00
03/31	.17	6.4	.23 / 6.4 / NNE / 03:00

2003年 3月 1日 0時 0分~2003年 3月31日23時 0分

[註1]: 示性波高月平均值 = .52m, 示性週期月平均值 = 6.7sec。

[註2]: 示性波高月最大值 = 1.61m, 其週期為 6.8s, 波向為 NE。

[註3]: 資料每小時記錄一次,本月合計 744筆。

表5.8.4 2003年 4月波浪統計極值表

日期 (月/日)	日波高平均值 _{H1/3} (m)	日週期平均值 T _{1/3} (sec)	最大波高及對應週期、波向 _{H1/3} (m)/T _{1/3} (sec)/(來向)/(時間)
04/01	.49	5.4	1.02 / 5.7 / WNW/ 20:00
04/02	1.06	5.7	1.55 / 5.9 / W / 20:00
04/03	1.09	6.7	1.50 / 6.6 / N / 05:00
04/04	.97	6.5	1.37 / 6.2 / N / 16:00
04/05	1.15	6.6	1.80 / 6.8 / NE / 05:00
04/06	.78	7.0	1.12 / 6.9 / NNE / 06:00
04/07	.45	6.8	.61 / 6.9 / N / 07:00
04/08	.48	6.0	.79 / 5.3 / NNE / 11:00
04/09	.69	5.9	1.38 / 6.3 / NNE / 18:00
04/10	.65	6.0	.98 / 5.7 / NNW/ 22:00
04/11	.48	5.9	.82 / 5.6 / N / 00:00
04/12	.53	5.8	.93 / 5.1 / NW / 18:00
04/13	.55	5.1	.77 / 4.8 / NW / 15:00
04/14	1.07	5.7	1.51 / 6.4 / N / 13:00
04/15	.58	5.5	1.07 / 6.3 / N / 00:00
04/16	.37	5.3	.52 / 5.2 / WNW 03:00
04/17	.27	5.5	.34 / 5.0 / NNW/ 11:00
04/18	.28	7.5	.35 / 7.5 / N / 13:00
04/19	.28	7.6	.36 / 8.1 / NNW/ 05:00
04/20	.39	6.4	.58 / 4.9 / NNE / 20:00
04/21	1.52	6.2	1.95 / 6.5 / NNE / 07:00
04/22	1.08	6.0	1.46 / 5.8 / N / 08:00
04/23	.58	6.1	.74 / 5.7 / NE / 09:00
04/24	.43	6.2	.48 / 6.3 / NE / 10:00
04/25	.62	5.0	.94 / 4.8 / WNW 06:00
04/26	.84	5.7	1.31 / 6.4 / NNE / 01:00
04/27	.64	5.3	.97 / 5.3 / NNE / 11:00
04/28	.42	5.3	.61 / 5.1 / SSE / 15:00
04/29	.26	5.6	.35 / 5.7 / NNE / 03:00
04/30	1.13	6.2	1.96 / 6.5 / NNE / 16:00

2003年 4月 1日 0時 0分 ~ 2003年 4月30日23時 0分

[註1]: 示性波高月平均值 = .67m, 示性週期月平均值 = 6.0sec。

[註2]:示性波高月最大值 = 1.96m,其週期為 6.5s,波向為 NNE。

[註3]: 資料每小時記錄一次,本月合計 720筆。

表5.8.5 2003年5月波浪統計極值表

2003年 5月 1日 0時 0分 ~ 2003年 5月31日	日23時	0分
---------------------------------	------	----

日期 (月/日)	日波高平均値 Hug(m)	日週期平均値	最大波高及對應週期、波向 #~~(m)/ <i>T~</i> (sec)/(來向)/(時間)
05/01	<u> </u>	5.0	$\frac{116}{57} = \frac{57}{57} = \frac{116}{57}$
05/01	.0U 55	0.9 r o	1.10 / 0.7 / ENE / 04:00
05/02	.00	0.0 E 0	.64 / 0.0 / NNE / 04:00
05/05	.30	0.0	.43 / 0.2 / NE / 04:00
05/04	.21	0.2	.20 / 0.2 / NE / 15:00
05/05	.20	6.1	.24 / 6.1 / NW / $08:00$
05/06	.23	5.5	.40 / 4.6 / NNW / 20:00
05/07	.49	5.0	1.04 / 4.8 / NNW/ 15:00
05/08	.95	5.6	1.53 / 6.5 / NE / 22:00
05/09	1.26	6.4	1.70 / 6.4 / NNE / 08:00
05/10	.73	6.0	.96 / 6.1 / NE / 00:00
05/11	.47	5.8	.83 / 5.5 / NNW/ 00:00
05/12	.30	5.4	.43 / 5.6 / NE / 00:00
05/13	.22	5.5	.29 / 5.4 / NNW/ 01:00
05/14	.25	5.5	.48 / 4.6 / SW / 18:00
05/15	.29	5.2	.49 / 4.5 / SSE / 09:00
05/16	.55	6.0	.84 / 5.5 / NE / 17:00
05/17	.82	5.7	1.34 / 5.6 / NNE / 17:00
05/18	.86	5.7	1.18 / 5.6 / N / 05:00
05/19	.54	5.7	.85 / 5.8 / NE / 06:00
05'/20	.35	5.4	.57 / 4.9 / SSW / 19:00
05'/21	.46	5.2	.73 / 5.1 / E / 19:00
05'/22	.39	5.0	.81 / 4.9 / NW / 22:00
05/23	.56	5.3	.72 / 4.8 / N / 00:00
05/24	.27	5.2	47 / 4.8 / NNW/ 00:00
05/25	.23	5.9	57 / 46 / NNW/ 12:00
05/26	.65	5.8	92 / 56 / N / 1400
$\frac{05}{27}$.85	5.8	1 32 / 5 7 / NNE / 13:00
$\frac{05}{28}$.93	5.8	1.32 / 5.8 / NNE / 14.00
05/29	75	5.8	96 / 55 / NNW / 04.00
05/20	74	67	1.05 / 6.5 / NNE / 16.00
05/31	09	7.0	1.00 / 0.0 / 10.00 1.40 / 7.1 / N / 05.00
00/91	.34	1.0	1.40 / 1.1 / IN / UD:UU

[註1]: 示性波高月平均值 = .56m, 示性週期月平均值 = 5.7sec 。

[註2]:示性波高月最大值 = 1.70m,其週期為 6.4s,波向為 NNE。

[註3]: 資料每小時記錄一次,本月合計 744筆。

表5.8.6 2003年 6月波浪統計極值表

2003年 6月 1日 0時 09	~ 2003年6月30日23時(0分
-------------------	------------------	----

日期	日波高平均值	日週期平均値	最大波高及對應週期 <u>、</u> 波向///、
(Ħ/Ħ)	$H_{1/3}(m)$	$T_{1/3}(Sec)$	$H_{1/3}(\mathbf{m})/T_{1/3}(\operatorname{sec})/(朱问)/(時間)$
06/01	.73	7.0	1.11 / 6.9 / N / 15:00
06/02	.59	6.1	.95 / 5.6 / NE / 17:00
06/03	.57	5.2	.89 / 5.0 / NW / 06:00
06/04	.36	5.6	.45 / 6.0 / N / 05:00
06/05	.27	6.1	.33 / 6.7 / NNE / 06:00
06/06	.23	6.4	.27 / 6.1 / NNE / 19:00
06/07	.32	5.8	.48 / 5.0 / ENE / 07:00
06/08	.63	6.1	.82 / 6.6 / NNE / 21:00
06/09	.70	6.7	.91 / 7.1 / N / 10:00
06/10	.59	7.3	.82 / 6.4 / NNE / 00:00
06/11	.60	6.2	.97 / 5.1 / NW / 15:00
06/12	.76	5.6	1.02 / 5.6 / W / 04:00
06/13	.48	6.0	.62 / 5.8 / WNW 21:00
06/14	.56	6.1	1.36 / 6.7 / N / 15:00
06/15	.27	6.0	.49 / 5.7 / ESE / 15:00
06/16	.40	5.9	.84 / 6.4 / NNE / 17:00
06/17	.90	6.7	1.72 / 7.1 / N / 19:00
06/18	1.19	7.0	1.66 / 6.9 / NNE / 07:00
06/19	.46	7.2	.76 / 7.4 / N / 00:00
06/20	.21	7.5	.27 / 7.2 / NNE / 21:00
06/21	.22	7.4	.28 / 7.3 / NNE / 09:00
06/22	.17	6.8	.20 / 7.0 / WSW/ 07:00
06/23	.29	6.1	.62 / 5.5 / W / 16:00
06/24	.51	5.7	.77 / 5.8 / WSW/ 16:00
06/25	.72	6.0	1.16 / 6.2 / W / 07:00
06/26	.49	6.0	1.11 / 6.3 / W / 17:00
06/27	.69	6.0	1.26 / 6.1 / WSW/ 17:00
06/28	.50	6.0	.60 / 5.9 / W / 20:00
06/29	.27	6.4	.42 / 5.7 / WNW/ 00:00
06/30	.22	6.0	.44 / 5.8 / WSW/ 08:00

[註1]:示性波高月平均值 = .49m,示性週期月平均值 = 6.3sec。

[註2]:示性波高月最大值 = 1.72m,其週期為 7.1s,波向為 N。

[註3]: 資料每小時記錄一次,本月合計 720筆。

表5.8.7 2003年7月波浪統計極值表

日期 (月/日)	日波高平均值 _{H1/3} (m)	日週期平均值 T1/3(sec)	最大波高及對應週期、波向 _{H1/3} (m)/T _{1/3} (sec)/(來向)/(時間)
07/01	.26	5.7	.62 / 5.8 / W / 08:00
07'/02	.16	5.9	.37 / 5.4 / WNW/ 12:00
07/03	.19	5.6	.38 / 5.4 / NW / 11:00
07/04	.21	5.7	.39 / 5.6 / W / 09:00
07/05	.25	5.7	.53 / 5.7 / SW / 11:00
07/06	.33	5.7	.79 / 5.6 / WNŴ 14:00
07/07	.29	5.7	.49 / 5.7 / NW / 04:00
07/08	.13	6.3	.22 / 6.8 / NE / 11:00
07/09	.09	7.1	.19 / 7.5 / W / 03:00
07/10	.11	6.7	.14 / 6.0 / NE / 15:00
07/11	.10	6.4	.13 / 6.3 / W / 01:00
07/12	.09	6.6	.11 / 6.2 / W / 05:00
07/13	.24	5.8	.48 / 5.4 / WNW/ 09:00
07/14	.32	5.5	.68 / 5.5 / WNW/ 10:00
07/15	.36	5.6	.84 / 5.8 / WNW/ 11:00
07/16	.24	5.9	.50 / 5.6 / WNW/ 10:00
07/17	.22	6.4	.26 / 6.2 / NW / 07:00
07/18	.76	4.8	1.30 / 4.9 / WNW/ 14:00
07/19	.26	4.9	.45 / 4.9 / NNW/ 00:00
07/20	.16	5.6	.20 / 5.6 / NW / 08:00
07/21	.20	6.1	.30 / 6.3 / SW / 14:00
07/22	.27	7.6	.45 / 6.3 / WSW/ 20:00
07/23	.37	8.2	.43 / 7.7 / NNW/ 12:00
07/24	.47	6.7	.72 / 4.8 / WSW/ 06:00
07/25	.35	7.2	.51 / 7.0 / W / 00:00
07/26	.34	5.3	.48 / 4.7 / NW / 07:00
07/27	.42	5.4	1.12 / 5.8 / NNE / 04:00
07/28	.36	5.2	.66 / 4.6 / W / 12:00
07/29	.65	4.9	1.34 / 5.0 / NW / 11:00
07/30	.60	4.8	1.08 / 5.3 / WNW 10:00
07/31	.35	4.8	.55 / 4.8 / SSW / 07:00

2003年7月1日0時0分~2003年7月31日23時0分

[註1]: 示性波高月平均值 = .29m, 示性週期月平均值 = 5.9sec。

[註2]:示性波高月最大值 = 1.34m,其週期為 5.0s,波向為 NW。

[註3]: 資料每小時記錄一次,本月合計 744筆。

表5.8.8 2003年 8月波浪統計極值表

日期 (月/日)	日波高平均值 #(m)	日週期平均値	最大波高及對應週期、波向 H_{1} (m)/ T_{2} (sec)/(來向)/(時間)
	<u> </u>	T1/3(500)	
08/01	.22	5.3	.45 / 4.4 / WNW/ 13:00
08/02	.17	5.8	.31 / 5.2 / NNE / 19:00
08/03	.19	5.8	.33 / 5.2 / NE / $21:00$
08/04	.34	5.8	.46 / 7.4 / N / 07:00
08/05	.27	5.9	.35 / 5.6 / SE / 08:00
08/06	.28	5.9	.34 / 5.3 / N / 12:00
08/07	.39	7.0	.69 / 9.4 / N / 23:00
08/08	.94	5.7	1.11 / 5.3 / S / 16:00
08/09	.74	5.7	.94 / 5.8 / WNW 09:00
08/10	.34	5.8	.45 / 6.7 / NNW/ 02:00
08/11	.21	6.3	.28 / 6.0 / SW / 05:00
08/12	.20	5.9	.26 / 5.5 / W / 16:00
08/13	.26	5.5	.45 / 4.8 / W / 23:00
08/14	.62	5.1	.73 / 5.1 / WSW/ 07:00
08/15	.55	6.3	.88 / 6.0 / NNE / 19:00
08/16	.80	6.5	1.15 / 6.2 / NE / 20:00
08/17	.72	6.9	.99 / 6.3 / NNE / 19:00
08/18	.47	6.5	.67 / 6.3 / NNE / 08:00
08/19	.38	6.1	.54 / 5.2 / N / 22:00
08/20	.43	6.0	.55 / 5.9 / NNE / 03:00
08/21	.39	6.3	.49 / 6.0 / NW / 22:00
08/22	.36	6.0	.48 / 6.0 / WNŴ 06:00
08/23	.31	6.1	.41 / 5.9 / NE / 09:00
08/24	.30	6.0	.35 / 5.7 / NW / 10:00
08/25	.28	6.6	.35 / 6.7 / NW / 23:00
08/26	.32	7.0	.42 / 7.2 / NW / 00:00
08/27	.32	5.8	.41 / 5.2 / WNW/ 10:00
08/28	.32	5.1	.47 / 4.4 / WNW/ 12:00
08/29	.17	5.5	.25 / 5.0 / NW / 00:00
08/30	.15	5.4	.20 / 4.8 / WSW/ 20:00
08/31	.18	5.2	.31 / 4.8 / SSE / 18:00

[註1]:示性波高月平均值 = .37m,示性週期月平均值 = 6.0sec。

[註2]:示性波高月最大值 = 1.15m,其週期為 6.2s,波向為 NE。

[註3]: 資料每小時記錄一次,本月合計 744筆。

表5.8.9 2003年 9月波浪統計極值表

日期	日波高平均値	日週期平均値	最大波高及對應週期、波向
(月/日)	$H_{1/3}(m)$	$T_{1/3}(sec)$	$_{H_{1/3}}(m)/T_{1/3}(sec)/(來向)/(時間)$
09/01	.74	5.7	1.20 / 6.5 / NE / 18:00
09/02	.72	7.6	1.21 / 8.0 / NNE / 04:00
09/03	.47	6.6	.59 / 7.0 / WNW/ 06:00
09/04	.35	6.1	.42 / 5.9 / WNW/ 16:00
09/05	.31	5.6	.38 / 5.3 / N / 10:00
09/06	.25	5.5	.47 / 5.1 / NNW/ 12:00
09/07	.21	5.5	.32 / 4.8 / WNŴ 13:00
09/08	.22	5.3	.55 / 4.5 / NW / 14:00
09/09	.27	5.2	.38 / 4.9 / ESE / 03:00
09/10	1.48	6.1	1.98 / 7.2 / NNE / 23:00
09/11	2.18	7.4	2.50 / 7.6 / N / 11:00
09/12	1.32	7.9	2.11 / 9.0 / N / 00:00
09/13	1.00	8.4	1.55 / 8.8 / NNE / 17:00
09/14	.45	7.1	.70 / 7.9 / NNE / 05:00
09/15	.26	6.0	.31 / 6.4 / NNW/ 05:00
09/16	.26	5.7	.33 / 5.3 / NNE / 19:00
09/17	.26	5.8	.35 / 6.2 / WSW/ 07:00
09/18	.28	5.4	.36 / 4.9 / W / 08:00
09/19	.34	5.7	.47 / 5.9 / NNE / 21:00
09/20	.65	5.9	1.24 / 6.5 / NNE / 23:00
09/21	1.54	6.8	1.99 / 7.0 / N / 13:00
09/22	1.22	6.7	1.61 / 6.9 / NNE / 01:00
09/23	.91	6.6	1.18 / 6.4 / NE / 02:00
09/24	.83	6.1	1.09 / 5.7 / N / 16:00
09/25	1.22	6.3	1.98 / 6.7 / NNE / 15:00
09/26	1.26	6.4	1.92 / 6.8 / N / 04:00
09/27	.79	6.0	1.24 / 6.1 / N / 04:00
09/28	.40	5.9	.58 / 5.2 / NE / 06:00
09/29	.46	5.6	.83 / 5.0 / NE / 19:00
09/30	.56	6.3	.81 / 5.8 / ENE / 07:00

2003年 9月 1日 0時 0分~2003年 9月30日23時 0分

[註1]:示性波高月平均值 = .70m,示性週期月平均值 = 6.3sec。

[註2]:示性波高月最大值 = 2.50m,其週期為 7.6s,波向為 N。

[註3]: 資料每小時記錄一次,本月合計 720筆。

表5.8.10 2003年10月波浪統計極值表

日期二、	日波高平均值	日週期平均値	最大波高及對應週期、波向
(月/日)	$H_{1/3}(m)$	$T_{1/3}(sec)$	$H_{1/3}(m)/T_{1/3}(sec)/(來可)/(時間)$
10/03	.79	5.4	1.94 / 6.3 / N / 23:00
10/04	1.77	6.6	2.49 / 7.2 / NNE / 10:00
10/05	1.22	6.2	1.60 / 6.6 / NNE / 00:00
10/06	1.35	6.1	1.84 / 6.5 / NNE / 23:00
10/07	1.52	6.5	1.99 / 6.6 / NNE / 01:00
10/08	1.13	6.6	1.61 / 6.9 / NNE / 14:00
10/09	.87	6.6	1.36 / 7.1 / NNE / 02:00
10/10	.67	6.2	1.02 / 6.4 / N / 03:00
10/11	.60	6.9	.93 / 6.5 / NE / 04:00
10/12	.52	7.5	.72 / 8.3 / NNE / 04:00
10/13	.63	6.8	1.84 / 5.8 / NNE / 20:00
10/14	1.85	6.5	2.31 / 6.6 / NNE / 17:00
10/15	1.85	6.8	2.39 / 7.4 / NNE / 05:00
10/16	1.16	6.1	1.63 / 6.6 / N / 05:00
10/17	.97	5.7	1.26 / 5.9 / N / 19:00
10/18	1.08	5.8	1.53 / 5.9 / N / 19:00
10/19	1.26	6.1	1.47 / 6.1 / N / 23:00
10/20	1.01	6.0	1.36 / 6.4 / N / 01:00
10/21	.69	5.6	.92 / 5.8 / NNE / 00:00
10/22	.76	5.6	1.15 / 5.6 / N / 14:00
10/23	1.47	6.3	1.97 / 6.6 / NNE / 13:00
10/24	1.11	6.7	1.78 / 6.8 / NNW/ 01:00
10/25	.60	6.2	.94 / 5.8 / NW / 04:00
10/26	.44	6.2	.59 / 5.6 / NNE / 05:00
10/27	.37	6.6	.52 / 5.6 / N / 05:00
10/28	.38	5.9	.64 / 5.1 / N / 23:00
10/29	.90	5.8	1.20 / 6.2 / N / 06:00
10/30	.78	5.8	1.13 / 5.9 / NNE / 07:00
10/31	.57	5.7	.75 / 5.5 / N / 08:00

2003年10月 3日12時 0分~2003年10月31日23時 0分

[註1]:示性波高月平均值 = .98m,示性週期月平均值 = 6.3sec。

[註2]:示性波高月最大值 = 2.49m,其週期為 7.2s,波向為 NNE。

[註3]: 資料每小時記錄一次,本月合計 684筆。

2004.0.20

2004.8.20

.

第六章 海流觀測資料分析

6.1 海流觀測方式說明

由於安置於觀測樁下之 S-4ADW 具有觀測波浪 海流 潮位功能, 因此在觀測波浪的同也同步測得海流流速、流向等資料,供分析用。 由海流觀測之資料可了解台北港附近海域的流況特性,以及在築堤填 海或海域工程設施與興建前後之變化情形,以提供各項工程規劃設計 海岸保護、海岸地形變遷、海域水理水質變化及水工模型試驗所需之 資料。

由定點海潮流調查所得結果可製作下列之圖表加以分析:

1. 流速、流向、N-E 分量等資料繪製逐時變化圖。

2.每日與每月流速資料之最大值、最小值及其相對應之流向、時間。

3.繪製流速向量強度變化圖。

4.流速、流向玫瑰圖。

5.流速與流向聯合分佈表。

6.2 海流資料紀錄

本年度海流觀測自 2003 年 1 月~10 月份,其觀測資料紀錄如下表 6.1 所示。

表 6.1 2003 年台北港現場觀測海流資料記錄表

序號	制站	槍名	年、月	啓止時間 (日,時:分~日,時	観測 分天数	觀測 筆數	缺失 筆數	實際 筆數	資料缺失日
1	pl	C031TP10.1HA	2003/01	01.00-00~-31.23:00	31	744	0	744	
2	pl	C032TP10.1HA	2003/02	01.00:00~28.23:00	28	672	0	672	
3	pl	C033TP10.1HA	2003/03	01.00:00~31.23:00	31	744	610	134	$3 \sim 28$
4	pi	C034TP10.1HA	2003/04	01.00:00~30.23:00	30	720	1	719	11
5	pi	C035TP10.1HA	2003/05	01.00.00~31.23.00	31	744	28	716	15 ~ 16
6	pl	C036TP10.1HA	2083/06	01.00:00~30.23:00	30	720	24	696	$12 \sim 13$
7	pl	C037TP10.1HA	2003/07	01.00:00~31.23:00	31	744	26	718	17 ~ 18
8	pl	C038TP10.1HA	2003/08	01.00:00~31.00:00	31	721	23	698	$14 \sim 15$
9	pí	C039TP10.1HA	2003/09	01.00:00~30.23:00	30	720	25	695	$9 \sim 10$
10	pi	C03ATP10.1HA	2003/10	01.00:00~15.06:00	15	343	25	318	$2 \sim 3$

3月份資料缺乏原因如前 5.1 節所述,本章中所述海流之流速及流 向統計值皆為每 1 小時之平均值。根據現場實測資料分析與本所往昔 台北港相關計畫報告陳述,台北港觀測樁所測海流主要為潮流,為往 復之運動。

此段觀測期間海流資料各月份之逐時紀錄如圖 6.1 所示,以下將就 海流相關特性分析詳述。

6.3 流速統計特性分析

表 6.2 為台北港 2003 年 1 月~10 月海流之流速及流向聯合分佈的統計結果,由表中結果得知,全年度每月之流速平均值均小於 40cm/s,除了 6 月之流速平均值為 30.6cm/s 與 7 月之 28.6cm/s 稍小外,餘各月份約在 35~40cm/s 之間。如以 0~25cm/s、25~50cm/s 及大於 50cm/s 三種區段區分,其每月所佔比例如下表 6.3 所示。

月份區間	1	2	3	4	5	6	7	8	9	10
0~25 cm/s	30.2	32.0	31.3	30.1	39.2	40.9	44.8	31.9	35.8	33.0
25~50 cm/s	42.1	42.3	38.8	39.6	40.2	46.6	47.8	44.2	38.1	35.9

表 6.3 2003 年 1~10 月份流速區間百分比例(%)表

由上表得知,流速各區間之比例分佈除6月及7月之流速值稍小 外,其餘各月份幅度相差不多。

將各月份流速依春、夏、秋、冬等四季期間作區隔(冬季部份包括 2002 年 12 月),其統計結果如表 6.4 所示,而表 6.5 則為台北港 2003 年1月~10 月全部海流資料之統計分析結果。將表 6.4 結果重新依流速 區段區分,其結果如下表 6.6 所示。

季節 區間	冬季	春季	夏季	秋季
0~25 cm/s	33.8	34.4	39.3	34.9
25~50 cm/s	40.8	39.8	46.2	37.4
大於 50 cm/s	25.4	25.9	14.5	27.6

表 6.6 2003 年台北港各季節流速區間百分比例(%) 表

台北港冬、春、夏、秋等四季之平均流速依序為 35.8cm/s、 35.9cm/s、31.7cm/s 與 36.7cm/s,而全年(1~10 月)之平均流速為 34.9cm/s。綜合觀之,台北港海域海流之流速除了夏季月份(6、7 及 8 月)稍小外,其餘各季節各月份之流速差異不大。

6.4 流向統計特性分析

海流流向統計特性可由前表 6.2 及圖 6.2 之海流玫瑰圖綜合得知, 於 1 月至 4 月份,海流流向主要集中在 WSW 及 NE~ENE 方位上,WSW 方向約在 32~37%之間,NE~ENE 方向則幾佔半數之比例,其中又以 ENE 方向佔三~四成比例最多。5 及 6 月份,仍以 WSW 及 NE~ENE 方 位居多,NE~ENE 之流向比例仍佔四成以上,但 ENE 方向比例減少為 二成多,而 WSW 流向之比亦降為 22~27%。7、8 及 9 月三月份之海流 流向較為分散,其以 W~SW 及 E~NE 方位為主要分佈方向, W~SW 方 位合計約有 30~35%之比例,而 E~NE 方位之比例則達 46~48%。10 月 份又恢復和 1~4 月份相似之流向,以 ENE 方向之 37.4%及 WSW 方向 之 25.5%為主要海流流向。

將流向分析以春、夏、秋、冬四季區分,其統計特性結果如表 6.4 及圖 6.3 之海流玫瑰圖所示,其中,冬季(包括 2002 年 12 月)及春季兩 季節之海流流向主要集中於 WSW 與 ENE 方位上,皆有三成左右之比 例分佈,而 NE 方向亦有一成多之比例。夏、秋兩季節以 ENE 方向之 25%左右為主流向,而另一方位則分散於 W~SW 之間。如以全年(2003 年 1~10 月份)之海流流向統計分析,其結果如表 6.5 及圖 6.4 之玫瑰圖 所示,全年之分析結果仍以 ENE 方向之 27.8%比例及 WSW 之 24.3% 為台北港海流之主要流向。

6.5 流速極值統計分析

依據前述之流速統計分析結果,表列各月份單日之平均流速及最 大流速之結果如表 6.7,經整理後之每月流速極值如下表 6.8 所示。

月份	平均流速	流速極值	極值流向
	(cm/s)	(cm/s)	
1	37.5	108.3	NE
2	36.4	99.1	ENE
3	37.9	96.5	ENE
4	38.4	104.4	NE
5	33.1	122.6	ENE
6	30.6	113.2	ENE
7	28.6	87.5	NE

表 6.8 2003 年台北港每月流速極值表

8	36.1	95.4	ENE
9	35.8	101.7	ENE
10	38.5	98.1	ENE

上表中第三列流速極值係表示當月中測得 1 小時平均流速之最大 值,由表中結果得知,2003 年 1~10 月中除 7 月份之平均流速稍小外, 其餘月份之平均流速相近,約在 30~40cm/s 之間。當月中之最大流速 亦相差不大,其中,全年最大流速發生在 5 月份為 122.6cm/s,而各月 份發生最大流速時之流向,皆為 ENE 或 NE 方向。

表 6.2.1 2003年 1月 台北港流速及流向聯合分佈表

2003年1月1日0時0分~2003年1月31日23時0分

流向 流速	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	sw	wsw	w	WNW	NW	NNW	合計 (%)
0cm/s		1	1	1	1	0	1	1	,	.,	7					1	
5cm/s	.0	•1	.12	.1	.1	.0	<i>.</i> l	.1	.1	.3	.7	.4	.3	.0	.0	.1	3.0
10om /a	.3	.5	.7	.3	.5	.3	.5	.3	.3	.3	.7	.4	.7	.5	.3	.0	6.5
1001178	.3	.3	.9	1.2	1.1	.0	.1	.0	.0	.1	1.2	1.5	.1	.3	.0	.1	7.3
15cm/s	.0	7	8	2.0	8	1	n	n	n	0	Q	1.6	2	0	0	n	<i></i>
20cm/s	.0		.0	2.0	.0	•+	.0	.0	.0	.0	.0	1.0	.ə	.0	.0	.0	0.0
25cm/s	.0	.1	.3	2.3	.1	.0	.0	.0	.0	.0	.5	3.1	.4	.0	.1	.0	7.0
,_	.0	.0	.8	2.2	.0	.0	.0	.0	.0	.0	.0	2.4	.3	.0	.0	.0	5.6
30cm/s	.0	.0	.9	2.3	.0	.0	.0	0.	.0	.0	1	3.6	7	0	n	n	77
35cm/s	0								10		.1	0.0	• 1	.0	.0	.0	1.1
40cm/s	.0	.0	1.2	3.4	.0	.0	.0	.0	.0	.0	.0	5.0	.5	.0	.0	.0	10.1
4	.0	.0	1.3	2.8	.0	.0	.0	.0	.0	.0	.0	4.3	.4	.1	.0	.0	9.0
45cm/s	.0	.0	1.1	3.5	.0	.0	.0	.0	.0	.0	.0	4.3	.7	.1	.0	.0	9.7
50cm/s	0	0	,	9 E	0	0	0	0	•	•	0				<u>,</u>		
55cm/s	.0	.0	,4	3.0	.0	.0	.0	.0	.0	.0	.0	3.1	.3	.0	.0	.0	7.3
60cm /c	.0	.0	.5	2.8	.0	.0	.0	.0	.0	.0	.0	4.0	.0	.0	.0	.0	7.4
ocen/s	.0	.0	.4	3.2	.0	.0	.0	.0	.0	.0	.0	1.7	.1	.0	.0	.0	5.5
65cm/s	0	n	4	1 2	n	0	n	0	D	0	0	0	0	0	0	0	0.7
70cm/s	.0	.0	1	1.0	.0	.0	.0	.0	.0	.0	.0	.9	.0	.0	.0	.0	2.7
75cm/s	.0	.0	.1	1.5	.0	.0	.0	.0	.0	.0	.0	.1	.0	.0	.0	.0	1.7
,.	.0	.0	.3	.7	.0	.0	.0	.0	.0	.0	.0	.0	.1	.0	.0	.0	1.1
80cm/s	.0	.0	.3	9	0	0	n	n	n	n	٥	0	0	n	0	0	1.9
85cm/s			10		.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	1.2
90cm/s	.0	.0	.0	.4	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.4
•	.0	.0	.1	.3	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.4
400cm/s																	
百訂 (%)	.5	1.2	11.0	34.7	2.7	.4	.8	.4	.4	.7	4.0	36.6	4.8	1.1	4	3	100 D

[註1]: 流速介於 35.0cm/s~ 40.0cm/s 佔 10.1%。主流向 WSW 佔 36.6%。

[註2]: 流速平均值 = 37.5 cm/s, 流速最大值 = 108.3 cm/s, 其流向為 NE。

[註3]: 流速小於25cm/s 佔 30.2%; 介於25~50cm/s 佔 42.1%; 流速大於50cm/s 佔 27.7%。

[註4]: 流向介於 N ~ E 佔 48.4%; E ~ S 佔 3.2% ; S ~ W 佔 45.0% ; W ~ N 佔 3.4% 。

[註5]: 資料每小時記錄一次,合計 744筆,檔名: C031TP10.1HA。

表 6.2.2 2003年 2月 台北港流速及流向聯合分佈表

流向 合計 Ν NNE NE ENE Е ESE \mathbf{SE} SSE s ssw SW wsw W WNW NW NNW 流速 (%) 0cm/s 0. .3 .0 .0 .4 .0 .3 .6 .1 .1 .1.1 .3 .6 .1 .1 3.45cm/s .9 .3 .4 1.0.0 .0 .7 .6 .3 .3 .7 .0 1.08.0.1 .1 1.310 cm/s.7 1.3 .0 .1 1.0 .6 .0 0. .0 .0 .3 0. 7.3 1.31.5.1 .1 15cm/s .0 .1 1.61.0 .0 .0 .0 0. .0 .3 .1 0. 6.1.4 1.8 .4 .1 20cm/s .0 1.9 1.0 .0 .0 .0 .4 .1 .0 .0 0. 3.0 .6 .0 .0 .0 7.125cm/s .0 0. .7 2.1.0 .0 .0 .0 .0 .0 .3 2.2.9 .0 .0 .0 6.3 30cm/s 0. 0. 1.9 2.4.0 .0 0. 0. 0. .0 .0 4.01.20. .0 .0 9.535cm/s .0 .0 1.9 .0 .0 2.7.0 .0 .0 0. .0 3.91.0.0 .0 0. 9.540cm/s .0 .0 1.3 2.50. .0 .0 0. .0 1.3.0 0. 0 3.7Û n 8.9 45cm/s .0 0. .6 0. 3.3.0 .0 0. 0. .0 .0 3.4 .7 0. .0 0. 8.0 50cm/s .0 .0 .9 3.3.0 .0 .0 .3 .0 0. .0 .0 2.10. .0 0. 6.555cm/s .0 .0 .4 3.0.0 .0 .0 0. .0 .0 .0 1.9 .1 .0 .0 0. 5.560cm/s 0. .0 .3 .0 1.6.0 .0 0. .0 .0 .0 2.8.0 .0 .0 0. 4.8 65cm/s .0 .0 .4 2.70. .0 .0 0. .0 .0 .0 1.2.0 .0 0. .0 4.370cm/s 1.0 .0 0. .3 0. .0 .0 .0 0. .0 .0 .0 .3 .1 .0 0. 1.875cm/s .0 .0 .0 .9 .0 .0 0. .0 0. 0. .0 .0 0. .0 0. 0. .9 80cm/s .0 .0 .1.4 .0 .0 .0 0. .0 .0 .0 .0 0. .0 .6 .0 .0 85cm/s .0 .0 .1 .3 .0 .0 .0 .0 .0 .0 .0 .0 0. .0 .0 .0 .4 90cm/s .0 .0 .0 .9 .0 0. 0. 0. .0 .0 .0 0. .0 .0 .0 .0 .9 400cm/s 合計 (%) 1.0 2.215.330.51.2.7 .1.3 .3 .3 1.533.3 9.7 1.2.4 1.6 100.0

2003年 2月 1日 0時 0分 ~ 2003年 2月28日 23時 0分

[註1]: 流速介於 30.0cm/s~ 35.0cm/s 佔 9.5%。主流向 WSW 佔 33.3%。

[註2]: 流速平均值 = 36.4cm/s,流速最大值 = 99.1cm/s,其流向為 ENE。

[註3]: 流速小於25cm/s 佔 32.0%; 介於25~50cm/s 佔 42.3%; 流速大於50cm/s 佔 25.7%。

[註4]:流向介於 N ~ E 佔 49.9%;E ~ S 佔 1.8% ;S ~ W 佔 43.2% ;W ~ N 佔 5.2% 。

[註5]:資料每小時記錄一次 , 合計 672筆, 檔名 : C032TP10.1HA 。

表 6.2.3 2003年 3月 台北港流速及流向聯合分佈表

流向 流速	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	ssw	$\mathbf{s}\mathbf{W}$	wsw	w	WNW	NW	NNW	合計 (%)
0cm/s			_														
Kom /s	.0	1.5	.0	.0	.7	.0	.7	.0	.0	.0	.7	.0	.7	.0	.0	.0	4.5
Jem/8	.0	.0	.0	.0	1.5	.0	.7	.7	.7	.7	.7	3.0	.0	.0	.0	.0	8.2
10cm/s	0	0	0	-	-		â	~	0	0		-	0		_	0	
15cm/s	.0	.0	.0	.1	.1	.0	.0	.0	.0	.0	.0	.7	.0	.0	.1	.0	3.0
,	0.	.0	.0	3.7	.0	.0	.0	.0	.0	.0	1.5	2.2	.0	.0	.0	.0	7.5
20cm/s	n	0	7	15	0	0	0	0	0	0	n n	37	0	D	0	0	69
25cm/s	.0	.0	.,	1.0	.0	.0	.0	.0	.0	.0	2.2	0.1	.0	.0	.0	.0	0.2
	.0	.0	.0	.7	.0	.0	.0	.0	.0	.0	.0	6.0	.0	.0	.0	.0	6.7
30cm/s	0	a	15	3.0	n	a	a	Ω	a	Ο	Ω	45	7	0	0	Ω	97
35cm/s			1.0	010	.0		.0	.0	.0	.0	.0	1.0	••	.0		.0	
40 (.0	.0	1.5	1.5	.0	.0	.0	.0	.0	.0	.0	6.0	.0	.0	.0	.0	9.0
40cm/s	.0	.0	1.5	1.5	.7	.0	.0	.0	.0	.0	.0	2.2	.0	.0	.0	.0	6.0
45cm/s	_	_	_														
K0cm/s	.0	.0	.0	2.2	.0	.0	.0	.0	.0	.0	.0	5.2	.0	.0	.0	0.	7.5
oociii/8	.0	.0	.0	9.7	.0	.0	.0	.0	.0	.0	.0	.7	.0	.0	.0	.0	10.4
55cm/s	0	0	-	0.0	0			~	•	•	<u>^</u>	-		~			
60cm/s	.0	.0	.7	2.2	.0	.0	.0	.0	.0	.0	.0	.7	.0	.0	.0	.0	3.7
	.0	.0	.7	1.5	.0	.0	.0	.0	.0	.0	.0	.7	.0	.0	.0	.0	3.0
65cm/s	D	0	0	17	0	0	0	0	0	n	0	0	0	0	0	0	0.7
70cm/s	.0	.0	.0	3.7	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	3.7
·	.0	.0	.0	3.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	3.0
75cm/s	n	0	0	3.0	0	0	0	0	0	n	n	n	0	0	0	Δ	10
80cm/s	.0	.0	.0	5.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	3.0
	.0	.0	.0	.7	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.7
85cm/s	.0	.0	.0	.7	.0	.0	.0	0	.0	O	0	n	a	Û	n	0	7
90cm/s										.0	.0	.0	.0	.0	.0		• 1
100	.0	.0	.0	1.5	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	1.5
400cm/s	•																
合計 (%)	.0	1.5	6.7	41.0	3.7	.0	1.5	.7	.7	.7	5.2	35.8	1.5	.0	.7	.0	100.0

2003年3月1日0時0分~2003年3月31日23時0分

[註1]: 流速介於 50.0cm/s~ 55.0cm/s 佔 10.4%。主流向 ENE 佔 41.0%。

[註2]: 流速平均值 = 37.9cm/s, 流速最大值 = 96.5cm/s, 其流向爲 ENE。

[註3]: 流速小於25cm/s 佔 31.3%; 介於25~50cm/s 佔 38.8%; 流速大於50cm/s 佔 29.9%。

[註4]: 流向介於 N ~ E 佔 51.5%; E ~ S 佔 3.7%; S ~ W 佔 43.3%; W ~ N 佔 1.5%。

[註5]: 資料每小時記錄一次,合計 134筆,檔名: C033TP10.1HA。

表 6.2.4 2003年 4月 台北港流速及流向聯合分佈表

流向 合計 Ν NNE NE ENE Е ESE SSE s SSW sw wsw w WNW NW NNW SE流速 (%) 0cm/s .6 .0 .3 .0 3.1.1 .3 .0 .3 .1 .0 .1 .4 .4 .1 .1 .1 5cm/s .3 .6 .6 ,3 .7 .6 .0 .0 8.2 .4 .6 .4 .3 1.31.31.0.1 10cm/s .0 .0 .7 .7 .6 .6 2.1.6 .0 .0 6.8 .4 .4 .4 .1 .1 .1 15cm/s .0 .8 .0 .0 6.3 .0 1.11.1 .3 .0 0. .1 .4 1.7 .4 .3 .0 20cm/s 0. 0. .7 1.0 .0 .0 .0 .0 0. .0 1.02.5.4 .1 .0 .0 5.725cm/s .0 0. 1.12.8.4 .1 .0 0. 0. .0 .3 3.2.6 .0 .0 .0 8.5 30cm/s 0. 0. 1.4 1.1.4 0. .0 0. 0. .0 .0 3.6.7 0. .0 .0 7.235cm/s .0 0. 3.2.0 .0 .0 .0 .4 .0 .0 7.91.40. .0 0. 2.9.0 40cm/s .0 0. 1.1 3.3 .0 .0 .0 0. .0 .0 .0 3.9 .7 .0 .0 .0 9.0 45cm/s .0 0. 1.9.0 .0 .0 .3 .0 .0 7.01.1 .1 0. 0. .0 3.5.0 50cm/s .0 .0 1.9 2.9.3 .0 .0 0. .0 .0 .0 3.2.0 .0 .0 .0 8.3 55cm/s .0 .0 .7 3.2.0 .0 .0 0. 0. .0 .0 1.8.1 .0 .0 .0 5.860cm/s .7 .0 0. $\mathbf{2.5}$.0 .0 .0 0. 0. .0 .0 .0 .0 .0 .0 4.7 1.565cm/s .0 .0 .7 2.2.0 .0 .0 0. 0. .0 .0 .0 0. .0 .0 3.3.4 70cm/s .0 .0 .7 .0 .0 .0 .0 1.1 .0 0. 0. 0. .0 .1 0. .0 1.9 75cm/s .0 **.**0 .3 0. 1.9.0 0. 0. 0. .0 .0 .1 0. 0. .0 0. 2.480cm/s 0. .0 .0 1.3.0 .0 .0 0. .0 .0 .0 .0 0. 0. .0 0. 1.385cm/s 0. .0 .0 .6 .0 .0 .0 0. 0. .0 .0 .0 0. .0 .0 0. .6 90cm/s 0. 0. .7 1.3.0 .0 0. 0. .0 0. 0. 0. 0. 0. 1.9 .0 .0 400cm/s 合計 (%) .4 .714.9 32.73.6 1.41.3.8 1.31.83.631.74.9 .4 .3 .3 100.0

2003年 4月 1日 0時 0分~ 2003年 4月30日23時 0分

[註1]: 流速介於 40.0cm/s~ 45.0cm/s 佔 9.0%。主流向 ENE 佔 32.7%。

[註2]: 流速平均值 = 38.4cm/s, 流速最大值 = 104.4cm/s, 其流向為 NE。

[註3]: 流速小於25cm/s 佔 30.0%; 介於25~50cm/s 佔 39.6%; 流速大於50cm/s 佔 30.3%。

[註4]:流向介於 N ~ E 佔 50.5%;E ~ S 佔 5.7% ;S ~ W 佔 41.4% ;W ~ N 佔 2.4% 。

[註5]: 資料每小時記錄一次,合計 719筆,檔名: C034TP10.1HA。
表6.2.5 2003年5月台北港流速及流向聯合分佈表

流向 合計 Ν NNE NE wsw NNW ENE \mathbf{E} ESE SESSE s SSW \mathbf{SW} w WNW NW 流速 (%)0cm/s .0 .3 .3 .1.3 .3 .6 .6 .3 .3 .3 3.9.1 .1 .1 .1 .1 5cm/s .7 .3 .3 .6 .6 .7 .6 0. .4 .4 .3 1.0 1.3.0 8.8 .4 1.4 10cm/s .0 .7 .3 .0 0. 8.2 1.1 1.3.3 .8 1.3 1.7.0 .4 .1 .1 .1 15cm/s .0 .1 1.1 1.0 1.7 .1 .1 0. .0 .0 1.4 2.91.0 .0 .0 .0 9.520cm/s .0 .3 1.7 1.4 1.0 .0 .6 2.9 .7 0. 8.8 .1 .0 0. .0 .1 .0 25cm/s .0 .1 .7 2.0.1 .0 .0 0. 0. .0 .7 4.31.1 .0 .0 0. 9.1 30cm/s 0. 0. 1.32.8.4 .0 .0 0. .0 .0 .4 3.6.8 .0 0. 0. 9.435cm/s .0 .0 0. 0. 0. 2.71.7.1 .0 .0 .0 .0 3.6 .6 .1 .0 8.8 40cm/6 .0 .0 1.3 2.8.0 .0 0. 0. .0 .0 2.0 .0 .0 0. 6.3.1 .1 45 cm/s.0 0. 2.4 2.1.0 .0 .0 .0 .0 .0 .0 .0 0. 2.10. .0 6.6 50cm/s .0 .0 1.42.9.0 .0 .0 .0 .0 .0 .0 1.7 .0 .0 .0 0. 6.0 55cm/s 0. .0 1.8 2.0.0 .0 .0 0. .0 .0 .0 .8 .0 .0 .0 0. 4.660cm/s .0 .0 2.0.8 .0 0. .0 .0 .0 .0 .0 .0 3.8 .0 .0 1.00. 65cm/s .0 .0 0. 1.5.0 .0 .0 .0 0. 0. 0. .0 .0 .0 .0 2.91.470cm/s .0 .0 .6 .3 .0 0. .0 .0 0. 1.0 0 .0 0. 0. .1 .0 0. 75cm/s .0 .0 .1 .6 .0 .0 .0 .0 .0 .7 .0 .0 .0 .0 .0 .0 .0 80cm/s .0 .0 .0 .6 .0 .0 .0 0. .0 .0 .0 .0 .0 .0 .0 0. .6 85cm/s .0 .0 .0 .1 .0 0. .0 0. .0 .0 .0 .0 .0 .0 .0 0. .1 90cm/s .0 0. .0 1.0.0 0. .0 0. 0. 0. .0 .0 .0 0. .0 .0 1.0 400cm/s 合計 (%) .4 2.0 20.125.04.91.31.4 .6 .8 2.45.727.56.4 1.1 .1 .3 100.0

2003年 5月 1日 0時 0分~ 2003年 5月31日 23時 0分

[註1]: 流速介於 15.0cm/s~ 20.0cm/s 佔 9.5%。主流向 WSW 佔 27.5%。

[註2]: 流速平均值 = 33.1cm/s, 流速最大值 = 122.6cm/s, 其流向為 ENE。

[註3]: 流速小於25cm/s 佔 39.2%; 介於25~50cm/s 佔 40.1%; 流速大於50cm/s 佔 20.7%。

[註4]: 流向介於 N ~ E 佔 50.8%;E ~ S 佔 5.0% ;S ~ W 佔 40.5% ;W ~ N 佔 3.6% 。

[註5]: 資料每小時記錄一次,合計 716筆, 檔名: C035TP10.1HA。

表 6.2.6 2003年 6月 台北港流速及流向聯合分佈表

流向 流速	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	sw	wsw	w	WNW	NW	NNW	合 計 (%)
0cm/s			1	1							1	0	0	1	1	0	96
5cm/s	.1	.0	.1	-1	.1	.3	.4	.3	.3	.3	.1	.0	.0	1,	۰l	.0	2.0
,	.4	.3	.3	.4	.6	1.3	1.0	.6	1.0	.6	.6	.0	.6	.0	.1	.0	7.8
10ст/в	.0	.6	.3	.7	1.1	.7	.4	.1	.4	1.1	2.0	1.3	.6	.3	.6	.1	10.5
15cm/s			.0	••			••	••				1.0					
20cm/s	.0	.3	.6	.4	1.6	.1	.3	.3	.7	.4	1.9	2.0	.1	.4	.1	.1	9.5
L ociny o	.1	.3	1.4	1.7	1.4	.1	.0	.0	.1	.1	1.0	3.3	.6	.3	.0	.0	10.6
25cm/s	n	1	14	26	6	0	0	0	0	0	7	4.0	14	3	0	n	11.2
30cm/s	.0	••	1.1	2.0	.0	.0	.0	.0	.0	.0		1.0	1.4		.0	.0	11.2
0 (.0	.0	1.9	3.4	.1	.0	.0	.0	.0	.0	.1	4.0	1.1	.1	.0	.0	10.9
3bcm/s	.0	.0	2.4	3.0	.6	.0	.0	.0	.0	.0	.0	2.9	.6	.0	.0	.0	9.5
40cm/s	0		1.0	4.0	-		0	0	0	0	0	0.4	0	•	0	0	0 7
45cm/s	.0	.0	1.3	4.0	.1	.0	.0	.0	.0	.0	.0	2.4	.0	.0	.0	.0	8.0
	.0	.0	1.6	3.4	.0	.0	.0	.0	.0	.0	.0	1.3	.1	.0	.0	.0	6.5
50cm/s	.0	.0	1.9	1.9	.0	.0	.0	.0	.0	.0	.0	.9	.0	.0	.0	.0	4.6
55cm/s																	
60om /s	.0	.0	.9	2.3	.0	.0	.0	.0	.0	.0	.0	.1	.0	.0	.0	.0	3.3
oocm78	.0	.0	.1	1.7	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	1.9
65cm/s	0	0	2	ø	0	0	0	0	0	0	0	0	0	D	0	0	n
70cm/s	.0	.0	د,	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	-9
	.0	.0	.0	.3	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.3
75cm/s	.0	.0	.0	.3	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.3
80cm/s																	
SKarn /a	.0	.0	.0	.6	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.6
800m/8	.0	.0	.0	.3	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.3
90cm/s	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	4
400cm/s	υ.	.0	.0	.4	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.υ	•4
合計 (%)	.7	1.6	14.5	28.3	6.3	2.6	2.2	1.3	2.6	2.6	6.5	22.3	5.7	1.6	1.0	.3	100.0

2003年 6月 1日 0時 0分~ 2003年 6月30日23時 0分

[註1]: 流速介於 25.0cm/s~ 30.0cm/s 佔 11.2%。主流向 ENE 佔 28.3%。

[註2]: 流速平均值 = 30.6cm/s, 流速最大值 = 113.2cm/s, 其流向為 ENE。

[註3]: 流速小於25cm/s 佔 40.9%; 介於25~50cm/s 佔 46.6%; 流速大於50cm/s 佔 12.5%。

[註4]: 流向介於 N ~ E 佔 48.6%; E ~ S 佔 9.6%; S ~ W 佔 35.6%; W ~ N 佔 6.2%。

[註5]: 資料每小時記錄一次,合計 696筆,檔名: C036TP10.1HA。

表 6.2.7 2003年7月台北港流速及流向聯合分佈表

2003年 7月 1日 0時 0分 ~ 2003年 7月31日 23時 0分

流向 流速	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	ssw	sw	wsw	w	WNW	NW	NNW	合計 (%)
0cm/s	1	0	0	0	1	4	.,	7	n	1	0	2	1	1	0	1	0 5
5cm/s	•1	.0	.0	.0	.1	.4	.0	.1	.0	•1	.0	.5	.1	.1	.0	•1	2.5
100000 /0	.0	.0	.1	.7	.7	.8	.4	.8	.6	.1	.6	.3	.0	.0	.1	.0	5.3
Toemys	.0	0.	.1	.6	.8	.7	.6	.3	1.7	1.4	1.1	.6	.0	.0	.0	.0	7.8
15cm/s	1	0	A	11	1 0	4	7	4	7	95	25	17	2	1	n	n	129
20cm/s	•1	.0	.4	1.1	1.5	.4	.,	.4	. 6	2.0	2.0	1.7	.5	.1	.0	.0	10.2
25cm /s	.0	.0	.6	3.3	2.9	1.0	.0	.0	.1	1.0	4.2	2.6	.3	.0	.0	.0	16.0
20011178	.0	.1	.8	3.3	.8	.1	.0	.0	.0	.1	3.2	3.8	.4	.0	.0	.0	12.8
30cm/s	.0	.1	7	5.6	1	n	0	n	n	1	13	3.8	n	n	Ω	n	11 7
35cm/s				0.0		.0	.0	.0	.0	.1	1.0	0.0	.0	.0	.0	.0	11.7
40cm/s	.0	.0	.3	5.7	.0	.0	.0	.0	.0	.0	.8	1.7	1.0	.0	.0	.0	9.5
,-	.0	.1	.4	5.4	.0	.0	.0	.0	.0	.0	.4	1.1	1.3	.0	.0	.0	8.8
45cm/s	.0	.0	.4	3.1	.0	.0	.0	.0	.0	.0	.3	.7	.6	.0	.0	.0	5.0
50cm/s	0		2	~ .	0							_		-			
55cm/s	.0	.0	.6	2.4	.0	.0	.0	.0	.0	.0	.4	.1	.1	.0	.0	.0	3.6
	.0	.0	.6	.7	.0	.0	.0	.0	.0	.0	.3	.0	.0	.0	.0	.0	1.5
6Dcm/s	.0	.0	.4	.6	.0	.0	.0	.0	.0	.0	.1	.0	.0	.0	.0	.0	1.1
65cm/s	0	0	D		0	0	0	0	0	~	0	0	•		0	0	
70cm/s	.0	.0	.0	.4	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.4
	.0	.0	0.	.3	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.3
rocm/s	.0	.0	.1	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.1
80cm/s	0	0	0	1	0	0	0	0	0	0	0	0	0		0	0	
85cm/s	.0	.0	.0	•1	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.1
00om /a	.0	.0	.1	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.1
BOCIU/B	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
400cm/s																	
合計 (%)	.3	.4	5.7	33.3	7.5	3.5	1.9	2.2	3.1	5.4	15.5	16.6	4.0	.3	.1	.1	100.0

[註1]: 流速介於 20.0cm/s~ 25.0cm/s 佔 16.0%。主流向 ENE 佔 33.3%。

[註2]: 流速平均值 = 28.6cm/s, 流速最大值 = 87.5cm/s, 其流向為 NE。

[註3]: 流速小於25cm/s 佔 44.8%; 介於25~50cm/s 佔 47.8%; 流速大於50cm/s 佔 7.4%。

[註4]: 流向介於 N ~ E 佔 44.2%; E ~ S 佔 11.8% ; S ~ W 佔 42.9% ; W ~ N 佔 1.1% 。

[註5]: 資料每小時記錄一次,合計 718筆, 檔名: C037TP10.1HA。

表6.2.8 2003年8月台北港流速及流向聯合分佈表

2003年 8月 1日 0時 0分 ~ 2003年 8月31日 0時 0分

流向 流速	N	NNE	NE	ENE	Е	ESE	SE	SSE	8	SSW	sw	wsw	w	WNW	NW	NNW	合計 (%)
0cm/s	0		1	0	1				0			0	•				
5cm/s	.0	.0	1،	.0	.1	.1	.3	.0	.0	.0	.0	.0	.0	.1	.3	.0	1.1
	.6	.9	.6	.1	.1	.3	.4	.3	.3	.0	.1	.1	.1	.0	.3	1.0	5.3
10cm/s	.7	.1	1.1	.4	.0	.1	O	Ţ	4	4	3	1	3	6	1.3	4	66
15cm/s				• •	10	•-		11	••	••	.0	••	.0	.0	1.0	• •	0.0
20cm/s	.6	.6	1.9	.9	.3	.4	.1	.3	.3	.3	.6	.3	.9	1.0	.9	.6	9.7
200111/0	.6	.4	3.0	.6	.3	.3	.0	.0	.1	.1	.3	.3	1.6	1.4	.0	.1	9.2
25cm/s	0	0	n 9	7	4	4	0	0	,	9	• •	c	0.6	1.0	0	0	10 5
30cm/s	.0	.9	2.0	.1	.4	.4	.0	.0	.1	.ъ	1.1	.0	2.0	1.0	.0	.0	10.5
a= 1	.0	.3	2.1	.7	.3	.3	.1	.1	.0	.1	1.3	.4	1.3	.4	.0	.0	7.6
35cm/s	.0	.0	1.9	1.0	.7	.1	.1	.0	.0	.3	2.0	.3	1.9	.0	.0	.0	8.3
40cm/s				_													
45cm/s	.0	.3	1.9	.9	1.4	.3	.0	.0	.0	.0	2.1	.9	1.1	.0	.0	.0	8.9
,	.0	.0	1.4	.7	1.7	.1	.0	.0	.0	.0	1.9	1.6	1.3	.0	.0	.1	8.9
50cm/s	.0	.0	1.1	.4	4.6	Ω	0	0	ŋ	0	16	7	સ	٥	0	0	87
55cm/s		.0	1.1		1.0	.0	.0	,	.0	.0	1.0	. 1	.0	.0	.0	.0	0.7
60cm /s	.0	.0	.6	.3	3.2	.0	.0	.0	.0	.0	.4	.3	.0	.0	.0	.0	4.7
0001178	.0	.0	.3	.1	2.7	.0	.0	.0	.0	.0	.4	.0	.0	.0	.0	.1	3.7
65cm/s	0	0	1	7	16	0		0	0	0	0		~	0	0	0	0.0
70cm/s	.0	.0	-1	.7	1.0	.0	.0	.0	.0	.0	.0	.1	.0	.0	.0	.0	2.6
	.0	.0	.0	.3	.9	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	1.1
75cm/s	.0	.0	.1	.9	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	1.0
80cm/s	_	_	_	_													
85cm/s	.0	.0	.0	.9	.1	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	1.0
,-	.0	.0	.0	.7	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.7
90cm/s	n	0	0	3	0	0	n	0	0	n	n	n	0	0	0	0	3
400cm/s				.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	υ.
合計 (%)	2.4	3.4	18.6	10.6	18.5	2.6	1 1	9	1.3	1.6	12.2	57	11.3	4.6	27	91	100.0

[註1]:流速介於 25.0cm/s~ 30.0cm/s 佔 10.5%。主流向 NE 佔 18.6%。

[註2]: 流速平均值 = 36.1cm/s , 流速最大值 = 95.4cm/s , 其流向爲 ENE。

[註3]: 流速小於25cm/s 佔 31.9%; 介於25~50cm/s 佔 44.1%; 流速大於50cm/s 佔 23.9%。

[註4]:流向介於 N ~ E 佔 48.3%; E ~ S 佔 9.2%; S ~ W 佔 25.2%; W ~ N 佔 17.3%。

[註5]: 資料每小時記錄一次,合計 698筆,檔名: C038TP10.1HA。

表6.2.9 2003年 9月 台北港流速及流向聯合分佈表

2003年9月1日0時0分~2003年9月30日23時0分

流向 流速	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	ssw	sw	wsw	w	WNW	NW	NNW	合計 (%)
Dcm/s			0	0		· · · · · ·	0		0		-	0				0	
5cm/s	.4	.4	.0	.0	.1	.0	.0	.1	.0	.0	.1	.0	.3	.4	.1	.0	2.2
	.6	1.7	.1	.6	.4	.3	.3	.7	.1	.0	.1	.7	.4	2.0	.9	.9	9.9
10cm/s	1	3	10	3	3	3	1	1	7	Δ	7	Δ	14	a	1	1	75
15cm/s		10	1.0			.0	•*			.1	••	••	11	.0	•1	•1	1.0
20cm /s	.0	.9	.9	.4	.1	.3	.1	.1	.0	.1	.1	1.2	2.4	.3	.0	.0	7.1
200m/s	.0	.1	1.9	1.0	1.2	.6	.0	.1	.0	.1	.3	1.2	2.6	.1	.0	.0	9.2
25 cm/s	0	1	1 7	0	,	<i>c</i>	0		0	0			0.5	0			
30cm/s	.0	•1	1.7	.9	.1	.6	.0	.0	.0	.0	.1	2.9	2.7	.0	.0	.0	9.2
	.0	.0	.9	.9	1.2	.3	.1	.0	.0	.0	.4	2.3	1.7	.0	.0	.0	7.8
35cm/s	.0	.0	.9	.6	1.3	.1	.1	.0	.0	.0	.1	1.6	1.9	.0	.0	.0	6.6
40cm/s										10		1.0	110		10	10	unu -
45cm/s	.0	.0	.9	1.0	1.7	.0	.0	.0	.0	.0	.0	2.0	1.0	.1	.0	.0	6.8
100111,1	.0	.0	.4	1.3	2.7	.1	.0	.0	.0	.0	.1	2.6	.4	.0	.0	.0	7.8
50cm/s	n	0	3	26	30	n	n	0	0	0	0	1.9	0	0	0	0	71
55cm/s	.0	.0	.0	2.0	5.0	.0	.0	.0	.0	.0	.0	1.2	.0	.0	.0	.0	<i>{</i> .1
60 (-	.0	.0	.1	1.9	2.2	.0	.0	.0	0.	.0	.0	.9	.0	.0	.0	.0	5.0
60cm/6	.0	.0	.4	1.3	1.6	.0	.0	.0	.0	.0	.0	.4	.0	.0	.0	.0	3.7
65cm/s			_			_	_	_									
70cm/s	.0	.0	.1	1.3	1.6	.0	.0	.0	.0	.0	.0	.0	.3	.0	.0	.0	3.3
· , -	.0	.0	.1	1.4	.1	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	1.7
75cm/s	0	n	1	2.0	a.	0	n	0	Ο	0	0	0	n	n	0	n	9 A
80cm/s	.0	.0	.1	2.0		.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	2.4
9Kom /a	.0	.0	.1	1.4	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	1.6
80cm/s	.0	.0	.1	.4	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.6
90cm/s	0	0					-					_	_	_	_		
400cm/s	.0	.0	ن .	ن .	.0	.0	.0	.υ	.0	.0	.U	.0	.0	.0	.0	.0	.6
合計 (%)	1.2	3.6	10.5	19.6	18.0	2.6	.9	1.3	.9	.7	2.3	17.3	15.3	3.9	1.2	1.0	100.0

[註1]: 流速介於 5.0cm/s~ 10.0cm/s 佔 9.9% 。 主流向 ENE 佔 19.6% 。

[註2]: 流速平均值 = 35.8cm/s, 流速最大值 = 101.7cm/s, 其流向為 ENE。

[註3]: 流速小於25cm/s 佔 35.8%; 介於25~50cm/s 佔 38.1%; 流速大於50cm/s 佔 26.0%。

[註4]: 流向介於 N ~ E 佔 47.9%; E ~ S 佔 9.9%; S ~ W 佔 29.9%; W ~ N 佔 12.2%。

[註5]: 資料每小時記錄---次,合計 695筆,檔名: C039TP10.1HA。

表6.2.10 2003年 10月 台北港流速及流向聯合分佈表

2003年10月1日0時0分~2003年10月15日6時0分

流向 流速	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	ssw	sw	wsw	w	WNW	NW	NNW	合 計 (%)
0cm/s	0				0	0	0	0	0	•	•	0		0	0	0	0
5cm/s	.0	.0	.0	.0	.0	.0	.0	.0	د.	.0	.0	.0	.ა	.0	د.	.0	.9
	.9	1.3	.3	.3	.6	.0	.3	.6	.3	.6	.3	1.3	.6	.3	.0	.3	8.2
10cm/s	.0	.3	1.6	1.3	.9	1.3	.6	.0	.6	1.6	.9	.9	.6	.3	.3	.0	11.3
15cm/s	0	0	1.0	0				0	0	c	1.1	.1	<i>c</i>	n	0	0	6.0
20cm/s	.0	.0	1.6	.0	.3	.3	.3	.0	.0	.6	1.3	.3	.6	.0	.0	.0	6. U
aa (.0	.0	.6	1.6	.0	.0	.0	.0	.0	.0	1.3	2.2	.9	.0	.0	.0	6.6
25cm/s	.0	.0	1.6	2.8	1.3	.0	.0	.0	.0	.0	1.9	2.2	.6	.0	.0	.0	10.4
30cm/s	0	0	~		<u>^</u>	0		•							<u>^</u>	<u>,</u>	r 0
35cm/s	.0	.0	.9	1.6	.0	.0	.0	.0	.0	.0	.3	1.6	.6	.0	.0	.0	5.0
10 t	.0	.0	.9	2.2	.0	.0	.0	.0	.0	.0	.3	2.2	.6	.0	.0	.0	6.3
40cm/s	.0	.0	.6	2.2	.0	.0	.0	.0	.0	.0	.0	3 .1	.6	.0	.0	.0	6.6
45cm/s	0	0	2	9.9	0	0	0	0	0	0	0		c	0	~	0	75
50cm/s	.0	.0	.э	2.2	.0	.0	.0	.0	.Ų	.0	.0	4.4	.0	.0	.0	.0	6.1
EE ann (a	.0	.0	.0	4.1	.0	.0	.0	.0	.0	.0	.0	3.5	.6	.0	.0	.0	8.2
aacm/s	.0	.0	.0	2.2	.0	.0	.0	.0	.0	.0	.0	1.9	.3	.0	.0	.0	4.4
60cm/s	0	0	0	9.1	0	0	0	0	0	0	A	1.9	0	0	0	0	
65cm/s	.0	.0	.0	3.1	.0	.0	.0	.0	.0	.0	.0	1.5	.0	.0	.0	.0	4.4
70.0mm (a	.0	.0	.0	2.8	.0	.0	.0	.0	.0	.0	.0	.6	.0	.0	.0	.0	3.5
10011/8	.0	.0	.3	1.6	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	1.9
75cm/s	0	0	0	95	D	0	0	0	0	0	0	0	0	0	0	0	0 E
80cm/s	.0	.0	.0	2.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	2.5
0 × /	.0	.0	.0	2.5	.0	.0	.0	0.	.0	.0	.0	.0	.0	.0	.0	.0	2.5
80011/6	.0	.0	.0	1.9	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	1.9
90cm/s	0	0	0	1.0	0.1	0	0	0	0	0	0	0	л	0	0	0	1.0
400cm/s	.0	.0	.0	1.9	.0	.0	.0	.0	.0	.U	υ.	.0	.0	.0	.0	.0	1.9
合計 (%)	.9	1.6	8.8	37.4	3.1	1.6	1.3	.6	1.3	2.8	6.3	25.5	7.2	.6	.6	.3	100.0

[註1]: 流速介於 10.0cm/s~ 15.0cm/s 佔 11.3%。主流向 ENE 佔 37.4%。

[註 2]: 流速平均值 = 38.5cm/s , 流速最大值 = 98.1cm/s , 其流向爲 ENE。

[註3]: 流速小於25cm/s 佔 33.0%; 介於25~50cm/s 佔 35.8%; 流速大於50cm/s 佔 31.1%。

[註4]: 流向介於 N ~ E 佔 49.7%; E ~ S 佔 5.7% ; S ~ W 佔 39.6% ; W ~ N 佔 5.0% 。

[註5]: 資料每小時記錄一次, 合計 318筆, 檔名: C03ATP10.1HA。

表6.4.1	2002年:	冬季	台北港流速及流向聯合分佈表
--------	--------	----	---------------

2002年12月3日14時0分~2003年2月28日23時0分

流向 流速	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	sw	wsw	w	WNW	NW	NNW	合計 (%)
0cm/s		1	2	1	9	1	1	0	2	9	4	2	2		1		26
5cm/s	.5	.5	.9	.1	.2	.1	.1	.2 2	.5	.2	.4 5	.5	.3	.1	.1 9	.o 4	3.0 7 4
10cm/s							.0		.0	.0	.0	.,		.0		. 1	1.4
15cm/s	.2	.5	1.2	1.5	1.0	.3	.2	.0	.3	.2	.7	1.2	.6	.2	.1	.2	8.6
20 /-	.0	.3	.9	1.8	.7	.1	.2	.1	.2	.2	.8	1.4	.3	.1	.0	.0	7.3
200m/s	.0	.2	1.0	2.1	.2	.0	.0	.0	.0	.1	.6	2.3	.3	.0	.0	.0	7.0
25cm/s	0	0	Q	25	1	n	Ω	0	Δ	1	3	10.	5	0	0	n	65
30cm/s	.0	.0		2.0	.1	.0	.0	.0	.0	•1	.0	17	.0	.0	.0	.0	0.0
35cm/s	.0	.1	1.3	2.2	.0	.0	.0	.0	.0	.0	.5	3.7	.9	.0	.0	.0	8.7
,-	.0	.0	1.3	2.5	.1	.0	.0	0.	.0	.0	.4	3.9	.5	.0	.0	.0	8.8
40cm/s	.0	.0	1.3	2.1	.0	.0	.0	.0	.0	.1	.3	3.8	.9	.1	.0	.0	8.5
45cm/s	2		_		_		_	_									0.0
50cm/s	.0	.0	.7	2.9	.0	.0	.0	.0	.0	.0	.2	3.9	.5	.0	.0	.0	8.3
	.0	.0	.6	2.8	.0	.0	.0	.0	.0	.0	.3	2.7	.3	.0	.0	.0	6.9
55cm/s	.0	.0	.4	2.4	.0	.0	.0	.0	.0	.0	.2	3.0	.0	.0	.0	.0	6.1
60cm/s	0	0	9		0	0		0	0		0	0.0			<u>^</u>	<u>^</u>	
65cm/s	.0	.0	.3	2.2	.0	.0	.0	.0	.0	.0	.0	2.3	.1	.0	.0	.0	4.9
70am (a	.0	.0	.3	1.6	.0	.0	.0	.0	.0	.0	.0	1.1	.0	.0	.0	.0	3.0
70cm/s	.0	.0	.2	1 .1	.0	.0	.0	.0	.0	.0	.0	.3	.0	.0	.0	.0	1.6
75cm/s	0	0	1	8	0	0	0	0	0	0	n	1	0	0	0	n	1.0
80cm/s	.0	.0	.1	.0	.0	.0	.0	.0	.0	.0	.0	•1	.0	.0	.0	.0	1.2
85cm/s	.0	.0	.1	.7	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.8
50CIII/8	.0	.0	.0	.2	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.3
90cm/s	.0	.0	1	4	n	n	n	0	n	n	0	0	0	0	0	0	5
400cm/s			••				.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
合計 (%)	1.0	1.9	1 2 .1	30.3	3.0	1.0	1.0	.6	1.2	1.3	5.3	32.5	6.2	1.1	.6	1.0	100.0

1.0

[註1]: 流速介於 35.0cm/s~ 40.0cm/s 佔 8.8%。主流向 WSW 佔 32.5%。

[註2]: 流速平均值 = 35.8 cm/s, 流速最大值 = 108.3 cm/s,其流向為 NE。

[註3]: 流速小於25cm/s 佔 33.8%; 介於25~50cm/s 佔 40.8%; 流速大於50cm/s 佔 25.4%。

[註4]: 流向介於 N ~ E 佔 46.6%; E ~ S 佔 4.4% ; S ~ W 佔 44.6% ; W ~ N 佔 4.4% 。

[註5]: 資料每小時記錄一次,合計 2073筆,檔名: C02WTP10.1HA。

表6.4.2 2003年 春季 台北港流速及流向聯合分佈表

2003年3月1日0時0分~2003年5月31日23時0分

流向 流速	Ν	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	sw	wsw	w	WNW	NW	NNW	合計 (%)
0cm/s	1						-		0		0						
5cm/s	.1	.4	.4	.1	.3	.1	.5	.3	.2	.3	.2	.1	.3	.1	.1	.2	3.6
·	.3	.5	.4	.4	.4	.5	.4	.3	.6	1.1	1.2	1.0	.9	.3	.0	.1	8.5
10cm/s	.0	.2	.7	1.0	.7	.3	.3	.1	.1	.6	8	1.8	4	0	.1	0	7.1
15cm/s												110			••	10	
20cm/s	.0	.1	.9	1.3	1.3	.2	.1	.0	.1	.0	1.0	2.3	.6	.1	.0	.0	7.8
1 001117.0	.0	.1	1.1	1.2	.4	.1	.0	.0	.0	.0	.9	2.8	.5	.1	.0	.0	7.3
25cm/s	0	1	8	9 9	3	1	0	0	0	O	4	4.0	9	n	0	0	96
30cm/в	.0	•1	.0	2.2	.5	.1	.0	.0	.0	.0	.4	4.0	.0	.0	.0	.0	a.u
9 m /_	.0	.0	1.3	2.0	.4	.0	.0	0.	.0	.0	.2	3.7	.8	.0	.0	.0	8.4
38Cm/8	.0	.0	2.0	2.4	.1	.0	.0	.0	.0	.0	.0	3.5	.4	.1	.0	.0	8.4
40cm/s	0	0	1.9	9.0	1	D	0	D	0	0	0	9.0		0	0	0	
45cm/s	.0	.0	1.4	2.9	•1	.0	.0	.0	.0	.0	.u	2.9	.4	.0	.0	.0	1.5
FO 1	.0	.0	1.6	2.0	.1	.0	.0	.0	.0	.0	.0	3.0	.1	.0	.0	.0	6.8
aucm/s	.0	.0	1.5	3.5	.1	.0	.0	.0	.0	.0	.0	2.3	.0	.0	.0	.0	7.5
55cm/s	0	0	1.0	0.5	0	0	0	<u>^</u>	•								
60cm/s	.0	.0	1.2	2.5	.0	.0	.0	.0	.0	.0	.0	1.3	.1	.0	.0	.0	5.1
	.0	.0	1.3	1.7	.0	.0	.0	.0	.0	.0	.0	1.2	.0	.0	.0	.0	4.1
65cm/s	.0	.0	1.0	2.0	.0	.0	.0	.0	.0	.0	.0	.2	.0	.0	.0	.0	3.2
70cm/s	_	_	_											-	-		
76cm/s	.0	.0	.6	.9	.0	.0	.0	.0	.0	.0	.0	.1	.1	.0	.0	.0	1.6
,	.0	.0	.2	1.4	.0	.0	.0	.0	.0	.0	.0	.1	.0	.0	.0	.0	1.7
80cm/s	.0	.0	.0	.9	0	0	0	0	a	0	0	a	n	n	0	n	q
85cm/s		10	.0		.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.5
00om /s	.0	.0	.0	.4	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.4
boeing a	.0	.0	.3	1.1	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	1.5
400cm/s																	
合計 (%)	.4	1.3	16.6	29.9	4.2	1.2	1.3	.7	1.0	2.0	4.7	30.1	5.3	.7	.3	.3	100.0

[註1]: 流速介於 25.0cm/s~ 30.0cm/s 佔 8.6%。主流向 WSW 佔 30.1%。

[註2]: 流速平均值 = 35.9cm/s, 流速最大值 = 122.6cm/s, 其流向為 ENE。

[註3]: 流速小於25cm/s 佔 34.4%; 介於25~50cm/s 佔 39.8%; 流速大於50cm/s 佔 25.9%。

[註4]: 流向介於 N ~ E 佔 50.7%; E ~ S 佔 5.2% ; S ~ W 佔 41.2% ; W ~ N 佔 2.9%。

[註5]: 資料每小時記錄一次,合計 1569筆,檔名: C03NTP10.1HA。

表6.4.3 2003年 夏季 台北港流速及流向聯合分佈表

流向 Ν NNE NE ENE \mathbf{E} ESE 合計 SESSE \mathbf{s} SSW SW wsw W WNW NW NNW 流速 (%) Ocm/s .1 .0 .1 .0 .1 .3 .3 .3 .1 .0 0. .0 2.1.1 .1.1 .1 5cm/в .3 .4 .3 .4 .5 .8 .6 .6 .6 .2 .0 .2.3 .4 .1 .26.110cm/s .2 .2 .5 .6 .7 .5 .2 .9 .2 .3 1.0 1.1 .7 .3 8.3 .3 .6 15cm/s .2 .3 .9 .8 1.3.3 .3 .6 1.1 1.8 1.3 .5 .3 .2 .4 .4 10.8 20cm/s .2 .2 1.7 1.9 1.6 .5 .0 .0 .1 .4 1.82.1.8 .6 .0 0. 12.025cm/s 0. .4 1.52.2.6 .2 .0 0. 0. .1 1.7 2.81.5.4 .0 0. 11.530cm/s .0 .2 .1 1.63.3 .1 .0 0. .0 .1 .9 2.7.8 .2 0. 0. 10.1 35cm/s .0 .0 1.5.0 3.3 0. .4 0. .0 .1 .9 1.61.1 .0 .0 0. 9.1 40cm/s .0 .1 1.23.5.5 .1 0. .0 .0 .0 .9 1.00. 1.5 .0 0. 8.7 45cm/s .0 .0 1.1 2.4.6 .0 .0 0. .0 .0 .0 .7 1.2.7 0. .0 68 50cm/s .0 .0 1.21.61.5.0 .0 0. .0 .0 .7 .6 .1 .0 .0 .0 5.655cm/s .0 .0 .7 1.11.0.0 .0 0. .0 .0 .2.1 .0 .0 .0 .0 3.260cm/s .0 0. .3 .8 .9 .0 .0 0. .0 .0 .2 0. 0. .0 .0 .0 2.265cm/s .0 .0 .1 .6 .5 .0 .0 .0 .0 .0 .0 0. .0 .0 .0 .0 1.370cm/s 0. .0 .0 .3 .3 .0 .0 .0 .0 .0 .0 .0 .0 0. .0 .0 .6 75cm/s .0 .0 .1 .0 .4 .0 .0 .0 .0 .0 0. .0 .0 .5 0. .0 0. 80cm/6 .0 0. .0 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 0. .6 85cm/s .0 .0 0. .3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 0. .4 90cm/s .0 0. .0 .2 .0 .0 .0 .0 0. .0 .0 .0 .0 .0 0. 0. .2400cm/s

2003年6月1日0時0分~2003年8月31日0時0分

[註1]:流速介於 20.0cm/s~ 25.0cm/s 佔 12.0% 。 主流向 ENE 佔 24.1% 。

1.8

2.9

[註2]: 流速平均值 = 31.7cm/s, 流速最大值 = 113.2cm/s, 其流向為 ENE。

[註3]: 流速小於25cm/s 佔 39.3%; 介於25~50cm/s 佔 46.2%; 流速大於50cm/s 佔 14.5%。

1.5

2.3

3.2

11.4

14.9

7.0

2.1

1.3

.9

100.0

[註4]:流向介於 N ~ E 佔 47.0%;E ~ S 佔 10.2% ;S ~ W 佔 34.7% ;W ~ N 佔 8.1% 。

[註5]:資料每小時記錄一次,合計 2112筆, 檔名: C03STP10.1HA 。

24.1

10.7

12.9

合計 (%) 1.1

1.8

表6.4.4 2003年 秋季 台北港流速及流向聯合分佈表

流向 流速	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	ssw	sw	wsw	w	WNW	NW	NNW	合計 (%)
0cm/в		2	0	0	1	0	D			0						0	1.0
5cm/s	ۍ.	.3	.0	.0	.1	.0	.0	.1	.1	.0	.1	.0	ۍ.	.3	.2	.0	1.8
	.7	1.6	.2	.5	.5	.2	.3	.7	.2	.2	.2	.9	.5	1.5	.6	.7	9.4
10cm/s	.1	.3	1.2	.6	.5	.6	.3	.1	.7	.8	.8	.6	1.2	.7	.2	.1	8.7
15cm/s	0	c	1 1	E	9	2	9	-	0	.s	r	0	1.0	0	0	0	07
20cm/s	.0	.0	1.1	.ə	.2	.ა	.2	•1	.0	.ა	.ə	.9	1.9	.2	.0	.0	0.7
0Eana (a	.0	.1	1.5	1.2	.8	.4	.0	.1	.0	.1	.6	1.5	2 .1	.1	.0	.0	8.4
20011/5	.0	.1	1.7	1.5	.5	.4	.0	.0	.0	.0	.7	2.7	2 .1	.0	.0	.0	9.6
30cm/s	n	0	0	1 1	2	n	1	0	0	0	1	9.1	14	0	0	0	60
35cm/s	.0	.0		1.1	.0	.2	.1	.0	.0	.0	.4	2.1	1.4	.0	.0	.0	0.9
40cm /s	.0	.0	.9	1.1	.9	.1	.1	.0	.0	.0	.2	1.8	1.5	.0	.0	.0	6.5
4001178	.0	.0	.8	1.4	1.2	.0	.0	.0	.0	.0	.0	2.4	.9	.1	.0	.0	6.7
45cm/s	.0	.0	.4	1.6	1.9	.1	.0	.0	.0	0	1	32	5	a	0	0	77
50cm/s				1.0	110							0.2	.0				
55cm/s	.0	.0	.2	3.1	2.1	.0	.0	.0	.0	.0	.0	1.9	.2	.0	.0	.0	7.4
,	.0	.0	.1	2.0	1.5	.0	.0	.0	.0	.0	.0	1.2	.1	.0	.0	.0	4.8
60cm/s	.0	.0	.3	1.9	1.1	.0	.0	.0	.0	.0	.0	.7	.0	.0	.0	.0	3.9
65cm/s				_													0.0
70cm/s	.0	.0	.1	1.8	1.1	.0	.0	.0	.0	.0	.0	.2	.2	.0	.0	.0	3.4
	.0	.0	.2	1.5	.1	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	1.8
75cm/s	.0	.0	.1	2.2	.2	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	2.5
80cm/s	0	0			•	<u> </u>	•	•	~								
85cm/s	.0	.0	•1	1.8	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	1.9
00 /	.0	.0	.1	.9	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	1.0
90cm/s	.0	.0	.2	.8	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	1.0
400cm/s																	
合計 (%)	1.1	3.0	10.0	25.2	13.3	2.3	1.0	1.1	1.0	1.4	3.6	19.8	12.7	2.9	1.0	.8	100.0

2003年9月1日0時0分~2003年10月15日6時0分

[註1]: 流速介於 25.0cm/s~ 30.0cm/s 佔 9.6%。主流向 ENE 佔 25.2%。

[註2]: 流速平均值 = 36.7cm/s, 流速最大值 = 101.7cm/s, 其流向為 ENE。

[註3]: 流速小於25cm/s 佔 34.9%; 介於25~50cm/s 佔 37.4%; 流速大於50cm/s 佔 27.6%。

[註4]: 流向介於 N ~ E 佔 48.5%; E ~ S 佔 8.6%; S ~ W 佔 33.0%; W ~ N 佔 10.0%。

[註5]: 資料每小時記錄一次,合計 1013筆,檔名: C03FTP10.1HA。

表 6.5 2003年 整年 台北港流速及流向聯合分佈表

流向 合計 Ν NNE NE ENE Е ESE SESSE S SSW SW wsw w WNW NW NNW 流速 (%) 0cm/s .2 .2 .0 .2 .1 .1 .3 .2 .22.7.2.1.1 .1 .1 .1 .1 5cm/s .7 7.5.4 .4 .4 .4 .5.5 .6 .7 .6 .5.2 .5.4 .4 .4 10cm/s .3 .1 .8 .8 .7 .4 .7 .9 .3 .3 .6 .3 .3 .1 7.8.1 1.1 15cm/s .2 .1 1.0 1.0 .9 .2 .2 .2 .4 1.1 1.6 .7 .3 .1 8.3 .1 .1 20cm/s .1 .2 1.4 .8 .2 .0 .0 .0 .2 1.0 .9 .0 1.62.4.2 0. 9.1 25cm/s .0 .2 1.22.1.4 .1 .0 .0 .0 .0 .9 3.0 1.2.0 .0 9.1 .1 30cm/s .0 .0 1.4 2.4.3 .1 0. 0. .0 0. .4 3.1.9 .1 0. .0 8.8 35cm/s .0 .0 2.61.5.3 .0 0. 0. .0 .0 .4 2.8.9 0. 0. .0 8.7 40cm/s .0 .0 1.2 2.8.0 .4 n 0. .0 0. .3 .0 2.6.8 0. .0 8.1 $45 \mathrm{cm/s}$.0 .0 .0 1.1 2.4.5 .0 .0 0, .0 0. .3 2.6.5 .0 n 74 50cm/s .0 .0 1.0 2.7.9 .0 .0 .0 .0 .0 .2 1.7 .1 .0 0. .0 6.7 55cm/s .0 .0 .7 $\mathbf{2.0}$.6 .0 .0 0. .0 .0 .1 1.3 .0 .0 .0 .0 4.760cm/s .0 .0 .6 1.6.5 .0 0. 0. 0. .0 .1 .9 0. .0 0. 0. 3.765cm/s .0 .0 .0 .0 0. .0 .0 .4 1.5.4 0. .3 .0 .0 0. 0. 2.670cm/s .0 .0 .2 .9 .1 .0 .0 .0 .0 .0 0. .0 0. 0. 0. .1 1.375cm/s .0 .0 .1 1.0.0 .0 .0 .0 .0 .0 .0 .0 .0 0. .0 .0 1.2 80cm/s .0 0. .1 .9 .0 .0 .0 0. .0 .0 .0 .0 .0 0. .0 .0 .9 85cm/s .0 0. .0 .4 .0 0. .0 0. .0 .0 .0 .0 .0 0. .0 .0 .590cm/s 0. 0. .1 .6 .0 0. .0 0. .0 0. .0 0. .0 0. .0 .0 .8

2003年1月1日0時0分~2003年10月15日6時0分

[註1]:流速介於 25.0cm/s~ 30.0cm/s 佔 9.1% 。主流向 ENE 佔 27.8% 。

1.2

[註2]: 流速平均值 = 34.9cm/s, 流速最大值 = 122.6cm/s, 其流向為 ENE。

1.8

[註3]: 流速小於25cm/s 佔 35.4%; 介於25~50cm/s 佔 42.1%; 流速大於50cm/s 佔 22.5%。

.9

1.3

2.0

6.4

24.3

7.5

1.7

.8

.7

100.0

[註4]:流向介於 N ~ E 佔 48.7%;E ~ S 佔 6.9% ;S ~ W 佔 38.2% ;W ~ N 佔 6.2% 。

[註5]: 資料每小時記錄一次,合計 6110筆,檔名: C030TP10.1HA。

400cm/s 合計 (%) .9

1.8

13.4

27.8

7.5

表6.7.1 2003年1月海流統計極值表

2003年1月1日0時0分~2003年1月31日23時0分

日期 (月/日)	日平均流速 (cm/sec)	最大流速及對應流向 (cm/sec)(去向)(時間)
01/01	42.8	73.1 / ENE / 23:00
01/02	43.0	89.4 / ENE / 00:00
01/03	46.3	108.3 / NE / 01:00
01/04	42.6	82.6 / ENE / 02:00
01/05	40.8	73.3 / ENE / 02:00
01/06	42.3	70.9 / ENE / 03:00
01/07	38.3	84.3 / ENE / 04:00
01/08	29.0	55.3 / WSW / 10:00
01/09	33.0	63.8 / ENE / 06:00
01/10	33.2	61.7 / ENE / 06:00
01/11	27.4	50.8 / WSW / 13:00
01/12	28.5	57.0 / ENE / 22:00
01/13	28.9	59.5 / ENE / 22:00
01/14	28.8	49.0 / ENE / 23:00
01/15	28.9	58.8 / ENE / 23:00
01/16	37.4	66.2 / ENE / 23:00
01/17	40.3	80.0 / ENE / 01:00
01/18	40.9	86.8 / ENE / 01:00
01/19	45.8	84.4 / ENE / 02:00
01/20	42.7	80.6 / ENE / 02:00
01/21	45.6	88.5 / ENE / 03:00
01/22	45.6	79.9 / ENE / 04:00
01/23	44.3	94.7 / ENE / 04:00
01/24	39.0	64.4 / ENE / 18:00
01/25	36.9	65.5 / ENE / 07:00
01/26	33.8	57.9 / ENE / 20:00
01/27	29.4	61.4 / WSW / 14:00
01/28	34.9	59.8 / ENE / 23:00
01/29	34.4	60.3 / ENE / 23:00
01/30	36.4	67.9 / NE / 00:00
01/31	42.7	82.9 / ENE / 00:00

[註1]: 流速月平均值 = 37.5cm/s。

[註2]: 流速月最大值 = 108.3cm/s,其流向爲 NE。

[註3]: 資料每小時記錄一次,本月合計 744 筆。

表6.7.2 2003年2月海流統計極值表

2003年 2月 1日 0時 0分 ~ 2003年 2月28日23時 0分

日期 (月/日)	日平均流速 (cm/sec)	最大流速及 (cm/sec)	み對應流 (去向)(甲	向 時間)
02/01	43.0	91.9 / E	ENE /	01:00
02/02	38.2	70.1 / V	NSW /	06:00
02/03	43.2	70.4 / E	ENE /	02:00
02/04	43.9	78.2 / E	ENE /	03:00
02/05	39.9	69.7 / V	NSW /	09:00
02/06	38.3	62.7 / V	NSW /	09:00
02/07	39.2	73.1 / N	VE /	18:00
02/08	33.4	61.0 / E	ENE /	05:00
02/09	31.7	56.5 / E	ENE /	18:00
02/10	27.0	49.1 / E	ENE /	20:00
02/11	21.9	48.8 / V	NSW /	14:00
02/12	24.4	47.3 / V	NSW /	15:00
02/13	28.0	57.6 / E	ENE /	23:00
02/14	33.7	62.3 / E	ENE /	23:00
02/15	38.0	74.8 / E	ENE /	00:00
02/16	41.8	87.0 / N	VE /	01:00
02/17	42.0	78.3 / E	ENE /	01:00
02/18	46.2	90.4 / E	ENE /	02:00
02/19	48.0	97.1 / E	ENE /	03:00
02/20	44.4	70.2 / E	ENE /	03:00
02/21	46.2	99.1 / E	ENE /	17:00
02/22	43.7	84.4 / E	ENE /	05:00
02/23	37.6	75.0 / E	ENE /	06:00
02/24	28.4	48.6 / V	N /	12:00
02/25	29.4	63.0 / E	ENE /	22:00
02/26	28.5	73.7 / E	ENE /	22:00
02/27	27.9	66.3 / E	ENE /	23:00
02/28	32.5	66.7 / E	ENE /	00:00

[註1]: 流速月平均值 = 36.4cm/s。

[註2]: 流速月最大值 = 99.1cm/s,其流向為 ENE。

[註3]: 資料每小時記錄一次,本月合計 672 筆。

表6.7.3 2003年3月海流統計極值表

2003年 3月 1日 0時 0分 ~ 2003年 3月31日23時 0分

日期 (月/日)	日平均流速 (cm/sec)	最大流速及對應流向 (cm/sec)(去向)(時間)
03/01	36.1	72.6 / ENE / 00:00
03/02	35.9	65.0 / ENE / 01:00
03/03	63.8	75.2 / ENE / 01:00
03/28	28.7	64.0 / ENE / 23:00
03/29	34.0	69.9 / ENE / 23:00
03/30	39.8	79.0 / ENE / 00:00
03/31	46.1	96.5 / ENE / 02:00

[註1]: 流速月平均值 = 37.9cm/s。

[註2]: 流速月最大值 = 96.5cm/s,其流向為 ENE。

[註3]: 資料每小時記錄一次,本月合計 744 筆。

表6.7.4 2003年 4月海流統計極值表

2003年 4月 1日 0時 0分 ~ 2003年 4月30日23時 0分

日期 (月/日)	日平均流速 (cm/sec)	最大流速及對應流向 (cm/sec)(去向)(時間)
04/01	46.2	102.0 / ENE / 14:00
04/02	45.5	104.4 / NE / 02:00
04/03	42.3	78.4 / ENE / 15:00
04/04	43.3	76.6 / ENE / 15:00
04/05	40.6	66.8 / ENE / 03:00
04/06	42.4	88.1 / ENE / 16:00
04/07	40.7	80.2 / ENE / 17:00
04/08	32.9	57.8 / ENE / 05:00
04/09	26.7	46.1 / ENE / 19:00
04/10	28.3	69.1 / ENE / 19:00
04/11	30.2	63.3 / ENE / 21:00
04/12	30.6	66.6 / ENE / 22:00
04/13	34.4	63.8 / ENE / 23:00
04/14	39.0	75.1 / ENE / 23:00
04/15	44.5	79.6 / NE / 12:00
04/16	47.8	102.4 / NE / 13:00
04/17	49.8	101.2 / ENE / 01:00
04/18	50.4	99.4 / ENE / 14:00
04/19	52.3	103.7 / NE / 14:00
04/20	45.0	96.2 / ENE / 15:00
04/21	40.9	74.3 / WSW / 08:00
04/22	34.0	62.5 / ENE / 16:00
04/23	36.7	80.7 / ENE / 17:00
04/24	33.3	64.7 / ENE / 19:00
04/25	28.9	55.8 / ENE / 20:00
04/26	30.3	49.9 / ENE / 21:00
04/27	31.0	60.4 / NE / 22:00
04/28	33.3	74.5 / NE / 23:00
04/29	34.0	73.0 / NE / 12:00
04/30	36.4	75.7 / NE / 00:00

[註1]: 流速月平均值 = 38.4cm/s。

[註2]: 流速月最大值 = 104.4 cm/s,其流向為 NE。

[註3]: 資料每小時記錄一次,本月合計 720 筆。

表6.7.5 2003年 5月海流統計極值表

2003年 5月 1日 0時 0分 ~ 2003年 5月31日23時 0分

日期 (月/日)	日平均流速 (cm/sec)	最大流速及對應流向 (cm/sec)(去向)(時間)
05/01	36.8	65.6 / NE / 12:00
05/02	31.6	72.4 / NE / 12:00
05/03	31.3	70.1 / NE / 13:00
05/04	30.8	67.7 / NE / 13:00
05/05	28.7	66.5 / NE / 13:00
05/06	29.3	73.5 / NE / 14:00
05/07	25.6	60.5 / NE / 14:00
05/08	22.9	48.0 / WSW / 21:00
05/09	20.9	38.9 / NE / 16:00
05/10	23.6	46.5 / NE / 17:00
05/11	24.8	56.1 / NE / 18:00
05/12	27.2	54.4 / ENE / 20:00
05/13	31.4	69.9 / NE / 09:00
05/14	31.9	70.0 / NE / 09:00
05/15	22.7	37.2 / WSW / 02:00
05/16	51.5	95.9 / ENE / 13:00
05/17	52.9	122.6 / ENE / 14:00
05/18	49.1	104.6 / ENE / 15:00
05/19	46.9	100.2 / ENE / 16:00
05/20	42.8	80.0 / ENE / 16:00
05/21	37.8	75.6 / ENE / 18:00
05/22	34.6	65.3 / ENE / 19:00
05/23	29.4	51.4 / ENE / 20:00
05/24	33.2	55.9 / ENE / 21:00
05/25	27.6	53.1 / ENE / 22:00
05/26	31.7	59.0 / WSW / 16:00
05/27	34.7	61.6 / ENE / 23:00
05/28	35.4	61.8 / NE / 12:00
05/29	34.5	68.1 / NE / 13:00
05/30	34.4	63.5 / NE / 13:00
05/31	30.8	59.3 / NE / 14:00

[註1]: 流速月平均值 = 33.1cm/s。

[註2]: 流速月最大值 = 122.6cm/s,其流向為 ENE。

[註3]: 資料每小時記錄一次,本月合計 744 筆。

表6.7.6 2003年 6月海流統計極值表

2003年 6月 1日 0時 0分~2003年 6月30日23時 0分

日期 (月/日)	日平均流速 (cm/sec)	最大流速及對應流向 (cm/sec)(去向)(時間)
06/01	34.0	64.6 / NE / 15:00
06/02	31.3	58.3 / NE / 15:00
06/03	30.2	55.4 / NE / 13:00
06/04	31.7	59.7 / ENE / 03:00
06/05	28.2	57.9 / NE / 16:00
06/06	23.0	51.7 / NE / 16:00
06/07	23.8	44.3 / NE / 19:00
06/08	21.8	40.2 / ENE / 05:00
06/09	28.0	46.6 / NE / 07:00
06/10	33.8	57.8 / NE / 10:00
06/11	34.2	66.3 / NE / 11:00
06/12	38.1	88.0 / ENE / 11:00
06/13	39.8	96.9 / ENE / 12:00
06/14	40.9	94.9 / ENE / 12:00
06/15	38.0	85.2 / ENE / 14:00
06/16	39.0	73.0 / ENE / 14:00
06/17	36.5	75.3 / ENE / 15:00
06/18	36.2	113.2 / ENE / 16:00
06/19	35.8	82.0 / ENE / 17:00
06/20	30.9	54.7 / ENE / 18:00
06/21	29.3	48.0 / ENE / 19:00
06/22	27.8	51.2 / ENE / 20:00
06/23	25.6	49.1 / ENE / $10:00$
06/24	23.2	40.8 / ENE / 10:00
06/25	23.3	47.5 / ENE / 10:00
06/26	26.3	50.2 / ENE / $12:00$
06/27	26.9	56.9 / ENE / 13:00
06/28	29.0	59.9 / ENE / 12:00
06/29	28.6	58.0 / ENE / 13:00
06/30	30.9	75.9 / ENE / 14:00

[註1]: 流速月平均值 = 30.6cm/s。

[註2]: 流速月最大值 = 113.2cm/s,其流向為 ENE。

[註3]: 資料每小時記錄一次,本月合計 720 筆。

, 1 ,

表6.7.7 2003年7月海流統計極值表

2003年7月1日0時0分~2003年7月31日23時0分

日期 (月/日)	日平均流速 (cm/sec)	最大流速及對應流向 (cm/sec)(去向)(時間)
07/01	30.8	63.0 / ENE / 14:00
07/02	30.3	74.9 / ENE / 15:00
07/03	29.6	68.8 / ENE / 16:00
07/04	26.7	55.9 / ENE / 16:00
07/05	26.3	52.4 / NE / 18:00
07/06	25.6	51.3 / ENE / 18:00
07/07	23.2	50.1 / ENE / 20:00
07/08	24.2	43.3 / ENE / 09:00
07/09	25.8	54.5 / ENE / 09:00
07/10	24.4	42.7 / ENE / 10:00
07/11	26.1	51.7 / ENE / 11:00
07/12	25.4	59.9 / ENE / 12:00
07/13	25.5	49.6 / ENE / 13:00
07/14	24.1	46.9 / ENE / 13:00
07/15	25.5	53.7 / ENE / 14:00
07/16	23.5	51.9 / ENE / $15:00$
07/17	21.6	29.2 / ENE / 05:00
07/18	36.9	66.3 / ENE / 16:00
07/19	33.4	53.7 / W / 23:00
07/20	29.9	48.6 / ENE / 06:00
07/21	29.1	50.5 / ENE / $07:00$
07/22	26.5	45.7 / W / 01:00
07/23	28.4	49.4 / ENE / 21:00
07/24	24.4	45.7 / ENE / 09:00
07/25	26.5	50.3 / ENE / 11:00
07/26	29.7	54.9 / ENE / 12:00
07/27	31.2	67.3 / ENE / 13:00
07/28	34.5	74.5 / ENE / 13:00
07/29	35.5	80.4 / ENE / 13:00
07/30	39.5	77.8 / NE / 14:00
07/31	42.8	87.5 / NE / 15:00

[註1]: 流速月平均值 = 28.6cm/s。

[註2]: 流速月最大值 = 87.5cm/s,其流向為 NE。

[註3]: 資料每小時記錄一次,本月合計 744 筆。

r

表6.7.8 2003年8月海流統計極值表

日期	日平均流速	最大流述	起及對應流	向
(月/日)	(cm/sec)	(cm/se	c)(去问)(時間)
08/01	42.2	76.9 /	NE /	/ 16:00
08/02	40.5	63.2 /	NE /	$^{\prime}$ 17:00
08/03	39.1	60.5 /	SW /	$^{\prime}~22:00$
08/04	34.3	52.8 /	NE /	/ 18:00
08/05	31.3	48.8 /	SW	/ 00:00
08/06	27.7	51.8 /	W	/ 00:00
08/07	27.4	50.3 /	NE /	/ 09:00
08/08	26.7	42.6 /	SW /	$^{\prime}$ 15:00
08/09	27.8	45.8 /	SW /	/ 16:00
08/10	31.0	52.4 /	SW /	/ 18:00
08/11	32.8	54.2 /	WSW /	/ 18:00
08/12	34.1	59.9 /	SW	/ 19:00
08/13	34.5	65.0 /	WSW /	/ 20:00
08/14	34.1	63.6 /	NNW	/ 10:00
08/15	50.0	89.4 /	ENE	/ 16:00
08/16	47.8	82.5 /	ENE	/ 04:00
08/17	45.0	80.7 /	E,	/ 05:00
08/18	41.8	68.6 /	E,	/ 05:00
08/19	37.6	61.2 /	E,	/ 06:00
08/20	39.0	66.7 /	E,	/ 06:00
08/21	31.7	62.7 /	E,	/ 08:00
08/22	28.9	52.6 /	E,	/ 08:00
08/23	30.3	59.3 /	E,	/ 23:00
08/24	36.1	69.8 /	E,	/ 11:00
08/25	36.0	70.5 /	E,	/ 12:00
08/26	40.0	83.6 /	ENE /	/ 13:00
08/27	41.3	88.1 /	ENE	/ 13:00
08/28	40.0	95.4 /	ENE /	/ 14:00
08/29	40.5	91.3 /	ENE /	/ 14:00
08/30	39.9	89.7 /	ENE /	/ 15:00

2003年 8月 1日 0時 0分 ~ 2003年 8月31日 0時 0分

[註1]: 流速月平均值 = 36.1cm/s。

[註2]: 流速月最大值 = 95.4cm/s,其流向為 ENE。

[註3]: 資料每小時記錄一次,本月合計 721 筆。

表6.7.9 2003年9月海流統計極值表

日期 (月/日)	日平均流速 (cm/sec)	最大流速及對應流 (cm/sec)(去向)(f	向 時間)
09/01	41.1	73.9 / E /	04:00
09/02	37.3	75.3 / E /	17:00
09/03	35.8	69.2 / E /	05:00
09/04	32.5	59.4 / E /	06:00
09/05	31.3	57.8 / E /	08:00
09/06	30.9	61.7 / E /	09:00
09/07	33.0	66.8 / E /	11:00
09/08	36.9	68.7 / E /	12:00
09/09	35.5	65.5 / E /	01:00
09/10	40.0	61.2 / WSW /	18:00
09/11	37.6	77.5 / ENE /	13:00
09/12	36.6	82.2 / ENE /	14:00
09/13	38.2	78.8 / ENE /	15:00
09/14	41.8	93.0 / NE /	16:00
09/15	38.2	85.2 / ENE /	04:00
09/16	34.6	100.3 / NE /	05:00
09/17	29.6	70.5 / NE /	05:00
09/18	24.2	57.1 / NE /	06:00
09/19	25.1	50.0 / ENE /	08:00
09/20	21.4	39.1 / NE /	09:00
09/21	25.6	42.2 / W /	15:00
09/22	30.0	56.7 / ENE /	23:00
09/23	35.7	76.3 / ENE /	11:00
09/24	40.0	81.5 / ENE /	12:00
09/25	41.8	80.6 / ENE /	12:00
09/26	46.1	83.1 / ENE /	13:00
09/27	45.1	88.3 / ENE /	01:00
09/28	45.1	94.0 / ENE /	02:00
09/29	43.5	101.7 / ENE /	03:00
09/30	42.4	84.4 / ENE /	04:00

2003年 9月 1日 0時 0分 ~ 2003年 9月30日23時 0分

[註1]: 流速月平均值 = 35.8cm/s。

[註2]: 流速月最大值 = 101.7cm/s,其流向為 ENE。

[註3]: 資料每小時記錄一次,本月合計 720 筆。

表6.7.10 2003年10月海流統計極值表

2003年10月1日0時0分~2003年10月15日6時0分

日期 (月/日)	日平均流速 (cm/sec)	最大流速及對應流向 (cm/sec)(去向)(時間)
10/01	38.6	89.0 / ENE / 05:00
10/02	37.8	78.7 / ENE / 06:00
10/03	32.2	51.5 / W / 13:00
10/04	24.3	48.6 / WSW / 13:00
10/05	26.4	53.0 / ENE / 23:00
10/06	30.8	65.0 / ENE / 10:00
10/07	39.3	80.2 / ENE / 12:00
10/08	44.3	95.6 / ENE / 13:00
10/09	46.3	87.9 / ENE / 13:00
10/10	44.0	94.1 / ENE / 01:00
10/11	45.6	87.9 / ENE / 15:00
10/12	47.1	98.1 / ENE / 15:00
10/13	45.1	95.8 / ENE / 03:00
10/14	38.5	67.9 / ENE / 03:00
10/15	23.2	40.8 / ENE / 03:00

[註1]: 流速月平均值 = 38.5cm/s。

[註2]: 流速月最大值 = 98.1cm/s,其流向為 ENE。

[註3]: 資料每小時記錄一次,本月合計 343 筆。

第七章 平面流況調查

7.1 流況調查內容

本項平面流況調查工作係以雙基地台 DGPS 全球衛星定位系統配 合漂浮球追蹤方法,調查台北港近岸海域之流況。調查內容包含漲、 退潮時之流速、流向,並比對潮汐資料與風速風向資料,分析其流況 與潮汐、風之關係。

調查工作方式主要係採用漂流物量測法追蹤整個平面流速及流向,利用球形浮標放流於海域中。浮標內裝置 DGPS 定位儀,配合無線電傳輸每隔一定時間間隔量測接收其座標位置,再利用 GIS 或AUTOCAD 地理繪圖系統繪製其流況變化圖,並計算其每分鐘之平均流速值,藉以分析台北港附近海域之流場走向;並同時觀測台北港區之潮位與風速風向資料。測量範圍以由淡水河出海口南側至台北港港口附近為限,量測時間為每次連續量測時間至少6小時以上或於量測範圍內,其平面流況調查施測位置如圖 7.1 所示。

流況調查時間計分二兩次實施,第一次為 92 年 9 月 25、26 日, 漂浮球調查時段以漲潮為主;第二次則為民國 92 年 10 月 27 日,漂浮 球調查時段以退潮為主。

7-1

7.2 調查量測系統架構及方法

7.2.1 量測系統架構

本流況量測系統架構如圖 7.2 所示,分為兩大部分:一為基地站, 設置於觀測海域附近之岸邊;主要由 GPS 接收機、無線電傳輸設備、 數據機、個人電腦以及直流電源供應器所組成(如照片 7.1)。其主要 功能為:將定位指令以無線電傳輸,呼叫移動站回報其位置,並即時 經由基地站差分計算座標修正量,改正移動站位置並同時顯示於電腦 螢幕上,且將時間、座標等資料記錄於硬碟中,可提供後期處理及檢 核使用。二為移動站,設置於小型漂浮球上,主要由 GPS 接收機、無 線電傳輸設備及電池組成(如照片 7.2),其功能為 GPS 座標接收,並 回應基地站之呼叫,將座標資料傳送回基地站。整個 GPS 系統架構儀 器包括:

1.GPS 天線

接收衛星訊號, GPS 天線所在位置即為 GPS 所定位置。

2.GPS 接收機

NEC 公司之 NGPS-M05-01 型接收機,接收 L1(1575.42MHz)載波 上之 C/A code,可接收的 Channel 數為 6 Channel,接收機亦含 RS232 端為 Data 輸出與輸入端,基地站傳輸速率為 4800(baud rate),移動站 傳輸速率為 1200(baud rate),輸出資料符合海事無線電委員會(Radio Technical Commission for Maritime Services, RTCM)之特別 104 號會議(Special Committee No.104, SC-104),簡稱 RTCM-104 之要 求,其輸出資料有格林威治時間、經度、緯度、高度、船速(節)、航 向、衛星幾何模式。 3.數據機

TNC-22M Radio Modem,傳輸資料型態 轉換:類比-數位,傳輸速率: 300~19200 bps。

4.無線電傳輸機

Motorola 之 GM-300 型,波段範圍:146~174MHz,輸出功率 10~25W, 將修正資料以無線電波發送或接收,產生即時修正的效果。其頻道共 有 CH1~CH4 四種頻率,分別如下:151.2625MHz,151.400MHz, 151.800MHz,152.100MHz。

5.電源

基地站為一台 D.C. Power Supply,型號為 DPS-115GI,輸入交流電壓 110V~130V,輸出直流電,電壓 0~16V 電流 0~20A,移動站為 SMF700R-9 型可回充式鹽鉛酸電池(Rechargeable Sealed Lead-Acid Battery),輸出直流電 12V、50AH。

6.個人手提電腦

CPU586,24MB 記憶體(RAM),二個通訊連接埠(COM),作為資料 擷取、儲存、顯示與結果處理。

7.小型漂浮球

以不鏽鋼材質製作的漂浮球,底部固定電池,並將正負極接出至電盤 上, GPS 接收儀、無線電收發機則裝於固定白鐵架且垂直置入浮球 內,上置鋼套管放置 GPS 與無線電天線和警示燈,浮球下焊接阻流 板,以產生推力。

照片 7.1 基地站 DGPS 系統儀器

照片 7.2 浮球的內部配置

7.2.2 流況量測方法

本次流況量測工作係於前述之量測範圍海域配合潮汐觀測變化時 間(照片 7.3)及風速風向觀測作業(照片 7.4)進行抛放漂浮球,利用岸邊 基地站之 DGPS 定位系統追蹤記錄漂浮球位置,最後描繪漂浮球之漂 移軌跡以研判各海域之流況分佈概況。關於各測區漂浮球之抛放時間 係依台北港之驗潮站來規劃,潮位資料如圖 7.3、圖 7.4 及圖 7.5 所示, 分別於漲、退潮時各施測乙次,每條流線拋放均超過 2 小時。

量測時首先於岸上架設基地站,基地站設置於控制點 TP1、TP2(如 表 7.1 所示),基地站架設完成後啟動漂浮球追蹤系統,每隔 5 秒鐘呼 叫漂浮球回報其位置之衛星座標資料,即時由基地站差分計算座標修 正量,改正漂浮球位置並同時顯示漂浮球位置於手提電腦螢幕上,以 確認漂浮球於規劃區內漂移,且將時間、座等資料記錄於硬碟中以為 後期處使用。後期處理工作係將 WGS84 衛星座標轉換為二度分帶座 標。再將漂浮球定位座標套繪於岸線圖,以繪製漂浮球漂移軌跡圖, 提供流況分佈分析。

控制點	WGS84 座標	
	E	Ν
TP1	121-22.476	25-10.007
TP2	121-22.783	25-10.200

表 7.1 基地站控制點座標

照片 7.3 潮位儀施放情況

照片 7.4 風速風向觀測作業

7.3 調查結果分析

利用前述量測方法對量測海域施測,表7.2 與表7.3 為中央氣象局 預報之淡水地區潮時表,圖7.3、圖7.4 與圖7.5 為實測之台北港潮位 資料與工作時段之關係圖,表7.5 與表7.6 則說明各測線之代號、潮別 與觀測時間,圖7.6、圖7.7 與圖7.8 則為觀測時段內之風速風向氣壓 觀測時間序列圖,量測結果之各漂浮球軌跡圖如圖7.9~7.14 所示。

9月25日星期四 農曆8月29日	乾潮	04:04	-92
	滿潮	09:59	119
	亁潮	16:16	-151
	滿潮	22:32	138

表 7.2 第一次淡水地區潮汐表 (中央氣象局預報資料)

9月26日星期五 農曆9月1日	乾潮	05:00	-85
	滿潮	10:48	109
	亁潮	17:02	-141
	滿潮	23:21	132

表 7.3 第二次淡水地區潮汐表 (中央氣象局預報資料)

10月27日星期一 農曆10月3日	乾潮	05:26	-181
	滿潮	11:49	161
	乾潮	18:02	-111
	滿潮	23:49	122

圖 7.3 2003 年 9 月 25 日第一次實測潮位與漂浮球拋放關係圖

圖 7.5 2003 年 10 月 27 日第二次實測潮位與漂浮球拋放關係圖

作業日期	測線	潮別	抛放時間
	171	漲潮	07:53~09:02
	172	退潮	10:40~12:39
э ⊓ 23 ц	181	漲潮	07:47~09:01
	182	退潮	10:45~12:31
	17-1	漲潮	05:31~06:32
	17-2	漲潮	06:44~07:18
	17-3	先漲後退	07:41~12:19
9月26日	18-1	漲潮	05:41~06:24
	18-2	漲潮	06:37~07:22
	18-3	漲潮	07:50~08:56
	18-4	先漲後退	09:09~12:00

表 7.5 第一次工作漂浮球施放時段

表 7.6 第二次工作漂浮球施放時段

作業日期	測線	潮別	抛放時間
	171	漲潮	10:09~12:08
	172	退潮	12:17~13:36
10月27日-	173	退潮	13:59~14:53
	17-4	退潮	15:38~17:11
	18-1	漲潮	10:33~12:02
	18-2	退潮	12:12~13:36
	18-3	退潮	13:55~15:02
	18-4	退潮	15:16~17:12

7.3.1 第一次調查結果分析

1.09/25 17號浮球漂流情況

此次為9月25日台北港平面流況調查17號浮球量測結果,漲潮時段 漂浮球之漂浮軌跡如圖7.9 中軌跡17-1所示,抛放時間為 07:53~09:02,在流速方面軌跡17-1扣掉平潮部分其平均流速約為 0.3m/sec,流向為東北向西南;退潮時段漂浮球軌跡如圖中軌跡17-2 所示,佈放時間分別為10:40~12:39,其平均流速約為0.65 m/sec,流 向為西南向東北;對於風速風向的影響,由現場量測得的風向資料為 北北西方,跟漲潮與退潮的方向皆不同,故無法比較風對平面面流場 的直接影響。

圖 7.9 2003 年 9 月 25 日 17 號浮球漂流軌跡圖

測線	潮別
171	漲潮
172	退潮

2.09/25 1號浮球漂流情況

此為9月25日相同時間另一浮球之施測結果,18號浮球距17號浮球的抛放位置約為二至三百公尺,各軌跡之佈放時間相差皆在十分鐘以內,故18號浮球各軌跡之漂移方向與流速皆與17號浮球相似;漲潮時段漂浮球之漂浮軌跡如圖7.10中軌跡18-1所示,抛放時間為07:47~09:01,在流速方面如同當天軌跡17-1,平均流速約為0.3m/sec;退潮時段漂浮球軌跡如圖中軌跡18-2所示,佈放時間分別為10:45~12:31,其平均流速分別為0.63m/sec,流向為西南向東北。

圖 7.10 2003 年 9 月 25 日 18 號浮球漂流軌跡圖

測線	潮別
181	漲潮
182	退潮

此次為9月26日17號浮球量測結果,漲潮時段漂浮球之漂浮軌跡如 圖 7.11 中軌跡 17-1 與 17-2 所示,抛放時間為 05:31~06:32 與 06:44~07:18,在流速方面軌跡 17-1 與 17-2 分別約為 0.8m/sec 與 0.7m/sec,流向為東北向西南;軌跡 17-3 之抛放時間橫跨漲退潮時 段,扣掉平潮時段漲潮平均流速約為 0.6m/sec,流向方面漲潮為東北 向西南、退潮為西南西向東北東。對於風速風向的資料分析,當日測 得的風向與漲潮之流向相同,就漲潮時段而言 26 日之流速明顯大於 25 日,並且所選取時段皆為流速最大之時段,故風仍有相當程度的 影響性。

圖 7.11 2003 年 9 月 26 日 17 號浮球漂流軌跡圖

測線	潮別	測線	潮別
17-1	漲潮	17-3	漲退潮
17-2	漲潮		

4.09/26 18號浮球漂流情形

本項為9月26日另一18號浮球之量測結果, 漲潮時段如圖7.12中 軌跡18-1、18-2與18-3所示, 抛放時間05:41~06:24、06:37~07:22 與07:50~08:56, 在平均流速方面軌跡18-1與18-2皆約為0.8~0.9m/s 軌跡18-3約為0.3~0.8m/s, 流向部分由東北向西南; 軌跡18-4則涵 蓋漲退潮, 漲潮流向為東北向西南、退潮為由西向東, 流速部分因涵 蓋平潮時段故平均流速約為0.01~0.3m/s。

圖 7.12 _2003 年 9 月 26 日 18 號浮球漂流軌跡圖

測線	潮別	測線	潮別	
18-1	漲潮	18-3	漲潮	
18-2	漲潮	18-4	漲退潮	

7.3.2 第二次調查結果分析

1.10/27 17號浮球漂流情形

本次為 10 月 27 日作業漂浮球抛放時段以退潮為主,17 號漂浮球之 各軌跡如圖 7.13 所示,除了軌跡 17-1 為漲潮外,其他三條軌跡為退 潮。軌跡 17-1 的流向為東北向西南,平均流速約為 0.4m/sec;17-2 與 17-3 的流向大致皆為西南向東北,17-4 為南南西向東北,流速部 分退潮時段之 17-2、17-3 與 17-4 軌跡流速分別約為 0.6、0.7 與 0.6 m/sec,只有 17-4 軌跡後段由於開始進入平潮時段,故流速明顯下降。 在風速風向的影響方面,當日平均風速約為 3m/sec,但平均流速仍 到達 0.6 m/sec 左右,可能是適逢大潮之影響。

圖 7.13 2003 年 10 月 27 日 17 號浮球漂流軌跡圖

測線	潮別	測線	潮別
17-1	漲潮	17-3	退潮
17-2	退潮	17-4	退潮

本次同為 10 月 27 日另一浮球作業情況,漂浮球抛放時段以退潮為 主,18 號漂浮球之各軌跡如圖 7.14 所示,與 17 號漂浮球的抛放位置 約為二至三百公尺,所以在流速與流向部分皆相似,除了軌跡 18-1 為漲潮外,其他三條軌跡為退潮。軌跡 18-1 的流向亦為東北向西南, 平均流速約為 0.4m/sec;18-2 與 18-3 的流向大致皆為西南向東北, 18-4 為南南西向東北,流速部分退潮時段之 18-2、18-3 與 18-4 軌跡 流速分別約為 0.6、0.7 與 0.6sec,只有 18-4 軌跡後段由於開始進入 平潮時段,故流速明顯下降。在風速風向的影響方面,與 17 號漂浮 球所受之影響相同。

圖 7.14 2003 年 10 月 27 日 18 號浮球漂流軌跡圖

測線	潮別	測線	潮別
18-1	漲潮	18-3	退潮
18-2	退潮	18-4	退潮

7.4 綜合分析結果

本研究中有關平面流況調查部份分別於 92 年 9 月 25、26 日與 10 月 27 日等施作四次工作,其調查結果略可代表 92 年度秋季台北港附 近海域的平面流況情形。依據前述各次工作成果,綜合說明如下。

台北港現有港口附近海域表面海流運動方向,於漂流浮標球施測 範圍內,漲潮時段大抵為東北往西南方向,表面流速如不受風向影響, 平均流速約在 0.3~0.4m/sec 之間;如受風向影響則平均流速增大至 0.6~0.9m/sec 之間。退潮時段之流向則為西南往東北方向,表面流速如 不受風向影響,平均流速稍大,約在 0.6~0.7m/sec 之間;如受風向影響 則平均流速減低至 0.1~0.3m/sec 之間。

第八章 懸浮質調查與海岸地形監測分析

8.1 淡水河流速流向觀測與懸浮質調查分析

為瞭解淡水近岸海域之海岸輸砂情況,必須確實掌握該海域之輸 砂來源,而淡水河為直接注入該海域之大型河川,當然為其主要輸砂 來源之一。淡水河上游由基隆河、新店溪、大漢溪等三條主要支流匯 集而成,流域總面積約2700平方公里,大漢溪上游建有石門水庫,為 淡水河之最長支流,基隆河發源自台北縣菁桐山,於關渡附近匯入淡 水河。

河川輸砂量受河川上游流域之降雨量影響甚鉅,流量大時水流速 度增加,對土壤之沖刷力增加,泥沙運送能力也增加,其輸砂量自然 大幅度增加。本中心於淡水河關渡橋附近設立一水位、流速及懸浮質 濃度觀測站,如圖 8.1 標示位置,以瞭解淡水河之水位、流況及懸浮質 濃度變化情形。該測站斷面及儀器安裝之相關位置如圖 8.2 所示,海流 儀安裝於關渡橋上游約 50 米位置,測流時可避免受橋墩影響,儀器則 懸掛於水面警示浮筒下方 1 米位置,能隨潮位變化,隨時監測水面附 近之流速。水位計及濁度計分別安裝於 7 號橋墩下離底 2 米及 1 米位 置,監測水位及底床附近懸浮質濃度變化。

8.1.1 淡水河水位及流速、流向觀測分析

本年度之現場作業因潛水合約簽訂程序關係,延至四月才開始展 開各項儀器佈放工作。圖 8.3 至圖 8.12 為關渡附近河川潮位變化,由 圖顯示淡水河關渡附近仍屬感潮河段,每天有兩次漲、退潮,潮差變 化由1至3米。圖 8.13 至圖 8.22 則為離底2米處之水溫變化,河川水 溫一般受當時氣候影響,但降雨及感潮時外海鹽楔的入侵也會影響水 溫變化。 淡水河流速測站設立於距離關渡橋約 50 米之上游水中,由於關渡 橋附近仍屬於淡水河感潮河段,每天兩次之海水漲、退潮使得關渡橋 下水位隨著外海潮位而變動,水流亦隨著潮位變化作往復流動。圖 8.23 至圖 8.35 為現場觀測之逐時水面流速變化,其中正值流速表示退潮流 流向下游方向,負值流速則為漲潮流流向上游方向。由於使用流速儀 為旋葉式流速計,旋轉葉片完全外露於水中,容易遭外力破壞或被水 中雜物纏住影響觀測品質。由觀測資料分析得退潮流流速大於漲潮流 流速,大潮時退潮流流速可達 3 節流,而漲潮流流速則只有 2 節流。

由於關渡附近為感潮河段,外海海水隨著鹽楔於漲潮時沿底床向 上游侵入,使得關渡附近河水鹽度亦隨著潮水變化。圖 8.36 至圖 8.39 為水面下1米處之水鹽度變化,平時鹽度變化範圍約在5 %⁰至 25 %⁰ 之間。5月中旬及 11 月下旬則因淡水地區降下豪雨使河川鹽度驟降至 5%⁰以下,圖 8.40 為民國 92 年淡水氣象站之全年逐日雨量資料。

淡水海域屬於半日潮範圍,一天中有兩次漲、退潮,在感潮河段 計算河川流量除了須注意流速、流向及水位之週期性變化外,還須瞭 解因海水逆流之鹽楔入侵所造成河川之分層不同流現象。

8.1.2 淡水河懸浮質觀測分析

淡水河懸浮質觀測為利用光學之散射原理,以水中懸浮顆粒對光 學儀器放射之固定光源之散射量作為濁度之參考,影響濁度之因素則 包括水中懸浮顆粒之數量與粒徑大小,藉由試驗室率定試驗可以求得 不同粒徑下濁度與懸浮質濃度之轉換關係。圖 8.41 至圖 8.46 為現場離 底1米附近之濁度變化,今年使用之濁度計為具有自清功能之濁度計, 可以避免生物著生影響觀測品質之困擾。由圖顯示平時濁度值多在 200NTU以下,但11月下旬之豪雨則使水中濁度值上升至 2000NTU以 上。淡水河水中懸浮質濃度受河川上游集水區降雨量影響甚鉅,平時 河川懸浮質含量並不高,但若上游山區降下大雨,水土保持不良地區 受雨水沖刷,帶下大量泥土,將使河川懸浮質含量劇增。

8-2

8.2 海岸地形變遷監測分析

為瞭解淡水近岸海域長期之海底地形變化,每年春秋兩季由淡水 河口北岸至林口發電廠間約 15 公里長海域,由岸至水深-25 公尺進行 全面之水深測量,並選取約 101 個斷面,分別比較其水深地形變化, 藉以研判該區海域沖淤積變化之趨勢。斷面水深測量工程自民國 85 年 始,委由台技工程顧問公司進行現場量測,分別於 85 年 5 月、85 年 10 月、86 年 5 月及 86 年 10 月共進行四次斷面水深測量。另外自民國 87 年始,則另委由自強工程顧問公司每年春秋兩季進行現場量測。圖 8.47 為淡水海域各測線斷面位置圖,將之分為 4 個區域分別比較歷年 來各測線或區域之侵淤變化。A 區為測線 1 至測線 9 之間區域,代表淡水 河河口以北海域:B 區為測線 10 至測線 25 之間區域,代表淡水 河河口外向海海域:C 區為測線 26 至測線 86 之間區域,代表淡水河 河口以南海域:D 區為測線 87 至測線 100 之間區域,代表淡水河河口 內向上游部份水域。

比較去年(91年)10月與今年(92年)10月之測量結果,示如圖 8.48, 除了 C 區域測線 70 至測線 81 間之南段海域因接受南方北向之漂沙而 有部份淤積;及測線 29 至測線 34 間海域因台北港之堤防建設而有明 顯淤積情形外,其餘各測線大都呈現侵蝕狀況。再比較歷年來該海域 總侵淤量之變化,圖 8.49 為 88 年 5 月至 92 年 10 月間不同時段淡水海 域單位寬斷面測線底質侵淤量之總和變化,由圖顯示該海域自 90 年 5 月以後一直呈現侵蝕狀態。

淡水海域之漂沙來源主要來自淡水河之上游輸沙及沿岸漂沙,冬 季東北季風將沿岸積沙向南推移;而夏季時之西南季風則將沿岸積沙 往北推移。海岸之侵淤因此決定於此兩推移勢力之消長與沙源之多 寡。淡水河上游歷經多年來之河川整治,排沙量已大為減少。淡水海 域位於臺灣海峽北部,受東北季風之影響大於西南季風,因此將來可 能持續出現海岸侵蝕狀態。

圖 8.1 淡水河關渡測站位置圖(星號為海流儀施放地點)

海流儀

8-5

圖 8.6 92 年 9 月上旬關渡附近河川水位變化

圖 8.10 92 年 11 月上旬關渡附近河川水位變化

圖 8.13 92 年 7 月下旬關渡附近離底 2 米處水溫變化

圖 8.14 92 年 8 月上旬關渡附近離底 2 米處水溫變化

圖 8.15 92 年 8 月下旬關渡附近離底 2 米處水溫變化

圖 8.16 92 年 9 月上旬關渡附近離底 2 米處水溫變化

圖 8.17 92 年 9 月下旬關渡附近離底 2 米處水溫變化

圖 8.18 92 年 10 月上旬關渡附近離底 2 米處水溫變化

圖 8.19 92 年 10 月下旬關渡附近離底 2 米處水溫變化

圖 8.20 92 年 11 月上旬關渡附近離底 2 米處水溫變化

圖 8.22 92 年 12 月上旬關渡附近離底 2 米處水溫變化

圖 8.23 92 年 4 月下旬關渡附近水面下 1 米處流速變化

圖 8.24 92 年 5 月上旬關渡附近水面下 1 米處流速變化

圖 8.25 92 年 5 月下旬關渡附近水面下 1 米處流速變化

圖 8.26 92 年 6 月上旬關渡附近水面下 1 米處流速變化

圖 8.27 92 年 6 月下旬關渡附近水面下 1 米處流速變化

圖 8.28 92 年 7 月上旬關渡附近水面下 1 米處流速變化

圖 8.29 92 年 7 月下旬關渡附近水面下 1 米處流速變化

圖 8.30 92 年 8 月下旬關渡附近水面下 1 米處流速變化

圖 8.31 92 年 9 月上旬關渡附近水面下 1 米處流速變化

圖 8.32 92 年 9 月下旬關渡附近水面下 1 米處流速變化

圖 8.33 92 年 10 月上旬關渡附近水面下 1 米處流速變化

圖 8.34 92 年 11 月上旬關渡附近水面下 1 米處流速變化

圖 8.35 92 年 11 月下旬關渡附近水面下 1 米處流速變化

圖 8.36 92 年 4 月下旬關渡附近水面下 1 米處鹽度變化

圖 8.38 92 年 11 月下旬關渡附近水面下 1 米處鹽度變化

民國 92 年 淡水氣象站 逐日雨量資料

月份	-	1	Ξ	29	Б	六	七	л	九	+	+	+=
1	-	35	20	10	20.0			Th	11.5			
2		02	4	1.0					16.0			1.4
3	35	-	23	70.5				0.5		0.5	1.5	0.7
4	-	9.8	1.7	21.4	Т		2	2.5		2.6	9.0	
5	1	-	1.1	-	4.5						3.0	· .
6	3.4	-	11.2	1		12.5		-	-	17.5	-	
7	45.0		5.5	6.5	4	28.0		8.5		22.0	-	2.4
8	2.5	5.8		4.5	9.5	4.0	0.1					-
9	1.0			16.5		5.0	21.0			0.5	0.8	2.2
10	10.5	-	6.5	0.5		0.8	1.3	-	95.0	-	3.6	13.5
11		0.5	-	0.2	-	1.6		1.5	1.0		1.7	10.0
12	+	0.6		-	-	3.3	1	-	0.5	1.	3.2	2.0
13		0.3	0.3	-	Т	6.0	1.4	-	-	4.5	-	
14	-		-	9.1	0.7	5.5	-	1.0	-	12.0	13-	
15		-		1.1	4.6		-	15.0	-	1.0	-	20
16	124	0.2		-	24.5	7.5	•	-	-	•	3.3	
17	-	-			7.0	5.3	1.1				T	
18	1.0	-	6.0	-	9.5	16.0			-			
19		3.3	16.5	-	-	-	-	24.5			0.6	
20			12.0	-	1	11.0		6.0	6.0	-	-	
21	-	-	•	•		3.0			3.0	-	4.8	
22	1.0		15		-	1		-	1.8		1.0	
23	1	0.8	0.2			-			-	-		
24			9.6			1	-			-	3.5	
25			-	2,4	T	-	-		1		2.5	
26	1.0	-	•				22.4	•	1.4	5	33.5	
27	20.5		-	1		-			1.5		18.5	
28			8.6	-	-					1	18.0	
29			2.	-	T	-	-			14	0.5	
30	-			0.3	6	1			1	-		
31	-		1.1	1240	- 00 2	100.5		-	127.7	-	1110	
紀和他	89.4	24.0	84.0	1.54.0	80.3	109.5	44.8	39.5	137.7	00.0	111.0	

圖 8.40 民國 92 年淡水氣象站逐日雨量資料

圖 8.41 92 年 9 月下旬關渡附近離底 1 米處之濁度變化

圖 8.42 92 年 10 月上旬關渡附近離底 1 米處之濁度變化

圖 8.43 92 年 10 月下旬關渡附近離底 1 米處之濁度變化

圖 8.44 92 年 11 月上旬關渡附近離底 1 米處之濁度變化

圖 8.45 92 年 11 月下旬關渡附近離底 1 米處之濁度變化

圖 8.46 92 年 12 月上旬關渡附近離底 1 米處之濁度變化

圖 8.47 淡水海域斷面水深測線示意圖

Volume Change of Sediment in Each Section Line

圖 8.48 91 年 10 月至 92 年 10 月淡水海域單位寬斷面測線底質侵淤變 化

Total Volume Change of Sediment in 99 Section Lines

侵淤總和變化

第九章 海岸地形變遷數值模式

臺北港港址位於淡水河口出海口南岸之八里地區,由於八里、林 口間海岸係屬砂岸地質,加上一規模如此大之人工港口座落其間,必 然改變原來的波浪場與海流流場、破壞原先海岸漂砂運行之機制,將 會造成附近海岸局部地形顯著變遷;加上淡水河為北部地區最重要且 流域最大之河川,輸砂量相當可觀,海岸漂砂加上河川輸砂雙重作用, 長短期的季節性海象或氣象變化,更增添此問題之複雜性。本計畫即 應用 MIKE 21 及 LITPACK 數值模式模擬本區域長期性之水深地形變 遷情況,提供港務單位參考與因應之道。

9.1 自然環境條件

9.1.1 海氣象條件

依據運研所港研中心於台北港附近海域現場觀測所得,相關海氣 象資料特性如下。

示性波高以介於 0 cm~50 cm 最多,約佔 32%,其次 50 cm~100 cm 約佔 30%。週期主要分佈於 4 sec~6 sec,約佔 45%,其次為 6 sec~8 sec, 約佔 42%,波向以來自 N 方向最多,約佔 33%。其次為 NNE 方向, 約佔 31%。六年最大波高、相對週期各為 992.1 cm、9.2 sec。

水深-5M 海流流速主要介於 0~40 cm/s,約佔 56%;其次為 40~80cm/s,約佔 41% 主要流向為 ENE 及 WSW 方向,合計約佔 46% 其次為 NE 及 SW 方向,合計約佔 26%。85~90 年六年水深-5M 最大流 速為 119.9 cm/s,相對流向 238 度。

統計基隆港務局自民國 58 年至 72 年設於淡水河油車口之潮位觀 測資料,及暴潮位推算可得下列各種潮位基準:

臺北港築港福	高程系統	水利局中潮位系統
H.H.W.L.	:+3.82m(50年迴歸期)	2.39m
H.H.W.L.	:+3.74m(實測值)	2.31m
M.H.W.L.	: +2.48m	1.05m
M.W.L.	: +1.46m	0.03m
M.L.W.L.	: +0.55m	0.88m
L.L.W.L.	:-0.46m	1.89m

臺北港夏天為西南季風,其他時間主要為東北季風。風速發生機 率最高的為 0 m/s~5 m/s;其次為 5 m/s~10 m/s。風向發生機率最高的為 ENE;其次為 NE。最大風速為 26.33 m/s,相對風向為 43.26 度。

9.1.2 地形變遷概況

綜合港址鄰近海域曾有住都局及水利局辦理多次平面及斷面水深 測量,至民國 82 年基港局為辦理臺北港興建計畫,始接手辦理海域地 形監測工作。茲比對各單位測圖成果,並分析建港前海岸地形變遷概 況如下:

1.淡水河口北側海岸

(1)建港前海岸變遷趨勢

淡水河口北側海岸,建港前海岸變遷趨勢過去數十年來海岸地形 十分穩定。海岸受到淡水河口水流及淡水第二漁港防波堤之影 響,使得沿岸漂沙不易通過河口水流,而停留於沙崙海水浴場附 近海灘。依建港前五年間測量圖比對成果,本區平均每年淤積量 約在 17~38 萬 m³, 並不致因淡水河河川輸沙量減少而改變淤積之 趨勢。

(2)建港後海岸變遷趨勢

臺北港動工興建前三年期間,本區反常侵蝕現象,平均年侵蝕量約46.3萬m³,其原因係短期季節因素,或海岸結構物造成地形穩定調整。或測量基準發生錯誤等因素所造成,則仍待進一步檢討。 惟北防波堤興建後,本段海岸回復淤積趨勢,年平均淤積量約55.8 萬m³。本港防波堤將河川輸沙及沿岸漂沙限制於河口附近,將加 速河口三角洲地形向外海前伸,河口北側淤積現象仍將持續發生。

- 2.河口以南至北防波堤海岸
 - (1)建港前海岸變遷趨勢

本段海岸地形之穩定,主要視河川輸沙量與沿岸漂沙之相對平衡 而定。早期河川輸沙豐富,逐漸淤積形成河口三角洲。近數十年 來河川輸沙量減少,河口地形受波浪作用逐漸侵蝕。

- (2)依水利局測圖比對結果,本區平均年侵蝕量約101萬m³,惟依住 都局與基港局測圖比對結果平均年侵蝕量僅約3.6萬m³,此與差 異恐係其中之一測圖有誤所造成。但基本上,本區在建港前仍應 屬侵蝕海岸。
- (3)建港後海岸變遷趨勢

臺北港北防波堤興建後,海岸漂沙受防波堤阻隔,沿岸漂沙將淤 積於防波堤上游側,理論上應使得原為侵蝕海岸轉變為淤積海 岸。本區在防波堤興建期間呈現明顯侵蝕現象,平均年侵蝕量約 84.6 萬 m³,其原因恐係北防波堤構築後,東北季風波浪作用於堤 體,反射波浪侵蝕海岸灘沙。故基港局、水利局及住都局三單位, 於民國 83 年在此區域構築五支 80m 長離岸潛堤及五支 80m 長突 堤,以保護八里污水處理廠相鄰海岸免遭侵蝕。前述海岸侵蝕現 象為海岸地形因應結構物而調整平衡之短期現象,故在興建完成 後逐漸回復淤積現象,平均年淤積量約 116.6 萬 m³,其中在北淤 沙區平均年淤積量約 33 萬 m³,預期未來河口淤積現象仍將持續發 生,河口三角洲向外前進,北淤沙區逐漸形 成河口淺灘溼地。

3.臺北港港址海岸

(1)建港前海岸變遷趨勢

民國 75 年以前本段海岸原為侵蝕最為嚴重之海岸,八里海水浴場 之灘沙幾乎已侵蝕殆盡。民國 75 年以後,淡水河禁採沙及鄰近海 岸突堤之影響,依水利局監測結果,本區略有回淤現象平均年淤 積量約 90.5 萬 m³,主要發生在-5.0 m 以內水域。

(2)建港後海岸變遷趨勢

臺北港工址如僅就地形圖比對,在興建期間海床平均年侵蝕量約 145.3 萬 m³,惟其中在民國 85 年之前,基港局於本區實施浚挖工 程,浚挖量合計約 318 萬 m³,經修正歸因自然外力所造成地形改 變為年平均侵蝕 39.3 萬 m³,仍屬侵蝕性海岸。惟民國 85 年~90 年間,港址反成為淤積性海域,比對測圖結果年平均淤積量約 155.8 萬 m³。由於基港局於民國 88 年前在本區實施浚挖,浚挖量約 410 萬 m³,經修止歸因自然外力所造成地形改變為年平均淤積量約 237.8 萬 m³。

4.港口以南至林口電廠海岸

(1)建港前海岸變遷趨勢

依水利局監測結果,本段海岸年平均淤積量約 101.5 萬 m³。惟依 住都局與港務局測圖比較,為年平均侵蝕 44.6 萬 m³。此相反結果 恐係計算範圍不同,或測圖誤差所造成。但基本上本海岸侵淤變 化量不大之,相對較其他區域穩定。 (2)建港後海岸變遷趨勢

本海岸在興建期間呈侵蝕現象,年平均侵蝕量約 116.3 萬 m³,但 防波堤興建完工程後呈淤積現象,年淤積量約 67.2 萬 m³。

9.2 水動力模式 (MIKE 21 HD 模式)

水動力模式是一般之數值模式系統,可用以模擬湖泊、港灣及海 域之二維流場隨時間及空間變化之情形。此模式數值計算方法是利用 有限差分所建立之二維數值模式,其理論基礎及方法如下

9.2.1 控制方程式

本數值模式皆為二維之模式,故在模式中水深垂直方向,將視水 體為均質(Homogeneous),也就是不考慮因水體密度變化所產生之層 流效應(Stratified Flow)。此水理模式之控制方程式將由連續方程式 (Continuity Equation)及動量方程式(Momentum Equation)所共同組 成,其控制方程式如下:

1.連續方程式

$$\frac{\partial \zeta}{\partial t} + \frac{\partial p}{\partial x} + \frac{\partial q}{\partial y} = 0$$
(9.1)

2. 動量方程式

x 方向:

$$\frac{\partial p}{\partial t} + \frac{\partial}{\partial x} \left(\frac{p^2}{h} \right) + \frac{\partial}{\partial y} \left(\frac{pq}{h} \right) + gh \frac{\partial \zeta}{\partial x} + \frac{gp \sqrt{p^2 + q^2}}{c^2 h^2} - \frac{1}{\rho_w} \left[\frac{\partial}{\partial x} (h\tau_{xx}) + \frac{\partial}{\partial y} (h\tau_{xy}) \right] - \Omega q - fv v_x + \frac{h}{\rho_w} \frac{\partial}{\partial x} (P_a) = 0$$
(9.2)

y方向:

$$\frac{\partial q}{\partial t} + \frac{\partial}{\partial x} \left(\frac{q^2}{h} \right) + \frac{\partial}{\partial y} \left(\frac{pq}{h} \right) + gh \frac{\partial \zeta}{\partial y} + \frac{gq \sqrt{p^2 + q^2}}{c^2 h^2} - \frac{1}{\rho_w} \left[\frac{\partial}{\partial y} (h\tau_{yy}) + \frac{\partial}{\partial x} (h\tau_{xy}) \right] - \Omega p - fvv_y + \frac{h}{\rho_w} \frac{\partial}{\partial y} (P_a) = 0$$
(9.3)

式中:

$\zeta(x, y, t)$:	水位	(m)
h(x, y, t)	:	水深	(m)
p(x, y, t)	:	x方向流束密度	$(m^{3} / s / m)$
q(x, y, t)	:	y方向流束密度	$(m^{3} / s / m)$
g	:	重力加速度	(m / s^2)
c(x, y)	:	Chezy number	$(m^{1/2} / s)$
$ ho_{_{W}}$:	水體密度	(kg / m^3)
Ω	:	科氏力係數	(s^{-1})
f(v)	:	風摩擦係數	
$ au_{xx}$, $ au_{xy}$, $ au_{yy}$:	有效剪應力項	
$P_a(x, y, t)$:	大氣壓力	$(kg / m / s^2)$
V, V_x, V_y	:	風速及 其 x, y方[句分量 (<i>m</i> / s)
<i>x</i> , <i>y</i>	:	空間座標	(m)
t	:	時間	(sec)

9.2.2 模式參數之選定

在水理模式中共有三個參數需要來檢定:底床摩擦係數 (Bed Resistance)、渦流黏滯係數(Eddy Viscosity)及風摩擦係數 (Wind Friction);此三個參數因為無法從實測當中得知,所以我們必須對此三個參數進行校正。使其模擬結果與實際結果符合,以下就是對這三個參數的說明:

1.底床摩擦係數(Bed Resistance)

由動量方程式(9.2)式、(9.3)式可知,底床摩擦項是 $\frac{gp\sqrt{p^2+q^2}}{c^2h^2}$ 及 $\frac{gq\sqrt{p^2+q^2}}{c^2h^2}$,此項主要受到 Chezy Number 之影響,而在模式中底床 摩擦係數可以兩種方式給予

(1)給定 Chezy Number $(m^{1/2}/S)$

(2)給定 Manning Number (m^{1/3}/S)

Chezy Number 與 Manning Number 關係如下:

$$C = Mh^{1/6} \tag{9.4}$$

- C : Manning Number $(m^{1/3} / s)$
- M : Chezy Number $(m^{1/2}/s)$

h: 水深 (m)

若模擬海域之水深有相當的變化,則最好選擇 Manning Number,其 值一般在 20~40 m^{1/3}/s 間,而 Chezy Number 一般在 30~50 m^{1/2} 間。在 海域模擬時,一般在海灣或是在較隱密之處可給予較低的摩擦係數, 使其有較大的摩擦阻力使得數值穩定。

2. 渦流黏滯係數 (Eddy Viscosity)

此係數主要探討由 Turbulence 所造成之影響,與動量方程式中有效剪應力項有關;在此將採用 Smagorinsky 公式(Smagorinski, 1963)計算之,其方程式如下所示:

$$E = (C_s \cdot \Delta)^2 \left[\left(\frac{\partial U}{\partial x}\right)^2 + \frac{1}{2} \left(\frac{\partial U}{\partial y} + \frac{\partial V}{\partial x}\right)^2 + \left(\frac{\partial V}{\partial y}\right)^2 \right]^{1/2}$$
(9.5)

首先先選定 Smagorinsky 係數 cr,代入下列兩式(9.6、9.7),即可決定 模式中的有效剪應力。

X 方向:

$$-\frac{1}{\rho_{\omega}}\left[\frac{\partial}{\partial x}(h\tau_{xx}) + \frac{\partial}{\partial y}(h\tau_{xy})\right] = -\left[\frac{\partial}{\partial x}\left(E_{x}h\frac{\partial u}{\partial x}\right) + \frac{\partial}{\partial y}\left(E_{x}h\frac{\partial u}{\partial y}\right)\right]$$
(9.6)

Y 方向:

$$-\frac{1}{\rho_{\omega}}\left[\frac{\partial}{\partial y}(h\tau_{yy}) + \frac{\partial}{\partial x}(h\tau_{xy})\right] = -\left[\frac{\partial}{\partial x}\left(E_{y}h\frac{\partial v}{\partial x}\right) + \frac{\partial}{\partial y}\left(E_{y}h\frac{\partial v}{\partial y}\right)\right]$$
(9.7)

3.風摩擦係數 (Wind Friction)

模式中若考慮風對整個模擬區域的影響時,可依照實測資料給予風速 與風向。風力之計算採 Square Law:

$$F_{\nu} = f \cdot \frac{\rho_{air}}{\rho_{w}} \cdot W^{2}$$
(9.8)

在本計算模式中,將以本地歷年來的平均風速統計情形設定之,主要 風向為 NNE 向,風速大多在 10m/s 以下,本模式將以此為風參數設 定基準,並採風摩擦係數 f = 0.001040。

模擬區域	ΔX (m)	ΔY (m)	Δt (sec)	Manning Number	Smagorinsky Factor	風摩擦 係數 f
M1	50	50	20	15~30	0.50	0.001040
M2	25	25	20	15~30	0.5	0.001040

表 9.1 水理模式相關參數設定值

9.2.3 數值方法及穩定條件

此水動力模式所使用數值方法,是以有限差分中的 ADI (Alternating Direction Implict Method)法,是將控制方程式做時空領域的積分,再利用 Double Sweep (DS)法來解矩陣,以求每一網格點各方向上的數值解。

水理模式之穩定條件可由(9.3)式之判斷,若超過所建議 Courant Number,則可能會使數值發散導致模式不穩定之情形,因此可利用所 建議之 Courant Number 值,求得適當之計算時間間距。

$$C_r = \frac{C \cdot \Delta t}{\Delta x} \tag{9.9}$$

 $C = \sqrt{gh}$

Δt	:	時間間距		(sec)
Δx	:	網格間趴	Ξ	(<i>m</i>)
g	:	重力加	度 (m)	2 / s)
h	:	水深		(<i>m</i>)
C _r	:	Courant	Number	
с	:	Celerity	傳遞速度	

一般進行數值模擬時, Courant Number 最大值可至 5, 在此值之下 將不致造成數值不穩定之問題。

9.2.4 模式之建立

為求較精確的模擬,本報告將依海域大小分成 M1、M2 兩個模式。 M1 模式計算區域從北邊的麟山鼻漁港至南方的桃園竹圍,計算區含蓋 淡水河口、淡水港、林口等附近的水域,其模式水深資料可利用數位 板將其水深資料數位化, M2 模式計算區域從淡水河口至桃園竹圍。

9.3 近岸波浪模式 (MIKE 21 NSW 模式)

波浪場計算採 DHI 的近岸風浪數值模式 MIKE 21 NSW 來模擬。 本模式為一定常性及具方向性的多變數波浪模式,模式中輸入示性波 高 HS、平均週期 Tm、平均波 θm 向與方向分佈係數(Directional Spreading Factor)以表示入射波浪頻譜分佈。

基本方程式根據波浪頻譜之能譜密度守恒推導而得,以零階(m₀) 及一階(m₁)的頻譜動差函數為變數,將其守恒方程式(Holthujsen et al.,1989)表示如下:

$$\frac{\partial(C_{gx}m_0)}{\partial x} + \frac{\partial(C_{gy}m_0)}{\partial y} + \frac{\partial(C_{\theta}m_0)}{\partial \theta} = T_0$$
(9.10)

$$\frac{\partial(C_{gx}m_1)}{\partial x} + \frac{\partial(C_{gy}m1)}{\partial y} + \frac{\partial(C_{\theta}m_1)}{\partial \theta} = T_1$$
(9.11)

式中:

- $m_0(x, y, \theta)$:零階頻譜動差函數
- *m*1(*x*, *y*, θ) :一階頻譜動差函數
- *C_{gx},C_{gy}* : 群波波在 *x*, *y* 方向之分
- C₀ : 波向線與群波波向線角度變化率
- θ :波浪進行方向
- *T*₀,*T*₁ :能量與外力項

其中第 n 階頻譜動函數之定義如下:

$$m_n = \int A(\xi, \theta) d\omega \tag{9.12}$$

ω:角頻率

A(ω,θ):各方向頻譜之頻譜密度

控制方程式(9.10)及(9.11)中,傳遞速度 $C_{gx}C_{gy}C_{\theta}$ 主要利用線性波理 論得到。依線性波理論可得到群波速度:

$$C_{g} = \frac{C}{2} \left[1 + \frac{2kd}{\sinh(2kd)} \right]$$
(9.13)

由(9.10)、(9.11)、(9.12)式即可求得作用波譜密度 $A(\omega,\theta)$,並利用 相關公式求得有義波高 H_s 、平均波浪週期 T_m 、平均波浪方向 θ_m 及波浪 輻射應力。

9.3.1 模式之參數介紹

近岸波浪模式主要參數有底床摩擦與碎波參數,分別敘述如下: 1.底床摩擦參數

由於波浪受到底床摩擦之影響而使得能量消散,隨著波浪之傳遞距離、波高、週期和水深變淺之因素,波浪能量隨之消散。底床摩擦所引起的能量消散是根據 Quadratic Friction Law 而來,如下所示:

$$\frac{dE}{dt} = \frac{-1}{6\pi} \frac{C_{fw}}{g} \left[\frac{\omega H}{\sinh(kd)} \right]^3$$
(9.14)

式中

- E:波浪能量
- *a*: 頻率
- H : 波高
- *k* : 波數
- d : 水深
- C_{fw}: 波浪摩擦因子

其中:

$$C_{fw} = 0.12$$
 when $a_b / k_N < 2$ (9.15)

$$C_{fw} = \frac{1}{2} \exp\left[-5.977 + 5.213(a_b / k_N)^{-0.194}\right] \text{ when } a_b / k_N \ge 2$$
(9.16)

(9.15)與(9.16)式是計算波浪摩擦因子之經驗式。式中 k_N 是 Nikuradse 粗糙係數,其值約等於 2.5 d_{50} ; a_b 是底床水粒子移動振幅。由此可知, 可以給定 C_{fw} 值或給予 k_N 值來決定波浪受底床摩擦之能量消散。

2.碎波參數

有關碎波引起的能量消散率,可由下式計算得知:

$$\frac{dE}{dt} = \frac{-\alpha}{8\pi} Q_b \omega H_m^2 \tag{9.17}$$

式中

E : 波浪能量

ω : 頻率

- H_{rms}:波高均方根
- H_m:最大容許波高
- *Q_b*:碎波能量消散百分比
- α : 可調整之常數

(9.17)式中, *Q*_b 是影響碎波能量消散的主要參數, 其值可由利用下式 疊代法計算得知:

$$\frac{1-Q_b}{In(Q_b)} = -\left[\frac{H_{rms}}{H_m}\right]^2 \tag{9.18}$$

其中,最大容許波高H_m可依下列計算得到:

$$H_m = r_1 k^{-1} \tanh(r_2 k d / r_1)$$
(9.19)

式中: r₁:控制波形尖銳度之參數

r,:控制極限水深之參數

故在模式中只要給予 r_1, r_2 及 α 值,即可決定波浪能量消散率。

9.3.2 模式之數值方法及穩定條件

本模式之數值方法是利用尤拉有限差分法,利用此方法將控制方 程式予以空間離散化後進行數值計算。在一矩形網格點上,計算很多 離散方向之作用波譜第零與第一次矩。X 方向應用線性前進差分,而 Y 方向與 θ 方向則可利用線性前進差分、中央差分或二次前進差分進行空 間離散化。而在數值計算上,若是 Y 方向使用中央差分和 θ 方向使用 前進差分法,則其數值穩定必須要滿足下列之條件:

$$\left|\frac{C_{gy}\Delta x}{C_{gy}\Delta y}\right| + \left|\frac{C_{\theta}\Delta x}{C_{gx}\Delta\theta}\right| \le 1$$
(9.20)

式中: $\Delta x, \Delta y, \Delta \theta$: X, Y, θ 方向之網格間距

實際應用上,因*C_{gy}*,*C_{gx},C_θ*無法預先得知,所以再不考慮潮流作用時,可以利用 9.21 及 9.22 二式作為數值穩定判別式:

$$\frac{\Delta x}{\Delta \theta} \le \frac{1}{2|\nabla d|} \tag{9.21}$$

$$\frac{\Delta y}{\Delta x} \ge 2\tan(\theta) \tag{9.22}$$

式中d : 水深

|∆d|: 底床斜率

9.3.3 模式建立

依據 MIKE 21 NSW 之基本控制方程式可知,計算波浪必須滿足 零階與一階動差頻譜之守恒。同時在模式計算時利用有限差分法,配 合格網化地形,以求解各網格點的波浪頻譜變數(波高*H*_s週期*T_m*,波向 角*θ_m*)。本波浪模式之建立,將依據不同波浪氣候條件(經常性與極端性) 進行水域波浪模擬領域外,本工作將依波浪傳遞的主方向,模擬東北 季風接近時之情況。

9.3.4 波浪模擬的邊界及設定

近岸波浪模式之需給定的邊界條件如下:

1.有義波高*H*₂(m)

2.平均波浪週期 T_m (sec)

3.平均波浪方向 θ_m (deg)

4.與平均波浪方向間之最大偏差角度 θ_d (deg)

5.方向散佈指數(Direction spresding Index, n)

其中模式之風速和風向、波浪條件 (波高、週期和波向) 將依近年 來冬季本水域之調查風速和風向、波浪條件設定之(如表 9.2)。

表 9.2 近岸風波模式風波條件設定表

風波條件	唇	Ē,	波		
	風速(m/s)	方向	波高(m)	週期(sec)	
Case1	7	NE	1.0	8	

9.4 漂沙輸送模式 (MIKE 21 ST 模式)

為了計算臺北港附近的漂砂輸送型態,採用 MIKE 21 ST 漂砂輸送 模式。某一定點輸砂之多少決定於該點之流速、流向、波高、週期、 水深及粒徑特性。由 MIKE 21 HD 模式推算出的流速和流向, MIKE 21 NSW 模式推算出的波高、週期以及底床質的資料, MIKE 21 ST 模式 依此結果能夠計算出一給定區域的漂砂輸送能力。這個模式面積必須 涵蓋 HD 與 NSW 兩個模式之區域。本計劃以 MIKE 21 ST 模式,計算 在港區及河口之漂砂輸送方式,並進而發展成能預估輸砂多寡之預測 模式。

9.4.1 控制方程式

本模式之控制方程式主要是漂砂底質連續方程式依此式即可決定 海底底床變化率。其方程式如下:

$$\frac{\partial Z}{\partial t} + \frac{1}{1-n} \left(\frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} \right) = 0$$
(9.23)

式中

Z(x,y,t):水深或海底底床高程(m)

 $q_x, q_y(x, y, t)$:模擬期間之 X,Y 方向平均漂砂傳輸率(m³/s/m)

n:底質孔隙率

(9.23)式中:

$$\clubsuit C_x = \frac{1}{1-n} \frac{\partial q_x}{\partial Z} \quad \text{,} \quad C_y = \frac{1}{1-n} \frac{\partial q_y}{\partial Z}$$

 C_x : 底床受擾動所引起之 X 方向速度分量

C,: 底床受擾動所引起之 Y 方向速度分量

可推出得:

$$\frac{\partial Z}{\partial t} + C_x \frac{\partial Z}{\partial x} + C_y \frac{\partial Z}{\partial y} = 0$$
(9.24)

由(9.23)式可得知欲求海底底床變化率之前,必先得知漂砂傳輸率 q_x,q_y 。而海岸漂砂之移動型態可分為懸移載與底載,兩項之總和即為 漂砂總輸砂載。以下分別介紹其基本方程式:

1.底載

$$q_b = \varphi_b \sqrt{(s-1)gd^3} \tag{9.25}$$

式中 q_b :底載

- *φ*_b: 無因次底載傳輸率
- s : 底質相對密度
- d : 過篩百分比 50 之顆粒粒徑
- g : 重力加速度

其中

$$\phi_b = 5p\left(\sqrt{\theta'} - 0.7\sqrt{\theta_c}\right) \tag{9.26}$$

$$\theta' = \frac{U_f^2}{(s-1)gd} \qquad p = \left[1 + \left(\frac{\frac{\pi}{6}\beta}{\theta' - \theta_c}\right)^4\right]^{\frac{-1}{4}}$$

式中 θ' :平面底床之 Shield, s 參數

- θ_c : Shield, s 參數之臨界值
- U_f:摩擦速度
- β:動摩擦係數
- p:邊界層砂粒移動機率

2.懸移載

任意時間之懸移載可由下式得知

$$q'_{s}(t) = \int_{0}^{T} U(y,t)C(y,t)dy$$
(9.27)

整個波浪週期之懸移載可由下列計算得知:

$$q_{s} = \frac{1}{T} \int_{0}^{T} q_{s}'(t) dt$$
(9.28)

式中q'::任意時間之懸移載

- q_s:整個波浪週期之懸移載
- U(y,t): 瞬時流速
- *C*(*y*,*t*):砂粒濃度

而瞬時流速*U*(*y*,*t*)可由下列計算得到:

$$U(y,t) = U_f \frac{1}{k} \ln\left(\frac{y}{k/30}\right) \qquad \text{when } y \le \delta(t)$$

$$U(y,t) = \begin{cases} U_{f_0}^2 \frac{1}{k^2} \ln^2(\frac{y}{k/30}) + 2U_{f_0} \frac{1}{k} \ln\left(\frac{y}{k/30}\right) \\ \cdot U_{lm} \sin(wt) \cos \gamma + U_{lm}^2 \sin^2(wt) \end{cases}^{\frac{1}{2}} \text{ when } y < \delta(t) < \delta_m \end{cases}$$
$$U(y,t) = \begin{cases} U_{fc}^{2} \frac{1}{k^{2}} \ln^{2}(\frac{y}{k/30}) + 2U_{fc} \frac{1}{k} \ln\left(\frac{y}{k/30}\right) \\ \cdot U_{lm} \sin(wt) \cos \gamma + U_{lm}^{2} \sin^{2}(wt) \end{cases} \text{ when } y > \delta(t), y \ge \delta_{m} \end{cases}$$
(9.29)

(9.27)式中之砂粒濃度C(y,t)可由下列式子求得:

$$\varepsilon \frac{dC}{dy} + W_s C = 0 \tag{9.30}$$

*W*_s:懸浮粒子之沈降速度

C:砂粒濃度

ε:平均渦流黏滯係數

(9.30)式中之懸浮粒子沈降速度可由下列式子得到:

$$W_s = \frac{(s-1)gd^2}{18v} \qquad \qquad d < 100\,\mu m$$

$$W_{s} = \frac{10v}{d} \left\{ \left[1 + \frac{0.01(s-1)gd^{3}}{v^{2}} \right]^{0.5} - 1 \right\} \qquad 100\,\mu m \le d \le 1000\,\mu m$$
(9.31)

$$W_s = 1.1[(s-1)gd]^{0.5}$$
 $d > 1000 \mu m$

由上述之底載與懸移載相加,即為漂砂總輸砂量,其方程式如下:

 $q_T = q_b + q_s$

式中: q_T :漂砂總輸砂量 q_b :漂砂底載 q_s :漂砂懸移載

9.4.2 模式參數之選定

將水動力模式所得流場之流速、流向與近岸風波模式所得之波場 結果,配合計劃區之底質特性,利用漂砂傳輸模式(MIKE 21 ST 模式) 計算此地區海域漂砂傳輸現象,本漂砂傳輸之基本漂砂特性與參數設 定如下:

1.水溫

以計算底床沉載之沉降速度,冬天水溫設為22 計算之。

2.底床輸砂顆粒比重

指漂砂密度和水密度之比,此取底床輸砂顆粒比重為2.65。

- 3.底質孔隙率 0.4
- 4.碎波參數:採用 Battjes and Janssen 所提之 γ_1 , γ_2 做為判斷指標。
- 5.底質粒徑

輸砂粒徑採用現場中值粒徑平均值 d_{50} 及分級參數 σ_a (參照表 9.3)。

- 6.底床承載傳輸係數 B
 - B 值一般介於 1~5 之間,通常在碎波區外設 B=1,在碎波區內 B 值設 為 5。
- 7.底床摩擦係數

冬天底床摩擦係數設為 30 計算之。

8. 風波條件

冬季之入射波波高 1.0m、週期 8sec 和波向 NNE, 風速 7m/s、風向 NNE。

表 9.3 冬季各點底質樣品中值粒徑表

(單位:mm)

水深 測線	15	10	5	0
15	0.19	0.13	0.18	0.30
14	0.28	0.20	0.18	0.33
13	0.19	0.17	0.18	0.33
12	0.19	0.17	0.39	0.33
11	0.16	0.18	0.30	0.34
10	0.10	0.90	0.18	0.34
9	0.30	0.18	0.39	0.31
8	0.36	0.16	0.18	0.36
7	0.36	0.16	0.18	0.39
6	0.43	0.19	0.18	0.46
5	0.35	0.20	0.16	0.30
4	0.35	0.16	0.22	0.31
3	0.30	0.15	0.19	0.25
2	0.23	0.16	0.19	0.32
1	0.32	0.16	0.18	0.30

註:取樣日期 80/10/24, 80/10/25

資料來源:基隆港務局,「八里、淡水地形變遷防治研究」

9.5 波流場數值模擬結果

本計畫工作將藉由南北邊界條件分別依不同的配置及風波條件, 針對淡水河口至林口附近水域進行波流場數值計算,其模擬計算結果 將分述如下:

9.5.1 波流場數值綜合計算結果

就整體水理計算結果如圖 4.1 至圖 4.12 得知,本水域流場受潮流 的影響,呈 NNE - SW 走向,退潮時將沿岸往北北東流去,漲潮呈西 南流向,其平均流速在 0.1-1.5 m/s 之間,在-5 m 等水深線部分,其平 均流速在 0.1-0.3 m/s,在-10 m 等水深線部分,其平均流速在 0.2-0.4m/s,在-20 m 等水深線部分,其平均流速在 0.2-0.5 m/s,主要流 向大多為平行海岸線呈 NNE - SW 走向或 NE - SW 走向。

綜觀本海域潮流的變化情形,大潮時,整體流場則呈現流速較快的情形,流場平均流速則退潮時明顯大於漲潮,在潮流轉換方向時, 其平均流速也會呈現降低的現象。此外,在淡水河河口附近水域流場 則受潮流影響,在漲潮時,海域水流會注入河口,發生河口附近水體 逆流的情形,河口附近水域也呈現平均流速降低的情形,而在退潮時, 則外海水域流場往東北向流去,淡水河所排入海域之水體一出河口後 即呈現隨潮流往東北方向流去。

在臺北港區部分,則受到結構物遮蔽效應,則呈現流速較低的現 象,平均流速都在 0.15 m/s 以下,在港區遠期建設完成時,平均流速 甚至都降至 0.05 m/s 以下,而在林口南側附近海域,平均流速則在 0.1-0.3 m/s 之間,在臺灣北部公共工程剩餘土方填海區完成後,本區水 域平均流速則稍有降低。

9-21

圖 9.1 M1 模式 2003/ 11/ 06 00:00:00 第二期完工)

圖 9.2 M1 模式 2003/ 11/ 06 04:00:0第二期完工)

圖 9.3 M1 模式 2003/ 11/ 06 08:00:0第二期完工)

圖 9.4 M1 模式 2003/ 11/ 06 12:00:0第二期完工)

圖 9.5 M1 模式 2003/ 11/ 06 16:00:0第二期完工)

圖 9.6 淡水河附近實測潮位資料與模式模擬之比較圖

圖 9.7 M2 臺北商港附近水域流場模擬情形 (第二期)

圖 9.9 M2 臺北商港附近水域流場模擬情形 (第三期工程完成)

圖 9.10 M2 臺北商港附近水域流場模擬情形 (第三期工程完成)

圖 9.11 M2 臺北商港附近水域流場模擬情形 (第三期、遠期工程、倉儲區完成)

圖 9.12 M2 臺北商港附近水域流場模擬情形 (第三期、遠期工程、倉儲區完成)

在波場部分依不同的入射波條件,東北風,波高 1.0m、週期 8sec 其配置之波場計算結果如圖 4.13 至圖 4.15 所示。整體而言,就現況水 域,受到水域淺化及水域開發建設的影響,當波浪更接近岸邊時能量 損失漸增,其中以淡水河口、臺北港區、林口附近水域最明顯,波浪 偏折情形主要也集中在這幾個水域,在東北風吹襲時,港區水域靜穩 影響較小,港區內平均波高都在 1.0m 以下,而在港區第三期、遠期工 程建設逐步完成後,港區水域也愈趨穩定。

除了臺北港區外,淡水河河口受河口地形淺化及臺北港外廓結構 的影響,本區水域波浪傳遞能量消耗較大,波高變化亦較為明顯,而 在林口附近水域方面,在擎宇填海區尚未完成之前,波浪能量損耗主 要集中在林口南側水域附近,當入射波波高為 1.0m 時,此區域平均波 高則在 2.0-3.0m 左右,而當填海區完成之後,除了造成臺北港更佳的 遮蔽效應外,本區能量損失仍將集中於填海區南側水域,填海區附近 也僅發生局部小區域能量變化。

9.5.2 波流場數值計算檢核

依據本水域測站(水深-15m, 經度 121°22'41", 緯度 25°10'44"), 於 2002/08/01.00:00-2002/08/16.00:00 之定點潮流實測資料, 經由與模 式數值解比較結果如圖 4.16 至圖 4.18;潮位部分,數值解與實測值大 致上都相差不多,小潮潮位計算較大潮潮位更為精準,僅漲潮時誤差 較大;定點流速部分,其數值解分佈範圍則與實測值大致上相差不多, 誤差都在±0.1m/s 以內;流向部分,則數值解與實測值僅在潮流轉換時 之方向變化稍有誤差,其餘數值解與實測值的潮流方向大致上都呈現 較一致的變化。

圖 9.13 臺北商港附近水域波場模擬情形 (第二期) (入射波波高 1.0m、週期 8sec 和波向 NNE)

圖 9.14 臺北商港附近水域波場模擬情形 (第三期工程完成) (入射波波高 1.0m、週期 8sec 和波向 NNE)

圖 9.16 數值模式潮位數值解與測站實測值之比較

圖 9.17 數值模式流速數值解與測站實測值之比較

圖 9.18 數值模式定點流向數值解與測站實測值之比較

9.6 海岸地形變遷數值計算結果

本計畫區域海岸地形受到波浪潮汐及淡水河交互作用所形成之近 岸流系統,海岸漂砂,河川輸砂等多重因素之影響,加上各影響因素 之時間尺度之不同,因此也增加本水域地形變遷之複雜性,本數值模 式將主要影響較大之因子加入運算,考量風力、波浪、潮流、及與淡 水河交互作用所構成之近岸流流場分佈,計算本計畫水域漂砂推動之 能力及海岸地形侵淤之趨勢,以評估臺北港建設及相關填海造地計劃 對海域地形變遷所造成的影響。

9.6.1 漂砂模式計算結果

本計畫對於在長時間尺度下海岸漂砂部分,先以冬季的風波條件 (冬季:入射波波高 1.0m、週期 8 sec 和波向 NNE),依水域不同的開 發情形運算海域漂砂傳輸能力,如圖 9.19 至圖 9.27,其數值計算結果 可歸納如下:

- 淡水海域輸砂方向及能力皆隨季節改變,冬季時,東北季風時漂砂輸
 送方向是由北往南,海域漂砂傳輸能力約 6000m³/yr/m。
- 2.由數值計算結果可知,本計劃區水域淨輸砂優勢方向則為北往南,因 此在海域建設之結構物或岸線的轉折處附近水域都容易發生因阻斷 漂砂傳輸之連續性。
- 3.由計算計劃區整體全年淨輸砂狀況得知,在淡水河河口北防波堤外側 水域及林口電廠附近及南側海域,皆是本區傳輸漂砂最強的地區,也 最容易發生海岸地形侵蝕淤積的現象,故更因規劃適當的海岸防護措施,以減輕對海岸地形變遷的影響。

9.6.2 海岸變遷綜合評估結果

1.淡水河北側海岸

淡水河北側海岸受到淡水第二漁港防波堤影響,形成波流集中,在堤 頭部分產生侵蝕的現象,而實際本區地形變遷調查結果則未發生侵蝕 的現象,而若考慮颱洪來臨時,河川大量輸砂則傳輸沉積於此區補充 此地砂源,是以此可解釋本區地形變遷調查結果則未發生侵蝕的現 象。

2.河口至北防波堤海岸

本區位於淡水第二漁港防波堤與臺北港北防波堤之間,受到淡水河河 水流入海洋及鄰近南北防波堤之影響,此水域波流場即較為複雜,加 上河川輸砂,如不考慮河川輸沙影響,本區在北防波堤近岸區則發生 明顯淤積趨勢,但在河口外側處存在一侵蝕之凹洞,由於本區仍位於 河川輸沙沉積之主要區域,由於較難推知每次颱洪及平時河川輸砂量 的部分,因此本區數值計算地形變遷仍會有其與現地量測知差異的存 在。

3.臺北港港址海岸

依數值計算成果,在各期工程港內水域海流平靜,本區淨輸沙率多在 1~100m³/yr/m 以內,整區除了若干岸線轉折處有侵蝕區域存在外,本 區大部分仍呈輕微淤積的狀態,而在港區持續往南開發建設,加上林 口填海造地區的完成,其地形淤積的區域則有往南增加的趨勢;而港 區內受到遮蔽效應的影響,淨輸沙率極小,港內淤積趨勢並不明顯。

圖 9.19 臺北商港附近水域漂砂傳輸向量模擬情形 (第二期) (冬季,入射波波高 1.0m、週期 8sec 和波向 NNE)

2003/11/14 20:00:00

圖 9.20 臺北商港附近水域漂砂傳輸向量模擬情形 (第三期工程完成) (冬季,入射波波高 1.0m、週期 8sec 和波向 NNE)

圖 9.21 臺北商港附近水域漂砂傳輸向量模擬情形 (第三期、遠期工程、倉儲區完成) (冬季,入射波波高 1.0m、週期 8sec 和波向 NNE)

(冬季,入射波波高 3.3m、週期 10sec 和波向 NNE)

圖 9.23 臺北商港附近水域平均輸砂潛量圖 (第三期工程完成) (冬季,入射波波高 1.0m、週期 8sec 和波向 NNE)

圖 9.24 臺北商港附近水域平均輸砂潛量圖 (第三期、遠期工程、倉儲區完成) (冬季,入射波波高 1.0m、週期 8sec 和波向 NNE)

圖 9.25 臺北商港附近水域年平均漂砂優勢圖 (第二期)

圖 9.26 臺北商港附近水域年平均漂砂優勢圖 (第三期工程完成)

4.臺北港以南至林口附近海岸

由數值計算結果得知,本區由於岸線的轉折則在海岸地形變化上,則 有較多處明顯侵蝕的潛能,而根據現場調查地形變遷趨勢符合這樣的 情況,特別在林口電廠附近,則更呈現岸邊沉積,沉積外側侵蝕的現 象,此更與實際調查結果相吻合;而在林口填海造地區完成後,則僅 在林口南側海岸水域會有較明顯的地形侵蝕現象,而在林口填海造地 區及林口電廠間的水域則需注意地形淤積的問題。

9.7 模式檢討及建議

9.7.1 模式檢討

臺北港相鄰海岸地形變遷主要受到波浪、潮汐、及淡水河交互作 用所形成近岸流系統,以及海岸漂沙、河川輸沙等多重因素之影響。 由於各種影響因素時間尺度不一,故於數值模式中僅能選擇其中部份 影響較鮮著之因子列入計算。因此數值模式仍有以下幾點檢討建議。

1.淡水河河川輸砂對海岸地形影響

本計畫所引用數值模式中,已計入漲退潮時,淡水河感潮河段對近岸 流場之影響。但颱風暴雨所產生洪水,往往在 1~2 日內發生,並攜帶 大量河川輸砂補充海岸,而其所夾帶的洪水量、輸砂量、風、波、流 條件等都是必要計算條件,而本計畫針對此部分僅就其定性的部分計 算討論,另外,河川輸砂影響長期海岸地形變遷較大的屬颱洪的部 分,原屬短期效應,而在此時間內,水域輸砂粗顆粒底床質則較快沉 積河口,細粒懸浮質則需較長時間受潮流漂移沉積,而本報告輸砂模 式受限於時間尺度,僅先討論其短期效應,並無法在數值模式中呈現 細粒懸浮質這部分,將來仍有待實地觀測比對,以確認其影響程度。

2.海岸侵淤影響因子權重比例尚待長期驗證

本計畫所引用數值模式計算所得各期工程配置之淨輸沙型態計算淨 漂砂輸送潛能,是經數學向量相加而成,而由於臺灣北部地區各季波 流特性、氣候條件及底床底質特性差異甚大,所選用特性波浪計算之 地形侵淤變化必須與實際地形變化作在一次確認,因此不論在模式的 時間縮尺比例、或是在各季節的風波條件、或是颱洪等,都可待將 來依實地觀測資料加以比對校正,以確認其各模式權重比例。

9.7.2 建議

- 淡水河每年流入海洋之輸砂量隨颱風、暴雨發生之頻率強度有很大的 關係,河口之砂源與淤砂量都與本區海岸地形變遷有極大的關係,可 惜目前皆欠缺實地調查及研究資料,未來可建議相關研究單位可進行 整合研究,了解評估淡水河入海之輸砂量,而長期持續的地形變遷監 測及海象資料庫之建立也是必須的,以期能更完整研究淡水河及海域 開發對本地海岸地形變遷之衝擊影響。
- 2.對於在本計畫中,各階段的海域開發皆應考慮對海域環境所產生之影響,在施工前、施工中及完工後,都必須先行規劃及採取相對應的保護防範措施,以減輕對海域生態環境所產生之破壞。

第十章 雷達遙感波浪監測

10.1 前言

依據前第五章陳述,本計畫於台北港外海觀測樁作定點式之波浪 觀測作業,蒐集分析波高、週期與波向等相關資料,此方式並未能充 份全面性地提供台北港附近海域之波浪狀況。由於雷達遙測技術業已 逐漸發展成熟,應可實際用於監測海洋波浪,因此擬使用測波雷達以 觀測台北港現場波浪並將其結果進行統計、能譜計算以及綜合分析等 工作,如此除了可將遙感監測結果與數值模擬結果相互比較驗証外, 尚能藉此精進雷達遙測波浪技術。

本項監測作業自民國 88 年下半年起, 即於基隆港務局前列相關委 辦計畫中執行, 由雷達遙測技術、硬體設備之開發, 分析原理、軟體 之改善, 以至與現場觀測資料之驗證比對, 已獲至初步之成果。本年 度仍繼續辦理雷達遙感測波作業, 除繼續改善監測技術及分析方法 外, 並對資料處理與即時展示方面作進一步的檢討改進。

10.2 雷達測波作業簡介

本工作除沿用原設置於台北港區辦公室無線電鐵塔上之雷達測波 儀繼續測波外,由於台北港建港工程不斷地在持續進行,同時外廓防 波堤的高度也不斷升高,堤岸高度的變化對台北港雷達測波作業造成 相當影響。主要是因為台北港測波雷達所裝設之鐵架高度不足,因此 當防波堤(介於觀測樁以及鐵架之間)高度增高以後便不可避免地會在 堤線後方(觀測樁附近)造成了較大的遮蔽區域(見圖 10.1)。故自 91 年 8 月 20 日起淡水沙崙漁港旁的建築物(海巡署訓練中心)安裝另一台雷達 測波儀(圖 10.2),此後沙崙站雷達測波儀則與原有雷達測波儀一起同步 執行波浪觀測作業。

安裝在原台北港區現場之 ROCOS 測波系統,雷達天線主方向 (heading) 設定為 315 度方位角, 此方向大致與台北港北防波堤走向相平 行,而雷達主機則設定為使用窄脈衝寬度之 SP Mode,有效發射距離 為3海浬(5.6公里),使用10 MHz的高速採樣所對應之空間相素(Pixel) 大小約為每點 15 公尺,由於天線高度較低故每條掃瞄線只設定為採集 256 點相素(系統設計之最大允許值為 1024 點),因此實際記錄之量測 範圍僅為 3.84 公里。此外,控制電路之取樣時序係採用交錯式 (Interlace),即取樣時在相鄰的掃瞄線上採用不同的時相,也就是故意 將偶數條掃瞄線之取樣時間延後 0.05 微秒,相當於把相素向後偏移 7.5 公尺(奇數條則不變),如此一來在製作雷達回跡圖時就可以利用此功能 把空間相素之尺寸大小縮小一倍而變為只有 7.5 公尺(早期許多電腦監 示器亦均採用類似這種的方法以提供「較高」解析度之顯示功能),這 樣可使輸出畫質較為清晰,然而實際有效的空間解析度係取決於雷達 之實際發射脈衝寬度,在 SP Mode 時仍然是 12 公尺。ROCOS 測波系 統正常作業係設定在每小時整點時自動開始波浪量測工作,系統每次 會連續採集 32 張圖片(雷達天線轉速為 24 RPM, 每轉一圈約需 2.5 秒, 32 張共耗時 80 秒),每小時均儲存完整(R,θ)座標型態(R,θ分別代表 距離與角度)之原始數據,如此每天儲存之資料量(經壓縮處理後)約在 800 Mega Bytes 左右,而一顆 30 Giga Bytes 的硬碟約可儲存一個多月 的觀測資料,作業人員大約每月均定期赴現場一次,進行定保維護以 及抽換資料硬碟之工作。資料硬碟回收實驗室後,工作人員先以高密 度 DAT 磁帶機將資料備份, 然後再將原始資料轉成動畫圖檔(以方便研 究人員檢視資料特性)。為避免供電不穩定而影響到雷達測波作業,工 作人員亦為台北港之 ROCOS 系統加裝了外接式 UPS 不斷電系統以及 設定了斷電後當來電時會自動起動之功能(每隔兩年左右需更新外接電 瓶),但有時(雖然次數很少)斷電後仍可能會發生系統無法自動開啟的 情況,目前的處理方式是透過數據機、電話線進行遠端連線,使用 pcAnywhere 作業軟體以不定時之方式人工連線來監控, 遇嚴重狀況(即 觀測中斷又無法自行啟動)則再煩請台北港現場值班人員協助。作業方 式如下:工作人員通常每天會人工連線一至二次以檢視現場作業情

10-2

形,如遇特殊情況(如遇到不能以遙控方式排除故障之情形),此時工作 人員則以電話聯絡台北港分局港航課當值人員,請其協助以人工方式 開關電源重新開機,自安裝日起即以此種方式運作,迄今為止成效頗 佳。

安裝於沙崙站之雷達測波儀的天線主方向設定為 290 度方位角, 使用 SP Mode,由於天線高度較高故每條掃瞄線設定為採集 380 點相 素,實際之量測範圍為 5.7 公里。初步測量結果顯示該處視界甚為良好 (圖 10.3),確如初勘時所推測可以毫無障礙地觀測到整個淡水河口以及 台北港外廓防波堤以西北和觀測樁一帶的海域。

圖 10.1 91 年 9 月台北港外廓防波堤之雷達圖像

圖 10.2 沙崙站雷達測波儀

圖 10.3 沙崙站雷達測波儀擷取之影像

10.3 雷達測波影像處理原則

本年度雷達測波作業主要分析重點著重於波向分析,其波向分析 基本構想是先以雷達擷取台北港附近海域影像,再以邊緣偵測運作元 (operator)偵測波浪之主要波向。在一海域中,波量前進之波峰線在 攝影或雷達影像中,是以線段方式呈現,本計畫則以此特性偵測波峰 線,再進而轉換為波向。整個波向分佈量測流程如圖 10.4 所示。

圖 10.4 波向分佈量測流程

10.3.1 邊緣線之擷取

影像中的邊緣線(edge)主要是因為相鄰像元灰度值的不連續性 而產生,大多數的邊緣偵測是採用局部微分運作元(local derivative operator),其利用灰度值的一階或二階導數值來判斷邊緣線是否存在。 偵測邊緣線的方法有很多種,常用的如梯度運作元(Gradient operators) 是屬於一階導數,而拉普拉斯運作元(Laplacian operators)是屬於二 階導數。使用一階導數之微分運作元時,其邊緣線位於導數值的極大 值或極小值處;使用二階導數之微分運作元時,其邊緣線位於導數值 的零值處(見圖 10.5),這是因為二階導數具有零值通過(zero crossing)的特性。

本文利用的是 Sobel 梯度運作元(見圖 10.6)來擷取海域的波峰線。 利用此梯度運作元對影像 f (x,y) 分別作褶積運算 (convolution) 得到 10.1 式 G_x及 10.2 式 G_y之後,利用 10.3 式計算其梯度 f 之大小,最 後再選定一零界值,若影像中某像元之梯度大小大於此臨界值,則視 此像元為邊緣像元,再利用 10.4 式求出梯度方向 (x,y),此方向角 度即為波峰線,其法線方向即為波向線。

Z_1	Z_2	Z_3
Z_4	Z_5	Z_6
Z ₇	Z_8	Z9

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1	-2	-1	1	0	1
	0	0	0	-2	0	2
	1	2	1	-1	0	1

$$G_{x} = (z_{7} + 2z_{8} + z_{9}) - (z_{1} + 2z_{2} + z_{3})$$
(10.1)

$$G_{y} = (z_{3} + 2z_{6} + z_{9}) - (z_{1} + 2z_{4} + z_{7})$$
(10.2)

$$\nabla f = |G_x| + |G_y| \tag{10.3}$$

$$\theta(x, y) = \tan^{-1}\left(\frac{G_y}{G_x}\right)$$
(10.4)

10.3.2 邊緣線擷取之驗證

本研究一開始是利用 CCD (電耦荷元件影像攝影機, charged coupled device)進行水面變化的觀測。其拍攝到之結果如圖 10.7 所示, 圖 10.7 (a)為規則波影像,圖 10.7 (b)為短峰波影像。在圖 10.7 中 亮部為波峰線,較暗之部分為波谷,其交界處則會有明顯的灰階差別, 我們即利用此一特性將 CCD 所拍攝到之影像做 Sobel 梯度分析(見圖 10.8),即可得到明顯的邊界線,此邊界線即是我們所謂的波峰線,波 峰線的法線方向即為波向線。圖 10.9 為利用影像處理軟體做邊緣化後 之結果,其中,圖 10.8(c)、(d)為波向分佈曲線。

分析波向是利用式 10.4 求出灰階方向。在規則波時,只需分析一 張影像及可得到其主要波向。可是在分析多方向不規則波時就必須連 續分析 2 分 30 秒的影像(每秒鐘 20 畫格,故為 3000 張影像),之後 再累積所有的方向角 ,即可得到所有的波峰線分佈,而主波峰方向 為累積最多的 ,而 的法線方向即為主要波向。

此邊緣偵測法在分析波場之波向為一可行之方法,所以本計畫即 是以此方法來分析雷達影像之波向。雷達影像與 CCD 影像皆是以色彩 亮度的方式來表示其影像,只是雷達影像是以彩色(R,G,B)色板 來表示,而我們使用的 CCD 影像是以灰度的色板來表示,所以我們在 分析雷達影像時,我們將 R,G,B 三個色階分開來做比較(見圖 10.10), 我們發現圖 10.10 (c) 為最佳的分析對象。

(a)

(b) 圖 10.7 利用 CCD 所拍攝到之水面變化

(a)

圖 10.8 將圖 10.7 用 Sobel 梯度運作元邊緣化後之結果

(a)

(b)

圖 10.9 將圖 10.7 用影像軟體做邊緣化後之結果

(a)原始影像

(b) R 色階

圖 10.10 雷達影像及分解後之 R,G,B 個別色階影像

(c)G色階

(d) B 色階

圖 10.10(續) 雷達影像及分解後之 R,G,B 個別色階影像

10.4 監測作業過程

監測作業之例行性工作包括每月定期派員赴現場保養裝備、抽換 資料硬碟、執行資料備份以及進行波浪數據轉換、燒錄製作圖像光碟 等等,同時每日亦透過數據機經電話線路監看台北港雷達測波系統之 工作狀況。由 92 年 5 月迄今(92 年 11 月 5 日回收資料硬碟)為止,台 北港雷達測波儀及沙崙站雷達測波儀所收集到的測波資料清單如表 10.1 及表 10.2 所示,表中第三欄「說明」所列即為該月資料欠缺的時 段。

雷達遙測波浪資料處理過程如下:資料回收後,工作人員先以高密度磁帶機將資料備份(存於 DAT 磁帶上)。由於硬碟十分精細十分脆弱,抽換回來的硬碟資料很容易損毀,所以要儘快備份。備份後再將原始資料轉成動畫圖檔,以方便研究人員檢視資料特性以及資料品質狀況。動畫圖檔檔案格式為 GIF,檔名為 TSmmddhh.gif,其中 TS 代表淡水,SL 代表沙崙站,mmddhh 則為月日時,代表該圖所對應記錄之觀測時間,而平均圖檔亦為 GIF 格式,其檔名類同動畫圖檔,僅在動畫檔名前再加一m字以代表平均,即mTSmmddhh.gif。之後再針對各個動畫圖檔做波高、主波波向、波長、對應週期等分析。

表 10.1 台北港雷達測波儀所收集測波資料清單

資料時間(年與月)	NO/NT	當月記錄中斷時段
2003年6月	720/720	
2003年7月	744/744	
2003年8月	744/744	
2003年9月	555/720	9/18 11L – 9/25 9L
2003年10月	744/744	
2003年11月5日	106/106	

NO:資料筆數(小時),NT:該月觀測總時數。

表 10.2 沙崙站雷達測波儀所收集測波資料清單

資料時間(年與月)	NO/NT	當月記錄中斷時段
2003年6月	720/720	
2003 年 7 月	744/744	
2003年8月	556/744	8/12 18L - 8/20 14L
2003年9月	720/720	
2003年10月	744/744	
2003年11月5日	106/106	

NO:資料筆數(小時),NT:該月觀測總時數。

10.5 監測資料分析結果

本年度雷達測波作業內容主要包括有現場監測、測波資料分析、 維護網頁展示系統以及比對雷達測波資料等項作業,相關分析結果詳 述如后。

10.5.1 測波資料分析結果

原設置於台北港區辦公室之雷達測波儀(1號測站)因受防波堤遮蔽 影響,目前在分析上已無法準確使用,故自本年度開始,相關雷達影 像分析資料皆取自於沙崙站雷達測波儀(2號測站)。另本計畫爰引用不 同之影像分析技術,由於時程關係,本年度著重於波向之分析比較, 未來將就波高部份另作分析,有關波向分析結果如下。

圖 10.11 至圖 10.16 為台北港沙崙站(2 號測站)之雷達觀測波向和 觀測樁所測波浪波向之比對時序圖,比對之雷達波測區為 100 點×100 點(對應之面積為 1.5 km×1.5 km)。為方便比較起見,將每月觀測資料 製作成表及分佈玫瑰圖,表 10.3 至 10.7 為每月之波向分佈百分比統計 表,圖 10.17 至圖 10.21 則為波向分佈玫瑰圖,表 10.8 則為雷達測波與 觀測樁觀測所得之主要波向比較表。

時間	2003/06	3003/07	2003/08	2003/09	2003/10
雷達	W~N	W~N	W~N	W~N	W~N
測站	W~SW	W~SW	W~SW	W~SW	W~SW
觀測樁	N~E	S~W	N~E	N~E	N~E
測站	W~N	W~N	W~N	W~N	W~N

表 10.8 雷達測站和觀測樁測站之主要波向比較表

10.5.2 網頁展示系統維護

網頁即時顯示雷達遙測波浪圖像之作業系統在台北港測站已建立 完成,其可提供使用單位透過電腦網路即能獲得有關即時海況之訊 息,本計畫將繼續維護、改進網頁內容,並確保網頁展示系統正常工 作,網頁展示示意如圖 10.22 與圖 10.23 所示。另外,新設之沙崙測站 亦已建立與台北港相同之即時展示系統,如圖 10.24 及圖 10.25 所示。

圖 10.22 台北港即時顯示雷達遙測波浪圖像網頁

圖 10.24 沙崙站即時顯示雷達遙測波浪圖像網頁

圖 10.25 沙崙站即時顯示雷達遙測波浪圖像網頁

圖 10.11 92 (2003) 年 6 月,波流儀所測波向與台北港 2 號測站 所測波向時序圖

Wave Direction Monitored by Radar and

圖 10.12 92(2003)年 7 月,波流儀所測波向與台北港 2 號測站 所測波向時序圖

Wave Direction Monitored by Radar and

Wave Direction Monitored by Radar and

圖 10.14 92 (2003) 年 9 月,波流儀所測波向與台北港 2 號測站 所測波向時序圖

Wave Direction Monitored by Radar and

圖 10.15 92 (2003) 年 10 月,波流儀所測波向與台北港2號測站 所測波向時序圖

Wave Direction Monitored by Radar and

圖 10.16 92 (2003) 年 1^N月,波流儀所測波向與台北港 2 號測站 所測波向時序圖

波向	Ν	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	合計
日期	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
1	9.64	9.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	9.40	9.91	17.67	11.66	10.29	9.69	12.69	100
2	12.57	5.37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.28	11.29	11.99	12.23	12.85	14.21	14.22	100
3	12.43	5.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.79	10.54	11.73	12.26	13.31	15.00	14.84	100
4	11.06	4.47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.36	9.73	11.58	13.08	15.23	16.13	14.36	100
5	9.81	12.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	15.72	9.30	16.82	9.55	9.97	7.27	9.47	100
6	13.87	6.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.93	14.02	13.28	12.08	10.51	11.49	12.79	100
7	13.31	4.83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.43	13.97	14.01	12.58	10.95	12.36	12.58	100
8	11.85	4.53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.25	9.29	11.02	12.46	14.93	16.70	14.98	100
9	12.33	4.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.19	9.40	10.61	12.20	14.40	16.13	15.83	100
10	7.02	10.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	13.46	11.85	23.48	10.24	9.78	5.75	7.71	100
11	9.52	4.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.96	9.37	12.49	15.15	17.23	15.64	12.63	100
12	7.99	3.36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.19	8.37	12.47	16.57	19.82	16.58	11.65	100
13	8.73	3.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.58	8.16	12.21	15.41	18.83	16.77	12.81	100
14	13.62	5.68	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.85	14.20	13.18	11.89	10.68	11.58	13.33	100
15	10.98	4.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.32	9.33	11.52	13.07	15.72	16.28	14.33	100
16	13.52	5.53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.40	10.77	10.81	11.10	12.65	14.78	15.42	100

表 10.3 92 (2003) 年 6 月,台北港 2 號測站所測波向分佈百分比統計表

波向	Ν	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	合計
日期	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
17	16.03	5.69	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.66	8.13	7.71	8.60	11.70	17.59	19.89	100
18	13.10	4.79	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.37	9.54	10.71	11.16	13.18	16.56	16.58	100
19	10.81	4.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.92	9.25	11.60	13.49	15.85	16.56	14.47	100
20	12.67	5.51	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.46	12.54	13.12	12.71	11.91	12.80	13.29	100
21	8.38	8.46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10.47	9.46	18.15	12.10	12.02	8.61	12.34	100
22	9.74	4.35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.17	10.45	13.13	14.96	15.56	15.08	12.56	100
23	8.13	3.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.37	8.61	12.34	17.03	20.00	16.25	11.20	100
24	7.53	3.14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.26	8.45	12.37	17.33	20.68	16.38	10.85	100
25	6.58	2.72	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.74	7.47	13.18	19.40	21.92	16.10	9.89	100
26	6.61	2.61	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.68	7.70	13.74	18.95	21.67	15.87	10.16	100
27	6.45	2.65	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.69	7.36	13.13	19.53	22.45	15.78	9.96	100
28	8.23	3.28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.35	7.99	12.23	16.22	19.77	16.43	12.50	100
29	9.71	4.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.76	9.15	11.93	14.28	16.99	16.33	13.79	100
30	10.37	4.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.73	9.40	11.83	13.89	16.36	16.54	13.69	100
月平均	10.42	5.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.26	9.83	13.00	13.71	15.24	14.44	13.03	100

表 10.3 92 (2003) 年 6 月,台北港 2 號測站所測波向分佈百分比統計表 (續)

圖 10.17 92 (2003) 年 6 月,台北港 2 號測站所測波向分佈圖

波向	Ν	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	合計
日期	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
1	0.98	4.39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.57	1.22	2.05	11.00	63.47	10.56	1.75	100
2	8.62	3.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.54	8.85	13.16	16.82	17.68	15.68	12.17	100
3	8.97	3.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.85	9.73	14.14	16.84	16.56	14.89	11.28	100
4	9.19	3.91	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.58	9.58	13.47	16.55	16.15	15.11	12.47	100
5	8.01	3.14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.34	9.33	14.77	18.58	17.91	14.06	10.87	100
6	8.16	3.34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.60	9.50	14.91	17.65	16.92	14.54	11.38	100
7	8.75	4.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.52	9.25	12.80	15.56	17.69	15.79	12.65	100
8	10.91	4.51	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.62	10.21	12.35	13.65	14.68	15.35	13.72	100
9	11.08	4.55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.53	10.17	12.15	13.46	14.73	15.47	13.86	100
10	10.62	6.28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.73	10.79	14.33	12.76	11.49	13.77	13.23	100
11	9.28	11.43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	12.03	10.36	17.53	10.36	8.74	8.74	11.54	100
12	11.10	4.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.41	10.45	12.27	13.38	14.94	15.21	13.55	100
13	8.95	3.82	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.68	9.21	12.19	15.15	18.12	16.45	12.43	100
14	7.88	3.26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.22	8.84	13.29	17.53	19.20	15.47	11.31	100
15	7.88	3.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.63	9.61	14.83	17.56	17.70	14.69	10.80	100
16	8.19	3.36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.57	9.38	13.89	17.23	18.07	14.86	11.44	100

表 10.4 92 (2003) 年 7 月,台北港 2 號測站所測波向分佈百分比統計表

波向	Ν	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	合計
日期	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
17	9.77	4.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.94	9.93	13.36	15.74	16.33	14.67	12.14	100
18	7.64	3.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.16	8.26	12.39	17.41	20.45	16.11	11.40	100
19	11.58	4.83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.58	10.57	12.05	13.19	14.29	15.13	13.79	100
20	10.63	4.26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.14	10.18	12.46	13.88	14.91	15.76	13.78	100
21	11.04	4.69	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.55	10.58	12.45	13.57	14.60	15.30	13.22	100
22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
23	11.49	4.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.67	10.94	12.14	12.88	13.74	15.09	14.29	100
24	10.97	4.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.13	9.44	11.50	13.46	15.97	16.31	13.95	100
25	10.37	4.22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.00	9.77	12.16	14.12	15.74	16.08	13.54	100
26	10.56	4.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.03	9.08	11.40	14.13	16.70	16.41	13.63	100
27	11.12	4.39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.46	9.93	12.20	13.36	14.31	16.18	14.05	100
28	10.57	4.21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.30	9.58	11.54	13.54	16.07	16.40	13.78	100
29	7.76	3.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.33	8.51	13.29	18.17	19.26	15.44	11.12	100
30	7.25	3.16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.51	9.18	15.17	18.89	18.34	14.00	10.49	100
31	9.90	3.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.04	9.07	11.54	13.94	16.69	16.88	14.23	100
月平均	9.31	4.27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.31	9.38	12.73	15.01	17.71	15.01	12.26	

表 10.4 92 (2003) 年 7 月,台北港 2 號測站所測波向分佈百分比統計表 (續)

圖 10.18 92 (2003) 年 7 月,台北港 2 號測站所測波向分佈圖

波向	Ν	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	合計
日期	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
1	10.50	4.67	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.77	10.26	13.10	13.96	14.88	14.66	13.20	100
2	10.94	5.13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.39	10.75	13.62	13.25	13.38	14.03	13.51	100
3	11.54	4.98	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.84	11.22	12.96	13.81	13.27	14.22	13.17	100
4	12.06	5.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.14	11.46	12.83	12.78	12.83	14.03	13.67	100
5	10.15	8.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	9.89	10.30	17.03	11.08	10.25	10.43	12.36	100
6	10.80	5.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.36	10.54	13.03	13.19	13.73	14.60	13.65	100
7	10.97	4.59	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.45	10.36	12.53	13.72	14.61	15.17	13.61	100
8	8.84	3.65	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.67	9.26	13.16	16.29	17.84	15.41	11.89	100
9	9.34	3.91	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.89	9.44	12.78	15.36	17.17	15.66	12.46	100
10	10.81	4.51	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.46	10.04	12.31	13.69	15.08	15.42	13.68	100
11	10.65	5.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.25	11.07	13.54	13.52	13.62	14.05	13.15	100
12	10.70	5.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.28	10.59	13.41	13.40	14.08	14.39	12.90	100
13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

表 10.5 92 (2003) 年 8 月,台北港 2 號測站所測波向分佈百分比統計表

波向	Ν	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	合計
日期	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
20	10.55	4.59	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.65	10.21	12.66	13.75	14.85	15.17	13.57	100
21	4.88	14.63	0.00	0.00	0.00	0.00	0.00	0.00	0.00	22.76	10.98	29.67	4.47	5.69	0.81	6.10	100
22	11.42	5.61	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.77	10.93	13.43	12.82	12.36	14.06	13.61	100
23	11.88	5.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.97	10.94	12.58	13.00	12.94	14.59	14.05	100
24	10.53	8.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	8.78	11.75	15.61	11.94	10.49	10.87	11.91	100
25	10.49	5.39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.74	10.17	13.23	13.23	14.34	14.33	13.08	100
26	9.77	4.23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.35	9.75	12.87	14.69	16.02	15.45	12.87	100
27	5.30	15.54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	20.84	7.68	22.30	5.67	9.87	2.93	9.87	100
28	10.02	4.32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.53	9.17	11.98	14.05	16.34	16.00	13.58	100
29	10.67	6.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	7.18	10.83	14.93	12.42	13.36	11.54	13.02	100
30	10.17	6.46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.86	11.23	15.80	13.04	13.11	11.12	12.22	100
31	10.63	4.87	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.94	10.38	12.84	13.60	14.78	14.69	13.25	100
月平均	10.15	6.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.82	10.39	14.51	12.78	13.54	13.07	12.68	100

表 10.5 92 (2003) 年 8 月,台北港 2 號測站所測波向分佈百分比統計表 (續)

波向	Ν	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	合計
日期	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
1	13.59	5.69	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.31	10.88	11.35	11.49	12.21	14.34	15.13	100
2	14.05	5.82	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.36	10.81	10.94	11.38	12.05	14.38	15.20	100
3	11.14	4.55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.42	10.16	12.26	13.71	14.51	15.43	13.83	100
4	11.43	4.97	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.89	10.62	12.92	13.52	13.04	14.67	13.95	100
5	11.66	5.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.02	10.77	12.82	13.09	12.73	14.50	14.23	100
6	9.85	7.89	0.00	0.00	0.00	0.00	0.00	0.00	0.00	8.72	10.04	16.23	12.27	11.82	10.84	12.35	100
7	10.27	4.81	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.85	9.96	12.74	14.12	15.22	15.08	12.96	100
8	11.26	4.89	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.80	10.21	12.19	13.28	14.51	15.04	13.82	100
9	11.22	4.87	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.78	10.32	12.56	13.35	14.20	15.13	13.58	100
10	14.04	5.64	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.99	9.75	10.26	10.94	12.68	15.40	16.31	100
11	17.42	6.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.77	8.29	7.81	8.19	10.55	15.93	20.96	100
12	13.12	5.54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.06	9.51	10.79	11.46	12.97	15.24	16.31	100
13	11.07	5.94	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.38	10.15	13.78	12.56	13.00	13.34	13.78	100
14	10.73	4.65	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.57	10.09	12.45	13.98	14.66	15.12	13.75	100
15	11.29	5.39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.49	10.58	13.36	12.95	12.80	14.15	13.99	100
16	13.59	5.69	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.31	10.88	11.35	11.49	12.21	14.34	15.13	100

表 10.6 92 (2003) 年 9 月,台北港 2 號測站所測波向分佈百分比統計表

波向	Ν	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	合計
日期	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
17	9.83	5.11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.16	9.64	13.73	13.84	15.54	14.63	12.51	100
18	11.34	5.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.03	11.49	14.12	13.18	12.16	12.83	12.87	100
19	11.13	4.93	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.79	10.00	11.82	12.85	14.64	15.66	14.18	100
20	11.49	5.14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.09	10.36	12.95	12.66	13.19	14.68	14.43	100
21	12.35	5.32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.02	10.48	11.80	12.37	13.49	14.85	14.32	100
22	13.25	4.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.59	9.79	10.67	11.53	12.99	15.78	16.41	100
23	13.02	5.56	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.12	9.78	11.19	11.49	12.87	15.11	15.86	100
24	12.66	5.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.10	10.00	12.57	12.05	12.35	14.71	15.49	100
25	12.79	5.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.89	10.10	11.17	11.75	13.19	15.55	15.45	100
26	11.63	5.11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.90	9.91	11.62	12.36	13.83	15.47	15.18	100
27	13.26	5.21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.89	10.34	11.23	11.48	12.34	15.30	15.94	100
28	12.92	5.27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.87	10.24	11.25	11.63	12.43	15.51	15.87	100
29	11.34	4.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.69	10.07	11.73	13.05	14.72	15.39	14.21	100
30	11.52	4.76	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.62	10.26	11.89	12.85	14.26	15.48	14.35	100
月平均	12.09	5.31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.14	10.15	12.07	12.39	13.25	14.84	14.76	

表 10.6 92 (2003) 年 9 月,台北港 2 號測站所測波向分佈百分比統計表 (續)

波向	Ν	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	合計
日期	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
1	11.41	4.95	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.98	10.42	12.77	12.93	13.47	14.87	14.19	100
2	11.56	4.96	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.90	10.02	11.91	12.82	14.27	15.46	14.11	100
3	12.50	5.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.86	10.29	11.54	12.13	13.24	15.20	15.16	100
4	15.72	6.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.22	10.10	9.74	9.71	10.96	14.89	17.59	100
5	13.98	5.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.03	10.13	10.26	10.91	12.55	15.37	16.16	100
6	14.05	5.51	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.95	10.11	10.49	10.97	12.35	15.27	16.30	100
7	14.83	5.65	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.86	9.50	9.55	10.23	12.29	15.75	17.33	100
8	13.15	5.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.65	9.39	10.50	11.23	13.29	16.31	16.47	100
9	12.02	4.89	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.64	9.70	11.32	12.05	13.83	16.06	15.48	100
10	11.75	5.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.83	10.04	11.72	12.49	13.96	15.35	14.79	100
11	11.64	5.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.35	10.08	12.24	12.34	13.61	14.69	14.54	100
12	9.39	10.22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	12.16	9.48	17.60	8.82	12.08	8.54	11.71	100
13	10.47	5.11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.23	10.56	13.39	13.82	15.39	13.76	12.26	100
14	15.87	6.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.12	9.55	9.19	9.55	11.37	15.32	17.99	100
15	15.72	5.88	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.02	9.49	9.18	9.68	11.44	15.30	18.29	100
16	13.85	5.35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.76	9.70	10.10	10.96	12.97	15.80	16.52	100

表 10.7 92 (2003) 年 10 月,台北港 2 號測站所測波向分佈百分比統計表
波向	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	合計
日期	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
17	12.86	5.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.64	9.97	11.10	11.81	13.22	15.53	15.76	100
18	13.43	5.32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.88	10.20	10.80	11.34	12.86	15.38	15.81	100
19	13.64	5.43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.96	10.08	10.80	11.29	12.43	15.27	16.09	100
20	13.05	5.22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.83	10.19	11.02	11.66	13.03	15.39	15.60	100
21	11.78	4.82	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.64	10.10	11.64	12.69	14.00	15.65	14.67	100
22	12.49	5.23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.00	10.00	11.33	11.89	13.52	15.55	14.98	100
23	15.21	5.81	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.97	9.51	9.49	9.84	11.80	15.60	17.76	100
24	13.59	5.31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.87	9.73	10.35	11.04	12.81	15.82	16.47	100
25	11.99	5.11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.15	10.29	11.86	12.41	13.64	15.02	14.54	100
26	11.67	5.16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.07	10.12	12.20	12.64	13.61	15.19	14.36	100
27	10.13	5.92	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.27	10.17	13.86	12.80	13.92	13.60	13.34	100
28	11.72	5.32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.23	10.47	12.43	12.70	13.44	14.70	13.99	100
29	13.35	5.43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.08	10.42	11.11	11.59	12.45	14.98	15.59	100
30	12.58	5.24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.89	10.30	11.25	11.85	13.36	15.43	15.11	100
31	11.26	4.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.76	10.11	12.17	12.95	14.51	15.28	14.16	100
月平均	12.80	5.49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.22	10.01	11.38	11.58	13.09	15.04	15.39	100

表 10.7 92 (2003) 年 10 月,台北港 2 號測站所測波向分佈百分比統計表 (續)

10-34

第十一章 颱風資料分析

台灣由於位處西太平洋及南海地區發生的颱風的主要路徑上,故 颱風侵襲期間所測得之海氣象數據,對於海岸工程研究來說,是相當 重要的。本年度 2003 年內自 4 月至 11 月間西太平洋及南海地區所發 生的颱風,共有九個影響台灣,由中央氣象局發佈颱風警報,發生順 序編號、名字及影響時間列表如表 11.1。

颱風警報編號	名字	警報期間
1.	柯吉拉(KUJIRA)	0421-0424
2.	南卡 (NANGKA)	0601-0603
3.	蘇迪勒(SOUDELOR)	0606-0618
4.	尹布都(IMBUDO)	0721-0723
5.	莫拉克(MORAKOT)	0802-0804
6.	梵高 (VAMCO)	0819-0820
7.	科羅旺(KROVANH)	0822-0823
8.	杜鵑(DUJUAN)	0831-0902
9.	米勒 (MELOR)	1102-1103

表 11.1 2003 年中央氣象局發佈颱風警報表

這九個颱風中,以行進路徑來檢視,有五個是在台灣南部陸地及 海面掠過,對位居台灣北部的台北港影響有限,不列入特別討論。另 外四個颱風柯吉拉、蘇迪勒、梵高、米勒則因路徑由台灣北部或東北 部海上通過,對台北港海域較有影響,而這四個颱風中梵高颱風係輕 度颱風,8月19日於台灣東南方海面形成,維持穩定的西北向快速推 進,通過台灣北部海面後,於20日8時即於馬祖北方登陸大陸後減弱 為熱帶低氣壓。自生成到快速通過僅一天,故海象包括波、流均無異 常變化。現將其餘三個颱風柯吉拉、蘇迪勒、米勒的路徑圖及實測資 料值(包括風速、風向、波高、週期、波向、流、流向、水位)時間 歷線綜合繪成圖 11.1、圖 11.2 及表 11.2 加以說明,本年度五月以後因 為樁上已拆除風速計,故缺少風資料。綜觀上述颱風影響台灣期間, 颱風中心均離台北港有相當距離,因此在實測資料上顯現出的極端數 值不致太大,對台北港未造成嚴重威脅。

1. 柯吉拉(KUJIRA)颱風

強烈颱風柯吉拉於 4 月 11 日在關島東方形成,然後向西推進,19 日接近菲律賓東方海面後轉西北向朝台灣東南岸接近,23-24 日延台 灣東部海面北上,25 日後逐漸遠離台灣,在南韓南方海面後減弱成 熱帶低氣壓。此颱風暴風中心通過台灣東部海面,對台影響期間測 得之最大 10 分鐘平均風速 15.6m/s,發生在 21 日 10 時。海流流速 極 值 則 出 現 在 颱風 尚 未 接 近 台 灣時 之 19 日 14 時,其數 值 103.7cm/s,颱風較接近之 20 日 15 時也有 96.2 cm/s 之流速。波高於 21 日 0 時起快速增高,H_{1/3}較大值發生於颱風抵達前的 21 日及遠離 後的 26 日,相對來看,颱風中心通過台灣東部海域,最接近台灣的 23-24 日波高值反而不是最大。全影響期間 H_{1/3}極值為 21 日 7 時的 1.95 米。

2. 蘇迪勒 (SOUDELOR) 颱風

中度颱風蘇迪勒於 6 月 13 日在菲律賓東方海面形成,然後向北北西 推進,一路上以穩定的西北向前進,17 日中心進入巴士海峽後轉偏 北加速前進,18 日於通過台灣東方海面後,轉向東北通過琉球海域, 維持東北向通過南韓南方海面,19 日減弱為溫帶氣旋消失。此颱風 行徑與強烈颱風柯吉拉相似,對台影響期間通過台灣東方海上,對 台影響期間測得之海流流速極值則出現在 18 日 16 時,其數值 113.2cm/s。當時流向 ENE,波高於 16 日起逐漸增高,H_{1/3}較大值發 生於 17 日下午至 18 日上午。全影響期間 H_{1/3} 極值為 17 日 7 時的 1.72 米,比強烈颱風柯吉拉影響期間極值略低,當時週期為7.1 秒 波向 N。

3. 米勒 (MELOR) 颱風

米勒颱風於 10 月 30 日於菲律賓東方海面形成,然後一路上以西北向前進,11 月 1 日登陸呂宋島後維持原向,由呂宋島北岸出海,2 日進入巴士海峽,以北北西轉北北東向經過台灣東南部近海,朝琉 球方向前進,4 日減弱為熱帶低氣壓消失。對台影響期間測得之海 流流速極值則出現在4日17時,其數值99.0 cm/s。由於十一月初 儀器顯示之流向有異常,故未繪入圖中,波高於3 日起逐漸增高, 較大值發生於3 日上午至4 日上午,影響期間 H_{1/3} 極值為3 日9時 的 2.63 米,當時週期為 7.0 秒 波向 NNE。

相關颱風影響期間的觀測數據極值見表 11.2。

柯吉拉(KUJIRA)颱風					
波浪(H _{1/3})	波浪(H _{1/3}) H _{1/3} 極值(米)		對應 T _{1/3} (秒)	波向	
	1.95	4月21日	6.5	NNE	
		07:00			
海流	流速極值(cm/s)	時間	當時流	向	
103.7		4月19日	NE		
		14:00			
10 分鐘	平均風極值(m/s)	平均風極值(m/s) 時間 平均風風向			
平均風速 15.6 4月		4月21日	NE		
		10:00			
蘇迪勒(SOUDELOR)颱風					
波浪(H _{1/3})	H _{1/3} 極值(米)	時間	對應 T _{1/3} (秒)	波向	
	1.72	6月17日 07:00	7.1	Ν	

表 11.2 影響台北港颱風事件海氣象觀測數據極值表

海流	流速極值(cm/s) 時間		當時流	當時流向			
	113.2	6月18日	18日 ENE				
		16:00					
	米勒(MELOR)颱風						
波浪(H _{1/3})	H _{1/3} 極值(米)	時間	對應 T _{1/3} (秒)	波向			
	2.63	11月3日	7.0	NNE			
		09:00					
海流	流速極值(cm/s)	時間	當時流	向			
	99.0	11月4日	-				
		17:00					

第十二章 結論與建議

綜合前述各章工作項目包括新觀測樁設置、風、波浪與海流等海 氣象觀測、平面流況調查、懸浮質調查、以及海岸地形變遷數值模擬、 雷達遙感監測等論述,歸納重要結果如后。

- 為因應舊觀測樁傾斜可能危及觀測作業問題,本年度正辦理新觀測 樁設置事宜,為此,相關風、波浪與海流等項觀測作業遭受部份影響。
- 2.本年度風速及風向觀測資料僅記錄四及五兩個月份(詳4.1節說明), 依據分析結果顯示,4、5月已屬春季氣候較不受東北季風影響,風 向以NE及ENE較多,約佔三成左右,其他風向比例則均勻分佈。 風速方面,4月份有四成比例之風速小於5m/s,而仍有近二成大於 10m/s,其最大風速為15.6m/s。5月份則有六成之風速小於5m/s,約 有一成比例大於10m/s,其最大風速為13.8m/s。
- 3. 台北港海域波浪特性之統計結果,冬季時期因受東北季風影響,其 全季之平均 H_{1/3} 波高達 0.99m,週期以小於 6 秒者居多,有七成之比 例;波向以 N~NE 間佔多數,主波向為 NNE 方向。春季波浪之平均 波高為 0.57m,週期集中於 5~7 秒間;波向有稍偏西北方向之趨勢, 但仍以 N~NNE 方向較為多數。夏季之波浪較為平穩,超過七成比例 之波高小於 0.5m,其平均波高為 0.45m,週期分佈較分散,仍以 5~7 秒者為多;波向則呈現散漫多變,較無法界定主要方向。秋季時又 漸受東北季風影響,再加上稍受颱風作用,整季之平均波高達 1.0m, 週期分佈主要集中於 5~7 秒間;波向以 NNE~NNW 方向為最多,主 波向為 N 方向。全年之最大 H_{1/3} 波高發生在 1 月份,其極值為 3.73m, 當時週期 8.3 秒,波向則是 N 方向。
- 海流特性統計分析方面,台北港海域之海流以潮流為主要成份。依 全年四季期間區分,有關流速統計結果而言,各季之平均流速按冬、

12-1

春、夏、秋等依序為 35.8cm/s、35.9cm/s、31.7cm/s 及 36.7cm/s,而 全年之平均流速為 34.9cm/s 與各季之值差異不大。各季之流速分佈 比例,以 50cm/s 為界區分,除夏季平均流速稍小,約有 85%比例小 於 50cm/s 外,其餘三季小於 50cm/s 者,約佔七成之比例。流向分佈 方面,由於受台北港地區半日潮影響,冬季與春季之流向主要集中 於 ENE 及 WSW 方位,約各佔三成之比例分佈;而夏、秋雨季之流 向,退潮時以 ENE 方向為主要流向,但漲潮時則分散於 W~SW 之 間。全年各月發生之最大流速除七月份稍小外,其餘約在 95~123cm/s 之間,整年度最大流速極值發生在 5 月份,計有 122.6cm/s,當時流 向為 ENE 方向。

- 5. 台北港現有港口附近海域表面海流運動方向,於漂流浮標施測範圍內,漲潮時段大抵為東北往西南方向,表面流速如不受風向影響, 平均流速約在 0.3~0.4m/sec 之間;如受風向影響則增大至 0.6~0.9m/sec。退潮時段之流向則為西南往東北方向,表面流速如不 受風向影響,約在 0.6~0.7m/sec 之間;如受風向影響則平均流速減 低至 0.1~0.3m/sec,調查結果大致和現場資料分析脗合。
- 6. 淡水河關度附近屬感潮河段,每天有兩次漲退潮,潮差變化1至3m, 退潮流一般大於漲潮流,與水位變化相位相差90度,大潮時退潮流 流速可達3節流,而漲潮流流速則只有2節流。淡水河水中懸浮質 濃度受河川上游集水區降雨量影響甚鉅,平時河川懸浮質含量並不 高,但若上游山區降下大雨,雨水沖刷帶下大量泥土,將使河川懸 浮質含量劇增達10倍以上。根據歷年來淡水海域斷面水深測量結 果,總結全域之土積量變化,發現近三年來有趨於穩定並受輕微侵 蝕現象。這是否為上游地區加強水土保持而有所成效,或只是短期 的氣候因素,尚須繼續審慎觀察。
- 7.台北港鄰近海岸地形變遷主要受到波浪、潮汐及淡水河交互作用所 形成近岸流系統,以及海岸漂沙、河川輸沙等多重因素之影響。本 年度有關海岸地形變遷之數值計算,著重於建立一完整之波流場數

值計算模式,再進而概算台北港鄰近海岸之變遷情況。依據整體水 理計算結果,本海域之流場受潮流影響,呈 NNE~SW 之走向,退 潮時沿岸往 NNE 方向,而漲潮時則為 SW 方向。而波場方面,本區 域受水域淺化及台北港外廓防波堤影響,波浪傳遞能量消耗較大, 波高變化亦較明顯。海岸地形變遷數值模擬結果方面,於長時間尺 度計算下淡水海域輸砂方向及能力皆隨季節改變,冬季時,東北季 風時漂砂輸送方向是由北往南,海域漂砂傳輸能力 6000 m³/yr/m 左 右,全區水域淨輸砂優勢方向亦為北往南。如以淡水河南北側及港 址等分區分析,於淡水河北側海岸區域之地形變化不大。於河口至 北防波堤海岸區域,由於本區水域波流場較為複雜,原則上在北防 波堤近岸區有淤積趨勢。在台北港港址附近區域,本區之淨輸沙率 約在 1~100m3/yr/m 以內,呈現輕微淤積的狀態。而台北港以南至林 口附近海岸部份,此區有較多處明顯侵蝕的潛能。

8. 有關雷達遙感測波方面,由於受台北港防波堤高度影響,原有測站 之測波影像頗受影響,故於沙崙漁港旁另設新站,互作補餘。本年 度測波工作除繼續維護並改進展示網頁內容外,主要著重波向分析 方式之改善,由分析結果顯示,雷達測波所得之主要波向和現場觀 測樁之觀測結果相互脗合。

參考文獻

- 黃清和、洪憲忠、吳基、徐如娟等(1997),淡水國內商港漂砂調查及 海、氣象與地形變遷監測計畫(第一年),台灣省政府交通處港灣技 術研究所。
- 2. 蘇青和、吳基、洪憲忠等(1998),淡水國內商港漂砂調查及海、氣象 與地形變遷監測計畫(第二年),台灣省政府交通處港灣技術研究所。
- 3. 邱永芳、洪憲忠、吳基、林柏青、廖慶堂、徐如娟(1999),淡水港外 廓防波堤興建海岸地形及海象監測(第三年),交通部運輸研究所港 灣技術研究中心專刊 169 號。
- 4. 邱永芳、洪憲忠、吳基、林柏青、廖慶堂、王冑、徐如娟(2000),八 十八年八里、林口海岸漂沙調查及海氣象與地形變遷四年監測計畫 (第一年),交通部運輸研究所港灣技術研究中心出版品編號 MOTC-IOT-IHMT-CE8806,政府出版品統一編號009254880066。
- 5. 邱永芳、洪憲忠、吳基、林柏青、廖慶堂、王冑、徐如娟(2001),八 十九年八里、林口海岸漂沙調查及海氣象與地形變遷四年監測計畫 (第二年),交通部運輸研究所港灣技術研究中心出版品編號 MOTC-IOT-IHMT-CE8806。
- 6. 邱永芳、洪憲忠、吳基、林柏青、廖慶堂、王冑、徐如娟(2002),九 十年八里、林口海岸漂沙調查及海氣象與地形變遷四年監測計畫(第 三年),交通部運輸研究所港灣技術研究中心出版品編號 MOTC-IOT-IHMT-CE8806。
- 7. 洪憲忠、吳基、 邱永芳、徐如娟、 魏震、陳義寬(2000),85 年~88
 年八里、林口海域海氣象統計特性研究,第 22 屆海洋工程研討會論 文集,35 頁-40 頁。

- 8. 洪憲忠、 邱永芳、林柏青、蔡金吉(2000),淡水港海域海岸地形變
 遷研究,運輸研究所港灣技術研究中心研究報告, MOTC-IOT-IHMT-CA8909。
- 9. 邱永芳、蘇青和、吳基、林柏青、廖慶堂、徐如娟、何良勝(2003), 八里、林口海岸漂沙調查及海氣象與地形變遷四年監測計畫(總結報 告),交通部運輸研究所研究報告,MOTC-IOT-IHMT-CE8806。
- 10.張富東、何良勝(2003),台北港海氣象觀測樁細部設計,交通部運 輸研究所委託合力工程顧問有限公司辦理。
- 11.楊文衡、廖慶堂、何良勝(2003),台北港海岸地形變遷數值監測模 式研究(第一年),交通部運輸研究所。
- 12.周宗仁、翁文凱、王胄、徐如娟、何良勝(2003),92 年台北港雷達 遙感波浪監測研究,交通部運輸研究所。

「臺北港(92-94年)海岸漂沙調查及海氣象與地形變遷監測作業(第一年)」

報告審查會議紀錄

查、時間:民國九十三年八月十日(星期二)下午二時

貳、地點:本所港研中心二樓簡報室

参、主持人:港研中心 邱永芳主任

記錄:徐如娟

肆、出席單位及人員:

審查委員:	
台灣大學海洋所 梁乃匡教授	37 03 03
國立台灣海洋大學 林炤圭副教授	重我重
成功大學水利及海洋系 許泰文教授	新家文
交通大學土木系 張憲國教授	張憲国
台北港工程处 李雲萬處長	(提書面資料)
本所港研中心:	
邱永芳 主任	かれぶ
简仲璟 科長	前件弱
蘇青和 研究員	A F to
【計畫主持人】:何良勝科長	何良勝
列席單位:	
基隆港務局工務組規劃科	林文族 何重均

伍、主席致詞:略。

陸、合作研究單位【計畫主持人】簡報:略。

- 柒、各單位綜合評論:如本所報告審查意見處理情形表。
- 捌、主席裁示:
 - 一、請執行單位依據委員審查意見修正後,提送正式報告。
 - 二、請依基隆港務局提供之環評承諾事項,研擬後續作業方案,作為未來作 業(研究計畫)編列與辦理之參考依據。
- 玖、散會。

交通部運輸研究所 報告審查意見處理情形表

計畫名稱:台北港(92-94年)海岸漂沙調查及海氣象與地形變遷監 測作業(第一年)

執行單位:交通部運輸研究所(港灣技術研究中心)

	×	
參	與審查人員及其所提之意見	執行單位處理情形
—	張憲國委員	
1.	颱風目錄加頁碼	1.遵照辦理。
2.	海流是否增加潮流分潮分析,並增列殘差	2.將於 93年工作中參考辦理。
	流以利分析漂沙方向之研判參考。	
3.	表面流 9月 25 日與 26 日有流速明顯差異,	3.有關平面流況調查係委託方式執行,未來將注意
	此差異原因可再進一步探討。(圖 7.6 與 7.6	辦理。
	的縱軸 scale 一致)。	
4.	地形變遷分析可增加分區不同時段的變化	4.本項屬現場水深地形測量部份,93年度已執行辦
	探討,詳細分析地形變化。(圖 8.48 及 49	理。
	淤積及侵蝕分界提高至座標0點)。	
5.	此區域之輸沙率可由實測與數值計算二者	5.有關漂沙數值模擬,92年著重於波流場模式之建
	驗証比較。	立,而93、94年再進行漂沙模式之建立,本項
		將於建立模式時要求辦理。
6.	由雷達與實測之波向明顥不同,應再探討	6.有關波向結果之比對,將於93年工作中加強分
	原因。未來是否可增加利用雷達分析出指	析,同時亦將陳列波高比較成果。
	示波高之研究。	
7.	有量測到颱風波浪之颱風紀錄可列於報告	7.相關颱風波浪、海流等歷線圖已於報告中顯示,
	中。	至於颱風逐次之風場資料,應可參考中央氣象局
		發佈者為準。
Ξ,	林炤圭委員	
1.	新觀測椿的選址說明文字建議再加強(例	1.遵照辦理。
	如雷達測波結果)。	
2.	波向或流向(風向)時序圖是否要連線(或用	2.將於正式報告中改進。
	點表示)請檢討其意義	
3.	第十章圖 10.11~10.16 波流儀與 2 號測站所	3.潮波流儀測值為單點量測,而雷達測波則係附近
	測波向有很大差異,請解釋?	平面範圍(1.5Kmx1.5Km)測值,兩者有所異,惟
		主波向大致符合,93年度將再加強此方面之比
		較分析。
4.	第五章圖 5.1.1~5.1.11 週期時序圖是否繪有	4.遵照辦理。
	Tmax、T _{1/10} 、T _{1/3} 及 Tmin 四條線, 請檢查。	
5.	建議是否參考往年觀測結果作長期統計分	5.將於 93年與 94年報告中逐量陳列。
	析。	

6.	目前的流場數值模擬很難看出近岸流場的	6.本項工作係委辦方式執行,將要求辦理。
	變化,是否可能加密網格。	
7.	p.1-1 第三段第五行,除"含"蓋應是涵蓋,	7.遵照辦理。
	第七行"已有"→拿掉。P.4-1 倒數第三行,	
	暫"行"作業→停。	
三、	、梁乃匡委員	
1.	蒐集資料豐富,具參考價值。	1.感謝肯定。
2.	海流建議增加向量平均及低通海流,並分	2.將於 93年工作中參考辦理。
	析與風及季節的關係。	
3.	如果濁度調查的目的是為了了解淡水河輸	3.將於 93年工作中參考探討。
	砂情況,則須先了解濁度與砂懸浮質的關	
	係,但濁度亦不完全由砂所造成。另河流	
	輸砂尚包含推移質,問題並不單純。	
4.	雷達測波向與實測波向的比較,建議只比	4.本項除仍保持原有波向比較外,未來另將參考增
	較較大週期波浪即可。	列較大週期之波向比較。
5.	海流資料逐時歷線圖宜加潮位資料。	5.93年工作中參考辦理。
四、	、許泰文委員	
1.	海岸地形變遷數值模式旨在研究淡水商港	1. 本項已於 93 年工作中要求委辦單位辦理。
	防波堤擴建前後,而防波堤是否攔截沿岸	
	漂沙,使下游海岸沙灘流失,在第九章雖	
	有使用漂砂模式模擬分析,但缺乏驗証工	
	作,對於擴建前後海岸過程建議能夠量	
	化,將潮流和浪所衍生的波流場分開,以	
	便瞭解波浪繞射和突堤效應。	
2.	數值軟體使用 NSW , 比較無法看出堤頭效	2.將要求委辦單位參考辦理。
	應和近岸流場逆轉情形,因此在結構物附	
	近較難看出構物附近地形變化情形。	
3.	流場附近使用何種分潮,以及所使用的網	3.同前張憲國委員第5點說明及林炤圭委員第6點
	格 500m 太大,可能局部流況無法達到預期	說明。
	精度。淡水河口輸沙是否有考慮在模式	
	中,請補充說明。	
4.	流場分析如浮球漂流,應該標示風速和風	4.93年工作中遵照辦理。
	向,以及長時間殘留流,以瞭解靜流場流	
	向。潮流分析建議加強各潮分析。	
5.	颱風期間暴潮巨浪對向、離岸漂沙相當重	5.93年已增列現場水深地形變遷之相關分析工
	要,颱風來襲沙灘流失的量,是否繼之而	作,未來將可由比較成果中得知往昔颱風對於沿
	來的是否可以撤回。	岸地形變遷之影響。

五、	、蘇青和委員		
1.	建議在海岸地形監測分析方面除全區之侵	1.參考	皆張憲國委員第5點說明。
	淤量計算外,未來針對重點局部區域能 增		
	加侵淤量分析,並繪制平面侵淤分佈圖。		
2.	雷達遙感波浪監測建議增加波高及週期之	2.本項	頁工作已於 93 年工作中執行。
	分析並與觀測樁比較。		
3.	颱風資料分析方面所現有颱風路徑,風	3.本幸	报告中已有潮位紀錄,至於暴潮方面分析,未
	場、波浪及流場資料外,未來建議也納入	來將	将參考辦理。
	水位資料。		
六	、簡仲璟委員:		
1.	為符合本計畫之環境監測目的,對於海岸	1. 有 關	閣 Litpack 模式之建立 ,本計畫預定於 94 年工
	水深地形變遷建議以Litpack模式作進一步	作中	P辦理。
	運算,以瞭解海岸線及鄰近水深變化,同		
	時與實測資料作比較。並非僅由漂沙傳輸		
	模式 ST model 來推估何處沖刷或淤積。		
2.	第 9-21 頁最後一行,"在擎宇填海區完成	2.遵照	 究辦理。
	後",請修改為"臺灣北部公共工程剩餘土		
	方填海區完成後"。因為"擎宇"為公司名		
	稱,作為填海區名稱似乎不妥。		
3.	圖 9.13~圖 9.15 中顏色標示,應去除波高小	3.遵照	 究辦理。
	於 0.0 之部分。因為波高不可能為負值。		
4.	雷達測波部分應加強波向之實測比對分析	4.參考	皆張憲國委員第6點說明及林炤圭委員第3點
	及說明。	說明	月。
5.	圖 11.2a~c 中颱風及測站有誤,請修正。	5.遵照	瓮辦理。
七	、邱永芳委員:		
1.	資料的邊際效益應考量增加 , 亦即資料使	1. 本	計畫除將於 93, 94年工作中加強相關觀測資
	用在防治上如何應用和對策的討論。	料	科之統計特性分析外,並於94年總報告中陳列
		相	目關防治對策,供基隆港務局參考。
2.	水工模型以驗証未來,應加進來做校驗。	2. 本	运 項將與基隆港務局研商辦理。
八、	、李雲萬委員:(提書面審查資料)		
1.	Page 2-4,圖 2-1 台北港觀測樁立面設計	1. 7	本圖係觀測椿之立面示意圖,較詳細之圖示及
	圖 , 請使用較清晰之圖 。	1	相關設計條件 , 可參考本中心 「臺北港海氣象
		1 1	觀測椿細部設計」報告書。
2.	Page 2-9 ,施工過程與實景請依實況說明	2.	由於觀測椿正在進行打設工作,報告中之
	即可。	2	2.4 節係預定施工過程之描述,實景則為參考
		5	安平港已完成之實例。
3.	Page 3-3, 3-2-1 節「新觀測儀器系統採購	3. 着	觀測儀器系統預定安裝於新觀測椿上,由於該
	作業預定於民國 93 年 3 月底前採購新儀器		椿尚未完成打設,因此,本節係就該儀器

系統到貨驗收」,請依報告撰寫時間,93 年7日之實際情形描述。	系統種類與功能作一介紹說明。
4.Page 3-5 測得之數據以無線電 MODEM 傳送	4. 此為誤植,將修正。
至位於安平港信號台之岸上基地,請確認是	
否筆誤。	
5.Page 3-7 至 Page 3-13,共 20 日次之現場作	5. 遵照辦理。
業之浪高描述,使用單位宜一致,用米或公	
尺。	
6. Page 3-13, 11月 14 日現場作場之描述宜用	6. 本項是本中心外業工作報告之轉述。
港研中心之口吻描述,不宜用個人觀點。	
7. Page 3-13 3.4 懸浮質調查現場作業,與前	7. 海氣象作業與懸浮質調查作業,兩者作業方式
3.3 海氣象現場作業過程描述非常清楚,前	與分析方法有所不同,其中懸浮質調查作業過
後个一致,請將現場調查日期清楚列出。 	桂牧為繁垻,為免佔用扁幅,具僅作整體性作 **
	美乙描述,相關工作成果可參考界八草說明。
8. Page 6-2, 表 6.1 2003 午台北港現场觀測	8. 10月份中下月之海流觀測因部份資料美吊,
海流資料記録衣内,10月份資料為何僅觀	
測 15 天木兒祝明 ? 衣内祝明研 10 月 2-3 四次約 唯主 (7 10 又左 10 日 2) 2 日次	カ 月 例 10 月 ム 3 日 之 貝 科 , 18 此 州 日 合 有 部
口貝科, 唯衣 0./.10 又有 10 月 2、3 口貝 料誌沿明 2	仍时间真科尔王,业非王部个凹用。
[▲] [▲] [●] [●] [●] [●] [●] [●] [●] [●]	0
9. Fage 0-2 0.5 农 0.5 及农 0.0 漏列单位 CM/S	5. 受照册理业态附有足。
为 C 单 十 面 加 加 詞 查 , F 采 确 忽 及 执 f 所	
10 Page 7-18 至 7~20 之間 7 12 周 7 13 周 7 14	10 將於 93 年丁作中參考老辦理。
之比例尺建議可與圖 7-9 至圖 7-11 一致。	
11. Page 8-2,由圖顯示平時濁度值多在	11. 將於 93 年工作中,注意此類似情況,並參考
200NTU以下,但11月下旬之豪雨則使水	辦理。
中濁度值上升至 2000NTU 以上。為分析以	
上資料建議 Page 8-25 之淡水氣象站之逐日	
雨量資料,可就11月下旬(24日至30日)	
淡水河流域相關之雨量站資料作一比對。	
12. Page 9-2 至 9-5, 9-1-2 地形變遷概況, 本節	12.本項係數值模式之地形描述情況,至於有關地
中有關台北港建港前後之海岸地形變遷因	形水深之量測變化情況,本計畫已於93年中增
相關單位間測量基準可能不一致,以致同	列工作項目,相關意見將參考辦理。
一地區或有侵蝕或堆積之不同情況,建議	
貴所是否可就82年以後之單一單位之測量	
圖作研判,作為海岸地形侵淤之參考。	

九	、林文毅科長	
1.	本案緣於本局辦理台北港開發時,環評審	1.感謝肯定。
	查時,環評委員要求辦理事項。這個案子	
	從民國八十五年開始就有系統的委託港研	
	中心來辦理,預定繼續辦理到民國一百	
	年。港研中心已有六、七年的作業經驗,	
	相信報告內容會非常嚴謹與完整,感謝港	
	研中心給我們的支援。	
2.	環保署民國八十六年審查意見 , 與本案有	2.第2點~第5點綜合處理情形:
	關部分摘錄如下	(2) 有關海岸漂沙所造成侵淤情況之影響,本
	(1) 施工及營運期間進行浚填或清淤工程	計畫 93、94 年中將加強監測與分析,並將
	時,應避免影響鄰近挖子尾自然保留	工作成果提供基隆港務局參考。
	區,並視需要訂定對策。	(3) 有關原規劃之海岸保護、設計條件、水域
	(2) 本案開發對附近海岸地形、海域資源	靜穩度、侵淤防治對策等整體性方案之檢
	影影甚大,應加強及持續監測,定期	討,將與基隆港務局研商,並擬召集相關
	分析、彙,整監測結果 , 並視需要採行	學者專家研討後,提供未來作業之編制及
	適當因應對策。	執行。
3.	依據環保署要求,監測不是本案的目的,	
	依據監測成果來進行分析及必要時採行適	
	當因應對策才是重點。以前蒐集資料時間	
	可能不夠長久而無法分析、印証,目前資	
	料已累積相當數量,建議未來是否可以配	
	合本局環保承諾事項 , 加強一些實務上建	
	議,俾便本局有所因應。例如:	
	(1) 本局環評承諾,當北堤外側淤沙影響	
	淡水河排洪時辦理抽沙清淤。依據監	
	測結果,目前北堤外之淤沙量是否影	
	響淡水河排洪?何時清淤?清淤範圍	
	與數量?	
	(2) 本局前委託貴所辦理動床水工試驗,	
	貴所曾建議在南堤外側做潛堤防護海	
	岸,根據目前監測結果有無必要?	
4.	是否可以依據所觀測成果,作一學術性之	
	研究,驗証原規劃的合理性並提供未來港	
	山通盤檢討之參考。例如:	
	(1) 最近運研所完成的「台北港海域運輸	
	安全之探討(II)台北港海域潮流流場	

	数值候嫌力析」	
	防波堤配置做一些研究及建言,對台	
	北港未來規劃很有幫助。	
	(2) 據了解目前所測颱風波浪已高出原設	
	計波高,原設計標設計標準是否要提	
	高?	
	(3) 現有之水域靜穩度及相關規劃有無必	
	要驗証?	
	(4) 有無必須加強或研究的項目?	
5.	台北港海岸漂沙調查及海氣象與地形監測	
	作業,將持續到民國一百年,但本案委辦	
	期限是到民國九十四年,為配合九十五年	
	預算籌編,敬請提供未來作業或研究計	
	畫。	
+、	基隆港務局設計科何秉均先生:	
1.	波浪資料除二個月未齊,其餘觀測測數據	1.原因已於報告中陳述。
	量好。	
2.	第五章波浪觀測資料分析中有述及 FFT 分	2.將於 93 年工作中辦理。
	析及進行波譜分析 , 而在本報告中未見	
	到,建請增加。	
3.	第六章海流觀測資料分析中分析地點為	3.此為誤植,將修正。
	台北港,文中為何述及安平港,請說明。	
4.	觀察雷達波向觀測與觀測椿波向資料相	4.所謂觀測結果吻合係指兩者之主要波向而言 , 由
	互比對之時序圖,可知兩者之分佈不同,	於兩者觀測分析方式之不同,其波向其他分佈方
	差異量極大 , 而在第十二章第八點結論是	向仍有差異,可參考林炤圭委員第3點說明。
	「觀測結果相互吻合」 , 請解釋其中差異	
	性。	

