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I. Introduction

In a previous study (see Refs.1, 2) we obtained conditions for the
initiation of various (rest, slide, rock and slide-rock) modes of motion of a
rigid body placed on a frictional base under the action of a concentrated force
of short duration. The study was motivated by our desire to better understand
the behavior of a caisson due to a breaking wave force.

Since there had not been previous work done on the subject as
described in Refs.1, 2, and in anticipation that the work would be rather
involved, the uplift force acting at the bottom of a caisson that normally
accompanies a breaking wave was not included in the study. Indeed, our
investigation (see Refs.1, 2) shows that the analysis is complex and a caisson
behaves rather differently depending on whether the force is applied above
or below the center of mass of the body.

In the present study, the uplift force is included. The approach of the
analysis follows that in the previous work (see Refs.1, 2). The analysis,
though straight forward, involves many cases and is therefore complex and
lengthy. For this reason, this report considers only the situation of a breaking
wave force applied above but not below the center of mass of the body. The
presentation is necessarily brief; only the essentials of the analysis are given.

The report begins with a section ‘Models’ which describes the models
employed for the caisson, the breaking wave force and the uplift force. This
is followed by sections of derivations of the criteria for the initiation of the
various modes.



I1. Models

Consider a plane rigid body, partially immersed in water, of uniform
mass distribution, the total mass in water being m (see Fig.1). The body is
rectangular in elevation and footprint whose height is 24 , width 2B and
depth equal to unity. It rests on a horizontal frictional base. The friction
between the base and the body is of the Coulomb type with coefficient of
static friction «. The body is initially at rest and is subjected to a breaking
wave which imparts pressures on the seaward side of the vertical wall. The
resultant of the pressures is the horizontal force F which is assumed to act
on the body only for a short duration. The force is expressed in terms of the
weight of the body in water as F = mgk where g is gravitational acceleration
and k is a non-dimensional coefficient. In this study, we consider only the
case in which F is applied above, and at a distance # from the center of
mass of the body where 7=k'H and 0<k'<1. The breaking wave also
induces pressures on the bottom of the body whose distribution along the
width of the body is assumed to be triangular, decreasing from maximum on
the seaward side to zero on the landward side. The resultant of the pressures
is denoted by U =gF = mgkq where the quantity ¢ is a non-dimensional
coefficient. The motion of the plane body is specified by the horizontal and
vertical displacements of the center of mass C of the body and its rotation, &,
considered positive in the counterclockwise direction. The horizontal and
vertical displacements of C are x and y, considered positive to the right
and upwards respectively as shown in Fig.1. The reaction forces are f, and
f,, positive to the right and upwards respectively. f, acts at a distance &

from C. The uplift force U acts at a distance B/3 from C.



III. Rest (RE)
When the body is at rest, the equations of equilibrium are:
A i T USRS (1)
fy = MZ U = ML= Gk) oo )
and, by taking moment of the forces about C,
SH+ [,EFFRAUB/3=0 oo 3)
By substituting (1) and (2) into (3), we get

5__Bk[}/(1+k')+q/3]
- 1-qgk

where y = H/ B is the aspect ratio of the body.

For the body to be in contact with the base, f, must be greater than or

equal to zero, or

S oo (5)

q

For the body to be at rest, /. must be smaller than or equal to the

limiting Coulomb friction force uf,. That is,

Finally, f, must remain within the base (00') of the body; i.e. |{|< B.

From (4), for the condition to be satisfied, it requires

1
k< et e e 7
yA+kY+4q/3 (7)

It may be verified that k, <1/¢. The above conditions (6) and (7)

constitute the criteria for the body to remain at rest under the action of 7 and
U , the resultants of the distributed short duration pressures due to a breaking



wave. These conditions may be conveniently presented graphically as a
region using the parameters £ and x as the horizontal and the vertical axes

respectively as shown in Fig.2.

The curve 04 or u,(k) and the line 4H or k =k, intersect at point 4

with coordinates & =k, and

1

-y, = >k
H=Ha yA+kY+q/3 7

The region that represents the rest mode is shaded and denoted by the
symbol RE in Fig.2.

It may be seen from (7) and (8) and Fig.2 that the larger the values of y,
k' and ¢, the closer is the line AH to the u axis, the narrower is the rest
region and the less likely is the body to remain at rest. Also, when ¢ =0, the

result agrees with those obtained earlier in Refs. 1, 2.



IV. Slide (SL)

The equations of motion for the initiation of a slide mode are the same
as those for a rest mode except the equation in the x-direction. They are:

X = . — F oottt ettt et e et e et e et e e et e e e tae e e nbaeeenbeeeens 9)

S, =mg =U=mg(1= k) ccoeevveriieiiiiiiieicieicciececec s (10)
and,

SH+ [LEHFR+TUB/3=0 oottt (11)

Here and hereafter, over-dot denotes differentiation with respect to time. The
conditions for a slide mode to occur are f, >0, f, =u4f, and |{|<B. The

condition f, >0 gives, from (10), £ <1/¢ . Equation (11) gives

k(k'"H +qgB/3)+ 1-gk
£ K q]kaMH( IR e (12)

For k<1/q, £ is always smaller than or equal to zero. The condition

£ < B therefore requires,

1/y)—klk'+(4q/3
<UD =G I3 ey e (13)
1-gk
The curve y, (k) is sketched in Fig.3 in the k- u plane; it intersects

U, (k) at point 4, and the horizontal k£ axis at D where the abscissa is

A
W'+4q/3
Beyond k,, the curve g is negative and goes to negative infinity as

approaches 1/q.

The region corresponding to a slide mode is the shaded area 04D in
Fig.3. The symbol SL is used to denote the slide mode. In region O4AM , the
rest mode governs because the horizontal reaction force f, in a rest mode is

smaller than the horizontal reaction force f. in the slide mode. From (9), we



have ¥ =(1-qgk)(u—u,). In the region of slide mode, (04D), k<1/q and
u<u,; thus, ¥<0. Since the body is originally at rest, x<0 and x<0. That
is, the body slides to the left under the action of F, as expected.



V. Rock about point O (RO)

When a body is about to rock about point O, the equations of motion
are:

and, noting that f, acts at point O (see Fig.1) about which the body rotates,

[0 =f H=fB+Fh+UB/3 ccooeuriiiriiiciricienicinecenec e (17)

Here, I = %m(B2 + H?) is mass moment of inertia of the body about its center
of mass C.

The accelerations ¥ and j of point C are related to the angular

acceleration 6 of the body as ¥ =-Hé and y = B4 . Equation (17) gives

0 = ﬁ(g L) et (18)

where &, is given in (7).
Equations (15) and (16) give respectively

f. =ﬁ(ak+b) ........................................................................ (19)
and

f, = ﬁ(d{ ) e, (20)
where

A=44 Y7 =3V 2K DY oo (21)

D = 3 ettt ettt ettt e b e e te e rteeraeebeebe e taenateennas (22)

CZ 3L A ) = 412G oottt eeeae (23)



and

It is noted that both f, and f, are either positive or negative since the
quantities « and ¢ may be positive or negative. For the case of ¢>0, f, is
always greater than or equal to zero. For the case of ¢<0, f, =-[cjk+4d, in
which case, f, >0 for k<d/c|. For k>d/|c, the body is in a free-flight
mode.

For the body to rock about point O, § must be greater than or equal to
zero. This means, from (18),

For a rock mode to be initiated, f, must not exceed the limiting friction

force. That is, |f,|< uf,, or,

lak +b|

U2 S (R) oo (26)

The function x" (k) behaves in a variety of ways depending on the signs
of the quantities a, ¢ and f,. There are altogether six cases that must be

considered. They are:

Casel: a20,¢20, f. 20, u*=(ak+b)/(ck+d),0<k <o

Case II: 420, ¢<0, f,20, p*=(ak+b)/(-|cdk+d), 0<k<d/ ; for
d /|| < k <o, the body is in a free-flight mode

Case III: a<0,c>0, f, 20, u*=(ak +b) (ck+d),0< k < b/l

Case 1V: a<0,c<0, f, 20, u* = (alk +b) /(-|ck + d),0< k < b/

a,OSde/|c|;

for d/|c| <k <o, the body is in a free-flight mode

Case V: a<0,¢20, f, <0, u* = |-|alk +b| /(ck+d), b/ja| < k <o



Case VI: a<0,¢<0, f, <0, u* =|-|alk +b|/(-|dk +d), b/|a| < k <o, k < d/|c

; for

d /|c| < k <o the body is in a free-flight mode

Properties of u* (k) are examined for each of the above six cases.

Case I:

The curve wu*(k)=(ak+b)/(ck+d) passes point 4 (see Fig.2). As k
approaches infinity, u*=(a/c)>0 The slope of u*(k) is du*/dk =
(ad —bc) /(ck +d)* where ad —be =4(1+y?)e is independent of & ; here

which may be greater or smaller than zero. Thus the slope of x*(k) is a
decreasing function of & and approaches zero as & approaches infinity.
Also, the slope of u*(k) at point 4 is equal to e/4(1+y°). Since the
quantity ¢ may be greater or smaller than zero, distinction must be
made between two sub-cases: sub-case 1 is for ¢>0, denoted by case I1
and sub-case 2 is for e<0 denoted by case 12. Figs. 4a and 4b show,
from (25) and (26), the regions for rock mode to occur for cases I1 and
12 respectively.

For values of y, &' and ¢, if k (force) and u (coefficient of friction)
correspond to a point in the k£ — u plane that falls in the region to the
right of the vertical line 4H and above the curve u=u* (k) in Figs. 4a

and 4b, a rock mode would ensue. Here the region corresponding to a
rock (about point O) mode is shaded and the symbol RO is used to
denote the case of rock (about point O) mode.

Case II:

In this case, wu*=(ak+b)/(-|ck+d) passes the point 4 and the
expression of its slope is the same as that in case I. For k<d/|d[, u* is
greater than or equal to zero and approaches infinity at k = d/|d|. Thus,

the slope of u* is greater than or equal to zero and consequently the
quantity e is either greater than or equal to zero. It may be verified that
d /| =1/¢ . The region corresponding to a rock mode is identified in Fig.
5 as that to the right of 4H above u* and to the left of the line
PQ(k<d/|), shaded and denoted by RO. For k >d/|c|, the body would

be lifted off the base in a free-flight mode denoted by the symbol FF .



Case III:

In this case, u*=(—|ak+b)/(ck+d),0<k<b/|al. Again, u*(k) passes
point 4 and is equal to zero at k = b/|a|; the expression of its slope is the

same as that in case I and hence e¢<0. It may be verified that
(b/lal)—(1/q) = €'/|alg Where

€= C+3 =4+ Y =3P K'Y oo (28)

which may be greater or smaller than zero. Thus, case 11 is sub-divided
into two cases: case III1 is for ¢>0 and case 1112 is for ¢'<0. The
regions corresponding to these two sub-cases are shown respectively in
Figs. 6a and 6b to the right of line 4#, left of line NL and above the
curve u=u* (k). These regions are shaded as shown. The symbol E is

used to mean that the region is ‘empty’, not covered by the cases 1111
and I112.

CaseIV:

In this case, w*=(-|ak+b)/(-|dk+d) for k<d/| and k<b/a|. By
comparing d/|d, b/|a| and 1/q, we see that d/|c|-b/ja|=—[4(1+y*)el/|ac]|,
blld|-1/qg=eNdq) and d/|c-1/qg= [q+3y(1+k")]/|c|g) which is always

greater than zero. Thus, case IV has three sub-cases: sub-case IV1 is for
e>0, ¢'>0 in which case b/|a|>d/|c| and b/ja|>1/q; sub-case IV2 is for

e<0, ¢>0 in which case b/ja|<d/|c| and b/ja|21/¢; finally, sub-case
IV3 is for <0, ¢'<0 in which case b/ld<d/|d and b/|d|<1/q.

In case IV1, the characteristics of u* are the same as those in case 1. In

cases IV2 and IV3, u* passes point 4; since for these cases, e<0, the
slope of u* decreases as k increases. Also, at k=b/ld|, u*=0.

The shaded regions shown in Figs. 7a, 7b and 7c correspond
respectively to a rock mode for these cases.

Case V:
In this case, a <0, ¢20, f, <0, u*=|~|afk +b|/(ck +d) and b/la|<k <. The
characteristics of u* are: at k=b/|a|, u*=0; as k approaches infinity,

u*=la|/c =0, and its slope approaches zero. Since u*>0, its slope must
be greater than or equal to zero as well. Thus the quantity e must be less

10



than zero. Since b/ld|-1/g =¢'/(|alq) which may be greater or smaller

than zero, two sub-cases must be considered. In case VI, >0,
b/ld|>1/q and in case V2, ¢'<0, b/ld|<1/q. The curves u* are sketched

in Figs. 8a and 8b respectively and a rock mode is marked as the shaded
regions above the curve u* for k >b/|d| to the right of line NL.

Case VI:

In this case, a<0,c¢<0, f, <0, u*=|-|alk +b|/(-|c|k + d), b/|a| < k < o, and
k<d/|d. It is seen that at k=b/la|, #*=0 and u* approaches infinity
atk=d/|c| . Since the slope of u* is equal to du*/dk=-4(1+y")e/
(Jcfk +d)* and must be greater than or equal to zero, we conclude that
e<0 indicating that b/|a|<d /|c|; however, since b/ja| may be greater or
smaller than 1/¢, two sub-cases arise. The characteristics of u* are
such that x* starts at zero at k=b/|d| and slopes up and approaches
infinity at k=d/| as shown in Figs. 9a and 9b for b/a/>1/¢ and
b/la|<1/q respectively. In both Figs. 9a and 9b, the shaded regions to

the right of the line NL and above u* correspond to a rock mode. For
k>d/|c| the body is in a free-flight mode.

The six cases are divided based on the sign of « and ¢ and thatof f,.In

the analysis, it is seen that the sub-cases also depend on the sign of the
quantities e and ¢'. Since these quantities are all functions of y, k' and ¢,

we identify these cases in a k'—¢ plane with y as the parameter as shown in
Fig. 10. The lines a=0, c=0, e=0 and ¢'=0 are indicated.

11



VI. Slide-rock about point O (SRO)

When a body is on the verge of sliding and rocking about point O
simultaneously, f, acts at O and the equations of motion are:

X = [ = F oottt ettt ettt et ettt e et e b s (29)

MY = [, =MZHU oottt (30)
and

[0=fH = f,B+Fh+UB/3 .cccoueuriiirinieiricieenicneeenecees e (31)

These equations are the same as (15), (16) and (17), those governing the
initiation of a rocking motion about point O. The difference is that in the
case of a rock mode, ¥=-H6 and |f,|<uf,. In the present case, ¥ is not

equal to — H6 although the relation y =B@ is still valid, and f, is either
equal to f, or — uf, . In the following, the two cases of f, =uf, and f, =,

are treated separately. In a rock about point O mode, the cases I, 11, III, and
IV correspond to . >0 and the cases V and VI are for 7. <0. The study of

slide-rock about point O mode is also divided into these six cases.
Casel: a20,c20, f, = i,
For f, = uf,, from (31),

j=— 8
B(4+y* =3uy)

4
{uy =1+ k[k'y + q(g—m/)]} .................................. (32)

and, from (30)

mg 2
=——=——[l+y° -k 3] et 33
f, 4+yz_wy[ Y —ky(qy —3k")] (33)
For the case under consideration, f. >0, so that the velocity at point O,
denoted x,, of the body about which rotation takes place is less than or
equal to zero. It suffices to examine the acceleration X, of point O

when a slide-rock mode of motion is impending, the body being initially
at rest. Noting that ¥, =%+ H@ and x is given by (29), we get

12



. g _
%= 177 T3 LLUCCk + @) = (@ D) erreeeereeeeeeeeeseeeeeeeeeseeeeeeeenns (34)

For a slide-rock (about point 0) mode to occur, we must have >0,
f,20 and, with f, =4, 20, x, <0.

Case I has two sub-cases: I1 for e>0 and 12 for e<0. These sub-cases
are discussed below.

CaseI1: (e>0). The condition f, >0 is satisfied provided, from (33), (a)
u<u and k<k.,and, (b) u>u and k>k,..

Here,
W, =G+ 3y, ke =+ 1) Y@V =3k") coeeeeeeieeeeeeeeee e (35)

Depending on whether gy >3k' or qy<3k', k. may be greater or

smaller than zero. Sub-case 11 is therefore further divided into cases
I1,1 and 11,2 for gy >3k' and gy <3k' respectively.

To visualize these requirements, reference is made to Figs. I1aand 11b
for qy=3k'" (k.>0) (case I1,1) and gy <3k' (k.<0) (case 11,2)
respectively. It is noted that g intersects u* (see Figs. 4a and 4b) at
k =k, for k.>0 or, equivalently, gy >3k'. For ¢y <3k', u. and u* do
not intersect.

In Fig. 11a, the shaded region to the left of SR and below g. and the
shaded region to the right of SR and above w. are the regions in which
the condition f, >0 is satisfied. In Fig. 11b, the shaded region below
U corresponds to the condition f, >0; otherwise, the body is in a state
of free-flight.

Similarly, the regions corresponding to X, <0 are (a) u<u, and u<u*,
and, (b) u>u, and u>u*. These regions are shown in Fig. 12a for
qy >3k' and Fig.12b for gy <3k' as shaded regions.

Finally, the condition 6 >0 is satisfied provided: for k<1/q, (a) u<u_,
u>u, and, (b) u>u , u<u ; for k>1/q, (a) u<u. , u<u and (b)
u>u , u>u . Here, 4 is defined in (13) in the slide (SL) section. A
branch of x4 is added for k>1/¢4. The regions corresponding to >0

13



are shown in Figs. 13a and 13b for the cases 11,1 (gy>3k") and 11,2
(qy <3k") respectively.

By combining the conditions f,>0, ¥, <0 and 6>0 , the regions for a

slide-rock (about point O) mode are shown as shaded in Figs. 14a and
14b for the cases of I1,1 and 11,2 respectively. The symbol SRO_ is used

to represent slide-rock (about point O) mode. The subscript refers to the
situation of x, <0.

As is done for the case of rock about point O where the various cases (I
to VI) are shown as regions in k'-¢ plane in Fig. 10, the same is done

for the cases of the slide-rock about point O in Fig. 15.

Case I2: (e<0). In this case, gy <3k'. The conditions f, >0, %,<0, and

6>0 are represented by the shaded regions in Figs. 16, 17 and 18
respectively. By combining the regions satisfying these conditions, the
regions corresponding to a slide-rock (about point O) mode with x, <0,

denoted SRO_, for the case 12 are given in Fig.18.
Case II:

In this case, a>0,c<0, f, =4f,, and gy >3k' .The regions for f,>0,
%,<0 and >0 are represented by the shaded areas in Figs. 20, 21 and
22 respectively. An additional branch of x* is added for k>d/|c|. The
regions for a slide-rock (about point O) mode for case II are given in
Fig. 23.

Case III:

In this case,a<0,c20, f, = 4f,,e<0, and gy <3k' (k. <0). Recall that

for case III in the case of rock about point O, distinction is made
between case III1 for ¢'>0 ( b/ld/>1/q ) and case III2 for e'<0

(b/|a|<1/¢). Such distinction is similarly made for the case of slide-rock
(about point O). The regions corresponding to f, >0 are given in Figs.
24a and 24b. The regions corresponding to ¥, <0 are given in Figs. 25a

and 25b and those corresponding to >0 are given in Figs. 26a and
26b.

The regions of a slide-rock about point O mode for cases I111 and I112
are given in Figs. 27a and 27b.
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Case IV:

In this case, a<0, ¢<0, f, =4f,.Inthe case of rock about point O, case
IV is divided into three sub-cases: case IV1 for >0, ¢'>0, b/ja|2d /|,
blla|21/q,case IV2,for e<0, >0, b/ld|<d/|d, b/|a|21/q and case IV3,
for e<0, ¢'<0, b/ld<d/|d, b/la|<1/q.

Now in the case of slide-rock about point O, for IV1, gy is greater than
or equal to 3%', and for IV2 and IV3, both ¢y >3k' and gy <3k' can
happen so that IV2 is further divided into IV2,1 (for ¢y >3k') and IV2,2
(for gy <3k"). Similarly, IV3 is further divided into IV3,1 (for gy >3k")
and I1V3,2 (for gy <3k').

For IV1, the regions corresponding to f, >0, i, <0 and §>0 are given

respectively in Figs. 28, 29 and 30. The regions corresponding to a
slide-rock about point O mode for case IV1 are shown in Fig. 31. An
additional branch for x* is added for k >d /||

For IV2,1, the regions corresponding to f,>0, %, <0 and 6>0 are
given respectively in Figs. 32a, 33a and 34a, and the regions for the case
IV2,1 are given in Fig. 35a.

Similarly, for case V2,2 the regions corresponding to f, >0, i, <0
and #>0 are given respectively in Figs. 32b, 33b and 34b, and the
regions for the case of [V2,2 are given in Fig. 35b.

In much the same way, case IV3 is sub-divided into IV3,1 and IV3,2.
The regions corresponding to f,>0 , %,<0 and 6>0 are given
respectively in Figs. 36a, 36b, 37a, 37b, 38a and 38b. The regions for
these sub-cases are given in Figs. 39a and 39b.

Case V:

In this case, a<0,c¢>0, f, =-uf,,e<0, and gy <3k'as can be seen from
Fig. 15. Since f, =—uf,, the results are anticipated to be quite different
from the case of f, = 4f, although the equations of motion for both cases
are the same in form. The expressions of 4, f, and i, are obtained
from (32), (33) and (34) by replacing 4 by —u . That is,

15



3g

=BG ) (—1y =1+ k[ +G((4/3) 4 D]} weeeeeeeeeeeeeeeeeeenn (36)
mg

fy m[ + }/ k}/(q}/ 3% )] ................................................ (37)

%, = W[ﬂ(ck +d) = | laf + D] oo (38)

As in case V for the case of rock (about point O), two sub-cases: V1
(for ¢>0) and V2 (for ¢'<0) must be considered.

The condition f, >0 is always satisfied since gy <3k'. Therefore, no
figure is given for this condition. The condition %, >0 is represented by

the shaded areas in Figs. 40a and 40b for the two sub-cases: V1 and V2
respectively. The condition §>0 is represented by the shaded areas in
Figs. 4la and 41b respectively. The regions corresponding to a
slide-rock about O mode with %,>0 are given in Figs. 42a and 42b.

The symbol SRO, is used to represent a slide-rock about © mode where
i, >0.

Case VI:

In this case, a<0,c<0,f, =-4f,, and e<0. For the cases of ¢>0
(b/la|<1/q) and e'<0 (b/jaj21/q ), the case VI is sub-divided into cases

VII and VI2. Furthermore, since gy may be greater or smaller than 34',

these two sub-cases are further divided into VI1,1 and VI2,1 (for the
case of gy >3k') and VI1,2 and VI2,2 (for the case of gy <3k").

For the cases of VI1,1 and VI2,1, Figs. 43a and 43b are for the condition
f, 20, Figs. 44a and 44b are for the condition %, >0, and Figs. 45a and

45b are for the condition >0. Figs. 46a and 46b are for VII,1 and
VI2,1 when all three conditions are satisfied.

For the cases of VI1,2 and VI2,2 (¢y<3k'), the condition f,>0 is
always satisfied and the regions for the conditions ¥, >0 and #>0 are

the same as in Figs. 44a, 44b and 45a, 45b and the regions
corresponding to a slide-rock about point © mode for the cases of VI1,2
and V12,2 (for ¢y <3k') are given in Figs. 47a and 47b respectively.
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VII. Rock about point O’ (RO’)

The equations of motion are:

and, noting that f, acts at the point O' (see Fig.1) about which the body

rotates,

10 = fH+ fLB+Fh+UB/3 oo (41)

The relationships ¥ =—-H6 and j = B6 still hold. From these equations,

we get

é = 3—g2(1 - i) ....................................................................... (42)
4B(+y°) kg

mg '
= K =DB) oo e 43
o= g @k =b) (43)
and
mg '
= R 5 N 44
f;/ 4(1+y2)( c ) ( )
where
Q=44 Y =3V KH2GY eoeeeeeeeeeeeeeeee e (45)
=3P (LAY F 201 F 217 oo (46)
and
3 3
S Sy 7 T 2 TR 47)
"o2g-q)" 2

The conditions to be satisfied for a rock about point O' mode to occur
are 6<0, f,>0 and u>|f,|/ f,. It is seen that while ¢'>0, a' may be greater

or smaller than zero. Since «' is a function of &' and ¢, we plot the line a'=0
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or g=-[(4+y")/2y)]+[(3/2)}k'l1=q, on the k'-g diagram in Fig.15. The
region below the line a'=0 corresponds to the case of a'<0, (¢4<¢q,). Now
we turn our attention to the condition for a rock about point O' mode to occur.
From (42), it is seen that for 6 <0, k, must be greater than or equal to zero.

This means, from (47), that ¢>¢,. The line ¢ =4, is parallel to and lies
above the line ¢ =¢, (a'=0). Thus # can not be smaller than or equal to zero
for the cases I112 and V2 in the region which corresponds to a'<0. For ¢ >g¢,
(a'>0), the condition §<0 is satisfied provided, from (42), k >k, . It may be
verified that k, >1/¢ and the region corresponding to #<0 is shown shaded
as in Fig. 48. The condition f, >0 requires k <d/c'=k, where k. <1/q as

can be verified. In the - u plane, the region corresponding to f, >0 is

s

cannot be less than zero. This is because, from (39), /. <0 implies ¥<0

shown in Fig.49. Before examining the condition u>

/ f, we note that f,

which in turn implies 6 >0 on account of the fact that ¥=-Hé. Since 6
must be less than zero, a rock (about point 0') mode cannot be realized. Thus,
the region 0<k <b/a'<k, is empty as shown in Fig.50. The last condition to

be satisfied is therefore written as x> f,/ f, = u, = (a'k —b)/(d - c'k) . Since,
for a'>0, d/c' may be greater or smaller than 5/¢' depending on the sign of
the quantity e since (d/c')—(b/a") =[4(1+ y*)e]/a'c'. Let us first consider the
case of e>0 (d/c'2b/a") The curve u, is as shown in Fig. 51 where an
additional branch of u, for k£ >k, is added. The region corresponding to the
condition u> f,/f, is the shaded area in Fig.51. For k>k,, f, is less than
zero, the body is in free-flight mode and the condition x> f,/f, has no

meaning. Since the regions corresponding to the conditions #<0 and
uz f./f, are disjoint, no rock about point 0' mode can happen for e>0. It

may be similarly shown that no rock about point O' mode for the case of
e<0 can be initiated.

This concludes the discussion of rock about 0' mode. In the following,
the mode of slide-rock about O' is examined.
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VIII. Slide-rock about point O’ (SRO’)

The equations of motion are the same as those governing rock about O
mode, namely equations (38), (39) and (40), except that ¥ =—H6 no longer
holds but y=B@ is still valid. We now consider first the case in which

f. = uf, 20 (the symbol used for this case is SRO'_; the subscript refers to the

case in which X, <0). Solutions of the equations of motion are:

n_ 3g "
&= Bats T (0y + 14 K =21 3) F LP)]} eeeeeeeeeeeeeeeeeeeeeeens (48)
- ms 2 _ ' 2
f, = Py A+ 77 —k[BE'+G2+ 7]} ceeeeeirreeeeeeeee e (49)
and
v 8 _ A ",
S " [LU(d = k") = (@', = B)] eereeeeeeeeeeeeee e (50)

The conditions for a slide-rock about point 0' mode to occur are: <0,
f,20 and %,<0. The condition f,>0 requires, from (49), k<(1+y*)/

[3%#'+q(2+y*)]=k, <1/q. This condition is shown in Fig. 52. The condition
for x,<0 1is, from (50), w(d-c'k)<(a'k-b) or, u<u, where u =
(@'k-b)/(d-c'k). As 1s done in the case of rock about point O' mode,

distinction i1s made between the cases of e>0, d/c'>b/a' and e<0 ,
d/c'<b/a'. The condition i, <0 is shown for these two cases respectively in

Figs. 53a and 53b. The condition <0 is expressed as u(l-kq)<
—(1/y)+k[(2q/3y)—k']. We define

,u** ={~(U/y)+k[(2q/3y)=k"1} /(A =kq) = (k—k;)/[Vec(1=kq)] .............. (5 1)
where

ke =3/2(g=qg)s ANA Gy =392 covoeeeeeeeeeeeeeeeeeeeee e, (52)

For k<1/q and k>1/q, the two branches of x~ are sketched in Fig.54.
From (52), it is seen that if ¢>g¢, then k., >0 and &, >1/q; if ¢<gq,, then
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k, <0. For ease of discussion, consider the specific case of I1,1 which is
identified in the k'-¢ diagram by the shaded regions sketched in Figs. 55a
and 55b and in which the line ¢ =g, =3k'y/2 is drawn. Due to the fact that
the slope of ¢, may be greater or smaller than that of ¢, =3k'/y depending
on whether y>+2 or y<+/2, two figures, Figs.55a and 55b, are given. The
regions corresponding to ¢>gq,., k, >0 and ¢<gq,., k., <0 are also indicated.
If a point falls in the region of k_ >0, the condition for <0 is given by the
following: (a) for k<k,, k<1/q, u<u~ which is impossible, (b) for £ <k,
k=1/q, uzu", and (c) for k>1/q, k>k, which is always true. This is
shown as shaded in Fig.56. If a point falls in the region of ¢<gq,, k, <0, the

condition #<0 can not be satisfied; the corresponding space in empty.

By combining the conditions f,>0, %,<0 and 6<0, the region
corresponding to a slide-rock about point O' mode with %, <0 is shown in
Fig.57. It is seen that, in a slide-rock about point 0" mode, a caisson can only

be in a free-flight mode

In case 11,1 and in other cases for which ¢y >3k', we need to compare

the relative magnitude of 4, and k.. It may be verified that for ¢>¢q,, k, >0,
k., may lie to the left or to the right of k. depending on whether y <+/2 or

7/2\/5.

For the case of f, =-uf, <0 (%,2=0, denoted SRO', ) does not exist
because mi=f, —F=-uf,—F so that ¥<0 always; since i, =%+H6 and

6<0, i, can not be greater than zero.
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IX. All modes combined

We now combine all the modes (RE, SL, RO, SRO, RO’, SRO’). As we
see in Ref.2, the various modes in the same region in the k- u plane

sometimes may overlap. To determine which mode governs in the
overlapping region, we compare the horizontal forces /. of the modes which

overlap in that region; the mode which has the smaller /. governs.

After combining all the modes, the final results are shown in Figs. 58 to
70. Since the region corresponding to the case of slide-rock about O' differ
depending on whether y>+2 or y<+2, to save space, only the case of

y <2 is presented.

Fig 58 is for 11,1 (y<+/2), Fig. 59 is for 11,2 (y <+/2), Fig. 60 is for 12
(y<+/2), Fig. 61 is for I (y <~2), Fig. 62 is for I111 paired with V1 (gy <3k"),
Fig. 63 is for 111 paired with V1 (¢y 23k', y<~/2), Fig. 64 is for 1112 paired
with V2 (gy <3k'), Fig. 65 is for 112 paired with V2 (g7 >3k', y<~/2), Fig.
66 is for IV1 (gy=3k', y<+/2), Fig. 67 is for IV2 paired with VI1 (g7 >3k',
y<~/2), Fig. 68 is for IV2’ paired with VI1 (gy<3k"), Fig. 69 is for IV3
(qy=3k', y<+2) paired with VI2, Fig. 70 is for IV3’ paired with VI2
(qy <3Kk').
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X. Discussion and concluding remarks

(1) If we let g =0, the results of the present study, which includes uplift force,
reduces to those in Refs.1,2 where uplift force is not considered. By
letting ¢ =0, in the sections discussing RO and SRO modes, the cases
of I, IV and VI are all no longer relevant since the quantity ¢ is now
greater than zero. Also, the cases involving ¢y >3k' do not exist. For
cases where ¢y <3k' and ¢>0, by letting ¢ =0, for example, case V1
does not exist but case V2 remains. It may be similarly verified that
without an uplift force, a caisson can not be initiated into a RO' mode
nor a SRO' mode.

(2) In reference to Figs. 10 and 15, since the caisson being considered is
rectangular in its elevation and of uniform mass distribution, &' can not
exceed unity. Thus, the regions to the right of £'=1 is to be ignored;
only the regions to the left of £'=1 need be considered.

(3) To gain a sense of the behavior of a caisson, calculations should be made
for a range of numerical values of y, ¢, &',k and u.

(4) The present study of the behavior of a caisson considering uplift force
should be extended to cover the case of force F applied below point C.

(5) The results of this study as presented in Fig.15 and Fig.58 to Fig.70 can
be used to determine the mode of motion of a caisson. For example,
given the aspect ratio y of a caisson, and knowledge of the location of
the force F (k') and measure of the magnitude of the uplift force (q),
Fig.15 can be used to determine the case (for example, case II) that
governs the behavior of the caisson. The relevant figure in the k- u
plane can be identified from Fig. 58 to Fig.70 (for example, for case II,
it is Fig. 61). Given the force and coefficient of friction, the mode that
the caisson is to be initiation into is determined.

(6) The results of this study contribute to a better understanding of the
behavior of a caisson under the action of an impact force. The study is
not concerned with the problem of determining the actual response of
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the caisson. For example, the study does not address the issue of the
amount of sliding or rocking a caisson would undergo. The study,
however, provides information based on which the engineer can make
design decisions. For example, the configurations of the caisson may be
adjusted to avoid it being initiated into a mode of response that is not
considered desirable. More significantly, given the magnitude and
location of the force F, the uplift force, and the coefficient of friction
between the caisson and the base, one may, based on the region of rest
(in the k — u plane), determine the dimensions of the caisson so that the

volume of the caisson is minimized.
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Fig. 44a Region of i, >0 for slide-rock about point O mode (SRO,),
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Fig. 44b Region of i, >0 for slide-rock about point O mode ( SRO,),
case VI2,1 (gy=3k',e<0,¢'<0)
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Fig. 45b Region of § >0 for slide-rock about point O mode (SRO,), case
VI2,1 (qy=3k',e<0,e'<0)
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Fig. 46a Region of slide-rock about point O mode (SRO,), case VI1,1
(g7 =3k',e<0,¢>0)
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Fig. 46b Region of slide-rock about point O mode ( SRO,), case VI2,1
(g7 =3k',e<0,¢'<0)

65



Hy H u

IL{O JL{I

>
0 D 1/ b/\a| d/|c| k

Fig. 47a Region of slide-rock about point O mode (SRO,), case VI1,2
(g7 <3k',e<0,¢>0)
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Fig. 47b Region of slide-rock about point O mode ( SRO, ), case VI1,2
(g7 <3k',e<0,€'<0)
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Fig. 48 Region of <0 for rock about point O’ mode (RO’)
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Fig. 49 Region of f, >0 for rock about point O’ mode (RO’)
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Fig. 50 Region of /, >0 for rock about point O’ mode (RO’)
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Fig. 51 Region of x> f, / f, for rock about point O’ mode (RO’)
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Fig. 52 Region of f >0 for slide-rock about point O’ mode (SRO'_)
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Fig. 53a Region of x, <0 for slide-rock about point O’ mode
(SRO'_)(e=0)
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Fig. 53b Region of x, <0 for slide-rock about point O’ mode
(SRO'_)(e<0)
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Fig. 54 Sketch of x** relevant to slide-rock about point O’ mode
(SRO'_)
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Fig. 55b Region of case 11,1 in k'—¢ plane showing line ¢ =g, for y<+2
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Fig. 56 Region of 4 <0 for slide-rock about point O’ mode (SRO'_)
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Fig. 57 Region of slide-rock about point O’ mode (SRO'_)
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Fig. 58 Regions of all modes for case I1,1 (y<+2)
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Fig. 59 Regions of all modes for case 11,2
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Fig. 60 Regions of all modes for case 12 (y<+/2)

Fig. 61 Regions of all modes for case II (y <+/2)
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Fig. 62 Regions of all modes for case III1 paired with case V1 (gy <3k')
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Fig. 63 Regions of all modes for case I1I1 paired with case V1
(g7 =3k, y <+2)
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Fig. 64 Regions of all modes for case 1112 paired with case V2 (¢y <3k')
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Fig. 65 Regions of all modes for case I112 paired with case V2

(g7 =3k, y <2)
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Fig. 66 Regions of all modes for case IV1 (g7 >3k', y <+2)
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Fig. 67 Regions of all modes for case IV2 paired with case VI1
(qr23K,7<2)
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Fig. 68 Regions of all modes for case IV2,2 paired with case VI1,2
(qy <3k')
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Fig. 69 Regions of all modes for case IV3 paired with case VI2,1
(g7 =3k, y<2)
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Fig.70 Regions of all modes for case IV3,2 paired with case VI2,2
(qy<3k')
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