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ABSTRACT

Centering on the best wavelet for water waves, the study here can be divided into
three main parts: the identification, the verification and an application. It is believed that,
concerning wavelets’ applications to water waves, the best basis identified here is the last
and ultimate word in wavelets.

In the first part, the best wavelet for water wave simulations, either in the discrete or in
the continuous domain, is named; to wit, the best basis in the discrete domain is the semi-
orthogonal cardinal spline wavelet and the counterpart wavelet in the continuous domain
is the Morlet wavelet. In the identification processes, comprehensive basis categories
of discrete wavelet groups are taken into account and inclusive entropy measures are
adopted.

In the second part, as a definitive proof of the realization of the best basis, the for-
mula for wavelet coherence is devised based upon the wavelet resolution of identity; and,
using data from measurements of wave and aqueous flow fields in a wind-wave tank, the
wavelet coherences are compared to the Fourier spectral coherences. The wavelet’s ab-
solute superiority, as well as its outstanding and informative outcomes, fully vindicates
the present identification. Reasons for the superiority are also given.

In the third part, as a demonstration of the possible usefulness of the best basis and
the contrived coherence approach, first, an energy cascade model is proposed for the
damping of waves in the wind, wave and rain coupling system; and later, the wavelet
coherences are used to explicate its physics and the interaction scales within the coupling
system. Overall, they are able to reflect two categories of mechanisms involved. One
emphasizes the local mechanism within the air and aqueous boundary layers, especially
on the role played by a match layer due to rain of interfacial aqueous flows. Another
emphasizes the stratification-induced mechanism governing a large water body, and it
involves the following key elements: the vortical contribution to wave attenuation, the
impact of rain and the catalysts of tuning and de-tuning processes, the forming of tetra-
interactions of surface waves, and the further diversification of coupling scales mainly
due to triad interactions of surface and internal waves.
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Chapter 1
Introduction

1.1 Background

In wavelet’s applications to physics of water waves, it is quite often seen that a specific

function basis is adopted for no reason or without any hint of rationality. The results thus

yielded are fated to be problematic and equivocal, or even misleading and erroneous —

mathematics does not need to be liable to physics. Mathematics provides the tools without

any precondition while physics needs proper instrumentation and should be reasonedly.

Moreover, the usefulness of a particular data analysis methodology is highly case depen-

dent; there simply exists neither a full-fledged analyzing function basis nor an all-purpose

numerical scheme for all sorts of signals and applications.

Chronically, from the somewhat traditional and well established spectral perspective

to the more recent wavelet viewpoints, we have the following instrumentations:

• Fourier transform;

• Short time Fourier transform or windowed Fourier transform;

• The Gabor’s analytical signal procedure and the relevant Hilbert transform;

• Various time-frequency transforms associated with individual distributions or ker-

nels, such as Wigner Distribution, Page distribution, Choi-Williams distribution,

etc. [17];



• The continuous wavelet transform or the integral wavelet transform;

• The discrete wavelet transform.

It is noted that, unlike the discrete and continuous Fourier transforms, which are basically

identical in both function bases and formulations, the discrete wavelet transform and the

continuous wavelet transform are two essentially different categories with regard to the

following two aspects. First, they generally use completely different function bases; Sec-

ond, they involve relatively quite independent mathematical formulations.

In the following descriptions let assume the analytical target to be a one-dimensional

time series signal and let outline the most basic attributes for individual analytical method-

ologies.

The Fourier transform yields another one-dimensional data in frequency domain. The

transform correspondence is one to one. And the correspondence is a time domain vari-

able to a frequency one.

For short time Fourier transform, it yields somewhat localized frequency contents

by capping the signal with a window. And, when the capping window is shifted along

the time line, it provides time-dependent spectral information. Through such multiple

processes the transform correspondence is from the one dimensional time variable to the

two dimensional time and frequency variables.

For Gabor’s analytical signal procedure, it is based upon the Hilbert transform, which

is basically the inverse Fourier transform of a one-sided spectrum that is formed through

the chopping off the part of negative frequency. Here the independent variable in the two

corresponding transform domains is both time. And the procedure yields instantaneous

frequency distribution and amplitude envelop curve along the time line [17, 35]. Ideally,

the instantaneous frequency and amplitude should be independent with each other (since

they are of two completely different physical units), but in reality they are intertwined and

sometimes twine in an unimaginable way. Moreover, the interaction is extremely serious

when the relative rate of variation of amplitude is significant. And the symptoms brought
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out here manifest its relevance to the intrinsic properties of the Fourier transform. Thusly,

insurmountable uncertainty involved is always a concern [35].

As for various time-frequency transforms associated with individual distributions (or

kernels), they also provide time-varying frequency contents that are conceptually identi-

cal to the short time Fourier transform, except that the involved analyzing kernels are re-

lated to individual distribution kernels rather than the Fourier kernel of short time Fourier

transform. For these transforms they always have their individual pros and cons; none is

perfect.

For the discrete wavelet transforms, a one-dimensional time series yields directly an-

other one-dimensional coefficient series that contains the information that covers both

“time” and “scale”. The correspondence is one independent variable to a variable that

mixes two independent variables into one in one transform process. But here, for almost

all of the discrete wavelets, the “scale” is generally quite different from the sinusoidal

frequency and normally not even possible to be assigned to a “representative frequency”.

And this causes tremendous difficulties in physics apprehension. Besides, we rarely see

a complex discrete wavelet in water wave applications. The dual-tree complex discrete

wavelet transform may still provide a quantity different from the general concept of sinu-

soidal “frequency”.

As to the continuous wavelet transform, the one-dimensional time series yields two-

dimensional coefficients that contain information varying both in time and in scale. But

now, due to its loosen theoretical requirement and hence its flexibility in design, it is

possible to bring in a physically meaningful “representative frequency” rather than just

“scale”. The numerical implementation is a multi-process scheme conceptually similar to

the short time Fourier transform, except its core differences in the design of the capping

windows of varying sizes and its better localization for the fulfillment of the requirement

of the wavelet “resolution of identity”. Again, every time point has a component scale

distribution and every scale may play a role at a specific time.
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1.2 Local and transient effects

It is well known that Fourier transform is suitable for characterizing stationary signals

and not quite satisfactory for analyzing transient local phenomena. The reasons can be

illustrated by the following properties of the transform.

• Any Function cannot be both time- and band-limited. If a function is limited (fi-

nitely supported) in one domain, then the independent variable of its corresponding

function in the other domain stretches the entire real line (R). In real world situ-

ations, however, signals are almost always limited in time and space; meanwhile,

hardware’s capability is generally band-limited. This simply implies that there is

not going to be a function basis that perfectly matches theory to practice. A slight

variation of the Fourier transform is the short time Fourier transform, which is just

the Fourier transform of the windowed signal, i.e., the original signal capped with

or multiplied by a window function. In short time Fourier transform this property of

mutual exclusivity in time and frequency localizations is indicated by the Balian-

Low theorem, which basically states that if the window function g(t) of a Gabor

type frame

gm,n(t) = e−2π imt g(t − n), (1.1)

in which m, n ∈ Z, is well localized in time, then the associated Fourier transform

window can not be well localized in frequency. The point here sounds a bit abstract,

but, in reality, this is conceptually equivalent to the following points.

• The Gibbs phenomenon states that, if there is a jump in signal, then the overshoots,

occurring at both sides of the discontinuity when the inverse Fourier transform is

implemented, can never disappear and remain at constant. This amounts to say

that it takes quite many a spectral component to make up a sharp transient feature

and that a local variation affects a broad range of the spectrum just as the Fourier

transform of the delta function (more precisely, delta distribution) covers the whole
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frequency axis.

• Fourier basis functions are periodic and extend bi-infinitely; signals thus studied

are better to be periodic and sampled infinitely. The unavoidable side effects for not

fulfilling these requirements are many: frequency leakages, smoothing errors, edge

effects due to data truncations, aliasing due to under-sampling or non-periodicity

(figure 1.1 (TFW–WP BB) is actually a case of under-sampling, where a linear chirp

is sampled at a rate half of the Nyquist frequency), and, uncontrollable spectral

variance due to the finite resolution or histogram processing.

Overall, the syndromes associated with the above listed items can be referred to the

non-stationary effects.

1.3 Windowed transforms

Except the fourier transform all the transforms mentioned in the preceding section can be

classified as a form of windowed transform (either in time or in frequency).

Both short-time Fourier transform and wavelet transform try to remedy Fourier ba-

sis’s deficiencies in characterizing transient phenomena by analyzing the set of localized

signals. For the short time Fourier transform this can easily be executed by varying m and

n in equation 1.1. For the wavelet transform this can be illustrated through the use of the

Morlet wavelet by varying its translation and dilation variables.

Both transforms yield local spectral information – more precisely, local scale infor-

mation, if the term ”frequency”, “Hz”, or “spectrum” is strictly reserved for sinusoidal

functions. However, due to the Balian-Low theorem mentioned above, the waveform as-

sociated with short time Fourier transform can never be truly local in time since in reality

the frequency domain of discrete Fourier transform is always band-limited by obeying

the Nyquist law. In this regard, wavelets can be of exactly local; at least, they must have

suitable or better decaying property such that they contain no zero-frequency component.

Let us further outline a few specific properties pertaining to individual transform:
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• Both short time Fourier transform and wavelet transform are windowed transforms.

In short time Fourier transform there exist two quite distinctive operations. The

first operation is applying a suitable time-window to the signal; the second opera-

tion is performing the Fourier transform for the capped signal. The corresponding

inverse transform (or reconstruction process) of the short time Fourier transform is

naturally associated with a frequency-window and involves two similar distinctive

operations too. However, in wavelet transform these two distinctive steps are not

clearly observable — rather than using the very distinctive “window (either time- or

frequency-window)” and “Fourier basis function (i.e., sine or cosine function)”, the

“window” and the “basis function” are synthesized in an inseparable specific form

called “wavelet”. In fact, one can clearly solidify this notion by comparing the Ga-

bor type frame (equation 1.1) with the Morlet wavelet when the window function

g(t) of equation 1.1 is assumed to be a Gaussian bell. The intention for either the

combined operation or synthesized operation is completely the same: to provide a

mechanism (or kernel) for projecting a signal into modulated or oscillating wave

constituents.

• The time-frequency windows in short time Fourier transform keep rigid for different

scales since the window function g(t) in Equation 1.1 does not depend on m, i.e.,

their widths (usually referring to time) and heights (usually referring to frequency)

do not change for all frequencies. In wavelet transform, the windows are adjusted

to different scales, but the sizes (or areas) of different windows are still fixed, i.e.,

each window’s height and width are inversely proportional and the product remains

constant (either for discrete wavelet transform or continuous wavelet transform).

The concept of fixed size windows is illustrated by the fixed area of the gray blocks

in the phase planes shown in figures 1.1 (TFW–WP BB) and 1.2 (TFW–WP BL), where the

discrete wavelet packet transforms are performed for a chirp signal using different

bases originating from the same seeding mother wavelet. In the figures, since the

bases are orthonormal, all time-frequency windows do not overlap. As for the con-
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tinuous wavelet transform, various time-frequency windows severely tangle with

each others. And we generally do not show the actual sizes and shapes of various

windows — rather, each window is represented by a point (or a small area depicting

the time-frequency resolution) having coordinates corresponding to its centroids in

the time and frequency axes.

• The function basis of the short time Fourier transform is the unique orthonormal

Fourier basis comprised of sine and cosine functions; whereas, for wavelet trans-

form, apart from the very loose constrain that the basis function (or the mother

wavelet) satisfies the admissibility condition (for continuous wavelet transform) or

stability condition (for discrete wavelet transform), there is virtually no restriction

on the choice of basis functions. The coefficients of short time Fourier transform,

which represent local Fourier spectral information, still have the exact meaning

of “frequency”. In wavelet transform, wavelet coefficients refer to specific scales

rather than “frequencies”. Here, we generally suffer from their physical inter-

pretability due to the following reasons: (1) No unique basis — the analyzing

function or mother wavelet can be designed in a plenty of ways, and the basis

functions related to the mother wavelet can be either dependent or independent

(orthogonal or non-orthogonal); (2) Scale does not have unit — together with the

first point, it severely hampers out ability to directly perceive the wavelet’s size

and physical shape; and, (3) No fixed algorithm to implement wavelet transform —

many techniques and various adaptations exist, such as, the treatment using flexi-

ble time-frequency windows for continuous wavelet transform, multi-voice [20] or

multi-wavelet [18, 19, 70] frames, and discrete wavelet transform using different

dilation factors other than the most often seen value of 2 [6]. Generally speaking,

these varieties may not be as disturbing in certain application fields (such as data

transmission or signal decomposition and reconstruction) as they are for our studies

focusing on the water wave physics.
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Fig 1.1 (TFW–WP BB) The time-frequency window distribution (or phase plane) of a wavelet
packet’s best basis (top) for a linear chirp signal that is sampled under an
aliasing condition (thus the symmetric frequency distribution (bottom) is
yielded). Here the wavelet packet is associated with a Coiflet of 30 convolu-
tion weights and the basis refers to the best basis rather than basis associated
with the best level as to be shown in the next figure. The original signal,
if not under-sampled, has linear instantaneous frequency distribution form
0 to 100 Hz in the full span of time. Note the non-symmetric distribution
and and the scattering of windows. These phenomena reflect the composite
frequency bands of a mother wavelet and inherent quarks that may arise, as
well as the shift-non-invariant transform property.
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Fig 1.2 (TFW–WP BL) Choosing an appropriate wavelet basis is a dilemma to be resolved first; and
the existence of the numerous quandaries of wavelet analyses shall be ac-
knowledged foremost. Here are shown two different wavelet packet phase
plane representations associated with the same Coiflet and the same aliasing
signal as the preceding figure. The distributions are now based on wavelet
packet’s best level, which occurs at transform level 5 for such a signal. The
top sub-figure is in logarithmic measure and the bottom is in linear mea-
sure. In view of the fact that a single orthonormal mother wavelet can yield
many different wavelet representations, and the fact that there are basically
infinitely many wavelet bases, as well as the fact that we may use differ-
ent graphic renderings; we are easily trapped in the quandaries of wavelet
analyses.
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• We note that the present scope focuses on the L2(R) Banach space, i.e., the Hilbert

space, since some of the statements here may not apply to other function spaces

or classes [20, 52]. Nevertheless, most of the intricacies that differentiate different

spaces are only of analytic interest up until now (e.g., on the existence of multires-

olution analysis (MRA), on the regularity and differentiability of wavelets and its

associated scaling functions). From the practical point of view, it is far enough to

restrict to the Hilbert space, i.e., a space of functions with finite “energy” contents.

1.4 The scopes

There are basically infinitely many wavelet function bases to choose from in any data

analyses or in any applications, and it is not uncommon to see that a particular wavelet

is chosen without any given usage specificity. Thusly, the arising problems quite often

exceed the problems they want to solve, and the provided results in most cases are shoddy

and misleading, or even erroneous in generalizations. Moreover, a mathematical existence

does not always conciliate a reasonable or physical nicety. All of these are particularly

true for wavelets’ employment in our field concerning water wave physics.

The fundamental foothold to use localized transforms in our water wave applications

can be stated quite simply, as well as intuitively — if we perceive our signal as composed

of waves which are limited both in life span and in covering region, i.e., constituent com-

ponents are evolving with time and in space, then it is natural to adopt wavelet as our

analyzing function basis. Furthermore, in addition to waves’ modulation nature, if we

also acknowledge, even for regular waves, that intrinsic instability due to nonliner effects

may exist and that interactions and boundary conditions are everywhere to be observed,

then it is still quite possible that, for stationary signals, wavelet decomposition can pro-

vide better descriptions of physics than can the Fourier decomposition. Besides, another

advantage of using wavelets is the possible flexibility in adapting their wave forms to our

desires; this is related to the modifications of time-frequency windows for better physical
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implications.

In this study the subject matter can essentially be separated into a few independent

parts centering on the best wavelet for water waves; videlicet, the identification, the opti-

mization, the vindication, and an application. And the contents can basically be divided

sequentially into the following core constituents.

1. In the first constituent we mainly focus on the characterizations of discrete wavelet

categories. And the covered discrete wavelet categories should be quite compre-

hensive — in the sense that they have included all the extreme analytical properties

in wavelet designs. And it is the author’s belief that if you ever find an individ-

ual wavelet you have great chance to assign it into one of these categories, and if

not, you have great reason to say that its properties fall within (or between) the

covered characterizations and thus its possible usefulness (or its fate) trammeled

accordingly. The relevant characterizations and intrinsic properties for all the cate-

gories are extensively illustrated through the depictions of their mother and farther

wavelets, the translations and dilations of wavelets, the zoom-ins or blowups of any

kind of wavelets, and their the linear phase filtering features. Physical counterparts

of analytical aspects are provided when possible.

2. In the second constituent we work on the identification of optimum discrete wavelet

basis specifically for studies of water wave related signals, and signals obtained

from wind-wave-tank experiments are used. Here inclusive entropy criteria are

adopted for both the whole comprehensive wavelet bases and the Fourier basis.

3. In the third constituent we mainly focus on exploring the analytical essence of the

behavior of any wavelet function basis concerning its performance or fitness in our

water applications; in other words, what is the mathematical factor that leads to the

different statistical performances based on the entropy. And this is related to the

study of the phase distribution of a wavelet characterizing function (the m0(ξ) to be

described in a later chapter) for each individual basis.
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4. In the fourth constituent we identify the continuous counterpart wavelet of the opti-

mum discrete basis, i.e., a continuous wavelet transform corresponding to the mul-

tiresolution analysis of the semi-orthogonal cardinal spline dual wavelet. Here we

come up to why there is the need of a continuous transform both mathematically

and physically; that is to say, what are the advantages and disadvantages of discrete

and continuous wavelet transforms concerning their applications to water waves.

5. In the fifth constituent we address what can be done to improve the physical rel-

evance between the basis functions in the continuous domain and the wave con-

stituents of our signals. Here the topics include: the demand of better physics

in modeling the energy phenomenon; the uncertainty relationship and the degrees

of freedom for adaptivity; the physics of the “carrier frequency” and the time-

frequency windows of flexible size and shape; and finally the proof of the existence

of admissability condition under such an adaptation.

6. In the sixth constituent we make the comparisons between the wavelet coherences

based upon the identified best wavelet and the spectral coherences based upon the

Fourier basis. The absolute superiority of wavelet coherences is shown, and the

reasons are delineated.

7. In the seventh constituent to serve as an example of possible applications of the

best wavelet and its coherence approach, a model concerning the calming of waves

due to rain will be proposed first and explicated afterwards. The model concerns

the interaction scales in the wind, wave and rain coupling system. It is an energy

cascade model and involves two categories of mechanisms. One emphasizes the

local mechanism within the air and aqueous boundary layers, especially on the

role played by a match layer due to rain of interfacial aqueous flows. Another

emphasizes the stratification-induced mechanism governing a large water body that

shows the interactions among surface and internal waves and leads to rapid damping

of waves.
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8. In the eighth constituent we detail the experimentations, as well as the importance

of the development of the real-time system for both experiment and analysis.

9. In the ninth constituent wave tank data, mainly of wave-current coherences, will

be used to show the wavelet spectral trend of the coupling system concerning the

interaction and evolution of scales.

1.5 Summary

In a compendious way, the study is to put forward an optimal wavelet basis that is both

mathematically and physically right for water wave analyses and to prove it beyond doubt.

Moreover, to serve as an example of possible applications of the identified best wavelet

basis and the relevant coherence approach, an energy cascade model is proposed. The

model aims at the physics concerning the rapid damping of surface waves in the wind,

wave and rain coupling system. v
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Chapter 2
The Wavelet Categories and Their
Characterizations

2.1 Introduction

In almost all lab or model experiments various modeling or scaling laws can at best be

partially satisfied, and the situation is further complicated for a multi-scale and multi-

dimensional phenomenon in a multi-factor system.

In the introduction chapter we noted the problems of transient effects that attested

to diversified scales. Moreover, for water wave experiments, it is acknowledgeable that

there may exist significant distortions concerning the coupling mechanisms targeted. For

example, a limitation in space and time in the tank, on the one hand, introduces the lack

of scale diversification that may hinder the development of certain mechanisms and im-

pose restrictions upon the evolutions of certain interactions; on the other hand, introduces

serious boundary and initial conditions that may act as exploitations of factual considera-

tions. With these understandings, as well as the cognizance regarding the inadequacy of

the Fourier spectral approach in our applications as mentioned earlier, it is understand-

able that, if the modeling of the proposed physics is at all possible, the deployment of

an optimized analyzing scheme using sensitive and appropriate basis functions is desired.

Specifically speaking, we shall select among a broad array of functional bases the most

appropriate one for our signals and describe the proper analyzing method. Akin to such



an attempt, it warrants to give more systematical descriptions of different properties of

various categories of wavelet function bases.

Herein comprehensive categories of discrete wavelet are studied. Their comprehen-

siveness is essentially reflected by the inclusions of all the extreme and opposite analytical

properties in wavelet designs. That is to say, the characterization of a particular wavelet

not seen or not named here should fall between or within the basis properties covered

here.

2.2 Program and workbench developments

The wavelet programming and all relevant numerical characterizations [75] were devel-

oped from the ground up using mainly the Asyst programming language. The programs

not only cater comprehensive wavelet bases but also provide inclusive characterizations

of their relevant functions and intrinsic properties. The code is written with the mind

of being flexible, friendly, and versatile. Accuracy and error-free requisites are highly

abided by. And it is espoused that keyboard strokes should be minimized and any manual

input of original or intermediate data should not be allowed. In addition, several add-in

programs and auxiliary applications are integrated. Overall, they mainly consist of the

following.

• The Postfix language — The Postfix add-in to the Asyst core programming enables

the real-time, as well as direct, generation of high quality Adobe Encapsulated Post-

script figures. The process secures the proper labeling and correct legends. And it

is confidently guaranteed that the statements or analyses deriving from the figures

make no mistakes. Besides, the automation exceeds the condition that the gen-

eration of quality figures as many as one wishes is surely possible, and that the

elimination of the painful task of plotting seemly countless figures when making

parametric alterations or test cases is certainly true. Using a commercial graphical

application software can never archive such functionalities, moreover, it is basically
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error-prone.

• The on-screen real time display of PCX format figures — The Encapsulated Post-

script figures are mainly for quality printing and created in the background. A real-

time and interactive monitor display is desirable and essential. This should greatly

enhance the debugging efficiency and make possible the writing of a huge and com-

plex code that is user-friendly, easy to maintain, as well as flexible, interactive and

accurate.

• The data spreadsheet interface — The output or input of data to or from the Excel or

Lotus-123 compatible worksheets is integrated. In cases that articulated or complex

figures are desired or post-processing and supplementary analysis are needed such

an interface is readily convenient and trouble free.

• The Mathematica programming language — This coding is mainly for the stream-

lined generation of various high quality graphical renditions for the two-dimensional

or three-dimensional time-scale data, such as the modulus and phase information

derived from the Asyst programs. There is no manual intervention when commut-

ing between the Asyst outputs and the Mathematica inputs.

• The LATEXmacros and packages — In addition to the utilization of various existing

LATEXpackages, a vast amount of LATEXcodes and macros were also written for the

following purposes: the systematic displays and printouts of voluminous all sorts of

figures for analyzing, reasoning, and comparing; the pleasant listings of codes for

the comfort of eyes and the easy debugging; the nonchalant production of printouts,

papers, reports, etc. for proof-reading and archiving; the facilitation for efficient

management and pain-free integration among different case studies.

• The WinEdt macro programming language — The language is specifically used

to develop a non-fallible workbench. Hundreds of these macros were written and

integrated. The workbench provides a working platform or shell environment for
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writing the codes of various programming languages, as well as provide various

add-on operations, such as file management, various format operations, code com-

piling, cloud backups (these were developed in the Windows 2000 or pre XP era

when handsets and cloud concept were unfamiliar to the general public), etc. Lots

of attention were paid to the accomplishment of an environment that is pleasant,

efficient, easy and safe. With this workbench all the code pieces, subroutines, and

component files are managed and displayed in a way of being scientific, organized

and reflexive. Moreover, various tasks can be integrated and streamlined. Without

such a workbench the editing and debugging, as well as the whole work, must be

extremely painful and exhausting and the present study is surely inconceivable.

2.3 Wavelet basis categories

The Riesz wavelet bases tested here can basically be divided into four categories: or-

thonormal (ON), semi-orthogonal (SO), bi-orthogonal (BO), and orthonormal wavelet

packets bases. For the orthonormal category it is divided into several different subgroups:

Daubechies wavelets (both the most and least asymmetric), Coiflets, Meyer wavelet, and

Battle-Lemarié wavelets.

No detail accounts of these wavelets will be given; only the main criteria and core

features of each categories will be briefed. Let first state the related notations and conven-

tions needed for the context that follows. Let a function or a signal be denoted by f (t);

the two-scale scaling function of a Riesz basis be φ(t); the associate mother wavelet be

ψ(t) and its dyadic wavelets be ψ j,k(t) =
√

2 jψ(2 j t − k), where j, k ∈ Z and k stands

for translation and j for dilation. The concept of translations and dilations are illustrated

in figures 2.1 (Wavelet T&D-1) through 2.6 (Wavelet T&D-6).

The space V j (formed by ψ j,k , k ∈ Z for a given j) in the multiresolution ladder are

nested in · · · ⊂ V−1 ⊂ V0 ⊂ V1 · · ·, and the finest and the coarsest scale space, say,

for a 1024-point signal, are V10 and V0, respectively; the number of filter coefficients or
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the number of convolution weights be N if the associated wavelet is finitely supported

(support length equals to N − 1); the dual wavelet and dual scaling function, if exist, be

ψ̃(t) and φ̃(t); the inner product be 〈·, ·〉; and the Kronecker delta be δ j,k, j, k ∈ Z, which

is equal to 0 for j 6= k and 1 for j = k.

Up until now, all practical wavelets of discrete transform are associated with the the-

ory of multiresolution analysis (MRA) [4, 20, 46, 47]. For Riesz wavelets there always

exist dual wavelets except for orthonormal wavelets, which are self-dual. Any discrete

wavelet transform involves two convolution operations: one yields detail information; an-

other yields smooth information [59]. Convolutions can either be implemented in a direct

way in the time domain for compactly supported wavelets or in an indirect way in the

frequency domain. We list the basic properties (restricted to real-valued wavelets) and

give the symbols of representation for various categories and subgroups as follows.

2.4 Orthonormal wavelets

The orthonormal wavelets covered here include the following categories: Daubechies

most compactly supported wavelets (denoted as ONxxA); Daubechies least asymmet-

ric wavelets (ONxxS); Coiflets (ONxxC); Meyer wavelet (Meyer); Battle and Lemarié

wavelet (B&L). Here in all the subsequent annotation x is an integer related to support

length (physically, the span of mother wavelet curve).

ψ = ψ̃, (2.1)

φ = φ̃, (2.2)

〈ψ j,k, ψ̃l,m〉 = δ j,lδk,m, (2.3)

f (t) =

∑
j,k

〈 f, ψ j,k〉ψ j,k, (2.4)

One MRA ladder (single set of frame bounds),
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Fig 2.1 (Wavelet T&D-1) Wavelet’s time-scale constructs – The time-scale concept of wavelet analy-
sis is associated with two variables, i.e., the translation and the dilation.
Here the concept of translation and dilation on the scales of transform
level 3 is shown for two different wavelets (BO31D (top) and ON55C
(bottom)). Individual curves are the inverse transforms of unit value at
points 16, 20, 24, 28, and 32 that are situated upon level 3.
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Fig 2.2 (Wavelet T&D-2) Wavelet’s time-scale constructs for a bi-orthogonal wavelet – Here the con-
cept of dilation and the fractal nature across scales of wavelet are shown
for scales from transform level 0 to level 7 for the BO22O wavelet. Each
curve corresponds to an individual scale and specific location as labeled in
the sub-figures.
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Fig 2.3 (Wavelet T&D-3) The fractal nature across scales of the dual wavelet (BO22D) and its di-
lation constructs are shown here. The dual wavelet refers to the wavelet
used in the preceding figure (BO22O). Each wavelet curve corresponds to
an individual scale (from scale level 0 to level 7) and its specific translation
location as labeled in individual sub-figure.
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Fig 2.4 (Wavelet T&D-4) The wavelet dilation concept and smoothly fractal nature from scale level
0 to level 7 for the dual BO31D wavelet. Each wavelet curve corresponds
to an individual scale and its specific time location as labeled in individual
sub-figure.
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Fig 2.5 (Wavelet T&D-5) The wavelet dilation concept and the fractal nature from scale level 0 to
level 7 for the BO370 wavelet. Each wavelet curve corresponds to an in-
dividual scale and its specific time location as labeled in individual sub-
figure.
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Fig 2.6 (Wavelet T&D-6) The wavelet dilation concept and the fractal nature for the ON66A wavelet,
which belongs to the most asymmetric category. Each wavelet curve corre-
sponds to an individual scale (from level 0 to level 7) and its specific time
location as labeled in individual sub-figure.
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One filter pair (one smooth and one detail).

2.4.1 Daubechies most compactly supported wavelets (ONxxA)

The wavelets in this group have maximum number of vanishing moments for given com-

patible support width. Or stated otherwise, they are the most compactly supported wavelets

for given compatible number of vanishing moments. The famous most compactly sup-

ported continuously distributed wavelet belongs to this group and has only four filter

coefficients. These wavelets are quite asymmetry (so, the “A” in ONxxA). The mother

and farther wavelets for the group corresponding to the originating points of 12 (bound-

ary point based on level 2) and 6 (boundary point based on level 3), respectively, for this

group are shown in figures 2.7 (MW–ONxxA) and 2.8 (FW–ONxxA). The vanishing moments and

the number of filter coefficients are, respectively,

∫
∞

−∞

t lψ(t)dt = 0, l = 0, 1, · · · , x, (2.5)

N = 2x, (2.6)

where x is the integer number in ONxxA. The minimum number of x is 2.

2.4.2 Daubechies least asymmetric wavelets (ONxxS)

For a given support width, these wavelets, in contrast to those of the ONxxA subgroup,

are the most symmetric ones (so, the “S” in ONxxS, but still not symmetric). They have

the same representations of vanishing moments and number of filter coefficients as those

of ONxxA. But the known minimum number of x is 4. The mother and farther wavelets

for this group corresponding to the same originating points as the previous ones are shown

in figures 2.9 (MW–ONxxS) and 2.10 (FW–ONxxS).
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2.4.3 Coiflets (ONxxC)

The Coiflets have vanishing moments for both ψ and φ; therefore, from Taylor expansion

point of views [20], they have high compressibility for fine detail information (i.e., a great

portion of the fine scale wavelet coefficients are relatively small); and henceforth, they

have simple quadrature rule to calculate the fine smooth information (i.e., the calculation

of the inner product of a function and the fine-scale scaling functions is more efficient).

Since every discrete wavelet transform involves both smoothing and detailing operations,

there may exist some advantages from these two properties for certain applications such

as applications that do not stress lossless of signal contents or perfect reconstructions

[18, 71]. Their vanishing moments and number of filter coefficients are

∫
∞

−∞

t lψ(t)dt = 0, l = 0, 1, · · · , x, (2.7)

∫
∞

−∞

φ(t)dt = 1, (2.8)

∫
∞

−∞

t lφ(t)dt = 0, l = 1, · · · , x, (2.9)

N = 6x . (2.10)

For this group the mother and farther wavelets are shown in figures 2.11 (MW–ONxxC)

and 2.12 (FW–ONxxC).

2.4.4 Meyer wavelet (Meyer)

The Meyer wavelet (denoted as Meyer or ME in figures) is the wavelet with most com-

pact support in frequency domain (here, if without any specific assignment, “finitely sup-

ported” refers to time domain). Therefore, due to contrast properties between the two

Fourier domains, the wavelet is infinitely differentiable in time domain, i.e., has an in-

finite Lipschitz regularity C∞ and does not have exponential decay. And the support

length N → ∞. The associated mother and farther wavelets corresponding to the same
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originating points are shown in figure 2.13 (MFW–Meyer).

2.4.5 Battle and Lemarié wavelet (B&L)

The Battle and Lemarié wavelet (denoted as B&L or LE in figures) of m th order is con-

structed from the orthonormal scaling function derived by applying the standard orthonor-

malization trick to the m th order cardinal B-spline Nm [8, 1]. For m = 1, it is exactly the

Haar wavelet. The latter is the only finitely supported wavelet in this group (also the case

of BO11O=BO11D to be mentioned below) and is also a non-continuously distributed

wavelet with the most compact support. All other wavelets in this group are infinitely

supported. These wavelets have an exponential decay and possess Cm−2 regularity. The

mother and farther wavelets for the Battle-Lemarié wavelet are shown in figure 2.14 (MFW–

B&L). Compared to the curves of Meyer wavelet (figure 2.13 (MFW–Meyer)), they look quite

identical even though their constructions, or derivations, or formula involved (including

Lipschitz regularity and decay property) are completely different.

2.5 Semi-orthogonal wavelets (SOxO and SOxD)

The semi-orthogonal wavelets are inter-scale, but not inner-scale, orthogonal. Their scal-

ing functions are cardinal B-spline Nm and have finite two-scale relations. Although there

are two distinctive (independent) filter pairs (one for the decomposition and the other for

the reconstruction), there is only one MRA V j -ladder. It was shown by Chui [1, 2] that the

cardinal B-spline wavelet of an order higher than m = 3 is almost a modulated Gaussian

(but a modulated Gaussian is not a wavelet). Therefore only the fourth order Cubic B-

spline wavelet (m = 4) is tested. It has the following characterizations.

ψ 6= ψ̃, (2.11)

φ = φ̃, (2.12)
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〈ψ j,k, ψl,m〉 = 〈ψ̃ j,k, ψ̃l,m〉 = δ j,l, (2.13)

f (t) =

∑
j,k

〈 f, ψ j,k〉ψ̃ j,k =

∑
j,k

〈 f, ψ̃ j,k〉ψ j,k, (2.14)

N = 3x − 1 for SOxD, (2.15)

N → ∞ for SOxO. (2.16)

One MRA ladder ,

Two filter pairs ,

The mother and farther wavelets of the fourth order and the associated dual wavelets

are shown in figures 2.15 (MFW–SO0) and 2.16 (MFW–SOD).

2.6 Bi-orthogonal wavelets (BOxyO and BOxyD)

The wavelets in this category are constructed also by Daubechies, and are sometimes

called non-orthogonal wavelets. As is well known all real-valued orthonormal com-

pactly supported wavelets, except the Haar wavelet, are not symmetrical. However, from

the point of view of reconstructing a signal from its partially truncated wavelet coeffi-

cients, the symmetry is a desired property of the filter when a more natural perception

or smoother variations is important. There is a very practical implication here: if non-

symmetrical function bases are used, then a small change in the wave form causes signif-

icant variations of scale information. In other words, to have minor impacts to the data

analysis, it is desirable to have bases as symmetrical as possible. Moreover, when consid-

ering that random errors, or noise, or uncontrolled factors are present, we should be able

to comprehend the significance of this property. In fact many of the figures given in this

study indicate such a feature. The symmetry can be achieved by sacrificing orthogonality;

if this is the case one has dual pairs for both wavelets and scaling functions. It is obvious

that conditions for semi-orthogonal cases are more general than those of orthogonal ones,
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and the bi-orthogonal cases are even more general. This situation is clearly indicated by

the additional freedom of dual scaling function, as is reflected by the two parameters x

and y in the notations of BOxyO and BOxyD. Nevertheless, the wavelets in this category

involve only one pair of independent filters for both decomposition and reconstruction

even though there involve two different MRA ladders that are associated with their own

individual sets of Riesz bounds. This is quite opposite to the case of semi-orthogonal

wavelets where they involve one MRA ladder but with two filter pairs.

ψ 6= ψ̃, (2.17)

φ 6= φ̃, (2.18)

〈ψ j,k, ψ̃l,m〉 = 〈φ j,k, φ̃l,m〉 = δ j,lδk,m, (2.19)

f (t) =

∑
j,k

〈 f, ψ j,k〉ψ̃ j,k =

∑
j,k

〈 f, ψ̃ j,k〉ψ j,k, (2.20)

N = 2y + x − 1 for BOxyO and x odd, (2.21)

N = 2y + x − 2 for BOxyO and x even, (2.22)

N = 2y + x − 1 for BOxyD and y odd, (2.23)

N = 2y + x − 2 for BOxyD and y even. (2.24)

Two MRA ladders,

One filter pair,

The mother and farther wavelets for this group and the associated dual wavelets are shown

in figures 2.17 (MW–BOxy0) through 2.20 (FW–BOxyD).
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2.7 Wavelet packets

The wavelet coefficients derived from an orthonormal wavelet decomposition can be fur-

ther decomposed by using either the set of filter coefficients (called two-scale sequence

in Chui [1]) associated with the original wavelet, or different sets of filter coefficients

associated with other orthonormal wavelets. Therefore, basically there can be infinitely

many wavelet packet decompositions. These further decompositions are of a tree-like

refinement process and are called the wavelet packet transform. The wavelet packet coef-

ficients give better frequency resolutions with longer time supports. There are no simple

formulas to describe the tree-like decompositions, but a schematic plot help elucidate the

mechanism shown in figure 2.21 (WP Tree). The branch patterns and the number of branches

can be chosen in any way so long as there is no repeat occurrences within any column un-

der the stretch of the coefficients. That is to say, any column, wide or narrow, must have

one and only one contribution from all levels (rows). Due to the tree-like process the

computational works are dramatically increased.

Figure 2.22 (WP forms) depicts the wave forms of two wavelet packets based upon

ON22A and associated with the same location point 100 at different scale levels 2 and

5. It demonstrates the typical bundled shape of distribution of wavelet packets as com-

pared to wavelet.

For this category we have two criteria for selecting our best basis. One is still called

the “best basis”; another “best level basis”. Take for example, for a 1024-point signal, the

finest level occurs at j = log2 1024 = 10 and there are 210 different choices of bases.

And within these 210 choices the one which yields the minimum entropy is called the

“best basis”. And if we enforce the restriction that all wavelet packets be at the same level

j , then we have 10 levels (0 to 9) to choose from; the level that yields minimum entropy is

called best level basis. The indexes of a wavelet packet coefficient, i.e., the subscript and

superscript of U labeled in the figure determine the time of occurrence of that coefficient

and also associated support length and frequency resolution, i.e. the resolution, i.e., the
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shape and location of the coefficient’s time-frequency window within the phase plane.

Concepts regarding the wavelet packet transform can be seen in figure 1.1 (TFW–WP BB).

Again we also see the effects of non-symmetrical filtering. One specific feature is that the

areas of all individual windows are all equal.

2.8 Wavelet nature and implications

Wavelets are fractal in nature, that is to say, no matter how detail we zoom into the wavelet

curve its blowups all show similar characterization, and this is related to the wavelet

differentiability, regularity, support length, and decaying property.

The Asyst program is written to be able to blow any wavelet constructions, such as

mother and father wavelets, wavelet bases and wavelet packet bases at any point on any

level. A few examples are shown in figures 2.23 (BU–BO2yO) to 2.30 (BU–BO35O).

Her we note that wavelets with fancy analytical properties are often of bizarre wave

forms and not of our choice for studying water wave related physics — either judging

from they entropy values to be given in the next chapter or form their stability conditions.

Moreover, this blowup exercise hints the behaviors of several numerical and theo-

retical aspects of wavelet analysis, such as the edge effects, the possible differences of

function curves due to finite resolution, and the convergent or error propagation property.

Figures 2.29 (BU–BO31O) and 2.30 (BU–BO35O) show the blow-ups of bi-orthogonal wavelet

BO31O and BO35O, respectively. Relevant data for BO31O is: Origin of wavelet curve:

level 2, position 12 (i.e., element U 12
2 in figure 2.21 (WP Tree)); Blow-up point: 150; data

length: 512. Each sub-figure shows successive blow-up scale of 26. Here the blow-

ups diverge rapidly, i.e., the wavelet fails to identify itself numerically in the refinement

cascade. Relevant data for BO35O is: Origin of wavelet curve: level 2, position 12 (i.e.,

element U 12
2 in figure 2.21(WP Tree)); Blow-up point: 225; data length: 512. Each sub-figure

shows successive blow-up scale of 26. Here the blow-ups converge but go with peculiar

inclinations. Figure 2.28 (BU–WP-ON) also exhibits the grouping or bundling tendency, as
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well as the fractal behavior, of wavelet packets. A few more specific or intrinsic properties

and their implications might be noted in the legends of individual figures.

2.9 Summary

The purpose of this chapter is to give an idea of the comprehensiveness of the wavelet

categories covered here and to provide the basic understanding of wavelet intrinsic prop-

erties as well as their possible implications in applications for water waves. It is hoped

that these numerous figures suffice the robustness of the study. v
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Fig 2.7 (MW–ONxxA) Any discrete wavelet transform is inherently associated with the pairing of
a mother wavelet and a father wavelet (conventionally denoted as ψ and φ
respectively). Such a pairing also links to the union of the constructs of
“detail information” and “smooth information”. Here the mother wavelets of
the most asymmetric orthonormal group ONxxA are shown. These curves
are the inverse transforms of a unit value located at point 12 for a 1024-point
data. They are the constructs of the “detail information”. It is noted that the
“detail information” for these sub-figures is associated with a level greater
than 3. That is to say the separation point between “smooth information”
and “detail information” is located at point 8.
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Fig 2.8 (FW–ONxxA) Here the father wavelets of the most asymmetric orthonormal group ONxxA
are shown. They are the constructs of the “smooth information” correspond-
ing to the “detail information” shown in the previous figure. These curves
are the inverse transforms of a unit value located at point 6 for a 1024-point
data. It is noted that the “smooth information” for these sub-figures is associ-
ated with a level less than or equal to 3. Again, the separation point between
“smooth information” and “detail information” is located at point 8.
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Fig 2.9 (MW–ONxxS) The mother wavelets of the most symmetric orthonormal wavelet group
ONxxS are shown here. Each curve is the inverse transform of a unit value
located at point 12 (at a scale level greater than 3) for a 1024-point data.
Again, the separation point between “smooth information” and “detail infor-
mation” is chosen at point 8.
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Fig 2.10 (FW–ONxxS) The father wavelets of the most symmetric orthonormal wavelet group
ONxxS are shown here. Each curve is the inverse transform of a unit value
located at point 6 (at a scale level less than or equal to 3) for a 1024-point
data. Again, the separation point between “smooth information” and “detail
information” is chosen at point 8.
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Fig 2.11 (MW–ONxxC) The mother wavelets of the orthonormal Coiflet wavelet group ONxxC are
shown here. Each curve is the inverse transform of a unit value located at
point 12 (at a scale level greater than 3) for a 1024-point data. The same
separation point between “smooth information” and “detail information” is
chosen at point 8.
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Fig 2.12 (FW–ONxxC) The father wavelets of the Coiflet wavelet group ONxxC are shown here.
Each curve is the inverse transform of a unit value located at point 6 (at a
scale level less than or equal to 3) for a 1024-point data. Again, the separa-
tion point between “smooth information” and “detail information” is chosen
at point 8.
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Fig 2.13 (MFW–Meyer) The mother (top) and farther (bottom) wavelets of the Meyer wavelet
corresponding to the point location at 12 and 6, respectively, based upon the
separation boundary point of 8 on level 3. It is noted that this figure is to be
compared to the next one.

40



 .000  200.  400.  600.  800.  1000
xE0

-.090

-.030

 .030

 .090

 .150

xE0

Point series

Co
eff

ici
en

t

12/02/02-22:23[(5,1024) Psi-<P0L2_BP4,Ori12,Pw10>]

LEOrthonormal (Lemarie) (L)

LE-Psi

 .000  200.  400.  600.  800.  1000
xE0

-.020

 .020

 .060

 .100

 .140

xE0

Point series

Co
eff

ici
en

t

12/02/02-22:53[(5,1024) Phi-<P0L3_BP8,Ori6,Pw10>]

LEOrthonormal (Lemarie) (L)

LE-Phi

Fig 2.14 (MFW–B&L) The mother (top) and farther (bottom) wavelets of the Battle and
Lemarié wavelet corresponding to the point location at 12 and 6, respec-
tively, based upon the separation boundary point of 8 on level 3. Comparing
the wavelet functions shown here with those shown in the preceding figure
(figure 2.13 (MFW–Meyer)), we note the following interests. Firstly, these two
different wavelets have quite similar looks, but they are associated with quite
distinctive theoretical constructions and analytic properties, such as regu-
larity, differentiability, rate of decay, support length, etc. Secondly, many
intricate and complicate aspects among the discrete Riesz wavelet bases may
have difficulty in their realization of practical usages, that is to say, math-
ematical complexity generally does not reflect our concerns about physical
applications. Thirdly, water wave analysis concerns about physics, but a
pure data analysis concerns only about mathematics. The important question
is what is to be chosen to yield the most appropriated physics.
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Fig 2.15 (MFW–SO0) The mother (top) and farther (bottom) wavelets of the semi-orthogonal
wavelet designed by Chui (SO0) [1, 2]. The curves correspond to the same
location points of 12 and 6. It will be shown that this wavelet possesses very
important properties pertaining to the optimal modeling of water waves.

42



 .000  200.  400.  600.  800.  1000
xE0

-6.00

-3.60

-1.20

 1.20

 3.60

xE-2

Point series

Co
ef

fic
ie

nt
12/02/02-22:23[(5,1024) Psi-<P0L2_BP4,Ori12,Pw10>]

SODSemi-orthogonal (L)

SOD-Psi

 .000  200.  400.  600.  800.  1000
xE0

-1.20

-.400

 .400

 1.20

 2.00

xE-2

Point series

Co
ef

fic
ie

nt

12/02/02-22:53[(5,1024) Phi-<P0L3_BP8,Ori6,Pw10>]

SODSemi-orthogonal (L)

SOD-Phi

Fig 2.16 (MFW–SOD) The mother (top) and farther (bottom) wavelets of the dual of Chui’s
semi-orthogonal wavelet (i.e., SOD, the dual wavelet of the wavelet SO0
used in the preceding figure). Again, the curves correspond to the same
location points of 12 and 6.
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Fig 2.17 (MW–BOxy0) The mother wavelets of the bi-orthonormal wavelet group BOxyO are
shown here. Again, the separation point between “smooth information”
and “detail information” is chosen at point 8. And the inverse transforms
are associated with location point 12. The fractal complexity of the curves
depends on the configuration of the numbers of x and y.
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Fig 2.18 (FW–BOxy0) The farther wavelets of the same bi-orthonormal wavelet group BOxyO. The
same separation point between “smooth information” and “detail informa-
tion” is chosen at point 8. And the inverse transforms are associated with
location point 6. Again, the fractal complexity of the curves depends on the
configuration of the numbers of x and y.
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Fig 2.19 (MW–BOxyD) The mother wavelets of the dual bi-orthonormal wavelet group BOxyD.
These curves are originating from the same point at 12. The fractal com-
plexity of these dual wavelets shows much less extreme.
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Fig 2.20 (FW–BOxyD) The farther wavelets of the dual bi-orthonormal wavelet group BOxyD orig-
inating from the same point at 12. The fractal complexity of both the mother
and the father wavelets of these dual are much less extreme.
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Fig 2.21 (WP Tree) The wavelet packet transform can be represented by this schematic represen-
tation of the tree-like structure of decomposition associated with orthonormal
wavelets. Different branching patterns yield different transform compositions.
Besides, any sub-root branch can be associated with either the same or another
orthonormal wavelet; therefore, the constructs are basically unlimited. Here the
schematic notations S (or V in the text) and D stand for smooth and detail in-
formation, respectively. The U with superscript larger than 1 stands for further
decomposition of D by wavelet packets. And all subscripts of U and D mean
scale levels. Besides, the superscript of U means relative location of a specific
frequency band within its compatible subscript (or scale level).
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Fig 2.22 (WP forms) This figure depicts the wave forms of two wavelet packets based upon ON22A
and associated with the same location point 100 at different scale levels 2 and
5, with boundary point at 8 and 64, respectively. It demonstrates the typical
bundled shape of distribution of wavelet packets as compared to wavelet.
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Fig 2.23 (BU–BO2yO) Wavelet’s fractal nature across scales is demonstrated in various previous
figures, but here the property is more appropriately shown by blowing up
the wavelet at any fixed point. The curves shown here are the blowups of
wavelets related to the bi-orthogonal group BO2yO. The scale interval be-
tween adjacent blowups is 23. The location of the blowup point is labeled
in individual sub-figure (such as point 256 or 257). The scale level (which
defines the boundary point between smooth and detail information) and the
unit value originating point for individual wavelet to be exploded are also
indicated in the sub-figures (such as L4 and Ori12).
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Fig 2.24 (BU–BO3yO) The blowups of wavelets related to the bi-orthogonal group BO3yO. The
scale interval between adjacent blowups is 23. The location of the blowup
point is labeled in individual sub-figure (such as point 150, 450, 252 and
208). The scale level and the unit value originating point for individual
wavelet are indicated in the sub-figures (such as L2, L4 and Ori12, Ori14,
Ori48, Ori12).
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Fig 2.25 (BU–BO2yD) The blowups of wavelets related to the dual bi-orthogonal group BO2yD.
The scale interval between adjacent blowups is 23. The location of the
blowup point is labeled in individual sub-figure (such as point 256 or 128).
The scale level and the unit value originating point for individual wavelet are
indicated in the sub-figures (such as L2, L4 and Ori12, Ori40). In reference
to the next figure, it is noted that the number of convolution weights play a
part in the modeling entropy. And a too brief number of convolution weights
generally yields quite unrealistic wave form.
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Fig 2.26 (BU–BO3yD) The blowups of wavelets related to the dual bi-orthogonal group BO3yD.
The scale interval between adjacent blowups is 23. The location of the
blowup point is labeled in individual sub-figure (such as point 100, 248,
125). The scale level and the unit value originating point for individual
wavelet indicated in the sub-figures (such as L2, L4 and Ori12, Ori40). It
is hinted here: comparing with the curve distributions of their counterpart
group BO3yO, it is not hard to realized that the dual wavelet yields better
modeling entropy as will be shown in later chapter.
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Fig 2.27 (BU–ONxAS) The blowups of wavelets related to the most asymmetric and the most sym-
metric orthogonal groups ONxxA and ONxxS. The scale interval between
adjacent blowups is 23. The location of the blowup point is labeled in indi-
vidual sub-figure (such as point 384, 86, 379). The scale level and the unit
value originating point for individual wavelet indicated in the sub-figures
(such as L4 and Ori56, Ori300). Again, it is noted that a too brief number of
convolution weights yields quite unrealistic wave form.
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Fig 2.28 (BU–WP-ON) This figure shows the wavelet packet blowups related to the most asymmet-
ric and the most symmetric orthogonal groups ONxxA and ONxxS. In ref-
erence to the preceding figure, it is easily comprehended that wavelet packet
transform is even more unrealistic for modeling water waves. This is one,
and an intuitive and visceral one, of the reasons why in the later chapter we
don’t bother calculating the entropy of any wavelet packet. Again, the scale
interval between adjacent blowups is 23. The location of the blowup point is
labeled in individual sub-figure (such as point 240, 400, 300, 56). The scale
level and the unit value originating point for individual wavelet indicated in
the sub-figures (such as L4 and Ori56, Ori300).
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BO310I6Wavelet basis blowup (L)

Seq. 6-150

Fig 2.29 (BU–BO31O) The successive blowups of the bi-orthogonal BO31O wavelet at point 150 for
scale level L2 and unit value originating point Ori12. Here the scale interval
between adjacent sub-figures is 26. Note the vast difference in the ordinate
axis. The phenomenon is related to the numerical demand of precision that
is associated with a too brief number of convolution weights, as well as with
its wavelet category.
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Fig 2.30 (BU–BO35O) The successive blowups of the bi-orthogonal BO35O wavelet at point 225
for scale level L2 and unit value originating point Ori12. Here the scale
interval between adjacent sub-figures is 26. Note the completely opposite
inclination of the distribution curve between adjacent sub-figures. Again,
the phenomenon is related to a brief number of convolution weights, as well
as the wavelet category. Overall, here it is hinted that there are many fancy
wavelets but, for water wave physics, fancy sometimes is only an illusion.
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Chapter 3
The Entropies and the Best Discrete
Wavelet Basis

3.1 Introduction

There exist basically infinitely many wavelet bases. In studying the physics of certain

phenomena using wavelets one of the most intriguing questions is how to choose the

analyzing wavelet(s). The concern here is quite in contrast to those studies where they

are mainly numerically or mathematically oriented. For example, in coding of images or

acoustic signals the goals are straightforward: the maximum compression with minimum

handling, the highest effectiveness with lowest distortion, and the most distinctiveness

with lest aberration; under such circumstances mathematical relevance between signal

and wavelet can be materialized much more explicitly than physical pertinence needs to

be unfolded for our applications. That is to say none of the above points is focusing on

our interest mainly in physics. From this point of view, by and large, for our interests

in characterizing the physics of water-wave related phenomena, it seems, at first, that the

aspiration is not on ‘efficiency” or “compactness”. However, with the understanding that,

on the one hand, the compactness of a transform result means the closeness between signal

components and analyzing basis functions, and that, on the other hand, the conception

that basis function forms which do not look like our signals (or signal components) are

obscured from intuitive perceptions of physics; it is naturally justified to seek the wavelet



that provides the most efficient or most economical representations for our signals. Still, at

the end we are bringing back to the concept of entropy — the most efficient representation

— different disciplines but with the same objective.

The exploits in this chapter are mainly numerical experiments on measuring the “dis-

tances” between our signals and various Riesz wavelet bases given in several wavelet

treatises [1, 20, 52, 59]. No attempt to make new constructions of bases or to extend the

existing constructions is made. Nevertheless, we have tried to include various categories

of Riesz wavelets with a comprehensive coverage of analytical properties. And we will

come to realize that there is really no need to extend the existing constructions if the asso-

ciated two-scale scaling function or father wavelet is not changed, that any other individ-

ual wavelet in literature falls within our characterizations, and that a few fractal-oriented

sparse wavelets [49, 47] are just as impractical as they may be in our applications.

The wavelets tested are dyadic wavelets with “mathematical sampling rate” 1 (no

unit). They possess the most practical interest and easiness in applications for discretely

sampled signals. Furthermore, we restrict our scope to laboratory water waves. Various

criteria are used for the entropy statistics of discrete transform coefficients, including

Fourier coefficients.

3.2 The entropy criteria

Entropy is a terminology in the statistical field, thus it gives indication without absolute

assurance. And the entropy can be viewed as a measure of the “distance” between the

original signal and its reconstructed signal using partially truncated transform coefficients.

To avoid the somewhat mystified notions as one might get from some of the available

readings, it may be better to give straightforward descriptions by going through the actual

numerical process first and returning to its statistical implication later.

Let suppose that we have a 1024-point sampled data, then there is a set of 1024 wavelet

coefficients (C={ci }). Take the absolute or squared value of these coefficients, sort them,
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and then divide the sequence into M (say, 100 or 200 or 300) divisions which are equally

spaced from 0 to the maximum value of the coefficients. Then we have the statistics

of occurrence for each division, and the distribution of these normalized occurrences is

the probability density distribution or probability density function (denoted by pdf), say

{p1, p2, · · · , pM−1, pM}. The entropy is

H(p) = −

∑
i

pi log pi . (3.1)

Where, when pi = 0, it is assumed that 0 log 0 = 0, since in reality one can assumed that

there exists an almost zero probability in that interval without affecting the total sum of

probability, after all it is only a statistics and the modification virtually has no influence

on the norm value. If absolute values of ci are taken, H(p) is the L1-norm entropy; if

squared values are taken, it is squared L2-norm entropy. Of course another power can be

used, but the squared L2-norm, being the energy, is physically the most significant. The

practical aspect of this definition of entropy is: let suppose two probability distribution

functions sorted in a decreasing order are p and q , if p decreases faster than q , then

H(p) ≤ H(q) [71]. The above inequality of entropy is only one-way correct and the

reverse is not always true, but smaller entropy implies that more energy is concentrated

within a smaller number of wavelet coefficients. Therefore, if only a fixed percentage of

coefficients is kept, the truncated error, i.e., the distance from the total sum, is likely to be

smaller for set of coefficients with smaller entropy.

There is another notion for working out the entropy. It is sometimes referred as the

geometric notion [71]. Again, the procedures is given first and the simple physical in-

terpretation next. By setting the number of divisions to be the same as the number of

coefficients and by defining probability density to be the normalized (with respect to the

total power) value of the squared wavelet coefficient, that is to say, the total energy is

‖C‖
2

=
∑

i |ci |
2 and the probability density is pi = |ci |

2/‖C‖
2, we get the alternative
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form of entropy by substituting Pi into Equation 3.1:

H(p) = log ‖C‖
2
−

∑
i |ci |

2 log |ci |
2

‖C‖2 . (3.2)

The notion here is simple: if one just put more weight on coefficients of small energy and

less weight on coefficients of large energy (all coefficients being normalized), then the

weighted energy is an indication of entropy. And since taking the log of a value is sort of

a weighting operation and since the total energy is finite, small entropy therefore means

that the number of significant coefficients is small, or stated otherwise, more energy is

concentrated in fewer coefficients.

One equivalent indicator of entropy of a pdf is the theoretical dimension D(p) and is

defined as [71]

D(p) = eH(p)
=

∏
i

(
p−pi

i

)
. (3.3)

As was stated, entropy does not tell how conclusive the result is. But our numerical

results yield little ambiguity regarding the judgement that we can make.

3.3 The ultimate best discrete basis

To increase the definiteness of the comparisons, we calculate entropy based on several

setups: direct coefficient entropy related to L2-norm based on Equation 3.3 (column 1 in

Tables 3.1 (H–F+ON+SO) and 3.2 (H–BO0+D)), pdf entropy related to L2-norm with 300 (col-

umn 2) and 200 (column 4) divisions, and pdf entropy related to L1-norm based on Equa-

tion 3.1 (column 3). Theoretical dimension for one of the setups is also given (column 5).

The tables show the results using a wind-wave signal from a wave tank experiment. It is

noted that if the peak frequency (or the primary scale) of other signal is significantly dif-

ferent, then, to be consistent in comparison, the analyzed signal lengths and the sampling

rates should be properly adjusted according to its peak frequency. This is because in the

discrete wavelet transform we need to keep track of the actual physical size of translation
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so as to have physical perception of the wave forms. Table 3.1 (H–F+ON+SO) give results

from all orthonormal wavelets (including B&L, Meyer, ONxxA, ONxxS, and ONxxC),

semi-orthogonal wavelets (Cubic B-spline, SO3O and SO3D), as well as from Fourier

spectrum. Table 3.2 (H–BO0+D) give results from bi-orthogonal wavelets. Many distinctive

features can be derived from the tables.

• The dual wavelet always gives much smaller entropy than as given by their coun-

terpart wavelet. This certainly verifies that, for our water-wave signals, using

f (t) =

∑
j,k

〈 f, ψ̃ j,k〉ψ j,k (3.4)

provides a much better efficiency in decomposition and reconstruction than using

f (t) =

∑
j,k

〈 f, ψ j,k〉ψ̃ j,k . (3.5)

This also points out that dual wavelets rather than their counterpart wavelets should

always be used as the decomposing basis for either better physical implications

or improved computational efficiency. It may also worth noting that the practical

shapes of all the listed bi-orthogonal wavelets, especially those with small x and

y values, are visually quite unrealistical (such as those shown in figures 2.29 (BU–

BO31O) and 2.30 (BU–BO35O)). Furthermore, for these bi-orthogonal wavelets, it can be

concluded that there is going to be very little improvement by further extending the

support width related to y without extending the support width related to x ; since

increasing the width (y) from some point on gives no effect on the shape of dual

wavelets (such as y = 7 or 9 for x = 3) and since it is the dual, rather than the

counterpart, wavelet that matters for better approximation.

• Entropy values of all orthonormal subgroups do not fall to the level of non-orthogonal

ones. Besides, difference in entropy values of long and short supports can barely be

differentiated, even though there seems to be a very slight indication that entropy
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values related to longer support are somewhat smaller. Here the property reflects

the role of linear phase filtering as mentioned earlier.

• Among all the orthonormal wavelets none distinguishes itself from the others. And

we see no clear tendency within any subgroup. However, from the analytical point

of view, the Meyer wavelet is infinitely differentiable or smooth, the B&L is second

order differentiable, and the others have various degrees of differentiability or reg-

ularity [20]. It is therefore understandable that at the present stage many analytical

properties of orthonormal wavelets are of little practical interests for our signals.

• The most striking result is that the dual Cubic B-spline wavelet yields a far smaller

entropy value, even lower than that of the spectral coefficients. Figure 3.1(p–W+WP+F)

shows the comparisons of the cumulative probability distribution curves for several

wavelet bases as well as for Fourier basis. This striking feature is reflected by

the extreme flatness of the SO3D curve, nearly horizontal up until 90 percent of

energy ratio. At about 96 percent of the energy ratio there is a crossing between

spectral curve and the SO3D curve. These features practically imply that semi-

orthogonal wavelet coefficients are better than Fourier coefficients in describing the

details of the signals. Figure 3.3 (ReC–Signal) shows the reconstructions of a section

of a signal from its spectral and SO3D wavelet coefficients of which 35 percent

are kept. It is seen that the wavelet basis yields truer details than does Fourier

basis. Again, the reasons for the SO3D’s strong performance can be attributed

to the following characters: total positivity of the scaling function and complete

oscillation of the wavelet. That is to say, the scaling function has no oscillation

or zero-crossing; the corresponding wavelet has no unnecessary oscillation, or no

oscillation that is without zero-crossing. Physically, the two characteristics hint that

our laboratory water waves are far less transient when compared with orthonormal

or bi-orthogonal wavelets, and also imply that the description of waves based on

suitable support length or life span is more likely to adhere to the physics.
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• For the wavelet packet category we have the best basis and best level criteria. It

may not be difficult to gain a prior idea that the chance is slim for getting better

results using either of the bases. The obvious reason is due to the inherent lim-

itation of wavelet packet transform — wavelet packet transforms are associated

only with orthonormal bases. Since the primitive analyzing functions are ortho-

normal and since orthonormal wavelets perform poorly as just given above, it is

therefore hard to anticipate the same strong performance as that of semi-orthogonal

wavelets. Nevertheless, both wavelet packet criteria do show improvements when

compared with the original orthonormal basis, and the performance of the best ba-

sis is certainly better than that of the best level. Figure 3.1 (p–W+WP+F)–(b) gives

the wavelet packet best bases and best level curves for B&L and Meyer’s wavelets;

they do show improvements when compared with the corresponding curves in Fig-

ure 3.1 (p–W+WP+F)–(a) using regular wavelet transforms. It is quite certain that the

improvement is not to the degree of semi-orthogonal wavelet or that of the Fourier

spectrum.

• Figure 3.2 (p–WP BB+BL) shows cumulative distribution curves of the best level, best

basis, and a few different levels bases wavelet packet coefficients, as well as the

curve for the corresponding regular wavelet transform coefficients; here, all the

curves are associated with ON77S. The curve for the best level comes close to

that for the best basis. Again, wavelet packet best basis and best level yield lower

entropy values than other relevant wavelet bases, but still their curves are far away

from that of SO3D.

• Among orthonormal wavelets, we do not see clear differences arising from different

degrees of symmetry (least asymmetric ONxxS or most asymmetric ONxxA); how-

ever, semi-orthogonal and bi-orthogonal wavelets are symmetric or antisymmetric,

and their entropy values (concerning dual wavelets) are comparatively lower. It

therefore indicates that the linear phase filtering is desired since symmetry or an-
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tisymmetry implies linear phase of the two-scale sequence [1, 20]. Without the

linear phase filtering visual impairment may occur. The non-symmetric distribu-

tion of time-frequency windows shown in figures 1.1 (TFW–WP BB) illustrates such a

significant impact. Though symmetry is desired, it is hard to describe its influence

since there are other factors that need to be considered (such as the support length

and regularity, e.g., Meyer and B&L wavelets are also symmetric but their entropy

values are not comparable to that of the ideal one).

3.4 Summary

Using various criteria of entropy statistics of transform coefficients we have identified

among a vast array of Riesz wavelet bases the best basis for our water wave signals. It

is found that the most prominent player is the semi-orthogonal cardinal spline wavelet

with clear superiority over the Fourier basis in all criteria. And no other wavelets can

ever reach the level of approximation given by Fourier spectra. Still, the results entail that

many of the properties of the wavelets studied here are more of analytical interests and

hard to be physically significant.

The solid performance of the semi-orthogonal wavelet indicates the usefulness of the

modulated Gaussian wavelet or the Morlet wavelet in the continuous transform domain for

our applications. Coupling with a few additional features that are specific to continuous

wavelet transforms – such as its nature of redundancy, the flexibility in time-frequency

resolutions, and the conciliatory choices of data segment of interest; there is something to

be anticipated. v
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Tab 3.1 (H–F+ON+SO) Entropy statistics of transform coefficients under various criteria for the or-
thonormal and the semi-orthogonal wavelet groups, as well as the orthonor-
mal Fourier basis. The orthonormal groups cover the most symmetric and
the most asymmetric group, as well as the most narrowly-banded (referring
to frequency) Meyer wavelet and the most narrowly-distributed (referring
to time) Battle and Lemarié wavelet. And the semi-orthogonal wavelet is
devised by Chui [1, 2]. Note that the results in all categories for the dual
semi-orthogonal wavelet are not only clearly better than the spectral ones
but also far superior to any other wavelet groups.

Wavelet L**2 coefficient
entropy

L**2 probability
entropy

L**1 probability
entropy

L**2 probability
entropy

Theotetical
dimension

(0 division) (300 divisions) (300 divisions) (200 divisions) (L**2 300 divisions)

B&L 4.691 1.330 3.417 1.179 3.782
Meyer 4.647 1.294 3.365 1.132 3.646
SO3O 4.833 1.669 3.756 1.488 5.307
SO3D 1.823 0.219 1.306 0.172 1.245

Spectrum 2.809 0.270 3.044 0.244 1.310

ON22A 4.993 1.761 3.891 1.516 5.815
ON33A 4.773 1.384 3.499 1.225 3.975
ON44A 4.790 1.517 3.596 1.363 4.559
ON55A 4.819 1.553 3.631 1.367 4.727
ON66A 4.790 1.373 3.456 1.203 3.946
ON77A 4.675 1.355 3.461 1.203 3.877
ON88A 4.645 1.229 3.283 1.082 3.418
ON99A 4.719 1.412 3.501 1.252 4.106
ON00A 4.787 1.423 3.511 1.244 4.149

ON44S 4.835 1.461 3.557 1.281 4.311
ON55S 4.758 1.492 3.576 1.298 4.426
ON66S 4.754 1.402 3.501 1.225 4.065
ON77S 4.751 1.336 3.331 1.188 3.804
ON88S 4.714 1.366 3.481 1.224 3.918
ON99S 4.755 1.469 3.570 1.288 4.345
ON00S 4.635 1.278 3.378 1.134 3.591

ON11C 4.938 1.696 3.832 1.457 5.452
ON22C 4.827 1.468 3.520 1.284 4.342
ON33C 4.756 1.488 3.573 1.333 4.427
ON44C 4.690 1.297 3.337 1.157 3.658
ON55C 4.644 1.309 3.405 1.154 3.703
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Tab 3.2 (H–BO0+D) Entropy statistics of transform coefficients under various criteria for the bi-
orthogonal wavelet groups. Again, none of the results here is comparable
to those of the dual semi-orthogonal wavelet. And it is noted that a shorter
distribution of convolution weights yields extreme and inferior value. Thus,
the efficiency of computation is not pertaining to the intimacy of physics.

Wavelet L**2 coefficient
entropy

L**2 probability
entropy

L**1 probability
entropy

L**2 probability
entropy

Theoretical
dimension

(0 division) (300 divisions) (300 divisions) (200 divisions) (L**2 300 divisions)

BO11O 5.395 2.623 4.502 2.299 13.777
BO11D 5.395 2.623 4.502 2.299 13.777
BO13O 4.943 1.806 3.883 1.627 6.084
BO13D 5.266 2.371 4.373 2.053 10.708
BO15O 4.866 1.678 3.755 1.495 5.357
BO15D 5.227 2.291 4.327 1.987 9.882

BO22O 5.282 2.362 4.363 2.083 10.609
BO22D 4.434 1.181 3.284 1.034 3.257
BO24O 4.963 1.862 3.985 1.634 6.438
BO24D 4.359 1.090 3.220 0.962 2.975
BO26O 4.881 1.703 3.835 1.492 5.490
BO26D 4.332 1.064 3.174 0.940 2.899
BO28O 4.857 1.624 3.782 1.452 5.073
BO28D 4.318 1.069 3.157 0.941 2.914

BO31O 5.824 3.174 4.741 2.835 23.894
BO31D 4.377 1.058 2.655 0.936 2.880
BO33O 5.084 2.001 4.062 1.756 7.393
BO33D 4.205 1.102 2.827 0.965 3.011
BO35O 4.850 1.697 3.847 1.506 5.457
BO35D 4.125 1.026 2.776 0.908 2.789
BO37O 4.790 1.658 3.821 1.442 5.247
BO37D 4.106 0.986 2.737 0.873 2.679
BO39O 4.776 1.660 3.835 1.432 5.258
BO39D 4.098 0.967 2.713 0.866 2.629
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Fig 3.1 (p–W+WP+F) The cumulative probability distribution curves of the transform coefficients
associated with three different transform categories. The coefficient PDFs
intimately reflect L2-norm energy relevance. Here the various bases include:
(1) Wavelets: Meyer, Battle and Lemarié, semi-orthogonal cubic B-spline,
dual semi-orthogonal cubic B-spline (top);
(2) Wavelet packets: those of the best packet bases based on Meyer wavelet
and Battle and Lemarié wavelet (bottom);
(3) Spectrum: Fourier spectral basis (top).
Note the outstanding performance of the dual semi-orthogonal cubic B-
spline wavelet (SOD). And its distribution clearly outperforms that of the
Fourier spectrum for nearly all the energy ratio.
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Fig 3.2 (p–WP BB+BL) The cumulative probability distribution curves of the Wavelet packet trans-
form coefficients for the various bases derived from the seeding orthonor-
mal mother wavelet ON77S. The PDFs are of L2-norm energy content. The
function bases include:
(1) Wavelet packet of the lowest levels (normal instance: wavelet basis);
(2) Wavelet packet of a specific level (9, 8, 7);
(3) Wavelet packet of the best level (2);
(4) Wavelet packet of the best basis (combined levels: dotted line).
Note that the best situation is the one for the best basis; but none of these
curves is comparable to that of the dual semi-orthogonal wavelet (SOD)
shown in the preceding figure.
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Fig 3.3 (ReC–Signal) Comparison of reconstructed signals associated with the best wavelet basis
(i.e., the dual semi-orthogonal wavelet) and the Fourier basis. The semi-
orthogonal wavelet is seen to better portrait the original signal, in particular,
small scale transient features.
Here 35% of the transform coefficients are kept. The sub-figures show:
(1) a section of the original signal (top)
(2) reconstructed signal using the spectral coefficients (middle);
(3) reconstructed signal using the best wavelet basis (bottom).
The figure reflects the L1-norm entropy relevance.
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Chapter 4
The Characteristic Phase Distributions

4.1 The wavelet characteristic function m0

In the last chapter, the entropy of transform coefficients is used as a performance mea-

sure for wave simulation. The entropy approach is completely statistical and provides no

mathematical insight of the basis property that leads to the usefulness of a basis in its

modeling of water waves. Herein, we furnish the analytical essence that is connected to

the modeling utility of a wavelet function basis. Moreover, practical implications of math-

ematical analyticity are stated. Herein the essence is concerning the phase distribution of

a wavelet characteristic function for any individual basis. More specifically, the charac-

teristic function is related to the filtering effect or convolution result associated with liner

or non-linear phase filtering.

Following the convention used by Daubechies [20], the wavelet characterizing func-

tion is termed as the m0(ξ) function, which is the kernel of individual wavelet and has the

following mathematical content:

A multiresolution analysis consists of a sequence of the closed subspaces V j of the

nested ladder,

· · · V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ · · · , (4.1)



and satisfies the requirement

f ∈ V j ⇐⇒ f (2 j
·) ∈ V0. (4.2)

The invariance of V0 under integer translations states that

f ∈ V0 H⇒ f (· − n) ∈ V0 for all n ∈ Z. (4.3)

Now comes the main statement that there exists φ ∈ V0 so that

{φ0,n; n ∈ Z} is an orthonormal basis or a relaxed Riesz basis in V0, (4.4)

where, for all j, n ∈ Z, φ j,n(x) =
√

2− jφ(2− j x − n), and the relaxation refers to the

orthonormality. Quite often the φ here is formally called the scaling function of the mul-

tiresolution analysis. Furthermore, for the {φ j,n; j, n ∈ Z} there exists its counterpart

wavelet basis {ψ j,k; j, k ∈ Z}, ψ j,k(x) =
√

2− jψ(2− j x − k), such that

Pj−1 f = Pj f +

∑
k∈Z

〈 f, ψ j,k〉ψ j,k, (4.5)

where Pj f is the projection onto V j .

Since φ ∈ V0 ⊂ V−1 and φ−1,n are basis in V−1, we have

φ =

∑
n

hnφ−1,n, (4.6)

with

hn = 〈φ, φ−1,n〉. (4.7)

We therefore have

φ(x) =
√

2
∑

n

hnφ(2x − n) (4.8)
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or

φ̂(ξ) =
1

√
2

∑
n

hne−inξ/2φ̂(ξ/2). (4.9)

In an alternative form

φ̂(ξ) = m0(ξ/2)φ̂(ξ/2), (4.10)

where

m0(ξ) =
1

√
2

∑
n

hne−inξ . (4.11)

Suffice it to say that the m0(ξ) function is intrinsic to the transcendental formulations

of the mother wavelet and the two-scale equation. And it is comprised of the summation

of convolution coefficients of wavelet construction (or filter coefficients corresponding

to the support length of the wavelet) multiplied by the complex exponential functions of

their individual scales.

4.2 Phase distributions and implications

Figures 4.1 (m0(ξ)–MELE) to 4.7 (m0(ξ)–BOD) show the phase distributions of m0(ξ) for all the

wavelet categories listed in this study. Notable points are summarized below.

• Wavelets with similar visual appearance may possess extremal difference in the

characterizing phase distributions, such as those shown in figures 4.1 (m0(ξ)–MELE).

Note that, regarding to the symmetrical wavelets, the Meyer wavelet is the most

compactly supported wavelet in frequency domain while the Battle and Lemarié

wavelet is the most compactly supported wavelet in time domain. For these two

categories of wavelet, both their mother and father wavelets have quite similar dis-

tributions with respect to each other, as shown in 2.15 (MFW–SO0) and 2.14 (MFW–B&L).

But the behavioral difference between their phase curves suggests that there ex-

ists theoretical complexity both in mathematics and numerics of the two wavelet

constructions; moreover, it hints that physical applicabilities might not sensitive to

theoretical differences.
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• Combing the entropy results yielded in the preceding chapter with the phase dis-

tributions of all the wavelet categories shown here, we see that a linear phase dis-

tribution is unable to guarantee the best performance for modeling signals of water

waves. What should be emphasized is that the most outstanding feature leading to

the modeling usefulness of the semi-orthogonal wavelet lies in the characteristic of

a peculiarly constant phase distribution for either the wavelet or its dual, as shown

in figure 4.2 (m0(ξ)–SO). Besides, the intuitive byproduct is that there is the strong

implication that most wavelets are too exotic, as well as too alienating, to water

waves.

• The more asymmetric the shape of a wavelet is the more complex of its phase

distribution comes along. The distributions of the least asymmetric orthonormal

group ONxxS are shown in figure 4.3 (m0(ξ)–ONS) and those of the most asymmetric

are shown in figure 4.4 (m0(ξ)–ONA). These distributions, together with those of the

previous figures, denote the relation between wavelet symmetry and water wave

physics and also imply the poor performance in modeling for compactly supported

wavelets (i.e., with limited number of filtering wights).

• The lengthening of the support length of a wavelet group may still yield even more

irregular phase distributions as are shown in figure 4.4 (m0(ξ)–ONA). And this disproves

any possible benefit that may arise from further expansion of the construction con-

cerning the support length of these orthonormal wavelets.

• The Coiflets are symmetry and have vanishing moments for both the mother and

father wavelets but their phase distributions are not much different from those of

the least asymmetric wavelets, as are shown in figure 4.5 (m0(ξ)–ONC). It is therefore

expected that their modeling capability can be of little refinement from the ONxxA

group.

• The phase distribution curves for the bi-orthogonal wavelets and their duals are the

same not only for all the support lengthes within their subgroups but also for the
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respective crossovers, as are shown in figures 4.6 (m0(ξ)–BO0) and 4.7 (m0(ξ)–BOD).

Again, this shows that lengthening the support length of these wavelets provides no

benefit.

• Judging from all those mentioned above and that extremal mathematical properties

of wavelet categories have been covered in this study, we therefore don’t see any

possibility that there exists other orthonormal or compactly supported wavelets that

might provide suitable or better characterization for water wave physics.

4.3 Summary

Simply put, the most important and practical entailment of this chapter is to furnish the

idea that water waves in their shapes or forms are intrinsically extremely “regular” and

“unconstipated” when compared to those of almost all of the discrete wavelets, except the

cardinal spline wavelet. And, in a simple and blunt way, those mathematical complexity

of wavelet formulations do not reverberate our real world anticipations for physics and

may be overkill. v
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Fig 4.1 (m0(ξ)–MELE) The phase distribution of the wavelet characteristic function m0(ξ) for two
categories of wavelets: the Meyer wavelet (Top) and the Battle and Lemarié
wavelet (Bottom). For the two categories of wavelets, both their mother
and father wavelets, respectively, have quite similar distributions, as are
shown in 2.15 (MFW–SO0) and 2.14 (MFW–B&L). Whereas, on the one hand,
the Meyer wavelet is the most compactly supported wavelet in the frequency
domain; on the other hand, the Battle and Lemarié wavelet is the most com-
pactly supported in the time domain. Here the difference between the two
distributions implies the possible ramification both in mathematics and nu-
merics of the two wavelet constructions. Besides, it hints the intricate con-
cerns among theoretical complexity and physical applicabilities.
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Fig 4.2 (m0(ξ)–SO) The phase distributions of the wavelet characteristic function m0(ξ) of the
semi-orthogonal cardinal spline wavelet (Top) and its dual (Bottom). Here
the most outstanding feature, which leads to the usefulness in its modeling of
water waves, lies in the peculiar distribution of a constant characteristic phase.
Besides, there is an important implication that most of the wavelets are too
exotic, as well as estranging, to water waves.
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Fig 4.3 (m0(ξ)–ONS) The phase distributions of the wavelet characteristic function m0(ξ) for the
least asymmetric orthonormal group ONxxS. Comparing the curves here
with those of the next figure we see that the more asymmetric the wavelet
is the more the complication of its phase distribution comes along. This phe-
nomenon implies the worsening modeling performance for the asymmetri-
cal group and hints the relation between wavelet symmetry and water wave
physics.
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Fig 4.4 (m0(ξ)–ONA) The phase distributions of the wavelet characteristic function m0(ξ) of the
most asymmetric group ONxxA. Note that the lengthening of support length
of the wavelet yields even more irregularity in distribution. Again, this dis-
proves any possible benefit that may arise from any further expansion of the
construction of these orthonormal wavelets.
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Fig 4.5 (m0(ξ)–ONC) The phase distributions of the wavelet characteristic function m0(ξ) of the
Coiflets. The Coiflets are symmetry and have vanishing moments for both
their mother and father wavelets; but their phase distributions are not much
different than the least asymmetric compactly supported group ONxxA. It is
therefore expected that their modeling performance is of little betterment.
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Fig 4.6 (m0(ξ)–BO0) The phase distributions of the wavelet characteristic function m0(ξ) of the
bi-orthogonal wavelets BOxy0. Their distributions are almost identical to
those of their dual wavelets as to be shown in the next figure; nevertheless,
the entropy values of these wavelets are clearly inferior to those of their dual
wavelets. Again, the phenomenon implies the possible ramification both in
mathematics and numerics of the wavelet constructions and hints the intricate
concerns among theoretical complexity and physical applicabilities.
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Fig 4.7 (m0(ξ)–BOD) The phase distributions of the wavelet characteristic function m0(ξ) of the
dual bi-orthogonal wavelets BOxyD. These phase distribution curves and
those of their duals are the same not only for all the support lengthes within
their subgroups but also for the respective crossovers, as shown in the last one
(figures 4.6 (m0(ξ)–BO0)). Moreover, here it also indicates that the mathemat-
ical complexity of wavelet formulation does not reverberate our real world
anticipations and may be overkill.
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Chapter 5
The Best Wavelet in the Continuous
Domain

5.1 Introduction

In the previous chapter on entropy the semi-orthogonal cardinal spline wavelet was iden-

tified as the most suitable Riesz wavelet basis for our signals. However, this discrete

wavelet and its associated analyzing scheme is not what will be directly adopted in the

verification of the optimality through the comparisons of coherent behaviors, as to be

given later. The most fundamental concerns are in three aspects. First, the previous

chapter concerns the discrete wavelet transform where each translation step is an integer

multiple of the dilation scale which is in the logarithmic measure with base 2; therefore,

both the translation and the dilation vary in logarithmic measure. Whereas in the study of

coherences the scheme used concerns the continuous wavelet transform where the trans-

lation step can be as small as the sampling interval for all scales which can basically be

specified arbitrarily. Second, the wavelets in the previous chapter handle bases with frame

bounds that are either tight or relatively tight. Whereas the wavelet employed here does

not involve frame bounds and might not have frame bounds at all when it is analyzed in

the sense of discrete wavelet transform, i.e., not even related to a Riesz wavelet. Third, all

the discrete wavelets listed here are real wavelets; therefore, they are only related to the

term of “scale” and how can the phase come by so as to render a more practical term of



real physics.

Herein we will make further clarifications for these two points and try to illustrate

their respective advantages and disadvantages since they are keys to the usefulness of the

analyzing basis and the associated scheme for our applications.

5.2 The counterpart best continuous wavelet

Let the Gaussian function be

gα(t) =
1

2
√
πα

e−
t2
4α , (5.1)

where α is a representative value of the second moment of the Gaussian function and the

constants is for the purpose of normalization, the modulated Gaussian is

Gα
b,ω(t) = eiωt gα(t − b). (5.2)

And the Gabor transform of a function f is

(
Gαb f

)
(ω) = 〈 f,Gα

b,ω〉 =

∫
∞

−∞

f (t)e−iωt gα(t − b)dt. (5.3)

As is stated by Daubechies [20] that the Morlet wavelet is almost identical to a modu-

lated Gaussian, and as is given by Chui [1] a modulated Gaussian matches almost exactly

with cardinal B-spline wavelet of order greater than or equal to three, i.e., for m ≥ 3, the

even order ψm’s (such as the cubic spline wavelet ψ4) match almost exactly with

ReGα
b,ω(t) = (cosωt)gα(t − b) (5.4)

and the odd order ones with

ImGα
b,ω(t) = (sinωt)gα(t − b) (5.5)
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for a certain set of values α, b, ω.

In accord with these observances we therefore have an extremely natural transition

from the best discrete basis to the following continuous wavelet, i.e., the Morlet wavelet,

ψ(t) = π−1/4(e−iω0t
− e−ω2

0/2)e−t2/2. (5.6)

Most importantly, such a correspondence introduces two terms in physics, i.e., the phase

and carrier frequency, and thus make possible the enhancements of physical modeling of

water wave signals, as to be provided in the following chapter.

5.3 Discrete versus continuous transforms

In the introductory chapter we listed a few properties related to different time-frequency

analysis methodologies, such as Fourier transform, short time Fourier transform (STFT),

Hilbert transform and the analytical signal procedure, the discrete wavelet transform

(DWT), as well as the continuous wavelet transform (CWT). In fact, one of the main

themes for all those discussions centered on the aspiration regarding the minimization

of uncertainty effects [35]. And this is the most outstanding feature that the continuous

transform comes into play. And why there is a need of the counterpart continuous wavelet

with regard to the best discrete wavelet.

In this chapter, inheriting the identified discrete optimum basis, we mainly focus on

the different usages of DWT and CWT concerning their practical applications to water

waves related signals. That is to say, what is the counterpart wavelet in the continuous

wavelet transform to the semi-orthogonal cardinal spline wavelet and why there is the

need of a continuous one.

Herein we emphasize that DWT and CWT should be treated as two different entities

— since, unlike the discrete and continuous Fourier transforms where they are dealing

with the same basis as well as deploying basically the same formulations, DWT and CWT
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generally refer to two quite different methodologies which focus on their individual func-

tion bases as well as different data treatment schemes. Most profoundly we press on the

concerns of the following points:

• In general, the dilation lattice is in logarithmic measure for discrete wavelet trans-

form (e.g., the a0
j in the stability condition to be mentioned) and in linear measure

for discrete short time Fourier transform (e.g., the e−i2πmt in the above mentioned

Gabor type frame). Continuous transforms do not involve lattice. The concept of

lattice is associated with the concept of time-frequency density, which is defined

as the inverse of the product of dilation and translation steps [20]. For short time

Fourier transform frames, due to Shannon sampling theorem, the time-frequency

density must not go beyond the value of generalized Nyquist density, (2π)−1. For

wavelet transform, however, there is no such a clear-cut limit of time-frequency den-

sity. Moreover, Balian-Low theorem depicts that there is no good time-frequency

localization for a short time Fourier transform frame if constructed under a strict

time-frequency lattice; on the contrary, numerous wavelet bases with good time-

frequency localization have been given [1, 20, 52]. These physically imply that

wavelet transform may provide better zoom-in.

• The existence of a lattice structure can be either practical or impractical. For water

waves, if we don’t anticipate any significant gaps in the scale contents, that is to

say, the physical process involves time and spatial scales that are “changing” or

“evolving” in a relatively continuous sense, we generally do not appreciate the use

of frames. Here a continuous transform may provide better chance of success.

• Both continuous and discrete wavelet transforms implement a process of integral

wavelet transform over the real line R in a continuous sense but they analytically

emphasize the use of different integration symbols:
∑

and
∫

. Digitally sampled

signals are certainly discrete, but this is irrelevant to the methodology of contin-

uous wavelet transform or discrete wavelet transform. The main difference, from

88



the application point of view, is that there is no practical interest of reconstruction

(or inverse transform) for continuous wavelet transform due to the redundant or

non-orthogonal nature of its wavelet coefficients. Both methods are capable of de-

composing either functions defined over the real line or signals sampled discretely.

In reality, applying continuous wavelet transform to sampled data is implemented

in a discrete manner; vis-à-vis, doing discrete wavelet transform for an unlimited

ladder, such as that of the standard multiresolution analysis of [46], can describe

any function in infinite detail, i.e., over the whole real line. The concept of unlim-

ited ladder of discrete wavelet transform is illustrated by two examples shown in

figures 2.23 (BU–BO2yO) through 2.30 (BU–BO35O) where the blow-ups of individual

segments of wavelet curves are shown. The figure also illustrates possible bizarre

behaviors of certain wavelets and indicates that mother wavelets with short support

lengths might not be of ideal choices. In addition, a few discrete wavelet transform

formulas when generalized in the limit sense are quite helpful in explaining a few

continuous wavelet transform characters.

• All of the Riesz wavelets studied in the previous chapter handle bases with frame

bounds that are either tight or relatively tight; whereas the continuous wavelet does

not involve frame bounds and might not have frame bounds at all when it is analyzed

in the sense of discrete wavelet transform, i.e., not even qualified as a Riesz wavelet.

However, we will see that there is a very natural transition from the discrete wavelet

to its continuous counterpart.

• Apart form the specific features listed in the above items, there is a practical interest

in what can be done to improve the physical relevance between the basis functions

and the wave constituents of our signals. For example: does the decaying features

of basis functions akin to the physics of component waves? And this is the topic to

be discussed in the next chapter.
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5.4 The physical perspective of Morlet wavelet

The combination of “Wave” and “let” hints the core concept of wavelet analysis. And the

concept implies that the distribution properties of the basis functions both in time or fre-

quency domains are at the heart of all sorts of function bases. More specifically, different

intricate analytical properties of wavelets are just manifestations to these distribution fea-

tures. However, since two decay properties that are analytically or mathematically quite

differentiable may only have very minor visual differences in their wave forms (such as

those shown in figures 2.13 (MFW–Meyer) and 2.14 (MFW–B&L)), one generally bears the feeling

that wavelets’ physical implications is not proportional to their analytic interests. Nev-

ertheless, we still can benefit from the wavelet approach due to its flexibility in devising

the analyzing wavelets as well as its adaptability in forging the algorithms. But versatil-

ity does not come without the price of ambiguity. For example, the power spectra of a

function are shift-invariant; whereas, wavelet spectra are highly shift-variant [48]. Fig-

ure 5.1 (SNI–Phase) and 5.2 (FS–T&P) shows such a property and it gives us the idea of how

significant the phase effects may be. And this figure should be regarded as the counterpart

figure in the wavelet analysis to those in the Fourier analysis given in a previous study on

the analytic signal approach by the author [39]. Note that all these figures indicate the

possible usefulness associated with the uses of non-orthonormal or redundant function

bases, as well as the drawbacks of bases with tight frame bounds.

5.5 Wavelet frame bounds and redundancy

If a function ψ(t) is to be qualified as a wavelet of CWT, then the only requirement is that

ψ(t) meets the “admissability condition,”

2π
∫

∞

−∞

|ψ̂(ω)|2

|ω|
dω = Cψ , (5.7)
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Fig 5.1 (SNI–Phase) The concerns related to the shift non-invariant property of wavelet transforms
are shown in this figure. This property has important implications in the prac-
tical usefulness in physical applications of wavelets between discrete and con-
tinuous bases.
The top sub-figure in each column shows original signal individually.
The middle one shows its wavelet transform distribution.
The bottom one shows the transform result for its individually shifted signal.
For the signal in the left column it is shifted 3 points to the left and the wavelet
used is ON33A. For the signal in the right column it is shifted 20 points to the
left and the wavelet used is BO22D.
The property shown in this figure is linked to the vast difficulty arising from
phase noise and its poor performance in coherent studies.
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Fig 5.2 (FS–T&P) This figure shows somewhat the same concern as that of the preceding figure,
but with different method of rendition. More precisely, the effects of ambiguity
and phase noise arising from local transient features of a signal are illustrated
using a signal comprised of two separated wavelets.
The top sub-figure shows the signal comprised of two Lemarié wavelets located
at two neighboring scales (the least two scales within a 1024-point series). And
the pulse at left corresponds to the inverse wavelet transform for unit wavelet
coefficient at point 600, i.e., e600; the right corresponds to e470.
The Fourier power spectrum is shown in the bottom sub-figure. The distracting
consequence arising from extreme variation should be comprehendible.
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where Cψ is a constant specific to individual ψ , and ψ̂(ω) is the Fourier transform of

ψ(t). Here, among several definitions of the Fourier transform forward and inverse pair,

the adopted one is:

ψ̂(ω) =
1

√
2π

∫
∞

−∞

ψ(t)e−iωtdt (5.8)

and

ψ(t) =
1

√
2π

∫
∞

−∞

ψ̂(ω)eiωtdω. (5.9)

The admissability condition is the integration of power spectrum weighted by the

inverse of the absolute value of frequency; therefore, it implies that the wavelet should

have little power at low frequency and is total nil at zero frequency, i.e., the area between

the wavelet curve and the abscissa integrates to zero. This feature of reasonable decay

and finite support length is the outright instinct of wavelet. The dilated and translated

versions of this wavelet are ψa,b(t) =
1

√
aψ(

t−b
a ), where a > 0 and a ∈ R and b ∈ R are

the dilation and translation parameters, respectively; and 1
√

a is the normalization factor

for L2-norm. The ψa,b satisfies admissability condition too.

The admissability condition is a very loose constrain; it does not provide a clear con-

cept of redundancy concerning applying CWT to discretely sampled signals. To illustrate

this redundancy, let us use the discrete wavelet frame (since the frame wavelet certainly

qualifies as a wavelet for CWT): ψa0,b0; j,k(t) = a0
− j/2ψ(a− j

0 t − kb0), where a belongs

to the set of discrete dilations a j
0 and b to the set of discrete translations a j

0 kb0; j, k ∈ Z;

and a0 6= 1 and b0 > 0 are fixed positive constants. For such a discrete wavelet frame we

need to impose a more restrictive condition on ψ(t) for its admittance, i.e., the stability

condition,

b0 A ≤ 2π
∑
j∈Z

|ψ̂(a0
jω)|

2
≤ b0 B, (5.10)

where A and B are positive constants and 0 < A ≤ B < ∞. The fixed constants b0 and

2π are intentionally kept since they are related to normalized wavelet basis and since the

magnitudes of A and B are related to the redundancy of the basis.
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The stability condition may look abstract, but we give its physical implication as: to

be able to let a function be reconstructed from its wavelet coefficients, i.e., the opera-

tion is reversible, we need a process which is convergent when summing all its scales

or frequency components. It is therefore necessary that the sum of the power of all the

constituent elements can neither be nil or infinity. If the sum is zero, then the elements

are all of zero measure — nothing exists. If the sum is infinity, then the elements are

significantly overlapping in time and frequency — there is either too much dependence

or too much ambiguity and tangling (just like two vectors paralleling to each other do not

constitute a good vector basis for two dimensional vector space).

Speaking of the reconstruction of a function from its wavelet coefficients one always

involves a dual wavelet except for orthonormal basis where the wavelet itself is its own

dual — self-dual. And since the roles of a wavelet and its dual can always be inter-

changed in both decomposition and reconstruction, the above statements apply equally

well for dual wavelet; but their frame bounds will generally be different since the sets of

convolution coefficients are different as hinted by the different entropy values given in the

previous chapter.

If the basis functions are normalized and the inequality of the stability condition are

optimized for both the greatest lower bound and the lowest upper bound, i.e., when A and

B are defined as

A = inf

2π
b0

∑
j∈Z

|ψ̂(a0
jω)|

2

 , (5.11)

B = sup

2π
b0

∑
j∈Z

|ψ̂(a0
jω)|

2

 , (5.12)

then an indication of the redundancy is the average value of A and B, A+B
2 , supposed that

A and B are close to each other (almost tight). We elucidate the possible extreme redun-

dancy of CWT as follows. If the dilated and translated versions of a function originating
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from a certain set of discrete steps (a0, b0) constitute a frame with frame bounds A and B,

then the frame bounds of a basis using the same function but with finer discrete steps, say

a0/2 and b0/2, will contain the bounds of coarser discrete steps; therefore, the new lower

and upper bounds both grow together. This nested relation can be extended infinitely and

in the limit sense it is included in the algorithm of CWT. This is the reason why there is

no practical value of numerical reconstruction in CWT, although CWT is reversible ana-

lytically. Another intuitive explanation is even easier to comprehend: when apply CWT

to discretely sampled signal, since for each scale the number of wavelet coefficients is the

same as the number of data points and since we can specify scales in whatever resolution

we like, we virtually have an unlimited number of wavelet coefficients. The sum of the

powers of these coefficients can be unimaginatively huge, or even unbounded; On the

other hand, the sum of signal energy is fixed. If we generalize the redundancy concept

of DWT, i.e., the ratio between the two sums indicates the degree of redundancy, then

for discretely sampled signal a continuous wavelet transform can possibly yield immense

redundancy.

Even though extreme redundancy may exist for the continuous wavelet transforms,

the content of information or its usefulness may behave like a cumulative pdf curve of a

Gauss function which will saturate at a later stage. Our numerical results from studies of

coherent behaviors among wind, wave and current related signals vindicated undoubtedly

such a situation [34].

5.6 Beneficial scenarios due to redundancy

Redundancy may be a nuisance in certain applications such as those that focus on the per-

fect reconstruction of signal or on the efficiency of coding and decoding; however it has

also shown its promising aspects in several applications. Three prominent points are the

results of established cases: (1) Redundancy does not mean that a whole bunch of coeffi-

cients are needed to give a good replicate of the original signal, that is to say, significant
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signal contents can still be retrieved from only a comparatively small amount of coeffi-

cients with respect to that of tight or almost tight wavelet frames. (2) Redundancy means

that effects of noise either embedding in the sampled signal or arising from the nature of

numerical processes (such as frequency leakage) can be reduced by taking advantage of

the vast sample space of transform coefficients. (3) If additional features, such as “total

positivity” and “ complete oscillation” of wavelet are incorporated, the effects on noise

reduction or ambiguity removal may be greatly enhanced; together with the redundancy

effects they facilitate the design of a very beneficial analyzing scheme. An example of

the first point is Mallat and Zhong’s [48] (see also Froment and Mallat [22]) signal recon-

struction from local maxima using a quadratic spline wavelet. In fact, the mother wavelet

they used is basically a loose wavelet (i.e., a wavelet with analytical aspects not being

well defined and therefore not really to be qualified as a wavelet), but they were able to

recover images quite well using only local peak values of wavelet coefficients that are

associated with only dyadic scales. For the second and third points, our studies on the

coherent features in the wind, wave, and rain coupling system serve as an example [34].

One last point to note is to compare the admissability condition of CWT with the sta-

bility condition of DWT. Here one can easily perceive the great difference in flexibility

between the two. In addition, the stability condition is a necessary condition, and not all

choices for ψ , a0, and b0 lead to wavelet frames. Moreover, stability may not guarantee

a good numerical behavior. Figures 6.1 (W Quirks-1) and 6.2 (W Quirks-2) show the results of

a few numerical experiments in which the problems of numerical convergence are illus-

trated using the blow-ups of wavelet curves. In the figures two bi-orthogonal wavelets

are blown up around their individual points using refinement cascade, and the blow-up

curves show the possible intrinsic absurdity arising from peculiar analytical properties

associated with these wavelets. Here, the two bi-orthogonal wavelets are, respectively,

with four and twenty filter weights and both are constructed from quadratic spline scal-

ing function [20]. The top sub-figure indicates a case where the DWT fails numerically

to characterize the mother wavelet (not converging) even though the associated wavelet
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frame qualifies theoretically as a Riesz basis. The bottom sub-figure shows strange alter-

nating inclinations of wavelet curves with a poor convergence. The figure also illustrates

the point that, for studying water-wave related signals and their physics, most of the fancy

wavelets with bizarre wave forms are not of our choice, as are also indicated by their high

entropy values given in the previous chapter.

5.7 Summary

In this chapter we point out the counterpart continuous wavelet to the best discrete wavelet.

It will be observed in the next chapter that the three main, as well as exceptionally im-

portant features, which do not exist in the discrete domain, i.e., the phase, the carrier

frequency and the redundancy, thus introduced make possible the physical optimization

and lead to the outstanding results of wavelet coherences. v
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Chapter 6
The Further Optimization for Physics

6.1 Introduction

In addition to the various concerns about the peculiar properties specific to discrete and

continuous wavelet transforms as are stated in the previous chapter, herein we focus on

the practical interest in what can be done to improve the physical relevance between the

basis functions and the wave constituents of our signals. For example: does the decaying

features of basis functions akin to the physics of component waves? In fact, this simple

question outlines another fundamental theme of this chapter: if time-frequency windows

of fixed shape and size (the case of STFT) is less suitable than time-frequency windows

of fixed size but with flexible shape (the cases of DWT and CWT) in characterizing multi-

scale transient signals, then time-frequency windows which are flexible in both shape and

size should provide even better adaptations. The theme is intuitive right, the background

is not without commitments.

Based on this perception, further concerns evolving from the previous chapter can be

put forward quite simply: (1) Can we utilize the redundancy of basis functions to improve

the relationship between wavelet’s analytical form and its physical interpretability? (2) If

redundancy leads to adaptation, does the adaptation still preserve the complete informa-

tion content of the signal studied? (3) Is the scheme of adaptation efficient and easy to

implement? Question one is related to the distribution or the degrees of freedom of time-



frequency windows in the phase plane, and it will be reflected in the next chapter. Ques-

tion two concerns the verification of the admissibility condition related to “the resolution

of identity”; and ,for now, a short explanation is that, if one just applies the adaptation to

finite range(s) of scale, then what is lost or unaccounted for in the adaptation process can

still be recovered from some dilated and translated versions of some finer scale wavelets

originating from the same ψ(t) in the CWT. The success of Mallat and Zhong’s case also

indicates such a possibility. Question three depends on the adaptation scheme; but, based

on the somewhat intuitive adaptation used here, it is fair to say that nothing complicate is

introduced.

One practical aspect for all the three points is: when analyzing signal we are almost

always interested in only finite scale range(s), so what is really needed is to implement the

adaptation locally. Hence it may be beneficial not to stick with stubborn time-frequency

windows and to adopt a scheme that is numerically with the same easiness and physically

more sound.

6.2 Degrees of freedom and the uncertainty relation

The flexibility of constructing wavelet function basis, i.e., the possibility of the adapta-

tion, is associated with the number of degrees of freedom of the time-frequency windows

within a phase plane. The number of degrees of freedom for an orthogonal basis is gener-

ally defined as the total area of the phase plane divided by the area of the time-frequency

window corresponding to that determined by the mother wavelet. For any time-frequency

kernel the maximum number of degrees of freedom is determined by the Heisenberg un-

certainty relation or Heisenberg’s inequality [11]. It is illustrated here that, even though

it is impossible to increase the limiting degrees of freedom, there is no further limitation

imposed upon the present adaptation. Besides, this section also serves two purposes: (1)

illustrate the basic functionality of the modulation mechanism for STFT, which in turn is

conceptually the same as the dilation mechanism for WT; (2) outline the relation between
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redundancy and the Heisenberg uncertainty using possible distribution of time-frequency

windows within a phase plane.

The uncertainty relation states that the product of bandwidth 1ω and duration 1t of a

signal cannot be less than a minimum value of 1
2 when the 1t and 1ω are defined as the

standard deviations of packet energy | f (t)|2 and power spectrum | f̂ (ω)|2 with respect to

their centroids, respectively:

1t
2

=

∫
∞

−∞
(t − t)2| f (t)|2dt

‖ f (t)‖2 , (6.1)

1ω
2

=

∫
∞

−∞
(ω − ω)2| f̂ (ω)|2dω

‖ f̂ (ω)‖2
, (6.2)

where t =
∫

∞

−∞
t | f (t)|2dt/‖ f (t)‖ and ω =

∫
∞

−∞
ω| f̂ (ω)|2dω/‖ f̂ (ω)‖. As is also il-

lustrated in Chui’s treatise textbook [1], the time-frequency window, 1t1̇ω, of the semi-

orthogonal wavelet is nearly equal to the minimum value of the Heisenberg uncertainly

principal, and this very optimistically provides the opportunity for applying the adapta-

tions. That is to say, there is an easy to way get round of the uncertainty relation by going

through a modulation process (i.e., multiplying a basis function with a complex exponen-

tial). Since in Fourier analysis a modulation in one domain corresponds to a shift in the

other domain, such a process causes the new variance 1ω to increase dramatically. Fig-

ure 6.3 (Heisenberg) shows such a mechanism. It is seen that the new 1t1ω is significantly

larger than 1t Dω, i.e., even larger than the limiting value for Heisenberg uncertainty re-

lation; therefore, there is quite a lot of flexibility to devise the time-frequency windows.

In view of the similarity between the modulation mechanism for STFT and the dilation

mechanism for WT, especially for the case of Morlet wavelet, we anticipate that there is

an ample space for adapting the time-frequency windows. Furthermore, as pointed out by

Bracewell [11], there exists no theorem depicting the lower limit of 1t Dω, i.e., no new

restriction for Dω; therefore no further limitation on the number of the degrees of freedom

is induced. Overall, it is quite flexible to draw time-frequency windows which generally
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do not violate the uncertainty relation when we express a signal in its two dimensional

phase plane.

6.3 Time-frequency windows and the physics

The algorithm and the physics associated with the adaptation of time-frequency windows

can be illustrated easily by going through practical examples. Though the adaptation

does not need to be confined to any specific type of wavelet, the Morlet wavelet readily

serves for such a purpose. As was stated in the previous chapter that the Morlet wavelet

is almost identical to a modulated Gaussian, and a modulated Gaussian matches almost

exactly with cardinal B-spline wavelet of order greater than or equal to three, which is

exactly the identified best basis wavelet. Overall we therefore, on the one hand, benefit

from an extremely natural transition from DWT to CWT, on the other hand, gain the

practical merit of the adaptation.

Before we go into the adaptation, let us recount more explicitly two very important

features that distinguish the identified optimum basis from the other bases and that defi-

nitely contribute to the causes of the optimum basis’ successful applications: (1) The best

basis’ cardinal spline scaling function and its associated wavelets possess, respectively,

the nice properties of “total positivity” and “complete oscillation”. We note that these

two properties physically imply that its wave form is relatively smooth and without ad

hoc variations when compared with some fancy wavelets with finite support lengths. (2)

The cardinal B-spline wavelet is either symmetric or anti-symmetric. Therefore, it bene-

fits from the linear-phase filtering. The physical implication of this is: slight differences

in wavelet coefficients will not cause significant differences in their reconstructed wave

forms, or alternatively, the modulations of the wave forms are comparatively less abrupt.

With more natural transitions for both forward and inverse transforms under various cir-

cumstances, the impacts to our perception or visualization of an interaction process due

to varying input conditions are leaning toward relatively evolutionary tendencies rather
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Fig 6.1 (W Quirks-1) Wavelets with fancy analytical properties are often of peculiar wave forms and
are not of proper candidate for studying water-wave related physics — either
judging from their entropy values given in the previous chapter or form their
stability conditions shown in this figure.
The peculiarity and the sensitivity of these types of wavelet constructions
are somewhat illustrated by the phenomena appear in the blow-ups of bi-
orthogonal wavelets BO31O. In this case the blow-ups diverge rapidly and
fail to identify itself numerically in the refinement cascade. The blowup de-
tails are as follows.
Scale interval between blow-ups: 26 between subsequent sub-figures (a), (b),
and (c);
Unit value originating point (the point used to obtain the curve in sub-figure
(d)): level 2, position 12, i.e., element U 12

2 in the notation of figure 2.21 (WP

Tree);
Blow-up point: point 150 indicated by a vertical dotted line in the sub-figure
(d).
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Fig 6.2 (W Quirks-2) Again, another instance of peculiarity and sensitivity arising from fancy
wavelet construction is illustrated by the phenomena appear in the blow-ups
of the bi-orthogonal wavelets BO35O.
The blow-ups here converge poorly and incline with opposite slopes.
The blowup details are as follows.
Scale interval between blow-ups: 26 between subsequent sub-figures (a), (b),
and (c);
Unit value originating point (the point used to obtain the curve in sub-figure
(d)): level 2, position 12, i.e., element U 12

2 in the notation of figure 2.21 (WP

Tree);
Blow-up point: point 256 indicated by the intersection point of various curves
in the sub-figure (d).
It is noted that these peculiarities indicate the poor entropy values, as well as
the consistently pathetic usages in water wave simulations. It is the author’s
belief that fancy constructions of wavelets do not adhere to the physics of wa-
ter waves.
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Fig 6.3 (Heisenberg) The Heisenberg uncertainty relation and the modulation versus shift prop-
erty (adapted from Bracewell 1986). A modulation process renders 1t1ω �

1t Dω. Where 1t ,1ω and Dω are the root-mean-square departures from the
centroids, respectively. The property helps significantly in possible adapta-
tions of wavelets for the purpose of modeling water wave physics. That is to
say, an adaptation generally will not violate the restriction of the minimum
requirement of the product between the two moments of time and frequency
distributions.
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than drastic turnovers. Still, one additional implication of practical significance is: dis-

tortions are far less severe when noise and uncertainty are poignant. The phase plane in

figure 6.4 (Adap–Simu) and the various blow-up curves in figures 6.1 (W Quirks-1) and 6.2 (W

Quirks-2), 2.29 (BU–BO31O) and 2.30 (BU–BO35O), as well as figure 5.1 (SNI–Phase) manifest the

problems and possible difficulties associated with wavelet bases that do not posses these

properties.

Up to this point we have illustrated many specific properties, associated either with

DWT or with CWT, that bestow upon our desires when analyzing our water wave related

signals; even though their outstanding effects might only be appreciated when we get to

the reality of analyzing experimental data. But here let us embark the further work on an

improvement — enhancing wavelet’s physical implication based on the affinity between

the identified best basis and the Morlet wavelet.

The Morlet wavelet is the following complex function:

ψ(t) = π−1/4(e−iω0t
− e−ω2

0/2)e−t2/2, (6.3)

in which ω0 is a constant related to the carrier frequency and the term e−ω2
0/2 justifies the

admissability condition. Its Fourier transform is almost a shifted Gaussian and is given

by

ψ̂(ω) = π−1/4[e−(ω−ω0)
2/2

− e−ω2/2e−ω2
0/2]. (6.4)

In addition to the general meaning of the modulation frequency, the ω0 has the physical

implication of the amplitude ratio r — the ratio between the second highest peak and the

first highest peak of ψ(t) — i.e.,

r = ψ(t2)/ψ(0), (6.5)

in which t2 is the abscissa of the second highest peak. The exact value of t2 can be obtained

by solving numerically the transcendental equation derived from the derivative of the ψ
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function, but a fairly good estimate is obtained by simply dropping the second term of the

above complex function since the second term is generally five order of magnitude less

than the maximum value of the first term, i.e.,

ω0 ≈
2π
t2

≈ π

(
−

2
ln r

)1/2

. (6.6)

The higher the ω0 is, the smaller the ratio r becomes. If ω0 is constant, then the ratio r

for different wavelet dilations or scales keeps constant too. Here comes the core question:

whether constituent wave components of different scales and time spans all possess this

fixed decay feature? To show that this is not true, let us examine the composite water

wave system that is with viscous damping.

For deep water waves with a clean surface the energy losses due to viscous dissipation

arise almost entirely from the straining of the irrotational motion in the water column,

and the part of contribution from viscous stresses in the surface layer is negligible. It was

shown [32, 57] that the time rate of change of the energy density is

Ė = −2µσ 2aw2k, (6.7)

where µ, σ , aw, and k are the dynamic viscosity of the water, the wave frequency, wave

amplitude, and wave number, respectively. Since in deep water E = (2k)−1ρσ 2aw2,

where ρ is the water density, the attenuation coefficient

γν = −
Ė

2E
= 2νk2, (6.8)

where ν is the kinematic viscosity of the water. Therefore the energy density of the wave

evolves as

E = C1e−2γν t , (6.9)
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where C1 is a constant, and the amplitude decreases with time in accordance with

aw =

√
C12k
ρσ 2 e−γν t

= C2e−2νk2t , (6.10)

where C2 is a constant if σ does not vary. Comparing the decay of wave amplitude of

Morlet wavelet with the decay of the physical model, one sees both similarity and dis-

similarity. The similarity is that the attenuation coefficients in both models have inverse

square dependence on scales — the former in (1/a)2 and the latter in k2. The dissimilar-

ity is in the time dependence of the exponent in the exponential — in Morlet wavelet it

is in t2 dependence, while in the physical model it is in linear dependence. It is therefore

anticipated that Morlet wavelets based on a fixed modulation shape are not good represen-

tations of water waves of different scales. Or stated otherwise, basis functions originating

form a single mother Morlet wavelet do not form a good basis.

Now the situation is clear: the constant ω0 either overestimates the viscous decay

of water waves at the low-frequency end or, otherwise, under-estimates those at the high-

frequency end. Form a practical judgement of the modulation curves, it is quite reasonable

to argue that the deviation is probably more significant for waves with a longer life span

when a standard r value of Morlet wavelet, i.e., r = 0.5, is assumed. The perceptions

here provide the footing for the present adaptation — with different values of amplitude

ratio r for different wave scales we are really attempting to simulate the evolution process

with a more realistic condition. The expansion or contraction of wavelet support length

for a specific scale just reflects the devising of flexible constructions of time-frequency

windows, and adjusting r is in turn using a variable ω0. The general guideline is to use

a comparatively larger ω0 (associated with a narrower frequency band) for waves of a

longer time support; and vice versa, a comparatively smaller ω0 (a wider frequency band)

for a shorter life span. Here it naturally comes to assume the ω0 to be a function of scale,

i.e., ω0 = ω0(a). And the varying shapes and sizes of the time-frequency windows are
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now determined by

ψa

(
t − b

a

)
= π−1/4

[
e−i ω0(a)

a (t−b)
− e−ω0(a)2/2

]
e−

(t−b)2

2a2 . (6.11)

6.4 The carrier frequency and the adaptation

Earlier we have stated a few nice features of the identified best basis. There is one addi-

tional feature that is practically significant because of its relevance to the Morlet wavelet

— the physical perception of the sizes and shapes of “scales”. Without such a property

everything will look obscure. In fact, we have seen a lot of ambiguities or abstractions in

many studies where they only involve presentations using non-dimensional scales rather

than using the more appropriate physical quantities of carrier frequency even though they

are working on modulated Gaussian or Morlet wavelets. We note that the wavelet coeffi-

cient generally refers to “scale” not to “frequency”. Scale has no dimension, but carrier

frequency has a physical unit and is associated with a Gaussian bell modulator. Fur-

thermore, scale generally corresponds to complicate combination of several frequency

bands such as what implied by the compactly supported orthogonal wavelets shown in

figure 6.4 (Adap–Simu). Therefore, in order to have a clear picture of a “scale” one needs

to consider: What does the basic wavelet look like? What is the actual support length?

And, what is the physical sampling interval? All these severely tangle our thought, and

we get lost easily. Take as an example: the numerical processes for both discrete Fourier

transform and DWT care nothing about the physical units and only the index is impor-

tant; however, there is an easy conversion from index to frequency for Fourier coefficient,

but not for wavelet transforms except the ones associated with the Morlet wavelet. It is

totally impossible to visualize the corresponding object just from the index of a wavelet

coefficient. For the best basis and the related adaptation the difficulty is avoided, since

the precise and physical “carrier frequency” is easily seen to be ω = ω0(a)/a, supposed

that ω0(a) is large enough, say above 5. Again, the point to caution is: illustrations using
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scale parameter a can be confusing and misleading since the same a may correspond to

different actual scales or frequencies when different adaptations or different wavelets are

used.

As was stated in the previous section that the present adaptation can always be ap-

plied to finite scale range(s) and that the transform only needs to be implemented for scale

range(s) that we are interested in. Still, we give an additional description of the flexibility

concerning this. Since one can always regard that the set of sampled data points is derived

from a certain specific function, but there are basically infinitely many functions which

can pass all these sampling points. And since the functions passing through these points

may be either band-limited or -unlimited but the sampled signal is always band-limited

(since numerical analysis is always associated with finite scale range); therefore, the sit-

uation indicates that there exists freedom to make adaptation for ω0 and also implies the

possible redundancy when CWT is applied to the sampled signals. The remaining prob-

lem is how to define a suitable decay parameter ω0. Nevertheless, based on the above

mentioned practical concern of wave decay and the somewhat intuitive adjustment, we

show the possible improvements in time-frequency resolutions when the adaptation is

applied to experimental data. But let us first give a numerical simulation.

For the simulated data we use a parabolic chirp where the frequency range of interest

covers the whole band width of the signal, i.e., from almost zero frequency to that cor-

responding to Nyquist sampling rate. And a linear variation of ω0(a) from 10 (for large

scale end) to 7 (for small scale end), as opposed to the commonly adopted fixed value

of 5.3 (corresponding to r ≈ 0.5), is assumed. As is seen from figure 6.4 (Adap–Simu),

the adapted one gives better frequency localization for almost all frequencies except the

lowest two carrier frequencies (in fact the adaptation can be further adjusted for this part,

and to have better resolutions for these two carrier frequencies the values of their ω0(a)

should be less than 5.3, but the concern here is mainly on the serious edge effects). A

phase map for the complex wavelet coefficients derived from a refined ridge extraction

scheme is also shown as the top right sub-figure. Here it provides a much better identi-
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fication of scales of main power contents than what can be provided by Morlet wavelet.

F:TFM-WindWave

For the experimental data water waves measured in the wind blowing oval tank are

used, in which reasonable frequencies should lie between 1.5 and 10 Hz. Earlier we men-

tioned that the Morlet wavelet is likely to overestimate the decay of longer waves in the

long run; therefore, relative to higher frequency waves, we should reduce the decay para-

meter ω0 for low frequency ones. Based on this understanding we heuristically assume

Erfc
[

4
10

(ω0

a
+ 2.5

)
− 2

]
3 + 5 = aω (6.12)

where Erfc is the complimentary error function and ω is the carrier frequency. This equa-

tion may be modified according to the type of signal studied or according to the frequency

range of one’s interest. Figure 6.5 (Adap–Erfc) shows the curve of the function. The logic for

the choice of its constants is self explained in the attached program piece. Figure 6.6 (Adap–

Wave) shows results without and with the adaptation. Here, the varying ω0(a) is from 9.16

(for the large scale end) to 5.26 (for the small scale end), as opposed to the fixed value of

5.3. Again there are less smearing effects at the lower portion of the time-frequency plane

since we mainly adjust decay parameters for the low-frequency end.

A few additional points are: (1) The dominant carrier frequency is about 2.4 Hz in

this case; (2) Waves of all frequencies keep constantly evolving, since light and dark

regions constantly interlace; (3) There are grouping effects. Waves with significant energy

contents are more enduring and the durations of darker bands are much longer than those

of higher frequencies. This indicates that our adjustment for decay parameters is based

on a reasonable ground; (4) There is an obvious bifurcation among scales, especially for

the intermediate frequency range of about 3 to 4.5 Hz; it suggests that the phenomenon of

energy cascade from where energy concentrates to neighboring areas. Judging from these

characters it seems that the energy phenomenon in a multi-scale wave field is somewhat

similar to that in a turbulent flow field (see Tennekes and Lumley [64]).
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[Morlet CWT, chirp-n2.dat (5.30,5.30)] (1996/10/11-23:4:41)
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[Adapted CWT, chirp-n2.dat (10.0,7.00)] (1996/10/12-0:37:16)
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[Variant CWT--chirp-n2.dat (10.0,7.00)] (1996/10/12-1:30:1)

2Pi 0Radian   [CWT  Phase]
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  Signal (CPU=0:12:6.17)

Fig 6.4 (Adap–Simu) The time-frequency distributions of a parabolic chirp (bottom right)
with (top left) and without (bottom left) adaption of the carrier
frequency parameter ω0. In generally the adaptation yields a more concise
distribution and a better coverage of frequency range.
An additional time-frequency map is shown in the top right. In which the
transformation is associated with a wavelet variant devised by the author (Lee
and Wu [37]). The wavelet variant has refined capability in ridge extraction
and shows less ambiguity.
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   obeg=11.;  oend=5.;  
   fcenter=2.5;  fdilation=10/4;   fshift=2. ;

   perfc=Plot[ Erfc[(1/fdilation)* (freq +fcenter)-fshift]* 
                            (obeg-oend)/2+ oend, {freq, -2.5, 8.5} ]   
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Fig 6.5 (Adap–Erfc) The ω0 is a representative character of the wavelet time-frequency window
kernel and intrinsically is the carrier frequency parameter. It has the physical
indication of wave decay tendency. A constant ω0 does not adhere to water
waves of a board range of scale.
Here an adaptation of ω0 in accordance with the carrier frequency is assumed
and hinted by the program piece. The window kernel parameter as a function
of carrier frequency is presumed to be the complementary Gauss error function
Erfc.
And the curve can be adjusted according to several parameters of wave fea-
ture as indicated in the attached program piece: approximate peak frequency;
significant range of frequency; range of decay parameter; as well as a shift
adjustment parameter.
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[Morlet CWT, b0w6020.4 (5.30,5.30)] (1996/10/12-1:6:20)
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[Adapted CWT, b0w6020.4 (9.16,5.26)] (1996/10/12-1:26:50)
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[Variant CWT--b0w6020.4 (5.30,5.30)] (1996/10/12-1:15:2)

2Pi 0Radian   [CWT  Phase]
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Fig 6.6 (Adap–Wave) The time-frequency distributions of a wind-generated water wave signal
(bottom right) in a laboratory tank with (top left) and without
(bottom left) adaption of the carrier frequency parameter. The assumed
adaptation mainly adjusts the decay coefficients toward a mild decline for low-
frequency part. Here we see less smearing for the main frequency band.
Note that due to the narrow-banded nature of the laboratory wind wave the
adaptation may show more prominent effects for signals of a broad range of
scales.
Besides, the time-frequency plot (top right) using the same wavelet vari-
ant as mentioned in figure 6.4 (Adap–Simu) provides an easy identification of the
main power ridges as is generally infeasible using the Morlet wavelet.
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6.5 Existence of the admissability condition

Earlier we gave a somewhat physical description on how the present adaptation manages

to provide an almost “lossless” operation. Lossless means that the full information of a

function is preserved during the transform and that we can recover the function from its

wavelet coefficients, i.e., there exists a reverse operation. In the following we provide a

more formal description through validating the existence of the identity resolution, which

is basically just to show the existence of an admissability condition.

In an earlier illustration of the adaptation, a modified basis of wavelets was formed by

adjusting the support length of dilated versions of ψ(t) using different values of ω0 which

is further assumed to be a function of a. Furthermore, as explained in the previous section,

a simple adaptation is the modification of carrier frequency according to ω = ω0/a, i.e.,

ω0 = aω, we therefore further assume that ω0 is a generalized function of aω and the

wavelet is

ψω0(t) = ψ(t ;ω0(aω)). (6.13)

Its dilated and translated versions are given by

ψa,b;ω0(t) =
1

√
|a|
ψ

(
t − b

a
;ω0(aω)

)
. (6.14)

And the wavelet coefficients of a function f (t) are given by

W fω0(a, b) = 〈 f, ψa,b;ω0〉

=

∫
∞

−∞

1
√

|a|
f (t)ψω0

(
t − b

a

)
dt

=

∫
∞

−∞

√
|a| f̂ (ω)ψ̂ω0(aω)e

−ibωdω, (6.15)

in which ψ̂ω0(ω) = ψ̂(ω;ω0(aω)). We follow the formalism to check that the inner
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product of two functions f and g, 〈 f, g〉, can be recovered from the integration of the

projection of W f (a, b;ω0) into Wg(a, b;ω0) along both real lines of dilation and trans-

lation variables. That is, whether the following equation exists:

∫
∞

−∞

∫
∞

−∞

1
a2 W f (a, b;ω0(aω))Wg(a, b;ω0(aω))dadb = Cψω0

〈 f, g〉, (6.16)

where Cψω0
is a constant. If it exists, then when g is taken as the Gaussian function

with its variance approaching zero (i.e., g is practically the delta function δ(t)), the inner

product 〈 f (t ′), g(t ′ − t)〉 = 〈 f (t ′), δ(t ′ − t)〉 will recover f (t) and the condition of the

identity resolution is guaranteed.

The right hand side of the above equation equals to

∫
∞

−∞

∫
∞

−∞

1
a2

[∫
∞

−∞

√
|a| f̂ (ω)e−ibωψ̂(aω;ω0(aω))dω

]
×

[∫
∞

−∞

√
|a| ĝ(ω′)eibω′

ψ̂(aω′
;ω0(aω′))dω′

]
dadb. (6.17)

With the following two identity equations

F̂a(t, ω0(aω))

=
1

√
2π

∫
∞

−∞

e−i tω
√

|a| f̂ (ω)ψ̂(aω;ω0(aω))dω

=
1

√
2π

∫
∞

−∞

e−i tωFa(ω;ω0(aω))dω, (6.18)

Ĝa(t, ω0(aω))

=
1

√
2π

∫
∞

−∞

ei tω
√

|a| ĝ(ω)ψ̂(aω;ω0(aω))dω
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=
1

√
2π

∫
∞

−∞

ei tωGa(ω;ω0(aω))dω, (6.19)

one has

∫
∞

−∞

∫
∞

−∞

2π
a2 F̂a(t;ω0(aω))Ĝa(t;ω0(aω))dadt

=

∫
∞

−∞

∫
∞

−∞

2π
a2 Fa(ω;ω0(aω))Ga(ω;ω0(aω))dadω

=

∫
∞

−∞

∫
∞

−∞

2π
|a|

f̂ (ω)ĝ(ω)|ψ̂(aω;ω0(aω))|2dadω

= 2π
∫

∞

−∞

f (t)g(t)dt
∫

∞

∞

|ψ̂(aω;ω0(aω))|2

|a|
da

= 2π〈 f, g〉Cψω0
. (6.20)

Now the resolution of identity is fulfilled if the following admissability condition is satis-

fied, ∫
∞

−∞

|ψ̂(aω;ω0(aω))|2

|a|
da = Cψω0

. (6.21)

This condition is more restrictive than Equation 5.7 in that ψ̂(0, ω0(u)) = 0 for all u ∈ R.

Otherwise, there is no other restriction since what is changed in the integration is limited

to finite range and is anticipated to be finite. The case using Morlet wavelet complies with

such a validation and therefore satisfies this condition.

6.6 Summary

The unrealistic aspect of the best wavelet in the simulation of water waves is pointed out

and the importance of the existence of a physical quantity of carrier frequency is stressed.

And a somewhat intuitive adaptation based on the adjustment of the time-frequency win-
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dow parameter is proposed. The adaptation mainly focuses on better modeling of wave

energy phenomena or energy dissipation for different wave lengthes. Such an optimiza-

tion shall be more significant for board band signals. v
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Chapter 7
Wavelet Coherences against Fourier
Coherences

7.1 Introduction

Coherence connotes mutual relationship or inter-dependency; it manifests from an inti-

macy of complete cloning to an alienage of total irrelevance. In a multi-scale, multi-factor

coupling system the levels of coherence between different target quantities symbolize the

phenomena of reciprocal interactions among various playing elements. By studying vari-

ations of coherences under different experimental setups or different input parameters it

is possible to show evolutions of different scales and to isolate key influential factors, as

well as to identify issues thus consorted.

In this chapter solid evidences will be provided regarding the the proof of “the ultimate

last word” on best wavelet concerning water wave applications and physics. What will

be furnished is the absolute superiority of the wavelet coherences associated with the

ultimate best wavelet over the spectral coherences associated with Fourier basis. By the

way, be that as it may, the author likes to emphasize that by no means this is equivalent

to saying that Fourier basis is inferior to such wavelet basis in every aspect of water wave

studies. In facts, it is still vastly important in many prospects, in particular, for those

that are generally stationary or without significant local transient variations and for those

related to water wave instability (such as side-band instability).



In two individual studies related to the methodologies of time-frequency analysis by

the author [36, 39] the viewpoints based upon Hilbert transform and the analytic signal

procedure [25], [17] were used to elaborate the influences of non-stationary effects and lo-

cal transient variations, as well as some of the intrinsic mathematics and their connection

with the uncertainties related to Fourier spectra. Herein, we will come to realize the same

drawbacks imposing upon the Fourier basis due to these effects when comparing perfor-

mances of spectral coherences with those of wavelet coherences. Moreover, let state a

few basic differences between the two approaches.

Apart from the most instinctive and fundamental deviation between Fourier and wavelet’s

viewpoints concerning the appropriateness of depicting waves as finitely supported mod-

ulating signals, i.e., waves with a life span, there are two other major differences.

First, from the viewpoint of their origins from mathematics, the formulation of wavelet

coherence is a more intimate replica of its analytical form than is the Fourier spectral

coherence. Specifically, the wavelet coherence is a direct and natural extension of the

wavelet “resolution of identity”, and therefore involves less artificial intervention.

Second, the wavelet coherence presented here is derived from a set of coefficients

with an extreme redundancy associated with no orthogonality whatsoever; while spectral

coherence is derived from a set of coefficients associated with orthonormal basis func-

tions. Such a redundancy is capable of providing not only a fine scale resolution but also

a huge population space needed for outstanding coherent statistics; since it reduces im-

pacts related to histogram processing, noises, and a few additional uncertainty factors,

etc [59], [74]. Most importantly, being based upon the basis with minimum entropy that

clearly outperforms the Fourier basis, the wavelet transform coefficients possess utmost

information contents and lead to clear and superior tendencies in coherent features.

Overall, what presented in this chapter will come to the conclusion: for water waves,

the ultimate best wavelet in the discrete domain is the semi-orthogonal cardinal spline

wavelet; and in the continuous domain it is the Morlet wavelet.
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7.2 The Fourier spectral coherence

The cross correlation function of two functions g(t) and h(t) is the following inner prod-

uct c(t)

c(t) = 〈g(t + τ), h(τ )〉, (7.1)

where τ is a dummy variable with respect to t . The correlation coefficient function of c(t)

is rs(t),

rs(t) =
c(t)

‖g(t)‖‖h(t)‖
. (7.2)

For real g(t) and h(t), its Fourier transform is

ĉ(t)
‖g(t)‖‖h(t)‖

=
G(ω)H(ω)

‖G(ω)‖‖H(ω)‖
. (7.3)

The Fourier spectral coherence is the following induced form,

R2
s (ω) =

|E[G(ω)H(ω)]|2(
E[|G(ω)|2]E[|H(ω)|2]

)1/2 , (7.4)

where the symbol E stands for taking expected value. Comparing the two equations

above, the artifacts introduced into the spectral coherence are associated with the form of

expected values and the introduction of normalization.

This equation is in fact identically unity for all component frequencies if no additional

man made manipulation is adopted. Since expected values take no action without intro-

ducing one more dimension. As such, the introduction of an additional dimension is the

manipulation of data segmentation, that is to say, the whole data sequence is segmented,

and each segment is individually transformed and arranged in a matrix thus creating the

one additional dimension. The process of this segmentation is completely identical to that

commonly implemented in calculating Fourier power spectra, and it aims to reduce the

uncertainty or standard deviation of the spectral estimation. There is no doubt that vari-

ous inherent properties of the discrete Fourier analysis inflict their symptoms and impose
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similar limitations to the conclusiveness of spectral coherences.

7.3 The wavelet coherence

It was a stumbling when the subject of both wavelet and spectral coherences caught the

author’s attention. Reading a paper by Liu [42], the author was dissatisfied with the

paper’s definition of wavelet coherence and the ambiguity and lack of information thus

yielded. And it turns out that the derivation of wavelet coherence is even much simpler

mathematically and more intuitive theoretically, along with fewer artifacts.

The wavelet’s “resolution of identity” of two functions (g and h) is

〈g, h〉 =
1

cψ

∫
∞

0

1
a2

∫
∞

−∞

〈g, ψa,b〉〈h, ψa,b〉dbda, (7.5)

in which cψ is a constant and ψa,b is a wavelet with scale a and translation step b. For a

component scale a

〈ga, ha〉 =
1

cψ

1
a2

∫
∞

−∞

〈g, ψa,b〉〈h, ψa,b〉db. (7.6)

Here the integration with respect to the translation parameter b is physically, as well

as intuitively, similar to the operation of taking an expected value by summing up the

elements in the population space. It is therefore quite straightforward to define the wavelet

coherence as the natural extension of the normalized equation of resolution of identity:

R2
w(a) =

|Eb[〈g, ψa,b〉〈h, ψa,b〉]|2(
Eb[|〈g, ψa,b〉|2]Eb[|〈h, ψa,b〉|2]

)1/2 , (7.7)

where Eb stands for sampling average with respect to the translation parameter, the sub-

script b.

It is clear that the wavelet coherence has a more direct linkage to its analytical coun-

terpart than does the spectral coherence.
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Unlike the spectral coherence, there is no need to segment the data. The expected

values can be obtained in a sense of summing up all the results of wavelet transforms at

all locations. And each elemental transforms can be obtained through simple convolution,

i.e., an operation of time reversal and time shift if the data is a time sequence. Therefore,

the population size of the sample space of wavelet coefficients for any given scale (or car-

rier frequency as adopted here) is generally two or three orders of magnitude larger than

that for spectral coherence. That is to say, the amount of available sampling coefficients

is generally not a concern for the wavelet scheme.

In fact the fundamental difference between the present definition based on equa-

tion 7.7 and the one adopted by Liu [42]) is the state of subsistence of the expected

values. Without the statistics of an expectation the results seemed scanty and the depic-

tions sounded skimpy.

Although the equation of the wavelet coherence (eq. 7.7) applies equally well to a

discrete or a continuous basis, there is one significant and practical advantage that facili-

tates the use of the continuous one. Since we can focus only on the portion of scale range

that is meaningful and substantial to us. Nevertheless, for the spectral coherence, in the

handling we have no control at all over the frequency range of interest. As such, a great

portion of the spectral result might be entirely irrelevant to our concerns.

Judging from the fact that we generally only want to, and are just able to, focus on a

finite scale range or some frequency bands in practically any real world situation. Even

though computation efficiency is not our concern, We know that the spectral approach

wastes its effort and resource in the unwanted while the wavelet coherence does just the

most appropriate.

7.4 The experimental data

The data involved in this chapter is related to a subset of experiments that aims at the

study of the energy cascade phenomenon and the interaction scales in the wind, wave and
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rain coupling system. Details will be given afterwards.

The coherence comparisons include both wind and Stokes waves. Major wind speed

was 6.0 sec−1, and Stokes waves with different wave steepness were mechanically gen-

erated. The wind speed was measured with a Pitot tube located 50 cm upwind of the rain

section and 11 cm above the still water surface. Water surface displacements were mea-

sured with the capacitance type tantalum wire probes. Aqueous flows at several depths in

two sections along the tank were measured with a laser Doppler velocimeter.

7.5 Comparisons and implications

The performance comparisons of the two approaches provided here concern the coher-

ences between the surface wave and aqueous flow fields for both wind wave cases and

Stokes wave cases.

These comparisons fully warrant the entropy results and vindicate the ultimate best

wavelet for water waves. There must be reasons and implications.

• The absolute superiority of the wavelet coherences — The wavelet coherences using

three different analyzing data lengthes of 1024, 2048, and 4096 points are shown in

figure 7.1 (WC–210,11,12). The individual curve in each sub-figure indicate individual

measurement depth for aqueous flow at 2, 3, 4, 5, and 9 cm, respectively, below the

still water surface. It is seen that all the corresponding curves for the three different

analyzing data lengthes are extremely consistent. In contrast, figure 7.2 (FC–210,11,12)

shows the Fourier spectrum coherences for the same data sets. The difference in

performance of the two methods is quite obvious and can be grasped without ex-

planation. Additionally, figure 7.3 (FC–213plus ) shows the spectral coherences using

a lengthy 9126-point with individual FFT segmentation length of 256- and 1024-

point. It is noted that, when extremely lengthy data is used, the Fourier coherent

curves may possibly come close to those of wavelet coherence but the trend is surely

slow and costly, yet with certain defections still.
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• The fitness of the nature of a life span — For short wind waves (such as the tank

data here) the description of a life span fits the physics better. Component waves

are inherently evolving and mutual interaction among them is a norm. And this

is the basics that the wavelet depiction comes into play. Moreover, life spans of

component waves are shorter than any analyzing data length used. That is to say,

even the shortest data length of 1024-point sufficiently cover the support lengthes

of all wave components in the experiments.

• Wind waves in the tank soon lose their identities — Figure 8.5 (ACC ∼ ID) shows the

auto-correlation coefficient distributions of two wind-wave signals in the oval tank

measured at upstream and downstream location, respectively, and it provides the

evidence of the life span argument. Here the correlation level is low and diminishes

rapidly. A sensible feeling is that these waves lose their identities extremely fast

when viewed from Fourier spectral perspective. Put differently, the behavior indi-

cates the trouble related to the level of uncertainty of the Fourier decomposition.

• Spectral repeatability — Even with the acquaintance of the above explanations one

might not grasp to what extent the problem of Fourier spectral repeatability may af-

fect the conclusiveness in data interpretations, as well as the coherent performances

shown here. Measurements of the signals in the wind blowing oval tank provide fur-

ther explanations. But let first present the data in a fundamental perspective based

on zero-upcrossing statistics; compared with the spectral point of view, it helps il-

luminate different specific features that are associated with individual perspectives.

Table 8.2 (Zeroup–Sta) shows the statistics from such a conventional method for three

sets of measurements. These three measurement sets were made under the same

wind velocity and the signals were sampled at a rate of 40 samples per second for

a duration of 240 seconds. Channel 1 is for aqueous flows measured with LDV

at a depth of 3, 4, and 5 cm, respectively, from the still water surface. Channel

2 is for water-surface displacements measured at nearly the same transverse cross
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section of the tank as that of the LDV measurement point (with a separation of

0.6 cm). Therefore, statistics for channel 2 can therefore be regarded as the results

from repeated measurements. As are seen from the table, of all individual runs

various statistical values for channel 2 are extremely consistent; hence, from the

point of view of zero-upcrossing statistics, the wave field under the experimental

setup is quite stationary. In contrast, figures 8.3 (FS–RP–L1) and 8.4 (FS–RP–L2) show

that the idea of stationarity is hardly substantiated when viewed from the spectral

perspective. In the two figures, the spectra are for the same data sets but with differ-

ent values of one of the FFT parameters, i.e., two different segmentation lengthes.

The top sub-figures are the power spectra for the repeated measurements of water-

surface displacements. The bottom sub-figures are the LDV aqueous flows at each

depth. Choices of parameters for these standard spectral numerics are labeled in

the figure. For all cases the total length of data is multi-segmented with 50% over-

lapping, and the Blackman window is applied to each segment. A segment length

of 512 points (with an approximate degrees of freedom of 36) is used for the left

figures and 1024 points for right figures (with an approximate degrees of freedom

of 17). As are shown in the top sub-figures, the repeatability of spectra is rather

poor, not to mention the discrepancy arising from different length of segmentation.

The spectral resolution for those on the left is insubstantial, while the variations of

spectra on the right is much more defective. In fact, the illustrated problem is the

manifestation of the symptom associated with the deconvolution mechanism of a

spectral blackbox operation [35].

• Phase effects — If we compare corresponding curves (surface wave and aqueous

flow signals) in the top and the bottom sub-figures it is seen that the shapes of the

two are generally in agreement. This provides a lucid illustration of the phase ef-

fects. Since the two signals are acquired at the same time and at almost the same

cross section, there is little phase effect between the two spectra. On the contrary,

we just do not have any control over the phases of component waves for differ-
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ent runs under the same experimental setups. An extreme illustration and further

explanation for those effects can be found in figure 5.2 (FS–T&P).

• Stationarity prerequisite — The truly remarkable point for the wavelet coherences

is that the 1024-point data length has almost fulfilled the statistics of stationarity.

There is little difference among the three analyzing lengthes. Such a behavior is

even more proficient than that of the zero-upcrossing statistics (Table 8.2 (Zeroup–

Sta)).

• The role of the redundancy — The Fourier basis is orthonormal and the discrete

wavelet bases are either orthonormal (self-dual) or orthogonal to their duals (dual

mother wavelet and dual farther wavelet). There is no redundancy for orthonormal

transforms and little redundancy for those discrete transforms based on nonorthog-

onal bases. However the continuous wavelet transform is an extremely redundant

operation. Without the redundancy a small change in signal causes enormous vari-

ation in scale information or transform distribution. The redundancy is able to yield

purified coherences by minimizing effects from unrelated scales while provide a

fine scale resolution. Redundancy is therefore a much desirable property for studies

of coherent behaviors.

• Length requirements — There is no need to acquire lengthy data when wavelet ap-

proach is adopted, whereas for the spectral approach the need for more data sees

no ending. In this regard, for the wavelet coherences, the lengthening of data pro-

vides not much additional information and the information content of redundancy

saturates quickly.

• Water waves are inherently “regular” from wavelets’ perspective — And again, it

is emphasized that this statement is based upon the wavelets’ point of view. Since,

we have the facts:

– that most of the wavelet basis functions other than one identified here look
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quite odd when compared to the Fourier sine and cosine functions;

– that the various properties outlined in the previous chapter on phase distrib-

utions indicate the simplicity requirement of the wave forms and bespeak no

ambiguity;

– that the optimal continuous wavelet here is quite like a modulated Gaussian;

– that, in the end, the fourier spectral coherences and the wavelet coherences

somewhat approach similar distributions.

7.6 Summary

The absolute superiority of the wavelet coherence fully vindicates the optimal simulation

of a best basis. And the outstanding performances lie upon the two main core factors

that reflect the truly best both from the best discrete basis and from the most upright

continuous counterpart. That is to say, first, it is based on a clear-cut minimum entropy

associated with the best discrete wavelet (the semi-orthogonal cardinal spline wavelet) for

water waves; second, it further employs the beneficial property of the redundance and en-

gages the existence of a meaningful physical quantity of the carrier frequency associated

with the phase of the counterpart continuous wavelet (the Morlet wavelet). v
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Fig 7.1 (WC–210,11,12) The wavelet coherences between the wave and aqueous flow using three
different data lengthes: 1024 (top), 2048 (middle), and 4096-point
(bottom). Each individual curve represents a different measuring depth
of aqueous flow at 2, 3, 4, 5, or 9 cm, respectively, below still water surface
as labeled in the sub-figures. Note the well consistency and behavior among
curves.
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Fig 7.2 (FC–210,11,12) The Fourier spectral coherences between the wave and aqueous flow for the
same set of data as that of the wavelet coherences (figure 7.1 (WC–210,11,12)).
Note the extreme variation for all the curves.
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Fig 7.3 (FC–213plus ) The Fourier coherences using a data length of 9126-point for two different
lengthes of spectral segmentation, 256 (top) and 1024 (bottom) points.
It is seen that extremely lengthy data may possibly yield a somewhat similar
distribution curve as that of the wavelet coherence (top), but note the effects
of degrees of freedom of the spectrum (bottom).
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Fig 7.4 (WC–Stokes) The wavelet wave-current coherences at several depthes for two Stokes waves
with wave steepness of 0.06 (top) and 0.30 (bottom) for a data length of
1024 points — Some prominent physics here may involve:
(1) the band distribution and degree of separation;
(2) the coherent level for individual band at individual depth;
(3) the tendency or the phenomena attributed to the side-band instability or
nonlinear effect of water waves.
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Fig 7.5 (FC–Stokes) The Fourier spectral coherences for the same data as in the last figure (7.4 (WC–

Stokes)) (FFT parameters are labeled in the figure) — Can we infer anything?
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Chapter 8
An Energy Cascade Model for the Wind,
Wave and Rain Coupling System

8.1 Introduction

To serve as an example of possible applications of the identified best wavelet basis and

the proposed coherence approach, we study the physics concerning the rapid damping of

surface waves in the wind, wave and rain coupling system, and an energy cascade model

involving both the surface and internal waves is proposed.

In the fluid dynamics of turbulent flows, a well accepted theory for its energy phe-

nomena is the cascade of energy among scales (e.g., Tennekes and Lumley [64]). In this

chapter, apart from a few concepts related to classical wave generation and dissipation

mechanisms, we are engrossed to see that many similar features exist between turbulent

flows and the wave field of a rain coupling system:

• Catalyst: Both phenomena are caused by the existence of boundary condition or

disturbances.

• Diffusivity: In turbulence it is the mixing; in the coupling system it is the induced

waves through wave-wave interactions of both surface and internal waves.

• Three-dimensional phenomena: In fluid flows, turbulence is characterized by high

levels of three-dimensional rotational motions; in the wave fields, the stratifica-



tion induces diversified wave energy propagation directions and internal local wave

breakdowns.

• Continuum: Turbulence is a continuum phenomenon, governed by the equation of

fluid mechanics. In this regard, energy phenomenon of the rain coupling system

must also be a continuum process since the rain boundary layer is relatively thin

when compared with scales of main energy content; without mechanisms acting

in the continuum, wave energy of the underlying mainly irrotational motions is

isolated.

• Dissipation: Turbulence needs a continuous supply of energy to sustain its viscous

losses. If no energy is supplied, turbulence decays rapidly. In this regard, if waves

of main energy content cascade their energy into short dissipation scales of either

surface or internal waves, the rain calms down the sea very effectively.

• Irregularity: The developed stages have a characteristic of randomness in common.

8.2 Previous studies and the status of data analyses

Van Dorn [68], on his observations of wind-induced stress over a pond, incidentally found

that rain can significantly enhance wind stress. He gave the rain-induced horizontal stress

over the water surface as ρUr R, where ρ is the density of water, Ur is the horizontal rain

drop speed just before hitting the water surface, and R is the rain intensity. One may

regard this quantity as a macroscopic formula in the understanding that the momentum

flux is in the form of stress involving neither temporal nor spatial scales in the water

side. Moreover, it recognized that the rain drop speed vanished eventually, so the net

momentum change is of Ur .

Caldwell and Elliott [14, 15] modeled the interaction of wind and rain in the at-

mospheric surface layer and concluded that although the wind is only mildly modified

by the rain (for the extreme case the increase is about 15%), there is an increase in the
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stress communicated by the air. Furthermore, the speed of the rain drop right before

hitting the water surface is hardly influenced; so, in the coupling system there is signifi-

cant enhancement of surface stress over the water surface. These results also suggest the

likelihood of more momentum transfer to waves.

LeMehaute and Khangaonkar [40] (henceforth, L&K), in their theoretical treatment

of the dynamic interaction between rain and waves, modified the rain-induced stress by

taking into account not only the rain falling angle but also the wave orbital velocity in

the momentum exchanges. In their attempts they have tried to involve temporal as well

as spatial variations into the interaction process. However, these involvements seem only

partial and lack scales too. They assumed an instantaneous adaptation of the rain drop

speed to the wave orbital velocity upon touching the skin of the water surface. In other

words, they have virtually assumed that both the interaction time and the coupling space

between rain and waves are zero (a surface without a volume). In fact, another practical

and also intuitive concern originating from these is: since the analytical model is based

on small amplitude wave theory and since there are no realistic coupling scales, most of

their theoretical results would be of little difference from what van Dorn provided — the

analytical model introduced only higher order correction terms related to wave orbital

motion that is of small amplitude when compared with the first order term the same as

in van Dorn’s formula. It is therefore quite natural to anticipate that their results predict

mainly the wave growth too. Furthermore, the coupling is for monochromatic wave.

On the other hand, seafarers have long observed that rain knocks down the sea, and

a few experimental results also indicate that rain causes the damping of waves. How-

ever, available experimental results are scattering and generally not comparable since

individual experiments were quite different in setups and sometimes limited in modeling

conditions. Tsimplis and Thorpe [66] and Tsimplis [65] both used monochromatic waves

without considering wind and rain falling angles. Due to the size of their tanks they

studied only waves within a narrow frequency range of 2.6 – 4.4 Hz. And in Tsimplis’

experiment the size of the receiving water was only 2.35(L) × 0.10(D) × 0.33(W) m and
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most of their experiments have wave steepness of about 0.3, which is quite large; to our

experiences, instability of these waves should be significant and breaking might occur.

Moreover, as is generally conceived that the energy dissipation is of multi-scale processes

(Tennekes and Lumley [64]), for monochromatic waves the power content may be quite

different from that of the corresponding component that is represented in a natural spec-

tral distribution, thus introducing a distortion of the dissipation process. For example, in

our wind-blowing oval tank, the total energy content for frequencies higher than 3.5 Hz

is generally less than 10% of the overall energy content for wind velocities higher than

about 5 m s−1. So, if the main power is not taken into consideration, one can imagine that

the proper mechanisms would not show up.

Poon et al’s [58] experiments took into account wind and rain falling angles. The

spectral results of their damping coefficients are not definite and often deviate from those

of Tsimplis and Thorpe [66] by more than 100%. Even though a short 128-point overlap-

ping sections was used in Poon et al’s spectral analysis, the spectral comparisons suffer

from the uncertainty symptoms that are common to orthonormal function bases, as are

related to figures 5.1 (SNI–Phase), 5.2 (FS–T&P), and 8.2 (Faulty BB (F)). .

In what follows we give a brief description of L&K’s theoretical treatment to introduce

a few related basic mechanisms and provide a framework for subsequent discussions.

By taking into account the rain falling angle and wave orbital velocity on the water

surface L&K first derived the horizontal and vertical components of the stress acting

on the water body, and then decomposed these into components acting normally and

tangentially on the water surface. The tangential component was further converted into

the equivalent normal pressure (Longuet-Higgins [43]) acting on the surface, and then

added to the original normal component as the equivalent total normal pressure acting on

the surface boundary of the irrotational wave field. With this equivalent normal stress as

an input of the kinematic and dynamic boundary conditions of waves, a transcendental

equation for the complex wave frequency was derived and solved numerically based on

the assumed exponential power form of the wave-height evolution. The imaginary part of
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the complex frequency (σi in Figure 8.1 (σ—L&K)) gives the coefficient of wave growth or

decay as appears in the power of the exponential.

A modified plot of L&K’s wave decay or growth coefficients for deep water condition

is shown in Figure 8.1 (σ—L&K). It is noted that we have made a slight correction about

a sign error occurring in the transformation process of the equivalent total pressure, but

this happened to affect the relatively higher order terms as compared to that of the major

(i.e., equivalently, the macroscopic stress given by van Dorn, as will be further explained).

Since it affects higher order terms, the plot here only has minor differences from theirs.

Although numerical values were given, they provided no physical explanation on the

practical aspects of their outcomes. It seems that their results are neither quite satisfactory

for a great portion of wind speed range, nor for the important parts of waves with shorter

wavelengths; the latter play a significant role on the dynamics of the air-sea interaction

processes, as well as account for major characteristics of a great portion of remote sensing

data. For most practical parts of waves under the action of rain with inclined incident

angles, L&K’s results mainly predict wave growth, and, for shorter waves, the growth

rate can be unimaginably huge. Even though one of L&K’s figures seems to suggest wave

decay, the data are not of practical interests since the case only applies to shallow water

and since the illustrated water depth is 3 m with the range of wavenumber reaches only

about 0.6 rad m−1 (i.e., the wavelength must be large than about 6 m). For relatively

shorter wavelengths the curves in their figure turn upward and possess the same tendency

as in Figure 8.1 (σ—L&K).

An additional illustration of the impractical aspect of L&K’s wave decaying cases is

the comparison of their e-folding decay times with those of Nystuen [55]. The equa-

tion that Nystuen used to estimate the attenuation of waves by rainfall is (1/E)d E/dt =

−4νk2, in which E is the total energy density of the wave, k is the wave number, and ν

is the viscosity (additional forms were also provided by Nystuen, but this form is partic-

ularly true and fits for short waves (see also Atlas [5]). This equation is the theoretical

energy dissipation arising from the straining of the irrotational motions due to waves un-
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L&K [40])
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der the deep water condition. Values of the kinetic viscosity Nystuen assumed are 0.01

and 0.3 cm2 s−1, respectively, for molecular and turbulent mixing. Note that there are ad-

ditional sets of viscosity given by the author which yield almost nonexistent life span for

short waves (such as 30 cm wavelength); therefore, only the estimations related to the two

coefficients are presented here. It should also be emphasized since the turbulent mixing

due to rain is confined in a quite thin surface layer the appropriateness of the use of an

eddy viscosity for the whole water column in some of Nystuen’s cases is also subjected

to doubt. The role of viscous dissipation will further be discussed in the next chapter

concerning an energy cascade model. Table 8.1 (e-decay–N+K) gives their e-folding decay

times (all are converted to values based on the wave amplitude) for selected wavelengths.

A rain intensity of 150 mm hr−1 and vertical rainfall are assumed for L&K’s case (corre-

sponding to an extreme decay condition). If non-vertical rainfall is used, the decay times

of L&K’s estimations will become even longer. One may notice that the e-folding decay

times of L&K are even larger than those due to molecular dissipation, and for shorter

wavelengths there may be orders of magnitude differences. One may also notice that if

Nystuen’s eddy dissipation for relatively short wavelength is true, it is difficult to obtain

significant data related to these waves due to its near invisible short life spans in time and

space. Moreover, results from radar backscatter experiments do not entirely agree with

these. Moore et al’s 2.1 cm radar wavelength [54], Bliven et al’s 2.2 cm [10] and Bliven

and Giovanangeli’s 0.8 cm [9] showed no sign of such wave damping; whereas Atlas [5]

gave reasons why these experiments failed to show evidence of wave damping.

8.2.1 A problematic blackbox mechanism of direct deconvolution

Spectral comparison is commonly adopted in envisioning phenomenological evolutions

of a complex process; however, there is a concern regarding how detail it can go. Fig-

ure 8.2 (Faulty BB (F)) illustrates such a concern as explained in the following.
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Tab 8.1 (e-decay–N+K) Comparison of the e-folding decay times of wave amplitude from LeMe-
haute and Khangaonkar’s [40] and Nystuen’s [55] estimations.

Table 1.1: Comparison of the e-folding decay times of wave amplitude from LeMehaute
and Khangaonkar’s (1990) and Nystuen’s (1990) estimations.

Wavelength (m)
Source of e-folding decay time (s) 0.02 0.1 0.3 1.0

LeMehaute and Khangaonkar? † 158.0 788.0 2362.0 7880.0
Nystuen’s molecular viscosity† 4.8 120.0 1080.0 12000.0
Nystuen’s turbulent layer
eddy viscosity‡ 0.034 2.1 37.8 800.0
?With 150 mm hr−1 rain intensity and vertical rainfall (implying maximum decay rates)
†Molecular viscosity: 10−6 m2s−1

‡Eddy viscosity: 3× 10−5 m2s−1 (for cases with a 0.1 m turbulent layer thickness)

to doubt. The role of viscous dissipation will further be discussed in the next chapter

concerning an energy cascade model. Table?? gives their e-folding decay times (all are

converted to values based on the wave amplitude) for selected wavelengths. A rain inten-

sity of 150 mm hr−1 and vertical rainfall are assumed for L&K’s case (corresponding to

an extreme decay condition). If non-vertical rainfall is used, the decay times of L&K’s

estimations will become even longer. One may notice that the e-folding decay times of

L&K are even larger than those due to molecular dissipation, and for shorter wavelengths

there may be orders of magnitude differences. One may also notice that if Nystuen’s

eddy dissipation for relatively short wavelength is true, it is difficult to obtain significant

data related to these waves due to its near invisible short life spans in time and space.

Moreover, results from radar backscatter experiments do not entirely agree with these.

Moore et al’s (1979) 2.1 cm radar wavelength, Bliven et al’s (1993) 2.2 cm and Bliven

and Giovanangeli’s (1993) 0.8 cm showed no sign of such wave damping; whereas Atlas

(1994) gave reasons why these experiments failed to show evidence of wave damping.

1.3 The current status of data analyses

8

Fig 8.2 (Faulty BB (F)) The simple blackbox here is to illustrate the following problem: Does di-
rect quotient of spectral coefficients of two spectra make any sense? If a
direct division of two spectra is taken, this blackbox implies that the output
is the convolution of the input signal and a certain impulse response func-
tion, or alternatively speaking, the blackbox mechanism is the deconvolution
between the output and the input signals. The concept is intuitively simple,
but it is generally of little use due to the fact that the process is extremely
error prone, as explained in the text. The figure also indicates the inherent
problems regarding a direct comparison of two spectra when there are con-
cerns of non-stationary effects and other possible uncertainties (implied by
figures 5.1 (SNI–Phase), 5.2 (FS–T&P), 8.3 (FS–RP–L1), 8.4 (FS–RP–L2), 8.5 (ACC

∼ ID), as well as various figures given in Chapter 7).
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Let suppose we have an input signal and an output signal. The input signal is, say,

an original signal without being influenced by external factors or measured prior to the

introduction of influences; and the output signal is, say, the altered signal when those

external factors or influences are introduced. One simple intuitive thinking regarding the

identification of effects of these influential factors on constituent components of the sig-

nal is to compare the input and output spectra. The concept is simple, but generally it is

quite problematic. The reason is that the idea of such a spectral comparison is just a man-

ifestation of a deconvolution process, as illustrated by the convolution duality property of

Fourier transform,

h(t) ⇐⇒ H(ω), (8.1)

h(t) ? f (t) ⇐⇒ H(ω)F(ω). (8.2)

Here the double arrow sign means that the role of t and ω can be inter-changed. Referring

to Figure 8.2 (Faulty BB (F)), if one assumes that

H(ω)F(ω) = G(ω), (8.3)

it seems, therefore, quite straightforward to say that the individual effect on each fre-

quency component is simply the division of two spectra,

H(ω) =
G(ω)
F(ω)

. (8.4)

And the response function h(t) induced by the external factors is simply the inverse

Fourier transform

h(t) = F−1
[

G(ω)
F(ω)

]
. (8.5)

The problems here are two-fold, both practically and analytically, and they are mainly
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associated with the F(ω) in the denominator. Practically, due to finite discrete resolution

scheme, together with many unavoidable side effects in numerical processing, the spec-

tral results are of periodogram estimations and reflect only the expectation values of the

power spectrum of a continuous distribution. These estimators generally suffer severely

from having large variance with efforts to improve it being rather inefficient (Press et

al. [59]). Moreover, in many physical situations the power spectra are often quite nar-

rowly banded, or stated otherwise, peaked only around a small region within the whole

range of frequencies; therefore, for frequency components with little energy the division

of two spectral coefficients is extremely error prone. Analytically, if there exists only a

single resolution point where the power content is nil, then the inverse transform is simply

non-existent. Overall, the symptom here is the so-called direct source deconvolution and

is generally referred as the “effects of amplitude equalization”; it results in a high-pass

window in the frequency domain. In the presence of additive noise, this window further

amplifies the uncertainties significantly (Soumekh [61]). Though such inherent limita-

tions exist, it is not uncommon to see that the tactic is used to judge the details of scale

evolutions for cases with complicated processes. The following two sections also serve

as further elaborations.

8.2.2 Transient effects and phase noise

In a wind, wave, and rain coupling system both the water surface and the flow field are

quite irregular and possibly turbulent, and there are always sharp and violent local fea-

tures. Figure 5.2 (FS–T&P) conceptually illustrates the power spectral phenomena that are

caused by these features. But, let us first have a physical description of the analytical

aspect; it helps explain why many of the outcomes of data analyses are scattered.

If there is no autocorrelation (or cross-correlation), there is no power spectrum (or

co-spectrum); therefore, if the life span of a wave (or wave components) is short, then

the correlation of variables related to that specific wave soon loses and the corresponding

spectral content is relatively minor or undistinguishable, and with insignificant spectral
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contents the deconvolution is hardly meaningful.

The corresponding parts that Figure 5.2 (FS–T&P) conveys can be given quite straight-

forwardly, even though the condition shown may be somewhat extreme. In the figure

two Lemarié wavelets in the two least (smallest) scales are used to represent the short

local transient pulses of a signal. The left pulse corresponds to the result of the inverse

wavelet transform from a unit wavelet coefficient at element 600 within a 1024-point se-

ries, and the right pulse corresponds to that of a unit wavelet coefficient at element 470.

The choice of the least two scales is to emphasize the effect of transient locality — which

renders a very board distribution of power spectrum. The choice of positions 600 and

470 is somewhat intentional and somewhat arbitrary — just to show the symptom related

to the occurrences of the pulses, i.e., the phases, which are responsible for the wiggling

of the spectrum. By “intention” we mean that the greater the separation distance, the

more severe the wiggling; By “arbitrariness” we mean that for a practical situation where

complexity and randomness exist we generally do not have control over either the timings

of occurrences or the positioning of local features. Overall, once more, these symptoms

simply reflect properties of the following Fourier transform pairs:

f (t − τ) ⇐⇒ e−iωτ F(ω), (8.6)

| f (t)+ g(t)|2 ⇐⇒ |F(ω)+ G(ω)|2. (8.7)

Again the double arrow sign means that the roles of t and ω may be inter-changed, ex-

cept there may exist different multiplication constants. Now, causes of the wiggling of

the spectral curve can be explained more specifically. First, since “a shift in one do-

main corresponds to a modulation in the other domain (one of duality properties of the

Fourier transform)”, relative locations of individual pulses introduce serious wiggling of

the overall spectrum. Moreover, even the modulus of the modulated spectral coefficients

for the second pulse alone is the same as that of the spectral coefficients for the first pulse

alone, the modulus of the spectral coefficients for the pulses combined differs from the
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direct summation of the two individual modulus values. Second, even though the Fourier

transform is a linear operation on component signals (or component waves), the power

spectrum is not a linear operation. That is to say, the power of combined pulses does not

equal to the sum of individual powers for the two pulses.

Still, the above statements do not count for side effects arising from actual numerical

process; there are always uncertainties that are associated with the discrete nature of a

transform, due to finite resolution and limited data length. In addition, these is not without

artificial inputs, such as the practical concerns regarding proper explanations of complex

results of the Fourier transform as well as from double-sided into single-sided spectrum,

as are most obviously reflected when dealing with two-dimensional spectrum where the

symmetry of power spectrum can hardly be practically explained — in this regard, the

wind waves in the tank are somewhat two dimensional.

8.2.3 Spectral repeatability

Even with the acquaintance of the previous phenomena one might not grasp to what extent

they might affect the conclusiveness in the interpretation of spectra. Measurements of the

wind-wave signals in our wind blowing oval tank provide the explanations. But first let

present the data in a different perspective based on zero-upcrossing statistics; compared

with the spectral point of view, it helps illuminate specific features that are associated with

individual perspectives.

Table 8.2 (Zeroup–Sta) shows the statistics from such a conventional method for three

sets of measurements. The data sets are acquired in the oval tank to be described in a later

chapter. These three measurements were made under the same wind velocity, with signals

being sampled at a rate of 40 samples per second for a duration of 240 seconds. Channel

1 is for aqueous flows measured at a depth of 3, 4, and 5 cm, respectively, from the mean

water surface using a laser Doppler velocimeter (LDV). Channel 2 is for water-surface

displacements measured at nearly the same transverse cross section of the tank as that of

the LDV measurement point (with a separation of 0.6 cm). Statistics for channel 2 can
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therefore be regarded as the results from repeated measurements.

As are seen from the table, of all individual runs various statistical values for channel 2

are extremely consistent; therefore, from the point of view of zero-upcrossing statistics the

wave field is quite stationary. On the contrary, the idea of stationarity is hardly substanti-

ated when viewed from the spectral perspective. Figures 8.3 (FS–RP–L1) and 8.4 (FS–RP–L2)

show the spectra for these same data sets as well as additional ones: the top sub-figures

are the power spectra of the repeated measurements of water-surface displacements. The

bottom sub-figures show spectra of the LDV aqueous flows measured at several depths

(3, 4, and 5 cm from the mean water surface). As is shown in the top sub-figures, the

repeatability of spectra is rather poor. Nevertheless, when comparing the top and the bot-

tom sub-figures the spectral shape of the water-surface displacement is seen to match well

with those of the aqueous flow for each individual run. This provides a lucid illustration

of the phase effects — since the surface displacement and the aqueous flow are acquired

at almost the same cross section, there is little phase effect between the two spectra asso-

ciated with a single run; while, on the contrary, we just do not have any control over the

phases for different runs.

Choices of parameters for these standard spectral calculations are labeled in the figure.

For all cases the total length of data is multi-segmented with 50% overlapping, and the

Blackman window is applied to each segment. A segment length of 512 points (with

an approximate degrees of freedom of 36) is used for the left figures and 1024 for right

figures (with an approximate degrees of freedom of 17). The spectral resolution for those

on the left is inferior, while the repeatability of power spectra for those on the right is much

worse. Again the figure illustrates problems highlighted by the blackbox mechanism.

And again, as a supplemental explanation in plain terms, we can attribute causes of

the repeatability problem to the rapid diminishing as well as the irregularity of the auto-

correlation coefficient distributions, as are shown in Figure 8.5 (ACC ∼ ID). In the figure the

auto-correlation coefficient functions for two wave gauges located at upwind and down-

wind positions are shown. The correlation levels are quite low; it simply states that these
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waves lose their identities extremely fast and that there are profound transient local phe-

nomena.

8.3 Scale complications and mechanism

8.3.1 Questions restated

All phenomena in nature have their own scaling laws, though the scales involved may

either be relatively simple or extremely complex. Here on the one hand, we discussed

the problems concerning the proper scalings both in space and time for a few existing

studies; on the other hand, we pointed out the deficient aspects concerning the current

status of data analyses, and these deficiencies are amplified owing to scale complications.

Therefore, the motivation here should be clearer: On one hand, we need to venture a

broader spectrum of mechanism such that interaction scales are more faithfully accounted;

on the other hand, we need to facilitate a tool or methodology that is both apathetic to

existing shortcomings and in accord with the nature of the our signals, such that evolutions

of scales can be discerned.

In this complex coupling system of ours the energy phenomena are certainly antici-

pated to be the results of intertwined processes that involve interactions of various char-

acteristic dimensions and originate from individual causes. For example, both in the wave

and flow fields the energy is related to large scales and is therefore contained in a large

volume of water body; while the turbulent dissipation is limited to a local surface layer

of relatively small scale, and its locality is further restricted by the existence of a stable

stratification. So, if it is true that rain does not hinder the wind (Caldwell and Elliott

[14, 15]) but suppresses the sea, then there must exist some kinds of energy transfer or

dissipation mechanisms. One pivoting issue is the energy cascade among waves; mono-

chromatic wave fields lack the mechanism. Furthermore, the patterns of energy propaga-
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Tab 8.2 (Zeroup–Sta) The zero up-crossing statistics for three different sets of measurement under
the same wind condition. Channel 1 is for LDV aqueous flows measured at
different depths from the still water surface. Channel 2 is for surface displace-
ments measured at the same location. Statistics for channel 2 can basically be
regarded as results from repeated measurements. Comparisons of data related
to channel 2 indicate that the wave statistics is in good stationary condition.
Whereas, this is certainly not true when viewed from the Fourier spectral per-
spective, as shown in the power spectrum figures (figures 8.3 (FS–RP–L1) and
8.4 (FS–RP–L2)).

Case : f0w6030.dat ( f1 p3 c1 s9 )

Date : 01/05/96

Time : 02:19:05.48 Sampling frequency : 40 Hz

Specifics : Sampling time length : 240 Sec

Ch #_W H.1 H.2 H.3 H1/10 H1/3 H1/2 H.ave H.rms T1/10 T1/3 T1/2 T.ave T.rms

1. 554 26.74 23.67 23.04 20.20 17.38 15.92 12.03 12.93 .44 .44 .44 .43 .44

2. 572 2.90 2.69 2.61 2.33 2.04 1.89 1.44 1.54 .44 .44 .43 .42 .42

Case : f0w6040.dat ( f1 p3 c1 s9 )

Date : 01/05/96

Time : 02:14:05.76 Sampling frequency : 40 Hz

Specifics : Sampling time length : 240 Sec

Ch #_W H.1 H.2 H.3 H1/10 H1/3 H1/2 H.ave H.rms T1/10 T1/3 T1/2 T.ave T.rms

1. 546 22.81 20.65 20.52 17.04 14.48 13.32 10.35 11.01 .45 .44 .44 .44 .45

2. 563 2.98 2.88 2.72 2.35 2.04 1.89 1.46 1.55 .44 .43 .43 .43 .43

Case : f0w6050.dat ( f1 p3 c1 s9 )

Date : 01/05/96

Time : 02:00:30.72 Sampling frequency : 40 Hz

Specifics : Sampling time length : 240 Sec

Ch #_W H.1 H.2 H.3 H1/10 H1/3 H1/2 H.ave H.rms T1/10 T1/3 T1/2 T.ave T.rms

1. 546 17.62 16.49 16.30 14.02 11.94 10.97 8.22 8.88 .45 .44 .44 .44 .45

2. 562 2.83 2.74 2.72 2.36 2.06 1.91 1.45 1.55 .44 .44 .44 .43 .43

----------------------------------------------------------------------------------------------------

Units:: Aqueous flow (Ch1:H): cm/s

Surface wave (Ch2:H): cm

Period (T): s
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Fig 8.3 (FS–RP–L1) Spectra of the surface displacement and aqueous flow for the same three sets
of measurements as shown in table 8.2 (Zeroup–Sta). The top sub-figure shows
power spectra of the repeated measurements of surface displacement. The bot-
tom sub-figure shows power spectra of the LDV aqueous flow measurements
at different depths. It is seen that the repeatability of power spectra is rather
poor even though the zero up-crossing statistics has indicated the existence of
a good stationary condition. This has profound entailment of the poor perfor-
mances of spectral coherence, as well as the sure unfruitfulness of the blackbox
deconvolution mechanism for two signals under any circumstance.
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Fig 8.4 (FS–RP–L2) Spectra for the same data sets as in the previous figure but with different FFT
parameters. Here a longer 1024-point segmentation is used and the degrees
of freedom is approximately halved. Whilst the resolution is increased the
standard deviation intensifies. Again the figure shows the profound implication
of the problems of Fourier spectral repeatability and the poor performances of
spectral coherence.
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Fig 8.5 (ACC ∼ ID) Wind waves in the tank soon lose their identities — The auto-correlation co-
efficients of two series of wind-wave signals measured at upstream and down-
stream locations in the oval tank. The correlation level is low and diminishes
rapidly. A sensible feeling is that these waves lose their identities extremely
fast when viewed form Fourier spectral perspective.
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tion of waves for homogeneous and stratified fluids may be quite different. And in almost

all natural water bodies stratification almost always exists either due to thermal or salinity

effects or both. Besides, in most rainfall cases the rain further induce favorable condi-

tions for stratification when fresh water falls into the sea (Houk and Green [27]; Green

and Houk [24]). Now it is natural to put forward the following questions: What are the

roles of the interfacial surface layers with the addition of rain action, and can they trigger

the speedy calming of the sea? What are the mechanisms induced by the stratification of

the receiving water body? How are local and global mechanisms intertwined, and does

energy propagate into the small thin surface mixing layer? Are energy phenomena at

different depth regions different? In brief, what are the interactions and their scales that

facilitate the physics involved?

8.3.2 The wavelet connection

In view of the discrepancies among the various studies, the blunders arising form the

inherent complexity of the coupling system, the unavoidable limitations in model exper-

iments, as well as the aforementioned deficiency in data analysis, we sense the need of

an optimum tool and its related scheme if they should ever be useful. In this regard the

connection between the optimum wavelet basis and the study of the coupling mechanism

can be outlined. Suffice it to say that the fundamental concept here is: If we perceive

our signal as composed of waves which are limited in life span and evolving with time

and in space, then it is natural to take advantages of the property of the finitely supported

lengths of analyzing basis functions. In this regard, the localized transform of wavelet

approach meets the basic appeal. Moreover, if we also acknowledge that intrinsic insta-

bility (Benjamin and Feir [13]; Whitham [69]; Melville [50]), which may be due only

to nonliner surface boundary condition, is inherent to almost all dispersive waves, either

initially regular or not; then, not only for non-stationary but also for stationary signals,

the wavelet decomposition is clearly better consolidated to modeling of the physics than

is the Fourier decomposition.
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8.4 Local mechanisms — Physics in the rain boundary

layer as well as in the air boundary layer

8.4.1 Instability in the surface shear layer

It was mentioned earlier that L&K’s rain and wave interaction model mainly predicts the

wave growth. It seems that there is some kind of wave generation or enhancement mech-

anism inherent in their model. A review of Phillips’ [56, 57] and Miles’ [53] theories on

the wave generation due to wind and the coupling mechanism between wind and waves

may help to identify the problems related to the generation rather then damping caused

by rain in L&K’s model. Phillips and Miles divided both the normal pressure and the

tangential stress acting over the water surface into the phase averaged variations (called

directly induced stress) and the randomly varying component associated with eddies of

the atmospheric turbulence. Due to the zero dimension (in depth) of the rain boundary

layer that L&K assumed the dynamics of the two cases are of the same nature — the

same type of boundary conditions acting on the water surface. The correspondences of

the boundary conditions are: (1) The basic rain-induced stress (term) in L&K’s model

corresponds to the phase averaged stress in the wind model and is given by the macro-

scopic stress ρUr R, i.e., the horizontal momentum flux of rain, as proposed by van Dorn

[68]. (2) Those stress modifications to the basic macroscopic stress correspond to the

random turbulent components of the wind stress of the wave generation model; however,

these modifications are not related to turbulences, but related to the wave orbital velocity

of a monochromatic wave.

Given the inherent mechanisms involved in L&K’s model, we should be able to dis-

cussed the inadequacy of their model more clearly. Let explicate in two aspects.

First, let us explain why the major term of the stresses is the macroscopic stress and

the terms related to wave orbital velocity are of higher order. On one hand, since small

amplitude wave is assumed in L&K’s model, the surface slope is relatively small; there-
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fore, there is not much modification on both the normal and tangential pressures acting on

the water surface caused by the imposed boundary condition of wave orbital velocity. On

the other hand, since the imposed boundary condition of wave orbital motion is periodi-

cally oscillating, there are symmetrical cancelations in its influences on both the normal

and tangential stresses; therefore, the net effects are negligible. The above two points

apply to both long and short waves. For short waves there is the additional concern: since

the magnitude of the wave orbital velocity is relatively small as compared to the rain drop

speed (suppose that the rain drops are falling with somewhat noticeable angle) the effect

of wave orbital velocity is certainly negligible.

Second, let us explain why the calculated wave growth coefficients of L&K are go-

ing to render unimaginably huge waves and why the shorter are the waves the greater the

effects are introduced. On one hand, as shown analytically in Phillips’ wind and wave res-

onant theory: if the momentum transfer is dominated by turbulent stress fluctuations the

energies of the wave(s) increase linearly with time; whereas, if the system is dominated

by induced surface stresses the rate of growth of wave becomes more rapid and is charac-

terized by an exponential form that is associated with an instability depicting a time scale

determined by the wave length and water viscosity, and the shorter the wavelength the

sooner the physics collapses. In fact Phillips’ results also manifest the physics intrinsic to

the Kelvin-Helmholtz instability (Lamb 1932 [32]): in a forced system of flow field if the

surface dominating stress is shear rather than normal pressure the system is in an unstable

mode and variables grow exponentially rather than in an oscillating form. On the other

hand, from practical point of view, even without considering the abrupt intrusion of rain

drops, when shear stress is applied to a free surface the critical Reynolds number for the

transition from laminar to turbulent flow drops drastically and the eddy viscosity of the

fluid comes into play (so, non-viscous irrotational is no longer suitable) and the energetic

vortex dynamics develops; Moreover, there is another concern that two-dimensional flow

field is not able to provide such a mechanism (Tennekes and Lumley [64]). In the later

section we will mention a weak vortical motion induced by surface boundary condition.
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8.4.2 The match layer concepts

As stated earlier, one of the major problems concerning the interaction between rain and

wave is the inadequacy of the zero-depth assumption of the rain boundary layer which

causes the wave orbital velocity to be treated as the turbulent fluctuations. Furthermore,

since rain-induced stress hardly exists without wind, it is inadequate to study rain effects

without considering wind altogether. In this section, based on the match layer concept

(Phillips [57]) we explain that the rain boundary layer on the water side does not give

favorable condition for the developments of large scale waves, but does provide promising

conditions for the turbulent dynamics that is associated with short waves. The match layer

concepts as adopted in the wind and wave coupling system proposed by Phillips concern

the turbulent dynamics in the air boundary layer, but here by extending the arguments

to the water side we try to explore the physics in the rain boundary layer superimposing

upon an irrotational wave field.

Let the frame of reference be taken as that moving with the phase speed c of wave.

The mean surface speed of the water of the wave will be −c; on the air-water interface

the mean surface speed will be −c + q, where q is the mean surface drift. For relatively

short waves the mean speeds on the upper and lower boundaries, i.e., −c + q and −c,

respectively, are very likely to be of opposite signs as viewed by an observer moving with

the wave. Under such a situation the streamlines of the phase averaged turbulent flow (a

phased averaged two-dimensional incompressible flow suffices the existence of a stream

function for the velocity field) form closed loops centered at a zero relative speed. The

layer that covers the thickness for these closed loops is the so-called matched layer. For

the matched layer to play an important role in the energy transfer from the rain boundary

layer to the waves the matched layer must be located in the region where a large curvature

of the mean speed profile exists. However, unlike the air boundary layer, the rain boundary

layer is generally relatively thin; so the matched layer is likely to cover a great portion of

the rain boundary layer. Under such a condition the dynamics will be either of “viscous

dynamics” or of “vortex force dynamics” (Phillips [57]). The viscous dynamics is for the
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matched layer to fall near the wave surface (especially for small c) and the vortex force

dynamics (in which the flux of energy from phased averaged mean flow to the fluctuating

motion is coming from the working of the vortex force on the phase averaged velocity

field) for c somewhat larger (but still of short wave).

As for longer wave, due to the large c value, the match layer will not exist in the rain

boundary layer (but there may still exists a match layer in the wind boundary layer); and

the direct energy input to the underlying irrotational wave field form the rain boundary

layer arises from the Reynolds stress variations in the turbulence induced by the impact of

rain. However, with long waves, for a system that contains only wind and waves there may

exist in the air boundary layer large scale turbulent pressure (or total equivalent normal

stress) fluctuations that have the convection velocities approximately in phase with the

slope of the underlying wave so as to give resonant effects; but, with the addition of rain

action, in the rain boundary layer it is unlikely to have such large scale phase averaged

turbulent structures that may in phase with the surface slopes of such long waves. In other

words, on one hand, the rain boundary layer is too thin to provide resonant mechanism that

can contribute to wave growth for long waves; and, on the other hand, the rain boundary

layer acts as a barrier to the transferring of the momentum from the air boundary layer.

Overall, for shorter waves, the rain-induced stress or the vortex dynamics in the rain

boundary layer may have more effects on the energy transfer to or from waves; and, for

long waves, it may seem that the rain boundary layer is only “skin deep” and therefore

negligible, and the induced Reynolds stresses (in the terminology similar to that used by

Phillips [56, 57], Miles [53], and Lighthill [41] which is not quite the same as the turbulent

Reynolds stress) in the interface regions under the combined action of rain and waves

have been greatly altered from what without rain. In summary, therefore, the original

mechanism for the energy transfer from wind to waves no longer exists when there is

rain.

The arguments here point out that scale laws are at the heart of understanding the

mechanisms governing such a complex system.
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8.5 Extensive mechanisms — Energy phenomena induced

by stratification

In the above sections local coupling mechanisms are provided, but they are far from sat-

isfactory due to their inability to provide a global view of the energy phenomena. In

the following we will provide energy transfer and dissipation mechanisms that have the

scope of the whole water body, and show that all these are closely related to the existence

of stratification.

Green and Houk [24], using a laboratory scale close to that of natural processes re-

garding rain falling distance and rain intensity, investigated the mixing of rain with the

near-surface water under thermally stratified condition. Though their experiments did not

focus on the present context of rain and wave interaction they observed the temporal irreg-

ularities of the thermocline and attributed these to the existence of internal waves. This

mechanism of exciting internal waves due to impact of rain, together with the peculiar

characteristics pertaining to internal waves, provides important clues for explaining the

energy phenomena in the coupling system. Since we are aiming to provide the mecha-

nisms of surface wave attenuation and since the spatial scale of most energetic surface

waves are generally quite larger than the depth of the surface rain mixing layer, we need

some kinds of connections between surface waves and internal waves. We will give rea-

sons why the stratification, which occurs in almost all natural water bodies and is further

intensified in the near surface region in a raining system, is a bridge for this and illustrate

a few interesting aspects associated with it.

But, let us first seek the most direct consequence caused by the impact of rain and

explain the stimulus coaxing the development of interaction among various factors within

a stratified fluid system.

158



8.5.1 The tuning and de-tuning of interactions near the air-water in-

terface

Initially we have the coupling of the wind and waves. The wave system has its particular

composition corresponding to the state of development under the wind forcing. For a

water body under the surface forcing of both the pressure and shear stress, the energy

transfer to waves as given by a boundary layer argument (Longuet-Higgins 1969 [43]) is

− (p + iτ)w = c · (p + iτ)∇ζ , (8.8)

in which p and τ are, respectively, real-valued surface stress components acting normally

and tangentially on the air-water interface; w is the particle velocity on the boundary; c

is the phase velocity; and ζ is a complex-valued surface displacement (they all may be

in a sense of either an individual component or a combination of Fourier components.)

Here the overbar means either a spatial or a temporal average. This equation suggests

that for the wave to grow the pressure variation should be in phase with the wave slope

and the shear stress variation should be in phase with the wave elevation. Such a mech-

anism for wave growth or decay is essentially the tuning or de-tuning of phase relations

among the air-flow structure and air-water interface. The existence of a surface boundary

layer, which communes between the air-flow boundary layer and the underlying irrota-

tional flow field is vitally important, since the positive contribution of shear stress to wave

energy is equivalent to a situation in which a thicker boundary layer forms on the rear

slopes and a thinner boundary layer forms on the forward slopes. Now, with the incorpo-

ration of the falling rain and the associated Rayleigh jets, vortex rings, splash drops and

ring waves, even though Caldwell and Elliott [14, 15] have shown that the wind was only

slightly modified, we should be able to ascertain that the configuration of air-water inter-

face is dramatically changed and that the structure of the air-flow boundary layer is also

altered. Thus the original interactions among wind and waves are completely disrupted

and phenomena evolving from perturbation or disturbance are given impetus. Therefore,
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along with the match layer effects, the existing dominant waves lose their energy sources

and minor waves, either of surface waves or of internal waves, energize their activities.

In addition to the above conceptual reasonings on physics, we have a physical justifi-

cation to follow. Using dyed rain drops falling vertically to a receiving water, our labora-

tory observations showed quite dramatic differences in movement patterns of rain drops

(moving within the receiving water) among cases with either the same uniform freshwater

or a stratified salt water. When rain drops impact onto the water body with a uniform den-

sity they penetrate without bouncing back and somewhat stay where they go, and there

is more assimilation during the process. But, an entirely different picture showed up for

the rain drops to hit a stratified receiving water. Not only rain drops definitely bounce

back due to buoyancy, less assimilation was observed during their movements. More in-

terestingly, we observe that drops coming from the same hypodermic needle do not repeat

the same penetration depth each time but once a while they have the same deepest scale

of penetration. I suggest that buoyancy effects appear to play a role of beating, with the

impact of rain drop on stratified fluid being conceptually similar to the beating of a drum;

the timing and position of the beating will render different tones. Similarly, consecutive

drops do not repeat the same penetration pattern. Physically, one may think that there may

exist cyclic fluid motion that interact with the drops. Moreover, judging from the depth of

penetration, the bouncing distances, and their horizontal spatial distributions (e.g., those

observed by Green and Houk [24] using a near physical scale and those observed in our

experiment using a smaller scale, as well as the match layer arguments), it is reasonable

to argue that impacts are going to favor the transfer of energy to motions of high wave

number and this is a strong catalyst for the several factors that contribute to the damping

and the energy cascade of waves as will be illustrated subsequently. Not only these, let us

first provide a most direct mechanism for the damping of waves that is due to the inherent

property of fluid and is caused by a strong stratification.
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8.5.2 The vortical contributions to wave attenuation

We mentioned that the turbulence induced by the direct impact of rain exists only in a

thin surface layer and the buoyancy effects enhanced by the stratification further reduce

the thickness of the rain boundary layer and increase the temporal rate of change in the

flow field. The creation of a surface region that has entirely different flow features from

those of the underlying region of wave motions is similar to the placement a densely

packed layer of surface film on top of the region of wave motions. As we know, the

existence of a boundary, even it is a free surface, always induces vortical motion. Here

we should examine this vortical contribution to wave attenuation under conditions with

and without a distinct surface layer. The dissipation here is due to molecular scale, not

to turbulent eddy scales as faultily assumed in some of Nystuen’s (1990) estimations

of background eddy dissipation where no attention was paid to vertical scales. Even

though in the deeper interior region of the flow field there may be, as explained later,

local turbulence introduced by sporadic breaking of resonated internal wave, this concept

of energy dissipation is still different from what Nystuen perceived as eddy dissipation.

The existence of a boundary induces a term of vortical velocity modification, u′

, to

the irrotational motion ∇φ, i.e., u = ∇φ + u′

. Without surface film the energy loss of

waves arises almost entirely from the straining of ∇φ since the vortical strain rates are no

larger than that in the irrotational flow and the thickness of vortical influence is relatively

small, so we have the classical law of viscous decay (Lamb 1932)

Ė = −4µσ 2a2k = −4νk2 E = −γµE, (8.9)

where µ and ν are the dynamic and kinematic viscosities of the water, respectively; and

γ−1
µ is the e-folding decay time of wave energy density due to irrotational motion. If there

is a surface film, the vorticity induced by u′

is the main contribution to rate of strain in the

vortical boundary layer with an e-folding characteristic depth of β−1
= (σ/2ν)−

1
2 . This
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portion of mean energy dissipation per unit area is (Phillips [57])

Ė = −
1
2
µσ 2a2β coth2 kd, = −νβk(coth kd)E = −γ f E, (8.10)

where γ−1
f stands for the characteristic decay time of wave energy density due to a packed

film. The ratio of γ f to γµ, say in deep water, is

γ f

γµ
=
β

4k
=

√
σ

4
√

2µk
= 2−5/2

√
Rw, (8.11)

in which

Rw = σ/µk2, (8.12)

is the wave Reynolds number. We have the physical values shown in Table 8.3 (e-decay–N+P).

Tab 8.3 (e-decay–N+P) Comparison of the e-folding decay times of wave amplitude between present
estimation and Nystuen’s [55] estimations.

Table 2.1: Comparison of the e-folding decay times of wave amplitude between present
estimation and Nystuen’s (1990) estimations.

Wavelength (m)
Source of e-folding decay time (s) 0.02 0.1 0.3 1.0 2.0

Present estimation† 1.0 8.0 33.0 140.0 330.0
Nystuen’s molecular viscosity† 4.8 120.0 1080.0 12000.0 47000.0
Nystuen’s turbulent layer
eddy viscosity‡ 0.034 2.1 37.8 800.0 5800.0

†Molecular viscosity: 10−6 m2s−1

‡Eddy viscosity: 3× 10−5 m2s−1 (for cases with a 0.1 m turbulent layer thickness)

existence of a strongly stratified surface layer, which plays a role of surface film and

contributes significantly to the vortical energy dissipation that is still due to molecular

viscosity. We may also note that this dissipation mechanism is still weak for small wave

number, but, if there exists a cascade phenomenon of waves from low to high wave num-

ber, this element, given the points mentioned in the previous sections as well as those

follow, is certainly a highly possible mechanism for the calming of the sea.

2.3.3 Interactions among surface waves and internal waves

We have pointed out that the impact of rain provides seeds of disturbances for the growth

of minor waves. Of course these minor waves must be of short wave lengths since low

energy contents are certainly associated with short waves. Rapid growth and decay is a

character of short waves; motions of large temporal and spatial scales need more energy

to spread and more time to develop.

In the followings we illustrate the phenomena of a chain of reactions in the fields

of both surface and internal waves, and explain how energy is transferred based on the

following sequence of arguments. First, the most early interaction should be wave-wave

interaction of surface waves; next, we have the excitation of near-surface internal waves

33

It is seen from the table that the present estimations give more likely values for all the

wavelengths from the view point of energy dissipation. Especially, when we are focus-

ing at the short wavelength excited by resonance as will be stated later or by the forcing

of the newly tuned disturbances as mentioned above, we should be able to appreciate
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the existence of a strongly stratified surface layer, which plays a role of surface film and

contributes significantly to the vortical energy dissipation that is still due to molecular

viscosity. We may also note that this dissipation mechanism is still weak for small wave

number, but, if there exists a cascade phenomenon of waves from low to high wave num-

ber, this element, given the points mentioned in the previous sections as well as those

follow, is certainly a highly possible mechanism for the calming of the sea.

8.5.3 Interactions among surface waves and internal waves

We have pointed out that the impact of rain provides seeds of disturbances for the growth

of minor waves. Of course these minor waves must be of short wave lengths since low

energy contents are certainly associated with short waves. Rapid growth and decay is a

character of short waves; motions of large temporal and spatial scales need more energy

to spread and more time to develop.

In the followings we illustrate the phenomena of a chain of reactions in the fields

of both surface and internal waves, and explain how energy is transferred based on the

following sequence of arguments. First, the most early interaction should be wave-wave

interaction of surface waves; next, we have the excitation of near-surface internal waves

through surface-wave and internal-wave interaction; and then the resonant interaction of

internal waves that promote the cascade of surface-wave energy from the near-surface

region into the deeper region or even in an opposite direction that bring the wave energy

in the deep region into the rapid energy damping zone of the rain mixing layer.

The highest order resonant interaction among waves is the quadratic interaction in

which two waves interact to give a third one — the product of a quadrature forcing term

through the weak non-linear interaction. The three waves must form a triad with the

following wavenumber vector and frequency relationships:

k3 = k1 ± k2, (8.13)
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σ3 = σ1 ± σ2. (8.14)

The ± signs in the two equations should be in pair. Note that these triads hold for surface

waves, internal waves, or even among surface waves and internal waves since there is

always a surface wave mode solution for the single set of governing equations for internal

waves, i.e., analytically speaking, a single equation of the form L(y) = εN (y), fits for

the components of the triad. In the equation L stands for a linear operator, N stands for a

nonlinear operator, y for dependent variables, and ε means a perturbation condition corre-

sponding to weak nonlinear interaction. However, for purely surface waves which satisfy

the dispersion relation of σr = (gkr )
1
2 there are no non-trivial solutions. Therefore, the

only possible resonance is of next order, in which triple product forcing terms resonance

with a fourth wave. One possible solution sets for this tetrad is (Hasselmann [26])

k3 + k4 = k1 + k2, (8.15)

σ3 + σ4 = σ1 + σ2, (8.16)

σr = (gkr )
1
2 . (8.17)

Although the tetrad interaction being of third order is relatively weak, it is still efficient

enough for low energy surface waves to excite internal waves. This is one of the special

characteristic of internal waves, since we know that the surface displacement for an inter-

nal wave system is nearly null so that it can often be treated as a rigid lid. In summary,

only very small potential or kinematic energy changes are needed to produce internal

waves, implying that small imposed disturbances at the surface can be very effective gen-

erators of internal waves. Together with the tuning and de-tuning processes stated above,

these two phenomena match very well. Another hinted point here is that, even we per-

ceive that the sea surface is calmed by the rain, it is still possible that there is enhanced

internal wave motions.

Next we attempt to link between the tetrad of surface waves and triad of surface waves
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and internal waves to allow the passage of energy from surface waves to internal waves.

Links here lie on another property of internal waves: the frequencies of internal waves

are generally much lower than those of surface waves with the same wave number. This

is equivalent to state that, for two surface waves (subscripts 1 and 2 in the following

equation) to produce an internal wave (subscript 3), the two surface waves should have

approximately the same wavenumber (so their frequencies are also close to one another)

and interact in the following format

k3 = k1 − k2, (8.18)

σ3 = σ1 − σ2. (8.19)

Besides, we need to apply dispersion relationships to each component of the triad. It

is now appropriate to include the tetrad interaction in order to determine whether it is

the dominant waves or the minor waves that are responsible for the transfer of energy

from surface waves to internal wave. The answer of this can be best explained by the

schematic diagram of the conditions for resonant interaction given by Ball [7] as shown

in Figure 8.6 (WNV–Triad), as well as by our understanding that the nature wave fields are

generally quite narrow banded regarding their energy contents. It is unlikely for a wave

field to have wavenumber vectors that are of small values (i.e, longer dominant waves)

while oriented in appreciable different or diversified directions. Nevertheless, it is suitable

for minor waves of low energy to have more diverse directions of propagation since only

one normally distributed bell shape two dimensional spectrum suffices to provide this

configuration, although this diverseness is not a requirement.

The results of this is that the two surface waves should be of higher frequencies. This

is equivalent to the case that points A and B1 in Figure 8.6 (WNV–Triad) (or points A and B2)

should lies at the upper parts of the curves, and the line connecting the points is somewhat

horizontal so as to produce an internal-wave frequency that complies with the requirement

for the resonant length scale. So now we can draw the region for the tetrad interaction
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Fig 8.1 (Triad–WNV) Schematic representation of the resonant conditions for triad composed of
surface waves and internal wave. The various curves revolve around the wave
frequency axis, and configurations should be viewed in a three dimensional
sense. The AB1C1 and AB2C2 are two resonant componenets of the triad with
a common surface wave component, after Ball [4].
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Fig 8.6 (WNV–Triad) Schematic representation of the resonant conditions for triad composed of
surface waves and internal wave. The various curves revolve around the wave
frequency axis, and configurations should be viewed in a three dimensional
sense. The AB1C1 and AB2C2 are two resonant componenets of the triad
with a common surface wave component, after Ball [7].

among surface waves as shown in Figure 8.7 (WNV–Tetra) and the region for the triad as

shown in Figure 8.8 (WNV–Loci), noting the scales and directions of waves in the figures.

Several more points can be drawn from the figures. First, the most likely growth of

short minor waves (long wavenumber vectors) are those propagate at about the same di-

rection of dominant waves. Second, the most likely resonant near-surface internal waves

should propagate in the near perpendicular direction to the major waves, i.e., also perpen-

dicular to the propagation of minor waves.

8.5.4 The cascade of energy

Up until now we have not exploited several important and interesting features of internal

waves. The first and, maybe the most, significant feature is that the direction of energy

propagation of internal wave is perpendicular to its wavenumber vector (the direction
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Fig 8.7 (WNV–Tetra) Schematic representation of the family of curves for the tetra resonances. Res-
onant wave number vectors should locate at the same figure-of-eight curve.
The vectors shown here are most likely to be associated with the triad inter-
action depicted in the previous figure, after Simmons [60] and Phillips [57].

of phase speed) suppose that the stratification is not an exactly ideal two-layer system.

So the energy of excited near-surface internal waves propagate either into the turbulent

rain boundary layer or into the deeper region. This is another mechanism to diverge

(cascade) or to dissipate the energy of the surface waves. Secondly, we know that there are

enormous differences between the density gradients near the rain mixing layer and those

at deeper region and that the internal wave frequency must be less than the local Brünt-

Väisälä frequency, N , for the internal waves to propagate further. The Brünt-Väisälä

frequency is

N 2
= −

g
ρ(z)

dρ(z)
dz

, (8.20)

in which ρ(z), in precise meaning, is the potential density, but in a strongly stratified

region due to significant difference in salinity, e.g., in the interfacial region of the irrota-

tional wave motion and the rain boundary layer, the general sense of density can be used.

If the rain falls into the sea, than the limiting internal wave frequencies at the water depth

near (and under) the rain mixing layer can be of the same order as those of surface dom-
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Fig 8.8 (WNV–Loci) The loci of wave number vectors for two surface waves with approximately
equal wave number magnitude. The configuration of k1, k2 (surface waves)
and k3 (internal wave) and the closeness of the two loops are for the coherence
between the triads and the tetrads in the coupling system, after Turner [67].

inant waves provided that the surface waves are well developed, so in this near surface

region there is possibility of diversification of internal waves. But those internal waves of

higher frequencies must soon breakdown as they propagate into deeper region either by

energy concentration or by an alternative process of triad resonance since they encounter

the dramatic reduction of density gradient. There are two kinds of mechanisms here. The

local breakdown is for higher frequency internal waves. The resonant triad interaction is

for low-pass internal waves and the possible mechanism for this is the disintegration of

high-wavenumber internal waves into low-wavenumber internal waves and this process is

enhanced by the diversified components of internal waves generated around the thermo-

cline or halocline. Moreover, judging from the governing equations for triad for purely

internal waves — since the strict condition of dispersion relations is greatly relaxed now

due to a rather loose requirement of frequency and wavenumber relation for an internal

wave, i.e., one frequency can corresponding to many modes — the frequency of internal

wave can be independent of the wavenumber magnitude but dependent only on its direc-

tion. One may also note that, for any stratification, theoretically, there are an unlimited
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modes of internal waves and, practically, several experiments have indicated the existence

of diverse internal waves modes (Turner [67]; Phillips [57]) — it is anticipated that the

diversifications of interaction have the phenomena of chain reaction and energy is thus

cascaded in the wave fields.

8.6 Summary

In this chapter we provide the physics for the energy phenomena in the wind, wave, and

rain coupling system. Problems related to a few studies (LeMehaute and Khangaonkar

[40]; Nystuen [55]; Tsimplis and Thorpe [66]; Tsimplis [65]) are clarified further. At-

tempts to give physical arguments about the mechanisms of wave growth or decay in the

coupling system are exploited in two senses.

First we provide local coupling mechanisms that are confined in the rain and air-flow

boundary layers and that are similar to those in the classical wave generation mechanisms.

Their key aspects are the tuning and de-tuning processes as well as the vital role of a match

layer in the rain boundary layer, which commute between the air-flow and the underlying

irrotational wave field.

Later we focus the energy phenomena that are associated with the existence of strat-

ification. Here our scope covers the whole region of the water body but with a sequence

of interactions from the top layer to the inner region. The key concepts are: (1) The dissi-

pation mechanism induced by the strong stratification simulates that induced by a surface

film and the resulted vortical contribution to dissipation that is still of molecular scale is

shown to be a very competitive factor for the calming down of the sea, especially, when

the mechanism of the wave cascading is incorporated. (2) The physical concepts of a beat-

ing process due to impact of rain drops are used to give catalysts for the tetrad interaction

of surface waves and these further provoke the triad interaction among surface waves

and internal waves. (3) Among these interacting component waves their relative scales

hold some restrictions. However, at the last stage of interaction, the interaction among
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internal waves is so diversified, owing to the relaxation of constrain of the dispersion re-

lation of the internal waves, that it ignites a board spectrum of interaction and feedback to

the surface-wave-internal-wave interactions. The overall consequence is thus of a board

range of interactions with energy transfer to scales of dissipation — a somewhat turbulent

phenomenon in the wave field. v
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Chapter 9
Experiments

9.1 Introduction

There are basically two series of experiments when classified from their usages: one fo-

cuses on the Fourier perspective of the surface waves and the measurements of momentum

flux due to rain — this serves to reaffirm what will be stated in the next chapter; the other

focuses on the coherent feature of surface wave fields and aqueous flow fields — this

serves to provide evidences of the proposed energy phenomena. For the second series of

experiments both wind waves and Stokes waves are adopted and a couple of cases are per-

formed using a stratified receiving water body. The overview of the experimental setups

is shown in Figure 9.1 (Oval Tank).

9.2 Facilities

9.2.1 The oval tank

The experiments were carried out in an circulating oval tank equipped with wind blowing

facilities and a mountable mechanical wave generator (Air-Sea Interaction Lab., Univer-

sity of Delaware, USA). The tank is 31 cm wide and 45 cm high and has a 5-meter

observational straight section. The water depth was kept at 24 cm in all experiments. A

fan of continuously variable rotation speed was located at the opposite side of the obser-



Fig 9.1 (Oval Tank) Schematic layout of experiment
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vational section. Horizontal guiding vanes were installed in front of the fan to regulate

the airflows. And vertical guiding vanes were installed at the two semi-circle sections

to reduce secondary flows in both air and water. The mechanical waves were generated

by the plunger type motion of a wedge shape piston controlled by a variable-speed rotor.

And the mechanical setup could be placed along the observational section.

9.2.2 Artificial rain simulators

Two one-meter rain modules (Poon et al. [58]) were mounted atop the tank. Hypodermic

needles of gauge 23 were uniformly spaced in the bottom of the module and arranged

in an equi-lateral triangular shape with a spacing of 3 cm from center to center. Rain

intensity was controlled by the water head above the needle tips. The calibrated size of

raindrops is about 2.6 mm in diameter, assuming a spherical shape of drops. The drop

size depends only on the needle gauge and the wind condition but not the water heads;

this character is consistent with the feature of rain intensity calibration curves to be shown

later.

9.2.3 Pressure transducer

For the first set of experiments, a differential pressure transducer (Validyne model DP15)

was connected to two bottom holes of the tank locating at the upstream and downstream

wave gauges before and after the rain module. The pressure sensor is a typical variable

reluctance stress transducer which consists of a diaphragm of magnetically permeable

stainless steel clamped between two blocks of stainless steel. To ensure that no air was

trapped in the transducer so that a proper dynamic response could be secured, the trans-

ducer was flushed with a long steady water flow through its bleed port and was tilted or

shaken somewhat randomly. In addition, a relatively rigid (compared with the magnitude

of the pressure concerned) plumbing connection was used, such that effects of the low-

pass filtering could be avoided. With these precautions, the small rain-induced stress due
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to the differential water surface displacement can be faithfully extracted. The accuracy

of the transducer measurements will be illustrated through the discussion of the natural

frequency of the oval tank to be given later.

9.2.4 Laser Doppler velocimeter

Aqueous flows at several depths in two sections along the tank were measured with a laser

Doppler velocimeter (LDV) [3]. The LDV system is a TSI four-beam, two-component

system with two-color, dual-beam backscattering, and counter type signal processor con-

figuration. A few auxiliary instruments and accessories were also used in fine-tuning the

whole system and in achieving optimum control of data quality. The main system compo-

nents and the auxiliary instruments are: (1) Fiberoptic transmitting and receiving probes

(TSI Model 9115, 9182, and 9140); (2) Photodetector and photomultiplier system (Model

9160); (3) Frequency shifter with acousto-optic modulator and electronic down-mix mod-

ule (Model 9180A); (4) Signal input conditioner (Model 1994C); (5) Fringe timer (Model

1995B); (6) Frequency to analog conversion module (Model 1988). (7) Digital readout

module; (Model 1992); (8) Intermittent burst data recording interface; (Model 1998); (9)

Light-power meter; (10) TI Dual channel oscilloscope for high-end fast and sensitive real

time monitoring.

9.2.5 Wave gauges

Measurements of water surface displacements were done with the ASI self-design capac-

itance type Tantalum wire probe. For measurements in a stratified water body a laser

wave gauge devised also by the ASI Lab was arranged, but it was found that the con-

current measurements with LDV is not feasible, besides, there are additional concerns to

be given later. Main components of the laser gauge are: a laser gun, a line scanner with

512 photodiodes, and a multibus computer interface. The laser gun, with special mirror

arrangement and precise alignment, projects vertically a laser beam from under the bot-
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tom of the wave tank. When the beam crosses the water surface, a bright spot is formed on

the water surface and scatters light in all directions. The line scanner, with proper lens and

PC interface, traces the position of the light spot through its cyclic scanning. To minimize

geometric errors and attain a suitable resolution, the line scanner should be arranged at a

suitable angle relative to the beam axis (about 45 degrees) and should also be placed at a

proper distance (about 1 meter away from the light spot for the current hardware setup)

in order to observe various optical principles or restrictions such as the depth of field,

aperture size, photodiode cell resolution, light intensity, non-unform focusing problem

(associated with the tilting of photodiode array relative to the laser beam), etc. The reso-

lution of the laser wave gauge must be calibrated on site and is about 0.0031 cm per pixel

for the arrangement. Due to the size of the light spot and various afore mentioned factors,

there exists an inherent low-pass mechanism (a blurring effect) that filters out the detail

of the variations of surface displacement. Several factors add to the difficulties of the

experiments: (1) There is sever interference caused by the flares from LDV laser beams;

(2) The relatively low sampling rate due to the scanning mechanism makes it not feasible

to synchronize with the LDV measurement; (3) The top cover of the oval tank interferes

with the detection of feeble scattering light; a special arrangement of a slit is needed, but

such a slit arrangement affects the wave field right at the vicinity of the measurement

area. These difficulties rendered a not quite satisfactory use for the present application;

it was therefore decided that simultaneous measurements using a Tantalum wire probe be

taken. However, to minimize the uncertainty caused by the density gradient, a deep sub-

mergence of the wave gauge that almost reached the bottom of the tank was adopted. The

gauge was mounted on a vernier support and calibrations were done on-site just before

the experiments started.
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9.3 Measurements

9.3.1 The real time system

A highly automated and specifically optimized PC-based real time system for both data

acquisition and data analysis was developed by the author. Parts of the details can be

found in the previous section on ”Program and workbench developments”, as well as on

an earlier report on the experiments of comparison studies of different armor types [76].

As was hinted in van Dorn’s (1959) observations of wind-induced setup in a pond,

the rain-induced setups for our experiments may be less than the order of a fraction of a

millimeter (even for the wind-induced part). And in view of the complicated factors or

mechanisms involved in the experiments, as well as in anticipating difficulties in distin-

guishing differences incurred by the short raining section, both accuracy and precision in

measurements are needed.

A few key features of the system are: (1) Data acquisition is real-time monitored on

PC with multi-tasking programming; (2) Multi-channel calibration capability; (3) On-site

automated data analysis, such as zero-crossing statistics, reflection coefficients, correla-

tions, spectral analysis, and software filtering, etc.; (4) On-site generations and printouts

of various statistical results and graphics; (5) All the real time processes are controlled

through a menu-driven interface; (6) Friendliness and optimization of control are consid-

ered, such as: the number of keystrokes is minimized specifically for our experiments,

automated inputs are considered to prevent human errors, and sounds are added for stage

reminding.

It is noted that the major programming languages used in the present study are Asyst

and Mathematica. For the control of the laser wave gauge Fortran is also used.

9.3.2 Winds and rains

For the first set of measurements, in order to maximize the momentum input into the

receiving water so that more obvious setup effects due to rain can be discerned, a large
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impact angle of rain is desired. Therefore, a large wind speed of 6.8 m s−1 was used. The

speed corresponds to the capacity of fan with a 24 cm water depth. And the wind was

measured with a Pitot tube located 50 cm upwind of the rain section and 11 cm above the

still water surface. Rain intensities covered a range from 34 to 104 mm hr−1. Data were

sampled at 40 Hz for a duration of 200 seconds.

For the second set of measurements, wind speeds of 4.10, 5.10, and 6.00 m s−1 and

three rain intensities of 36, 50, 68 mm hr−1 were adopted. Most data were sampled at 40

Hz (some data were hardware sampled at a higher rate and than software sub-sampled at

40 Hz) for a duration of 120 seconds.

9.3.3 Aqueous flows

LDV measurements are located at two cross sections: One is right in the vicinity (0.6 cm

away) of the wave gauge located behind the rain section, another right under the raining

segment which is 70 cm ahead the end of the rain module. Depths of the measurement

points are 2, 3, 4, 5, and 9 cm below the mean water surface (in fact some other loca-

tions are also measured, but we have not found a way to shed some peculiar information

mainly due to the nonconcurrent nature of measurements as to be stated in results of data

analysis).

Successful aqueous flow measurements using the current LDV system involve a few

stringent requirements both in instrument setup and control. A few key points in op-

timizing these measurements are explained as follows: (1) Power outputs of laser are

critically affected by the alignment of optical elements and are quite sensitive to the ad-

justments of various interacting knobs. A light power detector was used to ensure that

maximum power outputs were achieved. Such a process generally took a couple of hours.

(2) Fringe bias was minimized by setting the possible maximum frequency shift accord-

ing to a calculation based on flow conditions. (3) Velocity bias was handled by sampling

the analog frequency output at a fixed rate. (4) Without affecting the Doppler bursts, the

pedestal signals were completely removed by setting allowable maximum values of the
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high-pass filter. The decisions of these filter values should reference to point (2), and

the condition be real-time monitored in the oscilloscope. (5) High-frequency noises have

significant impacts on the accuracy of results registered by the frequency counter and are

closely related to the amplification process of the photomultiplier tube (and also to the

seeding conditions). They in turn are determined by extraneous background light (such

as laser flare and reflection from glass walls) and by the inherent electronic shot noise.

The minimization of these noises was controlled by adjusting the gain setting together

with low-pass filtering; in addition, a dark background was carefully arranged for this

purpose. (6) In these measurements most of the LDV signals can be put in the category

of continuous burst mode with both high burst rate and high data density. This could

be inferred in-site from the oscilloscope display as well as from the output of the digital

readout module. Non-uniformly spaced counter data rate of about 800 to 1000 points per

second was typical for the green channel. For the blue channel, the emitting light power

was about 2/3 of that of the green one; this power difference gave a critical blow to its

data quality; therefore the data rate was generally less than half of the green one and the

sampled signals were often of step shapes. Due to this, only the green channel signals are

used in the data analysis. (7) For helping to optimize the choice of parameters and various

instrument settings a spreadsheet was designed (Table 9.1 (LDV-IPs)). The spreadsheet em-

beds various instrument specifications and formulas needed for LDV measurements and

computations.

9.3.4 Stratified cases

As indicated in the energy cascade model, stratification of the receiving water body plays

a key role in the energy phenomena. A couple of experiments with stratified receiving

water were also performed. Considering that a stratification with small density gradient

is difficult to setup and that stratification acts as a film that hampers the development of
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Tab 9.1 (LDV-IPs) A spreadsheet for optimal control of LDV setups. The sheet embeds various
instrument parameters and related LDV formulas. When desired velocity range
is filled in, the spreadsheet will give the appropriate setup parameters.

ITEM BLUE GREEN Pedestal Filter (kHz) 1 3

High limit filter (kHz)  300 300

Wave length (nm) 488 514.5 Shift  (kHz) 50 50

Half angle (degree) 3.4204 3.3594 Cycles/Burst  8 8

Beam width (mm) 7.1717 7.0440 Out (Time/F10:1/F100:1)  F10:1 F10:1

Fringe spacing (micro m) 4.0897 4.3900 EXP  M10 M10

Focal length (mm) 60.1030 60.1034 Comparison (%) 1 1

Number of fringes 24 22 Data rate / Amp. limit / /

Velocity - Min. (cm/sec) -20 -20 -20 -20 -20 -20 -20 -20
         - Max. 20 20 25 25 30 30 40 40
Doppler freq.(fd)- Min. (kHz) -48.90 -45.56 -48.90 -45.56 -48.90 -45.56 -48.90 -45.56

                 - Max. 48.90 45.56 61.13 56.95 73.35 68.34 97.81 91.12

Freq. shift (kHz) 50 50 50 50 50 50 50 50

Shifted freq.(fe)- Min. (kHz) 1.10 4.44 1.10 4.44 1.10 4.44 1.10 4.44

                 - Max. 98.90 95.56 111.13 106.95 123.35 118.34 147.81 141.12

Cycles/Burst 8 8 8 8 8 8 8 8

Freq. EXP <- Max. fe + Floor 10 10 10 10 10 10 10 10
   X (Trans. fun.) (kHz) 152.59 152.59 152.59 152.59 152.59 152.59 152.59 152.59
   10:1 Freq output (kHz/V) 15.26 15.26 15.26 15.26 15.26 15.26 15.26 15.26
   Min. voltage (V) 0.07 0.29 0.07 0.29 0.07 0.29 0.07 0.29
   Max. voltage <- Max. fe 6.48 6.26 7.28 7.01 8.08 7.76 9.69 9.25
   0V velocity  (cm/sec) -20.45 -21.95 -20.45 -21.95 -20.45 -21.95 -20.45 -21.95

   5V 10.75 11.54 10.75 11.54 10.75 11.54 10.75 11.54

   10V <- X 41.96 45.04 41.96 45.04 41.96 45.04 41.96 45.04

Time EXP <- Min. fe + Ceiling 14 12 14 12 14 12 14 12

   X (Trans. fun.) (kHz) 9.54 38.15 9.54 38.15 9.54 38.15 9.54 38.15

   Min. voltage (V) 0.10 0.40 0.09 0.36 0.08 0.32 0.06 0.27

   Max. voltage <- Min. fe 8.69 8.59 8.69 8.59 8.69 8.59 8.69 8.59

   0.5V velocity  (cm/sec) -12.65 11.54 -12.65 11.54 -12.65 11.54 -12.65 11.54
   5V -19.67 -18.60 -19.67 -18.60 -19.67 -18.60 -19.67 -18.60

   10V <- X -20.06 -20.28 -20.06 -20.28 -20.06 -20.28 -20.06 -20.28

Velocity - Min. (cm/sec) -20 -20 -20 -20 -20 -20 -20 -20

      A54   - Max. 20 20 25 25 30 30 40 40

Doppler freq.(fd)- Min. (kHz) -48.90 -45.56 -48.90 -45.56 -48.90 -45.56 -48.90 -45.56

                 - Max. 48.90 45.56 61.13 56.95 73.35 68.34 97.81 91.12

Freq. shift (kHz) 100 100 100 100 100 100 100 100

Shifted freq.(fe)- Min. (kHz) 51.10 54.44 51.10 54.44 51.10 54.44 51.10 54.44

                 - Max. 148.90 145.56 161.13 156.95 173.35 168.34 197.81 191.12

Cycles/Burst 8 8 8 8 8 8 8 8

Freq. EXP <- Max. fe + Floor 10 10 9 9 9 9 9 9

   X (Trans. fun.) (kHz) 152.59 152.59 305.18 305.18 305.18 305.18 305.18 305.18

   10:1 Freq output (kHz/V) 15.26 15.26 30.52 30.52 30.52 30.52 30.52 30.52

   Min. voltage (V) 3.35 3.57 1.67 1.78 1.67 1.78 1.67 1.78

   Max. voltage <- Max. fe 9.76 9.54 5.28 5.14 5.68 5.52 6.48 6.26

   0V velocity  (cm/sec) -40.90 -43.90 -40.90 -43.90 -40.90 -43.90 -40.90 -43.90

   5V -9.70 -10.41 21.51 23.09 21.51 23.09 21.51 23.09

   10V <- X 21.51 23.09 83.91 90.07 83.91 90.07 83.91 90.07

Time EXP <- Min. fe + Ceiling 9 9 9 9 9 9 9 9

   X (Trans. fun.) (kHz) 305.18 305.18 305.18 305.18 305.18 305.18 305.18 305.18

   Min. voltage (V) 2.05 2.10 1.89 1.94 1.76 1.81 1.54 1.60

   Max. voltage <- Min. fe 5.97 5.61 5.97 5.61 5.97 5.61 5.97 5.61

   0.5V velocity  (cm/sec) 208.72 224.04 208.72 224.04 208.72 224.04 208.72 224.04

   5V -15.94 -17.11 -15.94 -17.11 -15.94 -17.11 -15.94 -17.11

   10V <- X -28.42 -30.50 -28.42 -30.50 -28.42 -30.50 -28.42 -30.50

LDV Parameters ASI, CMS, UD
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surface waves (i.e., a strong stratification induces stabling effects so that the same wind

speed may not create the same wave field), as well as that too small a stratification will

not yield noticeable effects; it was decided that a density gradient from one half of the

salinity of sea water to freshwater be used when filling the tank from bottom to top.

To fill the tank, the silicone carbide seeded saline water was prepared in 11 batches (11

layers) and pumped into a bowel placed in a lump of plastic straw located at the opposite

side to the observational section of the oval tank. The water then spilled over the brim of

the bowel and flowed through the lump straw to spread into the stretch of the tank. The

lump also acted as a wave absorbing ramp. It took more than eight hours to fill the tank

to the desired water level.

As to LDV measurements under stratified conditions, due to settling of particles asso-

ciated with the long filling process, the proper seeding was quite difficult. A few exper-

iments failed to yield acceptable counter data rate. Measurements were only done for 5

cm depth point under wind velocities of 4.1 and 5.1 m s−1.

9.4 A few intrinsic aspects of the experiments

In this section we discuss a few experiment-related details that might not akin to the key

interests of the topics, but they help illustrate some intrinsic aspects of the experiments

and thus solidify the data analysis given later. The points here concern a few understand-

ings, such as the response characters of the instruments, the accuracy of the measure-

ments, awareness of the degree of control in the experiments, as well as different inherent

properties associated with different numerical processes.

9.4.1 Calibration curves for the rain module

It is generally accepted that orifice flows follow the principle of Bernoulli equation, that

is to say, the flow rate is proportional to square root of the water head. However, for

the hypodermic flow of the rain module a linear relationship rather than the Bernoulli
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principle provides the best fit for the data. This is given by the almost perfect straight line

shown in Figure 9.2 (r ∼ head), in which the instantaneous flow rate is calculated from the

time derivative of the water head. For this straight line, both the second order polynomial

and exponential fits (between the water head above the bottom of the rain module and the

elapsing time) can provide quite reasonable fits. However, for the low water head region,

the exponential curve provides a much better fit, even down to the tip of the hypodermic

needle; while the second order polynomial curve does not fit well and yields a negative

rain intensity. Obviously, the needle and the wind have caused the flow mechanism to

deviate from the potential theory.
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Figure--4.  Characteristic curves for the rain maker.

Fig 9.2 (r ∼ head) Characteristic curves for the rain module.
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9.4.2 Natural frequency of the wind-wave tank

It is generally true that any structure or instrument setup is associated with specific natural

frequencies and can even induce noise that may interfere with the desired signals. The

identification of these should be helpful. For example, with the help of the real-time

laboratory system it was found that the running of fan motor interferes with the wave

gauge when the gauge is placed within a specific region of the tank. In addition, the

natural frequency of the tank was also identified; this helps to illustrate some informative

points.

When the wind is blown for a period of time and then stopped, short wind waves die

away rapidly and only sustainable phenomena remain. For the oval tank, if not blocked

(for measurements associated with rain-induced setups, its reasons to be stated later),

there does exist an energy pickup from the relatively short wind waves by the relatively

low natural frequency which is about one thirteenth of the typical peak frequency of the

wind waves in the tank. Figure 9.4 (NF ∼ Noise) shows a wave gauge signal recorded under

such a condition. The signal is associated with the most noisy wave gauge we used (nev-

ertheless, using the developed real-time software system, the gauge is calibrated to have a

good linearity, as is shown in one of the curves in Figure 9.3 (Cal–WG & PT)). As is seen the

signal corresponding to the natural frequency is relatively weak and is almost submerged

in the noise of the gauge. However, when the signal is smoothed and auto-correlation

coefficients are calculated, the period for the natural frequency is easily identify as 13.3

sec as shown in Figure 9.5 (NF ∼ ACC). The period is in good agreement with the time

needed to travel the tank using the celerity formula for the shallow water wave limit, i.e.,

cg = c =
√

gh, where cg is the group speed, c is the celerity of the wave, g is the grav-

itational acceleration, and h is the water depth. In the figure the tapering of the curve is

associated with zero padding when calculating the coefficients.

In a different perspective, the pressure transducer records a much less noisy signal as

shown in Figures 9.6 (NF ∼ PT), in which the cyclic period can easily be identified. A few

points can be said here: First, they show that both the wave gauge and pressure transducer
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Voltage output of wave gauge or pressure transducer,   Vh or Vp  (volt)

-1 0 1 2 3 4 5 6

W
at

er
 le

ve
l, 

 h
  (

cm
)

-1

0

1

2

3

4

5

6

7

8

Pr
es

su
re

 d
iff

er
en

ce
,  

p 
 (c

m
)

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

h = -2.185018 + 2.064239 Vh

h = -4.463881 + 2.353517 Vh

p = 0.005363 + 0.198430 VP

Fig 9.3 (Cal–WG & PT) One set of calibration curves for the wave gauges and pressure transducer.
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Fig 9.4 (NF ∼ Noise) A noisy wave form that embeds the natural frequency of the oval tank.
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Fig 9.5 (NF ∼ ACC) The auto-correlation coefficient function of the noisy wave form which clearly
shows the natural frequency of the oval tank. The tapering of the curve is
mainly due to zero padding of the numerical process.
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are able to provide accurate and consistent measurements. This is justifiable from the

minimally filtered wave gauge signal shown in Figure 9.7 (NF ∼ MLP), where the convolution

filtering is associated with the use of a maximum allowable cutoff frequency of 3-point

and the Blackman window. Second, even for such an extremely small wave steepness the

wave is much more of a Stokes wave, as shown by the surface displacement curve where

it has flatter troughs and sharper peaks as well as the curve of differential pressure where

it has slower rises and steeper descends (which are corresponding to troughs and peaks of

the wave form, respectively). Concerning the natural frequencies, this also indicates the

existence of a multi-mode. Third, judging from the curves in 9.6(NF ∼ PT) and Figures 9.7(NF

∼ MLP), it is anticipated that the measurements meet the accuracy requirements of less than

the order of 0.01 cm.
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Fig 9.6 (NF ∼ PT) Raw signal of the pressure transducer related to the natural frequency. Even
for the extreme smallness of wave steepness the wave is more like a Stokes
wave with flatter troughs and sharper peaks, which in turn yield slower rises and
steeper descends of differential pressures as shown in this figure.

As a supplemental explanation of the uncertainty arising from the Fourier numerical

process, it is also noted that, even though analytically the power spectrum is the Fourier
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Fig 9.7 (NF ∼ MLP) The minimally low-passed wave gauge signal associated with the natural fre-
quency of the oval tank. Here the Blackman filter with maximum cutoff fre-
quency of 3 points is used. Compared with Figure 9.4 (NF ∼ Noise) one sees that
most of the noise is associated with relatively high frequency. In reference to
the pressure transducer measurement (Figure 9.6 (NF ∼ PT)) they show quite
consistent results.

transform of the auto-correlation function, the spectral curves seem not to have as a clear

identification of the natural frequency as the auto-correlation curve has. This is mainly due

to added side effects of the numerical process. And it manifests a few practical limitations

associated with numerical aspects of the discrete Fourier transform such as segmentation,

frequency leakage, edge effects, windowing, and the deviation of actual frequency from

spectral resolution point. Figure 9.8 (NF ∼ PS) shows two power spectra under different

segmentation lengths. The spreading of the peak makes it hard to identify the frequency

unambiguously.

Some additional points are given as follows: The noise level for the surface displace-

ment is generally higher than that of measurement accuracy, but it is of high-frequency

and can mostly be filtered out. Calibrations of surface displacements were all done with

verniers with an accuracy of 0.005 cm. Response characters of instruments, including

resolution and time responses of the acquisition hardware and pre-filtering instruments

are verified using a WaveTek signal generator. No deterioration of signals can be identi-
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Fig 9.8 (NF ∼ PS) Power spectral curves for the signal shown in Figure 9.4 (NF ∼ Noise). Though an-
alytically power spectrum is the Fourier transform of the auto-correlation func-
tion, side effects of the numerical process cause ambiguity and render judge-
mental difficulty.

fied for the instrument setups. For those experiments focusing on the momentum transfer,

the oval tank was not blocked by wave absorber so as to minimize influences induced by

setup or back flows (this concerns the accuracy of estimation from the formulation of the

rain-induced stress to be stated in the next chapter); for those related to LDV measure-

ments the oval tank is blocked with an wave absorbing ramp so as to reduce circulating

drifts.

9.4.3 Wave reflection coefficient in the tank

Wave reflections from the curving section of the tank and possibly from the wave absorber

ramp are estimated using the wave separation technique proposed by Goda and Suzuki
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[23] (cf. Lee [76]). For such an estimation, the mechanical wave generator is used and

the coefficients are calculated based on the energy contents of separated incident and

reflected component waves. Table 9.2 (Tank Reflection) shows the statistics of a case where

the significant wave period (less than 2 Hz) is somewhat longer than those of typical

wind waves in the tank; this therefore provides a conservative estimation. The energy

reflection level is about one percent, which is no larger than the uncertainty associated

with the numerical calculation (such as a few concerns mentioned before as well as phase

complications); therefore, influence of reflection is negligible.

9.5 Summary

Setups of Experiments are detailed. A few informative aspects or intrinsic natures of the

experiments are also illustrated. From these we gain a general idea concerning the control

of the experiments. v
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Tab 9.2 (Tank Reflection) Energy reflection level for a mechanically generated wave in the oval tank.
It is calculated by separating the incident and reflected waves using Goda
and Suzuki’s method [23].
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Chapter 10
Rain-Induced Stress and Its Effects on
Surface Waves

10.1 Introduction

Rain over the ocean is usually accompanied by wind. Observations (van Dorn [68])

and analytical studies (Caldwell and Elliott [14, 15]) showed that the rain-induced stress

can be of comparable magnitude to the wind stress, especially for light and intermedi-

ate winds. However, it is unclear about the partition of rain-induced stress into differ-

ent components such as currents, water-surface setups, waves, or turbulent features in

the air-sea interface (such as ripples, vortex rings, bubbles, stalks, and mixing). Added

to the complexity of this coupling system are variety of real ocean conditions, such as

density differences, thermal effects, surface films, etc. It is therefore not surprising to

have inconsistent or even contradictory descriptions about rain’s effects on waves among

various researchers (e.g., Moore et al. [54]; Tsimplis and Thorpe [66]; LeMehaute and

Khangaonkar [40]; Tsimplis [65]; Poon et al. [58]; Bliven and Giovanangeli [9]; Atlas

[5]). In this chapter a few experiments are used to furnish some of the evidences con-

cerning the deficient aspects of existing studies. These experiments focus on rain induced

stress and its effects on surface waves. And, with an intention to minimize the uncertainty

as much as possible, data are processed in a manner focusing on globally oriented rather

than finely resolved features.



10.2 Rain-induced stress and surface setup

Expanding van Dorn’s [68] formulation of rain-induced stress, by taking into considera-

tion a more reasonable reference basis, which helps to remove the influences of unrelated

quantities and improve accuracy of estimates; the rain-induced stress is reformulated as

the followings. Let consider a control volume of water right under the raining segment

and take the system to be a two-dimensional steady case with x- and z-axis being along

the tank and vertically upward, and let us further assume the horizontal mean speed u is

much larger than the vertical mean speed v (therefore, for these experiments involving

setups the tank is not blocked), the momentum equation integrated over the water depth

under no rain action is:

∂

∂x

∫ D+h

0
u2dz = −g

∫ D+h

0

∂h
∂x

dz +
τw − τb

ρw
, (10.1)

where D is the still water depth, h the setup of water level, g the gravitational acceleration,

τw the wind stress, and τb the wall friction of the tank. Further integrating along the rain

section l, since D � h, one has

∫ D+h

0
u2dz

∣∣∣∣l
0

= −gD(hl − h0)+
τw − τb

ρw
l. (10.2)

With the addition of rain, the formula modifies to

∫ D+h
′

0
u

′2
dz

∣∣∣∣∣
l

0

= −gD(h
′

l − h
′

0)+
τ

′

w − τ ′
b + τr

ρw
l, (10.3)

where values with superscript
′

represent those with the influences of rain, and τr is the

rain-induced stress. Since the change made by the rain to the initially wind-driven current

u in the circulating tank is of relative magnitude of 10−3 or even less, u
′

≈ u. And since

changes of the wind and current speeds due to rain are very small, it is reasonable to

assume that τ
′

w − τ ′
b is almost identical with τw − τb. Therefore, we have the estimation
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Fig 10.1 (RIS–P&V) Indirectly measured rain-induced stresses versus van Dorn’s [68] theoretical
values. The fitted straight line is in parallel to the diagonal line. This indicates
the existence of a threshold wind and rain condition for rain-induced setups
and implies that the momentum flux does not act only on the water surface;
therefore, proper temporal and spatial scalings need to be considered.

of rain-induced-stress as

τr = ρgD
(h

′

l − h
′

0)− (hl − h0)

l
= ρgDs, (10.4)

here s denotes a slope representing the relative change of the mean water surface.

Figure 10.1 (RIS–P&V) shows the relation between the experimental results based on the

above formula and the theoretical values given by van Dorn [68]. The magnitudes of the

two are comparable, but the measured values are smaller with a large relative reduction

for a lower rain intensity, and a small relative reduction for a higher rain intensity. The

straight line fitted for the data points is in parallel to the diagonal line of the plot. This
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seems to indicate the existence of a threshold for rain-induced setups and implies the fact

that the momentum flux does not act only on the water surface, i.e., there involve temporal

and spatial scales. And it also suggests that the partition of the rain-induced stress into

different physical elements is dependent on wind and rain conditions. Additional wave

statistics and spectral analysis also support this implication, as will be explained later.

10.3 Fourier perspective of rain’s effects on energies of

surface waves

Figure 10.2 (Gain–FSI) shows the normalized relative gain of the power spectrum integra-

tion versus the rain intensity. This normalized relative gain is defined as the difference
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Fig 10.2 (Gain–FSI) Normalized relative gains of power spectrum integrations for various rain in-
tensities. The values have the physical meaning of the relative magnitude of
the rain-induced energy gain to that of wind-induced gain.

between the power spectrum integrations of the upwind and downwind wave gauges un-

der the rain action with the subtraction of the difference of spectrum integrations under

no rain action, and then normalized by the latter difference. It has the physical meaning
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Fig 10.3 (G – Hrms ∼ r ) Normalized relative gains of root-mean-square wave heights from zero-
upcrossing statistics for various rain intensities. Though completely differ-
ent approaches are used for this and the previous figures, they give a quite
consistent tendency concerning the distribution of data points. Since the
statistics of this figure is based on zero-upcrossing, its energy implication
is not as intimate as the previous one.

of the relative magnitude of the rain-induced energy gain to that of wind-induced gain

(again, here effects due to bottom and sidewalls of the tank or even other factors are im-

plicitly removed). Figure 10.3 (G – Hrms ∼ r ) additionally shows the normalized relative

gain based on root-mean-square wave heights derived from zero-upcrossing wave statis-

tics. The two figures, which are associated with completely different statistics, show a

quite consistent tendency. This fact hints the unambiguous effects of damping of waves

of main energy contents. Figure 10.4 (Hdist ∼ r ) shows the cumulative wave height distrib-

ution curves of the downstream gauge using zero-upcrossing statistics for rain intensities

equal to 0.0, 67.0 and 104.0 mm hr−1, respectively. Again, these experimental results

are opposite to L&K’s theoretical predictions. It is also noted that our experiments are

of a three-element interaction (wind, waves, and rain; or even with the forth element –

currents) while L&K’s theory mainly focuses on rain and waves only (but they do in-

clude rain angles). Nevertheless, our processing methods have tried to extract only the

195



Cumulative number of waves

0 100 200 300 400 500

W
av

e H
eig

ht
  (

cm
)

0

1

2

3

4

5

R=0
�

R=104 mm hr
� -1

R=67 mm hr
� -1

Fig 10.4 (Hdist ∼ r ) Distribution curves for zero-upcrossing wave heights under three different rain
intensities as labeled in the figure.

rain-induced parts.

In addition, these figures suggest that, for a high rain intensity, although its rain-

induced stress may be larger, there is more wave energy loss; and, for smaller rain inten-

sity, though the rain-induced stress may be smaller, the energy loss of waves is smaller

and can even turn to a gain (but with a relatively small net effect). Altogether, all these

indicate that different wind and rain conditions involve different scale interactions.

Let us further provide statistic values of waves distributions under different rain inten-

sities using Rayleigh distribution parameters. Figures 10.5 (RDP ∼ Hrms ) and 10.6 (RDP ∼ Have)

show two different Rayleigh distribution parameters based, respectively, on root-mean-

square and averaged wave heights for the upwind and downwind wave gauges. They

indicate that the zero-crossing wave height distributions in the wind blowing oval tank

deviate from the Rayleigh distribution and that the wave heights are somewhat less nor-

mally distributed after the action of rains since the coefficients generally become larger.

The above discussions focus on global parameters, i.e., not focusing on component
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Fig 10.5 (RDP ∼ Hrms ) Rayleigh distribution parameters based on statistics of root-mean-square
wave heights for different rain intensities.
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waves. They should have less ambiguity or uncertainty concerning rain’s overall ef-

fects on waves. A few spectral features of the signals are stated in the followings. Fig-

ure 10.7 (FS – U&D) shows power spectra of the upstream and downstream wave gauges

under 104 mm hr−1 rain intensity. Here a scheme of 15 1024-point overlapping sections

with Bartlett window is used. The general features are: (1) The spectrum curves have

steep drops at both sides of the peak and the dropoffs on the high-frequency side have

quite large slopes (larger than 5.0 power exponent); (2) For frequencies higher than about

2.5 Hz the dropoffs can be represented by the −4 power law quite well. Poon et al.s’ [58]

spectral curves showed quite mild slopes for both regions; this might be due to the shorter

segmentation length they used.

With an intention to reduce the uncertainties, the following spectral perspective takes

into consideration two following points: (1) Rather than making comparison for data with

and without rain at downstream alone, which are related to different runs (therefore, in-

duced additional uncertainties), the upstream and downstream data measured at the same

time are used and further referenced to the upstream and downstream data without the

rain action. (2) Rather than considering each frequency component, we consider the fre-

quency bins of the spectra. Figures 10.8 (BG0.5hz ∼ r ) and 10.9 (BG0.1hz ∼ r ) show the relative

gain (or loss) factor of the energy at each frequency bin for two different bin resolutions

(a coarser and uneven resolution as marked in the axis is used for Figure 10.8 (BG0.5hz

∼ r ); a finer 0.1-Hz resolution is used for Figure 10.9 (BG0.1hz ∼ r )) under various rain in-

tensities. Here the relative gain is defined as the difference between the downstream and

upstream energy contents, with first the removal of the difference without the rain action

and then divided by that without the rain action (in a sense similar to the definition used

for Figure 10.2 (Gain–FSI)).

For the practical wind conditions in our oval tank, most of wave energy concentrates

in a narrow band from 1.7 to 3.0 Hz (accounts for more than 92% of the energy) with

spectral peak around 2.0–2.8 Hz. And for lower wind speed the peak shifts to a higher

frequency and becomes flatter or wider. Under the present wind speed, if the Doppler
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Fig 10.7 (FS – U&D) Power spectrum densities for upstream and downstream wave gauges.

shift due to drift current is accounted (Wu [72], the main energy wave is about 50 cm

long or 1.8 Hz in frequency. Poon et al.s’ [58] results at high wind velocities showed an

extensive damping at frequency around 3.5 Hz, and around 3.5 Hz the energy is of little

importance. In this regard, our results show the same general decay for high frequencies

(about greater than 3.2 Hz), but for those lower frequency bins with more significant

energy contents the features are somewhat complicated (Figure 10.8 (BG0.5hz ∼ r )). It worths

mentioning that there is a trench around bins 2.0 and 2.1 Hz (Figure 10.9 (BG0.1hz ∼ r )). And

since there is a high energy concentration there, energy dissipation is anticipated to be

significant. It is also noted that the significant wave period as well as the root-mean-square

wave period based on zero-upcrossing statistics fall in this trench. This spectral feature is

consistent with the globally oriented characterizations discussed earlier. Moreover, there

exist regions with positive gain around the trench, and this highlights the possibility of an

energy cascade mechanism.
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Fig 10.8 (BG0.5hz ∼ r ) Relative gains of the spectral energy for individual frequency bins (bin width
0.5 Hz) under various rain intensities.
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10.4 Summary

Here we basically focus on providing experimental evidences and refine numerical processes

for clarifying a few ambiguities discussed in the earlier chapters. The results show: the

rain-induced stress should distribute in a certain water depth rather than just on the sur-

face; the partition of momentum flux due to rain is dependent on wind and rain conditions;

the difficulties encountered from the Fourier perspective; and, energy phenomena for dif-

ferent scales are not universal. Overall, they indicate that the coupling system involves

complex scaling problems. v
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Chapter 11
Wavelet Coherences and the Energy
Cascade of the Coupling System

11.1 Introduction

The previous chapter focuses mainly on the globally oriented characterizations of rain’s

effects on waves, as well as those from the Fourier spectral perspective; and it provides

few insights of the interactions for the energy cascade mechanisms put forward in the

earlier Chapter. With the facilitation of the identified best wavelet basis, together with

its peculiar characteristics in coherent analysis, in this chapter we aim at providing a

few evidences for the proposed mechanism of the energy cascade model and plying the

manifestations on the interaction among coupling scales.

11.2 Coherence features of the coupling systems

Both wind-wave (non-stationary wave field from spectral viewpoint) and Stokes wave

(stationary) cases will be used to study the coherent features in the coupling systems.

11.2.1 Wind-wave cases

In most wave tank experiments, which are invariably not only limited in modeling scales

but also distorted in modeling factors, the full spectrum of a complex system of interaction



is basically hard to be realized. Nevertheless, the data acquired is used to deduce a few

possibly intricate or fine tendencies concerning interaction mechanisms of wind, wave,

and rain coupling system.

Figure 11.5 (du ∼ r, d) shows effects of rain on wave-current coherences for aqueous

flows measured at several depths under 6.0 m s−1 wind. It is seen that, for aqueous flows

measured in the near-surface region (2 and 3 cm below the mean water surface), the rain

has greater influences for the high-frequency end (about > 3.5 Hz) and the coherences

there are significantly reduced; while for deeper depths (4 and 5 cm below the mean

water surface) the coherence curves widen and their values increase at the high-frequency

end. However, at a greater depth (9 cm) the coherences are overall reduced, and it is

especially significant at the low- and high-frequency ends (Figure 11.6 (du ∼ r, d9)). The

implications are:

1. Rain induces different impact patterns of wave-current coherences at different depths.

2. Near the air-water interface (2 and 3 cm), waves and aqueous flows of small scales

are somewhat diversified or randomized due to the rains; therefore, the coherences

for high carrier frequencies are reduced.

3. Since small scale components (waves and turbulences) do not penetrate deep and

diminish rapidly, at somewhat deeper depths (4 and 5 cm) smaller scale aqueous

flows are able to be tuned with corresponding scales of surface waves. This implies

an energy redistribution to these smaller scales at these intermediate depths. It is

also noted that, though coherence does not need to be dependent on the energy

content of correlated elements, it is generally true that the higher is the energy

content (in a relative sense) of a scale the higher the coherence of that scale will be.

4. With an energy redistribution to these smaller scale wave components, since they

are still of scales at the high-frequency end and are associated with energy dissi-

pation scales when compared with scales at low-frequency end, an enhancement of

energy cascade to dissipation scales is anticipated at these depths.

204



5. With an enhanced energy dissipation due to rain at the above intermediate depths,

less energy can propagate into a further depth. It is therefore quite reasonable to

anticipate that the coherences for the whole scale range at deep depths are reduced.

This feature is clearly shown in Figure 11.6 (du ∼ r, d9).

6. Overall, one can argue that scales of main power contents that are under the action

of rain do not penetrate as much as those without the action of rain. Or stated in a

different perspective, rain de-tunes various scales in a deep region. Again these are

consistent with illustrations of the energy cascade mechanisms.

Another set of curves similar to Figure 11.5 (du ∼ r, d) but under a different wind velocity

of 5.1 m s−1 is shown in Figure 11.7 (du ∼ r, d, w5). It shows basically the same tendencies.

Figure 11.8 (du ∼ r, d, w) shows wave-current coherences under different wind velocities

of 6.1, 5.1, 4.0 m s−1 for depths 2 and 5 cm with and without rain. The implications

are: (1) For higher wind velocity, the peak coherence increases (again, we see the above

mentioned general rule) and also shifts toward a lower frequency. From these we see that

wavelet coherences are able to identify the stages of development of waves — since all

the signals are measured at the same cross section in the oval tank, higher wind induces a

more mature stage of development. (2) The behaviors of spectral curves are extreme —

the Fourier coherences are almost always equal to 1 for regions with peak energy contents,

while always pouncing here and there for regions with less energy contents. Therefore

it is generally impossible for spectral coherences to identify stages of development. This

character will also be seen in a few additional figures to be shown later. (3) A close

examination of these curves provides additional illustrations of a few above mentioned

points related to Figures 11.5 (du ∼ r, d) and 11.7 (du ∼ r, d, w5).

In the proposed energy cascade model the mechanisms center on the stratification of

receiving water body. Measurements under the stratification were arranged for 4.0 and

5.1 m s−1 winds with aqueous flows measured at the 5 cm depth. Due to difficulty in
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Fig 11.1 (du ∼ r, d (l1-B)) The wavelet (left) and spectral (right) coherences between waves
and aqueous flows at each individual depth as indicated in the figures
without (top) and with (bottom) rain (68 mm hr−1) under 6.0 m s−1

wind. Here the length of the data segment is 1024-point. In reference to
the two subsequent figures using longer data lengths the usefulness of the
redundancy of CWT is most obviously seen since the wavelet coherence
curves here are in extremely good proximities to those using longer data
lengths.
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Fig 11.2 (du ∼ r, d (l2-B)) The wavelet (left) and spectral (right) coherences between
waves and aqueous flows at different depths without (top) and with
(bottom) rain (68 mm hr−1) under 6.0 m s−1 wind. Here the length of
the data segment is 2048-point.
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Fig 11.3 (du ∼ r, d (l4-B)) The wavelet (left) and spectral (right) coherences between
waves and aqueous flows at different depths without (top) and with
(bottom) rain (68 mm hr−1) under 6.0 m s−1 wind. Here the length of
the data segment is 4096-point. The inferiorities of spectral coherences
are reflected by the rapid fluctuations of the coherent curves as well as the
extremely slow improvement when the data lengths are increased.
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Fig 11.4 (du ∼ r, d (l9-F)) The spectral coherences between waves and aqueous flows at different
depths without (top) and with (bottom) rain (68 mm hr−1) under 6.0
m s−1 wind. Here the length of the data is 9472-point. Though the func-
tion bases of spectral and wavelet coherences are different, the spectral
coherence curves are seen to approximate those of wavelet coherences for
regions with more energy contents; nevertheless, serious wriggling still
exists in most of the curves except near the peak coherence regions. It
is therefore concluded that the spectral coherence can hardly be useful in
identifying intricate phenomena or micro activities within a complicated
interaction process.
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Fig 11.5 (du ∼ r, d) Wavelet coherences between wave and aqueous flow with (dashed lines) and
without (solid lines) rain. The rain intensity is 68 mm hr−1, wind velocity 6.0
m s−1, and the aqueous flows are measured at 2 (top left), 3 (bottom
left), 4 (top right), and 5 (bottom right) cm below the mean
water surface. The implied energy phenomena are explained in the text.
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Fig 11.6 (du ∼ r, d9) Rain’s effects on wave-current coherence for aqueous flow measured at 9 cm
below the mean water surface. Here the solid and dashed lines are without
and with rain respectively (6.0 m s−1 and 68 mm s−1 rain intensity). It is seen
that rain reduces the overall coherence in a deeper region.

providing the proper seeding for LDV measurements, burst rates for a few experiments

are just two low to be significant. Figure 11.9 (duρ ∼ r, d, w) shows the two cases together

with cases without the stratification and either with or without rain. The prominent fea-

ture induced by the stratification is associated with the enhancement of coherence at the

low-frequency side. This suggests the enhanced coupling of low-frequency motions and

indicates the possibility of energy transfer from surface waves to internal waves. At the

high-frequency end, effects of stratification seems to depend on wind velocities. For high

wind velocity, small scale waves are in a more developed state and internal breakdowns

induced by the density gradient on high-frequency motions may be more significant, thus

reducing the coherences between the aqueous flows and surface waves. As for cases under

low wind velocity of 4.1 m s−1, since energy contents of the whole system are generally

only about one fourth to one third of those of high wind velocities, it is anticipated that

the wave and aqueous flow fields are in a developing stage (as is also indicated by the
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Fig 11.7 (du ∼ r, d, w5) Wave-current coherences with (dashed lines) and without (solid lines) rain
for various depths. The rain intensity is 68 mm hr−1, wind velocity 5.1 m
s−1, and the aqueous flows are measured at 2 (top left), 3 (bottom
left), 4 (top right), and 5 (bottom right) cm below the mean
water surface.
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Fig 11.8 (du ∼ r, d, w) Wavelet coherences between waves and aqueous flows under different wind
velocities without (top) and with (bottom) the rain (68 mm hr−1) for
aqueous flows measured at depths of 2 (left) and 5 (right) cm. Since
under high wind velocities the wave and current fields are better developed
or in a more mature stage, the peak coherence increases and shifts to a lower
frequency.
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relatively low coherence peak) and the energy phenomena between surface and internal

wave interactions are not as significant as those at high wind velocities. Moreover, small

scale disturbances associated with the breakdown of high-frequency internal waves are

also less important due to a lack of energy input. Therefore, the surface wave mode is

more significant than the internal wave mode; besides, the better stratification under low

wind also imposes a stabling effects that increase the coherences of small scale motions.

11.2.2 Stokes wave cases

Coherent features of Stokes waves also provide a few interesting and informative accounts

regarding the evolution of different scales within the coupling system. Figure 11.12 (du ∼

r, d) shows the wave-current coherences under different rain intensities for Stokes waves

having a fundamental harmonic at 1.4 Hz with a corresponding wave slope of 0.06. The

fundamental harmonic frequency is estimated from the Fourier spectra of these Stokes

waves. A typical spectrum is shown in Figure 11.10 (FS–Stokes). And the wave slope is

estimated from the envelope curve of the extracted fundamental harmonic band as shown

in Figure 11.11 (Wave Slope).

It is seen from the coherence curves that rain enhances and broadens wave-current

coherences near the fundamental harmonic for aqueous flows measured at various depths.

For the second harmonic, the coherence curves also broaden somewhat and shift to the

right (except near the surface where rain-induced turbulences cause the coherence to

drop). These tendencies clearly indicate that rain causes the diversification of scales for

such relatively simple wave fields. And the phenomena agree with the argument that the

impact of rain provides the impetus of interactions through the tuning and de-tuning of

waves of different scales.

It should also be noted that, even for this quite stationary wave field, spectral coher-

ences just do not behave any better than for the non-stationary one. Figure 11.13 (du ∼ r, d

(F)) shows spectral coherence curves using the same data set as in Figure 11.12 (du ∼ r, d).

Once again, the identified wavelet analyzing function basis and its associated method of
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Fig 11.9 (duρ ∼ r, d, w) Effects of stratification on the wavelet coherences between waves and aque-
ous flows: The short dashed lines are the cases with rain and stratification;
the solid and long dashed lines are the cases without stratification but, re-
spectively, without and with rain (68 mm hr−1). The top figure is for wind
velocity of 5.1 m s−1 and the bottom for 4.0 m s−1.
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analysis are vindicated. And the various aforementioned factors leading to usefulness of

applications are illuminated further. Most importantly, we are in a firmer position to be-

lieve that the wavelet viewpoint provides a better description of the innate physics for not

only the non-stationary but also stationary signals; of course, this should formerly be at-

tributed to the appropriateness of depicting waves as modulated wave forms that are akin

to the intrinsic instability of water waves (Benjamin [12]; Benjamin and Feir [13]; Feir

[21]; Whitham [69]; Yuen and Lake [73]; Lake and Yuen [29]; Lake et al. [31]; Lake and

Yuen [30]; Longuet-Higgins [44, 45]; Stuart and DiPrima [62]; Su [63]; Melville [51, 50];

Hwang et al. [28]; Lee and Wu [36]).

The wave-current coherences for aqueous flows measured at different depths (2, 3, 4,

and 5 cm below the mean water surface) for Stokes wave having a fundamental harmonic

of 2.7 Hz with a high corresponding wave slope of 3.0 is shown in the right sub-figure of

Figure 11.14 (du ∼ r, s) (the left shows those of the previous Stokes waves), and the top and

bottom sub-figures are without and with the rain, respectively. For the right sub-figures,

due to the high wave slope, the coherence for aqueous flows measured in the near-surface

region is significantly lower than those measured in the deeper region. It is generally

difficult to tell rain’s effects on these coherence curves due to the high non-linear effects

as a result of the Benjamin and Feir side-band instability (Lee and Wu [36]); the latter

overshadows rain’s effects. But still, two points need to be stated. First, we see again

that the wavelet approach is able to discriminate the coherent levels at the frequency band

of main energy content, where the values of spectral coherences are almost saturated

to have the value of unity. Second, a significant feature due to rain for the high wave

steepness case is the obvious increase of wave-current coherence at the low-frequency side

for aqueous flow measured at the depth of 5 cm. Again, this indicates that rain causes the

energy to propagate into the sub-surface region and is consistent with the previous results.

Furthermore, since only internal waves have an effective mechanism to transfer energy in

the vertical direction, this implies that there is a chance for the growth of internal waves

in natural environments, where the stratification is almost always present; therefore, it is
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anticipated that rain catalyzes the mechanisms of energy cascade.
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Fig 11.10 (FS–Stokes) A representative power spectrum for the Stokes waves with a fundamental
harmonic at about 1.4 Hz. Its related wave-current coherences are shown in
Figures 11.12 (du ∼ r, d) and 11.13 (du ∼ r, d (F)).

11.2.3 Non-concurrent or displaced measurement cases

All the above figures focus on wave-current coherences; note that the wave and aqueous

flows were measured simultaneously at nearly the same cross section right behind the

raining segment. Let us examine coherences of a few different kinds where data are either

not measured simultaneously or not at the same cross section, such as current-current

coherences between different depths, or wave-wave coherences between different wave

gauges, or wave-current coherences between measurements at different cross sections.

Figure 11.15 (uuU ∼ r, d, w) shows the wavelet coherences between aqueous flows mea-

sured at different depths with and without the rain for two different wind velocities. Here,

aqueous flows are measured at a section right under the rain segment (70 cm ahead of the

end of rain module). For cases without the rain the coherences are basically unimportant,

and no obvious features can be told; however, with the input of rain, peculiar as well as
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Fig 11.11 (Wave Slope) Amplitude modulation for the frequency band of fundamental harmonic of
the Stokes wave shown in Figure 11.10 (FS–Stokes). Representative value of
the wave slope is estimated from its envelope curve derived from the Hilbert
transform method.

unambiguous features show up for both wind velocities. Two significant peaks are seen

in each of the bottom sub-figures. These peaks correspond to the main frequencies of

individual wind waves. There are two interesting points to note here: First, the general

features of each individual curves are individually consistent for both wind velocities;

second, relative tendencies of various curves follow the trends of their own wind veloci-

ties. In the figure we see that the coherences of aqueous flows at 3 and 4 cm depths are

quite small; while the coherences for 4 and 5 cm and for 3 and 5 cm both have simi-

lar sharp peaks for both wind velocities. Contrasting to the above cases, let us examine

the coherences for measurements taken at a cross section not directly under the raining

segment (either with or without the rain). Interestingly, the features disappear, as shown

in Figure 11.16 (uu D ∼ r, d). Overall, there are strong indications that the rain acts like a

beating mechanism of tuning and de-tuning, and it therefore provides the impetuses of

scale interactions and causes the development of waves of certain scales. These proper-

ties, coupled with buoyancy effects, support the arguments of surface waves and internal

218



 .000  2.00  4.00  6.00  8.00
xE0

 .000

 .250

 .500

 .750

 1.00

xE0

Scale (~ Frequency in Hz)

W
a
v

e
le

t 
c
o
h

e
re

n
c
e

08/22/98-14:30[(49,90)Exp0-F40-Erf1<11.0,5.0>]

aR124-2.WCWC_R-(A)

 0 mm/hr

36      

50      

68      

 .000  2.00  4.00  6.00  8.00
xE0

 .000

 .250

 .500

 .750

 1.00

xE0

Scale (~ Frequency in Hz)

W
a
v

e
le

t 
c
o
h

e
re

n
c
e

08/22/98-14:30[(49,90)Exp0-F40-Erf1<11.0,5.0>]

aR134-2.WCWC_R-(D)

 0 mm/hr

36      

50      

68      

 .000  2.00  4.00  6.00  8.00
xE0

 .000

 .250

 .500

 .750

 1.00

xE0

Scale (~ Frequency in Hz)

W
a
v

e
le

t 
c
o
h

e
re

n
c
e

08/22/98-14:30[(49,90)Exp0-F40-Erf1<11.0,5.0>]

aR144-2.WCWC_R-(G)

 0 mm/hr

36      

50      

68      

 .000  2.00  4.00  6.00  8.00
xE0

 .000

 .250

 .500

 .750

 1.00

xE0

Scale (~ Frequency in Hz)

W
a
v

e
le

t 
c
o
h

e
re

n
c
e

08/22/98-14:30[(49,90)Exp0-F40-Erf1<11.0,5.0>]

aR154-2.WCWC_R-(J)

 0 mm/hr

36      

50      

68      

Fig 11.12 (du ∼ r, d) The wavelet coherences between waves and aqueous flows under different
rain intensities for Stokes waves with a fundamental harmonic at 1.4 Hz and
wave slope of 0.06. The aqueous flows were measured at 2 (top left),
3 (bottom left), 4 (top right), and 5 (bottom right) cm be-
low the mean water surface. A few effects due to rains are explained in the
text.
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Fig 11.13 (du ∼ r, d (F)) Spectral coherences using the same data sets as in the previous figure. Note
that even for such an extremely stationary condition the performance of
spectral coherence is relatively poor. Together with the previous figure it
can be concluded that a redundant system has far obvious advantages over
an orthonormal one for studying the coherence statics. Most importantly,
they point out that even for stationary signals the wavelet viewpoint can
still provide better depictions of the intrinsic physics. This must be related
to the appropriateness of the modulation descriptions of waves.
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Fig 11.14 (du ∼ r, s) The wavelet coherences between waves and aqueous flows measured at the
specified depth without (top) and with (bottom) 45 mm hr−1 rain for two
groups of Stokes wave. Figures on the left are for Stokes waves with a 1.4 Hz
fundamental harmonic (corresponding wave slope of 0.06) (left); figures
on the right are for a 2.7 Hz fundamental harmonic (a high corresponding
wave slope of 0.3) (right). The high wave slope significantly reduces the
coherences near the surface regions.
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waves interactions.

It is also noted that the coherences of these non-concurrent or displaced measurement

cases are relatively very low when compared with those of simultaneous measurements.

Moreover, as to coherences between displaced measurements we note that the wavelet ap-

proach is also in a much stronger position to provide various argumentive points than the

Fourier approach can be. But results of displaced measurements somewhat lack a strong

universal consistency, probably due to the rapid diminish of their identities as shown in

figure 8.5 (ACC ∼ ID).

As a final note: It seems that the high coherence peak for aqueous flows at 3 and 5

cm may be intuitively dubious since the coherences between 3 and 4 cm are low. But we

argue that the endowment of such a thinking can have its ground only if the basis functions

are orthogonal to each others such that they are mutually exclusive. However, the best

wavelet basis functions in the continuous domain are non-orthogonal and quite redundant

for all scales that exfoliate both within individual and neighboring scales. Nevertheless,

we regard that such a situation implies the possible capability for the function basis to

reverberate the ramifications or branching of water waves and to shed particular flow or

penetration patterns due to impact of rain drops.

11.3 Summary

It is probably more than enough to provide so many figures just for showing the ser-

viceability of the chosen function basis and its associated coherence method of analysis;

nevertheless, these figures reveal many reasonable aspects of physics and justify the rea-

soning for the energy phenomena in the multi-scale coupling system concerning wind,

wave, and rain interactions. Most profoundly, we are further convinced that waves, es-

pecially those in our wave tank, are intrinsically modulating and instability should be a

common nature of water waves with even a slight nonlinearity. Therefore, the wavelet

approach is a tactic with more natural perception for both non-stationary and stationary
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Fig 11.15 (uuU ∼ r, d, w) The wavelet coherences between aqueous flows measured at different
depths without (top) and with (bottom) the rain (68 mm hr−1) under
two different wind velocities of 6.0 (left) and 5.1 (right) m s−1.
Here, the measurement section is right under the raining segment. Since
the aqueous flows were not measured simultaneously, the coherences are
relatively low. However, the two significant peaks show unambiguous
tendencies. The phenomenon here strongly indicates the tuning and de-
tuning mechanism related to rain drop’s beating effects as explained in
the text. An additional point regarding the effects of the non-orthogonal
wavelet constituents as opposed to the mutual exclusiveness of the or-
thogonal constituents is also stated in the text.
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Fig 11.16 (uu D ∼ r, d) The wavelet coherences between aqueous flows measured at different depths
without (top) and with (bottom) the rain (68 mm hr−1) under wind
velocity of 6.0 m s−1. Here, the measurement section is right behind the
raining segment. Quite in contrast to the cases where measurements are
taken right under the raining segment, the two peaks disappear and no trend
is observed.
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wave fields. Overall, experimental results, on the one hand, provide a practical validation

for the numerical experiments regarding the optimum function basis; and, on the other

hand, provide evidences of the physics concerning rain’s effects on the damping of waves

among the coupling scales. v
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Chapter 12
Conclusions

12.1 Introduction

The various subject matters in this study can basically be classified into the following

theses. The first is the identification of the best wavelet basis for water waves. The

second is the practical optimization of that best basis for better modeling of physics. The

third is the validation through the performance comparisons on coherences between the

wavelet approach and the Fourier spectral approach. The fourth is to provide an example

of application concerning the best wavelet and its coherence approach.

When the author embarked these studies and ventured into the wavelet utilization

on water waves each individual subject was initiated completely independently and the

downright interconnectedness was not foreseen. But, in the end, they sufficed to uphold

the present conclusion on the ultimate best wavelet for water waves.

12.2 Summary

For the interest of water wave related applications, comprehensive categories of discrete

wavelet bases, as well as the continuous wavelet, were studied. Extensive sets of Asyst

programs were developed from the ground up and a comprehensive workbench was de-

vised. The programs makes possible the illustrations of various intrinsic properties of



wavelets and their relevant characterizations, as well as their possible implications in wa-

ter wave physics.

Employing the jurisdiction of entropy statistics and the probability distributions of

transform coefficients the best wavelet basis in the discrete domain is identified. Further-

more, through the incorporation of the physics of the carrier frequency the correspond-

ing best wavelet in the continuous domain is discerned. That is to say, the best wavelet

in the discrete domain is the dual semi-orthogonal cardinal spline wavelet devised by

Chui [1, 2, 16] and the corresponding counterpart in the continuous domain is the Morlet

wavelet.

In addition to the identification of the best wavelet we further discuss the best wavelet’s

deficiency in physical modeling and provide an intuitive and practical optimization cater-

ing wave decay phenomenon.

To serve as a vindication of the aforementioned realizations, the wavelet coherences

associated with the best basis are compared to the Fourier spectral coherences for data of

wave and current fields measured in a wind-wave tank.

Finally, an energy cascade model concerning the interaction scales in the wind, wave

and rain coupling system is proposed and the best wavelet and its coherence approach put

into test for laboratory experiments.

It is the author belief that the best, as well as the ultimate, wavelet for water wave

modeling has thusly been named.

Below is a list of some of the main contents:

• The comprehensive discrete wavelet categories included:

– orthonormal;

– bi-orthogonal;

– semi-orthogonal;

– wavelet packet, both the best level bases and best branching bases;

– from the most symmetrical till the least symmetrical orthonormal;
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– from the most compactly supported in the time domain till the most compactly

supported in the frequency domain.

• The depictions of wavelet natures and their possible pragmatic implications:

– mother and farther wavelets;

– the concepts of wavelet translation and dilation;

– time-frequency window and the difference between scale and frequency, as

well as the Heisenberg uncertainty;

– the zoom-in or blowup of any individual wavelet and the fractal nature of

wavelets;

– the phase distributions of wavelet characteristic functions — the concept of

linear phase filtering versus the practical behaviors of wavelets, as well as

relevant advantages or disadvantages in water wave applications.

• The identification and the inclusion of Fourier bases — the entropy statistics, the

cumulative probability distributions:

– based on broad and inclusive criteria of entropy statistics — from energy point

of view, or from displacement point of view, etc;

– wind wave signals from a small laboratory water tank are used for the juris-

dictions — thusly, for water wave signals in the nature there cannot be any

wavelet that is more suitable than the optimal wavelet identified here, since

the present jurisdiction is made upon the highly transient short water waves

generated by wind;

– the relevance between the phase distribution of the wavelet characteristic func-

tion and the entropy;

– the solely and distinctly identifiable value in every entropy category points

to the same best discrete wavelet basis — the dual semi-orthogonal cardinal

spline wavelet;
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– entropy values for orthonormal wavelets are inferior to those of nonorthogonal

ones;

– in all criteria the best wavelet’s result is undoubtedly superior to the Fourier’s.

• The role of the phase distribution of wavelet characteristic function for basis con-

struction:

– the phase distributions of the characteristic functions for all wavelet categories

are provided;

– the distribution feature of phase hints a wavelet’s practical usefulness in water

wave physics;

– the entropy results are of statistics and they provide no analytical clues con-

cerning the usefulness of a basis — the property of the constant phase filtering

gives rise to the best performance concerning water wave simulations;

– an indication of the level of regularity of the shapes of water waves.

• The counterpart in the continuous domain to the best discrete wavelet:

– the Morlet wavelet and the carrier frequency;

– the manipulation of wavelet redundancy or non-orthogonality for the purpose

of minimizing uncertainty or ambiguity of wave analysis;

– the additional and specific advantages associated with the continuous domain

that lead to the usefulness in practical applications;

– the relevances among the redundancy, orthogonality, and phase distribution;

– the implications of the wavelet properties of “complete oscillation” and “total

positivity”;

– the limited practicality of instituting multi-voice or multi-wavelet algorithms

[20];

– the savvying of flexible constructions of wavelets time-frequency windows.
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• The further optimization for water wave physics:

– the decaying properties of water waves of different scales and the adaptation

of wavelet time-frequency window;

– the constant decay parameter of the continuous wavelet — unrealistic descrip-

tion, as well as an over-estimation of decay for longer waves and an under-

estimation for shorter waves;

– scales verse frequencies — mathematics versus physics — the importance of

the association of a wavelet and a carrier frequency parameter;

– the adaptation of wavelet time-frequency window and the carrier frequency;

– an intuitively proposed complementary error function and the modeling of

wave decay phenomenon;

– better ridge extractions for all scale range — numerical simulation using chirp

signals and real data from laboratory wave tank;

– a more suitable approach for discerning micro phenomena, such as possibly

feeble features evolving under multi-agent interactions.

• The comparisons of the wavelet coherences and the Fourier spectral coherences

– when compared to the Fourier coherence formulation, from mathematics to

statistics, the wavelet coherence formulation is a natural extension with less

artificial intervention;

– the poor performance of spectral coherences is reflected by the rapid variation

of the coherent curves as well as the extremely slow improvement when the

data lengths are increased;

– the wavelet coherent curves are consistently far superior to the Fourier coher-

ent ones.

• The symptoms related to the Fourier coherence can be attributed to:
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– the unsatisfactory deconvolution mechanism of a blackbox operation;

– the serious phase noise and ambiguity effects;

– the uncertainties associated with Fourier numerics;

– the rapid diminishing of autocorrelation functions;

– critical variations due to slight changes of signal – a symptom that is associ-

ated with an orthonormal bases.

• The superior performance of wavelet coherences can be attributed to:

– the basis functions being associated with the minimum entropy basis;

– the set of continuous transform coefficients being extremely redundant;

– with intimate analytical origin;

– less interventions and fewer side effects in numerics;

– with respect to their shapes of wave form, almost all the discrete basis func-

tions, except those of the best basis here, are too odd to serve the practical

simulation of water waves;

– the physical significance of the present adaptation of time-frequency windows

to the mimicking of wave decay or evolution;

– probably, the most fundamental, as well as the most primal, factor is that

component waves are intrinsically modulating in nature .

• As an example of application, the best wavelet and the coherence approach are used

to contemplate the physics for the rapid calming of waves in the coupling system of

the wind, wave and rain.

– an energy cascade model for the coupling system is proposed and the model

concerns the interaction scales among the wind, wave, and rain;

– problems related to existing studies, both theoretically and experimentally ori-

ented, on rain’s effects on waves are investigated; relevant experiments (apart
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from those of coherence-oriented) are also conducted to furnish a few evi-

dences and explanations;

– the energy cascade model focuses on two categories of mechanisms: one

emphasizes the local mechanism within the air and aqueous boundary lay-

ers and the other emphasizes the stratification-induced mechanism governing

the whole water body;

– the local mechanism reflects the role played by a match layer due to rain of

interfacial aqueous flows;

– the stratification-induced mechanism involves the following key elements: the

vortical contribution to wave attenuation, the impact of rain and the catalysts

of tuning and de-tuning processes, and the forming of tetra-interactions of sur-

face waves, and the diversification of coupling scales due to triad interactions

of surface and internal waves;

– the wavelet coherent features, either of wave-current or current-current, of

various scales under a few different settings, either wind or Stokes waves, are

used to expedite the arguments of the proposed mechanisms;

– the identified optimum wavelet basis and its associated method of coherent

analysis are able to form a sensitive tool for possible identifications or expla-

nations of the mechanisms and physics.

Lastly, a point to note again: Here we put up an optimal, as well as the ultimate,

wavelet basis that is both mathematically and physically right for water waves. Moreover,

together with its coherence approach, its applications for complex coupling systems can

be anticipated. And the author firmly believes that the best basis identified is the last word

in wavelets concerning their applications to water waves. v
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