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ABSTRACT

A complex quasi wavelet basis function for time-frequency analysis is proposed, and

the associated numerical processes are explained. Using a scheme similar to the continu-

ous wavelet transform, the function basis yields informative features both in the modulus

and phase plane renditions. Various simulated and experimental signals are used to val-

idate its serviceability, in particular, the extraction of instantaneous frequencies or the

power ridges of a signal. The results are also compared to those of the Morlet wavelet,

and they show the superiority of the present basis function.

Analytical aspects of the behaviors of the devised basis, such as frequency leakage-in

or leakage-out, ambiguity effects, phase noise, and the criteria of local power extremes,

are also studied and compared to the corresponding counterparts of the Morlet wavelet.

And these characterizations manifest the usefulness and superiority of the present function

basis, as well as its practical applicability.
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Chapter 1
Introduction

The core of signal analysis is the study of analyzing function bases and their relevant

numerical processes. And we also know that the usefulness of an analyzing function

basis and its relevant numerical process is mostly signal-dependent and purpose-oriented.

For example, from the perspective of image or acoustic signal processing, the aim may

mainly focus on transform compactness, speed efficiency and fidelity restoration, and

here physics plays a lesser role in our concerns. While, from the perspective of water

wave signal analysis, the aim may exclusively focus on the disclosure of physics, and here

speed and compactness are surely trivial. The basic simple fact is that there is neither a

general basis that is optimum for all applications nor a general scheme that best appeals

to all circumstances.

Time-frequency analysis is the study of time-varying spectra of signals and it involves

a vast array of methods. Different methods yield different results, and the results may

sometimes seem irrelevant, and quite often at odds with each other. It is therefore never

too cautious to be prudent in making interpretations.

Conceptually, a time-frequency transform is the projection of a target function (or a

signal) into the basis functions of a certain function basis (i.e., the set of basis functions)

mainly for characterizing the non-stationary features of that target function. In this regard,

from the physical perspective of water wave signals, it is intuitively right to think of the

study as the pursuing of a function basis that provides the best match among the basis

1



functions and the “intrinsic” signal constituents. However, a prior note is that the present

study concerns a function basis that does not conform to such a thinking; nevertheless, it

provides useful information concerning time-scale characterizations of signals.

The windowed Fourier transform (or short-time Fourier transform) and the wavelet

transform are the two commonly seen methodologies of time-frequency analysis. In the

former, the transform basis is comprised of windowed Fourier eigenvectors; in the latter,

the transform basis is formed by wavelet atoms that are the scaled and translated versions

of a mother wavelet.

Ideally, one would like to have a transform that does not spread energy of any con-

stituent signal component in both the time and frequency (or time and scale) domains.

Or desirably, the transform should yield time-frequency distributions that have minimum

ambiguity or interference due to time and frequency spreading of component signals or

Fourier components. However, the theoretical restriction of the Heisenberg uncertainty

principle, as well as the many lingering paradoxes (such as negative frequency, nega-

tive power, unallocated frequency components, etc.) arising from various time-frequency

analyzing kernels, has dictated that the ambiguity and the interferences can never be com-

pletely or simultaneously removed. Hence, one always has to live with the trade-offs

among different bases and different approaches, and constantly be aware that false and

intractable, or isolated and unrepeatable, interpretations may be at large.

In this study we proposed a new complex basis function, and through employing the

numerical scheme similar to that of the continuous wavelet transform we study the nature

of the basis function and characterize both simulated data and experimentally acquired

water wave signals. In contrast to most studies of other bases, we put equal emphasis on

the modulus and the phase plane information, and show they both are informative.

We also note that, in a strict sense, the present basis function may lack mathematical

rigorousness in a few analytical aspects, such as sufficing the concepts of Hilbert space,

serving as a tool for the characterization of local regularity, and building useful operators

related to the resolutions of the identity, etc. But the hardheaded fact, in a pragmatic sense,

2



is its ability to provide richer information than can other bases, such as those associated

with the continuous and the discrete wavelet transforms. It is therefore natural to compare

our results to those of the Morlet wavelet that is typically used in water wave applications.

In a further attempt to reveal the inner working of the proposed basis function, a few

analytical aspects that manifest the behaviors of the devised basis, such as frequency

leakage-in or leakage-out, ambiguity effect, phase noise, and the concepts of local ex-

tremes, will also be studied. And again, these features are compared to those correspond-

ing counterparts of Morlet wavelet.

Judging from the numerical methodology adopted, as well as considering the above

mentioned lack of inherent rigorousness, it may be appropriate to regard the present basis

function as a “quasi” wavelet basis function or as a wavelet variant. Therefore, more

emphases should be placed on the variant’s practical usefulness in applications rather

than on its fulfillments of various mathematical constraints. However, we shall somewhat

follow the formalism of time-frequency analysis in characterizing the cause-and-effect

phenomena and acquaint ourself with analytical countenance and applied demeanors, so

as to be guided towards possible new efforts. v

� �
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Chapter 2
The Quasi Wavelet Basis Function

2.1 Introduction

For the studies of water wave related signals using wavelet approach, avery important

factor that contributes to the usefulness of a wavelet function basis in revealing the most

intimately, as well as intricately, physical aspects of the signals is that the function basis

should possess the following property: the associated mother wavelet should have “com-

plete oscillation” and the associated scaling function should have “total positivity”. Phys-

ically speaking, this property means that the basis functions, in comparison with other

basis functions, are relatively quite regular. And practically, this means that a transform

associated with “complete oscillation” and “total positivity” provides information that is

far more tangible than otherwise provided. This further, in more plain language, implies

that if there is a slight change in signal content than a basis with such a property will yield

transform coefficients that are more or less “reasonably expected” or “mildly altered”;

otherwise, the variation of transform coefficients arising from such a slight change may

be completely ad hoc [14, 16, 21]. Figure 2.1 well illustrates the above argument and

points out the inherent causes related to these phenomena.

Based on the cognition above, as well as from our previous studies on the entropy per-

formances for a comprehensive set of wavelet basis categories, the cardinal spline wavelet

has been shown to be exactly the optimum basis for modeling water wave related signals
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from the point of view of discrete transforms (including the discrete Fourier transform)

[15, 21, 16]. And a natural extension of such an optimum basis to the continuous trans-

form thus implies the Morlet wavelet to be a very appropriate candidate, although the

Morlet wavelet does not strictly fulfill the conditions of “complete oscillation” and “total

positivity”.

With these understandings, we will thus compare the performances and feature out-

comes of the present methodology with those of the Morlet wavelet. In brief, what we

like to deliver here is that the present methodology not only possesses the same easiness in

numerical implementation but also holds an improved capability in extracting constituent

power ridges of signals from both the modulus and phase plane renditions.

2.2 The devising of the basis function

For many wavelet analyses, the transforms concern only real basis functions. In such

a sense, phase information may be of little concern in certain applications. For time-

frequency analyses, although it is possible to express a real signal in real functions of

phase and amplitude, it is often advantageous to associate a signal with a complex form

and take the actual signal to be the real part of the complex signal. In such a way, a

complex basis function provides the advantage of a more natural modulus-phase-form

information. It is important to note that the phase and amplitude of the real signal are not

generally the same as the phase and amplitude of the complex signal.

To take advantage of the modulus-phase information we design the present basis func-

tion to be complex and take the time-frequency transform to be fundamentally a wavelet

approach. And the basis function ψ(t) is defined as:

ψ(t) =
1

π
1
4

[
sgn(t) sinω0t − i cosω0t

]
e

−t2
2 . (2.1)

The function serves as the seed of a function basis in a way similar to what a mother
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Figure 2.1: Wavelets with fancy analytical properties are often of eccentric wave forms and are
not of our choice for studying water-wave related physics — Either judging from their entropy
values or form their stability conditions shown here. Here the blow-ups of bi-orthogonal wavelets
BO31O and BO35O are shown, respectively, in top and bottom halves of the figure. Related
data for BO31O is: {Blow-up point: 150 (located at the dotted line in figure (d)); Origin: level
2, position 12 (i.e., U 12

2 ); Length: 512 (the curve in figure (d)). Figures (a), (b), and (c) show
successive blow-up scale of 26. The blow-ups diverge rapidly, i.e., the wavelet fails to identify
itself numerically in the refinement cascade.} Related data for BO35O is: {Blow-up point: 256
(located at the dotted line in figure (d)); Origin: U 12

2 ; Length: 512 (one of the curve in figure
(d) with parts of the curve coincide with parts of the abscissa). Figures (a), (b), and (c) show
successive blow-up scale of 26. The blow-ups poorly converge but with peculiar inclinations.}
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wavelet does. In the equation, ω0 is relevant to the modulation frequency of the counter-

part Gabor transform (or windowed Fourier transform); sgn(t) is the sign function; the

exponential stands for a Gaussian envelope; and, the constant is somewhat related to a

unit norm and serves for matching the counterpart constant of the Morlet wavelet. Figure

2.2 shows the real and imaginary parts of the basis function. Here the basis function is en-

titled with a “quasi” term in the sense that we mentioned earlier (as well as a few factors to

be explained in the next chapter). Besides, considering the nature of the present method-

ology, one may well regard the basis function to be a “wavelet variant”. In fact, compared

with the simplified form of the Morlet wavelet, the major difference is the presence of the

sign function. Figure 2.3 shows the simplified Morlet wavelet.

The scaled and translated versions of the wavelet variant is :

ψa,b(t) =
1

√
aπ

1
4

[
sgn(t) sinω0

(
t − b

a

)
− i cosω0

(
t − b

a

)]
e

−
t−b

a
2

2 , (2.2)

where a is the scale parameter and b is the translation parameter. The ω0
a physically

means a carrier frequency and is the core target of the transform information. Note that the

“scale” or “frequency” ordinate shown in all modulus and phase renditions to be presented

in later chapters represents exactly the values of this variable. And this provides easily

perceivable physics, as opposite to many studies that adopted the imperceivable scalar

“a”.

2.3 The renditions of modulus and phase planes

For a lot of wavelet transforms, such as those related to orthogonal, bi-orthogonal, and

semi-orthogonal wavelets, as well as the wavelet packets [3, 5, 29, 24], there are only

the modulus results since their bases are real. And for bases that are complex, different

transform categories or transforms using different bases quite often place different or un-

equal weights on their modulus and phase renditions; in other words, modulus and phase
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renditions provide different degrees of significance in feature identification. And most

transforms yield trivial phase information. It will be shown that the present function basis

yields somewhat equally informative contents from both modulus and phase renditions.

For a one dimensional signal the time-frequency rendition can be displayed in 2-D density

plot or 3-D perspective view, and we will use either one when suited.

For the present methodology we define the modulus and phase in the following ways.

Let f (t) be a signal function, the modulus of the transform coefficient is defined either

as

|〈 f (t), Imψ(t)〉 + iH [〈 f (t), Imψ(t)〉] |, (2.3)

or

|〈 f (t),Reψ(t)〉 + iH [〈 f (t),Reψ(t)〉] |, (2.4)

where Re and Im represent real and imaginary part, respectively, 〈, 〉 means the inner prod-

uct, andH stands for the Hilbert transform. Note that the implementation of transform in

either definition is based on only real or imaginary part alone. In this sense, the modulus

may lack the mathematical formalism of a “basis”, but here we first point out that the first

definition gives basically the same result as Morlet wavelet’s, while the second definition

yields information that is especially useful in easy extraction of signal power ridges and

that is also superior to what provided by the Morlet wavelet.

As to the phase it is defined as

tan−1 Re〈 f (t), ψ(t)〉
Im〈 f (t), ψ(t)〉

+

(π
2

or 0
)
, (2.5)

or

tan−1 Ie〈 f (t), ψ(t)〉
Rm〈 f (t), ψ(t)〉

+

(π
2

or 0
)
. (2.6)

The difference of the two definitions and the presence of the optional constants will

become clear when we come to show the transform planes of phase in the following

chapters. Basically the added constant reflects a phase rotation, and they can be used to
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switch the pattern of significant time-frequency features or to show easy visualizations in

accord with either the power ridges of component signals or the time-frequency spreads

of constituent components of a signal ( or the spreads of basis functions).

The origins and implementations of these definitions will further be explained in the

next chapter. Various topics of time-frequency characterizations will also be discussed

there. In fact such details are more than practically needed – since if we are merely con-

cerned about the application of a basis, then simply the physical portrayals of modulus

and phase suffice to tell all that matter. Nevertheless, we will come to realize that these

additional efforts are forthright and warranting, especially when considering that we are

making target comparison of performances with the Morlet wavelet (or Gabor short-time

Fourier transform), which has well established systematical and analytical exploitations.

It is also hoped that by stepping through these characterizations they enhance our un-

derstanding of the intrinsic natures or inner workings of any function basis and provides

prospects for further investigations.

v

� �
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Figure 2.2: The real and imaginary parts of the quasi-wavelet for use in the time-frequency ren-
ditions of modulus and phase as defined by equations 2.3, 2.4, 2.5 and 2.6. This quasi wavelet is
less analytic than the Morlet wavelet.
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Chapter 3
Time-Scale Characterizations

3.1 Introduction

Any time-frequency representation – wavelet transform, in a strict sense, is a time-scale

representation rather than a time-frequency one – can be associated with a specific aux-

iliary function, the kernel function. A general class of time-frequency energy density

decomposition is the Wigner-Ville distribution. The spectrogram of a windowed Fourier

transform, the scalogram of a wavelet transform, and all time-frequency power density

distributions derived from some inner product can all be associated with their specific

forms of Wigner-Ville distribution [4, 25].

We have not established the association of the proposed basis with a Wigner-Ville

distribution, i.e., it is not known whether for any L2 function one can find its associated

Wigner-Ville smoothing kernel or convolution operator. Nevertheless, since we are com-

paring the results of the present method with those of typical spectrogram or scalogram,

we shall, to a feasible extent, follow the formalism of time-frequency and time-scale

characterizations so as to make contrasts for the various properties between the proposed

quasi-wavelet function basis and that of the Morlet wavelet or Gabor transform. More

specifically, the following topics will be considered:

• The wavelet admissibility condition, as well as the concerns about completeness,

redundancy, and transform stability;
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• The analytic wavelet transform of a real signal and the wavelet transform of the

analytic signal, which is complex, associated with that real signal;

• Characterize frequency leakage and phase ambiguity associated with individual ba-

sis, as well as illustrate the concepts of time-frequency resolution;

• Compare local power maxima derived from the analytic windowed Fourier trans-

form or wavelet transform to local power extremes, either maxima or minima, de-

rived from the current wavelet variant. In particular, using an analytic signal, we

compare its phase and instantaneous frequency as depicted by ridge points in a

scalogram or a spectrogram to those as depicted by the present wavelet variant

transform;

• Show the phase “randomization” effect in association with an analytic transform

and the phase “polarization” effects in association with the present wavelet variant

transform;

It is hoped that by these elaborations one can gain basic understanding of the different

basis categories, their distinct inherent features, and individual advantages or disadvan-

tages, as well as the “quasi” nature of the proposed wavelet variant basis. And it is also

desired that this leads to further cognizance of time-frequency analysis and provides better

future prospects in kernel designs.

3.2 The admissibility condition and the completeness and

redundancy

If a function ψ(t) is to be qualified as a wavelet for the continuous wavelet transform

(CWT), then the only requirement is that ψ(t) meets the following “admissability condi-

tion”,

2π
∫

∞

−∞

|ψ̂(ω)|2

|ω|
dω = Cψ , (3.1)
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where Cψ is a constant depending only on ψ only, and ψ̂(ω) is the Fourier transform of

ψ(t). Among the several definitions of the Fourier transform pairs the one adopted here

is:

ψ̂(ω) =
1

√
2π

∫
∞

−∞

ψ(t)e−iωtdt (3.2)

ψ(t) =
1

√
2π

∫
∞

−∞

ψ̂(ω)eiωtdω. (3.3)

The admissability condition is the integration of power spectrum weighted by the inverse

of the absolute value of frequency; therefore, to yield a finite value, the wavelet should

have little power at low frequency and is totally nil at zero frequency, i.e., the area between

the curve and the abscissa integrates to zero. This feature basically states that a wavelet

should have reasonable decay or be finitely supported — so, it is a wave-let or a wavelet

atom.

As to the origin of the constant Cψ , it is a natural turnout of the derivation of the

completeness (such as in the L2-space) of the wavelet function basis, i.e., it is a byproduct

when proofing the following “resolution of identity” for two functions g and h:

〈g, h〉 =
1

cψ

∫
∞

0

1
a2

∫
∞

−∞

〈g, ψa,b〉〈h, ψa,b〉dbda, (3.4)

where ψa,b(t) =
1

√
aψ(

t−b
a ) is a dilated and translated version of the mother wavelet ψ(t)

with dilation parameter a > 0 and a ∈ R and translation parameter b ∈ R. The 1
√

a is for

the normalization of L2-norm. The ψa,b satisfies admissability condition too. In general,

ψ(t) is normalized such that ||ψ(t)|| = 1; therefore, ψa,b(t) also has a unit norm.

The admissability condition is a very loose constrain; it does not provide a clear con-

cept of redundancy concerning applying CWT to either discretely sampled or continuous

signals. To illustrate this redundancy, let us use the discrete wavelet frame (since the frame

wavelet certainly qualifies as a wavelet for CWT): ψa0,b0; j,k(t) = a0
− j/2ψ(a− j

0 t − kb0),

where a belongs to the set of discrete dilations a j
0 and b to the set of discrete translations
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a j
0 kb0; j, k ∈ Z; and a0 6= 1 and b0 > 0 are fixed positive constants. For such a discrete

wavelet frame we need to impose a more restrictive condition on ψ(t) for its admittance,

i.e., the stability condition,

b0 A ≤ 2π
∑
j∈Z

|ψ̂(a0
jω)|

2
≤ b0 B, (3.5)

where A and B are positive constants and 0 < A ≤ B < ∞. The fixed constants b0 and

2π are intentionally kept since they are related to a normalized wavelet basis and since the

magnitudes of A and B are related to the redundancy of the basis. The stability condition

may look abstract, but we give its physical implication as: in order for a function to be

reconstructed from its wavelet coefficients, i.e., the operation is reversible, we need a

process which is convergent when summing all its scales or frequency components. It is

therefore necessary that the sum of the power of all the constituent elements can neither

be nil or infinity. If the sum is zero, then the elements are all of zero measure — nothing

exists. If the sum is infinity, then the elements are significantly overlapping in time and

frequency — there is either too much dependence or too much ambiguity and tangling

(just like two vectors paralleling to each other do not constitute a good vector basis in two

dimensional vector space). If the basis functions are normalized and the inequality of the

stability condition are optimized for both the greatest lower bound and the lowest upper

bound, i.e., when A and B are defined as

A = inf

2π
b0

∑
j∈Z

|ψ̂(a0
jω)|

2

 , (3.6)

B = sup

2π
b0

∑
j∈Z

|ψ̂(a0
jω)|

2

 , (3.7)

then an indication of the redundancy is the average value of A and B, A+B
2 , supposed that

A and B are close to each other (almost tight). If A = B = 1, then the basis is orthonor-

mal, and the transform coefficients are without redundancy. Based on this understanding
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we know that even a mother wavelet of an orthonormal Riesz basis will produce a redun-

dant system when it is applied in the continuous sense. Therefore, continuous wavelet

transforms are always redundant when applied to discrete signals and are complete when

one likes to increase the resolution indefinitely.

Now let us state a few corresponding attributes of the proposed basis function. Since

neither the real nor the imaginary part of the basis function integrates to a zero value, the

formula does not satisfy the wavelet admissibility. Therefore, the basis function is really

not a wavelet, and this is the main reason why it should be attributed the “quasi” nature

at best. Nevertheless, from practical point of view, both the real and imaginary parts

do decay as exactly as those of the Morlet wavelet. Here we also note that in common

applications a simplified version rather than its full legitimate form of the Morlet wavelet

is generally adopted. Nor does this simplified version satisfy the admissibility condition;

in fact it is more of a Gabor type “quasi” wavelet. In short, what we like to make it clear

is that practically there is no restraint on its application.

In another perspective, since the new seeding function does not belong to a Hilbert

space basis, it really does not mean very much to talk about the “completeness” and

“redundancy” of the transform coefficients. However, from continuous transform point of

view, the completeness and redundancy are more of theoretical or mathematical interest

only since a continuous transform has not any practical value in the inverse transform of

a discrete signal. Furthermore, taking into account the fact that all signals more or less

embed some uncertainty either arising from noise in experimentation or from unavoidable

side effects in modeling, the factor of completeness and redundancy really should not

hinder our purpose for visually obtaining transform features. In all here we emphasize

the practical usage of a quasi wavelet variant.

16



3.3 The extractions of power ridges

In this section we discuss the transforms that lead naturally to power ridge extractions.

For such a purpose the Morlet wavelet is one of the most qualified candidates. Moreover,

the Morlet wavelet play a very unique dual role that no other function has — on the one

hand, it is certainly associated with a continuous wavelet transform; on the other hand, it

is extremely analogous to the basis of the windowed Fourier transform. That is to say it

bridges between the continuous wavelet transform and the windowed Fourier transform,

and this enable the transform results to provide many physical or practical explanations

concerning physics in the conventional or perceptible sense. And this is the reason that

our perception of various time-frequency characteristics can be realized or threaded much

more easily, and also the reasons why we will be mostly comparing the feature results of

the proposed basis with those of the Morlet wavelet.

This is not only because we have mentioned it quite a lot of times but also because

we are basically comparing the features of the proposed basis with those of the Morlet

wavelet. Moreover, the Morlet wavelet play a unique dual role that no other function has

— it crossovers the border between the continuous wavelet transform and the windowed

Fourier transform. Due to this specific property, our perception of various characteristics

of time-frequency analysis can be realized or threaded much more easily. Some of its

significance in certain applications will also be stated in later sections (a more detail

account was given in a previous report by the author [13]).

The Morlet wavelet is complex and is given by

ψ(t) =
1
π1/4 (e

−iω0t
− e−ω2

0/2)e−t2/2, (3.8)

in which ω0 is a constant and the term e−ω2
0/2 justifies the admissability condition. Its

Fourier transform is almost a shifted Gaussian and is given by

ψ̂(ω) =
1
π1/4 [e−(ω−ω0)

2/2
− e−ω2/2e−ω2

0/2]. (3.9)
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The constantω0 is a modulation (or carrier) frequency and has the physical implication

of the amplitude ratio r between the second highest peak and the highest peak of ψ(t),

i.e.,

r = ψ(t2)/ψ(0), (3.10)

in which t2 is the abscissa of the second highest peak. The exact value of t2 may be

obtained by solving the transcendental equation numerically. But a fairly good explicit

estimation can be given by dropping the second term in the above equation since, for

most of the scales that concern us, the second term is generally five order of magnitude

less than the maximum value of the first term, i.e.,

ω0 ≈
2π
t2

≈ π

(
−

2
ln r

)1/2

. (3.11)

The higher the ω0 is, the smaller the ratio r becomes. If ω0 is constant, then the ratio r

for different wavelet dilations or scales keeps constant too.

By dropping the second term of equation 3.8 the ψ(t) is strictly not a wavelet but

more of a scaled windowed Fourier atom, and the transform becomes more of a scaled

Gabor transform, i.e., the Gabor transform with additional scaling of its Gaussian window

function. This basically states the dual role of the Morlet wavelet. From the point of

view of discrete numerics, the two transforms might not use the same translation step.

For the Gabor transform the step is in linear measure, and for the wavelet transform it

is in logarithmic measure. Nevertheless, from a continuous perspective, the sense of

translation step is trivial; therefore, they are basically identical except that, in the former,

the shape and area of time-frequency windows are kept fixed; and, in the latter, the area is

kept fixed but not the shape.

Based on the above understanding, there is a natural way to illustrate various wavelet

ridge concepts using the scaled Gabor transform since it provides simple and clear illus-

trations through its intimate association with an analytic process and since the analytic

procedure is earthy to the characterization of ridges. The following section describes
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these relations.

3.4 The analytic property versus complete oscillation and

total positivity

A complex function basis provides frequency information and enables us to study ampli-

tude and phase separately. However, there may exist a deep concern about the existence

of negative frequencies. Negative frequencies severely retard our mental realization. A

common approach to get round of the negative frequency is to perform an analytic proce-

dure either on the basis or on the signal. And it is generally desired that the basis functions

be analytic as much as possible.

Now let us state three fundamentally significant concepts that connect “the analytic

property” to “the complete oscillation and total positivity” as stated in the previous chap-

ter. First, the Fourier transform of the product of two functions (such as the product of

a signal and a window function) is associated with a linear convolution operator in the

operation of its opposite domain; conversely, a convolution in one domain corresponds to

a multiplication in the other domain. Therefore, if one can design a frequency window

which localizes only in the positive frequency and then multiplies the spectral results of

a signal with such a window then we might have the desired analytic signal. Second,

since the frequency window must not extend to the negative frequency, its center should

lie reasonably away from the zero frequency, i.e., the window distribution curve should

decays properly fast toward the zero frequency. Third, for the Fourier transform pair, a

shift in one domain is equivalent to an oscillation in the other domain. Combining the

above three points we come to comprehend the relation between “being analytic” and

“being with complete oscillation and total positivity”. Overall, this can be stated as: to

have a high analytic degree, the analyzing basis functions should have both reasonable

oscillation and high regularity in the time domain such that they are properly narrowly

band-limited (or almost narrowly band-limited) in the frequency domain.
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The above explanations lead to the basic and important understanding why the mod-

ulated Gaussian shape function, such as those of the Gabor function basis and the Morlet

wavelet basis, are commonly adopted in analyses of water wave related signals – these

basis have the highest possibility in revealing physically meaningful features from the

conventional time-frequency viewpoint [19, 13, 25].

Talking about frequency, naturally, it is to be associated with the phase or the phase

plane rendition. However, to the author’s knowledge, the phase plane information of most

transforms is quite often rampant and provides little physical interest. More precisely,

it rarely provides easy identification of power ridges, i.e., it does not clearly show the

instantaneous frequencies associated with the most significant wave components. Part of

the reasons is – the phase (or frequency) should intuitively be more or less independent

of amplitude, but in fact it is not – this is also the reason why a phase plane is always

fully occupied no matter how insignificant the energy content of a region may be. Figure

3.1 makes example such a feature. It should also be noted that for a lot of time-frequency

analyses there is actually very sever interaction (or interference) between amplitude and

frequency [4, 15]. And again, this factor brings rampant effects on the pattern of the phase

plane.

Now let us state those relevant aspects for our devised basis function as depicted by

equations 2.3 through 2.6.

First, concerning the modulus, though our definitions of time-frequency modulus

plane involve the Hilbert transform, which is related to an analytic process, the analyz-

ing functions are not necessary analytic. Specifically, equation 2.3 is almost analytic and

yields nearly the same results as those of Morlet wavelet. In such cases, the instantaneous

frequencies corresponding to the significant constituent components are associated with

the ridges of the modulus distribution, i.e., the distribution of local energy peak. As to

equation 2.4, it is less analytic; nevertheless, we shall show that it provides a new and

improved way for ridge extraction. Furthermore, while the instantaneous frequencies of

significant constituent components as depicted by equation 2.3 are associated with the
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power maxima, those as depicted by equation 2.4 are associated with modulus minima,

i.e., local power trough.

Second, concerning the phase, even though the time-frequency phase plane as de-

picted by equation 2.5 or 2.6 is completely filled with phase values, the equations yield

completely different, as well as much regular and informative, patterns as compared to

those yielded by other transforms. Specifically, the phase distribution based on the Morlet

wavelet transform varies so extremely such that it hardly shows any features of practical

significance; in sharp contrast, our phase rendition yields almost polarized phase distri-

bution where significant features are revealed by phase interfaces where the neighboring

phases are mostly out of phase by convenient separation distances (such as π/2, π, 3π/2

or 2π ). Furthermore, the phase interface lines may represent either the power ridges or

the time and frequency spreads of non-orthonormal basis functions.

3.5 The concepts of stationary phase, instantaneous fre-

quency, and transform ridge or trough

In this section we further study the relationships among instantaneous frequency, station-

ary phase, ridge, and trough concerning the proposed transform.

Let g(t) be a window function in t domain, and g(t) is centered around t = 0 and has

unit norm with reasonable decay on its support, i.e., ĝ(0) =
∫

∞

−∞
g(t)dt is the maximum

value of ĝ(ω) and is of the order of 1 For the window function, the windowed Fourier

atom is

gu,ξ (t) = g(t)eiθ . (3.12)

The Fourier atom scaled by s is

gs,u,ξ (t) = gs(t)eiθ , (3.13)
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where subscripts u and ξ stand for translation and scaling parameters, and gs =
1

√
s g( t

s )

has a support of g(t)’s scaled by size s and is also with unit norm.

The scaled windowed Fourier transform of a real function f (t) is

〈 f, gs,u,ξ 〉 =

∫
∞

−∞

f (t)gs(t − u)e−iξ tdt. (3.14)

Basically, this equation provides what equation 2.3 does. And it is also similar to the

Morlet wavelet transform using the simplified form by neglecting its second term.

Since any f (t) can always be expressed as f = a(t) cosφ(t), one has [31, 25]

〈 f, gs,u,ξ 〉 =

√
s

2
a(u)ei(φ(u)−ξu)

(
ĝ

(
s[ξ − φ

′

(u)]
)

+ ε(u, ξ)
)
, (3.15)

in which the ε is an overall corrective term determined by the following four elements:

• The relative variation of amplitude: εa,1 ≤
s|a

′
(u)|

|a(u)| ;

• The relative curvature of amplitude: εa,2 ≤ sup s2
|a

′′
(u)|

|a(u)| ;

• The rate of variation of frequency : εφ,2 ≤ sup
[
s2

|φ
′′

(t)|
]
; and

• The effects caused by the high frequency components of the window function, i.e.,

the extreme of the high end part of |̂g(ω)|: εg = sup
|ω|≥sφ′

(u)||̂g(ω)|

Now let us state a few definitions. The instantaneous frequency (or, simply, the fre-

quency) is generally defined as the time derivative of phase. And the stationary phase is

for

φ(u)− ξu = 0 (3.16)

or

ξ − φ′(u) = 0 (3.17)

It is therefore known that the stationary phase points are where the ridge locates. But

one must also keep in mind that the f (t) (which can be viewed as a single component or
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combination of components) needs to fulfill the several restrains about ε. In a practical

sense, the f (t) should be relatively smooth and regular.

Although the above f (t) is the target function rather than a basis function, we should

be able to extend these arguments to the case where the f (t) and g(t) switch their roles

– judging from the fact that various time-frequency (or time-scale) transforms are sim-

ply implementing a projection mechanism. In fact the scaled Fourier atom gs,u,ξ (t) =

gs(t)eiθ well follows all such requirements. Overall here we clearly illustrate analyti-

cally the uses of “complete oscillation and total positivity” and its relationship with the

extraction of ridge.

Now let us discuss the analytic degree as related to equation 2.3.

Here we exploit the difference between 〈 f (t),A[ψ]〉 and 〈 f (t), ψ〉, where ψ(t) is

based on equation 2.3,Ameans finding the analytic counterpart, and the simulated signal

f (t) is an X-signal (a signal composed of two linear chirps with a cross in frequencies).

The top sub-figure of figure 3.1 shows how analytic the basis is – there is basically no

energy distribution except at the top area of high frequency.

In the above description we illustrate the relation between ridge and stationary phase

points, and we know there is a strong possibility that the two might not be completely

coincided. Now let us discuss the corresponding points as will be depicted by equation

2.4 to the ridge points or the stationary phase points as depicted by equation 2.3. And

this is done numerically using the Mathematica programming language. It is calculated

that the frequencies at the trough points is equal to 1
0.969621 the values of the ridge points

associated with stationary phase points. Here the ω0 is taken as the commonly adopted

value of 5, but different reasonable ω0 yield values little different from 0.9696. It is also

noted that in all subsequent figures in comparison the values of parameter ω0 (which may

take an adapted value to better fit the physics, such as wave’s decay property) are the

same.

For equation 2.4, since the corresponding basis function lacks the property of com-

plete oscillation and is poorly analytic, we take a different approach in modulus repre-
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sentation: first, the transform is performed only on the real part of equation 2.1, then the

analytic signal procedure is applied to that transform result, and finally the envelope curve

of the modulus is calculated accordingly.

In the following section we will focus on the analytic signal procedure; this in turn

deals with the Hilbert transform.

As to phase plane information the relevant concepts are states below.

Let suppose we have a real function basis, then we have two ways to derive the phases.

One way is to devise an analytic function basis with real and imaginary parts as oppose

to a basis with real functions only. The other way is to first convert the real signal into an

analytic counterpart signal and then apply the transform of the real function basis. It can

be shown that the two approaches yield the same results (see e.g., [25]). For equation 2.3,

this is what is performed. But for equation 2.4, the complex basis is directly used.

3.6 The analytic signal procedure and the Hilbert trans-

form

Having stated the usefulness of an analytic signal or analytic function basis in power ridge

extraction in association with the Gabor transform and the Morlet wavelet transform, we

now work on the contents of such a procedure that aims at finding the analytic counter-

part of a function. It will be clear that such a procedure inherently involves the Hilbert

transform.

Another direct relevance of this section to the present study lies on the use of the

Hilbert transform in equations 2.3 and 2.4, even though the perspective now is not on the

relation between instantaneous frequency and the ridge point – since neither the quasi-

wavelet meets the basic assumption of being a well band-limited function (as is the case

for a Gaussian wavelet) nor its analytic form is provided. Therefore, it warrants for us to

work through the details that lead to a very easy implementation of the Hilbert transform.

This also helps to illustrate possible difficulties or uncertainties that quite often induce
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Figure 3.1: This figure shows the analytic degree of ψ related to equation 2.3. The top sub-figure
shows the power (modulus squared) of the difference between 〈 f (t),A[ψ]〉 and 〈 f (t), ψ〉, where
A means the analytic counterpart. The mid sub-figure shows the corresponding phase. Here an
X-signal composed of two linear chirps (bottom sub-figure, see figure 4.6) is used.
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paradoxes due to non-conformance to the constraints listed earlier.

Let a real signal be fr (t) and its sensible imaginary counterpart be fi (t). The real and

imaginary parts form a complex signal z(t). A complex function allows us to define its

amplitude (or modulus) function a(t) and phase function φ(t) of a complex exponential.

The derivative of the phase yields the natural definition of instantaneous frequency (or

local wavenumber in spatial domain) ωi (t). The simple mathematical form is

z(t) = fr (t)+ fi (t) = a(t)eiφ(t), (3.18)

with

ωi (t) = φ′(t). (3.19)

The main concern here is what is the sensible imaginary part since its choice affects our

exploitation of instantaneous frequency. It is appropriate to point out that in the realm

of signal analysis most researchers still view the instantaneous frequency as merely a

primitive concept rather than a question of mathematical definition. That is to say, the

proper definition of the complex signal is still regarded as an open question [4], and

the issues are, at best, whether a particular definition can match our intuitive thinking;

whether its results can provide adequate explanations for the physics that might be of

our own logical reasoning only; or whether the intuitive assumptions induce additional

concerns which might be counterintuitive and possibly bring us to new discoveries.

Since any real signal fr (t) can be expressed as

fr (t) = a(t) cosφ(t), (3.20)

the most intuitive realization of the complex signal z(t) should be

z(t) = a(t)eiφ(t). (3.21)
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Nevertheless, there are infinitely many ways to devise such a complex form. This reflects

the openness of the definition of the instantaneous frequency.

In 1946 Gabor [6] proposed a definition for the complex signal that is unique for any

real signal and his method is generally referred as the analytic signal procedure.

Let Fr (ω) be the Fourier transform of fr (t), the corresponding analytic signal Gabor

introduced is,

z(t) = 2
1

√
2π

∫
∞

0
Fr (ω)eiωtdω, (3.22)

where the factor 2 is introduced so that the real part of the complex signal is equal to the

original signal. As is clear from the basic properties of Fourier transform, z(t) must be

complex and is the inverse Fourier transform of a single-sided spectrum, which drops the

negative frequency components but keeps the same positive spectral components as those

of Fr (ω). Obviously, when the Fourier transform is applied to z(t) again one gets only

positive frequency constituents.

Next we illustrate how such a simple complex function can be used to calculate the

Hilbert transform of fr (t). And, in fact, the Hilbert transform is the imaginary part of

z(t).

That is to say, we should verify the following identity [4]:

z(t) = fr (t)+ i
1
π
P

∫
∞

−∞

fr (τ )

t − τ
dτ, (3.23)

in which the Hilbert transform of the signal, H[ fr (t)] is

H[ fr (t)] = f̃r (t) =
1
π
P

∫
∞

−∞

fr (τ )

t − τ
dτ. (3.24)

In the equation the symbol P means that the integration is carried out based on the rule of
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Cauchy principal value, i.e.,

P
∫

= lim
ε1=ε2→0

(∫ t−ε1

−∞

+

∫
∞

t+ε2

)
. (3.25)

Let

g(t) =
1
t
, (3.26)

then the Hilbert transform is simply the convolution of fr (t) and g(t), i.e.,

f̃r (t) =
1
π
( fr ? g)(t). (3.27)

By the Fourier duality property, the Fourier transform of the convolution is

F[ f̃r (t)] = Ĥ(ω) =
1
π

Fr (ω)G(ω). (3.28)

Now with Fr (ω) and G(ω) being separated the Cauchy principal value operation is related

to g(t) only. And the Fourier transform of g is

F[g(t)] = G(ω) = P
∫

∞

−∞

e−iωt

t
dt =

P
∫

∞

−∞

cos(ωt)
t

dt − i
∫

∞

−∞

sin(ωt)
t

dt. (3.29)

Since the integrant associated with the real part of this equation is antisymmetry the

Cauchy principal value integration of this part is zero. As to the integration of the imagi-

nary part, since sin(ωx)
x is finite for all values of x , including x = 0, there is no need of the

principal value sign. Of this part, the integrant is symmetrical; therefore, only half of the

integration needs to be considered, and through a change of variable one gets

∫
∞

0

sinωx
x

dx = sgn(ω)
∫

∞

0

sin u
u

du. (3.30)

Here one basically know that G(ω) does not depend on the variation of ω since the in-
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tegration is independent of ω. Though this integral looks simple, its integration should

not be treated as a trivial process; rather, a closed form of the integration can be derived

through the use the residue theorem of integration from the complex integral calculus

(see for example the well written textbook by Greenberg [7]). The final result is a simple

relation which only depends on the sign of ω:

G(ω) =

 −iπsgn(ω) ω 6= 0

0 ω = 0.
(3.31)

Accordingly, the Fourier transform of the analytic signal A[ fr (t)] is

F[A[ f (t)]] = Fr (ω)+ iF[H[ fr (t)]](ω) =

 2S(ω) ω > 0

0 ω ≤ 0.
(3.32)

Here we see that this equation matches exactly with equations 3.22 and 3.23 combined.

And it further yields

Ĥ(ω) =

 −i F(ω) ω > 0

i F(ω) ω ≤ 0.
(3.33)

Making use of this relation the Hilbert transform is easily implemented by a simple word

(subroutine) in ASYST language as is shown in Table 3.1.

Detail manipulation of the analytic signal approach is given here not merely for its

analytical interest, but rather to disclose its intrinsic nature in association with the Fourier

transform properties. An alternative approach implemented in the time domain based

on Parks-McClellan minimax algorithm was given in an earlier report on characterizing

the amplitude and frequency modulations of water waves measured in laboratory wave

tank experiments [12]. In which trade-offs between the two implementations were also

illustrated. Here we add one point to the statement given in the introduction chapter – that

any numerical scheme is hardly optimum.

As is also indicated in the program one needs to exercise cautions related to non-
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stationary effects since the basic tactic is related to several simple processes that only

manipulate the contents of the FFT of the input signal. And, additionally, we must also

acknowledge that the standard deviation of a spectrum is rather significant and its refine-

ment is quite demanding concerning the amount of data points needed.

Overall, here we further illustrate that the ridge algorithm of a Gabor type wavelet

transform is only true when the various restraints listed in section 3.5 are obeyed. In

analytical term, if we regard the inner product of the transform of equation 3.15 as a

linear operator L, then L must be of a weak continuity, i.e., L f (t) is modified by a small

amount if f (t) is only slightly modified. Thorough numerical experiments on this using

laboratory wave data fully support these arguments as are detailed by a previous report

by the author [13] (which also includes refined statements for two earlier papers [18, 17]

related to the search of an optimum analyzing function basis).

In reality, the above elaborations further manifest an important realization: Due to

the fact that the operations associated with orthonormal transforms or any transform that

emphasizes efficiency are not in weak form, these function bases just do not provide as

much informative physics as what can be provided by the continuous wavelet transform

using the Morlet wavelet – Redundancy is sometimes quite helpful [26, 13, 20].

Let us recap the scheme for the definition of equation 2.4. Rather than converting

the signal into its analytic counterpart and then projecting it into a real wavelet basis (or

rather than directly projecting the real signal into an analytic wavelet basis), the signal is

first projected into the real part of the wavelet basis and then the analytic signal procedure

is applied to the transform coefficients. In this way the time-frequency power density dis-

tribution is obtained as the envelop of the real part wavelet coefficients, i.e., the modulus

of the complex transform coefficients.
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Table 3.1: An ASYST word, which is equivalent to a subroutine in some computer languages,
that performs the Hilbert transform of a signal. This word takes a one dimensional array as the
input argument. As seen from the programming, the basic tactic is related to several processes that
manipulate the contents of the FFT of the input signal. And because of these manipulations there
are endowments of various properties related to FFT into the analytical procedure. In view of the
rather significant standard deviation of a discrete spectrum in the Fourier transform, as well as the
painfully slow refinement when trying to reduce the value by increasing the amount of data points,
the analytic counterpart of a signal quite often possess weird properties, and must be interpreted
carefully. Alternatively, these is the implication that the ridge algorithm of a Gabor type wavelet
transform is only true when the constraints listed in section 3.5 are obliged.

\ ---------------------------------------------------------------------------
\ A small program piece which finds the imaginary part of a real signal
\ based on the analytic signal procedure.
\ The computation makes use of the final results of complex calculus based
\ on Cauchy principal value integration.
\ The length of the input array will be automatically truncated to the
\ maximum allowable power of 2.
\ ---------------------------------------------------------------------------
: my.hilbert
fft []size n.fft.pts :=
dup becomes> t1

dup sub[ 1 , n.fft.pts 2 / ]
0 +1 z=x+iy *
t1 sub[ 1 , n.fft.pts 2 / ] :=

sub[ n.fft.pts 2 / 1 + , n.fft.pts 2 / ]
0 -1 z=x+iy *
t1 sub[ n.fft.pts 2 / 1 + , n.fft.pts 2 / ] :=

t1 ifft
zreal

;
\ ---------------------------------------------------------------------------
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3.7 Characterizations of time-frequency resolutions, fre-

quency leakages, and phase ambiguities

The concept of time-frequency resolution basically manifests the principal of Heisenberg

uncertainty. This in plain language is to say that since any function can not be finitely sup-

ported both in time and frequency domains, the signal, no matter how simple it is, must

occupy a finite area in the time-frequency plane – there is no point distribution whatsoever,

and so the term resolution. For a basis function, the time-frequency resolution measures

its spreads in both time and frequency. And the spreads are generally taken as the second

central moments in time and frequency of the basis function. In this sense, if the basis

functions are not independent, their time-frequency resolution windows will be overlap-

ping. And this in turn means there are frequency leakage and phase ambiguity. Again

the more plain explanation is that one frequency (or one scale, or one basis function) will

contaminate all its neighboring frequencies (or other scales, or other basis functions), and

any point in the time-frequency plane really is collecting all sorts of distorted energy that

belong to its surrounding others. Hence come the terms of frequency leakage-out and -in.

In a practical sense, if the time or frequency distances of the constituent components

of a signal are too short, there will be significant overlapping of their energy, and the

power of one component might be overshadowed by others. Under such conditions the

identification of constituent components will be difficult. It is therefore important for

us to characterize the behaviors of frequency leakage and phase ambiguity of the present

basis function and compare them with those of other bases, especially, those of the Morlet

wavelet.

For equation 2.3 the corresponding basis function is of a modulated Gaussian which

has an envelope centered and peaked at zero time, and the basis function has an exact

carrier frequency. As for equation 2.4 the corresponding basis function has an envelope

which can be treated as either with a singly peaked bump or with doubly peaked bumps

according to one’s desire whether to pin the envelope curve to the zero center point of
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the oscillation curve. But here the basis function does not have a real carrier frequency,

nevertheless, the oscillation does possess a frequency parameter. Although it is legiti-

mate to use time-frequency resolution windows to characterize the smearing effects both

in time and frequency, the more appropriate and intricate way is to discuss in terms of

time smearing and frequency leakages either arising from a single basis function or from

surrounding basis functions.

Here it should also be emphasized that the more precise term for the present section

is about “scale” rather than “frequency” since what we do is basically the projection of a

wave packet (rather than a uniform sinusoidal wave) into another wave packet.

Before the illustrating various features of the characterizations. let us first state more

clearly the characterization contents.

For frequency leakage-out distribution curve we mean the smearing brought by a unit

“scale” (or normalized scale) basis function to its neighboring wave packets of surround-

ing scales; conversely, there is a frequency leakage-in distribution curve which is induced

by neighboring individual scales. For time smearing we mean the ambiguity caused by

the phase mismatch between two identical basis functions or wave packets. That is to say,

the time smearing distribution curve is calculated by projecting a wave packet into its own

time-translated versions.

A program written in the Mathematica language is used to derive these results. The

program is appended at the end of this chapter. The algorithms and relevant details are

somewhat self-explained in the program.

• For the proposed basis function the closed form representation for the leakage-out

is derived as

P(a, ω0) =
1(

( 1
a )

2
+1

ω2
0

)0.5

1
2


√√√√(

1 +
1
a

)2
ω2

0( 1
a

)2
+ 1

×

1 F1

1;
3
2
; −

(
1 +

1
a

)2
ω2

0

2
(
( 1

a )
2
+ 1

)
 sgn

(
1 +

1
a

)
+
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√√√√ (a − 1)2ω2
0(( 1

a

)2
+ 1

)
a2

×

1 F1

1;
3
2
; −

(a − 1)2ω2
0

2
(
( 1

a )
2
+ 1

)
a2

 sgn
(

1 −
1
a

)
+

 , (3.34)

in which a is a scale, ω0 stands for a representative carrier frequency parameter

(i.e., a = 1) and here it is taken as ω0 = 5, and the 1 F1 stands for a hypergeometric

function.

• Figure 3.2 shows the frequency leakage-out distribution curve for the proposed ba-

sis function. The frequency leakage-out is the projection of the unit scale basis

function into its neighboring scales. For ω0 = 5, the curve has a root (i.e., zero

value point) at scale 0.969621 rather than 1. The reason for this is conceptually the

same as what was stated in the previous section concerning the corrective term ε.

Here the most significant features are the location of the zero value modulus (i.e.,

the root) and the sharp steep slopes at both sides of the root. They make possible

the easy identification through sharp contrast of modulus values.

• Figure 3.3 shows the frequency leakage-out distribution curve for basis correspond-

ing to the simplified Morlet wavelet. Again the frequency leakage-out is the pro-

jection of the unit scale basis function into its neighboring scales. The curve has

no root but it has a peak at scale also near to 1. The weight that centers around the

zero derivative peak contributes to a relatively broader leakage of energy into its

neighboring scales, and there is no sharp contrast in the modulus values.

• For the proposed basis function, the leakage-out distribution curve has two bumps

at opposite sides of the root point; while the Morlet wavelet has a single solid bump.

This explains why it is appropriate to investigate time and frequency leakages rather

than to use time and frequency resolution windows in discriminating their capabil-

ities in analyses.
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• Figure 3.4 shows the frequency leakage-in distribution curve for the present ba-

sis function. The frequency leakage-in is the projection of a non-unit scale basis

function into the unit scale basis function. This distribution curve shows consistent

results with that of the frequency leakage-out. Here the parameter values are the

same as those of the previous figures. Here the prominent features are also the zero

value root point and the small influences from its surrounding proximity.

• Figure 3.5 shows the frequency leakage-in distribution curve for the simplified

Morlet wavelet. Again it shows consistent results with corresponding frequency

leakage-out.

• Figure 3.6 shows phase noise or time smearing effects associated with the proposed

basis function. The phase noise is caused by the phase mismatch between two

identical but translated or shifted basis functions. That is to say, it is calculated

by projecting a unit scale basis function into its various time-translated versions.

Once more, the prominent feature is the existence of a root at the point of zero

phase shift. And again, this zero value and smallness around it provide the very

significant contributions to the basis’ usefulness. Here the modulus is also doubly

peaked at the opposite sides of the zero phase point.

• Figure 3.7 shows phase noise or time smearing effects associated with the simplified

Morlet wavelet. The phase noise is calculated by projecting a unit scale simplified

wavelet function into its various time-translated versions. There is a peak rather

than a root at the center. And the largeness of values around the peak point indi-

cates significant interference from phase. The obvious deduction is the difficulty in

getting informative features from the its phase plane rendition, and this is certainly

related to the afore-mentioned effects of “randomness”.

• Combing all the above depictions, one comprehends the reasons why the proposed

basis function is able to be helpful in time-frequency or time-scale characterizations
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and why it is able to be more informative than the Morlet wavelet. It also becomes

clear that, regarding the ridge points, the Morlet wavelet (or the basis function cor-

responding to equation 2.3) is associated with power maxima; while the new basis

(or equation 2.4) is associated with the minimum trough points. It is also noted that

that a multiplication factor of about 1
0.9696 is needed for scale adjustment such as to

match the trough point to unit scale location.

• For phase plane representations using the proposed basis function, the following

specific properties contribute to the possible usefulness in feature extractions. First,

at the zero (or low) value trough point (i.e., root point) either the real or the imag-

inary part (depending on the choice of a phase datum) is of nil value. Second, the

leakages, both in and out, are always in opposite signs with respect to the root point.

Third, the root point is a reflection point of the leakage distribution curves. Fourth,

different visual patterns might show up through the rotation of phase or by adding

a phase datum. Fifth, in general, significant features occur at phase value interfaces

that separate the neighboring phases at convenient separation distances. v
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Figure 3.2: The frequency leakage-out distribution curve for the proposed basis function. The
frequency leakage-out is the projection of the unit scale basis function into its neighboring scales.
For ω0 = 5 the curve has a root at scale 0.969621. This zero value and the sharp steep slopes at
both sides of the root make possible the easy identification of energy ridges.
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Figure 3.3: The frequency leakage-out distribution curve for the simplified Morlet wavelet. Again
the frequency leakage-out is the projection of the unit scale basis function into its neighboring
scales. The curve has a peak at scale near to 1. The weight centers around the peak and contributes
to a relatively broader leakage of energy.
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Figure 3.4: The frequency leakage-in distribution curve for the proposed basis function. The
frequency leakage-in is the projection of a non-unit scale basis function into the unit scale basis
function. It shows consistent results with the frequency leakage-out. Here the parameter values
are the same as that of the previous figures.
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Figure 3.5: The frequency leakage-in distribution curve for the simplified Morlet wavelet. The
frequency leakage-in is the projection of a non-unit scale wavelet function into the unit scale
wavelet function. It shows consistent results with those of frequency leakage-out.
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Figure 3.6: Phase noise or time smearing effects associated with the proposed basis function. The
phase noise is caused by the phase mismatch between two identical but translated basis func-
tions. That is to say, it is calculated by projecting a unit scale basis function into its various
time-translated versions. There is a root at the zero phase point. Again, this zero value and small-
ness around it provide the reasons for the proposed basis’ successful applications using the phase
plane information.
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Figure 3.7: Phase noise or time smearing effects associated with the simplified Morlet wavelet.
The phase noise is calculated by projecting a unit scale basis function into its various time-
translated versions. There is a peak rather than a root at the center. The large values around the
center point indicate that it is hard to get informative features from the phase plane information
using such a basis.
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� ��������	�
�����
����� File Macro LeakOut LeakIn PhaseNoise Root Others End

�� "c: �lee �mat�Initial_SetNotebook.M" �� Set notebook options ��
�� "c: �lee �mat�Initial_Forms.M";

�� "c: �lee �mat�Initial_Frames.M";

�� "c: �lee �mat�Initial_Words.M";

myfont � "Times";

$TextStyle � �FontFamily �� "Times", FontSize �� myfontsize �;

timeflag � "Y";

dynamictimeflag � "N";

flabelflag � "Y";

flabelflag2 � "Y";

abcdflag � "N";

llabelflag � "y";

gridlineflag � "YY";

xyaxisflag � "LL";

stringposflag � 1 ;

xshiftflag � 0;

forcedstringaryflag � "n";

forcedflabelflag � "n" ;

stringindexmul � 3;

stringindexsin � 1;

abcdlabel � "a";

timeflag � "Y"; tlabel � tlabelv;

� ��������� File Macro LeakOut LeakIn PhaseNoise Root Others End

doshowxy := {
  moutt[flabel];
  moutt[flabel2];
  myplot=ListPlot[ dataxy
    , PlotJoined->True
    , PlotRange->All
    , PlotStyle->{Thickness[0.0008] (* , Hue[0.0] *) }
    , Frame->True
    , DisplayFunction->Identity
  ];
  myshow;
  (* Run["mmawav.bat"]; *)
  <<"c:/lee/mat/000-p2_nb-m.m"
};
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flabel2 := typestr<>" �="<>StringTake[ToString[N[scap1, 
9]],If[StringLength[ToString[N[scap1, 9]]]>=7, 7, 1] ]<>", �="<>ToString[N[
peakshiftp1,2]]<>" �, 	="<>StringTake[
ToString[N[xi,2]],1]<>", (0 
"<>StringTake[ToString[N[xlimitp1, 2]],1]<>" �), 
�="<>ToString[N[phap1,3]]<>" �";

� �����������
�� File Macro LeakOut LeakIn PhaseNoise Root Others End

� ����������	�
����
�	�������	��

(* -------- Frequency Leakage Out (Variant) --------- *)
typestr="Wavelet Variant: ";
xlabel="Scale";
ylabel="Projections at different wavelet scales";
flabel="Ambiguity Effects : Leakage OUT from a wave packet";
<<"c:/lee/mat/000-p1_nb-m.m";
frelkgout [peakshiftv_, scav_, xlimitv_, phav_, xiv_] := 
  1 / (scav) * NIntegrate[Cos[xiv*x]*Sin[xiv*x/scav]*  
     Exp[-((x - peakshiftv/xiv)^2/scav^2 + (x)^2)/(2)], 
     {x, 0, xlimitv}
  , MinRecursion->3, MaxRecursion->10 
];
  (*  1 / scav * NIntegrate[Cos[x]*Sin[xiv * x/scav]*   (* a=sca/xi *)
       Exp[-((x/scav - peakshiftv/xiv )^2 + (x)^2)/(2)], 
  *)
peakshiftp1=0.5;peakshift= peakshiftp1 * Pi;
xlimitp1=7;xlimit=xlimitp1 * Pi;
phap1=0;pha=phap1 * Pi;
xi=5;
scap1=1;
datax= Table[ ni , {ni, 0.025, 5, 0.025}]; 
datay= Table[ frelkgout [peakshift, sca, xlimit, pha, xi], {sca, 0.025 ,
5 , 0.025 } ];
dataxy=Table[ {datax[[ i ]], datay[[i]]}, {i,1 ,Length[datax]}];
doshowxy;

Ambiguity Effects : Leakage OUT from a wave packet

Wavelet Variant: �=1, �=0.5 �, �=5, (0 �7�), �=0. �
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{2005, 12, 23, 10, 29, 1}     CPU:(00, 00, 0.937);     Time:(00, 00, 

07)

� ����������	�
���
�	�

(* -------- Frequency Leakage Out (Morlet) ---------- *)
typestr="Morlet Wavelet: ";
xlabel="Scale";
ylabel="Projections at different wavelet scales";
flabel="Ambiguity Effects : Leakage OUT from a wave packet";
<<"c:/lee/mat/000-p1_nb-m.m";
(*
frelkginM[peakshiftv_, scav_, xlimitv_, phav_, xiv_] := 
   NIntegrate[Cos[u/scav]*Cos[(u)]*  
     Exp[-((u - peakshiftv)^2+ (u/scav)^2)/(2*xiv^2)], 
     {u, 0, xlimitv}
     , MinRecursion->3, MaxRecursion->10 
];
*)
(*  There exists analytical form  *)
frelkgoutM [peakshiftv_, scav_, xlimitv_, phav_, xiv_] := 
  2*  1 / (scav) * Integrate[Cos[xiv*x]*Cos[xiv*x/scav]*  
     Exp[-((x - peakshiftv/xiv)^2/scav^2 + (x)^2)/(2)], 
     {x, 0, Infinity}
];
peakshiftp1=0;  peakshift= peakshiftp1 * Pi;
xlimitp1=7;  xlimit=xlimitp1 * Pi;
phap1=0;  pha=phap1 * Pi;
xi=5;
scap1=1;
dofrelkgoutM=frelkgoutM [peakshift, sca, xlimit, pha, xi] (*analytical form*)

datax= Table[ ni , {ni, 0.000, 5, 0.025}];
datay= Table[ N[dofrelkgoutM], {sca, 0.000 , 5 , 0.025 } ];
dataxy=Table[ {datax[[ i ]], datay[[i]]}, {i,1 ,Length[datax]}];
doshowxy;
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1����������
sca

�

�
�
������������2 If �Im� 1����������

sca
� �� 0 && Re� 1������������

sca 2
� � �1,

����� 25 ��1�sca �2
����������������������������

2 �1�sca 2� � �
25 �1�sca �2
��������������������������
2 �1�sca 2� ���� 	
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sca 2 �

Cos�5 x
 Cos� 5 x����������
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���x���
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Ambiguity Effects : Leakage OUT from a wave packet

Morlet Wavelet: �=1, �=0. �, �=5, (0 �7�), �=0. �
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{2005, 12, 23, 10, 29, 8}     CPU:(00, 00, 0.344);     Time:(00, 00, 

04)

� �� "c:\\lee\\mat\\000 �p1.m";

FindMinimum ��1 � 1 � sca ����������������E
�

25 ��1�sca �2
����������������������������

2 �1�sca 2� � E
�

25 �1�sca �2
��������������������������
2 �1�sca 2� ������ 	






�

�����
2

	






















1 �
1

������������
sca 2

sca 2
�������� � �2 �1 � sca 2

, �sca, 0.97 ��

�� "c: �lee �mat�000�p2_nb �m.m"

��0.447397, �sca � 0.962224 ��
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{2005, 12, 23, 10, 29, 12}     CPU:(00, 00, 0.015);     Time:(00, 00, 

00)

� ������������� File Macro LeakOut LeakIn PhaseNoise Root Others End

� �����������
����
�	�������	��

(* -------- Frequency Leakage In (Variant) -------- *)
typestr="Wavelet Variant: ";
xlabel="Scale";
ylabel="Projections from wave packets of different scales";
flabel="Ambiguity Effects : Leakage IN from different wave packets";
<<"c:/lee/mat/000-p1_nb-m.m";
frelkgin[peakshiftv_, scav_, xlimitv_, phav_, xiv_] := 
   NIntegrate[Cos[u/scav]*Sin[(u)]*  
     Exp[-((u - peakshiftv)^2+ (u/scav)^2)/(2*xiv^2)], 
     {u, 0, xlimitv}
     , MinRecursion->3, MaxRecursion->10 
];
(* gsca[b_, a_, s_] := NIntegrate[Cos[u/a]*Sin[(u)]*
                 Exp[-((u-Pi/2.)^2.+(u/a)^2.)/(2*s^2)], {u, 0, b} ] *)
peakshiftp1=0.5;peakshift= peakshiftp1 * Pi;
xlimitp1=7;xlimit=xlimitp1 * Pi;
phap1=0;pha=phap1 * Pi;
xi=5;
scap1=1;
datax= Table[ ni , {ni, 0.025, 5, 0.025}];
datay= Table[ frelkgin [peakshift, sca, xlimit, pha, xi], {sca, 0.025 ,
5 , 0.025 } ];
dataxy=Table[ {datax[[ i ]], datay[[i]]}, {i,1 ,Length[datax]}];
doshowxy;

Ambiguity Effects : Leakage IN from different wave packets

Wavelet Variant: �=1, �=0.5 �, �=5, (0 �7�), �=0. �
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{2005, 12, 23, 10, 29, 12}     CPU:(00, 00, 0.313);     Time:(00, 00, 

01)

� �����������
���
�	�

(* --------- Frequency Leakage In (Morlet) --------- *)
typestr="Morlet Wavelet: ";
xlabel="Scale";
ylabel="Projections from wave packets of different scales";
flabel="Ambiguity Effects : Leakage IN from different wave packets";
<<"c:/lee/mat/000-p1_nb-m.m";
(*  There exists closed analytical form  *)
frelkginM[peakshiftv_, scav_, xlimitv_, phav_, xiv_] := 
   2 * Integrate[Cos[u/scav]*Cos[(u)]*  
     Exp[-((u - peakshiftv)^2+ (u/scav)^2)/(2*xiv^2)], 
     {u, 0, Infinity}
];
peakshiftp1=0;  peakshift= peakshiftp1 * Pi;
xlimitp1=7;  xlimit=xlimitp1 * Pi;
phap1=0;  pha=phap1 * Pi;
xi=5;
scap1=1;
dofrelkginM=frelkginM [peakshift, sca, xlimit, pha, xi] (*analytical form*)

datax= Table[ ni , {ni, 0.000, 5, 0.025}];
datay= Table[ N[dofrelkginM], {sca, 0.000 , 5 , 0.025 } ];
dataxy=Table[ {datax[[ i ]], datay[[i]]}, {i,1 ,Length[datax]}];
doshowxy;

2 If �Im� 1����������
sca

� �� 0 && Re� 1������������
sca 2

� � �1,

5
����� 25 ��1�sca �2

����������������������������
2 �1�sca 2� � �

25 �1�sca �2
��������������������������
2 �1�sca 2� ���� 	
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���u�
Ambiguity Effects : Leakage IN from different wave packets

Morlet Wavelet: �=1, �=0. �, �=5, (0 �7�), �=0. �
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{2005, 12, 23, 10, 29, 13}     CPU:(00, 00, 0.187);     Time:(00, 00, 

03)

� �� "c: �lee �mat�000�p1_nb �m.m"

FindMinimum ��1 � 10 �
���������������E

�
25 ��1�sca �2
����������������������������

2 �1�sca 2� � E
�

25 �1�sca �2
��������������������������
2 �1�sca 2� ������ 	






�

�����
2

	






















1 �
1

������������
sca 2

sca 2
�������� � �2 �1 � sca 2

,�sca, 1.01 ��

�� "c: �lee �mat�000�p2_nb �m.m"

��4.47397, �sca � 1.03926 ��

{2005, 12, 23, 10, 29, 16}     CPU:(00, 00, 0.);     Time:(00, 00, 00)

� �������������� File Macro LeakOut LeakIn PhaseNoise Root Others End

� ������������
����
�	�������	��

(* -------------     Phase Noise      --------------- *)
typestr="Wavelet Variant: ";
xlabel="Phase";
ylabel="Projections from different phases";
flabel="Phase Noise : Related to differnet locations of a wave packet";
<<"c:/lee/mat/000-p1_nb-m.m";
integright[peakshiftv_, scaadjv_, xlimitv_, phav_, xiv_] := 
  NIntegrate[Cos[u/scaadjv-phav]*Sin[u]*
    Exp[-((u -peakshiftv )^2. + (u/scaadjv-phav)^2.)/(2*xiv^2)], 
    {u, 0, xlimitv}
    , MinRecursion->3, MaxRecursion->10 ];
integleft[peakshiftv_, scaadjv_, xlimitv_, phav_, xiv_] := 
  NIntegrate[Cos[u/scaadjv-phav]*Sin[-u]*
    Exp[-((u + peakshiftv )^2. + (u/scaadjv-phav)^2.)/(2*xiv^2)], 
    {u, -1.*xlimitv, 0}
    , MinRecursion->3, MaxRecursion->10 ];
peakshiftp1=0.5;  peakshift= peakshiftp1 * Pi;
xlimitp1=7;  xlimit=xlimitp1 * Pi;
phap1=0;  pha=phap1 * Pi;
xi=5;
scaadj= 0.969621557058245997;  scap1=scaadj;
phaintp1=Table[  integright[peakshift, scaadj, xlimit, phav, xi], 
                  {phav, 0.05 Pi,  6.5  Pi , 0.05 Pi } ];
phaintp2=Table[  integleft[peakshift, scaadj, xlimit, phav, xi], 
                  {phav, 0.05 Pi,  6.5  Pi , 0.05 Pi } ];
phaintmid=2 * Table[  integleft[peakshift, scaadj, xlimit, phav, xi], 
                  {phav, 0.00 Pi,  0.00 Pi , 0.05 Pi } ];
posshiftsum=phaintp1+phaintp2;
midintsum=phaintmid;
datax=Join[ -1* Reverse[Table[ ni * Pi, {ni, 0.05, 6.5, 0.05}]], {0}, 
Table[ ni * Pi, {ni, 0.05, 6.5, 0.05}] ];
datay=Join[ Reverse[posshiftsum], midintsum, posshiftsum];
dataxy=Table[ {datax[[ i ]], datay[[i]]}, {i,1 ,Length[datax]}];
doshowxy;

Phase Noise : Related to differnet locations of a w ave packet

��������	
����
��������������������������� �

46



Wavelet Variant: �=0.96962, �=0.5 �, �=5, (0 �7�), �=0. �
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{2005, 12, 23, 10, 29, 17}     CPU:(00, 00, 0.454);     Time:(00, 00, 

00)

� ������������
���
�	�

(* ---------     Phase Noise (Morlet)     ----------- *)
typestr="Morlet Wavelet: ";
xlabel="Phase";
ylabel="Projections from different phases";
flabel="Phase Noise : Related to differnet locations of a wave packet";
<<"c:/lee/mat/000-p1_nb-m.m";
integrightM[peakshiftv_, scaadjv_, xlimitv_, phav_, xiv_] := 
  NIntegrate[Cos[u/scaadjv-phav]*Cos[u]*
    Exp[-((u -peakshiftv )^2. + (u/scaadjv-phav)^2.)/(2*xiv^2)], 
    {u, 0, xlimitv}
    , MinRecursion->3, MaxRecursion->10 ];
integleftM[peakshiftv_, scaadjv_, xlimitv_, phav_, xiv_] := 
  NIntegrate[Cos[u/scaadjv-phav]*Cos[-u]*
    Exp[-((u + peakshiftv )^2. + (u/scaadjv-phav)^2.)/(2*xiv^2)], 
    {u, -1.*xlimitv, 0}
    , MinRecursion->3, MaxRecursion->10 ];
peakshiftp1=0.0;  peakshift= peakshiftp1 * Pi;
xlimitp1=7;  xlimit=xlimitp1 * Pi;
phap1=0;  pha=phap1 * Pi;
xi=5;
scaadj= 1;
scap1=scaadj;
phaintp1=Table[  integrightM[peakshift, scaadj, xlimit, phav, xi], 
                  {phav, 0.05 Pi,  6.50 Pi , 0.05 Pi } ];
phaintp2=Table[  integleftM[peakshift, scaadj, xlimit, phav, xi], 
                  {phav, 0.05 Pi,  6.50 Pi , 0.05 Pi } ];
phaintmid=2 * Table[  integleftM[peakshift, scaadj, xlimit, phav, xi], 
                  {phav, 0.00 Pi,  0.00 Pi , 0.05 Pi } ];
posshiftsum=phaintp1+phaintp2;
midintsum=phaintmid;
datax=Join[ -1* Reverse[Table[ ni * Pi, {ni, 0.05, 6.50, 0.05}]], {0}, 
Table[ ni * Pi, {ni, 0.05, 6.50, 0.05}] ];
datay=Join[ Reverse[posshiftsum], phaintmid, posshiftsum];
dataxy=Table[ {datax[[ i ]], datay[[i]]}, {i,1 ,Length[datax]}];
doshowxy;

Phase Noise : Related to differnet locations of a w ave packet

Morlet Wavelet: �=1, �=0. �, �=5, (0 �7�), �=0. �
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{2005, 12, 23, 10, 29, 17}     CPU:(00, 00, 0.468);     Time:(00, 00, 

02)

� ���	���� File Macro LeakOut LeakIn PhaseNoise Root Others End

�� "c: �lee �mat�000�p1_nb �m.m"

g�b_, a_, s_ � : � Integrate �Cos�u � a��Sin ��u���
Exp����u � Pi � 2. �^2. � u^2. � ��2 � s^2 ��, �u, 0, b ��

FindRoot � g� 5. �Pi, a, 5 � �� 0, �a, 0.95, 0.7, 1.2 ��
�� "c: �lee �mat�000�p2_nb �m.m"
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Chapter 4
Tests and Applications

4.1 Numerical and experimental signals

Both numerically simulated data and experimentally acquired signals are used to test the

performances of the quasi wavelet basis function. In addition, these results are compared

to those of the Morlet wavelet. Note that, except otherwise stated, all comparison pairs

use the same parameter values.

For numerical experimentation the following simulated signals are used:

• A parabolic chirp with a frequency range of zero to Nyquist rate of 100 Hz;

• A signal composed of two liner chirps that have equal power contents (i.e., the

amplitudes are the same) and cross at a frequency point of half of Nyquist rate. It

is here denoted as an X-signal;

• An X-signal with a power ratio 0.01 between the two component signals;

• A signal composed of two liner chirps that are parallel (i.e., they are displaced

versions in time) and have the same power contents;

• A signal composed of two liner chirps that are parallel but with a power ratio of

0.04.

For practical tests using signals from experiments, water wave signals in laboratory

tank either generated by wind or mechanical wave generator are used. They include:
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• Short wind waves with respective spectral peaks at about 2.0 to 2.6 Hz;

• Stokes waves with different fundamental harmonic frequencies and different wave

steepness values.

4.2 Results and Discussions

• Figures 4.1, 4.2, and 4.3 show the time-scale zoom-ins of the modulus and phase

planes of a section of the parabolic chirp with 100 Hz Nyquist rate under several

setups, such as, different bases, different numerical resolutions, and different ren-

dering definitions.

• The top two sub-figures in figure 4.1 are the time-frequency modulus and phase ren-

ditions, respectively, based on the definition of equation 2.3 or the simplified Morlet

wavelet, and there is an indication in the modulus plane that the basis functions are

well analytic, i.e., it shows a large blank region. The bottom two sub-figures are

associated with the proposed quasi wavelet, and the modulus and phase planes are

rendered in accordance with equations 2.4 and 2.5, respectively. It is obvious that

the new basis function is able to provide more clear, as well as easier, identifications

of the power ridge. That is to say, it is much more convenient to visually obtain the

stationary phase points or signal’s instantaneous frequencies. Moreover, the phase

plane rendered by the quasi wavelet basis function is just as informative as is the

corresponding modulus plane. Whereas, it is hard to tell anything physically sig-

nificant using the phase plane derived from the simplified Morlet wavelet.

• Figure 4.2 also shows the same zoom-in section based upon the proposed quasi

wavelet basis function, but here they are associated with different numerical reso-

lutions in scale (or frequency) and also with different adaptations in each scale’s

time-frequency window (i.e., using different ranges of the parameter ω0, with small

scale a having a larger ω0 and larger scale a having a smaller ω0). Even though
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here the discrete scale resolution is coarser when compared to that of the previous

figure, both the modulus and phase planes still provides very clear features of the

instantaneous frequency. In particular, the phase plane renditions show clear inter-

facial features at all the interfacial points for all the time steps; that is to say, the

intermediate time translation points that do not locate at the scale resolution points

provides yet the same, as well as very sharp, interfacial features. And this feature

is certainly absent in the phase plane rendition using the Morlet wavelet basis.

• Additionally, figures 4.2 and 4.3 shows properties associated with the present quasi

wavelet basis function: For example: First, the top and bottom sub-figures of figure

4.2 correspond to equations 2.5 and 2.6, respectively, and they indicate a rotation

of coordinate axes; Second, the top and bottom sub-figures of figure 4.3 have a

difference in phase equal to a rotation of π2 (the constant added to equations 2.5 and

2.6), and the two interfacial phase lines shown in the bottom sub-figure, though a

little irregular, well represent the time and frequency spreads (in a sense similar to

leakage or ambiguity effects) from the instantaneous frequency curve. Third, the

alternating dark-and-light vertical phase strips indicate the cycles of the trough and

peak of the signal. Overall, all such phase renditions possess a very distinguish

common character that states that significant features occur at interfacial points

where the neighboring phases have convenient phase separations such that they are

visually in sharp contrast and readily identifiable.

• Figure 4.4 shows the whole extend of the same parabolic chirp for both the simpli-

fied Morlet wavelet (the left sub-figures) and the quasi wavelet basis function (the

right sub-figures). Again, the phase plane associated with the simplified Morlet

wavelet yields little practical significance. Note that there is a slight up-shift of in-

stantaneous frequency for the quasi wavelet basis function, and this up-shift factor

is about 1
0.9696 as derived previously.

• Figure 4.5 shows a zoom-in section of the X-signal composed of two intersect-
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ing linear chirps of equal power contents. The left sub-figures are for the simpli-

fied Morlet wavelet, and the right sub-figures are for the quasi wavelet basis func-

tion. Again, they manifest the same characterizations or comparisons as depicted

by those of the parabolic chirp.

• Figure 4.6 shows time-frequency characterizations of the full extend of the same

X-signal. The left and right sub-figures are arranged in the same way. Basically

they feature identical depictions as those above. One point to note is that around

the intersecting region both seem to have distortion. Nevertheless, the proposed

quasi wavelet basis function still provides much better information than does the

simplified Morlet wavelet. Another point is the existence of the saw-tooth spikes in

the 3-D figure of modulus, and these spikes reflect the non-exact match between the

instantaneous frequency and the numerical resolution step, and they can be reme-

died by the phase rendition. Note here that, in the bottom right sub-figure, we

have intentionally inverted the rendering, i.e., a trough in the 2-D plane (top right

sub-figure) turns to a peak in the 3-D figure; and what is clearly seen is a spike line.

• Figure 4.7 illustrates the effects of phase rotation on the same X-signal based on the

quasi wavelet basis function. Again, various interfacial lines in the mid sub-figure

serve as indicators of extend of frequency leakage and phase noise. It is noted that

the top sub-figure is in color but may here be printed in black and white.

• Figure 4.8 shows the ridge extraction of the signal composed of a pair of parallel

chirps with equal power contents. The frequency separation between the two chirps

is one tenth Nyquist rate. The left sub-figures are for the simplified Morlet wavelet,

and the right sub-figures are for the quasi wavelet basis function. Here we see that

the power ridges given by the simplified Morlet wavelet are entirely misleading.

Whereas, for the quasi wavelet basis function, the two interfacial lines are clearly

identifiable except near the Nyquist frequency. Note here that, in the bottom right

sub-figure, what are seen are the two clear spike lines. Undoubtedly, the devised
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basis function is superior in feature identification.

• Figure 4.9 shows the 2-D and 3-D modulus information of the signal also composed

of a pair of parallel chirps but now with difference in power contents, and the en-

ergy ratio is 0.04. The left sub-figures are for the simplified Morlet wavelet, and the

right sub-figures are for the quasi wavelet basis. In general, both transforms show

difficulty in differentiating the two component signals with so large a power differ-

ence and so proximate their instantaneous frequencies. Now the weak component

signal has been overshadowed by contamination from strong one, and this reflect

the combined effects of frequency leakage and phase noise, but one may still say

that the right sub-figure is not as distorted as the left one.

• Figure 4.10 shows the time-frequency phase planes for an X-signal that is com-

posed of two component chirps with power ratio of 0.01. The top and bottom

sub-figures are associated with the simplified Morlet wavelet and the quasi wavelet

basis function, respectively. Again, both have difficulty in rendering any significant

feature for the weak component. But still, the quasi wavelet basis function yields

unambiguous identification of the strong signal component and is also a bit more

informative on the low frequency region for the weak signal.

• Figure 4.11 shows time-frequency features of a water wave signal measured in

a wind blowing laboratory tank. The left sub-figures use the simplified Morlet

wavelet, and right sub-figures use the proposed basis function. In general the latter

ones provide easier and more precise identification of the energy ridge, in particular,

the outstanding depictions of its phase plane features.

• Figure 4.12 is associated with the quasi wavelet basis function and shows the time-

frequency modulus and phase planes of a water wave signal that is in a lesser devel-

oped stage (as referenced to the signal associated with figure 4.11) due to a smaller

wind speed in the tank. And the wind wave has a spectral peak located at a higher
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frequency. A very prominent feature shown in the phase plane is the existence of

multiple interfacial points for individual steps along the time line. This strongly

reflects the existence of multiple frequency components, as well as indicates the

interactions among these components, and it may well serve as the manifestation of

water wave modulation phenomena.

• Figure 4.13 compares the time-frequency modulus (top sub-figures) and phase (bot-

tom sub-figures) planes of a mechanically generated Stokes wave using both the

simplified Morlet wavelet (left sub-figures) and the present quasi basis function

(right sub-figures). Note the Stokes wave has a wave steepness value of about 0.06

for its fundamental harmonic band. Once more, the quasi wavelet basis shows off

more interesting physics either from its modulus rendition or phase rendition. First,

its modulus plane shows clearly the existence of multi-troughs, and so does its phase

plane. Second, both its modulus and phase planes evidence the rapidly oscillating

(or up-and-down) interfacial points for the higher frequency trough. Third, for the

first fundamental harmonic, the interfacial points of the first half part of the signal

are relatively stable and those of its later half get a bit oscillating. In summary, these

show wave evolutions and serve as a strong indication of the energy recurrence phe-

nomenon among wave components, as well as of wave evolutions. That is to say,

the Benjamin-Feir side-band instability [1, 2, 9, 11, 10, 19, 22, 23, 27, 28, 8, 30, 32]

can be featured by the proposed quasi wavelet basis function, and this is generally

hard to discern using either the Morlet wavelet or conventional spectral approaches.

v
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Figure 4.1: The time-Frequency zoom-in of a section of a parabolic chirp with a frequency range
of zero to Nyquist rate of 100 Hz. The top two sub-figures are related to the definition of equation
2.3, and it is therefore almost identical to the results of the Morlet wavelet. The bottom two sub-
figures are associated with the proposed quasi wavelet basis function (equations 2.4 and 2.5). It
is obvious that the proposed function basis provides better and easier identifications of the power
ridge or stationary phase points from both the modulus and phase renditions.
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Figure 4.2: The modulus (mid sub-figure) and phase (top and bottom sub-figures) planes for the
same time-Frequency zoom-in section using the proposed quasi wavelet basis function, but here
the sub-figures are associated with different numerical resolutions in scale and also with different
adaptations in each scale’s time-frequency windows (i.e., different ranges of the parameter ω0).
Even though the scale resolution here is coarser when compared to that of the previous figure, both
the modulus and phase planes still show clear features of the instantaneous frequency. Moreover,
the phase plane renditions provides yet the same, as well as very sharp, interfacial features at all
the time translation steps, even for those intermediate time translation points that do not locate at
the scale resolution points.
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Figure 4.3: This figure shows the effects of phase rotation. The top and bottom sub-figures have
a difference in phase rotation of π

2 (the constant added to equations 2.5 and 2.6), and the two
interfacial phase lines shown in the bottom sub-figure represent the time and frequency spreads (in
a sense similar to leakage and ambiguity effects) from the power ridge. In addition, the alternating
dark-and-light vertical phase strips indicate the cycles of the trough and peak of the signal.
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Figure 4.4: This figure shows the modulus and phase planes for the full extend of the same par-
abolic chirp using both the simplified Morlet wavelet (the left sub-figures) and the quasi wavelet
basis function (the right sub-figures). The phase plane associated with the simplified Morlet
wavelet tells little in practical significance. Note that there should be a slight up-shift correction
of instantaneous frequency for the quasi wavelet basis function, and it is about 1

0.9696 .
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Figure 4.5: This figure shows a zoom-in section of an X-signal composed of two crossing linear
chirps with equal power contents. The left sub-figures are for the simplified Morlet wavelet, and
the right sub-figures are for the quasi wavelet basis function. They manifest the same depictions
as given by the parabolic chirp.

61



0 1 2 3 4 5

Time HsecL

0

20

40

60

80

100

S
ca

le
H~

fr
eq

ue
nc

y
in

H
zL

@Adapted CWT, x-lines2.dat H9.82,8.15LND H2005ê7ê1-18:36:3L

0 40db Below Peak @CWT AmplitudeD

0 1 2 3 4 5

Time HsecL

0

20

40

60

80

100

S
ca

le
H~

fr
eq

ue
nc

y
in

H
zL

@Adapted CWT,x-lines2.dat H9.82,8.15LND H2005ê7ê1-18:36:3L

2Pi 0Radian @CWT PhaseD

0.00

1.00

2.00

3.00

4.00

Time HsecL

0.00

25.0

50.0

75.0

100.

Scale H~HzL

0
0.25
0.5
0.75
1

1.00

2.00

3.00

4.00

Time HsecL

~Modulus @Adapted CWT,x-lines2.dat H9.82,8.15LND H2005ê7ê1-18:36:3L

0 1 2 3 4 5

Time HsecL

0

20

40

60

80

100

S
ca

le
H~

fr
eq

ue
nc

y
in

H
zL

@Adapted CWT, x-lines2.dat H9.82,8.15LRD H2005ê7ê1-18:48:53L

0 40db Below Peak @CWT AmplitudeD

0 1 2 3 4 5

Time HsecL

0

20

40

60

80

100
S

ca
le
H~

fr
eq

ue
nc

y
in

H
zL

@Adapted CWT,x-lines2.dat H9.82,8.15LRD H2005ê7ê1-18:48:53L

2Pi 0Radian @CWT PhaseD

0.00

1.00

2.00

3.00

4.00

Time HsecL

0.00

25.0

50.0

75.0

100.

Scale H~HzL

0
0.2
0.4
0.6
0.8

1.00

2.00

3.00

4.00

Time HsecL

~Modulus @Adapted CWT,x-lines2.dat H9.82,8.15LRD H2005ê7ê1-18:57:35L

Figure 4.6: This figure shows time-frequency characterizations of the same X-signal in full extend.
The left sub-figures are for the simplified Morlet wavelet and the right sub-figures are for the quasi
wavelet basis function. Basically they feature identical depictions as those above, but around the
intersecting region both seem to have distortions. Nevertheless, the proposed quasi wavelet basis
function performs much better in phase plane rendition than does the simplified Morlet wavelet.
There are saw-tooth spikes in the bottom right 3-D sub-figure, and they reflect the non-exact
match between the instantaneous frequency and the numerical resolution step. The symptom can
be remedied by the phase rendition (mid right sub-figure).
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Figure 4.7: This figure illustrates the effects of phase rotation on the same X-signal based on
the quasi wavelet basis function. Again, various interfacial lines in the mid sub-figure serve as
indicators of the extend of frequency leakage and phase noise. It is noted that the top sub-figure is
in color but may be printed in black and white.
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Figure 4.8: This figure shows the ridge extraction of a signal composed of a pair of parallel chirps
that are with equal power contents. Here the frequency separation between the two chirps is
one tenth Nyquist rate. The left sub-figures are for the simplified Morlet wavelet, and the right
sub-figures are for the quasi wavelet basis function. It is clear that he power ridge given by the
simplified Morlet wavelet is entirely misleading. But, for the quasi wavelet basis function, the two
interfacial lines are clearly identifiable except at region near the Nyquist frequency. In the bottom
right sub-figure (and several previous sub-figures), we have intentionally inverted the rendering,
i.e., a trough in the 2-D plane (top right sub-figure) turns to a peak in the 3-D figure; and what are
seen are the two clear spike lines.

64



0 1 2 3 4 5

Time HsecL

0

20

40

60

80

100

S
c
a
le
H
~

fr
e
q

u
e
n

c
y

in
H

z
L

@Adapted CWT, p-lines4.dat H9.72,8.15LND H2005ê7ê1-20:44:34L

1 0Normalized Magnitude @CWT AmplitudeD

0.00

1.00

2.00

3.00

4.00

Time HsecL

10.0

32.5

55.0

77.5

100.

Scale H~HzL

0
0.25
0.5
0.75
1

1.00

2.00

3.00

4.00

Time HsecL

~Modulus @Adapted CWT,p-lines4.dat H9.72,8.15LND H2005ê7ê1-20:54:56L

0 1 2 3 4 5

Time HsecL

0

20

40

60

80

100

S
c
a
le
H
~

fr
e
q

u
e
n

c
y

in
H

z
L

@Adapted CWT, p-lines4.dat H9.72,8.15LRD H2005ê7ê1-21:7:49L

1 0Normalized Magnitude @CWT AmplitudeD

0.00

1.00

2.00

3.00

4.00

Time HsecL

10.0

32.5

55.0

77.5

100.

Scale H~HzL

0
0.2
0.4
0.6
0.8

1.00

2.00

3.00

4.00

Time HsecL

~Modulus @Adapted CWT,p-lines4.dat H9.72,8.15LRD H2005ê7ê1-21:7:49L

Figure 4.9: This figure shows the 2-D and 3-D modulus of a signal also composed of a pair
of parallel chirps but now with energy ratio of 0.04. The left sub-figures are for the simplified
Morlet wavelet, and the right sub-figures are for the quasi wavelet basis function. Both transforms
show difficulty in differentiating components with power difference so large and instantaneous
frequencies so proximate. There is overshadowing effects due to combined effects of frequency
leakage and phase ambiguity.

65



0 1 2 3 4 5

Time HsecL

0

20

40

60

80

100

Sc
ale
H~

fre
qu

en
cy

in
Hz
L

@Adapted CWT,x-lines3.dat H9.82,8.50LND H2005ê7ê5-19:45:27L

2Pi 0Radian @CWT PhaseD

0 1 2 3 4 5

Time HsecL

0

20

40

60

80

100

Sc
ale
H~

fre
qu

en
cy

in
Hz
L

@Adapted CWT,x-lines3.dat H9.82,8.50LRD H2005ê7ê5-19:35:53L

2Pi 0Radian @CWT PhaseD

Figure 4.10: The time-frequency phase planes for an X-signal which is composed of two com-
ponent chirps with power ratio of 0.01. The top and bottom sub-figures are associated with the
simplified Morlet wavelet and the quasi wavelet basis function, respectively. Here, both have diffi-
culty in rendering significant features for the weak component. But it seems that the quasi wavelet
basis function is a bit more informative, especially in the low frequency region.
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Figure 4.11: This figure show the modulus and phase renditions of a water wave signal measured
in a wind blowing laboratory tank. The left sub-figures use the simplified Morlet wavelet, and
right sub-figures use the proposed basis function. In general the latter ones provide easy and
precise identification of the energy ridge, in particular, its phase plane rendition shows relatively
outstanding features.
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Figure 4.12: The modulus and phase planes for a lesser developed water wave signal (when com-
pared to the previous figure, and it is due to a smaller wind speed in the tank) using the quasi
wavelet basis function. The phase plane shows a very distinguish feature of multiple interfacing
points along the time line. It reflects the existence of multiple scale components and the mutual in-
teractions among them, and it also serves as the indication of instability or rapid wave modulation.
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Figure 4.13: This figure compares the modulus (top sub-figures) and phase (bottom sub-figures)
planes of a mechanically generated Stokes wave for both the simplified Morlet wavelet (left sub-
figures) and function (right sub-figures). Here the Stokes wave has a wave steepness value of
about 0.06 at its fundamental harmonic band. Again, the quasi wavelet basis shows off more
interesting physics either from its modulus or phase rendition: for examples, the multi-troughs
around frequency 2 to 3 Hz from both the modulus and phase renditions, the feature of rapidly
oscillating (or up-and-down) interfacial points for the above troughs, and the evolution of the
first fundamental harmonic. All these may serve as evidences of wave evolutions and the energy
recurrence phenomenon among wave components or the Benjamin-Feir side-band instability.
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Chapter 5
Conclusions

A quasi wavelet basis function is proposed, and the associated algorithm for time-frequency

rendering are devised. The reasons that lead to the usefulness of the quasi wavelet basis

are illustrated. Specifically, the proposed basis function’s characteristic behaviors, such as

the time-frequency resolutions, frequency leakages, and phase ambiguity or time smear-

ing effects are studied, as well as respectively compared to those of the simplified Morlet

wavelet.

Both numerically simulated signals and signals from wave tank experiments are used

to test the functioning of the proposed quasi basis function, and these results are also

compared to those of Morlet wavelet.

In general, the present quasi wavelet basis is able to provide easy and clear visual

identifications of time-scale features both from the modulus and phase plane renditions.

Most profoundly, the phase plane results of the proposed quasi wavelet basis are far more

informative than as provided by the Morlet wavelet. In particular, they can highlight

power ridge points, extends of frequency leakage, range of influence by phase noise, the

oscillating ups and downs of a main component signal, and better identification of high

frequency constituents.

Lastly, we note that the proposed quasi wavelet basis function lacks a few stringent

requirements in mathematical or analytical robustness, such as concerning the defination

of a basis, the transform completeness, the wavelet admissibility condition, and the direct
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calculations of modulus and phase (i.e., the present basis needs some indirect or inter-

mediate manipulations to derive the modulus values), etc. Nonetheless, the new basis

function is practically applicable and yields unique time-frequency characterizations and

significant physics. v
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