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Feature(s) IEEE 802.11b Bluetooth
Power Profile Hours Days
Complexity Very Complex Complex
Nodes/Master 32 7
Latency |Enumeration upto 3 seconds| E‘E‘” 10
Range 100 m 10m
Extendabiity Roaming possble Mo
Data Rate 11Mbps 1Mbps
Security T 64 bR, 128 bit
2 802.11b Bluetooth ZigBee
http://doit.moea.gov.tw
ZigBee (Direct Sequence Spread Spectrum)
2.4GHz ISM
868MHz 915MHz
16 10 1 250kbps
ZigBee
ZigBee
15ms 30ms ZigBee
ZigBee 6 2
ZigBee MAC talk-when-ready
ZigBee 255 ZigBee Network
Coordinator 6500 ZigBee
Network Coordinator ZigBee
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Sensors CXLO4ALP1 & CXLOALPS3

Sensor
CXLO0O4LP1 CXL04LP3

Sensitivity Moise Bandwidth

(mV/ig) (mg rms) (Hz)

W X £4 50 0 DEC-100
i1l I x4 50 i DC-1400
TRI *d 50 0 DE-100
CECTOTRFE X =10 L 1] DE-14
CHL 1L T i =10 LI [ 1] OC-100
CHL10OLEY THI =10 A 1] D10
CALIELPI X =5 ] i D=1
CHLISLFLE i = 15 a0 LI D=1
CELESLFY TH = B9 B0 10 OC-104
OFTIOMNS

«H Wolkage Begulaor, & = 30 YOO mput

=&l High Tempesature Fackage (22 package drawing above|

3 CXLOALP1 & CXLO4ALP3

http://www.xbow.com
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Specifications

CXLOALP1Z

Performance
Input Range (g)
Zero g Drift {g)
Sensitivity {m\/g)

Transverse Sensitivity (% Span)

MNon-Linearity {% FS)
Alignment Error {deg)
Moise {mg rms)
Bandwidth (Hz) '
Environment

Operating Temp. Range {*C)

Shock {g)

-40 to +85
2000

Electrical
Supply Vaoltage {Volts)

Supply Voltage R option {VDC)

Supply Current (m#)

Zero g Output {Volts)

Span Qutput {Volts)
Output Loading
Physical

Standard package

Size {in)
{em)
YWaight
Aluminum package
Siza {in)
{em)

WWaight

+50

+ 8.01030
5/axis
+25+01
+20+01

= 10kQ, < 1 nf

0.78x1.75x 1.07
198 x4.45x 2.72
1.62 oz {46 gm)

0.95x2.00x1.20
2.41x%5.08% 3.05
2.40 oz (68 gm)

4 CXLOALP1 & CXLO4LP3

http://www.xbow.com
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2.3.2
Sensor: CXTAQO2
Sensor ) 0

Linear Range Full Ranigpe Resoltion

CXTAM X 20 +ry s
CxTADZ L ) 20 75 [rR i
| OPTIONS
-T Temperalure Sensor Inlema
| AL High Temperature Aluminum Packags
5 CXTAO02
http://www.xbow.com
Remarks

Performance
Lirgar Angular Rarge (™) & 20 =30
Full Ar-gular Range {7 x 75 75
Arigdar Beialution © rmi oS oS
Sisfiraty - dMmall phghed (A 3541 35 & & A bl valud pidn disd wil s Tefmar
Sesnstiarty Duifl o WAC) oan oal
P Arghe Waltage (valtsh 25+ 015 252015 A bl value prodesd wikh Termar
Bt farsghe Deile (b= 10 { ] Ty pec al
oo Al Difn <L) 03 a3 TWpecal
MorrLiressity %) =4 =04 O # 20F nod mchading Arcsineg [Denor
Bardwadth (R 50 30
Serithrag T {50C) oz o3
Alignment () = 1 = 1 Wepical
Crosi-ans Seraiteaty (%) <5 <5 cluriive of aligrment ermd
EfiviF e i vl
Storage Temperatume CC) 55 o+ BE 5 1o +B5 Mybon Package
Ciperating Termperalume (°C =40 b+ BS 40 1o +85 My ko Package
Storge Temparatume {“C) =55 1 105 <55 o + 106 <AL Hgh Tempenbure Package
Giperating Temperatune (*C} =] 01 B 10 40 o + 1 whl High Temperabure Package
MorDperating Vibeation (g rmsk 10 {1i] 20-2 kM randomn
Sheeezk (g1 2000 2000 | ms, hall sina
Electrical
Supply Waltage (VOCH L [ - 1] Lirep gulsted
CLarant (e 4 B
Fhysical
Sizp iMylon Fackage) TRx | 7Sx 1.00°01 58 x 4455272 oml

fAk T Pa kagah S a X200 x 1 20°i3d 41 & 508 u 305 owil
Weighit CNon Paccage) | .38 oz 43 gmi

tAlaminum Packager £.09az bl gmi

6 CXTAO2
http://www.xbow.com
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1.0

. SIDE VIEW
— E— T
| 750° .
gl
A 1.375"
sl (e  TOP VIEW
\ #0.184"
|
AT
= 6 CXTAO02
H Huﬁrﬂ:!' sgac e
Tl http://www.xbow.com
I R 'I 4@
2.3.3
DAQBoard MDA320CA 7
16-hbit Sensor

8 single-ended 0-2.5V inputs, or 4 differential 0-2.5V ADC channels
8 digital 0-2.5V 1/0 channels with event detection interrupt

2.5, 3.3, 5V battery sensor excitation and low-power mode

64K EEPROM for onboard sensor calibration data

200 Hz counter channel for wind speed, pulse frequencies
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External 12C interface

7 MDA320CA
http://www.xbow.com
234
Mote MPR2400CA 8
Mote
Mote University of California
Berkeley UC Berkeley Intel
ad hoc MPR2400CA MICAZz
TinyOS
TinyOS
9

MPR2400CA 7
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Processor/Radio Board MPR24 00CA Remarks

Processor Performance

Fragram Flash Memary 128K bytes

Measurement {Serial) Flash 512K bytes = 100,000 Measurements
Configuration EEPRCM 4K bytes

Serial Communications LIART 0-3V trarsmission levels
Analog to Digital Comverter 10 bit ADC 8 channel, 0-3V input

Cther Interfaces Digital VO 12C,5P1
Currant Draw Ema Active made
< 15 pa Skeep mode

RF Transceiver

Freguency band’

2400 MHz to 24835 MHz

I5M band, programmable in 1 MHz steps

Transmit (TX) data rate

250 kbps

RF powear

<24 dBm to 0 dBm

Recene Senaitivity

-50 dBm {min}, <94 dBm ityp)

Adjacent channel rejection

47 dB

+ 5 MHz channel spacing

38 dB - 5 MHz channel spacing
Cutdoor Range Tsmto100m 1/2 wave dipale antenna, LOS
Indoor Range 20mto30m 112 wave dipole antenna
Current Draw 19.7 m& Recelve mode
11 ma TX, -10dBm
14 ma TX, -5 dBm
174 ma TX, 0 dBm
20 pa Idle mode, voltage regular on
1 pd Skep mode, voltage regulator off
Electramechanical
Battery 2¥ AA batteries Attached pack
External Power 27V-33V halex connactor provided
User Interface 3 LEDs Red, green and yellow
Sze (in} 225x125x025 Excluding battery pack
{mmp BEn32 a7 Excluding battery pack
Weight {oz) or Excluding batteries
{grams) 18 Excluding batteries
Expansion Connector G1-pin All major VO signals
7 MPR2400CA

http://www.xbow.com
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8 MPR2400CA

http://www.xbow.com

Components

5% j

: Cummandsl
Scheduler : |

—
Events

T

Hardware components

9 TinyoS

WWW.CiS.upenn.edu

2.35

Gate MIB520CA 10 8

Gate
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MIB520CA USB
MIB520CA MICAz Sensor Board 11

10 MIB520CA

MI1B520CA Specifications:

USB Interface

* Baud Rate: 57.6 K » Maeto Mae USB cable (included with unit)
Mote Interface

 Connectors: - 51-pin MICA2/MICAz

e Indicators. - MICA2/MICAz LED’s: Red, Green, Yellow
Programming Interface

e Indicators. - LEDs - Power Ok (Green),

Programming in Progress (Red)

« Switch to reset the programming processor and Mote.

* MICA2DOQOT requires optiona programming cable.

Jag Interface

 Connector: 10-pin male header

POWER

* USB Bus powered

MIB520CA with MICAz and Sensor BoardlSP uPMoteSensor
BoardUSB Port

8 MIB520CA http://www.xbow.com
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11 MIB520CA MICAz Sensor Board
http://www.xbow.com
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Development of a Simple System to measure 5 DOF Ship M otions
In a Seaway

Forng-Chen Chiu Sao-Wel Liu  Wen-Chuan Tiao  Jenhwa Guo
Department of Engineering Science and Ocean Engineering, National Taiwan University
No.1, Sec.4, Roosevelt Road, Taipei, Taiwan
fechiu@ntu.edu.tw

ABSTRACT

This paper presents a simple system to measure five degree-of-freedom motions of real shipsin a seaway.
High cost gyro is not included in this measurement system. Seven accelerometers located at bow, stern
and midship, as well as both sides of midship for sensing vertical or lateral accelerations, as well as a
dual inclinometer for measuring roll and pitch angles are used in the present system, and the five
degree-of-freedom ship motions with redundancy except surge can be derived. The arrangement of
sensors and the algorithm to derive the motions at any specified position, such as center of gravity or
other locations, are devel oped and the system is implemented.

In order to confirm the validity of the present measurement system, a simulated motions and sensors
arrangement installed on a wood plank is tested as a bench test in laboratory. Then the systemis applied
to a high-speed patrol boat to measure its 5 DOF motionsin a seaway. Through a series of sea trials, time
histories, spectral moments and statistic characteristics of 5 DOF ship motions are analyzed, and the
consistency as well as effectiveness of the present measurement systemis discussed.

The response spectral moments of 5 DOF ship motions measured are not only indices for assessing the
seakeeping performance of a ship, but also the important data sources that can be used to estimate the
characteristics of ocean waves, such as the significant height, period as well as the principal direction by
using a Neural Network Classifier based on its statistical learning and pattern recognition.
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INTRODUCTION

Since ship motion theories have been well
developed and can be used as practical tools to
predict ship motions, it has become well known
that a ship in a seaway can be regarded as a kind
of wave sensing device. Up to the present, several
methods have been proposed to convert measured
ship motions data to the encountering wave
characteristics. For example, Iseki etc. developed
a method, using Bayesian Model, to estimate
directional wave spectra from measured sway,
heave, roll and pitch motions [1]. Yoshimoto and
Watanabe proposed a parametric model basing on
extended Maximum Likelihood Method to
estimate directional wave spectra from measured
relative wave surface elevation at 4 locations [2].
Hirayama etc. developed a hybrid type on-board
measuring system including pitch, roll, vertical
acceleration a bow, relative wave surface
elevation at 3 locations and RADAR image to
estimate directional wave spectra [3]. Maeda and
Saito proposed a Nonlinear Programming Method
to estimate directional wave spectra from
measured heave acceleration and pitch [4]. All of
these researches focused on solving the difficulty
to determine wave spectra in following sea
Besides, Takaishi etc. proposed a simple method
to estimate wave principa characteristics such as
significant wave height, period and main direction
by using measured data of relative wave surface
elevations and vertical accelerations at 3 locations
[5]. The purpose of Takaishi to develop an
on-board wave estimating system and that of
above-mentioned researches seem to be
application to ship operation.

Several years ago, two of the authors, Chiu and
Guo bhasing on the viewpoint to monitor the
global wave field around Taiwan area by using the
fleet of Coast Guard patrol boats as mobile sensor
networks, developed a method to estimate wave
significant height, period and principal direction
using the response spectral moments of 5 DOF
ship motions [6]. In that proposed method, a
Neural Network Classifier [7] based on its
statistical learning and pattern recognition is used.
Its validity has been confirmed through numerical
simulation [6], in which a Nonlinear Strip Method
developed for predicting ship motions of
high-speed vessels in oblique waves [8,9] is
adopted. Therefore, to meet the goal of making
the fleet of patrol boats become mobile sensor
networks for wave measurement, it is necessary to
develop asimple and low cost on-board system to
measure 5 DOF ship motions for a rea ship
running in a seaway. In this paper, the formulation
and implementation of the present simple system
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will be described, and the discussion on the
experimental results will be followed then.

1. FORMULATION
1.1 Kinematics of ship motions

A ship-fixed right hand Cartesian coordinate
system o-xyz used for the formulation is shown in
Figure 1. The origin o may be located at arbitrary
place of center plane. The trandational and
angular velocities of ship motions defined in the
ship-fixed coordinate system are denoted as
v,=(uv,w) and @=(p,q,r) respectively.
Then, the velocity of arbitrary point at position
F=(XY,2)canbeexpressedas V=V, +@xT .
Similarly, if we denote the trandational and
angular accelerations of ship motions in the
ship-fixed coordinate system as

8, = (8518, &) and @=(p,q,f), then the
acceleration of arbitrary point at position I can

be expressed by
dv .
azazéu+c?)xr+c?)><(c?)xf) @)

The componentsof @ can be derived as follows.

a=1 (B + 02— Y+ Pay—g°X—r2X+r0p)
+ ] (@oy +x— pz+raz—r2y— p*y+ pox)

)

+K(agz + Ppy—Cx+ prx— pPz—afz+ary)

Fig.1 Coordinate system and sensors
arrangement

The arrangement of sensors used in the present
measuring system is also shown in Figure 1 with
sign conventions. There are 7 accelerometer
components and roll, pitch angles are measured
for deriving 5 DOF ship motions with redundancy.
Bow accelerometers located at  position
f(X;,Y;,2;)In the center plane are used for



measuring vertical and transverse accelerations of
point f, @, and a; , where y =0 is chosen.
Then the relationships between these bow
acceleration components and ship motions, a,

and @, areasfollows:
a, =a,+(pr-a)x —(p*+9°)z, 3
ay, =a, +(pg+r)x, +(rq-p)z, (4

Center accelerometer is located at the origin of
the ship-fixed coordinate system to measure

transverse acceleration &, of pointc(X, Y,,Z,),
where x. =y, =z =0 ischosen. Namely,

Ay = Sy ®)

Stern  accelerometers located at  position
a(x,,y,,z,) in the center plane are used for

measuring vertical and transverse accelerations of
point a, a,anda, , where y =0 as well as
X, =-x, ae chosen. Then the relationships

between these stern acceleration components and
ship motions are as follows:

a, =8, +(pr—Qx —(p*+d)z, (6)
a, =&, +(pg+r)x, +(rg-p)z, ()

Starboard accelerometer and port accel erometer
are located in y-z plane to measure vertical
accelerations  of point  s§(x,y,,z) and
point p(x_,Y,,2,) . agand @, respectively,
wherexS:xp:o Y, =-y, & well as z,=12

are chosen. Then the equations relating these
acceleration components and ship motions can be
given asfollows:

a,=a, +(p+an)y,—(p*+q’)z, (8
a, =a,+(p+a)y,-(p’+a%)z, 9

Using above-stated relationships, the 5 DOF ship
motions can be derived as follows in terms of
measured data. By adding up equation (4) and

equation (7), sway acceleration a,, can be
derived as
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_ay+a, (rg-p)(z +z)
=5 2

(10)

By adding up equation (3) and equation (6), heave
acceleration @, can be derived as

_a.ta, (P +7)
2 2

a, (12)

Similarly, heave acceleration @, can be also
derived by adding up equation (8) and equation (9)
asfollows.

am=—a§+a"z+(p2+q2)zp

12
> (12)

On the contrary, subtracting equation (9) from
equation (8), roll acceleration P can be derived
as

(13)

Similarly, by subtracting equation (3) from
equation (6), pitch acceleration ¢ can be
derived as

&, (P°+0)z -2)
2X, 2X,

G=pr+ (1)

Furthermore, yaw acceleration I can be derived
by subtracting equation (7) from equation (4) as
follows.

po By %y (ra-p)z -2z)
2X, 2%,

P (15

It can be found that in the present 5 DOF ship
motions measurement system, sway, heave, pitch
and roll motions are measured with redundancy.

Both of direct measurement of & , as shown in
equation (5) and derived result by equation (10)
give sway acceleration Q- Both of derived
results by equation (11) and eguation (12) give
heave acceleration a,,. In addition to roll and
pitch motion sensed by inclinometer, equation (13)



gives also derived roll acceleration P, and
equation (14) gives derived pitch acceleration (.
However, yaw acceleration is simply derived
from equation (15) without using a gyro to get
direct measurement, since the cost of a gyro is
relatively high. The agorithm to derive yaw
motion using equation (15) from measured data is
described in the following section.

1.2 Algorithm to derive yaw acceleration

Equation (15) can be rewritten as

—r Q(Zf _Za)_'_afy_&ay n p(zf _Za)_ P (16)
2X%; 2X%; 2%,

Firstly, assuming the first term of right-hand side

is relatively small and ' may be approximately
calculated by following equation

afy_a:ay n p(zf _Za)_

(17)
2X%; 2%, P

f

I

Then the obtained I is integrated to get yaw
rate I, and substituted into the right-hand side of
the exact equation (16) to obtain I again. The
newly obtained I is then integrated again to
obtain yaw rate I' . These processes are repeated
until yaw rate I isconverged. pPand (put into

equation (17) are derived by taking differential of
measured roll and pitch angle respectively.
Nevertheless, high  frequency  numerical
oscillation involved should be eliminated by a
proper way, then the smoothened pPand (can

be introduced into equation (17).
1.3 Spectrum analysisand statistics

Firstly, the mean value is removed from each of
measured time series of accelerations or angles.
Then Above-stated derived accelerations of 5
DOF ship motions are calculated and analyzed by
FFT to obtain the variance spectra in terms of
encounter frequency which is notated as S(w,)-

Hanning window is applied for smoothing the
spectra. Since the mean sguare value or variance
of the random process is equal to the area under
thecurveof S(w,), we may write

m, = [ S(w,)de, (18)
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where M, is the mean square value of

acceleration. Thus the mean sguare vaue of

velocity M, can be expressed as
m, = [ 0.°S(w,)de, (19)

, and the mean square value of displacement
m, can be given by

m, = [ 0;*S(e,)do, (20)
Moreover, the first moment of displacement
spectrum M, is given by

m = Iw;gs(we)dwe (22)

Provided that each of 5 DOF ship motions in a
seaway is a dstationary and ergodic random
process of Gaussian probability density function
with zero mean, and its probability density of
extremes follows Rayleigh distribution, some
statistics such as average zero-crossing period
T, , average pesk-to-peak period T_, spectral
broadness parameter & and significant double
amplitude of displacement h,,, may be deduced

as follows.

T, =27z m,/m, (22)
T, =2z ym,/m, (23)
e=1-(T,/T,? (24)
hys =~ 40m, fore<05  (25)

2. MEASUREMENT SYSTEM

The present measurement system consists of
sensors unit, signa conditioners, A/D card,
potable PC and software. On the sensors unit,
there are 7 accelerometer components and rall,
pitch angles are measured under the arrangement
shown as Fig.1. Kyowa AS-series accel erometers
with response frequency range from DC to more
than 40 Hz are installed. Crosshow CXTAOQ2 tilt
sensor of dual axis with bandwidth of 125 Hz is
adopted. On signal conditioners, National
Instrument DAQP-BRIDGE modules and



DAQP-V modules are introduced to amplify the
accelerometers signals and the inclinometer
signals respectively. To convert signals, 16 bits
A/D card with maximum sampling rate of 2x10°
Hz is used. However, in the present setting,
sampling rate for each channel of signal is 100 Hz,
which is considered enough to cover the
frequency range of ship motion responses. For the
convenience of field measurement, a DEWE-2010
potable PC is used, in which al the signa
conditioners and A/D card are installed. The data
acquisition and anaysis software is programmed
using NI Labview.

3. EXPERIMENTS
3.1 Bench test

Before carrying out the motion tests for areal ship
in a seaway, we tested the present measurement
system in laboratory to confirm the derived
accelerations of 5 DOF ship motions can be
caculated with consistency. The sensors
arrangement is simulated to install on a wood
plank with dimension of 75x42 c¢cm as shown
in Fig. 2. As an example, some results of derived
accelerations of 5 DOF motions are shown in Fig.
3(a) through Fig.3(d), in which the board is given
arbitrary random motions. It can be found that the
consistency between derived results and direct
measurements is verified. Furthermore, the
acceleration of arbitrary position
I =(X,Y,2)can be calculated by Equation (2),
provided that the 5 DOF motions are known.
Therefore, some more comparisons with

measured vertical accelerations at bow a,, and

oz » and measured transverse

acceleration a stern @, are aso shown in

Fig.4(a) through Fig.4(c) respectively to show the
consistency.

that at port @

Fig. 2 Sensors arrangement for bench test
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Moreover, from Figure 4(c), the agreement
between directly measured @, and derived time

history by Equation (2) implies that yaw
acceleration I', shown in Figure 3(d) is derived
accurately enough by Equation (15) following the
algorithm stated in Section 1.2 .

3.2 Test in a seaway

A real ship tests at sea was conducted in May,
2002 using a 100 tons patrol boat which belongs
to Taiwan Coast Guard. The siteisin the offshore
area north of Keelung City, about 1.5 nautical
mile northwest away from Keelung Islet as shown
in Figure 5. Sensors are al set on main deck. The
coordinates of their locations are shown in Table 1.
The center of gravity of the patrol boat is 1.5
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meter beneath the origin.  The motions of C.G
are just what we want to know in these tests.
However, C.G. is a point that floats in the air and
no sensor can be installed there to take direct
measurement. It means that the motions of C.G
have to be obtained through conversion using
Equation (2) from measured 5 DOF ship motions.
An example of conversion has been illustrated in
Figure 4 of Section 3.1 to show its validity.

Fig.5 Location map of the test area for areal ship
test

Table 1 Sensors arrangement

unit: meter | x y
Dual inclinometer 0 0 0
Bow accelerators at 14.4 0
13 f"
Center accelerator at 0 0 0

“C

Starboard accelerator 0 2.51 0
d " g!

Port accelerator at 0 -2.51 0
" pH

Stern acceleratorsat | -14.4 0 0
" aH

In the real ship tests at sea, ship motions are
measured at 3 different speeds, such as high speed
of 28 knots, cruise speed of 21 knots and low
speed of 8 knots approximately. The process of
heading is shown in Figure 6. There is an interval
of 45 degrees for the tests at low speed, 30
degrees for that at high speed or cruise speed. In
the tests at low speed, 100 Hz sampling rate
recording is continuous for 3 minutes while
heading is steady. However, for those tests at high
speed or cruise speed, 60 seconds records are
taken. About the test procedure, at first, tests at
low speed were carried out two times
continuousdy and the results shown in the
following figures are notated as “w1” and “w2"



respectively. Then, the tests at cruise speed and
high speed were followed. Finally, the tests at low
speed were conducted again. The visual sea state
during the test is about Beaufort scale of 3.

As the bench test above-stated, the consistency
between measured data and derived motions has
also been confirmed. As an example, Figure 7(a)
depicts derived yaw acceleration and Figure 7(b)
depicts transverse bow accelerations obtained
from both of direct measurement and derivation
for atest at high speed. We can be convinced that
the yaw acceleration is still accurately derived,
because the two curves in Figure 7(b) agree very
well as before.

i 17
&5 (RE] o l 11} “
0l
’ 13, Y 15
il L& Tl in
12 i)
M . 1 24 -
! H'-. Tl

Fig.6 Process of heading (left: for low speed
tests;
right: for high speed or cruise speed)
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Figure 8 through Figure 12 illustrate the heading
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angle dependence of motion responses at C.G. of
the two cases at low speed. In Figure 8, the
significant double amplitude, mean zero-crossing
period as well as spectral broadness parameter of
transverse displacement of C.G. motion are
plotted. Those of vertica displacement of C.G
motion are plotted in Figure 9. The significant
double amplitude of roll, pitch and yaw are shown
in Figure 10, Figure 11 and Figure 12 respectively.
From these figures, it can be said that similar
results between “wl1” and “w2" were obtained
except some discrepancies at the headings of
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90 and 180 degree. Measured significant double
amplitudes of C.G. motions for the case of “w2”,
whose measurement are conducted about one
hour later, are somewhat larger than those of “w1”.
This tendency coincides with the observation
during the tests.

Figure 13 through Figure 17 illustrate the heading
angle dependence of motion responses at C.G. of
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the three cases at high speed, cruise speed and
low speed. In Figure 13, the significant double
amplitude, mean zero-crossing period as well as
spectral  broadness parameter of transverse
displacement of C.G. motion are plotted. Those of
vertical displacement of C.G. motion are plotted
in Figure 14. The significant double amplitude of
roll, pitch and yaw are shown in Figure 15, Figure
16 and Figure 17 respectively. In these figures, it
can be found that the ship motions become more
significant with increasing ship speed. It implies
that reasonable measurement can be obtained by
the present ssmple system for 5 DOF ship motions
measurement. Furthermore, the variance of
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vertical bow acceleration, that is my, is shown in
Figure 18 to illustrate the ship speed dependence
of vertical bow acceleration. As seen in thisfigure
verticak bow acceleration becomes more

pronounced at higher speed.
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4. CONCLUSIONS

A study was conducted to develop a simple
system for measuring five degree-of-freedom
motions of rea ships in a seaway. Bench test in
laboratory and areal ship test in a seaway using a
patrol boat were carried out to provide a
validation of the present system. From the
investigation into the measurement, derivation
and the verification of the consistency, the
following conclusions may be drawn: The present
simple system, in which relatively high cost gyro
is not included, can provide reasonable
measurement of 5 DOF ship motions in a seaway.

The present study is just a step for developing an
integrated system to monitor the global wave field
around Taiwan area by using the fleet of Coast
Guard patrol boats as mobile sensor networks
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