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I. Introduction

In coastal waters, breakwaters of various types are used. Over the years, damage
of breakwaters has occurred, primarily due to wave actions. Many kinds of
damage have been observed and efforts have been made to understand behavior
of breakwaters to wave actions. These studies have yielded valuable information
to guide their design.

In this report, no attempt has been made to review the extensive literature of the
subject.

In this study, we seek to identify the various modes of response of a vertical
caisson and the conditions under which these modes of response are initiated
when the caisson is subjected to a single concentrated horizontal force of short
duration mimicking the action of a breaking wave.

The caisson 1s modeled as a freestanding rigid body resting on a rigid horizontal
base which exerts a Coulomb type frictional resistance to the body.

The approach to the determination of criteria for initiation of modes of response
of a rigid body due to a force follows that of Shenton (1996) in which a rigid
body is subjected to earthquake-like base excitations. The results in this study,
however, are quite different and much more complex than those of Shenton’s.
Criteria for initiation of modes of response are obtained for a rigid body placed in
air. When the body is immersed in water, buoyancy force and uplift force are
involved. These forces are not included in this study; their effects will be
considered and reported later.

Because the derivations are rather involved, criteria for initiation of the various
modes of response are presented separately for the cases of the force acting

above and below center of mass of the body.
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II. Model

Consider a plane, rectangular rigid body with a rectangular footprint (see Fig.2.1).
Width of the body is 2B, its height, 2H , and its depth equals unity. Mass of the
body is assumed to be uniformly distributed and total mass is m . The body rests
on a horizontal base. Between the body and the base exists a Coulomb friction
force with coefficient of friction equal to p. No distinction is made between
static and kinetic coefficients of friction. The body is initially at rest and is
subjected to a horizontal force F which is expressed as a multiple of weight of
the body, mgk , where g is gravitational acceleration and & is a non-dimensional
positive quantity. The distance between line of action of force F and center of
mass C is denoted by %, measured positive upward from C, expressed as a
fraction of H. That is, h=k'H . When F is applied above center of mass of the
body, 0<k'<1 and when F is below C, —1<k'<0 . Displacement of C in
horizontal and vertical directions are respectively x and y, considered positive
to the right and upward, with origin at center of mass of the body when it is at
rest; rotation of the body is 6 considered positive counter-clockwise. Reaction

forces are f, and f,. Distance between line of action of f, and C is & positive

to the right of C.

« 2B |
A
»;\9 F
h=k'H
2H c v
X
v O 0’

) Q%»fﬁﬁ
1
!

Fig.2.1 Model
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II1. Criteria for initiation of modes of response of a
freestanding rigid body under the action of a
horizontal force applied above center of mass

I11.1. Rest

When the body is at rest under the action of F' (see Fig.2.1), equations of

equilibrium are:

f=F 3.1)
f, =mg (3.2)
and, by taking moment of the forces about point C,

fH+fE+Fh=0 (3.3)

For the body to be in contact with the base, f, >0. For the body to be at rest,

horizontal resistance must not exceed limiting Coulomb friction force:

2

< p.| fy|. Since f, may be positive or negative or equal to zero, the absolute
value sign is used. The absolute value sign for f, may be eliminated since, from
(3.2), f, 20 always. Finally, f, always lies within the base (00") of the body.
This requirement is satisfied if [¢| < B. Again, the absolute value sign is used

because & may be positive or negative or equal to zero. As will be shown shortly,

in rest mode,

&|<0 (f, acts to the left of point C.)
Since F =mgk, from (3.1) and (3.2), the condition |f,| < u|fy| gives
u>k 3.4)

From (3.3), &=—k(H+h)=-k(1+k')H<0 . The requirement that [¢|<B

therefore gives
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k < !
y(1+k")

(3.5)

where y = H/ B 1is aspect or slenderness ratio of the body and is a measure of its
slenderness. Thus, for the body to be at rest, conditions (3.4) and (3.5) must be
satisfied. It is convenient to view these conditions graphically. In Fig.3.1,
horizontal axis is k& (measure of the strength of F') and vertical axis is
(coefficient of friction). The two conditions (3.4) and (3.5) are both satisfied if

values of & and p correspond to a point in the shaded region enclosed by lines

OA (u=k),AB (k= ) and the vertical axis. Thus, for a body of given

y(+ k)
aspect ratio y = % resting on a horizontal base, subjected to a horizontal force of

known strength & and known line of action (as given by k'), one can determine,
at a glance, whether the body remains at rest or not once value of coefficient of

friction x can be ascertained. From Fig.3.1, it is seen that the larger the aspect
ratio y, the closer is line 4B to the u axis, the narrower is the shaded region,

and the less likely will the body be at rest. Similarly, for larger value of &', line

of action of F' is higher, line 4B is closer to the u axis, the shaded region is

narrower, and it is less likely that the body will be at rest. On the other hand, by

lowering aspect ratio y of the body and/or value of %', the region corresponding

to rest mode may be made larger.

Conditions governing rest mode of the body is a piece of information a designer

of breakwater must have.
I11.2. Slide

Equations of motion are:

mi=f —F (3.0)

f,=mg (3.7)

“A4-



A
B
A
1 ——
Ha = 7/(1 + k')
=k
0 > k
‘ B!
k, =
4 7/(1 + k‘)
Fig.3.1 Rest region
and, by taking moment of the forces about point C,
fH+fE+Fh=0 (3.8)

Here and hereafter, over-dot denotes differentiation with respect to time. While
(3.7) and (3.8) are the same as (3.2) and (3.3), (3.6) differs from (3.1) since the
body is about to slide so that ¥ # 0 although x is equal to zero. On the verge of

sliding, f, = uf,. By substituting f, =uf,, h=k'H and F =mgk into (3.8), we
get £ =—(u+kk')H <0 always, a result that stems from the fact that F acts

above the center of mass of the body. Condition f, >0 is automatically satisfied.

Condition |£| < B requires u < 1 ke In Fig.3.2, with k the horizontal axis and
v
u the vertical axis, u= l—kk' i1s represented by the line CD . Condition
v

ysl—kk' is represented by region OCD . Since region OCA ( u>k )
Y

corresponds to rest mode, for slide mode to be initiated, values of £ and x# must
correspond to a point in shaded region OAD . From (3.6), we have

¥=g(u—k)<0, because u <k . Since sliding is the mode of response being
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considered, accelerations and velocities of all points in the body are the same and

point to the left, the body being initially at rest. It may be noted that for £'=0,

.. 1
(F acts through center of mass of the body), the condition becomes u<—, a
/4

constant, independent of & , so that line CD is horizontal; the region

corresponding to slide mode in this case is larger than if /' acts above center of

mass of the body.
O B
1
He =—
4
B 1
B w)
> k
k, =
)
1
ko=
D k'
Fig.3.2 Slide region
I1.3. Rock
Equations of motion are:
mi= f.—F (3.9)
mj = f, —mg (3.10)

Noting that f, acts at point O (see Fig.2.1) about which the body rotates, by

taking moment of forces about the point C,

160 = f.H- f,B+Fh (3.11)
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where [ = %m(B2 + H?) is mass moment of inertia of the body about its center of

mass C. When rocking is impending, while coordinates x, y and 6 remain
equal to zero, their accelerations do not. Accelerations ¥ and j of point C are

related to angular acceleration 6 of the body as

¥=-HO (3.12)
and
j=Bo (3.13)

By substituting (3.9), (3.10), (3.12) and (3.13) into (3.11), noting that F = mgk
and h=k'H, we get

.._ 3g "
9_—4B(l+72)[ky(1+k) 1] (3.14)

By substituting (3.14) into (3.12), (3.13) and (3.9), (3.10), we have

_ mg 2 27
f. = 4(1+72)[k(4+7/ 3y°k')+3y] (3.15)
and

_ mg [ 2
fy—4(1+7/2)[37(1+k)k+1+4y 1>0 (3.16)

The body remains in contact with the base since f, >0. For 6 >0, we must have

1

kzy(1+k') (3.17)
For convenience, let

a=4+y> -3k (3.18)
b=3y (3.19)
c=3y(1+k") (3.20)
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and

d=1+4y" (3.21)
so that
mg
= k+b 3.22
. 4(Hyz)(a +b) (3.22)
and
mg
= k+d)>0 3.23
L= 4y D (3.23)

We see that while f, >0 always, f, may not greater than zero, because the

quantity a in (3.18) is not always greater than zero.

For rocking to be initiated, horizontal resistant force f, must not exceed limiting

fx

friction force. This condition,

<uf,, gives, from (3.15) and (3.16) or (3.22)
and (3.23),

@27 =37 k43| Jak +b)
T 3y(+k)k+1+44y>  ck+d

= u* (k) (3.24)

The function x (k) behaves in a variety of ways depending on the sign of the

quantity « and that of /.. There are in fact three possible cases that may arise.

They are:
2
Case 1: ¢ >0 (or equivalently, £'< 4+72/ ), s0 f.>0. Thus, u*(k)= ak +b for
3y ck+d

all values of % .

Case2: ¢ <0 ivalentl k'>4+7/2 but £.>0.Th
ase2: a <0 (or equivalently, k'> —=—), but f, >0. Thus,
—lalk +b
iy = b b b
ck+d ck+d |a|
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Case 3: a<0 (or equivalently, k'>——=— ), and f, <0 . Thus,

‘(—|a|k + b)‘ b
% —
u*(k)= - for k2|a|.

+y°
3y?

Since 0 <k'<1, we must make sure that 4 <1. This means that for y <+/2,

no rocking motion can be initiated.
Properties of u” (k) are examined for each of the above three cases.

Case 1:

It may be verified that k =k, = L 3. u*(k,). This means that curve
y(+k') ¢

u (k) passes point 4 (see Fig.3.1). As k approaches infinity, u (k)=

2,271
dty =3k _a >0 always since both the quantities a and ¢ are greater or
3y(1+k') c
equal to zero. Slope of u'(k) is A _ ad—b02 where ad —bc =
dk ~ (ck+d)

4(1+y*)1+y>-3y°k") is a constant, independent of k , and ck+d=
3y(1+k"Yk +1+4y> >0. Thus, slope of x (k) is a decreasing function of & and

approaches zero as k approaches infinity. Also, slope of x" (k) at point 4 is

* 2 270 2 * 2
du :1+7/ 35/ k . When k‘SH—Z, ap > (0 whereas when k,21+;; ,
dk . 41+y7) 3y dk . 3y
ar <y,
dk |,

In Figs 3.3a and 3.3b curves u = u (k) are sketched respectively for the cases

2 2 2
and 1+7; sk’s4+—72/31.

3y 3y 3y

ofOsk'slﬂg

For given values of &' and y, if values of k& (force) and u coefficient of

friction correspond to a point in the £ — x plane that falls in one of the shaded
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regions in Figs.3.3a and 3.3b, rock mode of response would ensue. From these
figures, it can be seen that if F is far above center of mass of the body, &' is
large (Fig.3.3b) and the shaded region of rock mode is larger than if the force
is closer to point C (see Fig.2.1) in which case, value of k' is smaller

(Fig.3.3a).

Ha B
C —'—-" * ak+b a—3
,——""" H=H (k):ck+d c
e 2l a
] i
3 =——kk' c
- _ H
Hy B =k y
>
04_>| D k
-3
<k”‘_41
kD:/yk,
1+y°
Fig.3.3a Rock region, case 1, 0 < k'< 37; , .20, a>0
Y
LA B
u:l—M'
" e
C
4 T 3—a
=2 k c
4= U= u
c A g 4
04_>| k
_3 k+b
PR = ()= 4
P 1 ck+d
o=V
1+y° 4+y?
Fig.3.3b Rock region, case 1, 37; <k'< 372/ <1, £.20,a>0
e e
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Case 2:

—lalk +b

g Since u' (k) must be nonnegative, the function
ck +

In this case, u (k)=

is valid only if & < 37

=——— _ Asincase 1, u (k) passes point 4 (see

du* 4(1+7/2)(l+7/ —37/2k')
dk By +kYk+1+4y°7

Fig.3.1) and its slope is given by . At point 4,

2

%k 2 _ 2710
du | _1ry 32/ k . Since in the case under consideration, £'> 4+72/ , and
dk |, 401+ 3y
. 1+y° _ 4+y° " . .
since 3 < 37 slope of p=u (k) at point 4 is always less than or
/4 /4

equal to zero. Curve u = u (k) is sketched in Fig.3.4. Rock mode is initiated

if values of £ and u correspond to a point that lies in the shaded region.

Case 3:

(Hale+6) _ —(ak+8) _ [4+7> 372Kk +3]

In this case, u* (k)= -— , valid
ck+d ck+d 3y(l+ kY +1+4y
for f, <0 or —|ak +b <0, thus the curve x (k) applies for k 2% only. In this
a

b , £ (k)=0 and as k

la

>0 since for the case under

case, u (k) does not pas the point 4 . At k=

la  3p%k-4+ %)
3y(1+£k")

approaches infinity, u* (k)=

2 P * d+b :
72/ . Slope of pu=u (k) is du* _ |a| ‘ >0 which

consideration k'> 4+ = -2
dk  (ck+d)

decreases as k increases and approaches zero as k approaches infinity. The

curve = u (k) is sketched in Fig.3.5.

If we compare Figs.3.4 and 3.5 with Fig.3.3, we see that as F acts far above

center of mass C (k' large), chance of rocking being initiated is high.
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A . -----
Hy= 2 H= k .‘~.~~\~..._.
0

_ b
k= U

. . 4+y? .
Fig.3.4 Rock region, case 2, <k'<l, £,20,a<0
L4 B

y—l—M“

A
Ha= /I =k \ T ?%
0 - >

;j D E , k
k=7 J _ |~ lalk + b

— ()=
_1ka p=u*(k) o
N

|
_ b
k=

Fig.3.5 Rock region, case 3,

2
17 k<, £.20,a<0
3y
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II1.4. Slide-rock

When the body is on the verge of sliding and rocking about point O

simultaneously, f, acts at O and equations of motion are:

mi=f.—F (3.25)
my = f, —mg (3.26)
and

160=fH-fB+Fh (3.27)

These equations are the same as (3.9), (3.10) and (3.11), equations of motion for
initiation of rock mode. The difference is that in the case of rock mode, ¥ = —H6

(see (3.12)) and |1,

X is not related to 6 as given in (3.12), and

< uf,. In the present case, on the brink of slide-rock mode,

fil =4, (3.28)
but

j=Bo (3.29)
as in (3.13).

By using (3.26), (3.27), (3.28) and (3.29), noting that F =mgk, h=k'H , and

I:%m(H2 +B?), we get

é:gw (3.30)
B 44y~ -3uy

For 6 >0, we must have either
wy—1+kk'y>0 and 4+y> -3uy >0 (3.31)

or
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wy—1+kk'y<0 and 4+ 9> -3uy <0 (3.32)

Equations (3.31) and (3.32) are equivalent to

2

uz%—Mﬂmdﬂs4;f (3.33)
or

2
ys%—%%mdy24;j (3.34)

(3.33) may be rewritten as

2

4+y

Y 3y
and (3.34) as
2
LALAPIPR (3.36)
3y 4

4+y°
3y

It may be shown that the minimum value of 1s 1.33 when y =2. Since

2
1 < 4;7/ , (3.36) can not be satisfied. Thus, 6 >0 is satisfied if (3.35) holds true,
/4 v

and, if 6 > 0, then f, 20, on account of (3.26) and (3.29). It remains to examine

the body’s direction of sliding under the action of F'. This is determined by

velocity x, at point O of the body about which rotation takes place. Since the
body is originally at rest, it suffices to examine acceleration X, of point O when

slide-rock motion is impending.

Noting that ¥, = ¥+ H6 and ¥ is given by (3.25), it may be verified, after some

algebra, that
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X, = L{u[f&y(l +INk+1+4y° 1[4+ y° =3y k"Yk + 3]}

4yt =3y (3.37)
- m[;{(cmd)—(amb)]

For X, <0 (body sliding to the left and f, >0), we must have
4+y> -3uy>0 and u(ck+d)—(ak+b)<0 (3.38)
or
4+y* -3uy <0 and u(ck+d)—(ak+b)>0 (3.39)
Equation (3.38) may be rewritten as
ﬂs“;;z and ij}lj:z:y*(k) (3.40)
and (3.39) as
uz“;yyz and ﬂz%:u*(m (3.41)

2

Ty

Since, for 6 >0, we must have, from (3.35), u < 4 , SO (3.41) 1s not valid.

(3.40) and (3.33) give condition for slide-rock to be initiated with %, <0 (f, >0)

as

2 A.270
y ck+d 3y(l+k"Ye+1+4y

As explained in the last section (Rock), we must distinguish between the cases of

4+y°

2

k'<

case 1) for a >0, and k'zﬂ case 2) for a <0. The first case has
3 2

2

I+y
2

2
two sub-cases: k'SI;r—Z (slope of u*(k) at point 4 is >0 ) and k'>

(slope of p*(k) atpoint 4 is <0).
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Figs.3.6a, 3.6b and 3.7 give the regions corresponding to initiation of slide-rock

mode when X, <0, f, >0.

k)=
¥ X ck+d
C

A

sz/yk,

Fig.3.6a Slide-rock region, case 1, 0 < k'< 1;7; , /.20,a>0
v

L' B

=)
-

7, l—kk‘
" el
C ak +b
= * =
p=prlk)=——
/ ra * """"""" 3-a
4= 1=k c
‘ [T, §— o/
D
4 3, k
A
ko= Vo
2 2

Fig.3.6b Slide-rock region, case 1, 1+7; <k'< 4+72/ <1, f,20,a20

3y 3y
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i

44y

2
Fig.3.7 Slide-rock region, case 2, 3, <k'<1, £,20,a<0
v

For the case of ¥>0 (body moving to the right) and f, <0 (/. pointing to the

left), we repeat the steps leading to the expression for @ in (3.30), we get, for the

present case,

3g
0= 5
B(4+y" +3uy)

(kk'y — py —1) (3.43)
For 6 >0, it is necessary that

gt (3.44)
4

By using (3.43) and the relation ¥, = ¥+ H0 we get

X, :_—2g <{u[3y(l+k’)k+l+47/2]+[4+7/2 —37/2k')k+37]}
4+y +3uy
(3.45)
— & [u(ck+d)+(ak+b)]
44y +3uy
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For X, >0, we must have usm:u*(k) for kzﬂ.
ck+d |a|

The curve = u (k) is presented in Fig.3.8. It is easy to see that the dotted line
lies above curve u = u (k)and the shaded region represents the case for initiation

of slide-rock mode with X, >0.

To summarize, regions of rest, slide, rock and slide-rock are shown in Figs.3.9a,

3.9b, 3.10 and 3.11 respectively for the cases of 0<k'< 1;}/ , f.20,a20;
Y
2 2
1”; sk's4+f <1, £.20, a=0 ; 44y <k'<l, f.20, a<0 and
3y 3y 3y
4477 <k<l, f.<0, a<0.
3y

For brevity, the modes are represented by the symbols RE (rest), SL (slide), RO
(rock about O), SRO (slide-rock about O with x, <0) and SRO, (slide-rock

about O with x, >0).

nae B
p=——kk' y=—l+MV
Y c y oo/
/
=+ (k) Ik
N e ck+d

AN | I

< yi>/
lal

Fig.3.8 Slide-rock region, case 3, Aty

2

<k'<l, £.<0, a<0
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RE RO
p=p* (k)
A SRO-
SL
>
(0) D k
. . 1+;/2
Fig.3.9a All modes, case 1, 0 <k'< 37 f.20,a>20
Y
L B
RE RO
A
p = p* (k)
SL
SRO- >
(0) D k
2 2
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SL SRO.
o > > k
D E
4+y°

Fig.3.11 All modes, case 3,

<k'<l, £.<0,a<0
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IV. Criteria for initiation of modes of response of a
freestanding rigid body under the action of a
horizontal force applied below center of mass

IV.1. Rest

When the body is at rest under the action of F' (see Fig.4.1), equations of

equilibrium are:
f.=F 4.1)
f, =mg (4.2)

and, by summing moment of the forces about point C,

fH+f,E-Fk|H=0 (4.3)
2B >
A
0
2N
y
2H CT—N‘
éhz k’|H

=P
fi |ﬁfy

'3
Fig.4.1 Model

For the body not to leave the base, we must have

/20 (4.4)
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For the body to be at rest, horizontal resisting force f, must not exceed limiting

frictional force 4f,. That is,

I

<4f,] (4.5)
Furthermore, f, must necessarily act within width (O-0") of base of the body.
That is,

é|< B (4.6)
Condition that f, >0 is always satisfied on account of (4.2). Condition (4.5)
requires, from (4.1) and (4.2)

U=k 4.7)

By substituting (4.1) and (4.2) into (4.3), we have

E=—kH(1-|k|)<0 (4.8)
since
0<|k|<1 (4.9)

Equation (4.8) means, under the action of F', when the body is at rest, f, acts to
the left of center of mass C.
Condition (4.6) requires

1

Conditions (4.7) and (4.10) that ensure the body to remain at rest under the action

of F' are represented by the shaded region in k& — u plane in Fig.4.2. We see that
rest region increases with increasing value of |k|. That is, the likelihood of the

body remaining at rest becomes higher as F is closer to the bottom of the body.
This is different from the situation when F is applied above center of mass C.
As shall be seen later, behavior of the body is quite different depending on
whether F' is applied above or below C.
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TTTT »t

Rest

e 1 =
! 7(1_|k'|)l 1=k
A > i
l i _I 1
-l

Fig.4.2 Rest region
IV.2. Slide
Equations of motion are:
mi=f —F (4.11)
f, =mg (4.12)

and, by summing moment of the forces about point C,

fH+f,E-Fk|H=0 (4.13)
where, since sliding is impending,

fo=u, (4.14)

Again, vertical reaction force f, must not be negative. That is,

f, 20 (4.15)
Also, f, must be within boundaries (O —0') of base of the body. Thus,
é|< B (4.16)
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Since f, equals weight of the body, (4.15) is always satisfied.
Equation (4.13) gives
£ = (kK| - ) H (4.17)

Sign of & depends on that of k[k|— . If the moment of force F about C
exceeds that due to f, and f,, k|k|> g, in which case, ¢ >0 and reaction force
f, acts to the right of C. On the other hand, if k|k|< x, then £<0, and f, acts

to the left of C. The requirement imposed by (4.16) therefore is satisfied if, for
k%12u,

PEpe (4.18)
v
and, for kk|< u,
p< L ki (4.19)
Y

The parallel lines DC

p=—L kel (4.20)
4
and AB
e (4.21)
4

and the dotted line
= klk]| (4.22)
are drawn in Fig.4.3. The shaded region corresponds to initiation of slide mode

of response. It is bounded by horizontal axis, line O4, and the lines DC ((4.20))
and 4B ((4.21)). The shaded region above line u =k

k| ((4.22)) corresponds to
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the situation when £<0 ( f, acts to the left of C') and the region below line
= k|k'| ((4.22)) corresponds to the situation when £ >0 (f, acts to the right of
C). The lines 4B and DC as well as (4.22) extend to infinity without bound.

For slide mode to be initiated, from (4.11),

mx=mg(u—k)<0 (4.23)

since u <k . This means, under the action of the left pointing force F', ¥<0.

Since sliding is the mode of response being considered, accelerations of all points
in the body are the same and point to the left, and since the body is initially at

rest, velocities of all the points in the body also point to the left, as expected.

u
A

y:—l+ﬂﬂ
y

0< u <kl

,E>0

Eﬂhiu__

v
<> 1

)

=

Fig.4.3 Slide region
We note that in Fig.4.3, point D where line DC intersects k -axis may be to the

left or the right of point 4. It may be verified that when [k| < % , point D lies to

the right of 4 ; otherwise, it lies to the left of 4. Also, the larger the value of |k'

b
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the steeper the lines 4B, DC and u = klk|. Again, criteria for initiation of the

body into slide mode are different for the cases of /' acting above and below C.
IV.3. Rock about the point O

Equations of motion are:
mi=f —F (4.24)
my = f, —mg (4.25)

and, by taking moment of the forces about point C, noting that f, acts at point

O (see Fig.4.1) about which the body rotates,

160=f.H-f,B-Flk|H (4.26)
where [ = %m(H ? + B*) is mass moment of inertia of the body about C.

From (4.24),

f.=mi+F (4.27)
and, from (4.25),

S, =my+mg (4.28)

When the body is about to rotate about O, ¥ and j are related to 6 as

¥=—H0 (4.29)
and
j=B6 (4.30)

Thus, from (4.27) and (4.28),
f. =m(gk—HO) (4.31)

and
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f, =m(g+ B0) (4.32)

Conditions for impending rocking motion about point O are:

620 (4.33)
f,20 (4.34)
and

VAEYTTS (4.35)

From (4.26), (4.31) and (4.32),

3g
—k 1-k)-1 4.36
B )[7( k) —1] (4.36)
Condition (4.33) requires

1

> - 437
Sk (437)

That is, rocking about O can be initiated only if values of £ and x are such that

the point on the £ — u plane lies to the right of line 4E in Fig.4.2 (and Fig.4.3).

Having determined 6, (4.31) and (4.32) give

f.= 4(1 {k 4477 +37° kN +37} 20 (4.38)
and
f, = 4(1 )[37/(1 KDk +1+4y°120 (4.39)

This shows that f, points to the right and the condition f, >0 ((4.34)) is

satisfied.

, we must have
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447 +37°|k'lk +3
L4y +'y| ! T k() (4.40)
3y(1—|kDk +1+4y

That is, for the body to rock about point O without sliding, coefficient of friction

must be sufficiently large. For simplicity, we may express u (k) as

_ak+b

u' (k)= i d (4.41)
where

a=4+y"+ 372|k'| (4.42)
b=3y (4.43)
c=3y(1-|k]) (4.44)
and

d=1+4y> (4.45)

The curve u (k) has the following properties:

1 (k) passes point 4, since, when k = k, :é, from (4.41), u=u" (k)
C

b
y(1=[k)

=u, :E.As k— o,
c

w a4+t 370K -

u=l ' (4.46)
N 3))
Slope of 4" (k) is
* 2 2 ANK)
du”  ad-bc _Al+y )1+y +3y |k|)> (4.47)

dk ~ (ck+d)*  [Bky(1-|[k)+1+4y°] ~

which is a monotonically decreasing function of 4, and the numerator is

) du*
independent of k. As k — oo, T 0
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If we compare slope of 4" (k) at point 4 with |k

, slope of line AB (u= L k|k),
v

(L+7°) =4+ 7k
41+7%)

we see that the difference is A = . Two situations arise: A >0,

(k<

1+y° 1+y° .
~) and A<0, ([k|> ). In Figs.4.4a and 4.4b, sketches of curve
4+y 4+y

1" (k) together with lines 4B (u= L ki) and DC (u= Ly k|k|) are given for
/4 /4
each of the two cases (In this and subsequent figures, line CD is drawn such that
point D lies to the left of A for the case of k'z% ; see comments at end of IV.2.
Slide section). For the former case (A>0), 4 (k) and 4B (u= l+k|k'|) intersect
v

at point 4 and point B' whose coordinates may be shown to be given by

1+y°
= TM =Ky (448)
and
4+y°
U= 5 =u, (4.49)

For the latter case (A<0), it may be verified that k£, <k ,. In Figs.4.4a and 4.4b
the shaded regions correspond to initiation of rock (about point O) mode. It is
seen that regions of rock and slide modes overlap. Since these modes of response
must preclude one another, this matter of overlapping regions must be resolved.
This problem will be addressed later in IV.7. Discussion. In the case of F
applied above point C, on account of the fact that the quantity « in (3.18a) may
be either greater, equal to or smaller than 0, whereas in the present case, the
quantity a in (4.42) is always greater or equal to 0, criteria for initiation of the

body into the rock (about point O) mode for these two cases are different.
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Fig.4.4b Rock region, |k Ity
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IV.4. Rock about the point O’

Although it 1s clear that the body is unlikely to be able to rock about point O'
under the action of F which is directed to the left (see Fig.4.1), we will

nevertheless show that this is indeed the case.

Equations of motion are:

mi=f —F (4.50)
mj = f, —mg (4.51)
and, with £ acting at O', by taking moment of the forces about point C.
160=fH+ f,B-Flk|H (4.52)

When the body is about to rock about O', noting that 6 is positive

counterclockwise,

¥=—H0 (4.53)
and

j=—B (4.54)

Thus, from (4.50) and (4.51),
f. =m(gk—HO) (4.55)
f, =m(g—B6) (4.56)
Considering I = %m(H *+B%), F=mgk , and taking into account (4.55) and
(4.56), we have, from (4.52),

s 3g g
9——4B(l+7/2)[1+k7(l k1> 0 (4.57)

which is physically impossible to be realized.
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IV.5. Slide-rock about the point O

When the body is on the verge of sliding to the left and rocking about point O

simultaneously, reaction force f, acts at point O and equations of motion are:

mi=f —F (4.58)
my = f, —mg (4.59)
and

16=fH-fB-Flk|H (4.60)

In this slide-rock mode,

fo=uf, (4.61)
and
j=B6 (4.62)

so that from (4.59) and (4.62)
f,=my+mg=m(g+ BO) (4.63)
By substituting f, and f, in (4.61) and (4.63) into (4.60) and noting that

F =mgk , we have

53¢ (wy =1-kkly)

B (4+y° =3uy) (4.64)
For slide-rock (about O) to be initiated, it is necessary that
6>0 (4.65)
and
f, 20 (4.66)
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From (4.63), it is clear that so long as condition & > 0 is satisfied, so is condition
(4.66). For (4.65) to hold, from (4.64), we must have either both the numerator
and the denominator larger than or equal to zero, or both of them smaller than or

equal to zero. That is, either

pxt + k|| (4.67)
y
and
A7 (4.68)
/’l - 37/ ﬂB' .
or
< kel (4.69)
4
and
4+y°
> —u, (4.70)
3y

To satisfy (4.67) and (4.68), we must have

2
4+7/ Zl+k|k'| (471)
3y 7y
or
1+ 7/2 B
k < —37/|k'| =k, (4.72)

It can be seen from (4.48) that the above is indeed equal to %, . Similarly, to
satisfy (4.69) and (4.70), we must have

1 2
k> %IIZI —k, (4.73)

-A33-



For clarity, it is repeated that to satisfy condition >0 we must satisfy either

4.67) ( u2%+k|k'|) and (4.72) (k<k,) or (4.69) ( ,uS%+k|k’|) and (4.73)

(k>k,).

For the body to start to slide to the left, velocity at O must be less than or equal

to zero (x, <0). Since the body is initially at rest, condition x, <0 is equivalent
to ¥, <0. It may be verified that when the body is in this slide-rock about O'

mode of motion,

%, =%+HO (4.74)
Since, from (4.58), (4.61), and (4.63)

¥=u(g+B0O)—gk (4.75)

we have, from (4.74) and (4.64)

5o = ——2———(uB3y (1=l + 1+ 452 1= [(4+ 7* + 32k Dk + 371} (4.76)
4+y° =3uy

¥, <0 can be realized if the numerator enclosed in the curly brackets and the

denominator are of opposite signs. That is, either

4+ 72 +3p° KDk +3y
L @+r7 437k e @77
3y(1-|k Dk +1+4y

and

7 (4.79)

or
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p= (k) (4.80)

u> =, (4.81)

or, equivalently,

2
k> % —k, (4.82)

Combining (4.67), (4.72) (for § >0) and (4.77), (4.79) (for ¥, <0) regions for
initiation of mode of slide-rock about O are given in Fig.4.5a for the case

1+}/2
447

k< (A>0, A being the difference of slope of x"(k) at point 4 and [k’

9

slope of line AB defined in IV.3. Rock about point O). Conditions (4.69), (4.73)
(for #>0) and (4.80), (4.82) (for ¥, <0) combine to give the shaded region in

2
Fig.4.5b for the case |k|> Ity
+

iy (A<0). Again, we see that region of slide-rock

about 0 overlaps region of slide and region of rock about O. This issue will be

resolved later in IV.7. Discussion.
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IV.6. Slide-rock about the point O’

It remains to examine conditions for initiation of mode of motion when sliding

and rocking about point O' occur simultaneously (see Fig.4.1).

Equations of motion are:

mi=f —F (4.83)
mj = f, —mg (4.84)

and, noting that f, acts at O',

160=f.H+ [,B-Flk|H (4.85)
Here,
fi=ulf, (4.80)

and since center of rotation is O',

j=-B0 (4.87)
From (4.84)
f, =m(g - BO) (4.88)

By substituting (4.86) and (4.88) into (4.85), noting that F =mgk, we have

; 3g
0= +1-klk' 4.89
B(4+y* +3uy) (uay | |7/) ( )

For this mode of response to take place the following conditions must be met:

<0 (4.90)
and
f,20 (4.91)

From (4.89), for d <0, we must have
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p<— ik (4.92)
/4

If (4.90) is satisfied, so would (4.91) be, on account of (4.88).

For the body to slide to the left, we must have x, <0 or equivalently, X, <0.
Since

Xp =%+ HO (4.93)
and, from (4.83), (4.86) and (4.88),

i=g(u—k)—puBo (4.94)

By using (4.89), from (4.93),

Xo = % {1+ 4y*) =3y (1= [k DK] - [(4 + 7* + 37 [k Dk =371} (4.95)
+y°+3uy

For X, <0 it is necessary that

4+y* +3ylkk -3 "
PRSASARL il TS (4.96)
1+4y° =3y(1-|k)k

a function of k. We now study properties of " (k). First, it is recognized that

ak—-b
d—ck

1o (k) = (4.97)

where the quantities a, b, ¢, and d are constants defined in (4.42), (4.43), (4.44)
and (4.45).

At k=0, u” :—SSO. Atk=4 u approaches infinity and at k =

> 23 ,u**:O.
c a

ok

ok . — 41+ 2 1+ 2+3 Zkv
Slope of u™(k) is du _ ad—bc _4(d+y)1+y ala)

= >0 hich
dk  (d—ck) (d —ck)’ e

approaches infinity as £ approaches i
C
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From (4.92) which stems from the requirement that <0 and (4.96), required by

the condition that X, <0, the regions corresponding to slide-rock about O' mode

of response are given in Figs.4.6a and 4.6b for the two cases A>0 and A<0
( For definition of A, see IV.3. Rock about point O). It may be verified that point

F of intersection of the curve u~ (k) with k-axis lies to the left of point D,

. . . . 1 .
point of intersection of line x=——+#klk| and the k -axis.
e
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IV.7. Discussion

The above constitutes an analysis of conditions governing initiation of various
possible modes of response of a rigid body under the action of a horizontal force

pointing to the left and applied below center of mass of the body.

Unlike the case in which the force F is applied above center of mass of the body,

in the present case, some of the regions in the £ —u plane of the various modes

of response overlap. This situation requires further analysis to determine how

these overlapping regions should be dealt with.

In Fig.4.3, when values of & and x4 correspond to a point in the shaded region,

sliding is imminent. Reaction f, acts within base 0OO' (Fig.4.1), away from

edges O and O'. Other than for points in the £ — u plane whose coordinates &

and u are such that they fall on the boundary 4B where f, acts at O and at the
boundary CD where f, acts at O', other points inside the slide region all
correspond to the case in which f lies between but not at O and O'. Thus, no

rocking about O nor about O' can take place in this region other than for values
of k¥ and u corresponding to points on the boundaries 4B and DC. For this
reason, region BB'C'C for rock about O in Fig.4.4a and region BAC'C in
Fig.4.4b should be eliminated. Along same line of reasoning, points in sectors
CC'C" in Figs.4.4a and 4.4b do not give rise to rocking about O since, if rocking
indeed takes place, it does so about O' because line DC (C'C) represents the

case when reaction f, acts at O' (&=15).

For the same reason, in the case of slide-rock about O in Fig.4.5a, regions
BB'C'C and CC'C" should be deleted. For the case represented by Fig.4.5b,
slide-rock about O simply can not happen and the shaded region BAC'C" should

not be counted. For the case of slide-rock about O', the entire shaded regions
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shown in Figs.4.6a and 4.6b are valid representations of mode of slide-rock about

0.

1+;/2

2

The final result is shown in Figs.4.7a and 4.7b for the cases of |k|< and

4+y

1+ 7 .
. Here for brevity, the modes are represented by symbols RE (rest),

k>
4+y

SL (slide), RO (rock about point O), SRO_ (slide-rock about O with x<0), and
SRO'_ (slide-rock about O' with x<0).
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Fig.4.7a All modes |k| <
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V. Concluding Remarks

This study is motivated by the desire to know how a caisson would respond to

the action of a breaking wave.

In this study, as an initial step, we have achieved to identify and derive
conditions for initiation of the various modes of response of a caisson, modeled
as a rigid body placed on a frictional base subjected to a horizontal force,

mimicking the action of a breaking wave.

The equations used are the three equations of motion of a plane rigid body.
Simple as the model is, the analysis reveals the complex behavior of the body.
Although the derivation of these conditions is quite involved, the results have
been presented in graphical form in the k—u plane (& being related to the
magnitude of the force F and u, coefficient of friction between the body and
the base).giving, in a clear manner, the conditions under which the modes of

response the body would be initiated into.
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LIST OF SYMBOLS

a quantity defined in (3.18) and (4.42)

B half width of body

b quantity defined in (3.19) and (4.43)

C center of mass of body

c quantity defined in (3.20) and (4.44)

d quantity defined in (3.21) and (4.45)

F horizontal applied force

f. horizontal reaction

f, vertical reaction

g gravitational acceleration

H half height of body

h distance between line of action of force F and center of mass C of
body

1 mass moment of inertia of body about center of mass C

k non-dimensional non-negative quantity used to express magnitude of
force F' in terms of weight of body

k' non-dimensional non-negative quantity used to express distance of
force F from center of mass C in terms of H

k, value of k& corresponding to the point 4 in k — u plane

kp abscissa of point B', intersection of x * (k) and line 4B in Figs. 4.4(a),
4.5(a), 4.6(a) and 4.7(a)

m total mass of body

RE symbol used to represent region of rest mode

RO symbol used to represent region of rock ( about O) mode

SL symbol used to represent region of slide mode

SRO_ symbol used to represent region of slide-rock ( about O) mode with
X, <0

SRO,  symbol used to represent region of slide-rock ( about O) mode with
X,20

X horizontal displacement of center of mass C of body, positive to the
right
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horizontal displacement of O at base of body, positive to the right
horizontal displacement of O' at base of body, positive to the right

vertical displacement of center of mass C, positive upward

slope of w*(k) at 4 minus slope |£'| of line AB referred to in
Figs.4.4(a), 4.4(b), 4.6(a) and 4.6 (b)

= H /B, aspect or slenderness ratio of body
rotation of body , positive counterclockwise
coefficient of friction between body and base
curve defined in ( 3.24) and (4.40)

curve defined in (4.96) and (4.97)

ordinate of B', intersection of x* (k) and line 4B in Figs. 4.4(a),
4.5(a), 4.6(a) and 4.7(a)

distance between line of action of f and center of mass C of body

absolute value sign
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