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1. Introduction

Previous studies of the wave-current interactions, well documented in the review ar-

ticles by Peregrine (1976), Jonsson (1990) and Thomas & Klopman (1997), may be di-

vided into two categories: the first is to study the interactions between the waves and

the currents that are all horizontally uniform. In these studies, much attention has been

given to the effects of the large amplitudes of waves and the strong shear of currents.

Consequently, certain numerical calculations are often needed (see, for example, Simmen

& Saffman 1985 and Teles da Silva & Peregrine 1988). However an analytical solution

in terms of an infinite series in powers of a certain parameter ε, which characterizes the

smallness of the deviation of the current velocity from a linear profile in the vertical di-

rection was derived by Shrira (1993) for linear waves propagating obliquely on a steady,

strongly sheared current. Since this series solution can be rapidly convergent in a practi-

cal situation, this solution, as pointed out by Shrira (1993), is useful to the study of the

‘gradually varying problem’, which is among the second category.

In the second category, the underlying current is allowed to vary slowly in the hor-

izontal directions, which will certainly result in the corresponding slow modulations of

the wave amplitudes and wave-numbers. Modern theories on this problem were begun

by Longuet-Higgins & Stewart (1960, 1961), Whitham (1965), and Bretherton & Garrett

(1968), in which the idea of radiation stress was introduced and the action conservation

equation established for the case of an irrotational current. Although these theories can

be applied to many practical situations (e.g. waves on the majority of tidal flows), there

are situations (e.g. waves on a wind-drift current) in which a highly sheared current ex-

ists so that these theories may become invalid.

Extensions of modulation theories from irrotational currents to rotational ones have

successfully been made by Jonsson et al. (1978) in a two-dimensional analysis using an

integral approach and by Voronovich (1976) and White (1999) in three-dimensional anal-

yses using perturbation schemes. However, in White’s (1999) theory, the spatial scales of

the current in the horizontal directions and in the vertical direction are assumed to be

the same, meaning that the current varies slowly not only in the horizontal directions but

also in the vertical direction. As a result, the dispersion relation and the action conser-

vation equation derived in White (1999) are not different from those for an irrotational

current, but a new equation for a spatially varying phase shift, which can displace the

positions of the wave crests by a distance on the order of a wavelength, has been derived

in this situation.
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Conversely, in Voronovich’s (1976) theory, slowness of the variation of the main motion

is not assumed along the vertical co-ordinate and even the variation in the buoyancy of

the fluid is allowed so that the action conservation equation derived by Voronovich (1976)

in terms of the local solution of the wave motion involves the vorticity of the main motion

as well as the Brunt-Väisälä frequency N . Therefore if the perturbation scheme applied

by Voronovich (1976) remains valid in the present case in which N = 0 and ε � 1, by

substitution of the local solution in this case, which corresponding to the zeroth-order

term of the series solution in Shrira (1993), into the action conservation equation, the

slow modulation of the wave amplitude can be determined in the present case. However,

according to the discussion in §4, a different perturbation scheme, which can exist only

if ε is so small that the wave motion is nearly potential in a certain sense, can result in

a modulation equation of wave amplitude that is very likely to be inconsistent with the

action conservation equation derived by Voronovich (1976). This scheme, though it exists

in theory, cannot be implemented in practice so that an alternative is pursued here.

In the present approach without a formal asymptotic expansion, it is unnecessary to

explicitly introduce the ordering parameters to scale equations (for a demonstration of this

strategy, see Shyu & Phillips 1990 and Shyu & Tung 1999). On the other hand, according

to Shrira (1993), if the deviation of the current velocity from a linear profile in the vertical

direction is small, the series solution derived by Shrira (1993) will converge very rapidly,

which renders a one-term WKBJ solution possible. Therefore, in §2, we shall temporarily

neglect the slow variations in the horizontal directions and the slight deviation from a

linear profile in the vertical direction of the underlying current to obtain an exact solution

of the linear waves in this situation. This solution coincides with the zeroth-order term

of the series solution derived by Shrira (1993) and will hereafter be referred to as the

basic solution. This basic solution, if allowing its parameters to slowly vary, represents

the first-order WKBJ solution of the slowly varying wave train, although the variations

of these parameters, especially that of the wave amplitude, remain to be determined, for

which the discussion in §2 can also provide important information, including the features

of the irrotational and rotational perturbation velocities.

Notice that if the variation of the current velocity with depth is near linear and

rapid and if the component of this velocity in the direction toward which the waves

propagate intrinsically, increases with depth, the critical layer where the current velocity

is equal to the propagation speed of waves will always occur in deep water. When this

critical layer occurs, the frequency of waves becomes complex so that waves will grow

or decay (Morland, Saffman & Yuen 1991; Shrira 1993; Miles 2001). This instability
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problem is important for wave dynamics. However, since the existence of the imaginary

part of the frequency will render the following analysis difficult if not impossible and

since the main purpose of this study is to clarify the limits of the validity of the action

conservation equation, the occurrences of the critical layers will be avoided in this study

by assuming that the component of the current velocity in the direction toward which

the waves propagate intrinsically, decreases with depth. This assumption is appropriate

for the wave-current fields in which the waves and the strong shear of the current are all

generated by the local wind.

Also we emphasize that in deep water, the slight deviation of the current velocity from

a linear profile in the vertical direction can result in a great change of the current velocity

from that of the linear profile in the region far away from the water surface. This change

cannot be determined from a very limited number of quantities representing the properties

of the current only at the mean water surface. Therefore, when the solution of the slowly

varying wave train derived below involves only these quantities in connection with the

current, it is suggested that the properties of the current in the region far away from the

water surface have vanishingly small influence on the surface waves. Hence, although the

following WKBJ description of wave modulations is derived under the assumption of a

nearly linear shear current at all depths, one of the obvious applications of this work is to

currents that can be approximated by a nearly linear shear current near to the surface,

with zero or constant current below.

The WKBJ description of wave modulations will be deduced in §3 by solution of the

boundary-value problem in the light of the basic solution. This three-dimensional analy-

sis can be simplified significantly by using a local co-ordinate system to separate the irro-

tational and rotational perturbation velocities and to achieve other important purposes.

The resulting modulation equation will in §4 be compared with the action conservation

equation derived by Voronovich (1976), which indicates that these two equations cannot

be consistent with each other unless the rotational perturbation velocity becomes negli-

gible or its fast variation with depth −z can be specified solely by the simple function

ekz where k represents the wave-number. The reason for this inconsistency is also illumi-

nated in §4. From this comparison and discussion, it is concluded that the wave action is

in general not conserved in the present case, though in the case that ε is not small or the

influence of density-field inhomogeneities cannot be neglected, the theory of Voronovich

(1976) is valid and the wave action is conserved.

When the wave action is not conserved, to obtain a physical insight into the modu-

lation equation derived in §3, the theory of Jonsson et al. (1978) will in §5 and §6 be ex-

tended from two-dimensional flows to three-dimensional flows using an integral approach.
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In §5, the wave energy equation will be derived by using this integral approach in a less

general case and is indeed consistent with the modulation equation derived in §3 and the

action conservation equation in Voronovich (1976). However in §6, it is found that even

in a simple case, as long as the transverse rotational perturbation velocity v has the same

order of magnitude as the longitudinal irrotational one ∂φ/∂x, the integral approach will

become invalid. The reason for this invalidity is also given in §6.

When v has the same order of magnitude as ∂φ/∂x but the fast variation with depth

of v can be specified solely by ekz so that the integral approach is invalid but the mod-

ulation equation derived in §3 remains consistent with the action conservation equation

in Voronovich (1976), the latter equation can safely be applied to obtain the wave energy

equation. In this case, no extra terms occur in the wave energy equation compared with

that derived in §5 for the case when v = 0, implying that even when v has the same order

of magnitude as ∂φ/∂x, the rotational perturbation velocity v should not be considered in

the equation for the balance of wave energy. Therefore, in an even more general case in

which the fast variation with depth of v can no longer be specified solely by ekz and in

which the modulation equation has been derived in §3, the wave energy equation can be

reconciled with the modulation equation by adding only two terms to the former. This

situation and its implications are discussed in §7.
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2. The basic solution

In this section we shall describe the exact solution of the linear deep-water gravity

waves propagating obliquely on a steady current U{U(z), V (z), 0} uniform in the horizontal

directions but strongly and linearly sheared (constant vorticity) in the vertical direction.

This solution, defined as the basic solution, is closely related to the WKBJ solution, be-

cause when the velocity and the vorticity of the underlying current become slowly vary-

ing in the horizontal directions and in the horizontal and vertical directions, respectively,

the parameters in this basic solution will similarly vary slowly, resulting in the WKBJ so-

lution which represents the first-order term of the asymptotic expansion of the solution

for the ‘gradually varying problem’.

Since in the present circumstances, due to the rigid rotation and the extension or

contraction of the vortex-lines, one may expect that the oscillatory wave motion is no

longer irrotational, we start with the Euler equation for perturbations of velocity u{u, v, w}

and pressure p linearized upon the flow U

∂u

∂t

+ U

∂u

∂x

+ V

∂u

∂y

+ w

∂U

∂z

+
1

ρ

∂p

∂x

= 0

∂v

∂t

+ U

∂v

∂x

+ V

∂v

∂y

+ w

∂V

∂z

+
1

ρ

∂p

∂y

= 0

∂w

∂t

+ U

∂w

∂x

+ V

∂w

∂y

+
1

ρ

∂p

∂z

+ g = 0

∂u

∂x

+
∂v

∂y

+
∂w

∂z

= 0





(2.1)

where ρ is the density of the water and g the acceleration due to gravity. In (2.1), the

choice of the directions of the x− and y − axes of the rectangular co-ordinates are at our

disposal. On the other hand, since the underlying current U is uniform in the horizontal

directions, the waves will not be refracted by the current. Therefore the y − axis can be

chosen to be parallel to the wave crests so that all variables are independent of y and the

above system of equations then reduces to

∂u

∂t

+ U

∂u

∂x

+ wΩ2 +
1

ρ

∂p

∂x

= 0

∂w

∂t

+ U

∂w

∂x

+
1

ρ

∂p

∂z

+ g = 0

∂u

∂x

+
∂w

∂z

= 0





(2.2a)
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and

∂v

∂t

+ U

∂v

∂x

− wΩ1 = 0 (2.2b)

where Ω{Ω1, Ω2, 0} denotes the vorticity of the underlying current U with Ω1 = −dV/dz and

Ω2 = dU/dz in the present situation, and suffices (1, 2) indicate the vector components in

the x− and y − directions respectively.

Notice that the variables v and V as well as the constant Ω1 are absent from (2.2a),

meaning that if this situation also occurs to the free-surface boundary conditions, the

solutions of u, w and p will not be affected by the convection in the y − direction V and

its shear Ω1. Nevertheless, if Ω1 6= 0 and w 6= 0, according to (2.2b), the oscillatory velocity

component v will occur, which is important for the development of the WKBJ description

in the next section.

The boundary conditions at the free surface z = η(x, y, t) transformed on the plane

z = 0 which corresponding to the unperturbed free surface can be written as

∂η

∂t

+ U

∂η

∂x

= w, p = ρgη, (2.3)

(see Shrira 1993) which are indeed free from v, V and Ω1. Therefore, one can solve (2.2a)

and (2.3) without consideration of v, after which v can be determined from (2.2b).

Differentiating the first and second equations in (2.2a) with respect to z and x respec-

tively, combining the resulting equations into one to eliminate the pressure terms, and

using the third of equations (2.2a), we obtain

∂ω2

∂t

+ U

∂ω2

∂x

= 0, (2.4)

where ω2 ≡ ∂u/∂z − ∂w/∂x represents the vorticity component of the wave motion in the

y−direction. Thus if initially ω2 = 0 everywhere, from (2.4) it will remain so in an inviscid

fluid. Therefore a two-dimensional velocity potential φ(x, z, t) can be defined such that

u = ∂φ/∂x and w = ∂φ/∂z. The third of equations (2.2a) then requires

∂

2
φ

∂x

2
+

∂

2
φ

∂z

2
= 0. (2.5)

Thus in deep water we have

φ = Aekzei(kx−n0t)
, (2.6)

where A is a constant, k the wave-number and n0 the observed frequency of a chosen

Fourier component.
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If now the surface displacement

η = aei(kx−n0t)
, (2.7)

where the amplitude a is a constant, from the boundary conditions (2.3), we obtain

A = −i
σ

k

a (2.8)

and

p|z=0 = ρgaei(kx−n0t)
,

where

σ ≡ n0 − U0k (2.9)

is the intrinsic frequency relative to the frame of reference in which the mean surface

velocity equals zero, and U0 ≡ U |z=0. Substituting all these results into the first and second

equations of (2.2a), we have respectively the dispersion relation

gk = σ

2 + σΩ2 (2.10)

and the pressure fluctuations

p = −ρgz + ρgaekzei(kx−n0t) − ρσΩ2azekzei(kx−n0t)
. (2.11)

The last term in (2.11), arising from the fact that U = U0 +Ω2z, cannot be found when

the underlying current is irrotational, but is important for the analysis in §5. On the

other hand, the dispersion relation (2.10) is identical with the zeroth-order term of the

series solution derived by Shrira (1993).

Finally, from (2.2b) we have

v =
σΩ1

n0 − Uk

aekzei(kx−n0t)
, (2.12)

meaning that when the wave profiles propagate obliquely on a horizontally uniform shear

flow, a transverse rotational perturbation velocity will occur, which can be as large as

∂φ/∂x and ∂φ/∂z if Ω1 has the same order of magnitude as σ. On the other hand, if Ω2

has the same order of magnitude as σ, the two terms on the right-hand side of (2.10) also

have the same order of magnitude. Therefore, in the following discussion we assume that

Ω1 and Ω2 have the same order of magnitude as σ, representing a strongly sheared current.
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Notice that since v varies with x and z, the vorticity components ω1 and ω3 of the

oscillatory wave motion in the x− and z − directions are non-zero. On the other hand,

since U varies with depth, according to (2.12), the value of v becomes infinity at the

critical layers where n0 − Uk = 0. This result is in contradiction with the linear-wave

assumption for application of the governing equations (2.1) and the boundary conditions

(2.3). Therefore the solution derived here will become invalid if there exist critical layers.

When critical layers occur and the mean flow vorticity is constant everywhere, the

solution of (2.1) and (2.3) that is analytic at any finite depth is not immediately clear,

but if the mean flow vorticity becomes slowly varying in the vertical direction, the exact

series solution of (2.1) and (2.3) in powers of a certain parameter which characterizes

the smallness of the deviation of the current velocity from a linear profile in the vertical

direction has been derived by Shrira (1993). In this solution, if critical layers exist, the

frequency of the wave motion becomes complex so that waves will grow or decay. On the

other hand, although the zeroth-order term of the series solution takes the same form as

the solution derived here, since the frequency n0 in Shrira’s (1993) solution contains the

imaginary part when critical layers occur, the denominator in (2.12) will not vanish at

any finite depth in his solution.

Since the imaginary part of the frequency will render the following analysis difficult

if not impossible and since the main purpose of this study is to clarify the limits of the

validity of the action conservation equation, the occurrences of the critical layers will be

avoided here by assuming that

U0 − U(z) ≥ 0 (2.13)

at any depth −z. Since it follows from (2.9) that

n0 − Uk = n0 − U0k + (U0 − U)k = σ + (U0 − U)k

and since σ and k can be assumed to be positive without loss of generality (although in

this situation n0 may sometimes be negative), the assumption (2.13) can therefore ensure

that the denominator in (2.12) never vanishes in the water so that the solution derived

here remains valid at any depth.

From (2.13) it is clear that no critical layers will occur for wind waves propagating on

a tidal current or an ocean current like the Gulf Stream in which the waves and the strong

shear of the mean flow are all due to the wind. In fact, the condition (2.13) can be fulfilled

by any wave-current fields in which the waves and the strong shear of the current are all

generated by the local wind. Also, we emphasize that even if there exists a critical layer at
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z = zc, say, as long as |zc| is very large compared with the wavelength, the growth or decay

rate of the waves will be very small, and in the meantime, v remains finite at z = zc because

of the existence of the imaginary part of n0, which will arise when the current profile is not

perfectly linear. Therefore, even in this case, the variations of the wave motion can still be

specified approximately by the modulation theory developed below without consideration

of the instability. This situation is reminiscent of our earlier suggestion that the profile

of the mean flow in the region far away from the water surface has little or no influence

on the surface waves. Hence the present theory can have a wide application.
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3. The modulation theory

In this section, the underlying current U similar to that described in §2 is allowed to

vary slowly in both the x− and y−directions, and its vorticity components Ω1 and Ω2 can

gradually vary not only in the horizontal directions but also in the vertical direction (see

figure 1). In this situation, since all these variations are slow in the sense that their length

scales are large compared with the wavelength, the solution described in §2, when allowing

its parameters to slowly vary, represents the first term of the asymptotic expansion of

the exact solution for this ‘gradually varying problem’. The modulation rates of these

parameters will be derived in this section, which complete the so-called WKBJ solution

in this case.

When a wave train propagates on a horizontally non-uniform current, the magnitude

and the direction of the wave-number k will both change with distance. However, even

in this case, the x − axis of the rectangular co-ordinates can still be chosen to be parallel

to the local k at the position under consideration and the y − axis is therefore parallel to

the local wave crest. On the other hand, when the underlying current is non-uniform in

the horizontal directions, the mean water surface may not be horizontal, but according to

Phillips (1981), Longuet-Higgins (1985, 1987) and Henyey et al. (1988), the effects of its

slope and curvature on the wave motion are equivalent to those with a level mean surface

and with the gravitational acceleration g being replaced by the effective gravitational

acceleration g

′ defined by Phillips (1981). Therefore, by using g

′ instead of g and by using

the co-ordinate system chosen above in which the xy plane is tangent to the mean water

surface at the position under consideration, the solution described in §2 can directly be

applied for derivation of the WKBJ solution.

The use of the local co-ordinate system in the analysis has many other advantages

that will become clear in the following discussion. However, since a fixed co-ordinate

system is usually employed to study and compute numerically global variations of a wave

field, these two systems are linked in figure 2, in which the local system is distinguished

from the fixed system by using the notations s, m instead of x, y, respectively.

Since the differentiation of the slowly varying parameters increases the order of mag-

nitude by one each time, to derive the first-order WKBJ solution, the second-order deriva-

tives of the slowly varying parameters and the products of any two first-order derivatives

of these parameters can all be neglected in the following discussion. Similarly, since the

underlying current velocity is slowly varying in the horizontal directions and its vorticity is

slowly varying in all directions, this treatment can also be applied to the derivatives with

respect to s or m of U , V , Ω1 and Ω2, and to the derivatives with respect to z of Ω1 and Ω2.
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Also, we emphasize that when the first-order derivatives of the slowly varying param-

eters and quantities are taken into account, the second term of the asymptotic expansion

of each unknown in §2 should also be considered implicitly, and in the meantime, some

unknowns that vanish in §2 will now become non-zero. All of these extra terms, though

one order of magnitude smaller than those obtained in §2 and eventually negligible within

the present approximation, must be included in the analysis. This situation also occurs

in a formal perturbation scheme in which the second term of the asymptotic expansion

of each unknown is considered to derive the secular condition of the first term of the ex-

pansion, which leads to the modulation equation for the first term of the expansion (see,

for example, Whitham 1974 and Mei 1983). After this, the second term of the asymp-

totic expansion can be neglected in the WKBJ solution. Thus the present approach is

not separated from the perturbation scheme in which the perturbation parameter is the

ratio of the wavelength to the length scale of the variations of U and V in the horizontal

directions and the variations of Ω1 and Ω2 in all directions.

The quantities that are one order of magnitude smaller than their counterparts defined

in §2 are distinguished from them by using the symbols with a hat. For example, although

the component of the current velocity in the z − direction Ŵ vanishes at the mean water

surface at the position under consideration, from the continuity equation

∂U

∂s

+
∂V

∂m

+
∂Ŵ

∂z

= 0, (3.1)

and from the situation that ∂U/∂s 6= 0 and ∂V/∂m 6= 0, it follows that Ŵ has a small but

non-zero value at the depth within one wavelength where the current has a direct influence

on the surface waves.

The non-uniformity of the current in the horizontal directions also implies that the

vorticity component in the z−direction Ω̂3 ≡ ∂V/∂s−∂U/∂m is non-zero. On the other hand,

the quantities (∂Ŵ/∂s)z=0 and (∂Ŵ/∂m)z=0, which represent the first-order derivatives of a

smaller quantity, remain negligible locally. Finally, in the present case, the perturbation

vorticity component ω̂2 ≡ ∂û/∂z − ∂ŵ/∂s, though small, also becomes non-zero. Therefore,

in addition to ∂φ/∂s and ∂φ/∂z, the rotational velocity components of the wave motion û

and ŵ in the s− and z−directions, respectively, also exist and are one order of magnitude

smaller than ∂φ/∂s and ∂φ/∂z as well as v.

Notice that if ŵ does not vanish at the mean water surface, since its fast variation

in the horizontal directions can locally be represented by the function exp[i(ks − n0t)] and

since its slow variation can be neglected within the present approximation, it is always
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possible to define an irrotational velocity field φ̂ which takes the same form as (2.6) locally

so that ∂φ̂/∂z can have the same value as ŵ at each point on the mean water surface.

Therefore, after subtracting ∂φ̂/∂z from ŵ, subtracting ∂φ̂/∂s from û, and in the meantime,

adding φ̂ to φ, the new rotational perturbation velocity becomes horizontal at the mean

water surface, and the new velocity potential still takes the same form as (2.6) except

that the second term of the asymptotic expansion of A becomes different. Consequently,

the boundary condition

ŵ = 0 at z = 0 (3.2)

can be applied to simplify the analysis importantly.

In order to describe both the fast and the slow variations, the new velocity potential

can be written as

φ = A(s, m) exp

[∫ z

0

l(s, m, z) dz

]
eiχ(s,m,t) (3.3)

with

k = ∇hχ, n0 = −∂χ/∂t, (3.4)

where ∇h ≡ (∂/∂s, ∂/∂m) represents the horizontal gradient operator, k{k1, k2} the wave-

number vector, and l(s, m, z) a slowly varying function of position. Since in the present

co-ordinate system, k2 = 0 at the position under consideration, and from the relation (3.9)

given below, l|z=0 ≈ k, the expression (3.3) together with (3.4) is indeed identical with (2.6)

locally if the higher-order terms in the asymptotic expansions of A, k, and l are neglected

and their slow variations are ignored.

From the first of equations (3.4) it follows immediately that

∂k2

∂s

=
∂k1

∂m

. (3.5)

Also, from (3.4)

∂k/∂t + ∇hn0 = 0,

which is the kinematical conservation equation (Phillips 1977). Since in the present case

the underlying current is steady, we have ∂k/∂t = 0 so that from the above equation n0 is

constant everywhere.

Substitution of (3.3) and (3.4) into the three-dimensional Laplace equation yields

−k

2
1 + i

∂k1

∂s

+ 2ik1
1

A

∂A

∂s

+ i
∂k2

∂m

+ l

2 +
∂l

∂z

= 0 at z = 0 (3.6)
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in which the terms (1/A)(∂2
A/∂s

2) and (1/A)(∂2
A/∂m

2) have been neglected and the fact

that k2 = 0 locally has also been taken into account. Furthermore, since the variation

of the wave motion in the m − direction at the position under consideration is slow, the

second-order derivative (∂2
φ/∂m

2)z=0 = i(∂k2/∂m)Aeiχ +(∂2
A/∂m

2)eiχ ≈ i(∂k2/∂m)Aeiχ should

also be negligible here, meaning that at the position under consideration

∂k2/∂m = 0 (3.7)

within the present approximation. This important suggestion will later be justified ana-

lytically in this section.

In (3.6), since both l and ∂l/∂z exist, one cannot express l in terms of other parameters

and their derivatives without another equation. In Shyu & Tung (1999), the relation (see

their (2.14))

∂l

∂z

∣∣∣∣
z=0

= −i
∂k

∂s

has been derived from the Laplace equation for the exactly two-dimensional case in which

the wave crest is straight. Since the two terms in this relation both represent the deriva-

tives of the slowly varying parameters and therefore are small, the small curvature of the

wave crest occurred in the present case will impose a modification of this relation even

smaller and therefore negligible within the present approximation. Thus, in the present

case, we have

∂l

∂z

∣∣∣∣
z=0

= −i
∂k

∂s

= −i

(
k1

k

∂k1

∂s

+
k2

k

∂k2

∂s

)
= −i

∂k1

∂s

(3.8)

at the position under consideration, because k = (k2
1 + k

2
2)

1/2 and k2 = 0 locally. Therefore,

substituting (3.7) and (3.8) into (3.6), we obtain

l

2|z=0 = k

2
1 − 2ik1

1

A

∂A

∂s

.

Squaring both sides of it and neglecting the term (1/2k1)(1/A)2(∂A/∂s)2 and the even higher

order terms, we finally have

l|z=0 = k − i
1

A

∂A

∂s

. (3.9)

We next consider the kinematic free-surface condition, which in the present case can

be written as

∂η

∂t

+

(
∂φ

∂s

+ û + U

)
∂η

∂s

+

(
∂φ

∂m

+ v + V

)
∂η

∂m

=
∂φ

∂z

+ ŵ + Ŵ at z = η.
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After Taylor series expansions about z = 0, we have the linear-wave approximation

∂η

∂t

+ U

∂η

∂s

+ V

∂η

∂m

=
∂φ

∂z

− η

(
∂U

∂s

+
∂V

∂m

)
at z = 0 (3.10)

in view of (3.1) and (3.2). Therefore if the surface displacement is

η = a(s, m)eiχ(s,m,t)
, (3.11)

substitution of (3.3), (3.4), (3.7), (3.9) and (3.11) into (3.10) yields

A

a

= −i
σ

k

+
1

ak

(
U

∂a

∂s

+ V

∂a

∂m

)
+

1

k

(
∂U

∂s

+
∂V

∂m

)
+ i

1

ak

∂A

∂s

at z = 0 (3.12)

in virtue of (2.9). From (3.12), neglecting the smaller terms containing the derivatives of

the slowly varying functions, we have

A/a ≈ −iσ/k. (3.13)

Its differentiation with respect to s yields

∂A

∂s

= −i
σ

k

∂a

∂s

− i
a

k

∂σ

∂s

+ ia
σ

k

2

∂k1

∂s

(3.14)

because ∂k/∂s = ∂k1/∂s (see (3.8)) and ∂k/∂m = ∂k1/∂m. Therefore, by substituting (3.14)

into (3.12) for ∂A/∂s, one can express A in terms of other quantities and their derivatives

within the present approximation. Note that without consideration of the second term

of the asymptotic expansion of each quantity, (3.13) is again identical with (2.8), though

the parameters A, a, σ and k are now slowly varying.

Finally, the dynamical free-surface condition is imposed by the requirement that the

pressure in the water at the free surface is equal to the atmospheric pressure which is

assumed to be constant here. Therefore, if at a certain point at the free surface, the

component of the equation of motion in the ξ−direction in figure 3 is under consideration,

which is tangent to the instantaneous free surface at this point and perpendicular to the

local wave crest, the pressure gradient in this equation will vanish. The rest of the terms

in this equation, though originally involving the components of the quantities in the ξ−,

m− and ν − directions in figure 3, can all be transformed into the terms containing the

components in the s−, m− and z−directions. This can be done without difficulty, because

in figure 3, cosα ≈ 1 and sin α ≈ ∂η/∂s for linear waves. The resulting equation can then

be expressed as Taylor series expansions about the mean water surface z = 0, so that
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after neglecting the higher-order terms of the asymptotic expansions Ω̂3∂φ/∂m, û∂U/∂s,

(∂V/∂s)∂φ/∂m and V ∂û/∂m, and neglecting the nonlinear terms of the oscillatory wave

motion, we have

{
g

∂ζ

∂s

+ U

∂U

∂s

+ V

∂U

∂m

}
+

{
g

′
∂η

∂s

+
∂

2
φ

∂s∂t

+ U

∂

2
φ

∂s

2
+

∂U

∂s

∂φ

∂s

+ U

∂û

∂s

+ V

∂

2
φ

∂s∂m

+ U

∂U

∂z

∂η

∂s

+
∂U

∂s

∂U

∂z

η

+ U

∂

2
U

∂s∂z

η +
∂û

∂t

+
∂U

∂z

∂η

∂t

+
∂U

∂m

∂V

∂z

η + V

∂

2
U

∂m∂z

η + V

∂U

∂z

∂η

∂m

+
∂U

∂m

v

}
= 0 at z = 0, (3.15)

where ζ is the height of the mean water surface; see figure 3.

Notice that in deriving (3.15), the vector identity v × (∇ × v) = (1/2)∇(v · v) − v · ∇v

and the fact that the velocity component in the ν − direction at the instantaneous free

surface equals ∂η/∂t for linear waves have been utilized. Furthermore, the situation that η

represents the surface displacement of the waves in the z−direction in figure 3 has resulted

in the replacement of g by g

′ in the second braces in (3.15), which in the present case is

defined as g cos θ.

The above equation can also be deduced directly from the component of the equation

of motion in the s − direction evaluated directly at the mean water surface (so that no

Taylor series expansion about z = 0 is required) if the validity of the second of equations

(2.3) is assumed. However the present derivation involves no such assumption so that this

derivation is preferred and can serve as a proof of the validity of the second of equations

(2.3) in the present circumstances.

In (3.15), the terms in the first braces are time-independent while the expression in

the second braces represents a linear combination of the time-harmonic terms. Therefore

the latter itself should vanish, resulting in

g

′
∂η

∂s

+
∂

2
φ

∂s∂t

+ U

∂

2
φ

∂s

2
+

∂U

∂s

∂φ

∂s

+ V

∂

2
φ

∂s∂m

+ U

∂U

∂z

∂η

∂s

+
∂U

∂z

∂η

∂t

+ V

∂U

∂z

∂η

∂m

+

(
∂U

∂s

∂U

∂z

+ U

∂

2
U

∂s∂z

+
∂U

∂m

∂V

∂z

+ V

∂

2
U

∂m∂z

)
η = R at z = 0, (3.16)

where

R ≡ −
∂û

∂t

− U

∂û

∂s

− v

∂U

∂m

(3.17)

also evaluated at z = 0.

In (3.16), the terms on the right-hand side represented by R all contain the rotational

perturbation velocity component û or v. The sum of these terms can be related to those
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involving only the steady flow and the irrotational part of the wave motion. To achieve

this purpose, we consider the component of the vorticity equation in the m − direction

evaluated at the mean water surface for the entire flow. After neglecting the higher-order

terms û∂Ω2/∂s, (∂Ω2/∂m)∂φ/∂m, ω̂2∂V/∂m, Ω2∂
2
φ/∂m

2, (∂V/∂z)∂û/∂m and Ω̂3∂
2
φ/∂z∂m, and

neglecting the nonlinear terms of the oscillatory wave motion, this equation becomes

{
U

∂

2
U

∂s∂z

+ V

∂

2
U

∂m∂z

+
∂U

∂m

∂V

∂z

−
∂V

∂m

∂U

∂z

}
+

{
∂

∂z

(
∂û

∂t

+ U

∂û

∂s

+ v

∂U

∂m

)

+
∂U

∂z

∂ŵ

∂z

+
∂

2
U

∂s∂z

∂φ

∂s

+
∂

2
U

∂z

2

∂φ

∂z

+
∂V

∂z

∂

2
φ

∂s∂m

}
= 0 at z = 0 (3.18)

in view of (3.2) and the fact that

∂û

∂s

+
∂v

∂m

+
∂ŵ

∂z

= 0. (3.19)

Notice that although ŵ|z=0 = 0, (∂ŵ/∂z)z=0 is in general non-zero.

In (3.18), the time-independent terms and the time-harmonic terms have again been

separated so that we have for the steady flow

U

∂

2
U

∂s∂z

+ V

∂

2
U

∂m∂z

+
∂U

∂m

∂V

∂z

−
∂V

∂m

∂U

∂z

= 0 at z = 0, (3.20)

and for the oscillatory wave motion

∂

∂z

(
−

∂û

∂t

− U

∂û

∂s

− v

∂U

∂m

)
=

∂U

∂z

∂ŵ

∂z

+
∂

2
U

∂s∂z

∂φ

∂s

+
∂

2
U

∂z

2

∂φ

∂z

+
∂V

∂z

∂

2
φ

∂s∂m

at z = 0. (3.21)

The expression in the parentheses in (3.21) is identical to that represented by R in (3.17).

From (3.3), (3.5), (3.9) and the situation that k2 = 0 locally, it is not difficult to prove

that the solution

R =
∂U

∂z

ŵ +
∂

2
U

∂s∂z

(iφ) +
∂

2
U

∂z

2
φ +

∂V

∂z

(
i
∂φ

∂m

)
at z = 0 (3.22)

can satisfy (3.21) within the present approximation. In addition, the uniqueness of this

solution can be substantiated as follows.

First, the differentiation of (∂U/∂z)∂φ/∂z (instead of (∂2
U/∂z

2)φ which appears in

(3.22)) with respect to z will result in not only the term (∂2
U/∂z

2)∂φ/∂z occurring in (3.21)

but also the term (∂U/∂z)∂2
φ/∂z

2 which is absent from (3.21). The latter term is even one
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order of magnitude larger than the former term. Next, the derivatives with respect to z of

the terms (∂U/∂s)∂φ/∂s and V ∂

2
φ/∂s∂m, instead of (∂2

U/∂s∂z)(iφ) and (∂V/∂z)(i∂φ/∂m) cho-

sen in (3.22), also contain each an extra term that is not negligible even if the steady flow

U becomes irrotational so that û, v and ŵ in (3.21) vanish. This is certainly impossible.

Finally, the choice of (∂U/∂z)ŵ rather than U∂ŵ/∂z in (3.21) is because the differentiation

of the latter with respect to z also produces two terms which have the same order of mag-

nitude but only one of which really occurs in (3.21), while the differentiation of the term

(∂U/∂z)ŵ with respect to z results in (∂U/∂z)∂ŵ/∂z and (∂2
U/∂z

2)ŵ; the latter is indeed neg-

ligible or even vanishes at z = 0 according to (3.2). More important, the latter term can

also be found in the original equation that leads to (3.18). This and the fact that the fast

variations in the z −direction of the last three terms in both (3.21) and (3.22) are simply

specified by the function ekz can put even more confidence in the solution (3.22).

Since ŵ|z=0 = 0, the expression (3.22) reduces to

R =
∂

2
U

∂s∂z

(iφ) +
∂

2
U

∂z

2
φ +

∂V

∂z

(
i
∂φ

∂m

)
at z = 0 (3.23)

of which the right-hand side is indeed devoid of the rotational perturbation velocity.

Notice that the derivative of the right-hand side of (3.17) with respect to m is definitely

negligible so that the derivative of the right-hand side of (3.23) with respect to m, which

involves the term (∂V/∂z)i(∂2
φ/∂m

2)z=0, should also be negligible. This can justify (3.7)

analytically because (∂2
φ/∂m

2)z=0 ≈ i(∂k2/∂m)Aeiχ.

The equation (3.16) together with (3.23) involves only η and φ as the unknowns.

Therefore, substituting (3.3) and (3.11) into (3.16), using (3.12) and (3.14) to eliminate A

in favour of a, neglecting the terms containing the second-order derivatives of the slowly

varying functions or the products of any two first-order derivatives of these functions, and

then crossing out the common factor, we obtain

{(
g

′ + 2σU + U

∂U

∂z

)
1

a

∂a

∂s

+

(
2σV + V

∂U

∂z

)
1

a

∂a

∂m

+ U

∂σ

∂s

+ V

∂σ

∂m

+ 2σ

∂U

∂s

+ σ

∂V

∂m

+
∂U

∂s

∂U

∂z

+
∂U

∂m

∂V

∂z

+ U

∂

2
U

∂s∂z

+ V

∂

2
U

∂m∂z

−
σ

k

∂

2
U

∂s∂z

−

(
σ

k

1

a

∂a

∂m

+
1

k

∂σ

∂m

−
σ

k

2

∂k1

∂m

)
∂V

∂z

}

+ i

{
g

′
k − σ

2 − σ

∂U

∂z

+
σ

k

∂

2
U

∂z

2

}
= 0 at z = 0. (3.24)
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Since without loss of generality, the amplitude a(s, m) in (3.11) can be defined as a real

function, from the imaginary and real parts of (3.24) we finally have the dispersion relation

g

′
k = σ

2 + σΩ20 −
σ

k

∂

2
U

∂z

2

∣∣∣∣
z=0

(3.25)

and the modulation equation of the wave amplitude

(g′ + 2σU0 + Ω20U0)
1

a

∂a

∂s

+ (2σ + Ω20)V0
1

a

∂a

∂m

+ U0
∂σ

∂s

+ V0
∂σ

∂m

+ 2σ

∂U0

∂s

+ σ

∂V0

∂m

+

(
∂U0

∂s

+
∂V0

∂m

)
Ω20 −

σ

k

∂

2
U

∂s∂z

∣∣∣∣
z=0

+

(
σ

k

1

a

∂a

∂m

+
1

k

∂σ

∂m

−
σ

k

2

∂k1

∂m

)
Ω10 = 0 (3.26)

in virtue of (3.20), where U0, V0, Ω10 and Ω20 denote the values of U , V , Ω1 and Ω2 at the

mean water surface respectively, so that

Ω10 ≡
∂Ŵ

∂m

∣∣∣∣∣
z=0

−
∂V

∂z

∣∣∣∣
z=0

= −
∂V

∂z

∣∣∣∣
z=0

, Ω20 ≡
∂U

∂z

∣∣∣∣
z=0

−
∂Ŵ

∂s

∣∣∣∣∣
z=0

=
∂U

∂z

∣∣∣∣
z=0

within the present approximation.

Notice that since Ω20 represents the component of vorticity perpendicular to the local

k and the latter may vary in the s − direction, we have

∂Ω20

∂s

=
∂

∂s

[
∂

∂z

(
k1

k

U +
k2

k

V

)]

z=0

=
∂

∂s

[
k1

k

∂U

∂z

∣∣∣∣
z=0

+
k2

k

∂V

∂z

∣∣∣∣
z=0

]

=
∂

2
U

∂s∂z

∣∣∣∣
z=0

+
1

k

∂k2

∂s

∂V

∂z

∣∣∣∣
z=0

=
∂

2
U

∂s∂z

∣∣∣∣
z=0

−
1

k

∂k1

∂m

Ω10 (3.27)

at the position under consideration, meaning that the quantities ∂Ω20/∂s and (∂2
U/∂s∂z)z=0

are generally not equal to each other.

Also we emphasize that if the higher-order term −(σ/k)(∂2
U/∂z

2)z=0 and those inherent

in g

′ are neglected, the dispersion relation (3.25) is again identical with (2.10), though

the quantities k, σ, and Ω20 are now slowly varying. These higher-order terms, when

substituting in (3.26), will produce even higher-order terms and therefore are negligible

within the present approximation. On the other hand, the slow variations of k and σ

corresponding to those of the underlying current can be determined approximately from
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(2.9), (2.10), (3.5) and the fact that n0 = const.. Thus the last term in (3.25) can be

discarded and g

′ can be replaced by g in the WKBJ solution. Therefore, we have

gk = σ

2 + σΩ20. (3.28)

Using (2.9), (3.5), (3.28), and the fact that n0 = const., the values of σ, k1 and k2 at

each point can be solved in either a local co-ordinate system or a fixed co-ordinate system.

Therefore, in (3.26), all quantities except a become known so that the value of a at each

point can be determined numerically from (3.26), after which the values of A, p and v at

the same point can also be determined by using (3.13), (2.11) and (2.12) respectively. All

of these represent the first-order WKBJ solution of the waves propagating obliquely on

a steady three-dimensional, strongly sheared current that varies slowly in the horizontal

directions and deviates slightly from a linear profile in the vertical direction.

Finally we note that if the component of the equation of motion in the m − direction

evaluated at the instantaneous free surface is considered, following the same approach

that leads to (3.24) and using the component of the vorticity equation in the z−direction

evaluated at z = 0, one can obtain an equation similar to (3.24). This equation can

completely be cancelled out by using the equation

U

∂

2
V

∂s∂z

+ V

∂

2
V

∂m∂z

+
∂V

∂s

∂U

∂z

−
∂U

∂s

∂V

∂z

= 0 at z = 0 (3.29)

derived from the time-independent terms of the component of the vorticity equation in

the s − direction for the entire flow. Therefore, the dynamical free-surface condition can

indeed be satisfied by the present solution.
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4. Comparison with the action conservation equation

The modulation equation (3.26) is complicated and will become even more compli-

cated in a fixed co-ordinate system when a transformation of axes is performed. There-

fore from this equation one cannot immediately know whether the wave action is con-

served in the present case. This difficulty can however be overcome by expansion of the

action conservation equation derived by Voronovich (1976) in a fixed co-ordinate system,

by expressing the result in the local co-ordinate system, and then by comparison of the

resulting equation with (3.26) to see whether or not these two equations are consistent

with each other in the present case.

With one exception that will become clear in the following discussion, the situation

under which Voronovich (1976) has derived the action conservation equation is far more

general than the present case. For example, in Voronovich (1976), the slowness of the

variations of Ω1 and Ω2 along the vertical co-ordinate is not assumed and the variation in

the buoyancy of the fluid is allowed so that the propagation of internal gravity waves has

also been considered. The results can, in tensor notation, be written as

∂I

∂t

+
∂

∂xα

(
C

(α)
gr I

)
= 0, (4.1)

where I represents the wave action density and C

(α)
gr I the wave action flux due to the mean

surface velocity U0 ≡ U|z=0 and the group velocity Cg ≡ ∂σ/∂k (so that Cgr ≡ U0 + Cg).

The expressions of I and C

(α)
gr I have also been deduced by Voronovich (1976) in terms

of the mean square value of the first term of the asymptotic expansion of the wave vertical

velocity. Since in the present case, this mean square value at each depth −z is (σ2
a

2
/2)e2kz

according to (3.3), (3.9) and (3.13), substitution into the expressions (17) and (18) in

Voronovich (1976) for I and C

(α)
gr I and neglect of the buoyancy terms and the terms relating

to the variations of Ω1 and Ω2 along the vertical co-ordinate, which are negligible in the

present case (in which ∂Ω1/∂z and ∂Ω2/∂z are small but non-zero), lead to

I =
ρ

2

(
g

σ

−
kα

2k

2

∂Uα

∂z

)
a

2 =
ρ

2k

(
σ +

1

2

kα

k

∂Uα

∂z

)
a

2 (4.2)

and

C

(α)
gr I =

[
U

(α)
0 +

(
σ

2

k

kα

k

+ 2
σ

k

kα

k

kβ

k

∂Uβ

∂z

−
σ

k

∂Uα

∂z

) /
2

(
σ +

1

2

kβ

k

∂Uβ

∂z

)]
·

ρ

2k

(
σ +

1

2

kβ

k

∂Uβ

∂z

)
a

2

(4.3)
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in virtue of (3.28). (Here and hereafter, all the quantities involving the differentiation

with respect to z represent those evaluated at z = 0.)

Notice that to obtain (4.2) and (4.3), the dispersion relation (3.28) must be rewritten

as

gk = σ

2 + σ

kα

k

∂Uα

∂z

(4.4)

before substitution. In (4.4), the last term represents a zeroth-order tensor and is therefore

independent of the choice of co-ordinate axes. By differentiation of (4.4) with respect to

kα, we also have the group velocity

C

(α)
g =

(
σ

2

k

kα

k

+ 2
σ

k

kα

k

kβ

k

∂Uβ

∂z

−
σ

k

∂Uα

∂z

)/
2

(
σ +

1

2

kβ

k

∂Uβ

∂z

)
, (4.5)

which indeed coincides with that implied in (4.3).

The action conservation equation (4.1) together with (4.2) and (4.3) can now be

expanded by carrying out the differentiation with respect to xα while the derivative with

respect to t can be discarded due to the steadiness of the wave train. After differentiation,

the local co-ordinate system (s, m, z) is chosen so that the terms containing k2 or ∂k2/∂m can

be eliminated (see (3.7)). The resulting equation can be reduced further by substitution

of (3.20) and the equations arising from differentiation of the kinematical conservation

equation n0 = σ+Uαkα = const. in the present case and from differentiation of the dispersion

relation (4.4), resulting in

(g′ + 2σU0 + Ω20U0)
1

a

∂a

∂s

+ (2σ + Ω20)V0
1

a

∂a

∂m

+ U0
∂σ

∂s

+ V0
∂σ

∂m

+ 2σ

∂U0

∂s

+ σ

∂V0

∂m

+

(
∂U0

∂s

+
∂V0

∂m

)
Ω20 −

σ

k

∂

2
U

∂s∂z

∣∣∣∣
z=0

+

(
σ

k

1

a

∂a

∂m

+
1

k

∂σ

∂m

−
σ

k

2

∂k1

∂m

)
Ω10

= −
1

2

σ

k

∂

2
U

∂s∂z

+
1

2

σ

k

∂

2
V

∂m∂z

+
∂V

∂z

∂U0

∂m

. (4.6)

The terms on the left-hand side of (4.6) are exactly the same as those on the left-

hand side of (3.26) so that the three terms on the right-hand side of (4.6) represent

the differences between (3.26) and (4.6). The reason for these differences may lie in

the situation that in Voronovich (1976), the rotational perturbation velocity has not

been separated from the irrotational one. Therefore the rotational perturbation velocity

components û and ŵ defined in §3, which are of the second order, can in Voronovich (1976)

be inferred from the solutions of the second-order equations in the hierarchy of equations
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arising from substitution of the asymptotic expansions of the unknowns into the original

boundary-value problem. However û and ŵ can also be determined directly from the

component of the vorticity equation in the m−direction and the continuity equation (see

(3.18) and (3.19)) in terms of ∂φ/∂s, ∂φ/∂z and v. Thus the rotational and irrotational

parts of the perturbation velocity can be separated from each other before asymptotic

expansion, and each term of the asymptotic expansions of û and ŵ can in theory be

expressed in terms of the lower-order terms in the expansions of ∂φ/∂s, ∂φ/∂z and v and

should therefore be considered as known in the equations in the hierarchy, meaning that

extra terms will occur on the right-hand side of the second-order inhomogeneous equations

in the hierarchy compared with those in Voronovich (1976). Consequently, in this new

perturbation scheme, the solvability condition of the second-order equations and therefore

the modulation equation of the first-order terms of expansions will be different from those

in Voronovich (1976), although these first-order terms of expansions in these two schemes

represent the same quantities.

Since û and ŵ can in general be expressed explicitly in terms of ∂φ/∂s, ∂φ/∂z and v only

at z = 0 (see (3.17) and (3.23)), the new perturbation scheme cannot be implemented in

practice (so that an alternative has been applied in §3). However, when û and ŵ become

even smaller or the first terms of their expansions represent the homogeneous solutions

of the second-order inhomogeneous equations in the hierarchy, no extra terms will occur

on the right-hand side of these equations when the rotational perturbation velocity is

separated from the irrotational one. Thus in these two situations, the modulation equation

of the first-order terms of expansions in the new perturbation scheme can also be obtained

by using the old perturbation scheme, resulting in (4.6). Therefore in these two situations,

one may expect that (4.6) can coincide with (3.26), which will be scrutinized below.

The two situations may separately occur in four cases:

(1) Waves propagate on a steady two-dimensional current with strong but constant

shear and are in a direction parallel with this current. In this case (which has also been

considered in Jonsson et al. (1978)), the perturbation velocity remains irrotational so that

û = ŵ = 0 indeed. On the other hand, since V = 0, it follows from (3.20) that ∂

2
U/∂s∂z = 0.

Thus the three terms on the right-hand side of (4.6) all vanish. Therefore (4.6) indeed

coincides with (3.26) in this case.

(2) Waves propagate on a steady three-dimensional, strongly sheared current in which

∂V/∂z = 0 in the local co-ordinate system so that v = 0 according to (2.12). When this

occurs at a certain position and if initially ω̂2 ≡ ∂û/∂z − ∂ŵ/∂s ≈ 0 here, from the vorticity
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equation, ω̂2 and therefore û, ŵ will remain negligible at this position if ∂U/∂z, though large,

remains unchanged along the vertical co-ordinate. On the other hand, since ∂V/∂z = 0,

differentiation of (3.20) with respect to z leads to

∂U

∂z

∂

2
U

∂s∂z

= 0 (4.7)

within the present approximation so that the three terms on the right-hand side of (4.6)

can be neglected. Therefore in this case, (4.6) indeed coincides with (3.26).

(3) Waves propagate perpendicularly on a steady two-dimensional current with strong

but constant shear so that U = 0, ∂U/∂z = 0 but ∂V/∂z 6= 0. In this case, according to

(2.12), v has the same order of magnitude as ∂φ/∂s, but the fast variation of v with depth

can now be specified solely by the simple function ekz because ∂U/∂z = 0. Next, from

the component of the vorticity equation in the m − direction, which in this case reduces

to ∂ω̂2/∂t = −(∂2
φ/∂s∂m)(∂V/∂z) (see (3.21)) within the present approximation, and from

the continuity equation (3.19), it is clear that the fast variations with depth of û and ŵ

are also specified solely by ekz. Thus û and ŵ represent the homogeneous solution of the

second-order inhomogeneous equations in the hierarchy derived by Voronovich (1976).

Therefore in this case, (4.6) remains unchanged when the rotational perturbation velocity

is separated from the irrotational one. On the other hand, when U = 0, it follows from

(3.29) that ∂

2
V/∂m∂z = 0. Thus the three terms on the right-hand side of (4.6) all vanish.

Therefore in this case, though the rotational perturbation velocity is no longer negligible,

still (4.6) coincides with (3.26) indeed.

(4) Waves propagate on a steady three-dimensional, strongly shear current in which

∂U/∂z = 0 but ∂V/∂z 6= 0 in the local co-ordinate system. In this case, for the same

reason as that in case (3), the fast variation of v with depth can be specified solely by

ekz. Furthermore, it follows from (3.20) that ∂U/∂m = 0 (since ∂V/∂z 6= 0). Therefore in

this case, the component of the vorticity equation in the m−direction reduces to ∂ω̂2/∂t+

U(∂ω̂2/∂x) = −(∂2
φ/∂s∂m)(∂V/∂z) within the present approximation. This equation and the

continuity equation (3.19) indicate that the fast variations of û and ŵ with depth are also

specified solely by ekz because at the position under consideration, U is independent of

z. Therefore in this case, (4.6) also remains unchanged when the rotational perturbation

velocity is separated from the irrotational one. On the other hand, since ∂U/∂z = 0,

differentiation of (3.29) with respect to z results in (∂V/∂z)(∂2
V/∂m∂z) = 0 within the

present approximation. Therefore in this case, the three terms on the right-hand side of

(4.6) can all vanish (recall that ∂U/∂m = 0) so that (4.6) indeed coincides with (3.26).

23



The above discussion and the situation that the derivation of (3.26) is straightforward

can put great confidence in the validity of (3.26) in the general case. Therefore from the

comparison between (3.26) and (4.6) it is very likely that the wave action is not conserved

in the general case. However the wave action remains conserved in a situation more

general than that considered in Jonsson et al. (1978). Therefore it is interesting to see

whether this conclusion can also be reached by an extension of the theory of Jonsson et

al. (1978) using an integral approach, which given in the next section, can directly result

in the wave energy equation and can therefore apply to other purposes.

We wind up the present section by emphasizing that although there exists a term

containing ∂

2
U/∂z

2 on the left-hand side of each field equation in the hierarchy derived by

Voronovich (1976), this term is one order of magnitude smaller than Voronovich (1976)

originally assumed it to be when the deviation of the current velocity from a linear profile

in the vertical direction is small. Thus the term containing ∂

2
U/∂z

2 in the first-order equa-

tions in the hierarchy in Voronovich (1976) should now occur on the right-hand side of the

second-order equations instead, meaning that in this case, another extra term will occur

on the right-hand side of the second-order equations compared with those in Voronovich

(1976), but the solution of the first-order equations can still be expressed in terms of a

two-dimensional velocity potential φ and a transverse rotational perturbation velocity v.

Therefore in this case, the new perturbation scheme with the rotational perturbation ve-

locity being separated from the irrotational one is still required and the wave action de-

fined in (4.2) is not conserved. This situation will alter when the deviation of the current

velocity from a linear profile in the vertical direction is not small (or when the density-

field inhomogeneities exist). Therefore in this more complicated case, it is unnecessary to

separate the rotational perturbation velocity from the irrotational one, meaning that the

action conservation equation derived by Voronovich (1976) is correct. However, accord-

ing to Shrira (1993), when ∂

2
U/∂z

2 is not small, the solution of the first-order equations in

the hierarchy, which will be substituted into the expressions (17) and (18) in Voronovich

(1976) for I and C

(α)
gr I, is itself a series solution with a large number of terms, which can

render the applications of this action conservation equation difficult.
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5. Extension of Jonsson, Brink-Kjær & Thomas’ theory

The approach by Jonsson et al. (1978) is based on the integral properties of the

combined wave and current motion across a fixed vertical section. This approach was first

applied by Longuet-Higgins & Stewart (1960) in their derivation of the radiation stress

tensor and was applied by Phillips (1977) to derive the expressions for the conservation

of mass, momentum and energy when a wave train propagates obliquely on a variable

irrotational current. The special arrangement made by Jonsson et al. (1978) is particularly

suitable for a rotational current.

Since the vertical integrals involving the rotational perturbation velocity v cannot in

general be evaluated in terms of simple functions owing to the fact that the denominator

in (2.12) varies rapidly, the situation that Ω1 = 0 (but Ω2 6= 0 and V 6= 0), which ensur-

ing that v = 0 according to (2.12), is considered first, which corresponds to case (2) in §4.

On the other hand, according to (3.25), (3.26) and the discussion above (3.28), the slow

variations in the vertical direction of the quantities about the current cannot affect the

WKBJ solution; therefore the vertical integrals in this analysis will be evaluated with-

out consideration of these variations (so that Ŵ = 0 at each depth). Also, in this integral

approach, unlike the perturbation scheme, it is unnecessary to consider the second-order

terms of asymptotic expansions, meaning that the components of the rotational pertur-

bation velocity û and ŵ can also be disregarded in the vertical integrals even in a general

case. Therefore in the present case, it suffices to substitute all the solutions in §2 except

v into the vertical integrals for the local properties of the wave motion.

Following the precedent of Jonsson et al. (1978) (and Phillips (1977) for a three-

dimensional analysis), we first define the radiation stress tensor

Sαβ = δαβ

∫ η

−h

p dz − δαβ

∫ 0

−h

(−ρgz) dz + ρ

∫ η

−h

ũαũβ dz − ρ

∫ 0

−h

ŨαŨβ dz, (α, β = 1, 2), (5.1)

where a overbar denotes averaging over the (constant) observed period, δαβ is the unit

tensor (δαβ = 1 if α = β and vanishes otherwise), h the local mean water depth,

ũ1 ≡ ∂φ/∂s + U, ũ2 ≡ ∂φ/∂m + V = V (5.2)

the total horizontal velocity components, and Ũ1, Ũ2 the s, m components of a ‘formal

current velocity’, the profiles of which are defined as

Ũ1(z) = Ũ10 + Ω2z, Ũ2(z) = Ũ20, (5.3)
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where Ũ10, Ũ20, and Ω2 are independent of z. The relations between Ũ1 and U and between

Ũ2 and V can be established from the requirement that

∫ 0

−h

Ũ1(z) dz =

∫ η

−h

ũ1(z) dz,

∫ 0

−h

Ũ2(z) dz =

∫ η

−h

ũ2(z) dz. (5.4)

Substituting (2.6), (2.8), (5.2) and (5.3) into (5.4) and recalling that U = U0 + Ω2z and

V = V0, we obtain

Ũ10 = U0 +
2σ + Ω2

4h

a

2
, Ũ20 = V0 (5.5)

correct to the second order in (ak). To achieve these results, the mean water depth h is

assumed to be large compared with the wavelength so that the solutions (2.6) and (2.8)

for deep-water waves can be applied here.

In order to evaluate the first integral in (5.1) to the second order in (ak), the mean

pressure distribution

p = −ρgz −
ρ

2
σ

2
a

2e2kz
, (5.6)

correct to the second order in (ak) and valid even for a vortical flow (see (3.2.17) in Phillips

(1977)) is also required in addition to (2.11). By substituting all these results and the

solutions given in §2 into (5.1), we obtain

S11 =
ρ

4
ga

2 +
ρ

4
Ω2(2σ + Ω2)a

2
h

S22 =
ρ

4k

σΩ2a
2

S12 = S21 = 0





(5.7)

correct to the second order in (ak).

Next the total mean energy flux per unit area

Fα =

∫ η

−h

[
p + ρg(z + b) +

ρ

2
(ũ2

1 + ũ

2
2 + ũ

2
3)

]
ũα dz, (α = 1, 2) (5.8)

where ũ3 ≡ ∂φ/∂z + Ŵ = ∂φ/∂z and b = b(s, m) represents the height of the mean water

surface above a reference level (see figure 4) specified for determination of the potential

energy. By substitution and after some lengthy manipulations, we obtain

F1 =
ρ

4k

σ

2
U0a

2 +
ρ

4k

gσa

2 +
ρ

2
gU0a

2 −
3

8
ρa

2

(
−2σΩ2U0h +

2

3
σΩ2

2h
2 − Ω2

2U0h +
1

3
Ω3

2h
2

)

+
ρ

2

∫ 0

−h

Ũ

3
1 dz +

ρ

2

∫ 0

−h

Ũ

2
2 Ũ1 dz + ρgbhU1 (5.9)

F2 =
ρ

2
gV0a

2 +
ρ

4
a

2

(
σΩ2V0h +

1

2
Ω2

2V0h

)
+

ρ

2

∫ 0

−h

Ũ

2
1 Ũ2 dz +

ρ

2

∫ 0

−h

Ũ

3
2 dz + ρgbhU2 (5.10)
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where U1 ≡ (1/h)
∫ η

−h
ũ1(z) dz = Ũ10 − Ω2h/2 and U2 ≡ (1/h)

∫ η

−h
ũ2(z) dz = Ũ20 (see (5.3) and

(5.4)), the average-over-depth velocity.

On the other hand, the mean total momentum flux Mαβ per unit area equals the sum

of the first and third terms on the right-hand side of (5.1). Thus

Mαβ = Sαβ +
ρ

2
gh

2
δαβ + ρ

∫ 0

−h

ŨαŨβ dz, (α, β = 1, 2). (5.11)

The horizontal components of the mean total pressure force acting on the fluid at the bed

per unit length in the s− and m − directions are P1 = ρgh(∂D/∂s) and P2 = ρgh(∂D/∂m),

respectively; see figure 4. The equations −∂Mα1/∂s − ∂Mα2/∂m + Pα = 0, (α = 1, 2) of total

momentum conservation therefore take the form

∂S11

∂s

+
∂S12

∂m

+
∂

∂s

(
ρ

∫ 0

−h

Ũ1Ũ1 dz

)
+

∂

∂m

(
ρ

∫ 0

−h

Ũ1Ũ2 dz

)
+ ρgh

∂b

∂s

= 0, (5.12)

∂S21

∂s

+
∂S22

∂m

+
∂

∂s

(
ρ

∫ 0

−h

Ũ1Ũ2 dz

)
+

∂

∂m

(
ρ

∫ 0

−h

Ũ2Ũ2 dz

)
+ ρgh

∂b

∂m

= 0. (5.13)

Also the equation expressing total energy conservation is simply

∂F1

∂s

+
∂F2

∂m

= 0, (5.14)

where F1 and F2 are given by (5.9) and (5.10) respectively.

The equations (5.12)–(5.14) can be combined into one equation to eliminate the terms

devoid of the wave amplitude a. To achieve this purpose, we multiply (5.12) by U 1 and

(5.13) by U2, and then subtract the resulting equations from (5.14), so that the terms

originated from the last terms in (5.9), (5.10), (5.12) and (5.13) can immediately be

cancelled out in this operation, considering the mass conservation equation

∂

∂s

(U1h) +
∂

∂m

(U2h) = 0. (5.15)

The integrals in (5.9), (5.10), (5.12) and (5.13) can also yield the terms free from a in

this operation. However, by using (5.15) repeatedly and in consideration of (3.20), (5.3),

(5.4) and (5.5), it can be proved that

∂

∂s

(
1

2

∫ 0

−h

Ũ

3
1 dz +

1

2

∫ 0

−h

Ũ1Ũ
2
2 dz

)
+

∂

∂m

(
1

2

∫ 0

−h

Ũ

2
1 Ũ2 dz +

1

2

∫ 0

−h

Ũ

3
2 dz

)
− U1

∂

∂s

(∫ 0

−h

Ũ

2
1 dz

)

− U1
∂

∂m

(∫ 0

−h

Ũ1Ũ2 dz

)
− U2

∂

∂s

(∫ 0

−h

Ũ1Ũ2 dz

)
− U2

∂

∂m

(∫ 0

−h

Ũ

2
2 dz

)

=
1

12
h

3Ω2
∂Ω2

∂s

(
2σ + Ω2

4h

a

2 −
1

2
Ω2h

)
. (5.16)

27



Therefore, if ∂Ω2/∂s 6= 0 (and Ω2 6= 0), the terms originated from the integrals in (5.9),

(5.10), (5.12) and (5.13) cannot be cancelled out in this operation and will yield a term

which is free from a and cannot therefore be balanced by other terms remaining in the

equation (imaging the case when a = 0). This situation implies that when Ω1 = 0 and

dissipation is neglected (so that the energy conservation equation (5.14) together with

(5.8) is valid), we have ∂Ω2/∂s ≈ 0. This result is consistent with (4.7) in view of (3.27).

The rest of the terms in the equation resulting from this operation all contain the wave

amplitude a and can be divided into three groups. The first group is devoid of h while

each term in the second and third groups contains respectively h and h

2 as the common

factor. However, if ∂Ω2/∂s = 0, the terms in the third group are completely cancelled

out and in the meantime, the two expressions from the first and second groups without

consideration of their common factors coincide with each other exactly. Therefore, for an

arbitrary value of h, the original equation reduces to

(g + 2σU0 + Ω2U0)
1

a

∂a

∂s

+ (2σ + Ω2)V0
1

a

∂a

∂m

+ U0
∂σ

∂s

+ V0
∂σ

∂m

+ 2σ

∂U0

∂s

+ σ

∂V0

∂m

+

(
∂U0

∂s

+
∂V0

∂m

)
Ω2 = 0, (5.17)

which is indeed consistent with (3.26) and (4.6) when both Ω1 and ∂Ω2/∂s in these two

equations vanish in this case.

In order to obtain a physical insight into (5.17), the mean wave energy density

E ≡

∫ η

−h

ρgz dz −

∫ 0

−h

ρgz dz +
ρ

2

∫ η

−h

(ũ2
1 + ũ

2
2 + ũ

2
3) dz −

ρ

2

∫ 0

−h

(Ũ2
1 + Ũ

2
2 ) dz (5.18)

defined by Jonsson et al. (1978) is also evaluated here. Substitution of (5.2), (5.3) and

(5.5) into (5.18) yields

E =
ρ

2k

a

2
σ

(
σ +

Ω2

2

)
+

ρ

4
a

2Ω2h

(
σ +

Ω2

2

)
. (5.19)

On the other hand, it follows from (4.5) that

C

(1)
g =

σ

2k

(σ + Ω2)

/(
σ +

Ω2

2

)
, C

(2)
g = 0 (5.20)
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in the local co-ordinate system in the present case. Thus (5.9) and (5.10) can also be

written as

F1 =(U0 + C

(1)
g )E + U1S11 +

ρ

2

∫ 0

−h

Ũ

3
1 dz +

ρ

2

∫ 0

−h

Ũ

2
2 Ũ1 dz + ρgbhU1,

F2 =(V0 + C

(2)
g )E + U2S22 +

ρ

2

∫ 0

−h

Ũ

2
1 Ũ2 dz +

ρ

2

∫ 0

−h

Ũ

3
2 dz + ρgbhU2.

Consequently, the combination of equations (5.12)-(5.14), which has previously led to

(5.17), produces

∂

∂s

[
(U0 + C

(1)
g )E

]
+

∂

∂m

[
(V0 + C

(2)
g )E

]
+ S11

∂U1

∂s

+ S22
∂U2

∂m

= 0, (5.21)

which is certainly equivalent to (5.17).

The above equation indicates that in case (2) in §4, the slow variation of the wave

amplitude can be specified by not only the action conservation equation but also the energy

balance equation involving the rate of working by the radiation stress Sαβ against the

mean rate of strain. Therefore the situation here is quite similar to that in an irrotational

current, but in the present case, according to (4.2) and (5.19), the relation between E and

I becomes I = E/σm, where σm ≡ n0 − kU1 = σ + Ω2kh/2 + O(a2) is the frequency of waves

relative to the frame of reference moving with the average-over-depth velocity component

U1. This relation is different from that established by Bretherton & Garrett (1968) in

which σm is replaced by the intrinsic frequency σ, which is also the frequency in a frame

of reference moving with the surface velocity component U0. However, according to the

footnote in page 412 in Jonsson et al. (1978), an anonymous referee of their paper has

pointed out that redefining the wave energy density as E

′ by calculating the kinetic energy

solely from the perturbation particle velocities, resulting in

E

′ =
1

4
ρa

2
(
2g − Ω2

σ

k

)
=

ρ

2k

a

2
σ

(
σ +

Ω2

2

)
(5.22)

in view of (2.10), the wave action density I can again be written in terms of the intrinsic

frequency σ as E

′
/σ. This situation remains to be true in the present case. In addition,

equation (5.21) is equivalent to

∂

∂s

[
(U0 + C

(1)
g )E′

]
+

∂

∂m

[
(V0 + C

(2)
g )E′

]
+ S

′

11

∂U0

∂s

+ S

′

22

∂V0

∂m

= 0, (5.23)
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where

S

′

11 =
ρ

4
ga

2

S

′

22 =
ρ

4k

σΩ2a
2

S

′

12 = S

′

21 = 0





(5.24)

is the new radiation stress arising from (5.7) by neglect of the term involving h. This

result is not really surprising in view of the statements above (5.17) and considering that

the difference of E

′ from E also lies in the term containing h.

Equation (5.23) together with (5.22) and (5.24) is simpler than (5.21) together with

(5.19) and (5.7), but as pointed out by Jonsson et al. (1978), the physical interpretation

of E

′ (and also S

′

αβ) is not obvious because the wave energy equation (5.23) does not follow

directly from the overall energy equation (5.14) in the integral approach. However, the

integral approach itself will become invalid even in the simple cases (3) and (4) in §4 in

which ∂U/∂z = 0 but ∂V/∂z 6= 0. This situation and the significance of (5.23) together with

(5.22) and (5.24) will be discussed in the next section.
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6. The limitations of the integral approach

We start the discussion by considering the case (3) in §4. In this simple case, the waves

propagate perpendicularly on a steady two-dimensional current with strong and constant

shear so that the properties of the wave train and the water depth will not vary in the

s−direction. Furthermore, since U = 0 and v 6= 0, the total horizontal velocity components

become ũ1 = ∂φ/∂s, ũ2 = v + V where V = V0 − Ω1z, and the s, m components of the ‘formal

current velocity’ can now be defined as

Ũ1(z) = Ũ10, Ũ2(z) = Ũ20 − Ω1z, (6.1)

where

Ũ10 =
σ

2h

a

2
, Ũ20 = V0 +

Ω1

4h

a

2 (6.2)

by using (5.4). Now substituting all these results and the solutions given in §2 into (5.1)

and (5.8), we obtain

S11 =
ρ

4
ga

2

S22 =
ρ

4k

Ω2
1a

2 −
ρ

4
Ω2

1a
2
h

S12 = S21 =
ρ

4k

σΩ1a
2 −

ρ

4
σΩ1a

2
h





(6.3)

and

F2 =
ρ

2
gV0a

2 +
ρ

4k

gΩ1a
2 +

3ρ

8k

V0Ω
2
1a

2 +
3ρ

16k

2
Ω3

1a
2 −

3ρ

8
V0Ω

2
1a

2
h −

ρ

8
Ω3

1a
2
h

2

+
ρ

2

∫ 0

−h

Ũ

3
2 dz + ρgbhU2, (6.4)

Where

U1 ≡(1/h)

∫ η

−h

ũ1(z) dz = Ũ10 = (σ/2h)a2 (6.5)

U2 ≡(1/h)

∫ η

−h

ũ2(z) dz = V0 + (Ω1/4h)a2 + Ω1h/2 (6.6)

by virtue of (5.4), (6.1) and (6.2).

The component F1 of the total mean energy flux in the s−direction is not given here

because in the mean total energy conservation equation (5.14), F1 is differentiated with

respect to s, which in the present case will vanish, so that (5.14) reduces to

∂F2/∂m = 0. (6.7)
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For the same reason, (5.12) and (5.13) reduce to

∂S12

∂m

+
∂

∂m

(
ρ

∫ 0

−h

Ũ1Ũ2 dz

)
= 0, (6.8)

∂S22

∂m

+
∂

∂m

(
ρ

∫ 0

−h

Ũ

2
2 dz

)
+ ρgh

∂b

∂m

= 0 (6.9)

in which

ρ

∫ 0

−h

Ũ1Ũ2 dz = ρσV0a
2
/2 + ρσΩ1a

2
h/4 (6.10)

from (6.1) and (6.2).

Notice that after substituting (6.3) and (6.10) into (6.8), the terms devoid of a are

absent from the resulting equation. Therefore, to eliminated these terms from the rest

of the conservation equations, only (6.7) and (6.9) will be combined into one equation.

This can be achieved by multiplying (6.9) by U 2 and then by subtracting the resulting

equation from (6.7), which by means of (5.15) can immediately cancel out the last term

of (6.9) and the terms originated from the last term of (6.4). Moreover, since it follows

from (6.1), (6.2) and (6.6) that

∫ 0

−h

Ũ

3
2 dz = U

3

2h + U2Ω
2
1h

3
/4,

∫ 0

−h

Ũ

2
2 dz = U

2

2h + Ω2
1h

3
/12

and since ∂(U2h)/∂m = 0 from (5.15), the integral terms in the combination of (6.7) and

(6.9)

∂

∂m

(
ρ

2

∫ 0

−h

Ũ

3
2 dz

)
− U2

∂

∂m

(
ρ

∫ 0

−h

Ũ

2
2 dz

)
=

ρ

12
U2Ω1h

3 ∂Ω1

∂m

(6.11)

Since the rest of the terms in the combination of (6.7) and (6.9) all contain a, the result

(6.11) implies that in the absence of wave motion and dissipation, it is necessary that

∂Ω1/∂m = 0 when U = 0, which is consistent with (3.29). If this situation remains so when

a 6= 0, after the above cancellation, the combination of (6.7) and (6.9) finally results in

1

k

[
ρa

∂a

∂m

(
1

2
gΩ1 + gkV0 +

1

4
V0Ω

2
1 +

3

8k

Ω3
1

)
+ ρa

2 ∂V0

∂m

(
1

2
gk +

3

8
Ω2

1

)]

− h

[
ρa

∂a

∂m

(
1

4
V0Ω

2
1 +

1

4k

Ω3
1

)
+ ρa

2 ∂V0

∂m

(
1

4
Ω2

1

)]
= 0. (6.12)
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The two expressions in the two square brackets in (6.12) cannot possibly coincide with

each other so that (6.12) cannot reduce to an equation devoid of h, which is contrary to

the situation resulting in (5.17) and can only show the invalidity of the integral approach

in this case.

The reason for this invalidity is that in the present case in which v 6= 0, the nonlinear

term v∂

2
v/∂m∂z in the component of the vorticity equation in the s− direction will result

in an extra term in the time-independent equation (3.29). This term and the other similar

terms have been ignored in the analysis in §3 in which the terms of O(a2) are all neglected,

but in the integral approach, these terms (which will vanish in case (2) in §4) have the

same order of magnitude as the terms contributing to (5.17) or (5.21) and cannot therefore

be ignored. Thus in the present case, when a 6= 0, the terms on the right-hand side of

(6.11) will not vanish so that equation (6.12) cannot be achieved. More important, the

remaining terms on the right-hand side of (6.11), which should be included in (6.12),

cannot be determined owing to the fact that the variation of v∂

2
v/∂m∂z with depth is

specified by e2kz while the term V ∂

2
V/∂m∂z in (3.29) is constrained to vary linearly with

depth in the present analysis. This situation will also occur in case (4) in §4, but in case

(3), since there is no need to eliminate the terms devoid of a in (6.8) by using (3.29), from

(6.8) it is possible to obtain

∂

∂m

[(
V0 +

Ω1

2k

)
ρ

2
σa

2

]
= 0. (6.13)

Since k = const. in the present case, this equation can be rewritten as

∂

∂m

[(
V0 +

Ω1

2k

)
ρ

2k

σa

2

]
= 0, (6.14)

which corresponding to the action conservation equation (4.1) in view of (4.3) and con-

sidering that the action flux will not vary in the s−direction in the present case. Further-

more, since σ = n0 = const. in the present case, equation (6.13) can also be rewritten as

∂

∂m

[(
V0 +

Ω1

2k

)
ρ

2k

σ

2
a

2

]
= 0, (6.15)

which can be recognized as the wave energy equation if the wave energy density E

′ and

the radiation stress S

′

αβ are defined by (5.22) and (5.24) respectively. This result implies

that the transverse rotational perturbation velocity v, even if it has the same order of
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magnitude as ∂φ/∂s, should be excluded from the definitions of the wave energy density

and the radiation stress.

In case (4) in §4, since U 6= 0 (though ∂U/∂z = 0), the equation corresponding to (6.8)

in case (3) will involve the terms devoid of a so that it is impossible to obtain an equation

like (6.13) in this case by using the integral approach. However, since in this case, the

action conservation equation derived by Voronovich (1976) is still consistent with (3.26),

from (4.1), (4.3) and (4.5) it follows that

∂

∂s

[
(U0 + C

(1)
g )

ρ

2k

σ

2
a

2
]

+
∂

∂m

[
(V0 + C

(2)
g )

ρ

2k

σ

2
a

2
]
− (U0 + C

(1)
g )

ρ

2k

σa

2 ∂σ

∂s

− (V0 + C

(2)
g )

ρ

2k

σa

2 ∂σ

∂m

= 0 (6.16)

in the present case. Furthermore, since C

(1)
g = σ/2k and C

(2)
g = Ω1/2k in the present

case according to (4.5), from the equations derived by differentiation of the kinematical

conservation equation and the dispersion relation, the last two terms of (6.16)

−(U0 + C

(1)
g )

ρ

2k

σa

2 ∂σ

∂s

− (V0 + C

(2)
g )

ρ

2k

σa

2 ∂σ

∂m

=
ρ

4k

σ

2
a

2 ∂U0

∂s

=
ρ

4
ga

2 ∂U0

∂s

in virtue of (4.4) with ∂U/∂z = 0. (Recall that in case (4) in §4, ∂U0/∂m = 0.) Therefore

(6.16) reduces to

∂

∂s

[
(U0 + C

(1)
g )

ρ

2k

σ

2
a

2
]

+
∂

∂m

[
(V0 + C

(2)
g )

ρ

2k

σ

2
a

2
]

+
ρ

4
ga

2 ∂U0

∂s

= 0, (6.17)

which again can be recognized as the wave energy equation if the wave energy density E

′

and the radiation stress S

′

αβ are defined by (5.22) and (5.24) respectively.

When the underlying mean flow becomes more complicated by allowing that Ω2 has

the same order of magnitude as σ and Ω1, the action conservation equation derived by

Voronovich (1976), the wave energy equation (5.23) together with (5.22) and (5.24), and

the modulation equation (3.26) are in general inconsistent with one another. However,

since Ω2 has already been included in the definitions of E

′ and S

′

αβ in (5.22) and (5.24),

one may expect that with a slight modification, the wave energy equation (5.23) can

still specify the slow modulation of the wave amplitude in a general case, which will be

discussed in the next section.
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7. Modification of the wave energy equation

In this section, the wave energy equation (5.23) will be modified to reconcile it with

the modulation equation (3.26) in a general case, but before this, equation (5.23) together

with (5.22) and (5.24) will be expressed in a fixed co-ordinate system and in tensor

notation. This equation will then be expanded, followed by the choice of the local co-

ordinate system in which (3.26) has been derived so that the resulting equation can

be compared with (3.26). After this comparison, the modification of the wave energy

equation will be conducted and explained in the fixed co-ordinate system, which is useful

in practical applications.

In the fixed co-ordinate system and in tensor notation, the wave energy equation

(5.23) together with (5.22) and (5.24) can be written as

∂

∂xα

[
(U

(α)
0 + C

(α)
g )E

]
+ Sαβ

∂U

(β)
0

∂xα
= 0, (7.1)

where the wave energy density

E =
ρ

2k

a

2
σ

(
σ +

1

2

kα

k

∂Uα

∂z

)
(7.2)

and the radiation stress

Sαβ = aαγaβδS
′

γδ, (7.3)

in which the matrix

A ≡

[
a11 a12

a21 a22

]
=

[
k1/k −k2/k

k2/k k1/k

]
(7.4)

and the radiation stress components S

′

αβ, (α, β = 1, 2) are given by (5.24).

Expression (7.3) together with (7.4) represents the transformation of the radiation

stress components S

′

αβ, (α, β = 1, 2) in the local co-ordinate system (s, m, z) into the compo-

nents Sαβ, (α, β = 1, 2) in the co-ordinate system (x1, x2, z) in which k1 and k2 are the com-

ponents of k. Substituting (4.5) for C

(α)
g in (7.1) and following the procedure which leads

to (4.6), we have

(g′ + 2σU0 + Ω20U0)
1

a

∂a

∂s

+ (2σ + Ω20)V0
1

a

∂a

∂m

+ U0
∂σ

∂s

+ V0
∂σ

∂m

+ 2σ

∂U0

∂s

+ σ

∂V0

∂m

+

(
∂U0

∂s

+
∂V0

∂m

)
Ω20 −

σ

k

∂

2
U

∂s∂z

∣∣∣∣
z=0

+

(
σ

k

1

a

∂a

∂m

+
1

k

∂σ

∂m

−
σ

k

2

∂k1

∂m

)
Ω10

= −
1

2

σ

k

∂

2
U

∂s∂z

+
1

2

σ

k

∂

2
V

∂m∂z

(7.5)
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The difference between (7.5) and (4.6) is clear and both equations are inconsistent with

(3.26) in a general case. However, since the two terms on the right-hand side of (7.5), which

represent the difference between (7.5) and (3.26), can in tensor notation be written as

−
σ

k

kα

k

kβ

k

∂

2
Uβ

∂xα∂z

+
1

2

σ

k

∂

2
Uα

∂xα∂z

, (7.6)

which multiplied by the common factor ρσa

2
/2k arise directly from the expansion of the

term

∂

∂xα
[C(α)

g E] =
∂

∂xα

[
ρ

2k

a

2
σ

(
1

2

σ

2

k

kα

k

+
σ

k

kα

k

kβ

k

∂Uβ

∂z

−
1

2

σ

k

∂Uα

∂z

)]
, (7.7)

the new wave energy equation that is consistent with (3.26) in a general case is

∂

∂xα

[
(U

(α)
0 + C

(α)
g )E

]
−

(
ρ

2k

2
a

2
σ

2 kα

k

kβ

k

∂

2
Uβ

∂xα∂z

−
ρ

4k

2
a

2
σ

2 ∂

2
Uα

∂xα∂z

)
+ Sαβ

∂U

(β)
0

∂xα
= 0. (7.8)

The extra terms in (7.8) certainly represent the wave-mean flow interaction, the con-

sequence of which is simply that although the wave energy flux due to the group velocity

is explicitly dependent on ∂Uα/∂z (see (7.7)), the net effect of this flux and the wave-mean

flow interaction is independent of ∂Uα/∂z.
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8. Conclusions

We have derived the modulation equation (3.26) for the amplitudes of deep-water

gravity waves propagating obliquely on a steady three-dimensional, strongly sheared cur-

rent that varies slowly in the horizontal directions and deviates slightly from a linear

profile in the vertical direction. This equation is consistent with the action conservation

equation derive by Voronovich (1976) as long as the rotational perturbation velocity be-

comes negligible or its fast variation with depth can be specified solely by the simple func-

tion ekz. The reason for the action conservation equation being inconsistent with (3.26)

in a general case can be explained satisfactorily so that the wave action is not likely to be

conserved in this general case. However, in an even more general case in which the devi-

ation of the current velocity from a linear profile in the vertical direction is not small or

the density-field inhomogeneities exist, the reason for the invalidity of the action conser-

vation equation is absent so that the wave action is conserved in this case.

When the action conservation equation is inconsistent with (3.26), to provide a phys-

ical insight into the latter, the theory of Jonsson et al. (1978) has been extended by us-

ing the integral approach, although for an apparent reason this approach also becomes

invalid when the rotational perturbation velocity is no longer negligible. The results indi-

cate that the wave energy equation (5.23) together with (5.22) and (5.24) derived by us-

ing this approach in a case in which the rotational perturbation velocity is negligible can

remain consistent with (3.26) and the action conservation equation even when the rota-

tional perturbation velocity is no longer negligible but varies with depth as ekz, implying

that even if the transverse rotational perturbation velocity v has the same order of mag-

nitude as the longitudinal irrotational one, v should not be included in the definitions of

the wave energy density and the radiation stress.

In the general case in which the rotational perturbation velocity is not negligible and

its fast variation with depth cannot be specified solely by ekz, the wave energy equation

(5.23) can still be reconciled with (3.26) by adding two extra terms to the former, indi-

cating that the definitions of the wave energy density and the radiation stress without

consideration of v remain valid in this case but additional wave-mean flow interaction oc-

curs now. Its consequence is simply that although the wave energy flux due to the group

velocity is explicitly dependent on the vertical shear of the current velocity, the net effect

of this flux and the wave-mean flow interaction is independent of this vertical shear.

Finally, we emphasize that to obtain (3.26), equations (3.20) and (3.29) have been used

constantly, meaning that the modulation equation (3.26) and therefore the modified wave
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energy equation (7.8) can hold only if the background motion satisfies the original, fully

non-linear hydrodynamic equations of an inviscid fluid within the present approximation.

For example, even if the term (µ/ρ)(∂2
/∂z

2)(∂U/∂z) in the vorticity equation due to the

viscosity is non-zero, as long as this term is at least one order of magnitude smaller than

the dominant terms in (3.20), equations (3.26) and (7.8) can still hold. This situation

remains true for the action conservation equation derived by Voronovich (1976), although

in this case, the background motion is allowed to vary slowly with time. Therefore,

depending on how small the deviation of the current velocity from a linear profile in the

vertical direction is, one equation among the action conservation equation (together with

the series solution of Shrira (1993)) and the modified wave energy equation can be chosen

to combine with the theories of wind-wave and wave-wave interactions and other theories

to estimate the wave field on a three-dimensional, strongly sheared current. Specifically,

the modified wave energy equation can be applied to estimate the wave fields in the regions

outside Hualien and Su-Auo harbours on the eastern coast of Taiwan during typhoons,

because in these events, the waves and the strong shear of the mean flow can be generated

on the Kuroshio, which itself will vary in the regions not far from the coastline. On the

other hand, since the high-frequency wave components, of which the wavelengths are small

compared with the horizontal length scale of the Kuroshio, can excite the low-frequency

resonances in a harbour according to Chen, Mei & Chang (2006), the present theory may

benefit the study to reduce the resonances of Hualien and Su-Auo harbours.
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