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I.  Introduction 
In a previous study (see Refs.1, 2) we obtained conditions for the 

initiation of various (rest, slide, rock and slide-rock) modes of motion of a 
rigid body placed on a frictional base under the action of a concentrated force 
of short duration. The study was motivated by our desire to better understand 
the behavior of a caisson due to a breaking wave force. 

Since there had not been previous work done on the subject as 
described in Refs.1, 2, and in anticipation that the work would be rather 
involved, the uplift force acting at the bottom of a caisson that normally 
accompanies a breaking wave was not included in the study. Indeed, our 
investigation (see Refs.1, 2) shows that the analysis is complex and a caisson 
behaves rather differently depending on whether the force is applied above 
or below the center of mass of the body. 

In the present study, the uplift force is included. The approach of the 
analysis follows that in the previous work (see Refs.1, 2). The analysis, 
though straight forward, involves many cases and is therefore complex and 
lengthy. For this reason, this report considers only the situation of a breaking 
wave force applied above but not below the center of mass of the body. The 
presentation is necessarily brief; only the essentials of the analysis are given. 

The report begins with a section ‘Models’ which describes the models 
employed for the caisson, the breaking wave force and the uplift force. This 
is followed by sections of derivations of the criteria for the initiation of the 
various modes.  
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II.  Models 
Consider a plane rigid body, partially immersed in water, of uniform 

mass distribution, the total mass in water being m  (see Fig.1). The body is 
rectangular in elevation and footprint whose height is H2 , width B2  and 
depth equal to unity. It rests on a horizontal frictional base. The friction 
between the base and the body is of the Coulomb type with coefficient of 
static friction μ . The body is initially at rest and is subjected to a breaking 
wave which imparts pressures on the seaward side of the vertical wall. The 
resultant of the pressures is the horizontal force F  which is assumed to act 
on the body only for a short duration. The force is expressed in terms of the 
weight of the body in water as mgkF =  where g  is gravitational acceleration 
and k  is a non-dimensional coefficient. In this study, we consider only the 
case in which F  is applied above, and at a distance h  from the center of 
mass of the body where Hkh '=  and 1'0 ≤≤ k . The breaking wave also 
induces pressures on the bottom of the body whose distribution along the 
width of the body is assumed to be triangular, decreasing from maximum on 
the seaward side to zero on the landward side. The resultant of the pressures 
is denoted by mgkqqFU ==  where the quantity q  is a non-dimensional 
coefficient. The motion of the plane body is specified by the horizontal and 
vertical displacements of the center of mass C  of the body and its rotation, θ , 
considered positive in the counterclockwise direction. The horizontal and 
vertical displacements of C  are x  and y , considered positive to the right 
and upwards respectively as shown in Fig.1. The reaction forces are xf  and 

yf , positive to the right and upwards respectively. yf  acts at a distance ξ  

from C . The uplift force U  acts at a distance 3B  from C . 
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III.  Rest (RE) 
When the body is at rest, the equations of equilibrium are: 

mgkFf x == .....................................................................................(1) 

)1( qkmgUmgf y −=−= .....................................................................(2) 

and, by taking moment of the forces about C , 

03/ =+++ UBFhfHf yx ξ ..................................................................(3) 

By substituting (1) and (2) into (3), we get 

qk
qkBk

−
++−=

1
]3/)'1([γξ ......................................................................(4) 

where BH /=γ  is the aspect ratio of the body. 

For the body to be in contact with the base, yf  must be greater than or 

equal to zero, or  

q
k 1≤ .................................................................................................(5) 

For the body to be at rest, xf  must be smaller than or equal to the 
limiting Coulomb friction force yfμ . That is,  

)(
1 0 kqk
k

f
f

y

x μμ ≡
−

=≥ .......................................................................(6) 

Finally, yf  must remain within the base ( 'OO ) of the body; i.e. B≤ξ . 

From (4), for the condition to be satisfied, it requires  

Akqk
k ≡

++
≤

3/4)'1(
1

γ
......................................................................(7) 

It may be verified that qkA /1≤ . The above conditions (6) and (7) 
constitute the criteria for the body to remain at rest under the action of F  and 
U , the resultants of the distributed short duration pressures due to a breaking 
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wave. These conditions may be conveniently presented graphically as a 
region using the parameters k  and μ  as the horizontal and the vertical axes 
respectively as shown in Fig.2. 

The curve OA  or )(0 kμ  and the line AH  or Akk =  intersect at point A  
with coordinates Akk =  and  

AA k
qk

≥
++

==
3/)'1(

1
γ

μμ ...............................................................(8) 

The region that represents the rest mode is shaded and denoted by the 
symbol RE  in Fig.2. 

It may be seen from (7) and (8) and Fig.2 that the larger the values of γ , 
'k  and q , the closer is the line AH  to the μ  axis, the narrower is the rest 

region and the less likely is the body to remain at rest. Also, when 0=q , the 
result agrees with those obtained earlier in Refs.1, 2. 
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IV.  Slide (SL) 
The equations of motion for the initiation of a slide mode are the same 

as those for a rest mode except the equation in the x-direction. They are: 

Ffxm x −=&& ........................................................................................(9) 

)1( qkmgUmgf y −=−= ...................................................................(10) 

and,  

03/ =+++ UBFhfHf yx ξ ................................................................(11) 

Here and hereafter, over-dot denotes differentiation with respect to time. The 
conditions for a slide mode to occur are 0≥yf , yx ff μ=  and B≤ξ . The 

condition 0≥yf  gives, from (10), qk /1≤ . Equation (11) gives 

qk
qkHqBHkk

−
−++−=

1
)1()3/'( μξ .......................................................(12) 

For qk /1≤ , ξ  is always smaller than or equal to zero. The condition 
B≤ξ  therefore requires, 

)(
1

)]3/4('[)/1(
1 kqk

qkk μγγμ ≡
−
+−≤ ......................................................(13) 

The curve )(1 kμ  is sketched in Fig.3 in the μ−k  plane; it intersects 
)(0 kμ  at point A , and the horizontal k  axis at D  where the abscissa is 

3/4'
1
qk

kD +
=
γ

..................................................................................(14) 

Beyond Dk , the curve 1μ  is negative and goes to negative infinity as k  
approaches q/1 . 

The region corresponding to a slide mode is the shaded area OAD  in 
Fig.3. The symbol SL  is used to denote the slide mode. In region OAM , the 
rest mode governs because the horizontal reaction force xf  in a rest mode is 
smaller than the horizontal reaction force xf  in the slide mode. From (9), we 
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have ))(1( 0μμ −−= qkx&& . In the region of slide mode, (OAD ), qk /1≤  and 

0μμ ≤ ; thus, 0≤x&& . Since the body is originally at rest, 0≤x&  and 0≤x . That 
is, the body slides to the left under the action of F , as expected.  
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V.  Rock about point O (RO) 
When a body is about to rock about point O , the equations of motion 

are: 

Ffxm x −=&& ......................................................................................(15) 

Umgfym y +−=&& ..............................................................................(16) 

and, noting that yf  acts at point O  (see Fig.1) about which the body rotates, 

3/UBFhBfHfI yx ++−=θ&& ..............................................................(17) 

Here, )(
3
1 22 HBmI +=  is mass moment of inertia of the body about its center 

of mass C . 

The accelerations x&&  and y&&  of point C  are related to the angular 
acceleration θ&&  of the body as θ&&&& Hx −=  and θ&&&& By = . Equation (17) gives 

)1(
)1(4

3
2 −

+
=

Ak
k

B
g
γ

θ&& .......................................................................(18) 

where Ak  is given in (7).  

Equations (15) and (16) give respectively 

)(
)1(4 2 bakmgf x +

+
=

γ
........................................................................(19) 

and 

)(
)1(4 2 dckmgf y +

+
=

γ
.......................................................................(20) 

where  

qka γγγ 4'34 22 −−+= .......................................................................(21) 

γ3=b ..............................................................................................(22) 

qkc 24)'1(3 γγ −+= ..........................................................................(23) 
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and  

241 γ+=d ........................................................................................(24) 

It is noted that both xf  and yf  are either positive or negative since the 

quantities a  and c  may be positive or negative. For the case of 0≥c , yf  is 

always greater than or equal to zero. For the case of 0≤c , dkcf y +−= , in 

which case, 0≥yf  for cdk /≤ . For cdk /≥ , the body is in a free-flight 

mode. 

For the body to rock about point O , θ&&  must be greater than or equal to 
zero. This means, from (18),  

Akk ≥ ..............................................................................................(25) 

For a rock mode to be initiated, xf  must not exceed the limiting friction 
force. That is, yx ff μ≤ , or, 

)(* k
dck
bak

μμ ≡
+
+

≥ ..........................................................................(26) 

The function )(* kμ  behaves in a variety of ways depending on the signs 
of the quantities a , c  and xf . There are altogether six cases that must be 
considered. They are: 

Case I: ∞≤≤++=≥≥≥ kdckbakfca x 0),/()(*,0,0,0 μ   

Case II: cdkdkcbakfca x /0),/()(*,0,0,0 ≤≤+−+=≥≤≥ μ ; for 

∞≤≤ kcd / , the body is in a free-flight mode 

Case III: abkdckbkafca x /0),/()(*,0,0,0 ≤≤++−=≥≥≤ μ  

Case IV: cdkabkdkcbkafca x /0,/0),/()(*,0,0,0 ≤≤≤≤+−+−=≥≤≤ μ ; 

for ∞≤≤ kcd / , the body is in a free-flight mode 

Case V: ∞≤≤++−=≤≥≤ kabdckbkafca x /),/(*,0,0,0 μ  
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Case VI: cdkkabdkcbkafca x /,/),/(*,0,0,0 ≤∞≤≤+−+−=≤≤≤ μ ; for 

∞≤≤ kcd /  the body is in a free-flight mode 

Properties of )(* kμ  are examined for each of the above six cases. 

Case I: 

The curve )/()()(* dckbakk ++=μ  passes point A  (see Fig.2). As k  
approaches infinity, 0)/(* ≥= caμ  The slope of )(* kμ  is =dkd /*μ  

2)/()( dckbcad +−  where ebcad )1(4 2γ+=−  is independent of k ; here  

qke γγγ −−+= '31 22 ..........................................................................(27) 

which may be greater or smaller than zero. Thus the slope of )(* kμ  is a 
decreasing function of k  and approaches zero as k  approaches infinity. 
Also, the slope of )(* kμ  at point A  is equal to )1(4/ 2γ+e . Since the 
quantity e  may be greater or smaller than zero, distinction must be 
made between two sub-cases: sub-case 1 is for 0≥e , denoted by case I1 
and sub-case 2 is for 0≤e  denoted by case I2. Figs. 4a and 4b show, 
from (25) and (26), the regions for rock mode to occur for cases I1 and 
I2 respectively. 

For values of γ , 'k  and q , if k (force) and μ (coefficient of friction) 
correspond to a point in the μ−k  plane that falls in the region to the 
right of the vertical line AH  and above the curve )(* kμμ =  in Figs. 4a 
and 4b, a rock mode would ensue. Here the region corresponding to a 
rock (about point O ) mode is shaded and the symbol RO  is used to 
denote the case of rock (about point O ) mode. 

Case II: 

In this case, )/()(* dkcbak +−+=μ  passes the point A  and the 
expression of its slope is the same as that in case I. For cdk /≤ , *μ  is 
greater than or equal to zero and  approaches infinity at cdk /= . Thus, 
the slope of *μ  is greater than or equal to zero and consequently the 
quantity e  is either greater than or equal to zero. It may be verified that 

qcd /1/ ≥ . The region corresponding to a rock mode is identified in Fig. 
5 as that to the right of AH  above *μ  and to the left of the line 
PQ ( cdk /≤ ), shaded and denoted by RO . For cdk /≥ , the body would 
be lifted off the base in a free-flight mode denoted by the symbol FF . 
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Case III: 

In this case, abkdckbka /0),/()(* ≤≤++−=μ . Again, )(* kμ  passes 
point A  and is equal to zero at abk /= ; the expression of its slope is the 
same as that in case I and hence 0≤e . It may be verified that 

qaeqab /')/1()/( =−  where  

qkee γγγ −−+=+= '343' 22 ................................................................(28) 

which may be greater or smaller than zero. Thus, case III is sub-divided 
into two cases: case III1 is for 0'≥e  and case III2 is for 0'≤e . The 
regions corresponding to these two sub-cases are shown respectively in 
Figs. 6a and 6b to the right of line AH , left of line NL  and above the 
curve )(* kμμ = . These regions are shaded as shown. The symbol E  is 
used to mean that the region is ‘empty’, not covered by the cases III1 
and III2. 

Case IV: 

In this case, )/()(* dkcbka +−+−=μ  for cdk /≤  and abk /≤ . By 
comparing cd / , ab /  and q/1 , we see that aceabcd /])1(4[// 2γ+−=− , 

)/('/1/ qaeqab =−  and =− qcd /1/  )/()]'1(3[ qckq ++ γ  which is always 
greater than zero. Thus, case IV has three sub-cases: sub-case IV1 is for 

0≥e , 0'≥e  in which case cdab // ≥  and qab /1/ ≥ ; sub-case IV2 is for 
0≤e , 0'≥e  in which case cdab // ≤  and qab /1/ ≥ ; finally, sub-case 

IV3 is for 0≤e , 0'≤e  in which case cdab // ≤  and qab /1/ ≤ . 

In case IV1, the characteristics of *μ  are the same as those in case II. In 
cases IV2 and IV3, *μ  passes point A ; since for these cases, 0≤e , the 
slope of *μ  decreases as k  increases. Also, at abk /= , 0* =μ . 

The shaded regions shown in Figs. 7a, 7b and 7c correspond 
respectively to a rock mode for these cases. 

Case V: 

In this case, )/(*,0,0,0 dckbkafca x ++−=≤≥≤ μ  and ∞≤≤ kab / . The 
characteristics of *μ  are: at abk /= , 0* =μ ; as k  approaches infinity, 

0/* ≥= caμ , and its slope approaches zero. Since 0*≥μ , its slope must 
be greater than or equal to zero as well. Thus the quantity e  must be less 
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than zero. Since )/('/1/ qaeqab =−  which may be greater or smaller 
than zero, two sub-cases must be considered. In case V1, 0'≥e , 

qab /1/ ≥  and in case V2, 0'≤e , qab /1/ ≤ . The curves *μ  are sketched 
in Figs. 8a and 8b respectively and a rock mode is marked as the shaded 
regions above the curve *μ  for abk /≥  to the right of line NL . 

Case VI: 

In this case, ,/),/(*,0,0,0 ∞≤≤+−+−=≤≤≤ kabdkcbkafca x μ  and 
cdk /≤ . It is seen that at abk /= , 0* =μ  and *μ  approaches infinity 

at cdk /= . Since the slope of *μ  is equal to /)1(4/* 2 edkd γμ +−=  
2)( dkc +−  and must be greater than or equal to zero, we conclude that 

0≤e  indicating that cdab // ≤ ; however, since ab /  may be greater or 
smaller than q/1 , two sub-cases arise. The characteristics of *μ  are 
such that *μ  starts at zero at abk /=  and slopes up and approaches 
infinity at cdk /=  as shown in Figs. 9a and 9b for qab /1/ ≥  and 

qab /1/ ≤  respectively. In both Figs. 9a and 9b, the shaded regions to 
the right of the line NL  and above *μ  correspond to a rock mode. For 

cdk /≥  the body is in a free-flight mode.  

The six cases are divided based on the sign of a  and c  and that of xf . In 
the analysis, it is seen that the sub-cases also depend on the sign of the 
quantities e  and 'e . Since these quantities are all functions of γ , 'k  and q , 
we identify these cases in a qk −'  plane with γ  as the parameter as shown in 
Fig. 10. The lines 0=a , 0=c , 0=e  and 0'=e  are indicated. 
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VI.  Slide-rock about point O (SRO) 
When a body is on the verge of sliding and rocking about point O  

simultaneously, yf  acts at O  and the equations of motion are: 

Ffxm x −=&& ......................................................................................(29) 

Umgfym y +−=&& ..............................................................................(30) 

and  

3/UBFhBfHfI yx ++−=θ&& ...............................................................(31) 

These equations are the same as (15), (16) and (17), those governing the 
initiation of a rocking motion about point O . The difference is that in the 
case of a rock mode, θ&&&& Hx −=  and yx ff μ≤ . In the present case, x&&  is not 

equal to θ&&H−  although the relation θ&&&& By =  is still valid, and xf  is either 
equal to yfμ  or yfμ− . In the following, the two cases of yx ff μ=  and yx ff μ−=  

are treated separately. In a rock about point O  mode, the cases I, II, III, and 
IV correspond to 0≥xf  and the cases V and VI are for 0≤xf . The study of 
slide-rock about point O  mode is also divided into these six cases. 

Case I: yx ffca μ=≥≥ ,0,0  

For yx ff μ= , from (31), 

)]}
3
4('[1{

)34(
3

2 μγγμγ
μγγ

θ −++−
−+

= qkk
B

g&& ..................................(32) 

and, from (30) 

)]'3(1[
34

2
2 kqkmgf y −−+
−+

= γγγ
μγγ

................................................(33) 

For the case under consideration, 0≥xf , so that the velocity at point O , 
denoted Ox& , of the body about which rotation takes place is less than or 
equal to zero. It suffices to examine the acceleration Ox&&  of point O  
when a slide-rock mode of motion is impending, the body being initially 
at rest. Noting that θ&&&&&& HxxO +=  and x&&  is given by (29), we get  
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)]()([
34 2 bakdckgxO +−+

−+
= μ

μγγ
&& ................................................(34) 

For a slide-rock (about point O ) mode to occur, we must have 0≥θ&& , 
0≥yf  and, with 0≥= yx ff μ , 0≤Ox& . 

Case I has two sub-cases: I1 for 0≥e  and I2 for 0≤e . These sub-cases 
are discussed below.  

Case I1: ( 0≥e ). The condition 0≥yf  is satisfied provided, from (33), (a) 

cμμ ≤  and Ckk ≤ , and, (b) cμμ ≥  and Ckk ≥ . 

Here, 

γγμ 3/)4( 2+≡c ,  )'3(/)1( 2 kqkC −+≡ γγγ .......................................(35) 

Depending on whether '3kq ≥γ  or '3kq ≤γ , Ck  may be greater or 
smaller than zero. Sub-case I1 is therefore further divided into cases 
I1,1 and I1,2 for '3kq ≥γ  and '3kq ≤γ  respectively. 

To visualize these requirements, reference is made to Figs. 11a and 11b 
for '3kq ≥γ  ( 0≥Ck ) (case I1,1) and '3kq ≤γ  ( 0≤Ck ) (case I1,2) 
respectively. It is noted that Cμ  intersects *μ  (see Figs. 4a and 4b) at 

Ckk =  for 0≥Ck  or, equivalently, '3kq ≥γ . For '3kq ≤γ , Cμ  and *μ  do 
not intersect.  

In Fig. 11a, the shaded region to the left of SR  and below Cμ  and the 
shaded region to the right of SR  and above Cμ  are the regions in which 
the condition 0≥yf  is satisfied. In Fig. 11b, the shaded region below 

Cμ  corresponds to the condition 0≥yf ; otherwise, the body is in a state 
of free-flight.  

Similarly, the regions corresponding to 0≤Ox&&  are (a) cμμ ≤  and *μμ ≤ , 
and, (b) cμμ ≥  and *μμ ≥ . These regions are shown in Fig. 12a for 

'3kq ≥γ  and Fig.12b for '3kq ≤γ  as shaded regions.  

Finally, the condition 0≥θ&&  is satisfied provided: for qk /1≤ , (a) cμμ ≤ , 
1μμ ≥ , and, (b) cμμ ≥ , 1μμ ≤ ; for qk /1≥ , (a) cμμ ≤ , 1μμ ≤  and (b) 
cμμ ≥ , 1μμ ≥ . Here, 1μ  is defined in (13) in the slide ( SL ) section. A 

branch of 1μ  is added for qk /1≥ . The regions corresponding to 0≥θ&&  
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are shown in Figs. 13a and 13b for the cases I1,1 ( '3kq ≥γ ) and I1,2 
( '3kq ≤γ ) respectively. 

By combining the conditions 0≥yf , 0≤Ox&&  and 0≥θ&&  , the regions for a 
slide-rock (about point O ) mode are shown as shaded in Figs. 14a and 
14b for the cases of I1,1 and I1,2 respectively. The symbol −SRO  is used 
to represent slide-rock (about point O ) mode. The subscript refers to the 
situation of 0≤Ox& .  

As is done for the case of rock about point O  where the various cases (I 
to VI) are shown as regions in qk −'  plane in Fig. 10, the same is done 
for the cases of the slide-rock about point O  in Fig. 15.  

Case I2: ( 0≤e ). In this case, '3kq ≤γ . The conditions 0≥yf , 0≤Ox&& , and 
0≥θ&&  are represented by the shaded regions in Figs. 16, 17 and 18 

respectively. By combining the regions satisfying these conditions, the 
regions corresponding to a slide-rock (about point O ) mode with 0≤Ox& , 
denoted −SRO , for the case I2 are given in Fig.18. 

Case II:  

In this case, yx ffca μ=≤≥ ,0,0 , and '3kq ≥γ .The regions for 0≥yf , 
0≤Ox&&  and 0≥θ&&  are represented by the shaded areas in Figs. 20, 21 and 

22 respectively. An additional branch of *μ  is added for cdk /≥ . The 
regions for a slide-rock (about point O ) mode for case II are given in 
Fig. 23.  

Case III:  

In this case, yx ffca μ=≥≤ ,0,0 , 0≤e , and '3kq ≤γ  ( 0≤Ck ). Recall that 
for case III in the case of rock about point O , distinction is made 
between case III1 for 0'≥e  ( qab /1/ ≥ ) and case III2 for 0'≤e  
( qab /1/ ≤ ). Such distinction is similarly made for the case of slide-rock 
(about point O ). The regions corresponding to 0≥yf  are given in Figs. 
24a and 24b. The regions corresponding to 0≤Ox&&  are given in Figs. 25a 
and 25b and those corresponding to 0≥θ&&  are given in Figs. 26a and 
26b.  

The regions of a slide-rock about point O  mode for cases III1 and III2 
are given in Figs. 27a and 27b. 
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Case IV:  

In this case, 0≤a , 0≤c , yx ff μ= . In the case of rock about point O , case 
IV is divided into three sub-cases: case IV1 for 0≥e , 0'≥e , cdab // ≥ , 

qab /1/ ≥ , case IV2, for 0≤e , 0'≥e , cdab // ≤ , qab /1/ ≥  and case IV3, 
for 0≤e , 0'≤e , cdab // ≤ , qab /1/ ≤ . 

Now in the case of slide-rock about  point O , for IV1, γq  is greater than 
or equal to '3k , and for IV2 and IV3, both '3kq ≥γ  and '3kq ≤γ  can 
happen so that IV2 is further divided into IV2,1 (for '3kq ≥γ ) and IV2,2 
(for '3kq ≤γ ). Similarly, IV3 is further divided into IV3,1 (for '3kq ≥γ ) 
and IV3,2 (for '3kq ≤γ ). 

For IV1, the regions corresponding to 0≥yf , 0≤Ox&&  and 0≥θ&&  are given 
respectively in Figs. 28, 29 and 30. The regions corresponding to a 
slide-rock about point O  mode for case IV1 are shown in Fig. 31. An 
additional branch for *μ  is added for cdk /≥ .  

For IV2,1, the regions corresponding to 0≥yf , 0≤Ox&&  and 0≥θ&&  are 
given respectively in Figs. 32a, 33a and 34a, and the regions for the case 
IV2,1 are given in Fig. 35a.  

Similarly, for case IV2,2 the regions corresponding to 0≥yf , 0≤Ox&&  
and 0≥θ&&  are given respectively in Figs. 32b, 33b and 34b, and the 
regions for the case of IV2,2 are given in Fig. 35b. 

In much the same way, case IV3 is sub-divided into IV3,1 and IV3,2. 
The regions corresponding to 0≥yf , 0≤Ox&&  and 0≥θ&&  are given 
respectively in Figs. 36a, 36b, 37a, 37b, 38a and 38b. The regions for 
these sub-cases are given in Figs. 39a and 39b.  

Case V:  

In this case, yx ffca μ−=≥≤ ,0,0 , ,0≤e  and '3kq ≤γ as can be seen from 
Fig. 15. Since yx ff μ−= , the results are anticipated to be quite different 
from the case of yx ff μ=  although the equations of motion for both cases 
are the same in form. The expressions of θ&& , yf  and Ox&&  are obtained 
from (32), (33) and (34) by replacing μ  by μ− . That is,  
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)]})3/4(('[1{
)34(

3
2 μγγμγ

μγγ
θ +++−−

++
= qkk
B

g&& .............................(36) 

)]'3(1[
34

2
2 kqkmgf y −−+
++

= γγγ
μγγ

................................................(37) 

])([
34 2 bkadckgxO +−−+

++
−= μ

μγγ
&& ..............................................(38) 

As in case V for the case of rock (about point O ), two sub-cases: V1 
(for 0'≥e ) and V2 (for 0'≤e ) must be considered. 

The condition 0≥yf  is always satisfied since '3kq ≤γ . Therefore, no 
figure is given for this condition. The condition 0≥Ox&&  is represented by 
the shaded areas in Figs. 40a and 40b for the two sub-cases: V1 and V2 
respectively. The condition 0≥θ&&  is represented by the shaded areas in 
Figs. 41a and 41b respectively. The regions corresponding to a 
slide-rock about O  mode with 0≥Ox&&  are given in Figs. 42a and 42b. 
The symbol +SRO  is used to represent a slide-rock about O  mode where 

0≥Ox&& . 

Case VI:   

In this case, yx ffca μ−=≤≤ ,0,0 , and 0≤e . For the cases of 0'≥e  
( qab /1/ ≤ ) and 0'≤e  ( qab /1/ ≥  ), the case VI is sub-divided into cases 
VI1 and VI2. Furthermore, since γq  may be greater or smaller than '3k , 
these two sub-cases are further divided into VI1,1 and VI2,1 (for the 
case of '3kq ≥γ ) and VI1,2 and VI2,2 (for the case of '3kq ≤γ ). 

For the cases of VI1,1 and VI2,1, Figs. 43a and 43b are for the condition 
0≥yf , Figs. 44a and 44b are for the condition 0≥Ox&& , and Figs. 45a and 

45b are for the condition 0≥θ&& . Figs. 46a and 46b are for VI1,1 and 
VI2,1 when all three conditions are satisfied.  

For the cases of VI1,2 and VI2,2 ( '3kq ≤γ ), the condition 0≥yf  is 
always satisfied and the regions for the conditions 0≥Ox&&  and 0≥θ&&  are 
the same as in Figs. 44a, 44b and 45a, 45b and the regions 
corresponding to a slide-rock about point O  mode for the cases of VI1,2 
and VI2,2 (for '3kq ≤γ ) are given in Figs. 47a and 47b respectively. 
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VII.  Rock about point O’ (RO’) 
The equations of motion are:  

Ffxm x −=&& ......................................................................................(39) 

Umgfym y +−=&& ..............................................................................(40) 

and, noting that yf  acts at the point 'O  (see Fig.1) about which the body 

rotates, 

3/UBFhBfHfI yx +++=θ&& ...............................................................(41) 

The relationships θ&&&& Hx −=  and θ&&&& By =  still hold. From these equations, 
we get  

)1(
)1(4

3
2

Ek
k

B
g −
+

=
γ

θ&& .......................................................................(42) 

)'(
)1(4 2 bkamgfx −

+
=

γ
.......................................................................(43) 

and  

)'(
)1(4 2 kcdmgf y −

+
=

γ
.......................................................................(44) 

where  

γγγ qka 2'34' 22 +−+= .......................................................................(45) 
)21(2)'1(3' 2γγ +++= qkc ..................................................................(46) 

and 

)'1(
2
3;

)(2
3

2
2

kq
qq

kE +=
−

= γ .............................................................(47) 

The conditions to be satisfied for a rock about point 'O  mode to occur 
are 0≤θ&& , 0≥yf  and yx ff /≥μ . It is seen that while 0'≥c , 'a  may be greater 

or smaller than zero. Since 'a  is a function of 'k  and q , we plot the line 0'=a  
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or 4
2 ]')2/3[()]2/()4[( qkq ≡++−= γγγ  on the qk −'  diagram in Fig.15. The 

region below the line 0'=a  corresponds to the case of 0'≤a , )( 4qq ≤ . Now 
we turn our attention to the condition for a rock about point 'O  mode to occur. 
From (42), it is seen that for 0≤θ&& , Ek  must be greater than or equal to zero. 
This means, from (47), that 2qq ≥ . The line 2qq =  is parallel to and lies 
above the line 4qq =  ( 0'=a ). Thus θ&&  can not be smaller than or equal to zero 
for the cases III2 and V2 in the region which corresponds to 0'≤a . For 2qq ≥  
( 0'≥a ), the condition 0≤θ&&  is satisfied provided, from (42), Ekk ≥ . It may be 
verified that qkE /1≥  and the region corresponding to 0≤θ&&  is shown shaded 
as in Fig. 48. The condition 0≥yf  requires Fkcdk ≡≤ '/  where qkF /1≤  as 

can be verified. In the μ−k  plane, the region corresponding to 0≥yf  is 

shown in Fig.49. Before examining the condition yx ff /≥μ  we note that xf  

cannot be less than zero. This is because, from (39), 0≤xf  implies 0≤x&&  
which in turn implies 0≥θ&&  on account of the fact that θ&&&& Hx −= . Since θ&&  
must be less than zero, a rock (about point 'O ) mode cannot be realized. Thus, 
the region Ekabk ≤≤≤ '/0  is empty as shown in Fig.50. The last condition to 
be satisfied is therefore written as )'/()'(/ 2 kcdbkaff yx −−=≡≥ μμ . Since, 

for 0'≥a , '/ cd  may be greater or smaller than '/ cb  depending on the sign of 
the quantity e  since ''])1(4[)'/()'/( 2 caeabcd γ+=− . Let us first consider the 
case of 0≥e  ( '/'/ abcd ≥ ). The curve 2μ  is as shown in Fig. 51 where an 
additional branch of 2μ  for Fkk ≥  is added. The region corresponding to the 
condition yx ff≥μ  is the shaded area in Fig.51. For Fkk ≥ , yf  is less than 

zero, the body is in free-flight mode and the condition yx ff /≥μ  has no 

meaning. Since the regions corresponding to the conditions 0≤θ&&  and 
yx ff /≥μ  are disjoint, no rock about point 'O  mode can happen for 0≥e . It 

may be similarly shown that no rock about point 'O  mode for the case of 
0≤e  can be initiated.  

This concludes the discussion of rock about 'O  mode. In the following, 
the mode of slide-rock about 'O  is examined. 
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VIII.  Slide-rock about point O’ (SRO’) 
The equations of motion are the same as those governing rock about O  

mode, namely equations (38), (39) and (40), except that θ&&&& Hx −=  no longer 
holds but θ&&&& By =  is still valid. We now consider first the case in which 

0≥= yx ff μ  (the symbol used for this case is −'SRO ; the subscript refers to the 

case in which 0' ≤Ox&& ). Solutions of the equations of motion are:  

)]})3/2(('[1{
)34(

3
2 μγγμγ

μγγ
θ +−++

++
= qkk
B

g&& ...............................(48) 

)]}2('3[1{
34

22
2 γγ

μγγ
++−+

++
= qkkmgf y .........................................(49) 

and 

)]'()'([
34 2 bkackdgxO −−−
+−+

= μ
μγγ

&& ............................................(50) 

The conditions for a slide-rock about point 'O  mode to occur are: 0≤θ&& , 
0≥yf  and 0' ≤Ox&& . The condition 0≥yf  requires, from (49), /)1( 2γ+≤k  

qkqk F /1)]2('3[ '
2 ≤≡++ γγ . This condition is shown in Fig. 52. The condition 

for 0' ≤Ox&&  is, from (50), )'()'( bkakcd −≤−μ  or, 2μμ ≤  where =2μ  
)'/()'( kcdbka −− . As is done in the case of rock about point 'O  mode, 

distinction is made between the cases of 0≥e , '/'/ abcd ≥  and 0≤e , 
'/'/ abcd ≤ . The condition 0' ≤Ox&&  is shown for these two cases respectively in 

Figs. 53a and 53b. The condition 0≤θ&&  is expressed as ≤− )1( kqμ  
]')3/2[()/1( kqk −+− γγ . We define  

)]1(/[)()1/(]}')3/2[()/1({** kqkkkkqkqk GG −−=−−+−= γγγμ ..............(51) 

where  

),(2/3 GG qqk −=  and 2/'3 kqG γ= ......................................................(52)  

For qk /1≤  and qk /1≥ , the two branches of **μ  are sketched in Fig.54. 
From (52), it is seen that if Gqq ≥  then 0≥Gk  and qkG /1≥ ; if Gqq ≤ , then 
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0≤Gk . For ease of discussion, consider the specific case of I1,1 which is 
identified in the qk −'  diagram by the shaded regions sketched in Figs. 55a 
and 55b and in which the line 2/'3 γkqq G ==  is drawn. Due to the fact that 
the slope of Gq  may be greater or smaller than that of γ/'31 kq =  depending 

on whether 2≥γ  or 2≤γ , two figures, Figs.55a and 55b, are given. The 
regions corresponding to Gqq ≥ , 0≥Gk  and Gqq ≤ , 0≤Gk  are also indicated. 
If a point falls in the region of 0≥Gk , the condition for 0≤θ&&  is given by the 
following: (a) for Gkk ≤ , qk /1≤ , **μμ ≤  which is impossible, (b) for Gkk ≤ , 

qk /1≥ , **μμ ≥ , and (c) for qk /1≥ , Gkk ≥  which is always true. This is 
shown as shaded in Fig.56. If a point falls in the region of Gqq ≤ , 0≤Gk , the 
condition 0≤θ&&  can not be satisfied; the corresponding space in empty.  

By combining the conditions 0≥yf , 0' ≤Ox&&  and 0≤θ&& , the region 

corresponding to a slide-rock about point 'O  mode with 0' ≤Ox&&  is shown in 
Fig.57. It is seen that, in a slide-rock about point 'O  mode, a caisson can only 
be in a free-flight mode 

In case I1,1 and in other cases for which '3kq ≥γ , we need to compare 
the relative magnitude of Gk  and Ck . It may be verified that for Gqq ≥ , 0≥Gk , 

Gk  may lie to the left or to the right of Ck  depending on whether 2≤γ  or 

2≥γ . 

For the case of 0≤−= yx ff μ  ( 0' ≥Ox&& , denoted +'SRO ) does not exist 

because FfFfxm yx −−=−= μ&&  so that 0≤x&&  always; since θ&&&&&& HxxO +='  and 

0≤θ&& , 'Ox&& can not be greater than zero. 
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IX.  All modes combined 
We now combine all the modes (RE, SL, RO, SRO, RO’, SRO’). As we 

see in Ref.2, the various modes in the same region in the μ−k  plane 
sometimes may overlap. To determine which mode governs in the 
overlapping region, we compare the horizontal forces xf  of the modes which 
overlap in that region; the mode which has the smaller xf  governs.  

After combining all the modes, the final results are shown in Figs. 58 to 
70. Since the region corresponding to the case of slide-rock about 'O  differ 
depending on whether 2≥γ  or 2≤γ , to save space, only the case of 

2≤γ  is presented.  

Fig 58 is for I1,1 ( 2≤γ ), Fig. 59 is for I1,2 ( 2≤γ ), Fig. 60 is for I2 
( 2≤γ ), Fig. 61 is for II ( 2≤γ ), Fig. 62 is for III1 paired with V1 ( '3kq ≤γ ), 
Fig. 63 is for III1 paired with V1 ( '3kq ≥γ , 2≤γ ), Fig. 64 is for III2 paired 
with V2 ( '3kq ≤γ ), Fig. 65 is for III2 paired with V2 ( '3kq ≥γ , 2≤γ ), Fig. 
66 is for IV1 ( '3kq ≥γ , 2≤γ ), Fig. 67 is for IV2 paired with VI1 ( '3kq ≥γ , 

2≤γ ), Fig. 68 is for IV2’ paired with VI1 ( '3kq ≤γ ), Fig. 69 is for IV3 
( '3kq ≥γ , 2≤γ ) paired with VI2, Fig. 70 is for IV3’ paired with VI2 
( '3kq ≤γ ).  
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X.  Discussion and concluding remarks 

(1) If we let 0=q , the results of the present study, which includes uplift force, 
reduces to those in Refs.1,2 where uplift force is not considered. By 
letting 0=q , in the sections discussing RO  and SRO  modes, the cases 
of II, IV and VI are all no longer relevant since the quantity c  is now 
greater than zero. Also, the cases involving '3kq ≥γ  do not exist. For 
cases where '3kq ≤γ  and 0≥c , by letting 0=q , for example, case V1 
does not exist but case V2 remains. It may be similarly verified that 
without an uplift force, a caisson can not be initiated into a 'RO  mode 
nor a 'SRO  mode. 

(2) In reference to Figs. 10 and 15, since the caisson being considered is 
rectangular in its elevation and of uniform mass distribution, 'k  can not 
exceed unity. Thus, the regions to the right of 1'=k  is to be ignored; 
only the regions to the left of 1'=k  need be considered.  

(3) To gain a sense of the behavior of a caisson, calculations should be made 
for a range of numerical values of kkq ,',,γ  and μ . 

(4) The present study of the behavior of a caisson considering uplift force 
should be extended to cover the case of force F  applied below point C . 

(5) The results of this study as presented in Fig.15 and Fig.58 to Fig.70 can 
be used to determine the mode of motion of a caisson. For example, 
given the aspect ratio γ  of a caisson, and knowledge of the location of 
the force F  ( 'k ) and measure of the magnitude of the uplift force (q ), 
Fig.15 can be used to determine the case (for example, case II) that 
governs the behavior of the caisson. The relevant figure in the μ−k  
plane can be identified from Fig. 58 to Fig.70 (for example, for case II, 
it is Fig. 61). Given the force and coefficient of friction, the mode that 
the caisson is to be initiation into is determined.  

(6) The results of this study contribute to a better understanding of the 
behavior of a caisson under the action of an impact force. The study is 
not concerned with the problem of determining the actual response of 
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the caisson. For example, the study does not address the issue of the 
amount of sliding or rocking a caisson would undergo. The study, 
however, provides information based on which the engineer can make 
design decisions. For example, the configurations of the caisson may be 
adjusted to avoid it being initiated into a mode of response that is not 
considered desirable. More significantly, given the magnitude and 
location of the force F , the uplift force, and the coefficient of friction 
between the caisson and the base, one may, based on the region of rest 
(in the μ−k  plane), determine the dimensions of the caisson so that the 
volume of the caisson is minimized. 
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Fig. 1  Models 
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Fig. 2  Rest region 

 

 
Fig. 3  Slide region 
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Fig. 4a  Region of rock about point O mode , case I1 ( 0≥e ) 

 

 
Fig. 4b  Region of rock about point O mode, case I1 ( 0≤e ) 
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Fig. 5  Region of rock about point O mode, case II ( 0≥e ) 
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Fig. 6a  Region of rock about point O mode, case III1 ( 0',0 ≥≤ ee ) 

 

 
Fig. 6b  Region of rock about point O mode, case III2 ( 0',0 ≤≤ ee ) 
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Fig. 7a  Region of rock about point O mode, case IV1 

( qabcdabee /1/,//,0',0 ≥≥≥≥ ) 

 

 
Fig. 7b  Region of rock about point O mode, case IV2 

( qabcdabee /1/,//,0',0 ≥≤≥≤ ) 
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Fig. 7c  Region of rock about point O mode, case IV3 

( qabcdabee /1/,//,0',0 ≤≤≤≤ ) 
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Fig. 8a  Region of rock about point O mode, case V1 

( qabee /1/,0',0 ≥≥≤ ) 

 

 
Fig. 8b  Region of rock about point O mode, case V2 

( qabee /1/,0',0 ≤≤≤ ) 
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Fig. 9a  Region of rock about point O mode, case VI1 ( 0',0 ≥≤ ee ) 

 

 
Fig. 9b  Region of rock about point O mode, case VI2 ( 0',0 ≤≤ ee ) 
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Fig. 10  Regions in qk −'  plane for the six cases of rock about point O 

mode 
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Fig. 11a  Region of 0≥yf  for slide-rock about point O mode, case I1,1 

( '3kq ≥γ ) 

 

 
Fig. 11b  Region of 0≥yf  for slide-rock about point O mode, case I1,2 

( '3kq ≤γ ) 
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Fig. 12a  Region of 0≤Ox&&  for slide-rock about point O mode, case I1,1 

( '3kq ≥γ ) 

 

 
Fig. 12b  Region of 0≤Ox&&  for slide-rock about point O mode, case I1,2 

( '3kq ≤γ ) 
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Fig. 13a  Region of 0≥θ&&  for slide-rock about point O mode, case I1,1 

( '3kq ≥γ ) 

 

 
Fig. 13b  Region of 0≥θ&&  for slide-rock about point O mode, case I1,2 

( '3kq ≤γ ) 
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Fig. 14a  Region of slide-rock about point O mode ( −SRO ), case I1,1 

( '3kq ≥γ ) 

 

 
Fig. 14b  Region of slide-rock about point O mode ( −SRO ), case I1,2 

( '3kq ≤γ ) 
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Fig. 15  Regions in qk −'  plane for the six cases of slide-rock about point 

O mode 
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Fig. 16  Region of 0≥yf  for slide-rock about point O mode, case I2 

( '3kq ≤γ ) 

 

 
Fig. 17  Region of 0≤Ox&&  for slide-rock about point O mode, case I2 

( '3kq ≤γ ) 
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Fig. 18  Region of 0≥θ&&  for slide-rock about point O mode, case I2 

( '3kq ≤γ ) 

 

 
Fig. 19  Region of slide-rock about point O mode ( −SRO ), case I2 

( '3kq ≤γ ) 
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Fig. 20  Region of 0≥yf  for slide-rock about point O mode, case II 

( '3kq ≥γ ) 

 

 
Fig. 21  Region of 0≤Ox&&  for slide-rock about point O mode, case II 

( '3kq ≥γ ) 
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Fig. 22  Region of 0≥θ&&  for slide-rock about point O mode, case II 

( '3kq ≥γ ) 

 

 
Fig. 23  Region of slide-rock about point O mode ( −SRO ), case II 

( '3kq ≥γ ) 
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Fig. 24a  Region of 0≥yf  for slide-rock about point O mode ( −SRO ), case 

III1 ( qabekq /1/,0','3 ≥≥≤γ ) 

 

 
Fig. 24b  Region of 0≥yf  for slide-rock about point O mode ( −SRO ), 

case III1 ( qabekq /1/,0','3 ≤≤≤γ ) 
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Fig. 25a  Region of 0≤Ox&&  for slide-rock about point O mode ( −SRO ), 

case III1 ( qabekq /1/,0','3 ≥≥≤γ ) 

 

 
Fig. 25b  Region of 0≤Ox&&  for slide-rock about point O mode ( −SRO ), 

case III1 ( qabekq /1/,0','3 ≤≤≤γ ) 
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Fig. 26a  Region of 0≥θ&&  for slide-rock about point O mode ( −SRO ), case 

III1 ( qabekq /1/,0','3 ≥≥≤γ ) 

 

 
Fig. 26b  Region of 0≥θ&&  for slide-rock about point O mode ( −SRO ), case 

III1 ( qabekq /1/,0','3 ≤≤≤γ ) 
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Fig. 27a  Region of slide-rock about point O mode ( −SRO ), case III1 

( qabekq /1/,0','3 ≥≥≤γ ) 

 

 
Fig. 27b  Region of slide-rock about point O mode ( −SRO ), case III1 

( qabekq /1/,0','3 ≤≤≤γ ) 
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Fig. 28  Region of 0≥yf  for slide-rock about point O mode ( −SRO ), case 

IV1 ( qabcdabeekq /1/,//,0',0,'3 ≥≥≥≥≥γ ) 

 

 
Fig. 29  Region of 0≤Ox&&  for slide-rock about point O mode ( −SRO ), case 

IV1 ( qabcdabeekq /1/,//,0',0,'3 ≥≥≥≥≥γ ) 
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Fig. 30  Region of 0≥θ&&  for slide-rock about point O mode ( −SRO ), case 

IV1 ( qabcdabeekq /1/,//,0',0,'3 ≥≥≥≥≥γ ) 

 

 
Fig. 31  Region of slide-rock about point O mode ( −SRO ), case IV1 

( qabcdabeekq /1/,//,0',0,'3 ≥≥≥≥≥γ ) 
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Fig. 32a  Region of 0≥yf  for slide-rock about point O mode ( −SRO ), case 

IV2,1 ( qabcdabeekq /1/,//,0',0,'3 ≥≤≥≤≥γ ) 

 

 
Fig. 32b  Region of 0≥yf  for slide-rock about point O mode ( −SRO ), 

case IV2,2 ( qabcdabeekq /1/,//,0',0,'3 ≥≤≥≤≤γ ) 
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Fig. 33a  Region of 0≤Ox&&  for slide-rock about point O mode ( −SRO ), 

case IV2,1 ( qabcdabeekq /1/,//,0',0,'3 ≥≤≥≤≥γ ) 

 

 
Fig. 33b  Region of 0≤Ox&& for slide-rock about point O mode ( −SRO ), case 

IV2,2 ( qabcdabeekq /1/,//,0',0,'3 ≥≤≥≤≤γ ) 
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Fig. 34a  Region of 0≥θ&& for slide-rock about point O mode ( −SRO ), case 

IV2,1 ( qabcdabeekq /1/,//,0',0,'3 ≥≤≥≤≥γ ) 

 

 

Fig. 34b  Region of 0≥θ&& for slide-rock about point O mode ( −SRO ), case 
IV2,2 ( qabcdabeekq /1/,//,0',0,'3 ≥≤≥≤≤γ ) 
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Fig. 35a  Region of slide-rock about point O mode ( −SRO ), case IV2,1 

( qabcdabeekq /1/,//,0',0,'3 ≥≤≥≤≥γ ) 

 

 
Fig. 35b  Region of slide-rock about point O mode ( −SRO ), case IV2,2 

( qabcdabeekq /1/,//,0',0,'3 ≥≤≥≤≤γ ) 
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Fig. 36a  Region of 0≥yf  for slide-rock about point O mode ( −SRO ), case 

IV3,1 ( qabcdabeekq /1/,//,0',0,'3 ≤≤≤≤≥γ ) 

 

 
Fig. 36b  Region of 0≥yf  for slide-rock about point O mode ( −SRO ), 

case IV3,2 ( qabcdabeekq /1/,//,0',0,'3 ≤≤≤≤≤γ ) 
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Fig. 37a  Region of 0≤Ox&&  for slide-rock about point O mode ( −SRO ), 

case IV3,1 ( qabcdabeekq /1/,//,0',0,'3 ≤≤≤≤≥γ ) 

 

 
Fig. 37b  Region of 0≤Ox&&  for slide-rock about point O mode ( −SRO ), 

case IV3,2 ( qabcdabeekq /1/,//,0',0,'3 ≤≤≤≤≤γ ) 
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Fig. 38a  Region of 0≥θ&&  for slide-rock about point O mode ( −SRO ), case 

IV3,1 ( qabcdabeekq /1/,//,0',0,'3 ≤≤≤≤≥γ ) 

 

 
Fig. 38b  Region of 0≥θ&&  for slide-rock about point O mode ( −SRO ), case 

IV3,2 ( qabcdabeekq /1/,//,0',0,'3 ≤≤≤≤≤γ ) 
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Fig. 39a  Region of slide-rock about point O mode ( −SRO ), case IV3,1 

( qabcdabeekq /1/,//,0',0,'3 ≤≤≤≤≥γ ) 

 

 
Fig. 39b  Region of slide-rock about point O mode ( −SRO ), case IV3,2 

( qabcdabeekq /1/,//,0',0,'3 ≤≤≤≤≤γ ) 
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Fig. 40a  Region of 0≥Ox&&  for slide-rock about point O mode ( +SRO ), 

case V1 ( 0',0,'3 ≥≤≤ eekqγ ) 

 

 
Fig. 40b  Region of 0≥Ox&&  for slide-rock about point O mode ( +SRO ), 

case V2 ( 0',0,'3 ≤≤≤ eekqγ ) 
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Fig. 41a  Region of 0≥θ&&  for slide-rock about point O mode ( +SRO ), case 

V1 ( 0',0,'3 ≥≤≤ eekqγ ) 

 

 
Fig. 41b  Region of 0≥θ&&  for slide-rock about point O mode ( +SRO ), case 

V2 ( 0',0,'3 ≤≤≤ eekqγ ) 
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Fig. 42a  Region of slide-rock about point O mode ( +SRO ), case V1 

( 0',0,'3 ≥≤≤ eekqγ ) 

 

 
Fig. 42b  Region of slide-rock about point O mode ( +SRO ), case V2 

( 0',0,'3 ≤≤≤ eekqγ ) 
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Fig. 43a  Region of 0≥yf  for slide-rock about point O mode ( +SRO ), case 

VI1,1 ( 0',0,'3 ≥≤≥ eekqγ ) 

 

 
Fig. 43b  Region of 0≥yf  for slide-rock about point O mode ( +SRO ), 

case VI2,1 ( 0',0,'3 ≤≤≥ eekqγ ) 
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Fig. 44a  Region of 0≥Ox&&  for slide-rock about point O mode ( +SRO ), 

case VI1,1 ( 0',0,'3 ≥≤≥ eekqγ ) 

 

 
Fig. 44b  Region of 0≥Ox&&  for slide-rock about point O mode ( +SRO ), 

case VI2,1 ( 0',0,'3 ≤≤≥ eekqγ ) 
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Fig. 45a  Region of 0≥θ&&  for slide-rock about point O mode ( +SRO ), case 

VI1,1 ( 0',0,'3 ≥≤≥ eekqγ ) 

 

 
Fig. 45b  Region of 0≥θ&&  for slide-rock about point O mode ( +SRO ), case 

VI2,1 ( 0',0,'3 ≤≤≥ eekqγ ) 
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Fig. 46a  Region of slide-rock about point O mode ( +SRO ), case VI1,1 

( 0',0,'3 ≥≤≥ eekqγ ) 

 

 
Fig. 46b  Region of slide-rock about point O mode ( +SRO ), case VI2,1 

( 0',0,'3 ≤≤≥ eekqγ ) 
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Fig. 47a  Region of slide-rock about point O mode ( +SRO ), case VI1,2 

( 0',0,'3 ≥≤≤ eekqγ ) 

 

 
Fig. 47b  Region of slide-rock about point O mode ( +SRO ), case VI1,2 

( 0',0,'3 ≤≤≤ eekqγ ) 
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Fig. 48  Region of 0≤θ&&  for rock about point O’ mode (RO’) 
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Fig. 49  Region of 0≥yf  for rock about point O’ mode (RO’) 

 

 
Fig. 50  Region of 0≥xf  for rock about point O’ mode (RO’) 
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Fig. 51  Region of yx ff /≥μ  for rock about point O’ mode (RO’) 

 

 
Fig. 52  Region of 0≥yf  for slide-rock about point O’ mode ( )'−SRO  
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Fig. 53a  Region of 0≤Ox&&  for slide-rock about point O’ mode 

( )'−SRO ( 0≥e ) 

 

 
Fig. 53b  Region of 0≤Ox&&  for slide-rock about point O’ mode 

( )'−SRO ( 0≤e ) 
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Fig. 54  Sketch of **μ  relevant to slide-rock about point O’ mode 

( )'−SRO  
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Fig. 55a  Region of case I1,1 in qk −'  plane showing line Gqq =  for 2≥γ  

 

 
Fig. 55b  Region of case I1,1 in qk −'  plane showing line Gqq =  for 2≤γ  
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Fig. 56  Region of 0≤θ&&  for slide-rock about point O’ mode ( )'−SRO  

 

 
Fig. 57  Region of slide-rock about point O’ mode ( )'−SRO  
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Fig. 58  Regions of all modes for case I1,1 ( 2≤γ ) 

 

 
Fig. 59  Regions of all modes for case I1,2 
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Fig. 60  Regions of all modes for case I2 ( 2≤γ ) 

 

 
Fig. 61  Regions of all modes for case II ( 2≤γ ) 
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Fig. 62  Regions of all modes for case III1 paired with case V1 ( '3kq ≤γ ) 

 

 
Fig. 63  Regions of all modes for case III1 paired with case V1 

( 2,'3 ≤≥ γγ kq ) 
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Fig. 64  Regions of all modes for case III2 paired with case V2 ( '3kq ≤γ ) 

 

 
Fig. 65  Regions of all modes for case III2 paired with case V2 

( 2,'3 ≤≥ γγ kq ) 
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Fig. 66  Regions of all modes for case IV1 ( 2,'3 ≤≥ γγ kq ) 

 

 
Fig. 67  Regions of all modes for case IV2 paired with case VI1 

( 2,'3 ≤≥ γγ kq ) 
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Fig. 68  Regions of all modes for case IV2,2 paired with case VI1,2 

( '3kq ≤γ ) 

 

 
Fig. 69  Regions of all modes for case IV3 paired with case VI2,1 

( 2,'3 ≤≥ γγ kq ) 
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Fig.70  Regions of all modes for case IV3,2 paired with case VI2,2 

( '3kq ≤γ ) 
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