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ABSTRACT

Comprehensive categories of discrete wavelets are studied first. The relevant charac-
terizations and various intrinsic properties are extensively illustrated. Physical counter-
parts of analytical aspects are provided when possible. The entropy criteria are applied
to the whole set of wavelets for signals obtained from wave-tank experiments, and the
optimal wavelet basis is identified to be the semi-orthogonal cardinal spline dual wavelet.
Besides, each individual wavelet's pertinency to the applications of water-wave-related
signals is linked to the phase distribution of a wavelet characteristic function. That is to
say, we identified the analytical essence of the statistical behaviors of the entropy results.
Based on the identified discrete best basis, a second optimization is applied, and this is
done through incorporating the advantages related to the continuous wavelet transform.
And this in turn points to the counterpart continuous wavelet. Furthermore, for the better
modeling of real physics, a third optimization is also implemented through the adaptation
of wavelet time-frequency windows. With these results, the author firmly believes that
if you ever find an individual wavelet you have great chance to assign it into one of the
categories covered here; and if not, you have great reason to conceive that its properties
must fall within (or between) the covered characterizations; and thus, in water wave ap-
plications, any wavelet’s fate or possible usefulness is decreed accordingly — overall, it

is really hard to beat the optimum basis and the methodology given in this study.
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Chapter

Introduction

1.1 Background

The usefulness of a particular data analysis methodology is highly case dependent; there
simply exists neither a full-fledged analyzing function basis nor an all-purpose numerical
scheme for all sorts of signals or applications.

Chronically, from the somewhat traditional and well established spectral perspective

to the more recent wavelet viewpoints, we have:
e Fourier transform;
e Short time Fourier transform or windowed Fourier transform;

The Gabor’s analytical signal procedure and the relevant Hilbert transform;

e Various time-frequency transforms associated with individual distributions, such as

Wigner Distribution, Page distribution, Choi-Williams distribution, and et [
e The discrete wavelet transform;

The continuous wavelet transform or the integral wavelet transform.

We note here that, unlike discrete and continuous Fourier transforms, which are basically
identical in both function bases and formulations, the discrete wavelet transform and con-

tinuous wavelet transform are essentially two different categories in that, first, they may

1



use completely different function bases, second, they involve relatively quite independent
formulations.

In the following discussions let assume the analytical target to be a one-dimensional
time series signal; we therefore have the following general features for individual analysis
methodologies.

The Fourier transform yields another one-dimensional data in frequency domain. The
transform correspondence is one independent variable to another independent one.

For short time Fourier transform, it yields somewhat localized frequency contents;
and, when the capping window is shifted along the time axis, it provides time-dependent
spectral information. Through such multiple processes the transform correspondence is
from the time variable to the time and frequency variables.

For Gabor’s analytical signal procedure], it yields instantaneous frequency distri-
bution and oscillation envelope curves along the time line. Here the frequency and the
envelope cannot be regarded as independent variables. The independent variable in the
two corresponding transform domains is bath time.

For various time-frequency transforms associated with individual distributions, they
also provide time-varying frequency contents that are conceptually identical to the short
time Fourier transform, except that the involved analyzing kernels are related to individual
distributions rather than the Fourier kernel.

For the discrete wavelet transforms, the one-dimensional time series yields directly
another one-dimensional coefficient series that contains the information that covers both
time and scale (or representative frequency). The correspondence is one independent
variable to two in one process.

As to the continuous wavelet transform, the one-dimensional time series yields a two-
dimensional coefficient series that contains the information that is also varying both in
time and in scale (or representative frequency). But here, every time point has a scale
distribution components and every scale may play a role at a specific time. And the

transform is a multi-process numerical scheme similar to the short time Fourier transform,

2



except the core difference of the capping windows.

1.2 Non-stationary effects

It is well known that Fourier transform is suitable for characterizing stationary signals
and not quite satisfactory for analyzing transient local phenomena. The reasons can be

illustrated by the following properties of the transform.

e Any Function cannot be both time- and band-limited. If a function is limited
(finitely supported) in one domain, then the independent variable of its correspond-
ing function in the other domain stretches the entire real IRg [n real world
situations, however, signals are almost always limited in time and space; mean-
while, hardware’s capability is generally band-limited. This simply implies that
there is not going to be a function basis that perfectly matches theory to practice. A
slight variation of the Fourier transform is the short time Fourier transform, which
Is just the Fourier transform of the windowed signal, i.e., the original signal capped
with or multiplied by a window function. In short time Fourier transform this prop-
erty of mutual exclusivity in time and frequency localizations is indicated by the
Balian-Low theorem, which basically states that if the window functign of a

Gabor type frame

Omn(t) = e 2"Mg(t —n), (1.1)

in whichm, n € Z, is well localized in time, then the associated Fourier transform
window can not be well localized in frequency. The point here sounds a bit abstract,

but, in reality, this is conceptually equivalent to the following points.

e The Gibbs phenomenon states that, if there is a jump in signal, then the overshoots,
occurring at both sides of the discontinuity when the inverse Fourier transform is
implemented, can never disappear and remain at constant. This amounts to say

that it takes quite many a spectral components to make up a sharp transient feature
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and that a local variation affects a broad range of the spectrum just as the Fourier
transform of the delta function (more precisely, delta distribution) covers the whole

frequency axis.

e Fourier basis functions are periodic and extend bi-infinitely; signals thus studied
are better to be periodic and sampled infinitely. The unavoidable side effects for not
fulfilling these requirements are many: frequency leakages, smoothing errors, edge
effects due to data truncations, aliasing due to under-sampling or non-periodicity
(figurel.1lis actually a case of under-sampling, where a linear chirp is sampled at a
rate half of the Nyquist frequency), and, uncontrollable spectral variance due to the

finite resolution or histogram processing.

Overall, the syndromes associated with the above listed items can be referred to the

non-stationary effects.

1.3 Windowed transforms

Both short-time Fourier transform and wavelet transform try to remedy Fourier basis’s
deficiencies in characterizing transient phenomena by analyzing the set of localized sig-
nals. For the short time Fourier transform this can easily be executed by vanyamgl

nin equationl.l For the wavelet transform this can be illustrated through the use of the
Morlet wavelet by varying its translation and dilation variables.

Both transforms yield local spectral information — more precisely, local scale infor-
mation, if the term "frequency”, “Hz", or “spectrum” is strictly reserved for sinusoidal
functions. However, due to the Balian-Low theorem mentioned above, the waveform as-
sociated with short time Fourier transform can never be truly local in time since in reality
the frequency domain of discrete Fourier transform is always band-limited by obeying
the Nyquist law. In this regard, wavelets can be of exactly local; at least, they must have
suitable or better decaying property such that they contain no zero-frequency component.

Let us further outline a few specific properties pertaining to individual transform:

4



e Both short time Fourier transform and wavelet transform are windowed transforms.
In short time Fourier transform there exist two quite distinctive operations. The
first operation is applying a suitable time-window to the signal; the second opera-
tion is performing the Fourier transform for the capped signal. The corresponding
inverse transform (or reconstruction process) of the short time Fourier transform is
naturally associated with a frequency-window and involves two similar distinctive
operations too. However, in wavelet transform these two distinctive steps are not
clearly observable — rather than using the very distinctive “window (either time- or
frequency-window)” and “Fourier basis function (i.e., sine or cosine function)”, the
“window” and the “basis function” are synthesized in an inseparable specific form
called “wavelet”. In fact, one can clearly solidify this notion by comparing the Ga-
bor type frame (equatioh.l) with the Morlet wavelet when the window function
g(t) of equationl.lis assumed to be a Gaussian bell. The intention for either the
combined operation or synthesized operation is completely the same: to provide a
mechanism (or kernel) for projecting a signal into modulated or oscillating wave

constituents.

e The time-frequency windows in short time Fourier transform keep rigid for different
scales since the window functigtt) in Equationl.1 does not depend am, i.e.,
their widths (usually referring to time) and heights (usually referring to frequency)
do not change for all frequencies. In wavelet transform, the windows are adjusted
to different scales, but the sizes (or areas) of different windows are still fixed, i.e.,
each window’s height and width are inversely proportional and the product remains
constant (either for discrete wavelet transform or continuous wavelet transform).
The concept of fixed size windows is illustrated by the fixed area of the gray blocks
in the phase planes shown in Figufie$andl1.2, where the discrete wavelet packet
transforms are performed for a chirp signal using different bases originating from
the same seeding mother wavelet. In the figures, since the bases are orthonormal, all

time-frequency windows do not overlap. As for the continuous wavelet transform,
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various time-frequency windows severely tangle with each others. And we gener-
ally do not show the actual sizes and shapes of various windows — rather, each
window is represented by a point (or a small area depicting the time-frequency res-
olution) having coordinates corresponding to its centroids in the time and frequency

axes.

The function basis of the short time Fourier transform is the unique orthonormal
Fourier basis comprised of sine and cosine functions; whereas, for wavelet trans-
form, apart from the very loose constrain that the basis function (or the mother
wavelet) satisfies the admissibility condition (for continuous wavelet transform) or
stability condition (for discrete wavelet transform), there is virtually no restriction
on the choice of basis functions. The coefficients of short time Fourier transform,
which represent local Fourier spectral information, still have the exact meaning
of “frequency”. In wavelet transform, wavelet coefficients refer to specific scales
rather than “frequencies”. Here, we generally suffer from their physical inter-
pretability due to the following reasons: (1) No unique basis — the analyzing
function or mother wavelet can be designed in a plenty of ways, and the basis
functions related to the mother wavelet can be either dependent or independent
(orthogonal or non-orthogonal); (2) Scale does not have unit — together with the
first point, it severely hampers out ability to directly perceive the wavelet’s size
and physical shape; and, (3) No fixed algorithm to implement wavelet transform —
many techniques and various adaptations exist, such as, the treatment using flexi-
ble time-frequency windows for continuous wavelet transforrj, [multi-voice [ ]

or multi-wavelet [, =, /] frames, and discrete wavelet transform using different
dilation factors other than the most often seen value of|2Generally speaking,
these varieties may not be as disturbing in certain application fields (such as data
transmission or signal decomposition and reconstruction) as they are for our studies

focusing on the water wave physics.
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Figure 1.1: Phase plane of a wavelet packet’s best basis time-frequency windop)s for

a linear chirp signal that is sampled under aliasing condifimitom) . Here wavelet packets
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has linear instantaneous frequency distribution form 0 to 100 Hz. Note the non-symmetric effects
and the scattering of windows due to the composite frequency bands that form the wavelet.
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e We note that the present scope focuses oiL#{®) Banach space, i.e., the Hilbert
space, since some of the statements here may not apply to other function spaces
or classes'], ~]. Nevertheless, most of the intricacies that differentiate different
spaces are only of analytic interest up until now (e.g., on the existence of multires-
olution analysis (MRA), on the regularity and differentiability of wavelets and its
associated scaling functions). From the practical point of view, it is far enough to

restrict to the Hilbert space, i.e., a space of functions with finite energy contents.

1.4 The objectives

The foothold to use localized transforms in our water wave applications can be stated quite
simply, as well as intuitively — if we perceive our signal as composed of waves which
are limited in both life span and covering distance, i.e., constituent waves are evolving
with time and in space, then it is natural to adopt wavelet as our analyzing function;
furthermore, in addition to this modulation nature, if we also acknowledge that intrinsic
instability due to nonliner effects or boundary conditions is everywhere to be found for
even regular water waves, then it is still quite possible that wavelet decomposition can
provide better descriptions of physics for stationary signals than what can be provided
by Fourier decomposition. Besides, another advantage of using wavelets is the possible
flexibility in adapting their wave forms to our desires; this is related to the modifications
of time-frequency windows for better physical implications.

In this study the contents can basically be divided into five main subject matters.

In the first part we mainly focus on the characterizations of discrete wavelet categories.
And the covered discrete wavelet categories should be quite comprehensive — in the sense
that they have included all the extreme analytical properties in wavelet designs. And it
is the author’s belief that if you ever find an individual wavelet you have great chance
to assign it into one of these categories, and if not, you have great reason to say that

its properties fall within (or between) the covered characterizations and thus its possible
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usefulness (or destiny) trapped accordingly. The relevant characterizations and intrinsic
properties for all the categories are extensively illustrated through the depictions of their
mother and farther wavelets, the translations and dilations of wavelets, the zoom-ins or
blowups of any kind of wavelets, the linear phase filtering features. Physical counterparts
of analytical aspects are provided when possible.

In the second part, we work on the identification of optimum discrete wavelet basis
specifically for the applications in studies of water wave related signals, here various
entropy criteria are adopted for the whole comprehensive sets of wavelets (as well Fourier
basis) using signals obtained from wind-wave-tank experiments.

In the third part we mainly focus on exploring the analytical essence of the behavior of
any wavelet function basis concerning its performance or fitness in our water applications,
in other words, what is the mathematical factor that leads to the different statistical per-
formances based on the entropy. And this is related to the study of the phase distribution
of a wavelet characterizing function (th&(&) function) for each individual basis.

In the fourth part of the contents we mainly focus on the continuous counterpart
wavelet of the identified basis, i.e., a continuous wavelet transform corresponding to the
multiresolution analysis of the semi-orthogonal cardinal spline dual wavelet. In this part
we first address why there is the need of a continuous transform, that is to say, the advan-
tages and disadvantages of discrete and continuous wavelet transforms concerning their
application to water wave studies.

In the fifth part, we address what can be done to improve the physical relevance be-
tween the basis functions and the wave constituents of our signals. Here the topics involve:
the demand of better physics, the uncertainty relationship and the degrees of freedom for
adaptivity, the physics of time-frequency windows of flexible size and shape, and finally
the proof of the existence of admissability condition under such an adaptation.

Overall, it can be briefly summarized, to be used for water wave related signals, that
the present research proposes a data analysis methodology that involves triple optimiza-

tions. O
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Chapter

The Wavelet Bases Tested and Their
Characterizations

2.1 Introduction

In almost all modeling experiments various modeling or scaling laws can at best be par-
tially satisfied. The situation is further complicated for multi-scale and multi-dimensional
phenomena. In the introduction chapter we noted the problems of proper scaling for
the transient phenomenon that involves diversified scales. For water wave experiments
it is acknowledgeable that there may be significant distortions concerning the coupling
mechanisms targeted. For example, a limitation in space as well as the lack of scale di-
versification in the tank may hinder the development of certain mechanisms and impose
restrictions upon the evolutions of certain interactions. With these understandings, as
well as the cognizance regarding the inadequacy of the Fourier spectral approach in our
applications as discussed in the first chapter, it is understandable that, if the modeling of
the proposed physics is at all possible, the deployment of an optimized analyzing scheme
using sensitive and appropriate basis functions is desired. Specifically speaking, we shall
select among a broad array of functional bases the most appropriate one for our signals
and describe the proper analyzing method. Akin to the interest of such an attempt, it war-
rants to give more systematical descriptions of different properties of various categories

of wavelet function bases. Herein we cover a comprehensive set of discrete wavelet cat-
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egories that has essentially included all the extreme and opposite analytical properties in

wavelet designs.

2.2 The numerical programming

We develop the wavelet numerical analysis and all the relevant data processing from the
ground up using the Asyst programming language. It is our desire that the program should
provide full coverage of various wavelet bases and it should also capable of exploring any
related characterizations of wavelet relevant functions. Besides, it should be quite flexible
yet user-friendly. And it is our belief that any keyboard input of data or information
should be minimized to none (cut and paste might in rare cases be unwillingly tolerated).
To achieve such goal, several program add-ins and application auxiliaries are integrated;

notably, these include:

e The Postfix language — This enables the generation of high quality Encapsulated
Postscript figures directly form the core programming, and this much improves the
overall code writing efficiency, as well as eliminates the painful task of plotting the
numerous figures during testings. Besides, full annotations of parameters for all the

figures are much possible and thus analyses are confidently error free.

e The on-screen real time display of PCX format figures — The Encapsulated Postscript
figures is mainly for quality printing, but it forms in the background and dose not
display in real time during the running process of the program; therefore, the on-
screen real time display of figures should greatly enhance the debugging efficiency
and make possible the writing of a huge and complex program that is also user-

friendly, easy to maintain, as well as interactive and extremely flexible.

e The data spreadsheet interface — The input or output of data from and to Excel or
Lotus-123 compatible worksheet is integrated. In cases that articulate figures are

desired such a function is readily convenient.
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e The data interface to Mathematica programming language — This eliminates hu-
man intervention for the transferring of results of Asyst analyses to the post gener-

ation of various two-dimensional phase plane figures.

e The WIinEdt macro programming language — The language is specifically used to
develop the shell environment or the development platform for the Asyst program
code writing. With this all the code components are displayed in much a scientif-
ically organized and eye-pleasant way. Missing such an integrated part the editing

and the debugging of the programs must be quite painful and exhausting.

2.3 Wavelet bases tested and the relevant notations

The Riesz wavelet bases tested here can basically be divided into four categories: or-
thonormal (ON), semi-orthogonal (SO), bi-orthogonal (BO), and orthonormal wavelet
packets bases. For the orthonormal category it is divided into several different subgroups:
Daubechies wavelets (both the most and least asymmetric), Coiflets, Meyer wavelet, and
Battle-Lemaré wavelets.

No detail accounts of these wavelets will be given; only the main criteria and core
features of each categories will be briefed. Let first state the related notations and conven-
tions needed for the context that follows. Let a function or a signal be denotédtlyy
the two-scale scaling function of a Riesz basisplie); the associate mother wavelet be
¥ (1) and its dyadic wavelets bg; k(1) = @w(zit — k), wherej, k € Z andk stands
for translation and for dilation. The concept of translations and dilations are illustrated
in Figures2.1through2.6.

The space/; (formed byy; «, k € Z for a givenj) in the multiresolution ladder are
nested in--- C V_1 C Vo C Vi---, and the finest and the coarsest scale space, say,
for a 1024-point signal, ar€1p andVp, respectively; the number of filter coefficients or
the number of convolution weights b if the associated wavelet is finitely supported

(support length equals td — 1); the dual wavelet and dual scaling function, if exist, be
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J(t) andfﬁ(t); the inner product bé, -); and the Kronecker delta 3¢, j, k € Z, which
is equal to O forj # k and 1 forj = k.

Up until now, all practical wavelets of discrete transform are associated with the the-
ory of multiresolution analysis (MRA)] ' ]. For Riesz wavelets there always exist
dual wavelets except for orthonormal wavelets, which are self-dual. Any discrete wavelet
transform involves two convolution operations: one yields detail information; another
yields smooth information[]. Convolutions can either be implemented in a direct way
in the time domain for compactly supported wavelets or in an indirect way in the fre-
guency domain. We list the basic properties (restricted to real-valued wavelets) and give

the symbols of representation for various categories and subgroups as follows.

2.4 Orthonormal wavelets

The orthonormal wavelets covered here include the following categories: Daubechies
most compactly supported wavelets (denoted as<¥®¥; Daubechies least asymmet-

ric wavelets (OMXxS); Coiflets (OMXC); Meyer wavelet (Meyer); Battle and Lemari
wavelet (B&L). Here in all the subsequent annotatiois an integer related to support

length (physically, the span of mother wavelet curve).

v =1, (2.1)
¢ =9, 2.2)
¥k Yim) = 3j.18k,m, (2.3)
ft) =Y (. ¥ ¥k (2.4)

j.k

One MRA ladder (single set of frame bounds)

One filter pair (one smooth and one detail)
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Figure 2.4: The wavelet dilation concept from scale level O to level 7 for the BO31D wavelet.
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Figure 2.5:The wavelet dilation concept from scale level O to level 7 for the BO370 wavelet. Each
wavelet curve corresponds to an individual translation location.
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Figure 2.6: The wavelet dilation concept from scale level O to level 7 for the ONG66A wavelet.
Each wavelet curve corresponds to an individual translation location.
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2.4.1 Daubechies most compactly supported wavelets (QNA)

The wavelets in this group have maximum number of vanishing moments for given com-
patible support width. Or stated otherwise, they are the most compactly supported wavelets
for given compatible number of vanishing moments. The famous most compactly sup-
ported continuous wavelet belongs to this group and has only four filter coefficients.
These wavelets are quite asymmetry (so, the “A’ inXOM). The mother and farther
wavelets for the group corresponding to the originating points of 12 (boundary point based
on level 2) and 6 (boundary point based on level 3), respectively, for this group are shown
in Figures2.7and2.8. The vanishing moments and the number of filter coefficients are,
respectively,

/‘ﬂwmmza | =0,1,- -, X, (2.5)

N = 2x, (2.6)

wherex is the integer number in ONKA. The minimum number oX is 2.

2.4.2 Daubechies least asymmetric wavelets (GIXS)

For a given support width, these wavelets, in contrast to those of thex@Nubgroup,

are the most symmetric ones (so, the “S” in XOt$, but still not symmetric). They have

the same representations of vanishing moments and number of filter coefficients as those
of ONxxA. But the known minimum number of is 4. The mother and farther wavelets

for this group corresponding to the same originating points as the previous ones are shown

in Figures2.9and2.10

2.4.3 Coiflets (ONxC)

The Coiflets have vanishing moments for bgttand¢; therefore, from Taylor expansion
point of views [], they have high compressibility for fine detail information (i.e., a great

portion of the fine scale wavelet coefficients are relatively small); and henceforth, they
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have simple quadrature rule to calculate the fine smooth information (i.e., the calculation
of the inner product of a function and the fine-scale scaling functions is more efficient).
Since every discrete wavelet transform involves both smoothing and detailing operations,
there may exist some advantages from these two properties for certain applications such
as applications that do not stress lossless of signal contents or perfect reconstructions

[/, 2=]. Their vanishing moments and number of filter coefficients are

foo tytdt=0, 1=0,1,---,x, (2.7)
/OO ¢pMdt =1, (2.8)

/Oo tpt)ydt=0, 1=1,---,x, (2.9)
N = 6x. (2.10)

For this group the mother and farther wavelets are shown in Figuidand2.12

2.4.4 Meyer wavelet (Meyer)

The Meyer wavelet (denoted as Meyer or ME in figures) is the wavelet with most com-
pact support in frequency domain (here, if without any specific assignment, “finitely sup-
ported” refers to time domain). Therefore, due to contrast properties between the two
Fourier domains, the wavelet is infinitely differentiable in time domain, i.e., has an in-
finite Lipschitz regularityC> and does not have exponential decay. And the support
lengthN — oco. The associated mother and farther wavelets corresponding to the same

originating points are shown in Figugel3

2.4.5 Battle and Lemari wavelet (B&L)

The Battle and Lemagi wavelet (denoted as B&L or LE in figures) wf" order is con-

structed from the orthonormal scaling function derived by applying the standard orthonor-
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malization trick to them™ order cardinaB-splineNy, [, /]. Form = 1, it is exactly the

Haar wavelet. The latter is the only finitely supported wavelet in this group (also the case
of BO110=B0O11D to be mentioned below) and is also a discontinuous wavelet with the
most compact support. All other wavelets in this group are infinitely supported. These
wavelets have an exponential decay and pos88s% regularity. The mother and far-
ther wavelets for the Battle-Leméarivavelet are shown in Figug&14 Compared to the
curves of Meyer wavelet (Figur2 13, they look quite identical even though their con-
structions, or derivations, or formula involved (including Lipschitz regularity and decay

property) are completely different.

2.5 Semi-orthogonal wavelets (S0 and SOxD)

The semi-orthogonal wavelets are inter-scale, but not inner-scale, orthogonal. Their scal-
ing functions are cardind-spline Ny, and have finite two-scale relations. Although there
are two distinctive (independent) filter pairs (one for the decomposition and the other for
the reconstruction), there is only one MRA-ladder. It was shown by Chui/[ -] that

the cardinaB-spline wavelet of an order higher them= 3 is almost a modulated Gaus-
sian (but a modulated Gaussian is not a wavelet). Therefore only the fourth order Cubic

B-spline waveletify = 4) is tested. It has the following characterizations.

~

v EY, (2.11)

¢ =9, (2.12)

Wik Yim) = Pk Vi.m) = i1, (2.13)

f(t) = kaf, Vi VK = kaf, ViV ke (2.14)
I Js

N =3x—-1 for SOxD, (2.15)

N — oo for SOxO. (2.16)
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One MRA ladder,

Two filter pairs,

The mother and farther wavelets of the fourth order and the associated dual wavelets

are shown in Figur@.15

2.6 Bi-orthogonal wavelets (BG&xyO and BOxyD)

The wavelets in this category are constructed also by Daubechies, and are sometimes
called non-orthogonal wavelets. As is well known all real-valued orthonormal com-
pactly supported wavelets, except the Haar wavelet, are not symmetrical. However, from
the point of view of reconstructing a signal from its partially truncated wavelet coeffi-
cients, the symmetry is a desired property of the filter when a more natural perception
or smoother variations is important. There is a very practical implication here: if non-
symmetrical function bases are used, then a small change in the wave form causes signif-
icant variations of scale information. In other words, to have minor impacts to the data
analysis, it is desirable to have bases as symmetrical as possible. Moreover, when consid-
ering that random errors, or noise, or uncontrolled factors are present, we should be able
to comprehend the significance of this property. In fact many of the figures given in this
study indicate such a feature. The symmetry can be achieved by sacrificing orthogonality;
if this is the case one has dual pairs for both wavelets and scaling functions. It is obvious
that conditions for semi-orthogonal cases are more general than those of orthogonal ones,
and the bi-orthogonal cases are even more general. This situation is clearly indicated by
the additional freedom of dual scaling function, as is reflected by the two parameters
andy in the notations of BQyO and B&XyD. Nevertheless, the wavelets in this category
involve only one pair of independent filters for both decomposition and reconstruction
even though there involve two different MRA ladders that are associated with their own

individual sets of Riesz bounds. This is quite opposite to the case of semi-orthogonal
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wavelets where they involve one MRA ladder but with two filter pairs.

~

v EY, (2.17)

¢ # 9. (2.18)

(Wi V.m) = (Bik PLm) = 8j18km, (2.19)

ft) = (L vjvik= D> (L. ¥ji¥ik (2.20)
j.k ik

N =2y+x—1 for BOxyO andx odd, (2.21)

N =2y +x —2 for BOxyO andx even (2.22)

N=2y+x—1 for BOxyD andy odd (2.23)

N =2y +x—2 for BOxyD andy even (2.24)

Two MRA ladders

One filter pair

The mother and farther wavelets for this group and the associated dual wavelets are

shown in Figure®.16through2.19

2.7 \Wavelet packets

The wavelet coefficients derived from an orthonormal wavelet decomposition can be fur-
ther decomposed by using either the set of filter coefficients (called two-scale sequence
in Chui [']) associated with the original wavelet, or different sets of filter coefficients
associated with other orthonormal wavelets. Therefore, basically there can be infinitely
many wavelet packet decompositions. These further decompositions are of a tree-like

refinement process and are called the wavelet packet transform. The wavelet packet coef-
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ficients give better frequency resolutions with longer time supports. There are no simple
formulas to describe the tree-like decompositions, but a schematic plot help elucidate the
mechanism shown in Figuiz20 The branch patterns and the number of branches can
be chosen in any way so long as there is no repeat occurrences within any column under
the stretch of the coefficients. That is to say, any column, wide or narrow, must have
one and only one contribution from all levels (rows). Due to the tree-like process the
computational works are dramatically increased.

For this category we have two criteria for selecting our best basis. One is still called
the “best basis”; another “best level basis”. Take for example, for a 1024-point signal, the
finest level occurs af = log, 1024 = 10 and there are'? different choices of bases.

And within these 20 choices the one which yields the minimum entropy is called the
“best basis”. And if we enforce the restriction that all wavelet packets be at the same level
j, then we have 10 levels (0 to 9) to choose from; the level that yields minimum entropy is
called best level basis. The indexes of a wavelet packet coefficient, i.e., the subscript and
superscript ofJ labeled in the figure determine the time of occurrence of that coefficient
and also indicate the associated support length and frequency resolution, i.e., the shape
and location of the coefficient’s time-frequency window within the phase plane. Concepts
regarding the wavelet packet transform can be seen in Figlreédgain we also see the
effects of non-symmetrical filtering. One specific feature is that the areas of all individual

windows are all equal.

2.8 Wavelet blowups

Wavelets are fractal in nature, that is to say, no matter how detail we zoom into the wavelet
curve its blowups all show similar characterization, and this is related to the wavelet
differentiability, regularity, support length, and decaying property.

The Asyst program is written to be able to blow any wavelet constructions, such as

mother and father wavelets, wavelet bases and wavelet packet bases at any point on any
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level. A few examples are shown in Figur21to 2.28
Her we note that wavelets with fancy analytical properties are often of bizarre wave
forms and not of our choice for studying water wave related physics — either judging
from they entropy values to be given in the next chapter or form their stability conditions.
Moreover, this blowup exercise hints the behaviors of several numerical and theo-
retical aspects of wavelet analysis, such as the edge effects, the possible differences of
function curves due to finite resolution, and the convergent or error propagation property.
Figures2.27and2.28show the blow-ups of bi-orthogonal wavelet BO310 and BO350,
respectively. Relevant data for BO310 is: Origin of wavelet curve: level 2, position 12
(i.e., element)}? in figure 2.20); Blow-up point: 150; data length: 512. Each sub-figure
shows successive blow-up scale 8f Plere the blow-ups diverge rapidly, i.e., the wavelet
fails to identify itself numerically in the refinement cascade. Relevant data for BO350 is:
Origin of wavelet curve: level 2, position 12 (i.e., elemlaljt2 in figure 2.20); Blow-up
point: 225; data length: 512. Each sub-figure shows successive blow-up sciléieie
the blow-ups converge but go with peculiar inclinations.

Figure2.26also exhibits the grouping tendency of wavelet packeéts.
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Figure 2.7:The mother wavelets of the QA group originating from the point location of 12.
Here the boundary point should be based on a level less or equal to 3.
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Figure 2.8:The farther wavelets of the OA group originating from the point location of 6.
Here the boundary point should be based on a level higher or equal to 3.
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Figure 2.9:The mother wavelets of the Q&S group originating from the point location of 12.
Here the boundary point should be based on a level less or equal to 3.
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Figure 2.10:The farther wavelets of the OIS group originating from the point location of 6.
Here the boundary point should be based on a level higher or equal to 3.
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Figure 2.11:The mother wavelets of the OM&C group originating from the point location of 12.
Here the boundary point should be based on a level less or equal to 3.

32



150 _[(6,1024) Phi-<POL3_BP8,0ri6,Pw10>] 12/02/02-22:56 140 _[(6,1024) Phi-<POL3_BP8,0ri6,Pw10>] 12/02/02-22:56
thonormali(Coi 11 thonormal:(Coi 44
| Or Coiflet) (G) ON1IC €| Or Coiflet) (G) ON44C
—ONIL1C-Phi ——ON44C-Phi
100 - 100 4
- T - T
= =
b 8
Q Q
£ 050 + S 060 +
0] o
o} o
O O
-000 +— 020 —
£ 7;/_“#/\\/ \\
-‘050.0 0 200. 400. 600. 800. 1000 -'020.0 0 200. 400. 600. 800. 1000
xE0 xEO
Point series Point series
1 _[(6,1024) Phi-<POL3_BP8,0ri6,Pw10>] 12/02/02-22:56 140 _[(6,1024) Phi-<POL3_BP8,0ri6,Pw10>] 12/02/02-22:56
A... 221 thonormal:(Coi
0| Or Coiflet) (G) ON22C E | Or Coiflet) (G) ON55C
—ON22C-Phi —ON355C-Phi
080 100 +—
| =]
9 9
Q9 Q
£ 048 S 060 +
1) v
o} o
@] @]
016 020 —
v}
-.02
016.(] 0 200. 400. 600. 800. 1000 'O-O.(J 0 200. 400. 600. 800. 1000
xE0 xEO
Point series Point series
140 _[(6,1024) Phi-<POL3_BP8,0ri6,Pw10>] 12/02/02-22:56
K0 Orthionormal(Coiflet) (G) ON33C
T —ON33C-Phi
100 +—
=
2
=
S 060
1)
o}
@]
020
,__/—\ \//\ B
=02
'0'0.() 0 200. 400. 600. 800. 1000
xEOQ
Point series

Figure 2.12:The farther wavelets of the OC group originating from the point location of 6.
Here the boundary point should be based on a level higher or equal to 3.
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Figure 2.13:The motheltop) and fartherbottom) wavelets of the Meyer wavelet originat-
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and farther(bottom) wavelets of the Battle and Lemari
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Figure 2.16:The mother wavelets of the BOO group originating from the point location of 12.
Here the boundary point should be based on a level less or equal to 3.
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Figure 2.17:The mother wavelets of the BOD group originating from the point location of 12.
Here the boundary point should be based on a level less or equal to 3.
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Figure 2.18:The farther wavelets of the B&O group originating from the point location of 6.
Here the boundary point should be based on a level higher or equal to 3.
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Figure 2.19:The farther wavelets of the B&D group originating from the point location of 6.
Here the boundary point should be based on a level higher or equal to 3.
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Figure 2.20:Schematic representation of the tree-like structure of the wavelet packet decompo-
sition. S(=V in the text) and D stand for smooth and detail information, respectively. U with

superscript larger than 1 stands for further decomposition of D by wavelet packets. All subscripts
mean scale levels. All superscripts mean relative locations of the frequency bands for compatible

subscripts.

41



250 16312 BO20-<BOL2 01l XPUS6 XP ) 1200/02:01:12 50 L0312 BO26O-<PIL2 012 XPO36 XPY3>) 12/02/02:01:14
50T .
I
] . ] .
B0220 BO260
) J Wavelet basis blowupi(L) B0 A:I‘ Wavelet basis blowupi(L)
T: —BO20-POL2 —BO260-POL2
I
i — Seq.0-256 (1) — Seqi0-256 (120)
20 9+ == S 1256 01 =S 1256
I N
LN A -~ Seq.2-256 . -~ Seq:2-256
[N ) -
o TV \\ ‘ | I’\,m JRLE ey | o 1 SCq‘ 3256
g T VTV A o O —Seq, 4256
9] M I - 9]
g 250+ g 0701 )
) ) ]
J J A
7 il
EECN Al
\~ —
Vg !
50+ f 070 + P
" /7
=4 ! T P ‘ —man
! 4 PTY TS Sohuls i
} 21
B 100. 200, 300. 400, 500, Ui 100. 200. 300. 400, 500.
XE0 XE0
Point series Point series
0 16512 BOMO-L20riL 1 XPS6 XP ) 1202/02:01:14 10 19512 BO20-POL20ril 1 XPST XPy ) 12/02/02:01:15
’ r
]
i BO2 I i BO2
B | Wavelet basis blowup;(L) 0240 & J.ll Wavelet basis blowupi(L) 0280
1 —BOZ-PIL — BOZS0-POL2
h — Seq. 025 (12 — Seq.0-257 (12
U == S 1256 1807 =S 157
]
i ',’\\ -~ Seq. 2256 - Seq 2257
7t e 3056 1 = Seq 3057
- 1l -
3 AN —-Seq, 4256 3 —-Seq 4257
Q i N Q
£ 0+ Bk g 060 1
9 \ \ 0 |
0 0 A ||
0 0 \/ % ll
P i
4
7
-060 P
/
4
/
/
. //
4
W 100. 20, 300, 400. 500. Wi 10 20 30 400. 50
XE0 XE0
Point series Point series

Figure 2.21:The blowups of a few wavelets of the B®2 group. Each successive blowup scale
is 2. The originating point of the wavelet function and the blowup location point are labeled in
individual sub-figure.
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Figure 2.22:The blowups of a few wavelets of the B&QA group.
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Figure 2.23:The blowups of a few wavelets of the B&R group.
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Figure 2.24:The blowups of a few wavelets of the B@D group.
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Figure 2.25:The blowups of a few wavelets of the QXA and ONxxS groups.
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Figure 2.26:The blowups of a few wavelet packets of the Ob and ONkxS groups. Note the
grouping tendency of the wavelet packets.
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Figure 2.27:The blowups of the BO310 wavelet, noting the vast difference in the ordinate. Here
successive blowup scale i8.2
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Chapter

The Entropies and the Best Wavelet Basis

3.1 Entropy’s physical pertinence

In studying the physics of certain phenomena using wavelets one of the most intriguing
guestions is how to choose the analyzing wavelet(s). The concern here is quite in contrast
to those studies where they are mainly numerically or analytically oriented. For exam-
ple, in coding of images or acoustic signals the goals are straightforward: the maximum
compression with minimum handling and the highest effectiveness with least distortion;
under such circumstances mathematical relevance between signal and wavelet can be ma-
terialized much more explicitly than physical pertinence needs to be unfolded for our

applications.

From this point of view, for our interests in characterizing the physics of water-wave
related phenomena, it seems, at first, that the aspiration is not on “efficiency” or “com-
pactness”. However, with the understanding that the compactness of a coding means the
closeness between signal component(s) and analyzing function(s) along with the concep-
tion that wave forms which do not look like our signals (or signal components) are ob-
scured from intuitive perceptions of physics, it is justified to find the wavelets that provide
the most efficient or most economical representations for out signals. And this viewpoint
Is related to the concept of entropy — seeming to converge to the same objective for what

are emphasized in different disciplines.
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The works in this chapter are mainly numerical experiments on measuring the “dis-
tances” between our signals and various Riesz wavelet bases given in several wavelet
treatises {, -, ~(), ~-]. No attempt to make new constructions of bases or to extend the
existing constructions is made. Nevertheless, we have tried to include various categories
of Riesz wavelets. We will come to realize that there is really no need to extend the ex-
isting constructions if the associated two-scale scaling function or father wavelet is not
changed, and that a few sparse fractal-oriented wavelejsafe just as impractical as

they may be in our applications.

The wavelets tested are dyadic wavelets with “mathematical sampling rate” 1 (no
unit). They are of most practical interests in applications for discretely sampled signals.
Furthermore, we restrict our scope to laboratory water waves. The criteria used are the

entropy statistics of discrete transform coefficients, including Fourier coefficients.

3.2 The entropy criteria

Entropy is a terminology in the statistical physics, thus it gives indication without assur-
ance. The entropy can be viewed as a measure of the “distance” between a signal and its
reconstructed signal using partially truncated transform coefficients. To avoid the some-
what mystified notions as one might get from some of the readings, it may be better to
give straightforward descriptions by going through the actual numerical process first and
returning to its statistical implication later. Let suppose that we have a 1024-point sam-
pled data, then there is a set of 1024 wavelet coefficient$@= Take the absolute or
squared value of these coefficients, sort them, and then divide the sequenigk (say,

100 or 200 or 300) divisions which are equally spaced from 0 to the maximum value of the
coefficients. Then we have the statistics of occurrence for each division, and the distribu-

tion of these normalized occurrences is the probability density distribution or probability
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density function (denoted by pdf), sép1, p2, ---, pm—1, Pm}. The entropy is
H(p)=—) pilogpi. (3.1)
i

Where, wherp; = 0, it is assumed that 0 log® 0, since in reality one can assumed that
there exists an almost zero probability in that interval without affecting the total sum of
probability, after all it is only a statistics and the modification virtually has no influence
on the norm value. If absolute values @fare takenH (p) is the L1-norm entropy; if
squared values are taken, it is squak€ehorm entropy. Of course another power can be
used, but the squardd?-norm, being the energy, is physically the most significant. The
practical aspect of this definition of entropy is: let suppose two probability distribution
functions sorted in a decreasing order gr@andq, if p decreases faster thap then

H(p) < H(q) ["]. The above inequality of entropy is only one-way correct and the
reverse is not always true, but smaller entropy implies that more energy is concentrated
within a smaller number of wavelet coefficients. Therefore, if only a fixed percentage of
coefficients is kept, the truncated error, i.e., the distance from the total sum, is likely to be

smaller for set of coefficients with smaller entropy

There is another notion, sometimes referred as the geometric natipidr calculat-
ing the entropy. Again, the procedures is given first and the simple physical interpretation
next. By setting the number of divisions to be the same as the number of coefficients
and by defining probability density to be the normalized (with respect to the total power)
value of the squared wavelet coefficient, that is to say, the total eneGy|is= Yilci 12
and the probability density ip; = |ci|%/||C||%, we get the alternative form of entropy by
substitutingP, into Equation3.1:

_ YilcilPloglci|?
IC|12

H(p) = log | C|? (3.2)

The notion here is simple: if one just put more weight on coefficients of small energy and
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less weight on coefficients of large energy (all coefficients being normalized), then the
weighted energy is an indication of entropy. And since taking the log of a value is sort of
a weighting operation and since the total energy is finite, small entropy therefore means
that the number of significant coefficients is small, or stated otherwise, more energy is
concentrated in fewer coefficients.

One equivalent indicator of entropy of a pdf is the theoretical dimenBigm and is

defined asi]

D(p):eH(p):n(pi—pi). (3.3)

As was stated, entropy does not tell how conclusive the result is. But our numerical

results yield little ambiguity regarding the judgement that we can make.

3.3 Results and discussions

To increase the definiteness of the comparisons, we calculate entropy based on several
setups: direct coefficient entropy relatedttnorm based on Equatidh3 (column 1 in
Tables3.1 and3.2), pdf entropy related td.2-norm with 300 (column 2) and 200 (col-

umn 4) divisions, and pdf entropy relatedltd-norm based on Equatidh1 (column 3).
Theoretical dimension for one of the setups is also given (column 5). The tables show
the results using a wind-wave signal from a wave tank experiment. It is noted that if the
peak frequency (or the primary scale) of other signal is significantly different, then, to
be consistent in comparison, the analyzed signal lengths and the sampling rates should
be properly adjusted according to its peak frequency. This is because in the discrete
wavelet transform we need to keep track of the actual physical size of translation so as
to have physical perception of the wave forms. Tahlegive results from all orthonor-

mal wavelets (including B&L, Meyer, ORXA, ONxxS, and OMXXxC), semi-orthogonal
wavelets (Cubid-spline, SO30 and SO3D), as well as from Fourier spectrum. Table

give results from bi-orthogonal wavelets. Many distinctive features can be derived from

the tables.
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e The dual wavelet always gives much smaller entropy than as given by their coun-

terpart wavelet. This certainly verifies that, for our water-wave signals, using

ft) =Y (f. ¥j¥ik (3.4)

j.k

provides a much better efficiency in decomposition and reconstruction than using

ft) =Y (f. ¥j¥jk (3.5)
ik

This also points out that dual wavelets rather than their counterpart wavelets should
always be used as the decomposing basis for either better physical implications
or improved computational efficiency. It may also worth noting that the practical
shapes of all the listed bi-orthogonal wavelets, especially those with snaadtl
y values, are visually quite unrealistical (such as those shown in Figuizésand
2.28. Furthermore, for these bi-orthogonal wavelets, it can be concluded that there
IS going to be very little improvement by further extending the support width related
to y without extending the support width relateddosince increasing the widtly)
from some point on gives no effect on the shape of dual wavelets (sugh-a%
or 9 for x = 3) and since it is the dual, rather than the counterpart, wavelet that

matters for better approximation.

e Entropy values of all orthonormal subgroups do not fall to the level of non-orthogonal
ones. Besides, difference in entropy values of long and short supports can barely be
differentiated, even though there seems to be a very slight indication that entropy
values related to longer support are somewhat smaller. Here the property reflects

the role of linear phase filtering as mentioned earlier.

e Among all the orthonormal wavelets none distinguishes itself from the others. And
we see no clear tendency within any subgroup. However, from the analytical point

of view, the Meyer wavelet is infinitely differentiable or smooth, the B&L is second
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order differentiable, and the others have various degrees of differentiability or reg-
ularity [“]. It is therefore understandable that at the present stage many analytical

properties of orthonormal wavelets are of little practical interests for our signals.

The most striking result is that the dual Culidespline wavelet yields a far smaller
entropy value, even lower than that of the spectral coefficients. Fgylighows the
comparisons of the cumulative probability distribution curves for several wavelet
bases as well as for Fourier basis. This striking feature is reflected by the extreme
flatness of the SO3D curve, nearly horizontal up until 90 percent of energy ratio. At
about 96 percent of the energy ratio there is a crossing between spectral curve and
the SO3D curve. These features practically imply that semi-orthogonal wavelet co-
efficients are better than Fourier coefficients in describing the details of the signals.
Figure 3.2 shows the reconstructions of a section of a signal from its spectral and
SO3D wavelet coefficients of which 35 percent are kept. It is seen that the wavelet
basis yields truer details than does Fourier basis. Again, the reasons for the SO3D’s
strong performance can be attributed to the following characters: total positivity of
the scaling function and complete oscillation of the wavelet. That is to say, the scal-
ing function has no oscillation or zero-crossing; the corresponding wavelet has no
unnecessary oscillation, or no oscillation that is without zero-crossing. Physically,
the two characteristics hint that our laboratory water waves are far less transient
when compared with orthonormal or bi-orthogonal wavelets, and also imply that
the description of waves based on suitable support length or life span is more likely

to adhere to the physics.

For the wavelet packet category we have the best basis and best level criteria. It
may not be difficult to gain a prior idea that the chance is slim for getting better

results using either of the bases. The obvious reason is due to the inherent limita-
tion of wavelet packet transform — wavelet packet transforms are associated only

with orthonormal bases. Since the primitive analyzing functions are orthonormal
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and since orthonormal wavelets perform poorly as just given above, it is therefore
hard to anticipate the same strong performance as that of semi-orthogonal wavelets.
Nevertheless, both wavelet packet criteria do show improvements when compared
with the original orthonormal basis, and the performance of the best basis is cer-
tainly better than that of the best level. Figusd—(b) gives the wavelet packet

best bases and best level curves for B&L and Meyer’s wavelets; they do show im-
provements when compared with the corresponding curves in Figixéa) using
regular wavelet transforms. It is quite certain that the improvement is not to the

degree of semi-orthogonal wavelet or that of the Fourier spectrum.

Figure 3.3 shows cumulative distribution curves of the best level, best basis, and

a few different levels bases wavelet packet coefficients, as well as the curve for
the corresponding regular wavelet transform coefficients; here, all the curves are
associated with ON77S. The curve for the best level comes close to that for the best
basis. Again, wavelet packet best basis and best level yield lower entropy values
than other relevant wavelet bases, but still their curves are far away from that of

SO3D.

Among orthonormal wavelets, we do not see clear differences arising from different
degrees of symmetry (least asymmetricXX$ or most asymmetric OhkA); how-

ever, semi-orthogonal and bi-orthogonal wavelets are symmetric or antisymmetric,
and their entropy values (concerning dual wavelets) are comparatively lower. It
therefore indicates that the linear phase filtering is desired since symmetry or anti-
symmetry implies linear phase of the two-scale sequencd.[ Without the linear

phase filtering visual impairment may occur. The non-symmetric distribution of
time-frequency windows shown in Figurésl illustrates such a significant impact.
Though symmetry is desired, it is hard to describe its influence since there are other
factors that need to be considered (such as the support length and regularity, e.g.,

Meyer and B&L wavelets are also symmetric but their entropy values are not com-
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parable to that of the ideal one).

Table 3.1: Entropy of orthonormal and semi-orthogonal wavelet coefficients as well as spectral
coefficients under various statistic criteria.

Wavelet || L**2coefficient ~ L**2 probability ~ L**1 probability ~ L**2 probability Theotetical
entropy entropy entropy €ntropy dimension
(0 division) (300 divisions) (300 divisions) (200 divisions) ~ (L**2 300 divisions)

B&L 4.691 1.330 3417 1.179 3782
Meyer 4.647 1.294 3.365 1.132 3.646
S030 4833 1.669 3.756 1.488 5.307
S03D 1.823 0.219 1.306 0.172 1.245
Spectrum 2.809 0.270 3.044 0.244 1310
ON22A 4993 1.761 3.891 1.516 5815
ON33A 4773 1.384 3.499 1.225 3.975
ON44A 4790 1.517 3.596 1.363 4559
ONSSA 4819 1.553 3.631 1367 4721
ON66A 4790 1.373 3456 1.203 3.946
ONT77A 4,675 1355 3461 1.203 3.871
ONSSA 4,645 1.229 3.283 1.082 3418
ON99A 4719 1412 3.501 1.252 4106
ONOOA 47787 1423 3511 1.244 4.149
ON44S 4835 1.461 3.557 1.281 4311
ON3S5S 47758 1.492 3.576 1.298 4426
ON66S 4754 1.402 3.501 1.225 4,065
ON77S 4751 1.336 3331 1.188 3.804
ONS8S 4714 1366 3481 1.24 3918
ON99S 4755 1.469 3.570 1.288 4.345
ON00S 4,635 1.278 3378 1.134 3.591
ONI11C 4938 1.696 3.832 1457 5452
ON22C 4827 1.468 3.520 1.284 4342
ON33C 4756 1.488 3573 1.333 4427
ON44C 4,690 1.297 3.337 1.157 3.658
ON55C 4,644 1.309 3.405 1.154 3.703
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Table 3.2:Entropy of bi-orthogonal wavelet coefficients under various statistic criteria.

Wavelet || L**2coefficient  L**2 probability ~ L**1 probability  L**2 probability Theoretical
eniropy eniropy eniropy entropy dimension
(0 division) (300 divisions) (300 divisions) (200 divisions)  (L**2 300 divisions)
BO110 5.395 2.623 4.502 2.299 13771
BO1ID 5.395 2623 4.502 2.299 13.777
BO130 4943 1.806 3.883 1627 6.084
BO13D 5.266 2371 4373 2,053 10.708
BO150 4.366 1.678 3755 1.495 5.357
BOISD 5.2 2291 4321 1.987 9.882
B0220 5.282 2.362 4.363 2.083 10.609
B022D 4434 1181 3.284 1.034 3.057
B0240 4.963 1.862 3.985 1.634 6.438
B024D 4359 1.090 3.200 0.962 2975
B0260 4881 1703 3.835 1492 5.490
B026D 433) 1.064 3174 0.940 2.899
B0280 4357 1.624 3.782 1.452 5073
BO28D 4318 1.069 3.157 0.941 2914
BO310 5.824 3174 4741 2835 23.894
BO3ID 437 1058 2655 0.936 2.880
B0330 5.084 2.001 4,062 1756 7.393
BO33D 4.205 1102 2827 0.965 3.011
B0350 4350 1.697 3.847 1.506 5457
BO35D 4.125 1026 2776 0.908 2.789
B0370 4790 1658 3.821 1442 5.247
BO3D 4.106 0.986 2737 0.873 2679
B0390 4776 1.660 3.835 1432 5.258
BO39D 4.098 0.967 2713 0.806 2629
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3.4 Summary

Using various criteria of entropy statistics of transform coefficients we identify among a
vast array of Riesz bases the best basis for our signals. It is found that, excBpgpliee
semi-orthogonal wavelets, no wavelet basis tested here can reach the level of approxima-
tion given by Fourier spectra. Still, many of the properties of the wavelets studied here are
more of analytical interests and hard to be physically significant. The strong performance
of the semi-orthogonal wavelet indicates the usefulness of modulated Gaussian wavelets
(or the Morlet wavelets) for our applications. Coupling with a few additional features that
are specific to continuous wavelet transforms — such as its redundancy nature, the flexible
time-frequency resolutions, and the desirable conciliatory segment of interest — promising

uses in future applications might be anticipateéd.
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Figure 3.1: The cumulative probability distribution curves of the transform coefficients using
different bases associated with three different transform categories: wavelet, wavelet packet, and
Fourier transforms. Individual function bases are labeled in the figure. The top figure shows those
of the wavelet group as well as a curve for spectral coefficients; the bottom figure shows those of
wavelet packets best bases based on two orthonormal bases used in the top figure.
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Figure 3.2: Comparison of reconstructed signals using truncated spectral coefficients and semi-
orthogonal wavelet coefficients. Here 35% of the coefficients are kept. The original signal is
shown in (a), signal reconstructed from spectral coefficients in (b), and that from SO3D wavelet
coefficients in (c). The semi-orthogonal wavelet is seen to better portrait the original signal, espe-
cially the small scale transient features.
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single mother wavelet. These bases include those of various wavelet packet levels, wavelet packet
best basis, as well as the seeding wavelet basis ON77S; as are indicated in the legend.
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Chapter I

The Phase Distributions of the Wavelet
Characteristic Function

4.1 The wavelet Characteristic functionmy

In the last chapter, by providing the entropy values of the transform coefficients for com-
prehensive bases of discrete wavelet category as well as the Fourier basis, the optimal
basis for the simulation of water wave signals is identified to be the semi-orthogonal cu-
bic spline wavelet; The entropy results are of statistical approach, and they by no means
touches any mathematical insight of the various function bases. Herein this chapter, by
studying the phase distribution of a wavelet characterizing function for each basis, the
analytical essence that gives rise the practical usefulness of a function basis is shown to

be the requirement of a linear phase of the characterizing function.

Following the convention used by Daubechicl fhe wavelet characterizing function
is termed as theng(¢) function, which is the kernel of individual wavelet and has the

following mathematical content:

A multiresolution analysis consists of a sequence of the closed subsypcéshe
nested ladder,

-VoCcViCcVoCV_iCV_C---, (4.1)
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and satisfies the requirement
feV < f(2)eW. (4.2)
The invariance oVp under integer translations states that
feVo= f(-—n) e Vpforalln e Z. (4.3)
Now comes the main statement that there expsts\V so that
{¢o.n; N € Z}is an orthonormal or Riesz basis\, (4.4)

where, for allj,n € Z, ¢jn(X) = V2-1¢(2-1x — n). Here thes is often called the
scaling function of the multiresolution analysis. Furthermore, for{the,; j,n € Z}
there exists its counterpart wavelet basis k; |, k € Z}, ¥j k(X) = V2-iy(2-ix — k),

such that

Piaf=Pif+) (f.yjvjk (4.5)

keZ

Sinceg € Vp C V_1 and¢_1 n are basis i'V_1, we have

¢ = Z hn¢—1,n, (4-6)
with
hn = (¢, d_1n). (4.7)
We therefore have
$(X) =2 hnp(2x —n) (4.8)
n
or
- 1 N
= — ) hne M/2p(&/2). 4.9
) ﬁ; n P(€/2) (4.9)
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In an alternative form

P () = Mo(E/2p(£/2), (4.10)
where
1 .
_ hpe M. 4.11
mMo(§) 73 En € (4.11)

Suffice it to say that theng(¢) function is comprised of the summation of the wavelet
construction convolution coefficients (or weights corresponding to the support length of
the wavelet) multiplied by the complex exponential functions of their individual scales,
and the function is intrinsic to the transcendental formulations of the mother wavelet and

the two-scale equation.

4.2 Phase distribution of themg function

Figures4.1to 4.8 show the phase distributions of all the covered wavelet categories. A

few notable points are summarized below.

e Wavelets with similar visual appearance may show extremal phase difference, such

as those shown in Figurdsland4.2

e In view of the entropy results given in the next chapter, as well as the phase dis-
tributions of all the wavelet considered, we see that linear phase distribution is not
sufficient to guarantee a best performer for the water wave signals — and it seems
that a constant phase is required. The semi-orthogonal wavelet (Ediges the

one with such a property (Figure3).

e Most of the phase distribution curves for the bi-orthogonal wavelets and their duals
are the same not only within their subgroups but also crossing the subgroups. This
proves that lengthening the support length of the wavelet of this category provides

no benefit.

e The lengthening of support length of the orthonormal wavelets may still yield more
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irregular phase distribution curves. Again this disproves any possible benefit that

may arise from further expanding the construction of these orthonormal wavelets.

e Judging from the last point, since two extremal categories of orthonormal wavelet
have been covered, we therefore don’t see any possibility that there exists other

orthonormal wavelet that may provide suitable and better characterization for water

wave physics.U
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Figure 4.2:The phase distribution of the&g function of the Battle and Lemadriwavelet, noting
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Chapter 5

Continuous Wavelet Counterpart of the
|dentified Optimum Basis

5.1 Discrete wavelet transforms versus continuous trans-

forms

In the introductory chapter we listed a few properties related to a few time-frequency
analysis methodologies, such as Fourier transform, short time Fourier transform (STFT),
discrete wavelet transform (DWT), as well as continuous wavelet transform (CWT). And
in a related previous research the Hilbert transform and the analytical signal approach
were also studied and their advantages and disadvantages were highliagrpedr([fact

one of the main themes for all of these discussions centers on the spirit of the present

chapter regarding the minimization of uncertainty effects.

In this chapter, inheriting the identified discrete optimum basis, we mainly focus on
the different usages of DWT and CWT concerning their practical applications to water
waves related signals. That is to say, what is the continuous wavelet counterpart of the

semi-orthogonal cardinal spline wavelet? And why is there the need of a continuous one.

Herein we emphasize that DWT and CWT should be treated as two different entities
— since, unlike the discrete and continuous Fourier transforms where they are dealing

with the same basis as well as deploying basically the same formulations, DWT and CWT
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generally refer to two quite different methodologies which focus on their individual func-
tion bases as well as different data treatment schemes. Most profoundly we press on the

concerns of the following points:

¢ In general, the dilation lattice is in logarithmic measure for discrete wavelet trans-
form (e.g., theag! in the stability condition to be mentioned) and in linear measure
for discrete short time Fourier transform (e.g., 1™t in the above mentioned
Gabor type frame). Continuous transforms do not involve lattice. The concept of
lattice is associated with the concept of time-frequency density, which is defined
as the inverse of the product of dilation and translation stepsHor short time
Fourier transform frames, due to Shannon sampling theorem, the time-frequency
density must not go beyond the value of generalized Nyquist dex®ity; X. For
wavelet transform, however, there is no such a clear-cut limit of time-frequency den-
sity. Moreover, Balian-Low theorem depicts that there is no good time-frequency
localization for a short time Fourier transform frame if constructed under a strict
time-frequency lattice; on the contrary, numerous wavelet bases with good time-
frequency localization have been giveny [, “(]. These physically imply that

wavelet transform may provide better zoom-in.

e The existence of a lattice structure can be either practical or impractical. For water
waves, if we don’t anticipate any significant gaps in the scale contents, that is to
say, the physical process involves time and spatial scales that are “changing” or
“evolving” in a relatively continuous sense, we generally do not appreciate the use

of frames. Here a continuous transform may provide better chance of success.

e Both continuous and discrete wavelet transforms implement a process of integral
wavelet transform over the real lirkR in a continuous sense but they analytically
emphasize the use of different integration symb@i$:and /. Digitally sampled
signals are certainly discrete, but this is irrelevant to the methodology of contin-

uous wavelet transform or discrete wavelet transform. The main difference, from
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the application point of view, is that there is no practical interest of reconstruction
(or inverse transform) for continuous wavelet transform due to the redundant or
non-orthogonal nature of its wavelet coefficients. Both methods are capable of de-
composing either functions defined over the real line or signals sampled discretely.
In reality, applying continuous wavelet transform to sampled data is implemented
in a discrete manner; vig-vis, doing discrete wavelet transform for an unlimited
ladder, such as that of the standard multiresolution analysis @f ¢an describe

any function in infinite detail, i.e., over the whole real line. The concept of unlim-
ited ladder of discrete wavelet transform is illustrated by two examples shown in
Figures2.21through2.28 where the blow-ups of individual segments of wavelet
curves are shown. The figure also illustrates possible bizarre behaviors of certain
wavelets and indicates that mother wavelets with short support lengths might not be
of ideal choices. In addition, a few discrete wavelet transform formulas when gen-
eralized in the limit sense are quite helpful in explaining a few continuous wavelet

transform characters.

All of the Riesz wavelets studied in the previous chapter handle bases with frame
bounds that are either tight or relatively tight; whereas the continuous wavelet does
not involve frame bounds and might not have frame bounds at all when it is analyzed
in the sense of discrete wavelet transform, i.e., not even qualified as a Riesz wavelet.
However, we will see that there is a very natural transition from the discrete wavelet

to its continuous counterpart.

Apart form the specific features listed in the above items, there is a practical interest
in what can be done to improve the physical relevance between the basis functions
and the wave constituents of our signals. For example: does the decaying features
of basis functions akin to the physics of component waves? And this is the topic to

be discussed in the next chapter.
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5.2 The wavelet perspective of an optimum basis

The name of “Wave”-“let” hints a core concept of wavelet analysis: the decaying proper-
ties of the basis functions both in time or frequency domains are at the heart of all sorts
of function bases, and different intricate analytical properties of wavelets are just mani-
festing to these decaying features — to be further clarified in the next section. And since
two decay properties that are analytically quite differentiable may only have very minor
visual differences in their wave forms such as those shown in Figui€and2.14, one
generally feels that the bearing of wavelets’ physical implications is not proportional to
their analytic interests. Nevertheless, we still can benefit from the wavelet approach due
to its flexibility in devising the analyzing wavelets as well as its adaptability in forging the
algorithms. But versatility does not come without the price of ambiguity. For example,
the power spectra of a function are shift-invariant; whereas, wavelet spectra are highly
shift-variant [ -]. Figure5.1shows such a property and it gives us the idea of how sig-
nificant the phase effects may be. And this figure should be regarded as the counterpart
figure in the wavelet analysis to those in the Fourier analysis given in a previous study
on the analytic signal approach by the authci][ Note that all these figures indicate the
possible usefulness associated with the uses of non-orthonormal or redundant function

bases, as well as the drawbacks of bases with tight frame bounds.

5.3 Implications of wavelet frame bounds

If a functiony (1) is to be qualified as a wavelet of CWT, then the only requirement is that

¥ (t) meets the “admissability condition,”

o |\ 2
271/ V(@) do = Cy, (5.1)

oo O]

whereC,, is a constant specific to individugl, and J(a)) is the Fourier transform of

Y (t). Here, among several definitions of the Fourier transform forward and inverse pair,
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Figure 5.1: The shift non-invariant property of wavelet transforms. Top figure in each column
shows individual signal. The middle one shows the wavelet coefficients. The bottom one shows
the wavelet coefficients for the shifted signal (right column: 20 points to the left (using BO22D);
left column: 3 points to the left (using ON33A)). Note that even though Fourier power spectrum is
shift-invariant, Fourier spectral coefficients (without the second power) is still shift-variant. This
property is linked to the poor performances of coherences associated with orthonormal bases to be
explained in a later chapter.
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the adopted one is:

~ 1 o0 .
= — t)e 'etdt 5.2
V() @/_mw )e (5.2)
and
Y(t) = \/%_nf:: U (w)e ' do. (5.3)

The admissability condition is the integration of power spectrum weighted by the
inverse of the absolute value of frequency; therefore, it implies that the wavelet should
have little power at low frequency and is total nil at zero frequency, i.e., the area between
the wavelet curve and the abscissa integrates to zero. This feature of reasonable decay
and finite support length is the outright instinct of wavelet. The dilated and translated
versions of this wavelet ang, p(t) = \/ial//(%)), wherea > 0 anda € R andb € R are
the dilation and translation parameters, respectively;%‘lds the normalization factor

for L2-norm. They, p satisfies admissability condition too.

The admissability condition is a very loose constrain; it does not provide a clear con-
cept of redundancy concerning applying CWT to discretely sampled signals. To illustrate
this redundancy, let us use the discrete wavelet frame (since the frame wavelet certainly
qualifies as a wavelet for CWT¥ra, by; j k(t) = ao_j/zw(agjt — kby), wherea belongs
to the set of discrete dilatiom% andb to the set of discrete translatioaékbo; i,k ez
andap # 1 andbg > 0 are fixed positive constants. For such a discrete wavelet frame we
need to impose a more restrictive conditionya(t) for its admittance, i.e., the stability

condition,

boA <27 3 (a0 )|” < boB, (5.4)
jeZ

where A and B are positive constants and0 A < B < oo. The fixed constantsy, and
27 are intentionally kept since they are related to normalized wavelet basis and since the

magnitudes ofA and B are related to the redundancy of the basis.

The stability condition may look abstract, but we give its physical implication as: to

be able to let a function be reconstructed from its wavelet coefficients, i.e., the opera-
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tion is reversible, we need a process which is convergent when summing all its scales
or frequency components. It is therefore necessary that the sum of the power of all the
constituent elements can neither be nil or infinity. If the sum is zero, then the elements
are all of zero measure — nothing exists. If the sum is infinity, then the elements are
significantly overlapping in time and frequency — there is either too much dependence
or too much ambiguity and tangling (just like two vectors paralleling to each other do not

constitute a good vector basis for two dimensional vector space).

Speaking of the reconstruction of a function from its wavelet coefficients one always
involves a dual wavelet except for orthonormal basis where the wavelet itself is its own
dual — self-dual. And since the roles of a wavelet and its dual can always be inter-
changed in both decomposition and reconstruction, the above statements apply equally
well for dual wavelet; but their frame bounds will generally be different since the sets of
convolution coefficients are different as hinted by the different entropy values given in the

previous chapter.

If the basis functions are normalized and the inequality of the stability condition are
optimized for both the greatest lower bound and the lowest upper bound, i.e. Adnah

B are defined as

. 2 ~ 2
A = inf| T W@l |, (5.5)
0 °
jeZ
21 -~ j 2
B = sup| L) IV@o)l |, (5.6)
0 ez
J€

then an indication of the redundancy is the average valuearid B, #, supposed that

A andB are close to each other (almost tight). We elucidate the possible extreme redun-
dancy of CWT as follows. If the dilated and translated versions of a function originating
from a certain set of discrete stef@g, bp) constitute a frame with frame bounédsandB,

then the frame bounds of a basis using the same function but with finer discrete steps, say
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ap/2 andbg/2, will contain the bounds of coarser discrete steps; therefore, the new lower
and upper bounds both grow together. This nested relation can be extended infinitely and
in the limit sense it is included in the algorithm of CWT. This is the reason why there is
no practical value of numerical reconstruction in CWT, although CWT is reversible ana-
lytically. Another intuitive explanation is even easier to comprehend: when apply CWT
to discretely sampled signal, since for each scale the number of wavelet coefficients is the
same as the number of data points and since we can specify scales in whatever resolution
we like, we virtually have an unlimited number of wavelet coefficients. The sum of the
powers of these coefficients can be unimaginatively huge, or even unbounded; On the
other hand, the sum of signal energy is fixed. If we generalize the redundancy concept
of DWT, i.e., the ratio between the two sums indicates the degree of redundancy, then for
discretely sampled signal a continuous wavelet transform can possibly yield immense re-
dundancy. Though extreme redundancy may exist, we argue that the information content
or usefulness associated with the redundancy may behave like a cumulative pdf curve of
a Gauss function which may saturate at a later stage, and in reality our numerical results
from studies of coherent behaviors of wind-, wave- and current-related signals undoubt-

edly vindicate this point1-].

5.4 Beneficial scenarios relevant to the redundancy

Redundancy may be a nuisance in certain applications such as those that focus on the per-
fect reconstruction of signal or on the efficiency of coding and decoding; however it has
also shown its promising aspects in several applications. Three prominent points are the
results of established cases: (1) Redundancy does not mean that a whole bunch of coeffi-
cients are needed to give a good replicate of the original signal, that is to say, significant
signal contents can still be retrieved from only a comparatively small amount of coeffi-
cients with respect to that of tight or almost tight wavelet frames. (2) Redundancy means

that effects of noise either embedding in the sampled signal or arising from the nature of
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numerical processes (such as frequency leakage) can be reduced by taking advantage of
the vast sample space of transform coefficients. (3) If additional features, such as “total
positivity” and “ complete oscillation” of wavelet are incorporated, the effects on noise
reduction or ambiguity removal may be greatly enhanced; together with the redundancy
effects they facilitate the design of a very beneficial analyzing scheme. An example of
the first point is Mallat and Zhong’s {] (see also Froment and Mallat]) signal recon-
struction from local maxima using a quadratic spline wavelet. In fact, the mother wavelet
they used is basically a loose wavelet (i.e., a wavelet with analytical aspects not being
well defined and therefore not really to be qualified as a wavelet), but they were able to
recover images quite well using only local peak values of wavelet coefficients that are
associated with only dyadic scales. For the second and third points, our studies on the

coherent features in the wind, wave, and rain coupling system serve as an exathple [

One last point to note is to compare the admissability condition of CWT with the
stability condition of DWT. Here one can easily perceive the great difference in flexi-
bility between the two. In addition, the stability condition is a necessary condition, and
not all choices for/, ag, andbg lead to wavelet frames. Moreover, stability may not
guarantee a good numerical behavior. Fig@ré shows the results of a few numeri-
cal experiments, where the problems of numerical convergence are illustrated using the
blow-ups of wavelet curves. In the figure two bi-orthogonal wavelets are blown up around
their individual points using refinement cascade, and the blow-up curves show the pos-
sible intrinsic absurdity arising from peculiar analytical properties associated with these
wavelets. Here, the two bi-orthogonal wavelets are, respectively, with four and twenty
filter weights and both are constructed from quadratic spline scaling funciiofle top
sub-figure indicates a case where the DWT fails numerically to characterize the mother
wavelet (not converging) even though the associated wavelet frame qualifies theoretically
as a Riesz basis. The bottom sub-figure shows strange alternating inclinations of wavelet
curves with a poor convergence. The figure also illustrates the point that, for studying

water-wave related signals and their physics, most of the fancy wavelets with bizarre
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wave forms are not of our choice, as are also indicated by their high entropy values given

in the previous chapter.

5.5 The continuous counterparts or the optimum basis

Let the Gaussian function be

t) = ! e‘% (5.7)
ga()_zm ’ -

wherec is a representative value of the second moment of the Gaussian function and the

constants is for the purpose of normalization, the modulated Gaussian is
b o) =€“gy(t — b). (5.8)

And the Gabor transform of a functiohis

o0

(G f) (@) = (£, G} ) =/ f(t)e '“tg, (t — b)dt. (5.9)

—00

As is stated by Daubechies [] that the Morlet wavelet is almost identical to a mod-
ulated Gaussian, and as is given by Chuj)(Ja modulated Gaussian matches almost
exactly with cardinalB-spline wavelet of order greater than or equal to three, i.e., for
m > 3, the even orde¢y’s (such as the cubic spline wavel¢t) match almost exactly
with

ReGy (1) = (coswt)gy(t — b) (5.10)

and the odd order ones with
ImGgyw(t) = (sinwt)g,(t — b) (5.11)

for a certain set of valuas, b, w.
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In accord with these observances we therefore have an extremely natural transition
from the identified best basis wavelet based on DWT to the following Morlet wavelet
based on CWT,

W () = m VAot _ g=05/2)gt?/2 (5.12)

Centering on the enhancements of physical modeling of water wave signals, in the
following chapter we will further work on the optimization of the CWT processes based

on findings of the present chaptérl
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Chapter 6

The Continuous Wavelet Transform Using
Adapted Time-Frequency Windows

6.1 The demand of better physics

In addition to the various concerns about the peculiar properties specific to discrete and
continuous wavelet transforms as are stated in the previous chapter, herein we focus on
the practical interest in what can be done to improve the physical relevance between the
basis functions and the wave constituents of our signals. For example: does the decaying
features of basis functions akin to the physics of component waves? In fact, this simple
guestion outlines another fundamental theme of this chapter: if time-frequency windows
of fixed shape and size (the case of STFT) is less suitable than time-frequency windows
of fixed size but with flexible shape (the cases of DWT and CWT) in characterizing multi-
scale transient signals, then time-frequency windows which are flexible in both shape and
size should provide even better adaptations. The theme is intuitive right, the background
is not without commitments.

Based on this perception, further concerns evolving from the previous chapter can be
put forward quite simply: (1) Can we utilize this redundancy to improve the relationship
between wavelet's analytical form and its physical interpretability? (2) If redundancy
leads to adaptation, does the adaptation still preserve the complete information content

of the signal studied? (3) Is the scheme of adaptation efficient and easy to implement?
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Question one is related to the distribution or the degrees of freedom of time-frequency
windows in the phase plane and will be dealt with in the next chapter. Question two will
be answered through the verification for the existence of a condition of “resolution of
identity” using a special case of Morlet wavelet, as is also to be given in the next chapter;
for now, a short explanation is that, if one just applies the adaptation to finite range(s) of
scale, then what is lost or unaccounted for in the adaptation process can still be recov-
ered from some dilated and translated versions of some finer scale wavelets originating
from the samey/ (t) in the CWT. The success of Mallat and Zhong’s case also indicates
such a possibility. Question three depends on the adaptation scheme. But, based on the
somewhat intuitive adaptation used here, it is stated that nothing complicate is introduced.
One practical aspect for all the three points is: when analyzing signal we are almost
always interested in only finite scale range(s), so what is really needed is to implement the
adaptation locally. Hence it may be beneficial not to stick with stubborn time-frequency
windows and to adopt a scheme that is numerically with the same easiness and physically

more sound.

6.2 Degrees of freedom and the uncertainty relation

The flexibility of constructing wavelet function basis, i.e., the possibility of the adapta-
tion, is associated with the number of degrees of freedom of the time-frequency windows
within a phase plane. The number of degrees of freedom for an orthogonal basis is gener-
ally defined as the total area of the phase plane divided by the area of the time-frequency
window corresponding to that determined by the mother wavelet. For any time-frequency
kernel the maximum number of degrees of freedom is determined by the Heisenberg un-
certainty relation or Heisenberg’s inequalityj.[ It is illustrated here that, even though

it is impossible to increase the limiting degrees of freedom, there is no further limitation
imposed upon the present adaptation. Besides, this section also serves two purposes: (1)

illustrate the basic functionality of the modulation mechanism for STFT, which in turn is

90



conceptually the same as the dilation mechanism for WT; (2) outline the relation between
redundancy and the Heisenberg uncertainty using possible distribution of time-frequency

windows within a phase plane.

The uncertainty relation states that the product of bandwidjland duratiomA; of a
signal cannot be less than a minimum vaIu% aofhen theA; and Aw are defined as the
standard deviations of packet enetdyt)|? and power spectrurth(w)l2 with respect to

their centroids, respectively:

2.t =02 ft)7dt

NG :
‘ OB

(6.1)

L2 [e-wifelfde o)
v 1T @2 ’ -

wheref = [ t|f)2dt/| f )] andm = [ o] f(w)2dw/| f(w)]l. Asis also il-
lustrated in Chui’s treatise textboo¥][ the time-frequency windowA; A,,, of the semi-
orthogonal wavelet is nearly equal to the minimum value of the Heisenberg uncertainly
principal, and this very optimistically provides the opportunity for applying the adapta-
tions. That is to say, there is an easy to way get round of the uncertainty relation by going
through a modulation process (i.e., multiplying a basis function with a complex exponen-
tial). Since in Fourier analysis a modulation in one domain corresponds to a shift in the
other domain, such a process causes the new variapde increase dramatically. Fig-
ure6.2shows such a mechanism. It is seen that the Aew,, is significantly larger than
A¢D,, i.e., even larger than the limiting value for Heisenberg uncertainty relation; there-
fore, there is quite a lot of flexibility to devise the time-frequency windows. In view of the
similarity between the modulation mechanism for STFT and the dilation mechanism for
WT, especially for the case of Morlet wavelet, we anticipate that there is an ample space
for adapting the time-frequency windows. Furthermore, as pointed out by Braceyyell [
there exists no theorem depicting the lower limitxgfD,,, i.e., no new restriction fob,,;

therefore no further limitation on the number of the degrees of freedom is induced. Over-
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all, it is quite flexible to draw time-frequency windows which generally do not violate the

uncertainty relation when we express a signal in its two dimensional phase plane.

6.3 Time-frequency windows of flexible size and the physics

The algorithm and the physics associated with the adaptation of time-frequency windows
can be illustrated easily by going through practical examples. Though the adaptation
does not need to be confined to any specific type of wavelet, the Morlet wavelet readily
serves for such a purpose. As was stated in the previous chapter that the Morlet wavelet
Is almost identical to a modulated Gaussian, and a modulated Gaussian matches almost
exactly with cardinalB-spline wavelet of order greater than or equal to three, which is
exactly the identified best basis wavelet. Overall we therefore, on the one hand, benefit
from an extremely natural transition from DWT to CWT, on the other hand, gain the

practical merit of the adaptation.

Before we go into the adaptation, let us recount more explicitly two very important
features that distinguish the identified optimum basis from the other bases and that defi-
nitely contribute to the causes of the optimum basis’ successful applications: (1) The best
basis’ cardinal spline scaling function and its associated wavelets possess, respectively,
the nice properties of “total positivity” and “complete oscillation”. We note that these
two properties physically imply that its wave form is relatively smooth and without ad
hoc variations when compared with some fancy wavelets with finite support lengths. (2)
The cardinalB-spline wavelet is either symmetric or anti-symmetric. Therefore, it bene-
fits from the linear-phase filtering. The physical implication of this is: slight differences
in wavelet coefficients will not cause significant differences in their reconstructed wave
forms, or alternatively, the modulations of the wave forms are comparatively less abrupt.
With more natural transitions for both forward and inverse transforms under various cir-
cumstances, the impacts to our perception or visualization of an interaction process due

to varying input conditions are leaning toward relatively evolutionary tendencies rather
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Figure 6.1:Wavelets with fancy analytical properties are often of peculiar wave forms and are not
of our choice for studying water-wave related physics — Either judging from their entropy values
given in the previous chapter or form their stability conditions shown here. Here the blow-ups of
bi-orthogonal wavelets BO310 and BO350 are shown, respectively, in top and bottom halves of
the figure. Related data for BO310 iBlow-up point: 150 (located at the dotted line in figure
(d)); Origin: level 2, position 12 (i.el)22 in Figure2.20); Length: 512 (the curve in figure (d)).
Figures (a), (b), and (c) show successive blow-up scalé.oT e blow-ups diverge rapidly, i.e.,

the wavelet fails to identify itself numerically in the refinement casgalelated data for BO350

is: {Blow-up point: 256 (located at the dotted line in figure (d)); Origilt? Length: 512 (one

of the curve in figure (d) with parts of the curve coincide with parts of the abscissa). Figures (a),
(b), and (c) show successive blow-up scale%fThe blow-ups poorly converge but with peculiar
inclinations}
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Figure 6.2: The uncertainty relation and the modulation versus shift property (adapted from
Bracewell 1986). It is seen that a modulation process rentless, > A;D,. This property
makes possible that the new value/®fA,, can be significantly larger than the limiting value of
Heisenberg uncertainty relation, and therefore provides a great flexibility in devising the time-
frequency windows. The implication of this to wavelet's counterpart is explained in the text.
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than drastic turnovers. Still, one additional implication of practical significance is: dis-
tortions are far less severe when noise and uncertainty are poignant. The phase plane in
Figure6.3and the various blow-up curves in Figui@g, 2.27and2.28 as well as figure

5.1 manifest the problems and possible difficulties associated with wavelet bases that do

not posses these properties.

Up to this point we have illustrated many specific properties, associated either with
DWT or with CWT, that bestow upon our desires when analyzing our water wave related
signals; even though their outstanding effects might only be appreciated when we get to
the reality of analyzing experimental data. But here let us embark the further work on an
improvement — enhancing wavelet's physical implication based on the affinity between

the identified best basis and the Morlet wavelet.

The Morlet wavelet is the following complex function:
w(t) — n—1/4(e—iw0t _ e—wé/Z)e—tz/Z, (63)

in which wq is a constant related to the carrier frequency and the e justifies the
admissability condition. Its Fourier transform is almost a shifted Gaussian and is given
by

7 (w) = - VA[e~@—00?/2 _ g=®/2g=0f/2] (6.4)

In addition to the general meaning of the modulation frequencywtheas the physical
implication of the amplitude ratio — the ratio between the second highest peak and the

first highest peak of/ (t) — i.e.,

r=v2)/v), (6.5)

in whichty is the abscissa of the second highest peak. The exact valueaof be obtained
by solving numerically the transcendental equation derived from the derivative ¢f the

function, but a fairly good estimate is obtained by simply dropping the second term of the
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above complex function since the second term is generally five order of magnitude less
than the maximum value of the first term, i.e.,

2 2 \ Y2
~—~gl-——1) . 6.6
@0 to n( Inr) (6.:6)

The higher thevg is, the smaller the ratio becomes. ltwg is constant, then the ratio

for different wavelet dilations or scales keeps constant too. Here comes the core question:
whether constituent wave components of different scales and time spans all possess this
fixed decay feature? To show that this is not true, let us examine the composite water

wave system that is with viscous damping.

For deep water waves with a clean surface the energy losses due to viscous dissipation
arise almost entirely from the straining of the irrotational motion in the water column,
and the part of contribution from viscous stresses in the surface layer is negligible. It was

shown [ 7, ~ 1] that the time rate of change of the energy density is
E = —2uc?a,’k, (6.7)

wherepu, o, a,, andk are the dynamic viscosity of the water, the wave frequency, wave
amplitude, and wave number, respectively. Since in deep viater (2k) ‘po2a,2,
wherep is the water density, the attenuation coefficient
E
V=5 = 2vk?, (6.8)

wherev is the kinematic viscosity of the water. Therefore the energy density of the wave

evolves as

E = Cie= 2", (6.9)
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whereC; is a constant, and the amplitude decreases with time in accordance with
— _e_Vut — Cze_Zszt, (610)

whereC, is a constant it does not vary. Comparing the decay of wave amplitude of
Morlet wavelet with the decay of the physical model, one sees both similarity and dis-
similarity. The similarity is that the attenuation coefficients in both models have inverse
square dependence on scales — the formét,in)? and the latter irk2. The dissimilar-

ity is in the time dependence of the exponent in the exponential — in Morlet wavelet it

is in t2 dependence, while in the physical model it is in linear dependence. It is therefore
anticipated that Morlet wavelets based on a fixed modulation shape are not good represen-
tations of water waves of different scales. Or stated otherwise, basis functions originating

form a single mother Morlet wavelet do not form a good basis.

Now the situation is clear: the constang either overestimates the viscous decay
of water waves at the low-frequency end or, otherwise, under-estimates those at the high-
frequency end. Form a practical judgement of the modulation curves, itis quite reasonable
to argue that the deviation is probably more significant for waves with a longer life span
when a standard value of Morlet wavelet, i.er, = 0.5, is assumed. The perceptions
here provide the footing for the present adaptation — with different values of amplitude
ratior for different wave scales we are really attemptimg to simulate the evolution process
with a more realistic condition. The expansion or contraction of wavelet support length
for a specific scale just reflects the devising of flexible constructions of time-frequency
windows, and adjusting is in turn using a variableg. The general guideline is to use
a comparatively largetg (associated with a narrower frequency band) for waves of a
longer time support; and vice versa, a comparatively smalj€a wider frequency band)
for a shorter life span. Here it naturally comes to assumeiite be a function of scale,

l.e., wp = wp(a@). And the varying shapes and sizes of the time-frequency windows are
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now determined by

2
va (t E b) = Ve 0D _ g2 ¢ (6.11)

a

6.4 The physical perception of the sizes and shapes of
scales and the adaptations

Earlier we have stated a few nice features of the identified best basis. There is one addi-
tional feature that is practically significant because of its relevance to the Morlet wavelet
— the physical perception of the sizes and shapes of “scales”. Without such a property
everything will look obscure. In fact, we have seen a lot of ambiguities or abstractions in
many studies where they only involve presentations using non-dimensional scales rather
than using the more appropriate physical quantities of carrier frequency even though they
are working on modulated Gaussian or Morlet wavelets. We note that the wavelet coeffi-
cient generally refers to “scale” not to “frequency”. Scale has no dimension, but carrier
frequency has a physical unit and is associated with a Gaussian bell modulator. Fur-
thermore, scale generally corresponds to complicate combination of several frequency
bands such as what implied by the compactly supported orthogonal wavelets shown in
Figure6.3. Therefore, in order to have a clear picture of a “scale” one needs to consider:
What does the basic wavelet look like? What is the actual support length? And, what
is the physical sampling interval? All these severely tangle our thought, and we get lost
easily. Take as an example: the numerical processes for both discrete Fourier transform
and DWT care nothing about the physical units and only the index is important; however,
there is an easy conversion from index to frequency for Fourier coefficient, but not for
wavelet transforms except the ones associated with the Morlet wavelet. It is totally im-
possible to visualize the corresponding object just from the index of a wavelet coefficient.
For the best basis and the related adaptation the difficulty is avoided, since the precise

and physical “carrier frequency” is easily seen tadbe- wp(a)/a, supposed thabg(a)
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Is large enough, say above 5. Again, the point to caution is: illustrations using scale pa-
rametera can be confusing and misleading since the same&y correspond to different

actual scales or frequencies when different adaptations or different wavelets are used.

As was stated in the previous section that the present adaptation can always be ap-
plied to finite scale range(s) and that the transform only needs to be implemented for scale
range(s) that we are interested in. Still, we give an additional description of the flexibility
concerning this. Since one can always regard that the set of sampled data points is derived
from a certain specific function, but there are basically infinitely many functions which
can pass all these sampling points. And since the functions passing through these points
may be either band-limited or -unlimited but the sampled signal is always band-limited
(since numerical analysis is always associated with finite scale range); therefore, the sit-
uation indicates that there exists freedom to make adaptatianyfand also implies the
possible redundancy when CWT is applied to the sampled signals. The remaining prob-
lem is how to define a suitable decay parameigr Nevertheless, based on the above
mentioned practical concern of wave decay and the somewhat intuitive adjustment, we
show the possible improvements in time-frequency resolutions when the adaptation is

applied to experimental data. But let us first give a numerical simulation.

For the simulated data we use a parabolic chirp where the frequency range of interest
covers the whole band width of the signal, i.e., from almost zero frequency to that cor-
responding to Nyquist sampling rate. And a linear variatiomgf) from 10 (for large
scale end) to 7 (for small scale end), as opposed to the commonly adopted fixed value
of 5.3 (corresponding to ~ 0.5), is assumed. As is seen from Fig@&, the adapted
one gives better frequency localization for almost all frequencies except the lowest two
carrier frequencies (in fact the adaptation can be further adjusted for this part, and to have
better resolutions for these two carrier frequencies the values otdh@y should be less
than 5.3, but the concern here is mainly on the serious edge effects). A phase map for
the complex wavelet coefficients derived from a refined ridge extraction scheme is also

shown as the top right sub-figure. Here it provides a much better identification of scales
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of main power contents than what can be provided by Morlet wavelet.

For the experimental data water waves measured in the wind blowing oval tank are
used, in which reasonable frequencies should lie between 1.5 and 10 Hz. Earlier we men-
tioned that the Morlet wavelet is likely to overestimate the decay of longer waves in the
long run; therefore, relative to higher frequency waves, we should reduce the decay pa-

rameterwg for low frequency ones. Based on this understanding we heuristically assume

4 swg
Erfc [E (Z + 2.5) - 2] 34+5=an (6.12)

where Erfc is the complimentary error function ands the carrier frequency. This equa-

tion may be modified according to the type of signal studied or according to the frequency
range of one’s interest. Figuée4shows the curve of the function. The logic for the choice

of its constants is self explained in the attached program piece. Foghislows results
without and with the adaptation. Here, the varyinga) is from 9.16 (for the large scale
end) to 5.26 (for the small scale end), as opposed to the fixed value of 5.3. Again there
are less smearing effects at the lower portion of the time-frequency plane since we mainly

adjust decay parameters for the low-frequency end.

A few additional points are: (1) The dominant carrier frequency is about 2.4 Hz in
this case; (2) Waves of all frequencies keep constantly evolving, since light and dark
regions constantly interlace; (3) There are grouping effects. Waves with significant energy
contents are more enduring and the durations of darker bands are much longer than those
of higher frequencies. This indicates that our adjustment for decay parameters is based
on a reasonable ground; (4) There is an obvious bifurcation among scales, especially for
the intermediate frequency range of about 3 to 4.5 Hz; it suggests that the phenomenon of
energy cascade from where energy concentrates to neighboring areas. Judging from these
characters it seems that the energy phenomenon in a multi-scale wave field is somewhat

similar to that in a turbulent flow field (see Tennekes and Lumie})|
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Figure 6.3:Phase plane characters for a parabolic c{bgitom right)

with (top left)

and without(bottom left) adapting time-frequency windows. Top right shows a map of
the phase that is obtained from using a newly devised wavelet variant by Lee and \Wi'le
wavelet variant has properties quite in contrast to those of Morlet wavelet and has refined ridge
extraction capability.
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obeg=11.; oend=5.;
fcenter=2.5; fdilation=10/4: fshift=2. :

perfc=Plot[ Erfc[(L/fdilation)* (freq +fcenter)-fshift]*
(obeg-oend)/ 2+ oend, {freq, -2.5, 8.5} ]
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Figure 6.4:The assumed wave decay parametgns a function of carrier frequency. The curve

can be adjusted according to several parameters: approximate peak frequency, significant range of
frequency, range of decay parameter, as well as a shift adjustment parameter; as are indicated in
the attached program piece.
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Figure 6.5:Phase planes of a water-wave signal measured in a wind blowing oval tank (top left:
without adaptation; bottom left: with adaptation; top right: phase plot; bottom right: wind-wave
signal.) Since the assumed adaptation mainly adjusts the decay coefficients for low-frequency part,
there is less smearing there. Again, the phase plot using the same wavelet variant as d.Bigure
provides a clearer identification of ridges of the main power, which is not possible for the Morlet
wavelet.
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6.5 EXxistence of admissability condition

Earlier we gave a somewhat physical description on how the present adaptation manages

to provide an almost “lossless” operation. Lossless means that the full information of a

function is preserved during the transform and that we can recover the function from its

wavelet coefficients, i.e., there exists a reverse operation. In the following we provide a

more formal description through validating the existence of the identity resolution, which

is basically just to show the existence of an admissability condition.

In an earlier illustration of the adaptation, a modified basis of wavelets was formed by

adjusting the support length of dilated versiong/af) using different values abp which

is further assumed to be a functionaofFurthermore, as explained in the previous section,
a simple adaptation is the modification of carrier frequency accordiag+owo/a, i.e.,

wo = aw, we therefore further assume thad is a generalized function &w and the
wavelet is

Vao(t) = ¥ (t; wo(aw)). (6.13)

Its dilated and translated versions are given by

—b
Wa,b;wo (t) = wO(aw)) (6-14)

= (5

And the wavelet coefficients of a functidn't) are given by

Wfa)o(a’ b) = <f’ I//a,b;a)o>

© 1 b\ .
/OO NET ()1/wa< 3 )
= f " Vil () Tu(@are P do, (6.15)

in which V. () = ¥ (; wo(aw)). We follow the formalism to check that the inner
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product of two functionsf andg, (f, g), can be recovered from the integration of the

projection of W (a, b; wp) into Wg(a, b; wp) along both real lines of dilation and trans-

lation variables. That is, whether the following equation exists:

0 0 1
/ / QWf(a,b;a)o(aw))Wg(a,b;wo(aa)))dadb:C%O(f,g), (6.16)

whereCy,, is a constant. If it exists, then whenis taken as the Gaussian function

with its variance approaching zero (i.g.is practically the delta functiof(t)), the inner

product( f (t'), g(t’ — t)) = (f ("), 8(t" —t)) will recover f (t) and the condition of the

identity resolution is guaranteed.

The right hand side of the above equation equals to

/ N / ) é [ / " Vil floe T @w wo(awaw] X

[ / - V12l §(@)eP? § (aw'; wo(aa)/))da)/] dadh

—o0

With the following two identity equations

Fal(t, wo(aw))

= J% /_ Z e ' /lal T ()Y (aw; wo(aw))dw

1 [
= Ef e 1 Fa(w; wo(aw))dw,
—0o0

Gal(t, wo(aw))

' /1al §(w) ¥ (aw; wo(aw))dw

7=l
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OO .
= / G, (w; wo(aw))dw, (6.19)
one has

[ee] o0 27.[/\ —
f / — Fa(t; wo(aw)) Ga(t; wo(aw))dadt
0o d—co &

/ / Fa(a) wo(aw))Ga(w; wo(aw))dadw

f f —f(w)g(wnwaw wo(aw))|*dadw

o |8

00 o |7 . 2
:27r/ f(t)%dt/ Y (aw; wo(aw))| da

—o o0 |l

= 27(f,9)Cy,. (6.20)

Now the resolution of identity is fulfilled if the following admissability condition is satis-

fied,

o |\ . 2
/ LG l‘;‘l’(a‘”))' da=Cy, . (6.21)

This condition is more restrictive than Equati®iin thatzﬁ(o, wo(u)) = O0forallu e R.
Otherwise, there is no other restriction since what is changed in the integration is limited
to finite range and is anticipated to be finite. The case using Morlet wavelet complies with

such a validation and therefore satisfies this conditidn.
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Chapter

Conclusions

Comprehensive sets of various discrete wavelet categories are studied for the interests
of the water wave related applications, and their relevant characterizations and various
intrinsic properties are illustrated. The numerical analyses and the associated data pro-
cessing are developed from the ground up using the Asyst programming language, as well
as several add-in components. These tools make possible the extensive depictions of the
wavelet natures, such as their mother and farther wavelets, the translations and dilations
concepts, the zoom-ins or blowups of any individual wavelet, concept of time-frequency
windows, uncertainty relationship, and the linear phase filtering features — more impor-
tantly, if possible, their physical implications, practical usefulness, and the advantages or

disadvantages in water wave applications.

Using signals obtained from wave-tank experiments and under various entropy cri-
teria, the entropy statics for the whole set of wavelets, as well as the Fourier basis, are
analyzed. To the greatest extent the results show that the sole optimal discrete wavelet

basis is the dual semi-orthogonal cardinal spline wavelet.

The entropy results are of statistical approach; they provide no clue as to which an-
alytical factor that gives rise to their performances for our water wave signals. In this
regard, we examine the phase distributions of a wavelet characterizing function for all the
wavelets. It is also fully identified that there are extremely well correspondences between

the various behaviors of phase distribution features and those of the entropy statistics. Itis
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therefore concluded that a wavelet function basis’s phase distribution feature determines
its usefulness in water wave physics and that the linear phase feature is a requirement of

an optimum basis.

Moreover, based on the identified minimum entropy Riesz wavelet, i.e., the cardinal
semi-orthogonal cubic spline wavelet, we explore its continuous wavelet counterpart for
the purpose of incorporating additional specific advantages that are key to its usefulness
in our applications. These mainly concern the manipulation of wavelet redundant or non-

orthogonal features for the purpose of uncertainty reduction.

In addition to the above two optimizations, a third one is applied to the continuous
wavelet counterpart. For this we propose a mechanism of flexible constructions of wavelet

time-frequency windows and the method of such an adaptation.

The decaying properties of water waves of different scales were used to justify the
concept of the present adaptation. Both numerical simulation using chirp signals and ex-
perimental data acquired from the wave tank were used to show overall improvements of
time-frequency resolutions in their phase plane representations. In a more formal way, the
resolution of identity was also validated for a particular construction using a modulated
Gaussian wavelet. In fact, this illustrates one additional flexibility of wavelet analysis,
and, together with the similar flexibility in wavelet packet decompositions outlined in
the previous chapter (i.e., the almost unlimited constructions of tree-like decompositions)
and the concepts of time-frequency windows related to multi-voice or multi-wavelet algo-
rithms [], the intuition of making flexible constructions of time-frequency windows for
wavelets other than the Morlet wavelet is not unjustified.

Though the present adaptation is in some sense intuitive, it is physically sound and fits
into the instability nature of water waves. More importantly, being based on an optimum
basis in DWT and further combined with the several specific features related to CWT, the
present approach is anticipated to be a more suitable methodology for the analyses for
water wave related signals — especially when considering the extractions of micro phe-

nomena, such as the possibly feeble energy features evolving under limited or restricted
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conditions of model experiments.

Finally, one last point to note is the following statement — the author firmly believes
that if you ever find an individual wavelet you have great chance to assign it into one
of the categories covered here; and if not, you have great reason to conceive that its
properties must fall within (or between) the covered characterizations; and thus, in water
wave applications, its fate or possible usefulness is decreed accordingly — overall, it is

really hard to beat the optimum basis and the methodology as are identified in this study.

g
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