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ABSTRACT

Comprehensive categories of discrete wavelets are studied first. The relevant charac-

terizations and various intrinsic properties are extensively illustrated. Physical counter-

parts of analytical aspects are provided when possible. The entropy criteria are applied

to the whole set of wavelets for signals obtained from wave-tank experiments, and the

optimal wavelet basis is identified to be the semi-orthogonal cardinal spline dual wavelet.

Besides, each individual wavelet’s pertinency to the applications of water-wave-related

signals is linked to the phase distribution of a wavelet characteristic function. That is to

say, we identified the analytical essence of the statistical behaviors of the entropy results.

Based on the identified discrete best basis, a second optimization is applied, and this is

done through incorporating the advantages related to the continuous wavelet transform.

And this in turn points to the counterpart continuous wavelet. Furthermore, for the better

modeling of real physics, a third optimization is also implemented through the adaptation

of wavelet time-frequency windows. With these results, the author firmly believes that

if you ever find an individual wavelet you have great chance to assign it into one of the

categories covered here; and if not, you have great reason to conceive that its properties

must fall within (or between) the covered characterizations; and thus, in water wave ap-

plications, any wavelet’s fate or possible usefulness is decreed accordingly — overall, it

is really hard to beat the optimum basis and the methodology given in this study.
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Chapter 1
Introduction

1.1 Background

The usefulness of a particular data analysis methodology is highly case dependent; there

simply exists neither a full-fledged analyzing function basis nor an all-purpose numerical

scheme for all sorts of signals or applications.

Chronically, from the somewhat traditional and well established spectral perspective

to the more recent wavelet viewpoints, we have:

• Fourier transform;

• Short time Fourier transform or windowed Fourier transform;

• The Gabor’s analytical signal procedure and the relevant Hilbert transform;

• Various time-frequency transforms associated with individual distributions, such as

Wigner Distribution, Page distribution, Choi-Williams distribution, and etc. [6];

• The discrete wavelet transform;

• The continuous wavelet transform or the integral wavelet transform.

We note here that, unlike discrete and continuous Fourier transforms, which are basically

identical in both function bases and formulations, the discrete wavelet transform and con-

tinuous wavelet transform are essentially two different categories in that, first, they may
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use completely different function bases, second, they involve relatively quite independent

formulations.

In the following discussions let assume the analytical target to be a one-dimensional

time series signal; we therefore have the following general features for individual analysis

methodologies.

The Fourier transform yields another one-dimensional data in frequency domain. The

transform correspondence is one independent variable to another independent one.

For short time Fourier transform, it yields somewhat localized frequency contents;

and, when the capping window is shifted along the time axis, it provides time-dependent

spectral information. Through such multiple processes the transform correspondence is

from the time variable to the time and frequency variables.

For Gabor’s analytical signal procedure [13], it yields instantaneous frequency distri-

bution and oscillation envelope curves along the time line. Here the frequency and the

envelope cannot be regarded as independent variables. The independent variable in the

two corresponding transform domains is bath time.

For various time-frequency transforms associated with individual distributions, they

also provide time-varying frequency contents that are conceptually identical to the short

time Fourier transform, except that the involved analyzing kernels are related to individual

distributions rather than the Fourier kernel.

For the discrete wavelet transforms, the one-dimensional time series yields directly

another one-dimensional coefficient series that contains the information that covers both

time and scale (or representative frequency). The correspondence is one independent

variable to two in one process.

As to the continuous wavelet transform, the one-dimensional time series yields a two-

dimensional coefficient series that contains the information that is also varying both in

time and in scale (or representative frequency). But here, every time point has a scale

distribution components and every scale may play a role at a specific time. And the

transform is a multi-process numerical scheme similar to the short time Fourier transform,
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except the core difference of the capping windows.

1.2 Non-stationary effects

It is well known that Fourier transform is suitable for characterizing stationary signals

and not quite satisfactory for analyzing transient local phenomena. The reasons can be

illustrated by the following properties of the transform.

• Any Function cannot be both time- and band-limited. If a function is limited

(finitely supported) in one domain, then the independent variable of its correspond-

ing function in the other domain stretches the entire real line (R). In real world

situations, however, signals are almost always limited in time and space; mean-

while, hardware’s capability is generally band-limited. This simply implies that

there is not going to be a function basis that perfectly matches theory to practice. A

slight variation of the Fourier transform is the short time Fourier transform, which

is just the Fourier transform of the windowed signal, i.e., the original signal capped

with or multiplied by a window function. In short time Fourier transform this prop-

erty of mutual exclusivity in time and frequency localizations is indicated by the

Balian-Low theorem, which basically states that if the window functiong(t) of a

Gabor type frame

gm,n(t) = e−2π imtg(t − n), (1.1)

in which m,n ∈ Z, is well localized in time, then the associated Fourier transform

window can not be well localized in frequency. The point here sounds a bit abstract,

but, in reality, this is conceptually equivalent to the following points.

• The Gibbs phenomenon states that, if there is a jump in signal, then the overshoots,

occurring at both sides of the discontinuity when the inverse Fourier transform is

implemented, can never disappear and remain at constant. This amounts to say

that it takes quite many a spectral components to make up a sharp transient feature
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and that a local variation affects a broad range of the spectrum just as the Fourier

transform of the delta function (more precisely, delta distribution) covers the whole

frequency axis.

• Fourier basis functions are periodic and extend bi-infinitely; signals thus studied

are better to be periodic and sampled infinitely. The unavoidable side effects for not

fulfilling these requirements are many: frequency leakages, smoothing errors, edge

effects due to data truncations, aliasing due to under-sampling or non-periodicity

(figure1.1is actually a case of under-sampling, where a linear chirp is sampled at a

rate half of the Nyquist frequency), and, uncontrollable spectral variance due to the

finite resolution or histogram processing.

Overall, the syndromes associated with the above listed items can be referred to the

non-stationary effects.

1.3 Windowed transforms

Both short-time Fourier transform and wavelet transform try to remedy Fourier basis’s

deficiencies in characterizing transient phenomena by analyzing the set of localized sig-

nals. For the short time Fourier transform this can easily be executed by varyingm and

n in equation1.1. For the wavelet transform this can be illustrated through the use of the

Morlet wavelet by varying its translation and dilation variables.

Both transforms yield local spectral information – more precisely, local scale infor-

mation, if the term ”frequency”, “Hz”, or “spectrum” is strictly reserved for sinusoidal

functions. However, due to the Balian-Low theorem mentioned above, the waveform as-

sociated with short time Fourier transform can never be truly local in time since in reality

the frequency domain of discrete Fourier transform is always band-limited by obeying

the Nyquist law. In this regard, wavelets can be of exactly local; at least, they must have

suitable or better decaying property such that they contain no zero-frequency component.

Let us further outline a few specific properties pertaining to individual transform:
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• Both short time Fourier transform and wavelet transform are windowed transforms.

In short time Fourier transform there exist two quite distinctive operations. The

first operation is applying a suitable time-window to the signal; the second opera-

tion is performing the Fourier transform for the capped signal. The corresponding

inverse transform (or reconstruction process) of the short time Fourier transform is

naturally associated with a frequency-window and involves two similar distinctive

operations too. However, in wavelet transform these two distinctive steps are not

clearly observable — rather than using the very distinctive “window (either time- or

frequency-window)” and “Fourier basis function (i.e., sine or cosine function)”, the

“window” and the “basis function” are synthesized in an inseparable specific form

called “wavelet”. In fact, one can clearly solidify this notion by comparing the Ga-

bor type frame (equation1.1) with the Morlet wavelet when the window function

g(t) of equation1.1 is assumed to be a Gaussian bell. The intention for either the

combined operation or synthesized operation is completely the same: to provide a

mechanism (or kernel) for projecting a signal into modulated or oscillating wave

constituents.

• The time-frequency windows in short time Fourier transform keep rigid for different

scales since the window functiong(t) in Equation1.1 does not depend onm, i.e.,

their widths (usually referring to time) and heights (usually referring to frequency)

do not change for all frequencies. In wavelet transform, the windows are adjusted

to different scales, but the sizes (or areas) of different windows are still fixed, i.e.,

each window’s height and width are inversely proportional and the product remains

constant (either for discrete wavelet transform or continuous wavelet transform).

The concept of fixed size windows is illustrated by the fixed area of the gray blocks

in the phase planes shown in Figures1.1and1.2, where the discrete wavelet packet

transforms are performed for a chirp signal using different bases originating from

the same seeding mother wavelet. In the figures, since the bases are orthonormal, all

time-frequency windows do not overlap. As for the continuous wavelet transform,
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various time-frequency windows severely tangle with each others. And we gener-

ally do not show the actual sizes and shapes of various windows — rather, each

window is represented by a point (or a small area depicting the time-frequency res-

olution) having coordinates corresponding to its centroids in the time and frequency

axes.

• The function basis of the short time Fourier transform is the unique orthonormal

Fourier basis comprised of sine and cosine functions; whereas, for wavelet trans-

form, apart from the very loose constrain that the basis function (or the mother

wavelet) satisfies the admissibility condition (for continuous wavelet transform) or

stability condition (for discrete wavelet transform), there is virtually no restriction

on the choice of basis functions. The coefficients of short time Fourier transform,

which represent local Fourier spectral information, still have the exact meaning

of “frequency”. In wavelet transform, wavelet coefficients refer to specific scales

rather than “frequencies”. Here, we generally suffer from their physical inter-

pretability due to the following reasons: (1) No unique basis — the analyzing

function or mother wavelet can be designed in a plenty of ways, and the basis

functions related to the mother wavelet can be either dependent or independent

(orthogonal or non-orthogonal); (2) Scale does not have unit — together with the

first point, it severely hampers out ability to directly perceive the wavelet’s size

and physical shape; and, (3) No fixed algorithm to implement wavelet transform —

many techniques and various adaptations exist, such as, the treatment using flexi-

ble time-frequency windows for continuous wavelet transform [12], multi-voice [9]

or multi-wavelet [7, 8, 24] frames, and discrete wavelet transform using different

dilation factors other than the most often seen value of 2 [1]. Generally speaking,

these varieties may not be as disturbing in certain application fields (such as data

transmission or signal decomposition and reconstruction) as they are for our studies

focusing on the water wave physics.
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Figure 1.1: Phase plane of a wavelet packet’s best basis time-frequency windows(top) for
a linear chirp signal that is sampled under aliasing condition(bottom) . Here wavelet packets
associated with coiflet of 30 convolution weights is used. The original signal, if not under-sampled,
has linear instantaneous frequency distribution form 0 to 100 Hz. Note the non-symmetric effects
and the scattering of windows due to the composite frequency bands that form the wavelet.
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Figure 1.2: Phase planes (top : logarithmic measure;bottom : linear measure) of a wavelet
packet’s best level time-frequency windows using the same linear chirp and wavelet packets as in
the previous figure. In view of the fact that a single orthonormal mother wavelet can yield many
different wavelet packet representations, that there are basically infinitely many wavelet bases, and
that we may use different graphic renderings, we are easily trapped in the dilemmas of choosing
an appropriate basis.
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• We note that the present scope focuses on theL2(R) Banach space, i.e., the Hilbert

space, since some of the statements here may not apply to other function spaces

or classes [9, 20]. Nevertheless, most of the intricacies that differentiate different

spaces are only of analytic interest up until now (e.g., on the existence of multires-

olution analysis (MRA), on the regularity and differentiability of wavelets and its

associated scaling functions). From the practical point of view, it is far enough to

restrict to the Hilbert space, i.e., a space of functions with finite energy contents.

1.4 The objectives

The foothold to use localized transforms in our water wave applications can be stated quite

simply, as well as intuitively — if we perceive our signal as composed of waves which

are limited in both life span and covering distance, i.e., constituent waves are evolving

with time and in space, then it is natural to adopt wavelet as our analyzing function;

furthermore, in addition to this modulation nature, if we also acknowledge that intrinsic

instability due to nonliner effects or boundary conditions is everywhere to be found for

even regular water waves, then it is still quite possible that wavelet decomposition can

provide better descriptions of physics for stationary signals than what can be provided

by Fourier decomposition. Besides, another advantage of using wavelets is the possible

flexibility in adapting their wave forms to our desires; this is related to the modifications

of time-frequency windows for better physical implications.

In this study the contents can basically be divided into five main subject matters.

In the first part we mainly focus on the characterizations of discrete wavelet categories.

And the covered discrete wavelet categories should be quite comprehensive — in the sense

that they have included all the extreme analytical properties in wavelet designs. And it

is the author’s belief that if you ever find an individual wavelet you have great chance

to assign it into one of these categories, and if not, you have great reason to say that

its properties fall within (or between) the covered characterizations and thus its possible
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usefulness (or destiny) trapped accordingly. The relevant characterizations and intrinsic

properties for all the categories are extensively illustrated through the depictions of their

mother and farther wavelets, the translations and dilations of wavelets, the zoom-ins or

blowups of any kind of wavelets, the linear phase filtering features. Physical counterparts

of analytical aspects are provided when possible.

In the second part, we work on the identification of optimum discrete wavelet basis

specifically for the applications in studies of water wave related signals, here various

entropy criteria are adopted for the whole comprehensive sets of wavelets (as well Fourier

basis) using signals obtained from wind-wave-tank experiments.

In the third part we mainly focus on exploring the analytical essence of the behavior of

any wavelet function basis concerning its performance or fitness in our water applications,

in other words, what is the mathematical factor that leads to the different statistical per-

formances based on the entropy. And this is related to the study of the phase distribution

of a wavelet characterizing function (them0(ξ) function) for each individual basis.

In the fourth part of the contents we mainly focus on the continuous counterpart

wavelet of the identified basis, i.e., a continuous wavelet transform corresponding to the

multiresolution analysis of the semi-orthogonal cardinal spline dual wavelet. In this part

we first address why there is the need of a continuous transform, that is to say, the advan-

tages and disadvantages of discrete and continuous wavelet transforms concerning their

application to water wave studies.

In the fifth part, we address what can be done to improve the physical relevance be-

tween the basis functions and the wave constituents of our signals. Here the topics involve:

the demand of better physics, the uncertainty relationship and the degrees of freedom for

adaptivity, the physics of time-frequency windows of flexible size and shape, and finally

the proof of the existence of admissability condition under such an adaptation.

Overall, it can be briefly summarized, to be used for water wave related signals, that

the present research proposes a data analysis methodology that involves triple optimiza-

tions. ❖
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Chapter 2
The Wavelet Bases Tested and Their
Characterizations

2.1 Introduction

In almost all modeling experiments various modeling or scaling laws can at best be par-

tially satisfied. The situation is further complicated for multi-scale and multi-dimensional

phenomena. In the introduction chapter we noted the problems of proper scaling for

the transient phenomenon that involves diversified scales. For water wave experiments

it is acknowledgeable that there may be significant distortions concerning the coupling

mechanisms targeted. For example, a limitation in space as well as the lack of scale di-

versification in the tank may hinder the development of certain mechanisms and impose

restrictions upon the evolutions of certain interactions. With these understandings, as

well as the cognizance regarding the inadequacy of the Fourier spectral approach in our

applications as discussed in the first chapter, it is understandable that, if the modeling of

the proposed physics is at all possible, the deployment of an optimized analyzing scheme

using sensitive and appropriate basis functions is desired. Specifically speaking, we shall

select among a broad array of functional bases the most appropriate one for our signals

and describe the proper analyzing method. Akin to the interest of such an attempt, it war-

rants to give more systematical descriptions of different properties of various categories

of wavelet function bases. Herein we cover a comprehensive set of discrete wavelet cat-
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egories that has essentially included all the extreme and opposite analytical properties in

wavelet designs.

2.2 The numerical programming

We develop the wavelet numerical analysis and all the relevant data processing from the

ground up using the Asyst programming language. It is our desire that the program should

provide full coverage of various wavelet bases and it should also capable of exploring any

related characterizations of wavelet relevant functions. Besides, it should be quite flexible

yet user-friendly. And it is our belief that any keyboard input of data or information

should be minimized to none (cut and paste might in rare cases be unwillingly tolerated).

To achieve such goal, several program add-ins and application auxiliaries are integrated;

notably, these include:

• The Postfix language — This enables the generation of high quality Encapsulated

Postscript figures directly form the core programming, and this much improves the

overall code writing efficiency, as well as eliminates the painful task of plotting the

numerous figures during testings. Besides, full annotations of parameters for all the

figures are much possible and thus analyses are confidently error free.

• The on-screen real time display of PCX format figures — The Encapsulated Postscript

figures is mainly for quality printing, but it forms in the background and dose not

display in real time during the running process of the program; therefore, the on-

screen real time display of figures should greatly enhance the debugging efficiency

and make possible the writing of a huge and complex program that is also user-

friendly, easy to maintain, as well as interactive and extremely flexible.

• The data spreadsheet interface — The input or output of data from and to Excel or

Lotus-123 compatible worksheet is integrated. In cases that articulate figures are

desired such a function is readily convenient.
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• The data interface to Mathematica programming language — This eliminates hu-

man intervention for the transferring of results of Asyst analyses to the post gener-

ation of various two-dimensional phase plane figures.

• The WinEdt macro programming language — The language is specifically used to

develop the shell environment or the development platform for the Asyst program

code writing. With this all the code components are displayed in much a scientif-

ically organized and eye-pleasant way. Missing such an integrated part the editing

and the debugging of the programs must be quite painful and exhausting.

2.3 Wavelet bases tested and the relevant notations

The Riesz wavelet bases tested here can basically be divided into four categories: or-

thonormal (ON), semi-orthogonal (SO), bi-orthogonal (BO), and orthonormal wavelet

packets bases. For the orthonormal category it is divided into several different subgroups:

Daubechies wavelets (both the most and least asymmetric), Coiflets, Meyer wavelet, and

Battle-Lemaríe wavelets.

No detail accounts of these wavelets will be given; only the main criteria and core

features of each categories will be briefed. Let first state the related notations and conven-

tions needed for the context that follows. Let a function or a signal be denoted byf (t);

the two-scale scaling function of a Riesz basis beφ(t); the associate mother wavelet be

ψ(t) and its dyadic wavelets beψ j,k(t) =
√

2 jψ(2 j t − k), where j, k ∈ Z andk stands

for translation andj for dilation. The concept of translations and dilations are illustrated

in Figures2.1through2.6.

The spaceVj (formed byψ j,k, k ∈ Z for a given j ) in the multiresolution ladder are

nested in· · · ⊂ V−1 ⊂ V0 ⊂ V1 · · ·, and the finest and the coarsest scale space, say,

for a 1024-point signal, areV10 andV0, respectively; the number of filter coefficients or

the number of convolution weights beN if the associated wavelet is finitely supported

(support length equals toN − 1); the dual wavelet and dual scaling function, if exist, be
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ψ̃(t) andφ̃(t); the inner product be〈·, ·〉; and the Kronecker delta beδ j,k, j, k ∈ Z, which

is equal to 0 forj 6= k and 1 for j = k.

Up until now, all practical wavelets of discrete transform are associated with the the-

ory of multiresolution analysis (MRA) [9, 17]. For Riesz wavelets there always exist

dual wavelets except for orthonormal wavelets, which are self-dual. Any discrete wavelet

transform involves two convolution operations: one yields detail information; another

yields smooth information [22]. Convolutions can either be implemented in a direct way

in the time domain for compactly supported wavelets or in an indirect way in the fre-

quency domain. We list the basic properties (restricted to real-valued wavelets) and give

the symbols of representation for various categories and subgroups as follows.

2.4 Orthonormal wavelets

The orthonormal wavelets covered here include the following categories: Daubechies

most compactly supported wavelets (denoted as ONxxA); Daubechies least asymmet-

ric wavelets (ONxxS); Coiflets (ONxxC); Meyer wavelet (Meyer); Battle and Lemarié

wavelet (B&L). Here in all the subsequent annotationx is an integer related to support

length (physically, the span of mother wavelet curve).

ψ = ψ̃, (2.1)

φ = φ̃, (2.2)

〈ψ j,k, ψ̃l ,m〉 = δ j,l δk,m, (2.3)

f (t) =

∑
j,k

〈 f, ψ j,k〉ψ j,k, (2.4)

One MRA ladder (single set of frame bounds),

One filter pair (one smooth and one detail).
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Figure 2.1:The wavelet translation concept within the scale range of level 3.
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Figure 2.2: The wavelet dilation concept from scale level 0 to level 7 for the BO22O wavelet.
Each wavelet curve corresponds to an individual translation location.
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Figure 2.3: The wavelet dilation concept from scale level 0 to level 7 for the BO22D wavelet.
Each wavelet curve corresponds to an individual translation location.
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Figure 2.4: The wavelet dilation concept from scale level 0 to level 7 for the BO31D wavelet.
Each wavelet curve corresponds to an individual translation location.
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Figure 2.5:The wavelet dilation concept from scale level 0 to level 7 for the BO370 wavelet. Each
wavelet curve corresponds to an individual translation location.
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Figure 2.6:The wavelet dilation concept from scale level 0 to level 7 for the ON66A wavelet.
Each wavelet curve corresponds to an individual translation location.
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2.4.1 Daubechies most compactly supported wavelets (ONxxA)

The wavelets in this group have maximum number of vanishing moments for given com-

patible support width. Or stated otherwise, they are the most compactly supported wavelets

for given compatible number of vanishing moments. The famous most compactly sup-

ported continuous wavelet belongs to this group and has only four filter coefficients.

These wavelets are quite asymmetry (so, the “A” in ONxxA). The mother and farther

wavelets for the group corresponding to the originating points of 12 (boundary point based

on level 2) and 6 (boundary point based on level 3), respectively, for this group are shown

in Figures2.7and2.8. The vanishing moments and the number of filter coefficients are,

respectively, ∫
∞

−∞

t lψ(t)dt = 0, l = 0,1, · · · , x, (2.5)

N = 2x, (2.6)

wherex is the integer number in ONxxA. The minimum number ofx is 2.

2.4.2 Daubechies least asymmetric wavelets (ONxxS)

For a given support width, these wavelets, in contrast to those of the ONxxA subgroup,

are the most symmetric ones (so, the “S” in ONxxS, but still not symmetric). They have

the same representations of vanishing moments and number of filter coefficients as those

of ONxxA. But the known minimum number ofx is 4. The mother and farther wavelets

for this group corresponding to the same originating points as the previous ones are shown

in Figures2.9and2.10.

2.4.3 Coiflets (ONxxC)

The Coiflets have vanishing moments for bothψ andφ; therefore, from Taylor expansion

point of views [9], they have high compressibility for fine detail information (i.e., a great

portion of the fine scale wavelet coefficients are relatively small); and henceforth, they

21



have simple quadrature rule to calculate the fine smooth information (i.e., the calculation

of the inner product of a function and the fine-scale scaling functions is more efficient).

Since every discrete wavelet transform involves both smoothing and detailing operations,

there may exist some advantages from these two properties for certain applications such

as applications that do not stress lossless of signal contents or perfect reconstructions

[7, 25]. Their vanishing moments and number of filter coefficients are

∫
∞

−∞

t lψ(t)dt = 0, l = 0,1, · · · , x, (2.7)

∫
∞

−∞

φ(t)dt = 1, (2.8)

∫
∞

−∞

t lφ(t)dt = 0, l = 1, · · · , x, (2.9)

N = 6x. (2.10)

For this group the mother and farther wavelets are shown in Figures2.11and2.12.

2.4.4 Meyer wavelet (Meyer)

The Meyer wavelet (denoted as Meyer or ME in figures) is the wavelet with most com-

pact support in frequency domain (here, if without any specific assignment, “finitely sup-

ported” refers to time domain). Therefore, due to contrast properties between the two

Fourier domains, the wavelet is infinitely differentiable in time domain, i.e., has an in-

finite Lipschitz regularityC∞ and does not have exponential decay. And the support

lengthN → ∞. The associated mother and farther wavelets corresponding to the same

originating points are shown in Figure2.13.

2.4.5 Battle and Lemaríe wavelet (B&L)

The Battle and Lemarié wavelet (denoted as B&L or LE in figures) ofmth order is con-

structed from the orthonormal scaling function derived by applying the standard orthonor-
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malization trick to themth order cardinalB-splineNm [2, 4]. For m = 1, it is exactly the

Haar wavelet. The latter is the only finitely supported wavelet in this group (also the case

of BO11O=BO11D to be mentioned below) and is also a discontinuous wavelet with the

most compact support. All other wavelets in this group are infinitely supported. These

wavelets have an exponential decay and possessCm−2 regularity. The mother and far-

ther wavelets for the Battle-Lemarié wavelet are shown in Figure2.14. Compared to the

curves of Meyer wavelet (Figure2.13), they look quite identical even though their con-

structions, or derivations, or formula involved (including Lipschitz regularity and decay

property) are completely different.

2.5 Semi-orthogonal wavelets (SOxO and SOxD)

The semi-orthogonal wavelets are inter-scale, but not inner-scale, orthogonal. Their scal-

ing functions are cardinalB-splineNm and have finite two-scale relations. Although there

are two distinctive (independent) filter pairs (one for the decomposition and the other for

the reconstruction), there is only one MRAVj -ladder. It was shown by Chui [4, 5] that

the cardinalB-spline wavelet of an order higher thanm = 3 is almost a modulated Gaus-

sian (but a modulated Gaussian is not a wavelet). Therefore only the fourth order Cubic

B-spline wavelet (m = 4) is tested. It has the following characterizations.

ψ 6= ψ̃, (2.11)

φ = φ̃, (2.12)

〈ψ j,k, ψl ,m〉 = 〈ψ̃ j,k, ψ̃l ,m〉 = δ j,l , (2.13)

f (t) =

∑
j,k

〈 f, ψ j,k〉ψ̃ j,k =

∑
j,k

〈 f, ψ̃ j,k〉ψ j,k, (2.14)

N = 3x − 1 for SOxD, (2.15)

N → ∞ for SOxO. (2.16)
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One MRA ladder,

Two filter pairs,

The mother and farther wavelets of the fourth order and the associated dual wavelets

are shown in Figure2.15.

2.6 Bi-orthogonal wavelets (BOxyO and BOxyD)

The wavelets in this category are constructed also by Daubechies, and are sometimes

called non-orthogonal wavelets. As is well known all real-valued orthonormal com-

pactly supported wavelets, except the Haar wavelet, are not symmetrical. However, from

the point of view of reconstructing a signal from its partially truncated wavelet coeffi-

cients, the symmetry is a desired property of the filter when a more natural perception

or smoother variations is important. There is a very practical implication here: if non-

symmetrical function bases are used, then a small change in the wave form causes signif-

icant variations of scale information. In other words, to have minor impacts to the data

analysis, it is desirable to have bases as symmetrical as possible. Moreover, when consid-

ering that random errors, or noise, or uncontrolled factors are present, we should be able

to comprehend the significance of this property. In fact many of the figures given in this

study indicate such a feature. The symmetry can be achieved by sacrificing orthogonality;

if this is the case one has dual pairs for both wavelets and scaling functions. It is obvious

that conditions for semi-orthogonal cases are more general than those of orthogonal ones,

and the bi-orthogonal cases are even more general. This situation is clearly indicated by

the additional freedom of dual scaling function, as is reflected by the two parametersx

andy in the notations of BOxyO and BOxyD. Nevertheless, the wavelets in this category

involve only one pair of independent filters for both decomposition and reconstruction

even though there involve two different MRA ladders that are associated with their own

individual sets of Riesz bounds. This is quite opposite to the case of semi-orthogonal
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wavelets where they involve one MRA ladder but with two filter pairs.

ψ 6= ψ̃, (2.17)

φ 6= φ̃, (2.18)

〈ψ j,k, ψ̃l ,m〉 = 〈φ j,k, φ̃l ,m〉 = δ j,l δk,m, (2.19)

f (t) =

∑
j,k

〈 f, ψ j,k〉ψ̃ j,k =

∑
j,k

〈 f, ψ̃ j,k〉ψ j,k, (2.20)

N = 2y + x − 1 for BOxyO andx odd, (2.21)

N = 2y + x − 2 for BOxyO andx even, (2.22)

N = 2y + x − 1 for BOxyD andy odd, (2.23)

N = 2y + x − 2 for BOxyD andy even. (2.24)

Two MRA ladders,

One filter pair,

The mother and farther wavelets for this group and the associated dual wavelets are

shown in Figures2.16through2.19.

2.7 Wavelet packets

The wavelet coefficients derived from an orthonormal wavelet decomposition can be fur-

ther decomposed by using either the set of filter coefficients (called two-scale sequence

in Chui [4]) associated with the original wavelet, or different sets of filter coefficients

associated with other orthonormal wavelets. Therefore, basically there can be infinitely

many wavelet packet decompositions. These further decompositions are of a tree-like

refinement process and are called the wavelet packet transform. The wavelet packet coef-
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ficients give better frequency resolutions with longer time supports. There are no simple

formulas to describe the tree-like decompositions, but a schematic plot help elucidate the

mechanism shown in Figure2.20. The branch patterns and the number of branches can

be chosen in any way so long as there is no repeat occurrences within any column under

the stretch of the coefficients. That is to say, any column, wide or narrow, must have

one and only one contribution from all levels (rows). Due to the tree-like process the

computational works are dramatically increased.

For this category we have two criteria for selecting our best basis. One is still called

the “best basis”; another “best level basis”. Take for example, for a 1024-point signal, the

finest level occurs atj = log2 1024 = 10 and there are 210 different choices of bases.

And within these 210 choices the one which yields the minimum entropy is called the

“best basis”. And if we enforce the restriction that all wavelet packets be at the same level

j , then we have 10 levels (0 to 9) to choose from; the level that yields minimum entropy is

called best level basis. The indexes of a wavelet packet coefficient, i.e., the subscript and

superscript ofU labeled in the figure determine the time of occurrence of that coefficient

and also indicate the associated support length and frequency resolution, i.e., the shape

and location of the coefficient’s time-frequency window within the phase plane. Concepts

regarding the wavelet packet transform can be seen in Figure1.1. Again we also see the

effects of non-symmetrical filtering. One specific feature is that the areas of all individual

windows are all equal.

2.8 Wavelet blowups

Wavelets are fractal in nature, that is to say, no matter how detail we zoom into the wavelet

curve its blowups all show similar characterization, and this is related to the wavelet

differentiability, regularity, support length, and decaying property.

The Asyst program is written to be able to blow any wavelet constructions, such as

mother and father wavelets, wavelet bases and wavelet packet bases at any point on any
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level. A few examples are shown in Figures2.21to 2.28.

Her we note that wavelets with fancy analytical properties are often of bizarre wave

forms and not of our choice for studying water wave related physics — either judging

from they entropy values to be given in the next chapter or form their stability conditions.

Moreover, this blowup exercise hints the behaviors of several numerical and theo-

retical aspects of wavelet analysis, such as the edge effects, the possible differences of

function curves due to finite resolution, and the convergent or error propagation property.

Figures2.27and2.28show the blow-ups of bi-orthogonal wavelet BO31O and BO35O,

respectively. Relevant data for BO31O is: Origin of wavelet curve: level 2, position 12

(i.e., elementU12
2 in figure2.20); Blow-up point: 150; data length: 512. Each sub-figure

shows successive blow-up scale of 26. Here the blow-ups diverge rapidly, i.e., the wavelet

fails to identify itself numerically in the refinement cascade. Relevant data for BO35O is:

Origin of wavelet curve: level 2, position 12 (i.e., elementU12
2 in figure2.20); Blow-up

point: 225; data length: 512. Each sub-figure shows successive blow-up scale of 26. Here

the blow-ups converge but go with peculiar inclinations.

Figure2.26also exhibits the grouping tendency of wavelet packets.❖
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Figure 2.7:The mother wavelets of the ONxxA group originating from the point location of 12.
Here the boundary point should be based on a level less or equal to 3.
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Figure 2.8:The farther wavelets of the ONxxA group originating from the point location of 6.
Here the boundary point should be based on a level higher or equal to 3.
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Figure 2.9:The mother wavelets of the ONxxS group originating from the point location of 12.
Here the boundary point should be based on a level less or equal to 3.
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Figure 2.10:The farther wavelets of the ONxxS group originating from the point location of 6.
Here the boundary point should be based on a level higher or equal to 3.
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Figure 2.11:The mother wavelets of the ONxxC group originating from the point location of 12.
Here the boundary point should be based on a level less or equal to 3.
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Figure 2.12:The farther wavelets of the ONxxC group originating from the point location of 6.
Here the boundary point should be based on a level higher or equal to 3.
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Figure 2.13:The mother(top) and farther(bottom) wavelets of the Meyer wavelet originat-
ing from the point location of 12 and 6, respectively, for the boundary point based on level 3. This
figure is to be compared to the next one.
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Figure 2.14: The mother(top) and farther(bottom) wavelets of the Battle and Lemarié
wavelet originating from the point location of 12 and 6, respectively, for the boundary point based
on level 3. Comparing the wavelet functions shown here with those shown in last figure (Figure
2.13), we see that two wavelets of similar looks but with quite distinctive constructions and analytic
properties (such as regularity, differentiability, rate of decay, support length, etc.) It therefore gives
rise the concerns that many complicated aspects of discrete Riesz wavelet seem not to reflect their
associations with practical concerns.
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Figure 2.15:The mother(top left) and farther(bottom left) wavelets, as well as their
duals(right) , of Chui’s semi-orthogonal wavelet [4, 5] originating from the point location of
12 and 6, respectively, for the boundary point based on level 3.
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Figure 2.16:The mother wavelets of the BOxxO group originating from the point location of 12.
Here the boundary point should be based on a level less or equal to 3.
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Figure 2.17:The mother wavelets of the BOxxD group originating from the point location of 12.
Here the boundary point should be based on a level less or equal to 3.

38



 .000  200.  400.  600.  800.  1000
xE0

-.016

 .016

 .048

 .080

 .112

xE0

Point series

C
o

e
ff

ic
ie

n
t

12/02/02-22:48[(4,1024) Phi-<P0L3_BP8,Ori6,Pw10>]

BO110Bi-Orthohonal (G)

BO110-Phi

 .000  200.  400.  600.  800.  1000
xE0

-.016

 .016

 .048

 .080

 .112

xE0

Point series

C
o

e
ff

ic
ie

n
t

12/02/02-22:48[(4,1024) Phi-<P0L3_BP8,Ori6,Pw10>]

BO130Bi-Orthohonal (G)

BO130-Phi

 .000  200.  400.  600.  800.  1000
xE0

-.020

 .020

 .060

 .100

 .140

xE0

Point series

C
o

e
ff

ic
ie

n
t

12/02/02-22:48[(4,1024) Phi-<P0L3_BP8,Ori6,Pw10>]

BO150Bi-Orthohonal (G)

BO150-Phi

 .000  200.  400.  600.  800.  1000
xE0

-.225

-.075

 .075

 .225

 .375

xE0

Point series

C
o

e
ff

ic
ie

n
t

12/02/02-22:49[(5,1024) Phi-<P0L3_BP8,Ori6,Pw10>]

BO220Bi-Orthohonal (G)

BO220-Phi

 .000  200.  400.  600.  800.  1000
xE0

-.060

 .000

 .060

 .120

 .180

xE0

Point series

C
o

e
ff

ic
ie

n
t

12/02/02-22:49[(5,1024) Phi-<P0L3_BP8,Ori6,Pw10>]

BO240Bi-Orthohonal (G)

BO240-Phi

 .000  200.  400.  600.  800.  1000
xE0

-.050

-.000

 .050

 .100

 .150

xE0

Point series

C
o

e
ff

ic
ie

n
t

12/02/02-22:49[(5,1024) Phi-<P0L3_BP8,Ori6,Pw10>]

BO260Bi-Orthohonal (G)

BO260-Phi

 .000  200.  400.  600.  800.  1000
xE0

-.050

-.000

 .050

 .100

 .150

xE0

Point series

C
o

e
ff

ic
ie

n
t

12/02/02-22:49[(5,1024) Phi-<P0L3_BP8,Ori6,Pw10>]

BO280Bi-Orthohonal (G)

BO280-Phi

 .000  200.  400.  600.  800.  1000
xE0

-6.40

-3.20

 .000

 3.20

 6.40

xE0

Point series

C
o

e
ff

ic
ie

n
t

12/02/02-22:49[(6,1024) Phi-<P0L3_BP8,Ori6,Pw10>]

BO310Bi-Orthohonal (G)

BO310-Phi

 .000  200.  400.  600.  800.  1000
xE0

-.180

-.060

 .060

 .180

 .300

xE0

Point series

C
o

e
ff

ic
ie

n
t

12/02/02-22:49[(6,1024) Phi-<P0L3_BP8,Ori6,Pw10>]

BO330Bi-Orthohonal (G)

BO330-Phi

 .000  200.  400.  600.  800.  1000
xE0

-.080

-.000

 .080

 .160

 .240

xE0

Point series
C

o
e
ff

ic
ie

n
t

12/02/02-22:49[(6,1024) Phi-<P0L3_BP8,Ori6,Pw10>]

BO350Bi-Orthohonal (G)

BO350-Phi

 .000  200.  400.  600.  800.  1000
xE0

-.060

 .000

 .060

 .120

 .180

xE0

Point series

C
o

e
ff

ic
ie

n
t

12/02/02-22:49[(6,1024) Phi-<P0L3_BP8,Ori6,Pw10>]

BO370Bi-Orthohonal (G)

BO370-Phi

 .000  200.  400.  600.  800.  1000
xE0

-.060

 .000

 .060

 .120

 .180

xE0

Point series

C
o

e
ff

ic
ie

n
t

12/02/02-22:49[(6,1024) Phi-<P0L3_BP8,Ori6,Pw10>]

BO390Bi-Orthohonal (G)

BO390-Phi

Figure 2.18:The farther wavelets of the BOxxO group originating from the point location of 6.
Here the boundary point should be based on a level higher or equal to 3.
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Figure 2.19:The farther wavelets of the BOxxD group originating from the point location of 6.
Here the boundary point should be based on a level higher or equal to 3.
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Figure 2.20:Schematic representation of the tree-like structure of the wavelet packet decompo-
sition. S(=V in the text) and D stand for smooth and detail information, respectively. U with
superscript larger than 1 stands for further decomposition of D by wavelet packets. All subscripts
mean scale levels. All superscripts mean relative locations of the frequency bands for compatible
subscripts.
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Figure 2.21:The blowups of a few wavelets of the BO2xO group. Each successive blowup scale
is 23. The originating point of the wavelet function and the blowup location point are labeled in
individual sub-figure.
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Figure 2.22:The blowups of a few wavelets of the BO3xO group.
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Figure 2.23:The blowups of a few wavelets of the BO2xD group.
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Figure 2.24:The blowups of a few wavelets of the BOxyD group.
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Figure 2.25:The blowups of a few wavelets of the ONxxA and ONxxS groups.

46



 .000  100.  200.  300.  400.  500.
xE0

-.300

-.100

 .100

 .300

 .500

xE0

Point series

C
o
e
ff

ic
ie

n
t

12/02/02-01:22[(9,512) ON22A-<P1L4,Ori56r,XPt240,XPw3>]

ON22APWavelet packet blowup (L)

ON22A-P1L4

Seq. 0-240 (56r)

Seq. 1-240

Seq. 2-240

Seq. 3-240

Seq. 4-240

 .000  100.  200.  300.  400.  500.
xE0

-.400

-.200

 .000

 .200

 .400

xE0

Point series

C
o
e
ff

ic
ie

n
t

12/02/02-01:22[(9,512) ON44A-<P1L4,Ori300r,XPt400,XPw3>]

ON44APWavelet packet blowup (L)

ON44A-P1L4

Seq. 0-400 (300r)

Seq. 1-400

Seq. 2-400

Seq. 3-400

Seq. 4-400

 .000  100.  200.  300.  400.  500.
xE0

-.480

-.240

 .000

 .240

 .480

xE0

Point series

C
o
e
ff

ic
ie

n
t

12/02/02-01:23[(9,512) ON44S-<P1L4,Ori300r,XPt400,XPw3>]

ON44SPWavelet packet blowup (L)

ON44S-P1L4

Seq. 0-400 (300r)

Seq. 1-400

Seq. 2-400

Seq. 3-400

Seq. 4-400

 .000  100.  200.  300.  400.  500.
xE0

-.210

-.070

 .070

 .210

 .350

xE0

Point series

C
o
e
ff

ic
ie

n
t

12/02/02-01:24[(9,512) ON77S-<P1L4,Ori56r,XPt160,XPw3>]

ON77SPWavelet packet blowup (L)

ON77S-P1L4

Seq. 0-160 (56r)

Seq. 1-160

Seq. 2-160

Seq. 3-160

Seq. 4-160

Figure 2.26:The blowups of a few wavelet packets of the ONxxA and ONxxS groups. Note the
grouping tendency of the wavelet packets.
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Figure 2.27:The blowups of the BO31O wavelet, noting the vast difference in the ordinate. Here
successive blowup scale is 26.
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Figure 2.28:The blowups of the BO35O wavelet, noting the difference of the inclinations of the
zoom-in curves. Here successive blowup scale is 26.
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Chapter 3
The Entropies and the Best Wavelet Basis

3.1 Entropy’s physical pertinence

In studying the physics of certain phenomena using wavelets one of the most intriguing

questions is how to choose the analyzing wavelet(s). The concern here is quite in contrast

to those studies where they are mainly numerically or analytically oriented. For exam-

ple, in coding of images or acoustic signals the goals are straightforward: the maximum

compression with minimum handling and the highest effectiveness with least distortion;

under such circumstances mathematical relevance between signal and wavelet can be ma-

terialized much more explicitly than physical pertinence needs to be unfolded for our

applications.

From this point of view, for our interests in characterizing the physics of water-wave

related phenomena, it seems, at first, that the aspiration is not on “efficiency” or “com-

pactness”. However, with the understanding that the compactness of a coding means the

closeness between signal component(s) and analyzing function(s) along with the concep-

tion that wave forms which do not look like our signals (or signal components) are ob-

scured from intuitive perceptions of physics, it is justified to find the wavelets that provide

the most efficient or most economical representations for out signals. And this viewpoint

is related to the concept of entropy — seeming to converge to the same objective for what

are emphasized in different disciplines.
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The works in this chapter are mainly numerical experiments on measuring the “dis-

tances” between our signals and various Riesz wavelet bases given in several wavelet

treatises [4, 9, 20, 22]. No attempt to make new constructions of bases or to extend the

existing constructions is made. Nevertheless, we have tried to include various categories

of Riesz wavelets. We will come to realize that there is really no need to extend the ex-

isting constructions if the associated two-scale scaling function or father wavelet is not

changed, and that a few sparse fractal-oriented wavelets [19] are just as impractical as

they may be in our applications.

The wavelets tested are dyadic wavelets with “mathematical sampling rate” 1 (no

unit). They are of most practical interests in applications for discretely sampled signals.

Furthermore, we restrict our scope to laboratory water waves. The criteria used are the

entropy statistics of discrete transform coefficients, including Fourier coefficients.

3.2 The entropy criteria

Entropy is a terminology in the statistical physics, thus it gives indication without assur-

ance. The entropy can be viewed as a measure of the “distance” between a signal and its

reconstructed signal using partially truncated transform coefficients. To avoid the some-

what mystified notions as one might get from some of the readings, it may be better to

give straightforward descriptions by going through the actual numerical process first and

returning to its statistical implication later. Let suppose that we have a 1024-point sam-

pled data, then there is a set of 1024 wavelet coefficients (C={ci }). Take the absolute or

squared value of these coefficients, sort them, and then divide the sequence intoM (say,

100 or 200 or 300) divisions which are equally spaced from 0 to the maximum value of the

coefficients. Then we have the statistics of occurrence for each division, and the distribu-

tion of these normalized occurrences is the probability density distribution or probability
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density function (denoted by pdf), say{p1, p2, · · · , pM−1, pM}. The entropy is

H(p) = −

∑
i

pi log pi . (3.1)

Where, whenpi = 0, it is assumed that 0 log 0= 0, since in reality one can assumed that

there exists an almost zero probability in that interval without affecting the total sum of

probability, after all it is only a statistics and the modification virtually has no influence

on the norm value. If absolute values ofci are taken,H(p) is the L1-norm entropy; if

squared values are taken, it is squaredL2-norm entropy. Of course another power can be

used, but the squaredL2-norm, being the energy, is physically the most significant. The

practical aspect of this definition of entropy is: let suppose two probability distribution

functions sorted in a decreasing order arep and q, if p decreases faster thanq, then

H(p) ≤ H(q) [25]. The above inequality of entropy is only one-way correct and the

reverse is not always true, but smaller entropy implies that more energy is concentrated

within a smaller number of wavelet coefficients. Therefore, if only a fixed percentage of

coefficients is kept, the truncated error, i.e., the distance from the total sum, is likely to be

smaller for set of coefficients with smaller entropy

There is another notion, sometimes referred as the geometric notion [25], for calculat-

ing the entropy. Again, the procedures is given first and the simple physical interpretation

next. By setting the number of divisions to be the same as the number of coefficients

and by defining probability density to be the normalized (with respect to the total power)

value of the squared wavelet coefficient, that is to say, the total energy is‖C‖
2

=
∑

i |ci |
2

and the probability density ispi = |ci |
2/‖C‖

2, we get the alternative form of entropy by

substitutingPi into Equation3.1:

H(p) = log‖C‖
2
−

∑
i |ci |

2 log |ci |
2

‖C‖2
. (3.2)

The notion here is simple: if one just put more weight on coefficients of small energy and
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less weight on coefficients of large energy (all coefficients being normalized), then the

weighted energy is an indication of entropy. And since taking the log of a value is sort of

a weighting operation and since the total energy is finite, small entropy therefore means

that the number of significant coefficients is small, or stated otherwise, more energy is

concentrated in fewer coefficients.

One equivalent indicator of entropy of a pdf is the theoretical dimensionD(p) and is

defined as [25]

D(p) = eH(p)
=

∏
i

(
p−pi

i

)
. (3.3)

As was stated, entropy does not tell how conclusive the result is. But our numerical

results yield little ambiguity regarding the judgement that we can make.

3.3 Results and discussions

To increase the definiteness of the comparisons, we calculate entropy based on several

setups: direct coefficient entropy related toL2-norm based on Equation3.3(column 1 in

Tables3.1 and3.2), pdf entropy related toL2-norm with 300 (column 2) and 200 (col-

umn 4) divisions, and pdf entropy related toL1-norm based on Equation3.1 (column 3).

Theoretical dimension for one of the setups is also given (column 5). The tables show

the results using a wind-wave signal from a wave tank experiment. It is noted that if the

peak frequency (or the primary scale) of other signal is significantly different, then, to

be consistent in comparison, the analyzed signal lengths and the sampling rates should

be properly adjusted according to its peak frequency. This is because in the discrete

wavelet transform we need to keep track of the actual physical size of translation so as

to have physical perception of the wave forms. Table3.1 give results from all orthonor-

mal wavelets (including B&L, Meyer, ONxxA, ONxxS, and ONxxC), semi-orthogonal

wavelets (CubicB-spline, SO3O and SO3D), as well as from Fourier spectrum. Table3.2

give results from bi-orthogonal wavelets. Many distinctive features can be derived from

the tables.
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• The dual wavelet always gives much smaller entropy than as given by their coun-

terpart wavelet. This certainly verifies that, for our water-wave signals, using

f (t) =

∑
j,k

〈 f, ψ̃ j,k〉ψ j,k (3.4)

provides a much better efficiency in decomposition and reconstruction than using

f (t) =

∑
j,k

〈 f, ψ j,k〉ψ̃ j,k. (3.5)

This also points out that dual wavelets rather than their counterpart wavelets should

always be used as the decomposing basis for either better physical implications

or improved computational efficiency. It may also worth noting that the practical

shapes of all the listed bi-orthogonal wavelets, especially those with smallx and

y values, are visually quite unrealistical (such as those shown in Figures2.27and

2.28). Furthermore, for these bi-orthogonal wavelets, it can be concluded that there

is going to be very little improvement by further extending the support width related

to y without extending the support width related tox; since increasing the width (y)

from some point on gives no effect on the shape of dual wavelets (such asy = 7

or 9 for x = 3) and since it is the dual, rather than the counterpart, wavelet that

matters for better approximation.

• Entropy values of all orthonormal subgroups do not fall to the level of non-orthogonal

ones. Besides, difference in entropy values of long and short supports can barely be

differentiated, even though there seems to be a very slight indication that entropy

values related to longer support are somewhat smaller. Here the property reflects

the role of linear phase filtering as mentioned earlier.

• Among all the orthonormal wavelets none distinguishes itself from the others. And

we see no clear tendency within any subgroup. However, from the analytical point

of view, the Meyer wavelet is infinitely differentiable or smooth, the B&L is second

55



order differentiable, and the others have various degrees of differentiability or reg-

ularity [9]. It is therefore understandable that at the present stage many analytical

properties of orthonormal wavelets are of little practical interests for our signals.

• The most striking result is that the dual CubicB-spline wavelet yields a far smaller

entropy value, even lower than that of the spectral coefficients. Figure3.1shows the

comparisons of the cumulative probability distribution curves for several wavelet

bases as well as for Fourier basis. This striking feature is reflected by the extreme

flatness of the SO3D curve, nearly horizontal up until 90 percent of energy ratio. At

about 96 percent of the energy ratio there is a crossing between spectral curve and

the SO3D curve. These features practically imply that semi-orthogonal wavelet co-

efficients are better than Fourier coefficients in describing the details of the signals.

Figure3.2 shows the reconstructions of a section of a signal from its spectral and

SO3D wavelet coefficients of which 35 percent are kept. It is seen that the wavelet

basis yields truer details than does Fourier basis. Again, the reasons for the SO3D’s

strong performance can be attributed to the following characters: total positivity of

the scaling function and complete oscillation of the wavelet. That is to say, the scal-

ing function has no oscillation or zero-crossing; the corresponding wavelet has no

unnecessary oscillation, or no oscillation that is without zero-crossing. Physically,

the two characteristics hint that our laboratory water waves are far less transient

when compared with orthonormal or bi-orthogonal wavelets, and also imply that

the description of waves based on suitable support length or life span is more likely

to adhere to the physics.

• For the wavelet packet category we have the best basis and best level criteria. It

may not be difficult to gain a prior idea that the chance is slim for getting better

results using either of the bases. The obvious reason is due to the inherent limita-

tion of wavelet packet transform — wavelet packet transforms are associated only

with orthonormal bases. Since the primitive analyzing functions are orthonormal
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and since orthonormal wavelets perform poorly as just given above, it is therefore

hard to anticipate the same strong performance as that of semi-orthogonal wavelets.

Nevertheless, both wavelet packet criteria do show improvements when compared

with the original orthonormal basis, and the performance of the best basis is cer-

tainly better than that of the best level. Figure3.1–(b) gives the wavelet packet

best bases and best level curves for B&L and Meyer’s wavelets; they do show im-

provements when compared with the corresponding curves in Figure3.1–(a) using

regular wavelet transforms. It is quite certain that the improvement is not to the

degree of semi-orthogonal wavelet or that of the Fourier spectrum.

• Figure3.3 shows cumulative distribution curves of the best level, best basis, and

a few different levels bases wavelet packet coefficients, as well as the curve for

the corresponding regular wavelet transform coefficients; here, all the curves are

associated with ON77S. The curve for the best level comes close to that for the best

basis. Again, wavelet packet best basis and best level yield lower entropy values

than other relevant wavelet bases, but still their curves are far away from that of

SO3D.

• Among orthonormal wavelets, we do not see clear differences arising from different

degrees of symmetry (least asymmetric ONxxS or most asymmetric ONxxA); how-

ever, semi-orthogonal and bi-orthogonal wavelets are symmetric or antisymmetric,

and their entropy values (concerning dual wavelets) are comparatively lower. It

therefore indicates that the linear phase filtering is desired since symmetry or anti-

symmetry implies linear phase of the two-scale sequence [4, 9]. Without the linear

phase filtering visual impairment may occur. The non-symmetric distribution of

time-frequency windows shown in Figures1.1 illustrates such a significant impact.

Though symmetry is desired, it is hard to describe its influence since there are other

factors that need to be considered (such as the support length and regularity, e.g.,

Meyer and B&L wavelets are also symmetric but their entropy values are not com-
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parable to that of the ideal one).

Table 3.1:Entropy of orthonormal and semi-orthogonal wavelet coefficients as well as spectral
coefficients under various statistic criteria.

Wavelet L**2 coefficient
entropy

L**2 probability
entropy

L**1 probability
entropy

L**2 probability
entropy

Theotetical
dimension

(0 division) (300 divisions) (300 divisions) (200 divisions) (L**2 300 divisions)

B&L 4.691 1.330 3.417 1.179 3.782
Meyer 4.647 1.294 3.365 1.132 3.646
SO3O 4.833 1.669 3.756 1.488 5.307
SO3D 1.823 0.219 1.306 0.172 1.245

Spectrum 2.809 0.270 3.044 0.244 1.310

ON22A 4.993 1.761 3.891 1.516 5.815
ON33A 4.773 1.384 3.499 1.225 3.975
ON44A 4.790 1.517 3.596 1.363 4.559
ON55A 4.819 1.553 3.631 1.367 4.727
ON66A 4.790 1.373 3.456 1.203 3.946
ON77A 4.675 1.355 3.461 1.203 3.877
ON88A 4.645 1.229 3.283 1.082 3.418
ON99A 4.719 1.412 3.501 1.252 4.106
ON00A 4.787 1.423 3.511 1.244 4.149

ON44S 4.835 1.461 3.557 1.281 4.311
ON55S 4.758 1.492 3.576 1.298 4.426
ON66S 4.754 1.402 3.501 1.225 4.065
ON77S 4.751 1.336 3.331 1.188 3.804
ON88S 4.714 1.366 3.481 1.224 3.918
ON99S 4.755 1.469 3.570 1.288 4.345
ON00S 4.635 1.278 3.378 1.134 3.591

ON11C 4.938 1.696 3.832 1.457 5.452
ON22C 4.827 1.468 3.520 1.284 4.342
ON33C 4.756 1.488 3.573 1.333 4.427
ON44C 4.690 1.297 3.337 1.157 3.658
ON55C 4.644 1.309 3.405 1.154 3.703
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Table 3.2:Entropy of bi-orthogonal wavelet coefficients under various statistic criteria.

Wavelet L**2 coefficient
entropy

L**2 probability
entropy

L**1 probability
entropy

L**2 probability
entropy

Theoretical
dimension

(0 division) (300 divisions) (300 divisions) (200 divisions) (L**2 300 divisions)

BO11O 5.395 2.623 4.502 2.299 13.777
BO11D 5.395 2.623 4.502 2.299 13.777
BO13O 4.943 1.806 3.883 1.627 6.084
BO13D 5.266 2.371 4.373 2.053 10.708
BO15O 4.866 1.678 3.755 1.495 5.357
BO15D 5.227 2.291 4.327 1.987 9.882

BO22O 5.282 2.362 4.363 2.083 10.609
BO22D 4.434 1.181 3.284 1.034 3.257
BO24O 4.963 1.862 3.985 1.634 6.438
BO24D 4.359 1.090 3.220 0.962 2.975
BO26O 4.881 1.703 3.835 1.492 5.490
BO26D 4.332 1.064 3.174 0.940 2.899
BO28O 4.857 1.624 3.782 1.452 5.073
BO28D 4.318 1.069 3.157 0.941 2.914

BO31O 5.824 3.174 4.741 2.835 23.894
BO31D 4.377 1.058 2.655 0.936 2.880
BO33O 5.084 2.001 4.062 1.756 7.393
BO33D 4.205 1.102 2.827 0.965 3.011
BO35O 4.850 1.697 3.847 1.506 5.457
BO35D 4.125 1.026 2.776 0.908 2.789
BO37O 4.790 1.658 3.821 1.442 5.247
BO37D 4.106 0.986 2.737 0.873 2.679
BO39O 4.776 1.660 3.835 1.432 5.258
BO39D 4.098 0.967 2.713 0.866 2.629
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3.4 Summary

Using various criteria of entropy statistics of transform coefficients we identify among a

vast array of Riesz bases the best basis for our signals. It is found that, except theB-spline

semi-orthogonal wavelets, no wavelet basis tested here can reach the level of approxima-

tion given by Fourier spectra. Still, many of the properties of the wavelets studied here are

more of analytical interests and hard to be physically significant. The strong performance

of the semi-orthogonal wavelet indicates the usefulness of modulated Gaussian wavelets

(or the Morlet wavelets) for our applications. Coupling with a few additional features that

are specific to continuous wavelet transforms – such as its redundancy nature, the flexible

time-frequency resolutions, and the desirable conciliatory segment of interest – promising

uses in future applications might be anticipated.❖
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Figure 3.1: The cumulative probability distribution curves of the transform coefficients using
different bases associated with three different transform categories: wavelet, wavelet packet, and
Fourier transforms. Individual function bases are labeled in the figure. The top figure shows those
of the wavelet group as well as a curve for spectral coefficients; the bottom figure shows those of
wavelet packets best bases based on two orthonormal bases used in the top figure.
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Figure 3.2:Comparison of reconstructed signals using truncated spectral coefficients and semi-
orthogonal wavelet coefficients. Here 35% of the coefficients are kept. The original signal is
shown in (a), signal reconstructed from spectral coefficients in (b), and that from SO3D wavelet
coefficients in (c). The semi-orthogonal wavelet is seen to better portrait the original signal, espe-
cially the small scale transient features.
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Chapter 4
The Phase Distributions of the Wavelet
Characteristic Function

4.1 The wavelet Characteristic functionm0

In the last chapter, by providing the entropy values of the transform coefficients for com-

prehensive bases of discrete wavelet category as well as the Fourier basis, the optimal

basis for the simulation of water wave signals is identified to be the semi-orthogonal cu-

bic spline wavelet; The entropy results are of statistical approach, and they by no means

touches any mathematical insight of the various function bases. Herein this chapter, by

studying the phase distribution of a wavelet characterizing function for each basis, the

analytical essence that gives rise the practical usefulness of a function basis is shown to

be the requirement of a linear phase of the characterizing function.

Following the convention used by Daubechies [9], the wavelet characterizing function

is termed as them0(ξ) function, which is the kernel of individual wavelet and has the

following mathematical content:

A multiresolution analysis consists of a sequence of the closed subspacesVj of the

nested ladder,

· · · V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ · · · , (4.1)
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and satisfies the requirement

f ∈ Vj ⇐⇒ f (2 j
·) ∈ V0. (4.2)

The invariance ofV0 under integer translations states that

f ∈ V0 H⇒ f (· − n) ∈ V0 for all n ∈ Z. (4.3)

Now comes the main statement that there existsφ ∈ V0 so that

{φ0,n; n ∈ Z} is an orthonormal or Riesz basis inV0, (4.4)

where, for all j,n ∈ Z, φ j,n(x) =
√

2− jφ(2− j x − n). Here theφ is often called the

scaling function of the multiresolution analysis. Furthermore, for the{φ j,n; j,n ∈ Z}

there exists its counterpart wavelet basis{ψ j,k; j, k ∈ Z}, ψ j,k(x) =
√

2− jψ(2− j x − k),

such that

Pj −1 f = Pj f +

∑
k∈Z

〈 f, ψ j,k〉ψ j,k. (4.5)

Sinceφ ∈ V0 ⊂ V−1 andφ−1,n are basis inV−1, we have

φ =

∑
n

hnφ−1,n, (4.6)

with

hn = 〈φ, φ−1,n〉. (4.7)

We therefore have

φ(x) =
√

2
∑

n

hnφ(2x − n) (4.8)

or

φ̂(ξ) =
1

√
2

∑
n

hne−inξ/2φ̂(ξ/2). (4.9)
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In an alternative form

φ̂(ξ) = m0(ξ/2)φ̂(ξ/2), (4.10)

where

m0(ξ) =
1

√
2

∑
n

hne−inξ . (4.11)

Suffice it to say that them0(ξ) function is comprised of the summation of the wavelet

construction convolution coefficients (or weights corresponding to the support length of

the wavelet) multiplied by the complex exponential functions of their individual scales,

and the function is intrinsic to the transcendental formulations of the mother wavelet and

the two-scale equation.

4.2 Phase distribution of them0 function

Figures4.1 to 4.8 show the phase distributions of all the covered wavelet categories. A

few notable points are summarized below.

• Wavelets with similar visual appearance may show extremal phase difference, such

as those shown in Figures4.1and4.2.

• In view of the entropy results given in the next chapter, as well as the phase dis-

tributions of all the wavelet considered, we see that linear phase distribution is not

sufficient to guarantee a best performer for the water wave signals – and it seems

that a constant phase is required. The semi-orthogonal wavelet (Figure2.15) is the

one with such a property (Figure4.3).

• Most of the phase distribution curves for the bi-orthogonal wavelets and their duals

are the same not only within their subgroups but also crossing the subgroups. This

proves that lengthening the support length of the wavelet of this category provides

no benefit.

• The lengthening of support length of the orthonormal wavelets may still yield more
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irregular phase distribution curves. Again this disproves any possible benefit that

may arise from further expanding the construction of these orthonormal wavelets.

• Judging from the last point, since two extremal categories of orthonormal wavelet

have been covered, we therefore don’t see any possibility that there exists other

orthonormal wavelet that may provide suitable and better characterization for water

wave physics.❖
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Figure 4.1:The phase distribution of them0 function of the Meyer wavelet.
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Figure 4.2:The phase distribution of them0 function of the Battle and Lemarié wavelet, noting
the difference from that of Meyer wavelet.
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Figure 4.3: The phase distributions of them0 functions of the semi-orthogonal wavelet and its
dual.
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Figure 4.4:The phase distributions of them0 functions of the wavelets of the most asymmetric
group.
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Figure 4.5:The phase distributions of them0 functions of the wavelets of the least asymmetric
group.
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Figure 4.6:The phase distributions of them0 functions of the coiflets.
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Figure 4.7:The phase distributions of them0 functions of the bi-orthogonal wavelets.
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Figure 4.8:The phase distributions of them0 functions of the bi-orthogonal wavelets.
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Chapter 5
Continuous Wavelet Counterpart of the
Identified Optimum Basis

5.1 Discrete wavelet transforms versus continuous trans-

forms

In the introductory chapter we listed a few properties related to a few time-frequency

analysis methodologies, such as Fourier transform, short time Fourier transform (STFT),

discrete wavelet transform (DWT), as well as continuous wavelet transform (CWT). And

in a related previous research the Hilbert transform and the analytical signal approach

were also studied and their advantages and disadvantages were highlighted ([13]). In fact

one of the main themes for all of these discussions centers on the spirit of the present

chapter regarding the minimization of uncertainty effects.

In this chapter, inheriting the identified discrete optimum basis, we mainly focus on

the different usages of DWT and CWT concerning their practical applications to water

waves related signals. That is to say, what is the continuous wavelet counterpart of the

semi-orthogonal cardinal spline wavelet? And why is there the need of a continuous one.

Herein we emphasize that DWT and CWT should be treated as two different entities

— since, unlike the discrete and continuous Fourier transforms where they are dealing

with the same basis as well as deploying basically the same formulations, DWT and CWT
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generally refer to two quite different methodologies which focus on their individual func-

tion bases as well as different data treatment schemes. Most profoundly we press on the

concerns of the following points:

• In general, the dilation lattice is in logarithmic measure for discrete wavelet trans-

form (e.g., thea0
j in the stability condition to be mentioned) and in linear measure

for discrete short time Fourier transform (e.g., thee−i 2πmt in the above mentioned

Gabor type frame). Continuous transforms do not involve lattice. The concept of

lattice is associated with the concept of time-frequency density, which is defined

as the inverse of the product of dilation and translation steps [9]. For short time

Fourier transform frames, due to Shannon sampling theorem, the time-frequency

density must not go beyond the value of generalized Nyquist density,(2π)−1. For

wavelet transform, however, there is no such a clear-cut limit of time-frequency den-

sity. Moreover, Balian-Low theorem depicts that there is no good time-frequency

localization for a short time Fourier transform frame if constructed under a strict

time-frequency lattice; on the contrary, numerous wavelet bases with good time-

frequency localization have been given [4, 9, 20]. These physically imply that

wavelet transform may provide better zoom-in.

• The existence of a lattice structure can be either practical or impractical. For water

waves, if we don’t anticipate any significant gaps in the scale contents, that is to

say, the physical process involves time and spatial scales that are “changing” or

“evolving” in a relatively continuous sense, we generally do not appreciate the use

of frames. Here a continuous transform may provide better chance of success.

• Both continuous and discrete wavelet transforms implement a process of integral

wavelet transform over the real lineR in a continuous sense but they analytically

emphasize the use of different integration symbols:
∑

and
∫

. Digitally sampled

signals are certainly discrete, but this is irrelevant to the methodology of contin-

uous wavelet transform or discrete wavelet transform. The main difference, from
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the application point of view, is that there is no practical interest of reconstruction

(or inverse transform) for continuous wavelet transform due to the redundant or

non-orthogonal nature of its wavelet coefficients. Both methods are capable of de-

composing either functions defined over the real line or signals sampled discretely.

In reality, applying continuous wavelet transform to sampled data is implemented

in a discrete manner; vis-à-vis, doing discrete wavelet transform for an unlimited

ladder, such as that of the standard multiresolution analysis of [17], can describe

any function in infinite detail, i.e., over the whole real line. The concept of unlim-

ited ladder of discrete wavelet transform is illustrated by two examples shown in

Figures2.21 through2.28where the blow-ups of individual segments of wavelet

curves are shown. The figure also illustrates possible bizarre behaviors of certain

wavelets and indicates that mother wavelets with short support lengths might not be

of ideal choices. In addition, a few discrete wavelet transform formulas when gen-

eralized in the limit sense are quite helpful in explaining a few continuous wavelet

transform characters.

• All of the Riesz wavelets studied in the previous chapter handle bases with frame

bounds that are either tight or relatively tight; whereas the continuous wavelet does

not involve frame bounds and might not have frame bounds at all when it is analyzed

in the sense of discrete wavelet transform, i.e., not even qualified as a Riesz wavelet.

However, we will see that there is a very natural transition from the discrete wavelet

to its continuous counterpart.

• Apart form the specific features listed in the above items, there is a practical interest

in what can be done to improve the physical relevance between the basis functions

and the wave constituents of our signals. For example: does the decaying features

of basis functions akin to the physics of component waves? And this is the topic to

be discussed in the next chapter.
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5.2 The wavelet perspective of an optimum basis

The name of “Wave”-“let” hints a core concept of wavelet analysis: the decaying proper-

ties of the basis functions both in time or frequency domains are at the heart of all sorts

of function bases, and different intricate analytical properties of wavelets are just mani-

festing to these decaying features – to be further clarified in the next section. And since

two decay properties that are analytically quite differentiable may only have very minor

visual differences in their wave forms such as those shown in Figures2.13and2.14, one

generally feels that the bearing of wavelets’ physical implications is not proportional to

their analytic interests. Nevertheless, we still can benefit from the wavelet approach due

to its flexibility in devising the analyzing wavelets as well as its adaptability in forging the

algorithms. But versatility does not come without the price of ambiguity. For example,

the power spectra of a function are shift-invariant; whereas, wavelet spectra are highly

shift-variant [18]. Figure5.1 shows such a property and it gives us the idea of how sig-

nificant the phase effects may be. And this figure should be regarded as the counterpart

figure in the wavelet analysis to those in the Fourier analysis given in a previous study

on the analytic signal approach by the author [16]. Note that all these figures indicate the

possible usefulness associated with the uses of non-orthonormal or redundant function

bases, as well as the drawbacks of bases with tight frame bounds.

5.3 Implications of wavelet frame bounds

If a functionψ(t) is to be qualified as a wavelet of CWT, then the only requirement is that

ψ(t) meets the “admissability condition,”

2π
∫

∞

−∞

|ψ̂(ω)|2

|ω|
dω = Cψ , (5.1)

whereCψ is a constant specific to individualψ , andψ̂(ω) is the Fourier transform of

ψ(t). Here, among several definitions of the Fourier transform forward and inverse pair,
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Figure 5.1:The shift non-invariant property of wavelet transforms. Top figure in each column
shows individual signal. The middle one shows the wavelet coefficients. The bottom one shows
the wavelet coefficients for the shifted signal (right column: 20 points to the left (using BO22D);
left column: 3 points to the left (using ON33A)). Note that even though Fourier power spectrum is
shift-invariant, Fourier spectral coefficients (without the second power) is still shift-variant. This
property is linked to the poor performances of coherences associated with orthonormal bases to be
explained in a later chapter.
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the adopted one is:

ψ̂(ω) =
1

√
2π

∫
∞

−∞

ψ(t)e−iωtdt (5.2)

and

ψ(t) =
1

√
2π

∫
∞

−∞

ψ̂(ω)eiωtdω. (5.3)

The admissability condition is the integration of power spectrum weighted by the

inverse of the absolute value of frequency; therefore, it implies that the wavelet should

have little power at low frequency and is total nil at zero frequency, i.e., the area between

the wavelet curve and the abscissa integrates to zero. This feature of reasonable decay

and finite support length is the outright instinct of wavelet. The dilated and translated

versions of this wavelet areψa,b(t) =
1

√
a
ψ( t−b

a ), wherea > 0 anda ∈ R andb ∈ R are

the dilation and translation parameters, respectively; and1
√

a
is the normalization factor

for L2-norm. Theψa,b satisfies admissability condition too.

The admissability condition is a very loose constrain; it does not provide a clear con-

cept of redundancy concerning applying CWT to discretely sampled signals. To illustrate

this redundancy, let us use the discrete wavelet frame (since the frame wavelet certainly

qualifies as a wavelet for CWT):ψa0,b0; j,k(t) = a0
− j/2ψ(a− j

0 t − kb0), wherea belongs

to the set of discrete dilationsa j
0 andb to the set of discrete translationsa j

0kb0; j, k ∈ Z;

anda0 6= 1 andb0 > 0 are fixed positive constants. For such a discrete wavelet frame we

need to impose a more restrictive condition onψ(t) for its admittance, i.e., the stability

condition,

b0A ≤ 2π
∑
j ∈Z

|ψ̂(a0
jω)|

2
≤ b0B, (5.4)

whereA andB are positive constants and 0< A ≤ B < ∞. The fixed constantsb0 and

2π are intentionally kept since they are related to normalized wavelet basis and since the

magnitudes ofA andB are related to the redundancy of the basis.

The stability condition may look abstract, but we give its physical implication as: to

be able to let a function be reconstructed from its wavelet coefficients, i.e., the opera-

82



tion is reversible, we need a process which is convergent when summing all its scales

or frequency components. It is therefore necessary that the sum of the power of all the

constituent elements can neither be nil or infinity. If the sum is zero, then the elements

are all of zero measure — nothing exists. If the sum is infinity, then the elements are

significantly overlapping in time and frequency — there is either too much dependence

or too much ambiguity and tangling (just like two vectors paralleling to each other do not

constitute a good vector basis for two dimensional vector space).

Speaking of the reconstruction of a function from its wavelet coefficients one always

involves a dual wavelet except for orthonormal basis where the wavelet itself is its own

dual — self-dual. And since the roles of a wavelet and its dual can always be inter-

changed in both decomposition and reconstruction, the above statements apply equally

well for dual wavelet; but their frame bounds will generally be different since the sets of

convolution coefficients are different as hinted by the different entropy values given in the

previous chapter.

If the basis functions are normalized and the inequality of the stability condition are

optimized for both the greatest lower bound and the lowest upper bound, i.e., whenA and

B are defined as

A = inf

2π

b0

∑
j ∈Z

|ψ̂(a0
jω)|

2

 , (5.5)

B = sup

2π

b0

∑
j ∈Z

|ψ̂(a0
jω)|

2

 , (5.6)

then an indication of the redundancy is the average value ofA andB, A+B
2 , supposed that

A andB are close to each other (almost tight). We elucidate the possible extreme redun-

dancy of CWT as follows. If the dilated and translated versions of a function originating

from a certain set of discrete steps(a0,b0) constitute a frame with frame boundsA andB,

then the frame bounds of a basis using the same function but with finer discrete steps, say
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a0/2 andb0/2, will contain the bounds of coarser discrete steps; therefore, the new lower

and upper bounds both grow together. This nested relation can be extended infinitely and

in the limit sense it is included in the algorithm of CWT. This is the reason why there is

no practical value of numerical reconstruction in CWT, although CWT is reversible ana-

lytically. Another intuitive explanation is even easier to comprehend: when apply CWT

to discretely sampled signal, since for each scale the number of wavelet coefficients is the

same as the number of data points and since we can specify scales in whatever resolution

we like, we virtually have an unlimited number of wavelet coefficients. The sum of the

powers of these coefficients can be unimaginatively huge, or even unbounded; On the

other hand, the sum of signal energy is fixed. If we generalize the redundancy concept

of DWT, i.e., the ratio between the two sums indicates the degree of redundancy, then for

discretely sampled signal a continuous wavelet transform can possibly yield immense re-

dundancy. Though extreme redundancy may exist, we argue that the information content

or usefulness associated with the redundancy may behave like a cumulative pdf curve of

a Gauss function which may saturate at a later stage, and in reality our numerical results

from studies of coherent behaviors of wind-, wave- and current-related signals undoubt-

edly vindicate this point [14].

5.4 Beneficial scenarios relevant to the redundancy

Redundancy may be a nuisance in certain applications such as those that focus on the per-

fect reconstruction of signal or on the efficiency of coding and decoding; however it has

also shown its promising aspects in several applications. Three prominent points are the

results of established cases: (1) Redundancy does not mean that a whole bunch of coeffi-

cients are needed to give a good replicate of the original signal, that is to say, significant

signal contents can still be retrieved from only a comparatively small amount of coeffi-

cients with respect to that of tight or almost tight wavelet frames. (2) Redundancy means

that effects of noise either embedding in the sampled signal or arising from the nature of
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numerical processes (such as frequency leakage) can be reduced by taking advantage of

the vast sample space of transform coefficients. (3) If additional features, such as “total

positivity” and “ complete oscillation” of wavelet are incorporated, the effects on noise

reduction or ambiguity removal may be greatly enhanced; together with the redundancy

effects they facilitate the design of a very beneficial analyzing scheme. An example of

the first point is Mallat and Zhong’s [18] (see also Froment and Mallat [10]) signal recon-

struction from local maxima using a quadratic spline wavelet. In fact, the mother wavelet

they used is basically a loose wavelet (i.e., a wavelet with analytical aspects not being

well defined and therefore not really to be qualified as a wavelet), but they were able to

recover images quite well using only local peak values of wavelet coefficients that are

associated with only dyadic scales. For the second and third points, our studies on the

coherent features in the wind, wave, and rain coupling system serve as an example [14].

One last point to note is to compare the admissability condition of CWT with the

stability condition of DWT. Here one can easily perceive the great difference in flexi-

bility between the two. In addition, the stability condition is a necessary condition, and

not all choices forψ , a0, andb0 lead to wavelet frames. Moreover, stability may not

guarantee a good numerical behavior. Figure6.1 shows the results of a few numeri-

cal experiments, where the problems of numerical convergence are illustrated using the

blow-ups of wavelet curves. In the figure two bi-orthogonal wavelets are blown up around

their individual points using refinement cascade, and the blow-up curves show the pos-

sible intrinsic absurdity arising from peculiar analytical properties associated with these

wavelets. Here, the two bi-orthogonal wavelets are, respectively, with four and twenty

filter weights and both are constructed from quadratic spline scaling function [9]. The top

sub-figure indicates a case where the DWT fails numerically to characterize the mother

wavelet (not converging) even though the associated wavelet frame qualifies theoretically

as a Riesz basis. The bottom sub-figure shows strange alternating inclinations of wavelet

curves with a poor convergence. The figure also illustrates the point that, for studying

water-wave related signals and their physics, most of the fancy wavelets with bizarre
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wave forms are not of our choice, as are also indicated by their high entropy values given

in the previous chapter.

5.5 The continuous counterparts or the optimum basis

Let the Gaussian function be

gα(t) =
1

2
√
πα

e−
t2
4α , (5.7)

whereα is a representative value of the second moment of the Gaussian function and the

constants is for the purpose of normalization, the modulated Gaussian is

Gα
b,ω(t) = eiωt gα(t − b). (5.8)

And the Gabor transform of a functionf is

(
Gαb f

)
(ω) = 〈 f,Gα

b,ω〉 =

∫
∞

−∞

f (t)e−iωt gα(t − b)dt. (5.9)

As is stated by Daubechies ([9]) that the Morlet wavelet is almost identical to a mod-

ulated Gaussian, and as is given by Chui ([4]) a modulated Gaussian matches almost

exactly with cardinalB-spline wavelet of order greater than or equal to three, i.e., for

m ≥ 3, the even orderψm’s (such as the cubic spline waveletψ4) match almost exactly

with

ReGα
b,ω(t) = (cosωt)gα(t − b) (5.10)

and the odd order ones with

ImGα
b,ω(t) = (sinωt)gα(t − b) (5.11)

for a certain set of valuesα,b, ω.
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In accord with these observances we therefore have an extremely natural transition

from the identified best basis wavelet based on DWT to the following Morlet wavelet

based on CWT,

ψ(t) = π−1/4(e−iω0t
− e−ω2

0/2)e−t2/2. (5.12)

Centering on the enhancements of physical modeling of water wave signals, in the

following chapter we will further work on the optimization of the CWT processes based

on findings of the present chapter.❖
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Chapter 6
The Continuous Wavelet Transform Using
Adapted Time-Frequency Windows

6.1 The demand of better physics

In addition to the various concerns about the peculiar properties specific to discrete and

continuous wavelet transforms as are stated in the previous chapter, herein we focus on

the practical interest in what can be done to improve the physical relevance between the

basis functions and the wave constituents of our signals. For example: does the decaying

features of basis functions akin to the physics of component waves? In fact, this simple

question outlines another fundamental theme of this chapter: if time-frequency windows

of fixed shape and size (the case of STFT) is less suitable than time-frequency windows

of fixed size but with flexible shape (the cases of DWT and CWT) in characterizing multi-

scale transient signals, then time-frequency windows which are flexible in both shape and

size should provide even better adaptations. The theme is intuitive right, the background

is not without commitments.

Based on this perception, further concerns evolving from the previous chapter can be

put forward quite simply: (1) Can we utilize this redundancy to improve the relationship

between wavelet’s analytical form and its physical interpretability? (2) If redundancy

leads to adaptation, does the adaptation still preserve the complete information content

of the signal studied? (3) Is the scheme of adaptation efficient and easy to implement?
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Question one is related to the distribution or the degrees of freedom of time-frequency

windows in the phase plane and will be dealt with in the next chapter. Question two will

be answered through the verification for the existence of a condition of “resolution of

identity” using a special case of Morlet wavelet, as is also to be given in the next chapter;

for now, a short explanation is that, if one just applies the adaptation to finite range(s) of

scale, then what is lost or unaccounted for in the adaptation process can still be recov-

ered from some dilated and translated versions of some finer scale wavelets originating

from the sameψ(t) in the CWT. The success of Mallat and Zhong’s case also indicates

such a possibility. Question three depends on the adaptation scheme. But, based on the

somewhat intuitive adaptation used here, it is stated that nothing complicate is introduced.

One practical aspect for all the three points is: when analyzing signal we are almost

always interested in only finite scale range(s), so what is really needed is to implement the

adaptation locally. Hence it may be beneficial not to stick with stubborn time-frequency

windows and to adopt a scheme that is numerically with the same easiness and physically

more sound.

6.2 Degrees of freedom and the uncertainty relation

The flexibility of constructing wavelet function basis, i.e., the possibility of the adapta-

tion, is associated with the number of degrees of freedom of the time-frequency windows

within a phase plane. The number of degrees of freedom for an orthogonal basis is gener-

ally defined as the total area of the phase plane divided by the area of the time-frequency

window corresponding to that determined by the mother wavelet. For any time-frequency

kernel the maximum number of degrees of freedom is determined by the Heisenberg un-

certainty relation or Heisenberg’s inequality [3]. It is illustrated here that, even though

it is impossible to increase the limiting degrees of freedom, there is no further limitation

imposed upon the present adaptation. Besides, this section also serves two purposes: (1)

illustrate the basic functionality of the modulation mechanism for STFT, which in turn is
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conceptually the same as the dilation mechanism for WT; (2) outline the relation between

redundancy and the Heisenberg uncertainty using possible distribution of time-frequency

windows within a phase plane.

The uncertainty relation states that the product of bandwidth1ω and duration1t of a

signal cannot be less than a minimum value of1
2 when the1t and1ω are defined as the

standard deviations of packet energy| f (t)|2 and power spectrum| f̂ (ω)|2 with respect to

their centroids, respectively:

1t
2

=

∫
∞

−∞
(t − t)2| f (t)|2dt

‖ f (t)‖2
, (6.1)

1ω
2

=

∫
∞

−∞
(ω − ω)2| f̂ (ω)|2dω

‖ f̂ (ω)‖2
, (6.2)

wheret =
∫

∞

−∞
t | f (t)|2dt/‖ f (t)‖ andω =

∫
∞

−∞
ω| f̂ (ω)|2dω/‖ f̂ (ω)‖. As is also il-

lustrated in Chui’s treatise textbook [4], the time-frequency window,1t1̇ω, of the semi-

orthogonal wavelet is nearly equal to the minimum value of the Heisenberg uncertainly

principal, and this very optimistically provides the opportunity for applying the adapta-

tions. That is to say, there is an easy to way get round of the uncertainty relation by going

through a modulation process (i.e., multiplying a basis function with a complex exponen-

tial). Since in Fourier analysis a modulation in one domain corresponds to a shift in the

other domain, such a process causes the new variance1ω to increase dramatically. Fig-

ure6.2shows such a mechanism. It is seen that the new1t1ω is significantly larger than

1t Dω, i.e., even larger than the limiting value for Heisenberg uncertainty relation; there-

fore, there is quite a lot of flexibility to devise the time-frequency windows. In view of the

similarity between the modulation mechanism for STFT and the dilation mechanism for

WT, especially for the case of Morlet wavelet, we anticipate that there is an ample space

for adapting the time-frequency windows. Furthermore, as pointed out by Bracewell [3],

there exists no theorem depicting the lower limit of1t Dω, i.e., no new restriction forDω;

therefore no further limitation on the number of the degrees of freedom is induced. Over-
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all, it is quite flexible to draw time-frequency windows which generally do not violate the

uncertainty relation when we express a signal in its two dimensional phase plane.

6.3 Time-frequency windows of flexible size and the physics

The algorithm and the physics associated with the adaptation of time-frequency windows

can be illustrated easily by going through practical examples. Though the adaptation

does not need to be confined to any specific type of wavelet, the Morlet wavelet readily

serves for such a purpose. As was stated in the previous chapter that the Morlet wavelet

is almost identical to a modulated Gaussian, and a modulated Gaussian matches almost

exactly with cardinalB-spline wavelet of order greater than or equal to three, which is

exactly the identified best basis wavelet. Overall we therefore, on the one hand, benefit

from an extremely natural transition from DWT to CWT, on the other hand, gain the

practical merit of the adaptation.

Before we go into the adaptation, let us recount more explicitly two very important

features that distinguish the identified optimum basis from the other bases and that defi-

nitely contribute to the causes of the optimum basis’ successful applications: (1) The best

basis’ cardinal spline scaling function and its associated wavelets possess, respectively,

the nice properties of “total positivity” and “complete oscillation”. We note that these

two properties physically imply that its wave form is relatively smooth and without ad

hoc variations when compared with some fancy wavelets with finite support lengths. (2)

The cardinalB-spline wavelet is either symmetric or anti-symmetric. Therefore, it bene-

fits from the linear-phase filtering. The physical implication of this is: slight differences

in wavelet coefficients will not cause significant differences in their reconstructed wave

forms, or alternatively, the modulations of the wave forms are comparatively less abrupt.

With more natural transitions for both forward and inverse transforms under various cir-

cumstances, the impacts to our perception or visualization of an interaction process due

to varying input conditions are leaning toward relatively evolutionary tendencies rather
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Figure 6.1:Wavelets with fancy analytical properties are often of peculiar wave forms and are not
of our choice for studying water-wave related physics — Either judging from their entropy values
given in the previous chapter or form their stability conditions shown here. Here the blow-ups of
bi-orthogonal wavelets BO31O and BO35O are shown, respectively, in top and bottom halves of
the figure. Related data for BO31O is:{Blow-up point: 150 (located at the dotted line in figure
(d)); Origin: level 2, position 12 (i.e.,U12

2 in Figure2.20); Length: 512 (the curve in figure (d)).
Figures (a), (b), and (c) show successive blow-up scale of 26. The blow-ups diverge rapidly, i.e.,
the wavelet fails to identify itself numerically in the refinement cascade.} Related data for BO35O
is: {Blow-up point: 256 (located at the dotted line in figure (d)); Origin:U12

2 ; Length: 512 (one
of the curve in figure (d) with parts of the curve coincide with parts of the abscissa). Figures (a),
(b), and (c) show successive blow-up scale of 26. The blow-ups poorly converge but with peculiar
inclinations.}
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than drastic turnovers. Still, one additional implication of practical significance is: dis-

tortions are far less severe when noise and uncertainty are poignant. The phase plane in

Figure6.3and the various blow-up curves in Figures6.1, 2.27and2.28, as well as figure

5.1manifest the problems and possible difficulties associated with wavelet bases that do

not posses these properties.

Up to this point we have illustrated many specific properties, associated either with

DWT or with CWT, that bestow upon our desires when analyzing our water wave related

signals; even though their outstanding effects might only be appreciated when we get to

the reality of analyzing experimental data. But here let us embark the further work on an

improvement — enhancing wavelet’s physical implication based on the affinity between

the identified best basis and the Morlet wavelet.

The Morlet wavelet is the following complex function:

ψ(t) = π−1/4(e−iω0t
− e−ω2

0/2)e−t2/2, (6.3)

in whichω0 is a constant related to the carrier frequency and the terme−ω2
0/2 justifies the

admissability condition. Its Fourier transform is almost a shifted Gaussian and is given

by

ψ̂(ω) = π−1/4[e−(ω−ω0)
2/2

− e−ω2/2e−ω2
0/2]. (6.4)

In addition to the general meaning of the modulation frequency, theω0 has the physical

implication of the amplitude ratior — the ratio between the second highest peak and the

first highest peak ofψ(t) — i.e.,

r = ψ(t2)/ψ(0), (6.5)

in whicht2 is the abscissa of the second highest peak. The exact value oft2 can be obtained

by solving numerically the transcendental equation derived from the derivative of theψ

function, but a fairly good estimate is obtained by simply dropping the second term of the

95



above complex function since the second term is generally five order of magnitude less

than the maximum value of the first term, i.e.,

ω0 ≈
2π

t2
≈ π

(
−

2

ln r

)1/2

. (6.6)

The higher theω0 is, the smaller the ratior becomes. Ifω0 is constant, then the ratior

for different wavelet dilations or scales keeps constant too. Here comes the core question:

whether constituent wave components of different scales and time spans all possess this

fixed decay feature? To show that this is not true, let us examine the composite water

wave system that is with viscous damping.

For deep water waves with a clean surface the energy losses due to viscous dissipation

arise almost entirely from the straining of the irrotational motion in the water column,

and the part of contribution from viscous stresses in the surface layer is negligible. It was

shown [11, 21] that the time rate of change of the energy density is

Ė = −2µσ 2aw
2k, (6.7)

whereµ, σ , aw, andk are the dynamic viscosity of the water, the wave frequency, wave

amplitude, and wave number, respectively. Since in deep waterE = (2k)−1ρσ 2aw2,

whereρ is the water density, the attenuation coefficient

γν = −
Ė

2E
= 2νk2, (6.8)

whereν is the kinematic viscosity of the water. Therefore the energy density of the wave

evolves as

E = C1e−2γν t , (6.9)

96



whereC1 is a constant, and the amplitude decreases with time in accordance with

aw =

√
C12k

ρσ 2
e−γν t = C2e−2νk2t , (6.10)

whereC2 is a constant ifσ does not vary. Comparing the decay of wave amplitude of

Morlet wavelet with the decay of the physical model, one sees both similarity and dis-

similarity. The similarity is that the attenuation coefficients in both models have inverse

square dependence on scales — the former in(1/a)2 and the latter ink2. The dissimilar-

ity is in the time dependence of the exponent in the exponential — in Morlet wavelet it

is in t2 dependence, while in the physical model it is in linear dependence. It is therefore

anticipated that Morlet wavelets based on a fixed modulation shape are not good represen-

tations of water waves of different scales. Or stated otherwise, basis functions originating

form a single mother Morlet wavelet do not form a good basis.

Now the situation is clear: the constantω0 either overestimates the viscous decay

of water waves at the low-frequency end or, otherwise, under-estimates those at the high-

frequency end. Form a practical judgement of the modulation curves, it is quite reasonable

to argue that the deviation is probably more significant for waves with a longer life span

when a standardr value of Morlet wavelet, i.e.,r = 0.5, is assumed. The perceptions

here provide the footing for the present adaptation — with different values of amplitude

ratior for different wave scales we are really attemptimg to simulate the evolution process

with a more realistic condition. The expansion or contraction of wavelet support length

for a specific scale just reflects the devising of flexible constructions of time-frequency

windows, and adjustingr is in turn using a variableω0. The general guideline is to use

a comparatively largerω0 (associated with a narrower frequency band) for waves of a

longer time support; and vice versa, a comparatively smallerω0 (a wider frequency band)

for a shorter life span. Here it naturally comes to assume theω0 to be a function of scale,

i.e.,ω0 = ω0(a). And the varying shapes and sizes of the time-frequency windows are
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now determined by

ψa

(
t − b

a

)
= π−1/4

[
e−i

ω0(a)
a (t−b)

− e−ω0(a)2/2
]

e
−
(t−b)2

2a2 . (6.11)

6.4 The physical perception of the sizes and shapes of

scales and the adaptations

Earlier we have stated a few nice features of the identified best basis. There is one addi-

tional feature that is practically significant because of its relevance to the Morlet wavelet

— the physical perception of the sizes and shapes of “scales”. Without such a property

everything will look obscure. In fact, we have seen a lot of ambiguities or abstractions in

many studies where they only involve presentations using non-dimensional scales rather

than using the more appropriate physical quantities of carrier frequency even though they

are working on modulated Gaussian or Morlet wavelets. We note that the wavelet coeffi-

cient generally refers to “scale” not to “frequency”. Scale has no dimension, but carrier

frequency has a physical unit and is associated with a Gaussian bell modulator. Fur-

thermore, scale generally corresponds to complicate combination of several frequency

bands such as what implied by the compactly supported orthogonal wavelets shown in

Figure6.3. Therefore, in order to have a clear picture of a “scale” one needs to consider:

What does the basic wavelet look like? What is the actual support length? And, what

is the physical sampling interval? All these severely tangle our thought, and we get lost

easily. Take as an example: the numerical processes for both discrete Fourier transform

and DWT care nothing about the physical units and only the index is important; however,

there is an easy conversion from index to frequency for Fourier coefficient, but not for

wavelet transforms except the ones associated with the Morlet wavelet. It is totally im-

possible to visualize the corresponding object just from the index of a wavelet coefficient.

For the best basis and the related adaptation the difficulty is avoided, since the precise

and physical “carrier frequency” is easily seen to beω = ω0(a)/a, supposed thatω0(a)
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is large enough, say above 5. Again, the point to caution is: illustrations using scale pa-

rametera can be confusing and misleading since the samea may correspond to different

actual scales or frequencies when different adaptations or different wavelets are used.

As was stated in the previous section that the present adaptation can always be ap-

plied to finite scale range(s) and that the transform only needs to be implemented for scale

range(s) that we are interested in. Still, we give an additional description of the flexibility

concerning this. Since one can always regard that the set of sampled data points is derived

from a certain specific function, but there are basically infinitely many functions which

can pass all these sampling points. And since the functions passing through these points

may be either band-limited or -unlimited but the sampled signal is always band-limited

(since numerical analysis is always associated with finite scale range); therefore, the sit-

uation indicates that there exists freedom to make adaptation forω0 and also implies the

possible redundancy when CWT is applied to the sampled signals. The remaining prob-

lem is how to define a suitable decay parameterω0. Nevertheless, based on the above

mentioned practical concern of wave decay and the somewhat intuitive adjustment, we

show the possible improvements in time-frequency resolutions when the adaptation is

applied to experimental data. But let us first give a numerical simulation.

For the simulated data we use a parabolic chirp where the frequency range of interest

covers the whole band width of the signal, i.e., from almost zero frequency to that cor-

responding to Nyquist sampling rate. And a linear variation ofω0(a) from 10 (for large

scale end) to 7 (for small scale end), as opposed to the commonly adopted fixed value

of 5.3 (corresponding tor ≈ 0.5), is assumed. As is seen from Figure6.3, the adapted

one gives better frequency localization for almost all frequencies except the lowest two

carrier frequencies (in fact the adaptation can be further adjusted for this part, and to have

better resolutions for these two carrier frequencies the values of theirω0(a) should be less

than 5.3, but the concern here is mainly on the serious edge effects). A phase map for

the complex wavelet coefficients derived from a refined ridge extraction scheme is also

shown as the top right sub-figure. Here it provides a much better identification of scales
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of main power contents than what can be provided by Morlet wavelet.

For the experimental data water waves measured in the wind blowing oval tank are

used, in which reasonable frequencies should lie between 1.5 and 10 Hz. Earlier we men-

tioned that the Morlet wavelet is likely to overestimate the decay of longer waves in the

long run; therefore, relative to higher frequency waves, we should reduce the decay pa-

rameterω0 for low frequency ones. Based on this understanding we heuristically assume

Erfc

[
4

10

(ω0

a
+ 2.5

)
− 2

]
3 + 5 = aω (6.12)

where Erfc is the complimentary error function andω is the carrier frequency. This equa-

tion may be modified according to the type of signal studied or according to the frequency

range of one’s interest. Figure6.4shows the curve of the function. The logic for the choice

of its constants is self explained in the attached program piece. Figure6.5 shows results

without and with the adaptation. Here, the varyingω0(a) is from 9.16 (for the large scale

end) to 5.26 (for the small scale end), as opposed to the fixed value of 5.3. Again there

are less smearing effects at the lower portion of the time-frequency plane since we mainly

adjust decay parameters for the low-frequency end.

A few additional points are: (1) The dominant carrier frequency is about 2.4 Hz in

this case; (2) Waves of all frequencies keep constantly evolving, since light and dark

regions constantly interlace; (3) There are grouping effects. Waves with significant energy

contents are more enduring and the durations of darker bands are much longer than those

of higher frequencies. This indicates that our adjustment for decay parameters is based

on a reasonable ground; (4) There is an obvious bifurcation among scales, especially for

the intermediate frequency range of about 3 to 4.5 Hz; it suggests that the phenomenon of

energy cascade from where energy concentrates to neighboring areas. Judging from these

characters it seems that the energy phenomenon in a multi-scale wave field is somewhat

similar to that in a turbulent flow field (see Tennekes and Lumley [23]).
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[Adapted CWT, chirp-n2.dat (10.0,7.00)] (1996/10/12-0:37:16)
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[Variant CWT--chirp-n2.dat (10.0,7.00)] (1996/10/12-1:30:1)
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Figure 6.3:Phase plane characters for a parabolic chirp(bottom right) with (top left)
and without(bottom left) adapting time-frequency windows. Top right shows a map of
the phase that is obtained from using a newly devised wavelet variant by Lee and Wu [15]. The
wavelet variant has properties quite in contrast to those of Morlet wavelet and has refined ridge
extraction capability.
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   obeg=11.;  oend=5.;  
   fcenter=2.5;  fdilation=10/4;   fshift=2. ;

   perfc=Plot[ Erfc[(1/fdilation)* (freq +fcenter)-fshift]* 
                            (obeg-oend)/2+ oend, {freq, -2.5, 8.5} ]   
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Figure 6.4:The assumed wave decay parameterω0 as a function of carrier frequency. The curve
can be adjusted according to several parameters: approximate peak frequency, significant range of
frequency, range of decay parameter, as well as a shift adjustment parameter; as are indicated in
the attached program piece.
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[Adapted CWT, b0w6020.4 (9.16,5.26)] (1996/10/12-1:26:50)
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[Variant CWT--b0w6020.4 (5.30,5.30)] (1996/10/12-1:15:2)
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Figure 6.5:Phase planes of a water-wave signal measured in a wind blowing oval tank (top left:
without adaptation; bottom left: with adaptation; top right: phase plot; bottom right: wind-wave
signal.) Since the assumed adaptation mainly adjusts the decay coefficients for low-frequency part,
there is less smearing there. Again, the phase plot using the same wavelet variant as of Figure6.3
provides a clearer identification of ridges of the main power, which is not possible for the Morlet
wavelet.
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6.5 Existence of admissability condition

Earlier we gave a somewhat physical description on how the present adaptation manages

to provide an almost “lossless” operation. Lossless means that the full information of a

function is preserved during the transform and that we can recover the function from its

wavelet coefficients, i.e., there exists a reverse operation. In the following we provide a

more formal description through validating the existence of the identity resolution, which

is basically just to show the existence of an admissability condition.

In an earlier illustration of the adaptation, a modified basis of wavelets was formed by

adjusting the support length of dilated versions ofψ(t) using different values ofω0 which

is further assumed to be a function ofa. Furthermore, as explained in the previous section,

a simple adaptation is the modification of carrier frequency according toω = ω0/a, i.e.,

ω0 = aω, we therefore further assume thatω0 is a generalized function ofaω and the

wavelet is

ψω0(t) = ψ(t ;ω0(aω)). (6.13)

Its dilated and translated versions are given by

ψa,b;ω0(t) =
1

√
|a|
ψ

(
t − b

a
;ω0(aω)

)
. (6.14)

And the wavelet coefficients of a functionf (t) are given by

W fω0(a,b) = 〈 f, ψa,b;ω0〉

=

∫
∞

−∞

1
√

|a|
f (t)ψω0

(
t − b

a

)
dt

=

∫
∞

−∞

√
|a| f̂ (ω)ψ̂ω0(aω)e

−ibωdω, (6.15)

in which ψ̂ω0(ω) = ψ̂(ω;ω0(aω)). We follow the formalism to check that the inner
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product of two functionsf andg, 〈 f, g〉, can be recovered from the integration of the

projection of Wf (a,b;ω0) into Wg(a,b;ω0) along both real lines of dilation and trans-

lation variables. That is, whether the following equation exists:

∫
∞

−∞

∫
∞

−∞

1

a2
W f (a,b;ω0(aω))Wg(a,b;ω0(aω))dadb= Cψω0

〈 f, g〉, (6.16)

whereCψω0
is a constant. If it exists, then wheng is taken as the Gaussian function

with its variance approaching zero (i.e.,g is practically the delta functionδ(t)), the inner

product〈 f (t ′), g(t ′ − t)〉 = 〈 f (t ′), δ(t ′ − t)〉 will recover f (t) and the condition of the

identity resolution is guaranteed.

The right hand side of the above equation equals to

∫
∞

−∞

∫
∞

−∞

1

a2

[∫
∞

−∞

√
|a| f̂ (ω)e−ibωψ̂(aω;ω0(aω))dω

]
×

[∫
∞

−∞

√
|a| ĝ(ω′)eibω′

ψ̂(aω′
;ω0(aω

′))dω′

]
dadb. (6.17)

With the following two identity equations

F̂a(t, ω0(aω))

=
1

√
2π

∫
∞

−∞

e−i tω
√

|a| f̂ (ω)ψ̂(aω;ω0(aω))dω

=
1

√
2π

∫
∞

−∞

e−i tωFa(ω;ω0(aω))dω, (6.18)

Ĝa(t, ω0(aω))

=
1

√
2π

∫
∞

−∞

ei tω
√

|a| ĝ(ω)ψ̂(aω;ω0(aω))dω

105



=
1

√
2π

∫
∞

−∞

ei tωGa(ω;ω0(aω))dω, (6.19)

one has

∫
∞

−∞

∫
∞

−∞

2π

a2
F̂a(t;ω0(aω))Ĝa(t;ω0(aω))dadt

=

∫
∞

−∞

∫
∞

−∞

2π

a2
Fa(ω;ω0(aω))Ga(ω;ω0(aω))dadω

=

∫
∞

−∞

∫
∞

−∞

2π

|a|
f̂ (ω)ĝ(ω)|ψ̂(aω;ω0(aω))|

2dadω

= 2π
∫

∞

−∞

f (t)g(t)dt
∫

∞

∞

|ψ̂(aω;ω0(aω))|2

|a|
da

= 2π〈 f, g〉Cψω0
. (6.20)

Now the resolution of identity is fulfilled if the following admissability condition is satis-

fied, ∫
∞

−∞

|ψ̂(aω;ω0(aω))|2

|a|
da = Cψω0

. (6.21)

This condition is more restrictive than Equation5.1in thatψ̂(0, ω0(u)) = 0 for all u ∈ R.

Otherwise, there is no other restriction since what is changed in the integration is limited

to finite range and is anticipated to be finite. The case using Morlet wavelet complies with

such a validation and therefore satisfies this condition.❖
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Chapter 7
Conclusions

Comprehensive sets of various discrete wavelet categories are studied for the interests

of the water wave related applications, and their relevant characterizations and various

intrinsic properties are illustrated. The numerical analyses and the associated data pro-

cessing are developed from the ground up using the Asyst programming language, as well

as several add-in components. These tools make possible the extensive depictions of the

wavelet natures, such as their mother and farther wavelets, the translations and dilations

concepts, the zoom-ins or blowups of any individual wavelet, concept of time-frequency

windows, uncertainty relationship, and the linear phase filtering features — more impor-

tantly, if possible, their physical implications, practical usefulness, and the advantages or

disadvantages in water wave applications.

Using signals obtained from wave-tank experiments and under various entropy cri-

teria, the entropy statics for the whole set of wavelets, as well as the Fourier basis, are

analyzed. To the greatest extent the results show that the sole optimal discrete wavelet

basis is the dual semi-orthogonal cardinal spline wavelet.

The entropy results are of statistical approach; they provide no clue as to which an-

alytical factor that gives rise to their performances for our water wave signals. In this

regard, we examine the phase distributions of a wavelet characterizing function for all the

wavelets. It is also fully identified that there are extremely well correspondences between

the various behaviors of phase distribution features and those of the entropy statistics. It is
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therefore concluded that a wavelet function basis’s phase distribution feature determines

its usefulness in water wave physics and that the linear phase feature is a requirement of

an optimum basis.

Moreover, based on the identified minimum entropy Riesz wavelet, i.e., the cardinal

semi-orthogonal cubic spline wavelet, we explore its continuous wavelet counterpart for

the purpose of incorporating additional specific advantages that are key to its usefulness

in our applications. These mainly concern the manipulation of wavelet redundant or non-

orthogonal features for the purpose of uncertainty reduction.

In addition to the above two optimizations, a third one is applied to the continuous

wavelet counterpart. For this we propose a mechanism of flexible constructions of wavelet

time-frequency windows and the method of such an adaptation.

The decaying properties of water waves of different scales were used to justify the

concept of the present adaptation. Both numerical simulation using chirp signals and ex-

perimental data acquired from the wave tank were used to show overall improvements of

time-frequency resolutions in their phase plane representations. In a more formal way, the

resolution of identity was also validated for a particular construction using a modulated

Gaussian wavelet. In fact, this illustrates one additional flexibility of wavelet analysis,

and, together with the similar flexibility in wavelet packet decompositions outlined in

the previous chapter (i.e., the almost unlimited constructions of tree-like decompositions)

and the concepts of time-frequency windows related to multi-voice or multi-wavelet algo-

rithms [9], the intuition of making flexible constructions of time-frequency windows for

wavelets other than the Morlet wavelet is not unjustified.

Though the present adaptation is in some sense intuitive, it is physically sound and fits

into the instability nature of water waves. More importantly, being based on an optimum

basis in DWT and further combined with the several specific features related to CWT, the

present approach is anticipated to be a more suitable methodology for the analyses for

water wave related signals — especially when considering the extractions of micro phe-

nomena, such as the possibly feeble energy features evolving under limited or restricted
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conditions of model experiments.

Finally, one last point to note is the following statement — the author firmly believes

that if you ever find an individual wavelet you have great chance to assign it into one

of the categories covered here; and if not, you have great reason to conceive that its

properties must fall within (or between) the covered characterizations; and thus, in water

wave applications, its fate or possible usefulness is decreed accordingly — overall, it is

really hard to beat the optimum basis and the methodology as are identified in this study.

❖
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APPENDIX B — Wavelet�A¢�ZÌ��
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