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ABSTRACT

On July 30, 2014, a series of gas pipeline explosion accidents occurred in the
Kaohsiung City, Taiwan, which caused 32 people killed and 321 others injured. After
this, local government decided to substitute chemical truck for pipeline transporting
hazmat, so the risk of hazmat accidents was transferred to the city road system.
Therefore, the risk management of route for hazmat transporting needs to be noticed.

Hazmat transportation accidents usually followed with catastrophic losses and
cause heavy impact to society and environment, especially in populous or heavy traffic
area such Taiwan city. Further, the real traffic conditions are changing rapidly, which
leads to many uncertainties. Despite a large number of researches discussing the route
planning of hazmat transportation, most are static research. Thus, this research adopts
dynamic traffic characteristics. Besides, more and more cities tend to develop smart
city, which implies a growing number of real time traffic data are generated. That also
could provide decision maker to generate better decisions for hazmat transportation.

This research aims to develop a model for real time route optimization of hazmat
transportation based on multi-objective genetic algorithm. We consider two objectives
(transportation risk and cost) involving traffic travel time and traffic volume. The
proposed model is tested on realistic Kaohsiung network. Finally, the results present
the optimal routes of single O-D pair, multiple O-D pairs, and sensitivity analysis. This
research is expected to provide some recommendations and references for related

stakeholders such as hazmat industries, government, and residents.

Keywords: Hazmat transportation, Multi-objective, Genetic algorithm, Real time,

Route planning
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CHAPTER 1 INTRODUCTION

1.1 Research Background and Motivation

With the advance of communication technology, a growing number of real time
traffic data not only redefine the risk assessment but also assist in renewing the optimal
route for hazard materials (hazmat) transportation. On the other hand, it could timely
mitigate risk and decrease cost simultaneously for daily hazmat transporting on roads.
(Giglio et al., 2004). Because many time-varying components (the state of the road, of
the weather, of the driver, of the hazardous material) are no longer suitable for
conventional definitions proposed by past researches, this research needs to discuss the
tough problem and focuses on real time route planning of hazmat transportation.

Nowadays, enormous quantities of hazmat are transported to create numerous
chemical products for growing needs of daily commodities. But in terms of daily
transporting of chemical trucks, it causes an unpredictable damage when accidents
happen. In the United States, consequence of accidents caused huge damage during the
past decade: an average of 59 million dollars lost on the highway per year (Hazmat
Summary by Mode of Transportation, PSMSA, 2018). As for Taiwan, the related
statistics is so relatively insufficient that we could not know how severe the accidents
caused. But accidents of chemical trucks still happen somewhere in Taiwan to pose an
unreasonable risk to our health, safety, or property. Further route planning accounts for
the majority of hazmat transportation issues comparing with risk assessment and
facility location/emergency planning in the industrial countries (Faghih-Roohi et al.,
2016). Therefore, especially in Taiwan, which is a small island and high population

density, the problem of real time optimal route for hazmat transportation cannot be
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ignored in a rapidly changing traffic condition.

On 1% August 2014, a series of gas explosions happened in the southern Taiwanese
city of Kaohsiung. Not only the blasts rocked the city’s roads and vehicles but also
killed 32 people and injured 321 unfortunately. According to the investigation report
(Control Yuan Republic of China, Taiwan, 2014), bad transportation pipeline design
and careless management were the main reasons of the accident. Afterwards, due to the
residents lived nearby the affected area strongly worried that the pipeline accident will
be occurred again, the Kaohsiung city government to abandon the all hazmat pipeline
ofthe disaster area. Thus, the mode of hazmat transportation was changed from pipeline
transportation to chemical trucks to reduce citizens’ fear. Then numerous chemical
trucks were increasingly needed for remediation to original demand, whereas the
citizen’s safety concern shifts from pipeline transportation to the road, particularly in
the route assignment of chemical truck.

In the end of 2014, Kaohsiung city government announced that the regulation of
the restricted route and only allowed to pass within 6:00 a.m.-18:00 p.m. for chemical
trucks. In 2017, Toxic and Chemical Substances Bureau, Environmental Protection
Administration Executive Yuan, R.O.C. also regulated that the chemical trucks need to
equipped GPS for control easier. As described above, the restricted route not only lacks
risk assessment, but also the related academic research for endorsement. The hazmat
transporting route still poses a certain level of risk. Thus, the risk management of route
should be more noticed in Taiwan.

In the past, a large number of researches which related to route planning of hazmat
took static components as objectives. But many components should be time-dependent
and spatial characteristic in real traffic conditions. Such as driver behavior, status of

chemical truck, hazmat, and route segment, could cause different traffic conditions and
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different risk/cost levels. Thus, if the components are not dynamic, the results also could
not meet real conditions even though the proposed model could decide precisely
optimal route. In other words, the more accurate the analytical data is, the more
effective the analytical results are. Besides, more and more cities tend to develop
“smart city” (Chourabi et al., 2012), which implies a growing number of real time
traffic data are generated under the communication technology such as Internet of
Things (IoT) (Zanella et al., 2014). For decision maker, that not only assists in more
effective traffic management but also could provide more precise decisions for hazmat
transportation (Liu et al., 2012).

In order to enhance safety and meet real traffic conditions, this research constructs
a model based on multi-objective genetic algorithm for real time route optimization of
hazmat transportation. The model considers two objectives (transportation risk and
transportation cost) with dynamic components (traffic volume and travel time) because
high traffic volume may bring high risk of accidents and traffic congestion may cause
travel time lower over time. Further it is hard to collect the dynamic components
including traffic volume and travel time in traffic network, thus it is evaluated from
traffic simulation software (DynaTAIWAN) (Hu et al., 2007). The proposed model is
tested on realistic Kaohsiung city network and the results of experiments are presented

by different scenarios.

1.2 Research Objectives

The purpose of this research is to find optimal route of hazmat transportation with
different time interval. It means that we could and simultaneously mitigate risk and
decrease cost on the route assignment of chemical trucks over time. The results are

expected to provide practical recommendations and references for related stakeholders
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such as hazmat carrier, government and residents for further discussion. The objectives
are summarized as follows:

1. Define two objectives (transportation risk and cost) with real time traffic
characteristics. Static components include population distribution, accident rate,
average radius of the exposure region and so on. Dynamic components include
traffic volume and travel time. We update the time-varying traffic data with

particular time interval in our traffic network.

2. Develop a model based on real time multi-objective genetic algorithm and a
solution algorithm to find the Pareto solutions (minimize cost and risk
simultaneously). The results are divided into three parts: 1. presenting real time
optimal route for single O-D pair, 2. presenting sensitivity analysis by setting
different parameters of algorithm 3. presenting real time optimal routes of
multiple O-D pairs.

3. Develop a strategy based on weighting objectives to find the optimal routes and
to verify the results from multi-objective genetic algorithm. The reason is that
although heuristic algorithm could find optimal solutions within a reasonable

time, it does not guarantee the solutions are best. (Rocha & Neves, 1999)

1.3 Research Flow Chart

Figure 1.1 is the research flow chart and the following briefly describes research
tasks in respectively.
1. Research Background and Motivation
Explain the important issue of the hazmat transportation management and real time
route in Taiwan. Besides, define the purpose of research and outline the research

objectives.
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Literature Review

Review the hazmat transportation route problem, risk assessment, multi-objective
optimization and genetic algorithm. Further we reviewed the recent research about
real time hazmat route problem.

Problem Statement

Based on the research background and motivation, describe this issue in detail and
define the clear problem in this research.

Model Formulation and Solution Algorithms

We propose a model for real time route optimization of hazmat transportation.
Present the real time multi-objective genetic algorithm whose core is NSGA-II and
real time optimal route with two objectives including minimum transportation risk
and cost. Further, present the detailed definition, formulation and solution
algorithms.

Numerical experiments &Empirical Analysis

Beneath the Kaohsiung City network, collect the two objectives (transportation risk,
cost) with dynamic components and program the proposed model based on real time
multi-objective genetic algorithm.

Results and Discussion

This research presents the results of real time optimal routes and depicts the routes
on the Kaohsiung City network. Last, presents the empirical study by different
scenarios.

Conclusions and Suggestion

Because Taiwan has rare research related to real time hazmat route problem, this
research devoted to providing recommendations and references for related

stakeholders based on the results of numerical experiments in this section.
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CHAPTER 2 LITERATURE REVIEW

The purpose of this research is to develop a real time route optimization for hazmat
transportation base on a multi-objective genetic algorithm. Therefore, we focus on the
problem of multi-objective hazmat transportation combining with dynamic
components. Each of sections are detailed summarizing as follow: Section 2.1 reviews
the definitions, international regulations and accidents of hazmat transportation.
Section 2.2 reviews the risk assessment for hazmat transportation. Section 2.3 reviews
the multi-objective optimization approach and its application in hazmat management.
Section 2.4 reviews genetic algorithm, multi-objective genetic algorithm (MOGA) and
the elitist non-dominated sorting genetic algorithm II (NSGA-II). Section 2.5 reviews
real time hazmat route problem and the dynamic components. Section 2.6 summarizes

Chapter 2 by providing the key point from each section.

2.1 Hazmat Transportation

With the rapid development of the logistics industry, the transportation modes of
land, sea and air are closely related. Among those, also includes a considerable
quantities of hazmat transportation. However, hazmat possesses explosive,
flammability, toxic, corrosive infectious and radiative properties. In case hazmat
accidents happen, it often brings much greater harm to health, life, property and the
environment than general cargo. Thus, we must pay more attention to risk management.
The following sections focus on reviewing international regulations, definitions of

hazmat and practical accidents of hazmat transportation.
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2.1.1 International Regulations and Definitions

From first version of Recommendations on the Transport of Dangerous Goods
(1956) publishing, the United Nations Economic and Social Council (ECOSOC),
continuously revised it. In 2017, the version was updated to Twentieth revised edition.
Above shows that numerous issues of hazmat still be constantly discussed and revised.
The main concept of the recommendations is requirement for ensuring the safety of
people, property and the environment in the light of technical progress, the advent of
new substances and materials, the exigencies of modern transport systems.

In 1957, the United Nations Economic Commission for Europe (UNECE) enacted
the European Agreement concerning the International Carriage of Dangerous Goods by
Road (ADR) whose structure is consistent with that of the United Nations
Recommendations on the Transport of Dangerous Goods. The purpose of agreement is
mainly for hazmat regulations including packaging, labeling, equipment and transport.
Taiwan and more than forty countries complied with this to regulate the national
regulations for hazmat transportation.

As for United States, they established the Hazardous Materials Transportation Act
(HMTA) in 1975 based on Title 49 ofthe Code of Federal Regulations (CFR). It defined
hazmat as: if we cannot control the hazmat substance safely, it may cause health, safety
and property to unreasonable harm in commercial transportation. The purpose of the
Act is to protect and prevent the life, property and the environment from the impact of
the risks posed by hazmat in interstates, states and international business. Regulation
under the Act are categorized into four terms, including Procedures and Policies,

Material Designations & Labeling, Packaging Requirements and Operational Rules.
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2.1.2 Hazmat Transportation Accidents in United States

Figure 2.1 and Figure 2.2 shows the accidents of hazmat transportation during the
past decade. A total of 163,086 accidents have been reported to Pipeline and Hazardous
Materials Safety Administration (PHMSA). Accidents of land transportation (highway)
accounted for majority of percentage. Moreover, the number of accidents has gradually
increased. The consequence of these accidents caused totally 594 million dollars and the
average of 59 million dollars per year damage on the highway. Figure 2.3 indicates that

the damage 1s no significant decreasing during the past decade.

21,000
18,000

15,000

B FAA-AIR

W FMCSA-HIGHWAY
B FRA-RAILWAY

W USCG-WATER

12,000

9,000

6,000

3,000

2008 2009 V 2010 2011 2012 2013 2014 2015 2016 V 2017 V
Figure 2.1 Accidents by Mode and Incident Year
Source: Pipeline and Hazardous Materials Safety Administration

(2018 Hazmat Summary by Mode of Transportation)

Mode Of Transportation 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 &4}

FAA-AIR 1,278 17356 1,295 1,401 1,460 1,441 1,327 1,130 1,203 1,161 13,052
FMCSA-HIGHWAY 14,803 12,729 12,652 12,812 13,255 13,887 15316 15124 16,524 15,724 142,826
FRA-RAILWAY 748 641 747 744 661 667 717 580 545 568 6,618
USCG-WATER 100 90 105 71 70 63 47 24 11 9 590
gt 16,929 14,816 14,799 15,028 15,446 16,058 17,407 16,858 18,283 17,462 163,086

Figure 2.2 Accidents By Mode and Incident Year

Source: Pipeline and Hazardous Materials Safety Administration
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(2018 Hazmat Summary by Mode of Transportation)
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o

Figure 2.3 Damages on highway Incident Year
Source: Pipeline and Hazardous Materials Safety Administration

(2018 Hazmat Summary by Mode of Transportation)

2.1.3 Hazmat Transportation Accidents in Taiwan

The accidents of chemical trucks in Taiwan recently for two year shows in
Appendix (Table A-1). The table shows that overturn and collision accidents of
chemical truck are endless. Although the police officers and firefighters could be
immediately on-site accident after receiving the emergency notification, the accident
caused by the chemical truck requires more professional treatment than the general
traffic accident. Moreover, the traffic chaos and impact to environmental caused by
accidents are often more serious. After being transferred from pipeline transportation
to chemical truck, it appears to be more important for the regulation of hazmat

transportation.

10
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2.2 Risk Assessment for Hazmat transportation

As was mentioned in the beginning of this chapter, many academic research had
devoted great effort to exploring risk assessment. Because the accident of chemical
trucks might have spillage, flash fire or explosion when the collision and overturn
happened, the risk always have higher impact than the normal accident in general. They
also denote “danger circle” as the range of risk, because it is difficult to estimate some
characteristics such as meteorological conditions and topography, the effect on humans,
and the location of individuals at the time of the release. Then the danger circle is related
to probability of an accident, accident rate, conditional release probability, population
density, impact region and the length of the link. (Erkut & Verter, 1998) The following
focus on the definitions of risk and how risk assessment applied to hazmat
transportation problems.

Erkut and Verter summarized an overview of the risk definition of the transport of
hazmat, including the traditional risk, edge risk and path risk. They also define societal
risk as the product of link length, accident rate, conditional release probability,
population density and impact radius. (Erkut & Verter, 1998)

Erkut and Ingolfsson summarized the various classic path risk evaluation models
for hazmat transportation as Table 2-1, focusing either on one of the two attributes only
or on both. They illustrate that different researchers quantify hazmat transportation risk
depend on different perspectives and scenarios of problem. But they all have a common
objective—by finding an optimal route to maximally reduce its impact on society for

the hazmat transportation. (Erkut & Ingolfsson, 2005)
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Table 2-1 Classic path risk evaluation models

Model Risk measure Formula
TR Expected risk Ipeizy (i jyeal PijCij
(Traditional risk)
PE Population exposure IF&? Y (i.j)eal Cij
IP Incident probability rlrggl Y (ij)eal Dij
PR Perceived risk rlrggl Y (.jyeat Pij (€))7
MM Maximum risk min max c;;
leP (i,j)eAl

. _ 2
MV Mean variance min Y ipea®ijcij + kpij (Cij) )
DU Disutility min . ; jyeat Pij (exp (kciy — 1))
CR Conditional probability | ip Z00eatPUU

lEP X jyeal Pij

Kang et al. proposed a new measurement of risk model, value-at-risk (VaR) which
was most used in financial application in the past. The model introduced a new factor
of confidence level a meaning the decision maker’s risk preference. The objective of
the VaR model is to set the worst risk threshold by a shipment within a certain
confidence interval. That means the optimal VaR path varies under different o. In case
study, they addressed single-trip optimal hazmat shipment problem by selecting the
lowest VaR value. Further, they combined the VaR model with other models to list
several paths (better VaR values). (Kang, Batta, & Kwon, 2014)

Kwon extended the framework to conditional value-at-risk (CVaR) models which
was applied to deal with financial portfolio optimization. In VaR model, usually ignore
some road segments with very small accident probability but large accident

consequence. Compared with VaR, CVaR models can avoid the use of the links with
12
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large consequence by selecting a sufficiently large confidence level that stands for
extreme risk averse attitude. Further CVaR has better mathematical and computational

properties, in addition to the better behavior in long tail. (Kwon, 2011)

2.3 Multi-objective Optimization Approach

Hsu indicated that Multiple Criteria Decision Making (MCDM) includes Multiple
Objective Programming (MOP) and Multiple Attribute Decision Making (MADM).
The main difference could be summarized as the aspects of alternative solutions and
evaluated approach. MOP obtains the non-dominated solutions via mathematical
programming from infinite solutions (discrete). MADM obtains the non-dominated
solutions via relative importance from limited solutions. Further, MOP could be divided
into three categories as figure 2.4 which is related to informations, preference selection

and pratical method. (Hsu, 2003)

MOP

l A 4 l

Informations

Preference

Method

Decision maker to analyst

Combination of analyst and

Analyst to decision maker

(Top-down) decision maker (Interaction) (Bottom-up)
Prior Progressive preference Posterior

y

'

v

Noninferior solutions

Noninferior solutions

Set of noninferior solutions

Compromise Programming
Fuzzy Programming
Utility Function

Step Method

Geoffrion Method
Interactive Weight
Tchebycheff Procedure

v

Noninferior solutions

Weight Method
e-Constraint
NISE

Simplex Method

Figure 2.4 Categories of multiple objective programming
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Multi-objective optimization (also named as multi-objective programming, vector
optimization, and Pareto optimization etc.) has been applied in many fields of science,
including engineering, economics and logistics. In the field of transportation, most of
the objectives we considered such as travel time, distance, cost, congestion for the
transporting, considering the price, service level, and seamless transfer service always
have conflict. Thus, the goal of multi-objective optimization is to consider more than
one objective to be optimized simultaneously with mathematical optimization problems
involving. The optimal solutions of multi-objective optimization need to be taken in the
presence of trade-offs between two or more conflicting objectives. Besides, there exists
a (possibly infinite) number of Pareto optimal solutions, and none of the objective
functions can be improved in value without degrading some of the other objective
values. Then the general form, some applications of the multi-objective optimization

approach in hazmat and multi-objective genetic algorithm are reviewed as below.

2.3.1 General Form of Multi-objective Optimization

The model of multi-objective programming (MOP) is basically the expansion of
the single objective linear programming. The difference between them is that MOP can
simultaneously address two or more than two objectives, whereas single objective
programming only address one objective. The concept of MOP is vector optimization,
namely maxZ = [Z;,Z, ... ... ,Zp]which is a set of alternative solution, not a point
which obtain in the single objective programming.

Take a general mathematical form as example, there are n variables, m constraints
and p objectives, the form of multi-objective programming formulated as equation (2-

1) to (2-3).
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max Z(Xy, Xy, e o) Xp) = [Z1(X1, Xgy v w0y Xy woe ooy Zp (X, Koy e Xp)] - (2-1)

n

stZaUX] > bi' i = 1,2, ...... ,ym (2-2)
j=1

X;=0,j=12,.... ,n (2-3)

21,25, e ,Z, represent p single objective function, Z(Xy,Xj, ... ... , Xn)

represent the objective function. Given vector Z optimization situation, obtain one or
several solutions. A solution X = (X1, X5, ... ... ,X,)T isavector of n decision variables
which is the non-dominated solution (Pareto solution, Pareto optimal, Pareto efficient
or non-inferior) of the multiple objective programming. Given the inherent resource
allocation, non-dominated solution means that one feasible solution which have none
of the value of objective functions can be improved without reducing any the other
objective values.

For two solution x and y, x is said to dominate y if and only if equation (2-4) is
satisfied in a maximum problem, which represents that solution x is no worse than

solution y in all objectives, and strictly better than y in at least one variable

i€ (12,..,N),F,(x) = F(),and j € (1,2,...,N), F;(x) = F;(y) (2-4)

In Deb’s research, Figure 2.5 presented that Pareto-optimal set is continuous
curves. It could have four scenarios with two objectives. Each objective can be
minimized or maximized, so the objectives combinations are min-min, min-max, max-
min, and max-max. The gray region means the feasible solution region, and the black
continuous curves are the Pareto optimal sets (non-dominated solutions). (Deb, 2001)

Given the same search space, in the top-left of figure 2.5, the task is to minimize
both objectives f1 and f2. The black continuous curves mark the Pareto-optimal solution

set. If f1 is to be minimized and f2 is to be maximized, the result of Pareto-optimal set
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is different, which is shown in the top-right of figure 2.5. Similarly, the Pareto-optimal
sets for two other cases— (maximizing fl, minimizing f2) and (maximizing fl,
maximizing f2)—are shown in the bottom-left and bottom-right of figure 2.5,
respectively. In any case, the Pareto-optimal set always consists of solutions from a

particular edge of the feasible search region.

£ Min--Min £ Min--Max

£ £,

£ £
Figure 2.5 Pareto-optimal set with continuous curves (Deb, 2001)

Figure 2.6 presents the procedure of the principles in an ideal multi-objective
optimization. In Step 1 (vertically downwards), multiple trade-off solutions are found
(Pareto optimal). Moreover, the case of single-objective optimization is completed in
this step, because the optimal solution is only one. Thus, it will not enter next step. In
Step 2 (horizontally, towards the right), the higher-level information is provided to
choose one of the trade-off solutions. In the case of multi-objective optimization with
multiple global optimal needs to take both steps to first find all or many of the global
optimal and then to choose one from them by using the higher-level information in

some problems.
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Figure 2.6 Procedure of an ideal multi-objective optimization

Source: Multi-objective optimization (Deb, 2014)

2.3.2 Application of Multiple Objective Approach in Hazmat Management

The route planning of hazmat transportation is a multi-objective problem because
of different concerns from all parties. The government hopes that the transportation
route could be far away to the densely populated area to eliminate citizen’s fear, which
means risk consideration. On the other hand, the carriers hope that transportation cost
could be the least, which means cost consideration. However, the two factors often exist
conflict during simultaneously adopting as consideration objectives, so it be regarded
as multi-objective problem. Thus, a great number of researchers mainly concerned with
minimum cost and minimum risk simultaneously, some researchers concerned with
other objectives. In this section, multiple objective methodologies and objectives

applied in the issues are summarized in following Table 2-2.
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Table 2-2 Multiple objective approach in hazmat route

Authors& L.
Reference Methodology Objectives
Year
A multi-objective (Zografos & Mathematical Risk
programming model formulation Risk of special
for locating treatment | Davis, 1989) population categories
sites and routing Travel time
hazardous wastes Property damages
Multi-objective Stochastic Travel time

routing of hazardous

(Wijeratne et

Multi-objective

Rates of occurrence

materials in stochastic | 2l 1993) Shortest Path for accidents
network resulting in a release
of hazardous material
Operating cost
A model to assess (Current & Weighting Total transportation
risk, equity and method risk
efficiency in facility | Ratick, 1995) Total facility risk
location and Maximum transport
transportation exposure
Total operating costs
A multi-objective (Giannikos, Goal Total operating cost
programming model programming Total perceived risk
for locating treatment 1998) Distribution of risk
sites and routing among population
hazardous wastes centres
Equitable distribution
of the disutility
caused by the
operation of the
treatment facilities
A multi-objective (Chen et al, Multi-objective | Travel time
geographic GIS Transportation risk
information system 2008) The exposed
for route selection of population
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Authors&

Reference Methodology Objectives
Year
nuclear waste
transport
Multi-objective route R Li & compromise Travel time, accident
planning for programming probability, road

dangerous goods
using compromise

programming

Leung, 2011)

users at risk, off-road
population at risk,
special population at
risk and expected

damage on economy

A multi-objective

g-constraint

Impact on the normal

(Zhou et al,,
model for the traffic
hazardous materials 2012) Population exposure
transportation and the probability of
problem based on hazardous material
lane reservation. accident
A multi-objective (Samanlioglu, The Total cost
mathematical model lexicographic Total transportation
for the industrial 2013) weighted risk related to the
hazardous waste Tchebycheff population exposure
location-routing implementation | along transportation
problem routes of hazardous
materials and waste
residues
Total risk for the
population around
treatment and
disposal centers (site
risk)
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Authors&

Reference Methodology Objectives
Year

A genetic algorithm (R. Li et al, Genetic Travel time, accident

for multi-objective algorithm probability, on-road

dangerous goods 2013) exposure risk, off-

route planning road exposure risk,
people with special
needs at risk,
negative impact on
economy, and
emergency response
capabilities

Optimization for X. Li & Dijkstra Transportation risk

Hazardous Materials Algorithm, Distance

Road Transportation | 11418 2013) | App Cost

Based on Multi-
objective Method

Cost and risk

(Pamucar et

Adaptive neuro

Operating cost

aggregation in multi- fuzzy inference | Emergency response
objective route al., 2016) system, Risk associated with
planning for Artificial bee the environment
hazardous materials colony Risk of'an accident
transportation—A algorithm, The Consequences of
neuro-fuzzy and Dijkstra’s an accident
artificial bee colony algorithm Risk associated with
approach infrastructure
Risk of terror
attack/hijack
An Improved Multi- (Yu & | Augmented &- Facility risk and
Objective constraint transportation risk
Programming with Solvang, method fixed facility costs,
Augmented - 2016) processing costs of
Constraint Method hazardous waste, and
for Hazardous Waste transportation costs
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Authors& ..
Reference . Methodology Objectives
ear

Location-Routing

Problems

Using metaheuristic (Rabbani et NSGA-II, Total site risk
algorithms to solve a Multi- Transportation cost
multi-objective al., 2018) Objective Transportation risk
industrial hazardous Particle Swarm

waste location- Optimization

routing problem
considering

incompatible waste

types

2.4 Genetic Algorithm

Multi-objective problem always considers two or more than two objectives, but
most of methods still use general single-objective optimization by regarding one of
them as an objective function and the other objectives as constraint. The usual process
is to normalize the objectives and give weight depend on their importance in the
objective function such as like weighting method. However, it is troublesome for
decision makers to express their preferences for various objectives in an abstract and
specific circumstance without earlier information (Zionts & Wallenius, 1976). But in
Genetic Algorithm (GA) application, the decision makers do not need to decide the
objectives priority, preferences and weight in main objective function.

In 1975, Holland (1975) first proposed Genetic Algorithm (GA) which is used for
finding optimized solutions to deal with problems based on the theory of natural

selection and evolutionary biology. It is not only a heuristic search method, but also a
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branch of Artificial Intelligent. Moreover, GA is suitable and excellent to address a wide

range of real-world problems through large and complex data sets. Even more, it could

find reasonable and optimal solutions within quick time. A genetic algorithm

optimization framework was illustrated in Figure 2.7.

The problem

Generate 1nitial population

Y

A 4

Evaluate Fitness

Y

Genetic operations

Selection and Crossover
reproduction operator

J

Mutation

Y

Generate next generation

No Satisfied the

termination
condition

Pareto optimal

Figure 2.7 Genetic algorithm framework
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1. Encoding:
Encoding represents that we need to transfer the problem to program language such
as binary digit (0,1). Then various presenting method has been raised to evaluate it.
Thus, the encoding code corresponds to genes, and genes are also the basic unit of
chromosome. In other words, we encode the genes in a chromosome. Last, the final
solution vector is selected by GA among the chromosomes.

2. Generate Initial Population:
A set of chromosomes construct initial population. Each chromosome is a solution
to the problem that research want to solve. The constructive methods are various
such as random walk and heuristic initialization. Further the size of population
could cause the solving efficiency. Large size of population has higher probability
and longer computing time to find the optimal solution while small size of
population could converge too early for finding the optimal solution.

3. Evaluate Fitness:
The fitness function could determine whether a chromosome has the ability to
compete with other chromosomes. The fitness function gives each chromosome
fitness score. In general, higher fitness score has higher probability to be selected
to the next generation. Thus, excellent chromosome could be reserved.

4. Selection and Reproduction:
There are various selection methods to select the chromosome with higher fitness
scores, and the Roulette Wheel (or fitness proportional) selection is traditional
selection method. This proportionally allocates each chromosome a probability of
being selected depend on fitness score. Then the chromosomes with higher fitness

score have more chance to be selected for reproduction.
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5. Crossover Operator:

The phase in a genetic algorithm is core mechanism. For each chromosome could

be mated by another one to generate offspring. These are created by exchanging the

genes of parents among themselves until the crossover point is matched.
6. Mutation:

During period of forming new offspring, a mutation with a low random probability

happen in some of their genes. There are two goals, one is building the new solving

possible to keep diversity. The other one is to reimport the lost information in the
evaluated process.
7. Termination Condition:

General termination conditions have three situation and means that reach the

optimal solution.

(1) Setting numbers of generation: This method could stop the solving process
when fit the numbers of generation and control the computing time, but might
not find the best optimal solution or could not converge.

(2) Reach the target fitness score: Reaching the target fitness score setting is to find
the optimal solution.

(3) Convergence: It causes evolution to halt because precisely every fitness score
of chromosomes in the population is identical meaning convergence and find

the optimal solution.

2.4.1 Multi-objective Genetic Algorithm (MOGA)

Konak et al. (Konak et al., 2006) presented multi-objective GA (MOGA) and
summarized a list of well-known multi-objective GA. Research focused on their

components and the distinguished issues encountered while implementing multi-
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objective GA. The main goal is to compare the evaluation of different multiple objective
genetic algorithm. Table 2-3 highlights a list of representative multi-objective GA with
their characteristics and authors. Compared with single objective GA, multi-objective
GA needs to face the conflicting problem and satisfy three claims as our literature
knowledge. 1. Assess and select properly the Pareto optimal solution and reproduce to
next population. 2. Keep the chromosomes set and Pareto optimal solution in diversity.
3. Construct the effective mechanism with crossover, mutation and reproduction for
forming Pareto optimal solution.

Table 2-3 A list of representative multi-objective GA

Generation Characteristics Algorithm Authors
I Pareto sorting VEGA (Schaffer, 1985)
II Pareto sorting and MOGA (Fonseca & Fleming, 1993)

keeping diversity

II1 Multi-objective RWGA (Ishibuchi & Murata, 1998)
function with AWGA (Gen & Cheng, 2000)
weight and elitism SPEA-II (Zitzler et al., 2001)
NSGA-II (Deb et al., 2002)

[-AWGA (Gen, Cheng, & Lin, 2008)

Schaffer (Schaffer, 1985) proposed the first multi-objective GA, called vector
evaluated GA (VEGA). The procedure is introduced as below. Step 1, it divided
population P into K equal sized sub-populations: P;, P,, ..., P,. Then, each solution in
sub-population P; is assigned a fitness value based on objective function Z;. Step 2,
combine all sub-populations. Step 3, solutions Pw1 are selected from these sub-
populations by proportional selection for crossover and mutation. Step 4, satisfy the
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terminal condition or return to Step 1. But the final Pareto solutions from the model
cannot uniformly satisfy the conflicting objectives.

Deb et al. (Deb et al., 2002) introduced the elitist non-dominated sorting genetic
algorithm II (NSGA 1II) in order to modify a number of criticisms of the non-
dominated sorting genetic algorithm (NSGA) (Srinivas & Deb, 1994). Compared with
NSGA, there are three main improvements for more effective solutions. That is fast
non-dominated sorting approach, elitism strategy and crowded comparison operation.

The procedure of fitness computation and choosing are depicted as Figure 2.8.

Non-dominated Crowding
sorting distance sorting
Py
Fl FEARY™E S >
Pt F2 § | i — ¥
F; M
} Rejected

Q
Rejected

Ry

Figure 2.8 NSGA II fitness computation and select procedure

A more comprehensive steps are presented.
For t=0

Step I:  Arandom parent population P, of size N is created

26

doi:10.6844/NCKU201901038



Step 2. The child population Q, of size N is created by crossover and mutation
procedure from P,

Fort>1

Step 3:  Combine parent and children population as R; = P, U Q;. R; is size 2N.

Step 4. Sorting the non-dominated fronts F;, F,, ..., F;, in R, as figure 2.9

Step 5 : Calculate crowding distance of the sorted solutions in all the fronts F;.

Step 6 : Create P,,, as follows:
Case 1: If |Pyyq1| + |F;| <N, thenset P,y = Prpq UF;.
Case 2: If |P.yq|+|F;| >N, then add the least crowded N — |P,4|
solutions from F; to P;,,.

Step 7:  Use tournament selection based on the crowding distance to select parents
from P;,;. Then apply crossover and mutation to P;,; to create child
population Q;,,; ofsize N.

Step 8:  Sett=t+ 1, and go to Step 3.

£
® e
o e "o
\“‘ '\\\‘. x“\\\O“-
O‘x O Q Third front (F3)
O Q- Second front (F2)
@

O First front (F1)

/i

Figure 2.9 Fast non-dominated sorting approach

2.5 Real Time Hazmat Route Problem

In a real environment, many components should be dynamic including time-
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dependent and spatial characteristics. Components such as driver behavior, status of
chemical truck, hazmat, and route segment, can cause different traffic conditions and
different risk/cost levels. Thus, if the components are not dynamic, the results also could
not meet real traffic conditions even though the proposed model could decide precisely
optimal route. In other words, the more accurate the data is, the more effective the
results are. Thus, due to the influence of rapidly changing traffic conditions, the real
time optimal route could timely mitigate risk and decrease cost for daily hazmat

transporting on roads (Giglio et al., 2004).

2.5.1 Static and Dynamic Components

More and more cities tend to develop ““smart city” (Chourabi et al., 2012), which
implies a growing number of real time traffic data are generated under the innovative
communication technology such as sensors, 5G, IoT and communication equipment
(Zanella et al., 2014). For decision maker, that not only assists in more effective traffic
management but also could provide more precise decisions for hazmat transportation
(Liu et al, 2012). In fact, the objectives of model include static and dynamic
components. The Table 2-4 shows main factors affecting the risk and cost in hazmat
transportation. Therefore, the most of sources of static components could be collected
from government open platform, but the dynamic components are hardly observed
because of lacking various technologies to collect. Thus, these real time traffic data are
collected by traffic simulation software and past researches to closely meet real traffic

conditions. (Giglio et al., 2004)
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Table 2-4 Factors affecting route risk and cost in hazmat transportation

Factors Static components Dynamic components

Driver Age, training condition Physiological state
Mental state

Roads familiarity

Chemical Truck | Periodic examination Components conditions
Speed
Hazmat Type of Hazmat at start of | Chemical and physical
route conditions
Route segment | Length of road Traffic flow
Type of road Travel time
Residents Not fixed population on the

Prohibited route for hazmat | route

transportation Weather condition

2.5.2 Applications of Real Time Hazmat Route Problem

Toumazis and Kwon first proposed a new method for hazmat routing on time-
dependent networks based on conditional value at risk (CVaR). CVaR is generally used
to deal with financial institutions for portfolio optimization, but this research considers
CVaR as the main risk objective in optimization of hazmat transportation network. They
also extended the static model to the dynamic model by regarding accident probabilities
and accident consequences as time-dependent components. That is, the probability of
the components in the links mainly depend on the traffic conditions. Further, they
computed the accident probabilities based on Poisson distribution which is suitable for
rare event like hazmat accidents. (Toumazis & Kwon, 2013)

Faghih-Roohi et al. also proposed a dynamic model for hazmat transportation
routing and scheduling with conditional value at risk (CVaR). CVaR model was prove
as a flexible, suitable, efficient method for hazmat transportation. The design of

experiment in this research is to input several scenarios including different sort of
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hazmat and time schedules. First, find the lowest risk of sort of hazmat to transport,
then compute the other hazmat risk and update the optimal route again. Repeat above
process until every hazmat finish the transporting tasks. (Faghih-Roohi et al., 2016)
Qu et al. used a new methodology for addressing dynamic routing optimization of
the chemical hazmat transportation. The process is divided into four major stages: (i)
information collection and preparation; (i1)) modeling and solving individual and system
routing models; (iil) reactive routing optimization under uncertainties; and (iv) trade-
off study for potential shipping delays. A novel mixed integer linear programming
(MILP) model is developed to determine the optimal shipping path via minimizing the
transportation risk, then the routing model consists two parts: the individual and system
routing models. The strategy of this research considers updating the optimal route when
uncertainties occur. The uncertainties refer to change of weather and the occurrence of
incidents. Moreover, if some shipping time violates the time limits, optimal solutions
subject to different allowable shipping time (AST) are iteratively identified, so that the
relation between AST and the corresponding transportation risk can be figured out. (Qu

et al,, 2018)

2.6 Summary

As was mentioned in the previous sections, many models had been proposed to
obtain optimal hazmat transportation route, but most of them deal with various
problems by different approaches. All evaluated manner mainly considered two of the
most important objectives — risk and cost, which usually have conflicting situation.
Thus, they applied diverse multi-objective optimization to solve dilemma situation.
Moreover, because some of multi-objective optimization have the requirement of prior

preference, the weight needs to be collected by experts through analytic hierarchy
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process (AHP) or other methods.

Dréo et al. (Dréo et al., 2006) had proposed, in MOP, there are two kinds of
problems which cause ineffective solutions. First is “NP-difficult”” whose computing
time is too long to generate effective solutions. Second is “Global and Local optimum™,
that is difficult to completely ensure that the solutions are the best. Therefore, this
research constructs heuristic algorithm based on multi-objective genetic algorithm.
With the ability of multi-objective genetic algorithm to search the global domain, the
optimal solutions could be obtained within a reasonable time. (Sivanandam & Deepa,
2008) Especially in real time optimal route for hazmat transportation, it needs also more
effective algorithm to deal with the complex network. This research aims at solving the
hazmat transportation risk and cost objectives simultaneously and using NSGA-II to
solve the real time route problem. The detailed description of the model formulation is

discussed in the next chapter.

31

doi:10.6844/NCKU201901038



CHAPTER 3 RESEARCH METHODOLOGY

As described in Chapter 1, the purpose of this research is to formulate a model for
real time route optimization of hazmat transportation. Use real time multi-objective
genetic algorithm to deal with the route planning problem and obtain Pareto optimal
which also called real time optimal route with two objectives including minimum
transportation risk and cost. Chapter 3 is organized as follows. Section 3.1 presents the
conceptual framework. Section 3.2 presents the problem statement and the research
assumptions of this research. Section 3.3 illustrates the research framework to describe
the procedure of the methodology. Section 3.4 proposes and discusses the model
formulation of problem. Section 3.5 discusses the solution algorithm applied in this

problem.

3.1 Conceptual Framework

Most of research takes static components as objectives to develop optimal route
for hazmat transportation. But in a real world, due to the influence of rapidly changing
traffic conditions, many elements should be dynamic including time-dependent and
spatial characteristic. Such as driver behavior, status of chemical truck, hazmat, and
route segment, could cause different traffic conditions and different risk/cost levels.
Thus, this research considers two objectives (risk, cost) with dynamic components,
which concerns carrier and government points of view. Based on real time multi-
objective genetic algorithm, we obtain real time optimal route that timely mitigate risk
and decrease cost on roads (Giglio et al., 2004). We extend static model proposed by
Liao et al. to dynamic model (Liao et al., 2017). In selecting the objectives, we do not
consider the emergency response capability because it is static characters. The

algorithm is also changed from MOGA to Real time-MOGA. The main conceptual
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framework is formulated in Figure 3.1.

Static

Real time

Dynamic

MOGA
Objectives
_______ A | . - T /A
| P | | Emergency |
I Cost | I Risk I I Response |
L oL 1 L _Capability |
A
Traffic conditions
A
Real time-MOGA
Objectives
T N T 1T
| Locatl_on of | Cost I ' Risk
| vehicle | | | |
L __ g L _ a L __

Figure 3.1 Conceptual framework

3.2 Problem Statement and Research Assumptions

In this research, we define time as ¢, which means the planning horizon is

discretized into small time interval, such as one, two or five minutes. The model is

formulated as follows: Given a hazmat transportation network G= (N; 4), where N is

the set of nodes and A is the set of directed links. Each link (i, j ) is associated with

transportation risk (Ritj), and transportation cost (C, f]) In this network, for a single-trip

risk and cost optimization problem, we define that the origin node is s, the destination

is 7 and the others are intermediate nodes. Each route belongs to a solution set, which

has the total transportation risk of solution / of route set p (TR;,’t) and the total

transportation cost of solution / of route set p (TCIl,'t). Besides, we update the vehicle

location and the objectives within particular time interval to generate next round’s

parameter including O-D pair, risk and cost.
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According to above description, the assumptions and framework of this research

are described as follows:

1. While conducting the experiment, only single hazmat with highest risk level
of hazmat is considered. Moreover, the problem of fleet vehicles is not under
consideration.

2. Updating optimal hazmat route depends on vehicle location and particular time
interval.

3. Due to insufficient hazmat transportation data in Taiwan, we set the parameter
in Poisson distribution based on the definition proposed by Toumazis and
Kwon (2013).

4. Only two types of dynamic components (travel time and traffic volume) are
considered in real traffic conditions. The population density of every area

changes during the day is not under consideration.

3.3 Research Framework

The research framework of real time route optimization for hazmat transportation
network planning is presented in Figure 3.2. The framework includes four main parts:
Objectives setting, applying dynamic components in real time-MOGA, non-dominated
solutions and optimal decision making. The details of each part are described as
follows:

1. Objectives setting: As previous reviewed in Section 2.2, the hazmat transportation
problem usually takes transportation risk and transportation cost and into
consideration. Further, the risk of link is defined as ““danger circle”, which includes

probability and consequence of an accident of the link at different time interval.

34

doi:10.6844/NCKU201901038



Then, the cost is defined as operator cost, travel time and length of the link at
different time interval. In this research, the objectives definition of risk, cost,
vehicle location are defined as following Section 3.4.1 and be calculated on each
links.

Applying dynamic components in real time-MOGA: For the real time optimal route
of hazmat transportation, we update vehicle location, the two objectives (risk, cost)
with dynamic components under particular time interval. Then we also identify the
vehicle location en route to renew the O-D pair. Because we have to consider
simultaneously the minimum risk and cost objectives in route planning, we
proposed the real time-MOGA to deal with the dilemma situation.

Non-dominated solutions: We solve the non-dominated solutions (optimal route) by
a real time multi-objective genetic algorithm. The core of real time-MOGA is
NSGA-II. Section 2.4.1 shows the basic concept and flowchart of NSGA-II. The
more detailed flow chart about real time multi-objective genetic algorithms are
presented in Figure 3.5. Under the particular time interval, if the hazmat vehicle has
not arrived at the final destination yet, the procedure turns back to step 2 to update
the dynamic components.

Optimal decision making: For each single O-D pair, we pick the final transporting
route form the non-dominated solution generated by the real time-MOGA as
suggested hazmat transportation routes. As for multiple O-D pairs, we proposed a
strategy to balance the transportation risk on our transporting network. As the result,

the optimal route network for hazmat transportation has gradually been formed.
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Real time route optimization for

hazmat transportation problem

Objectives with dynamic components

| Vehicle
| Location

Real time-MOGA

A 4

Non-dominated Solutions

A 4

Suggested Hazmat Transportation Routes

A 4

Optimal Hazmat Transportation Network

Figure 3.2 Research framework

3.4 Model Formulation

This section shows descriptions and definitions of criteria. This research develops

real time multi-objective genetic algorithm models with two conflicting objectives

including minimum total cost, minimum total risk. The definitions of risk and cost in

each link are discussed in Section 3.4.1. The summary of notations and model

formulations are listed in Section 3.4.2.
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3.4.1 Definition of Criteria

Particular time interval and vehicle location

We set time ¢ as particular time interval of hazmat transporting. Two conditions
are addressed. First, if the next node of vehicle location at time 7 is not destination, we
need to update optimal route with real time-MOGA as Figure 3.3. Second, if the next
node of vehicle location at time ¢ is destination, we do not need to update optimal route
as Figure 3.4. When vehicle arrive destination, we terminate the procedure of hazmat

transporting.

Updating original node at time t

Direction of driving

@_____

7
®

Vehicle location at time t

Figure 3.3 Condition of updating optimal route

Updating original node equals to destination

Direction of driving

Vehicle location at time t

Figure 3.4 Condition of terminating updating optimal route
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Link cost

For each link on the network, this research adds ¢ as the time characteristic which
depends on vehicle location and defined transportation cost as travel time (Citj).
Compared with past static researches, we select the travel time evaluated by link length
and travel velocity as the operating cost as equation (3-1). Then with particular time
interval, the travel velocity is obtained by the result of traffic simulation software
(DynaTAIWAN), and the link length is measured by Google Map. The link cost is
evaluated as follow:
Time-dependent link cost C l-tj = Time-dependent link travel time =
Link length (L;j) / Time-dependent link travel velocity (V5) (Vi,j € A, Vt), (3-1)

The definition of transportation cost for link (i, j) includes link length and travel
velocity of link at time interval z.
Link risk

In Section 2.2, various risk models had been proposed to assess the risk on the
hazmat transporting route. In this research, we adopt the concept of risk assessment
proposed by Erkut and Verter (Erkut & Verter, 1998) and the accident probability and
accident consequences proposed by (Toumazis & Kwon, 2013). For each link on the
network, the time-dependent accident probability (Pl-tj) was defined as a Poisson
distribution whose parameter is presented as ufj. Parameter ufj can be measured
based on the information derived from road conditions such as accident rates, length of
link and hourly traffic volume with particular time interval. As for time-dependent link
accident consequences can be measured based on radius of the exposure region,
population density in the neighborhood of link, length of link and hourly traffic volume
with particular time interval. Radius of the exposure region is estimated by hazard

modeling program, ALOHA 5.4.4. As mentioned above, the main reason we adopt
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hourly traffic volume as time-dependent parameter is that we would like to avoid large-
scale vehicle exposure when accident happens. The link risk is evaluated as follow:
Time-dependent link risk (Rf;) = (Vi,j € A, Vt), (3-2)
Time-dependent link accident probability (Pl-t]-)
*Time-dependent link accident consequences (AC l-t]-)
uf; = (vi,j € A, Vt), (3-3)
(Hazmat accident rate per mile/vehicle) * (Length of
link)* (Hourly traffic volume at time t)

= (3.19922%1077)*L;; *TV};

nf;~ Poisson (uf;) (Vi,j € A, V), (3-4)

P{; =1 —pr{No accident occurs} (Vi,j € 4, Vt), (3-5)
t ”ltj

=1- (ui"le el =0

Time-dependent link accident consequences (ACl-tj) = (Vi,j € A, Vt), (3-6)

wy * (1 = ré * D) + wy —(Z*r”:jw‘g)

The definition of transportation risk for link (i, j) includes accident probabilities
and accident consequences of link at time interval 7. Equation (3-3) is the Poisson
parameter evaluated by accident rate, length of link and traffic volume at time interval
t. Equation (3-4) represents that the accident probabilities is subjected to Poisson
distribution. Equation (3-5) is the definition of accident consequences evaluated by
average radius of the hazmat exposure region, population density, length of link and
traffic volume at time interval ¢. Note here that the hazmat accident rate per mile/vehicle
is based on Comparative Risks of Hazardous Materials and Non-Hazardous Materials

Truck Shipment Accidents/Incidents (2001) from Federal Motor Carrier Safety

Administration.

39

doi:10.6844/NCKU201901038



3.4.2 Formulation

This section discusses the model formulation of the real time multi-objective
hazmat transportation routing problem. Two objectives are considered including cost

and risk with particular time interval. The notations of the formulation are listed in

Table 3-1.
Table 3-1 Notations of the model formulation
Notation Definition
Set

G =(N,4) | Asetofnodes N and a set of links 4 build up the network.

M The set of intermediate nodes.

Decision variables

X{; If link (i,/) is selected into the route, X;=1 at time interval ¢

Otherwise, X};=0 (time: 7)

Parameters

TRé,t The total transportation risk of alternative p of route / at time
interval ¢

TCzl,t The total transportation cost of alternative p of route / at time
interval ¢

Rl-tj The risk of link (7, ;) at time interval ¢

Citj The cost of link (i, j) at time interval ¢

R_{] Standardization of the risk of link (7, j) at time interval ¢

C_Lt] Standardization of the cost of link (7, /) at time interval ¢

Vi§- The travel velocity of link (7, ;) at time interval ¢

Ly; The length of link (i, /)
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Pitj Accident probabilities on link (7, j ) at time interval ¢
ACitj The accident consequences of link (7, ) at time interval ¢
uf ; The parameter in Poisson distribution
nfj The number of hazmat accidents of link (i, ) at time interval ¢
TV, The hourly traffic volume of link (i, j) at time interval ¢
1y The average radius of the exposure region on link (7, j )
D;; The population density in the neighborhood of arc (i, /)
AR;j The hazmat accident rate of link (i, )
w; The weight of population density
Wy The weight of traffic volume
Objective function
Risk
Min TRy = Yien Xjen Rl X X§; (3-7)
Cost
MinTCy = Eien Xjen Cf X X§; (3-8)
Subject to
- ct
t — 1] (3‘9)
U Max(Citj)
- RE.
£ ij (3-10)
U Max(Rl-t]-)
1 Vi€Es (3-11)
0 otherwise
Xitj >1 V(,j)eA (3-12)

Two objectives are described in equation (3-7) and (3-8). Equation (3-7) minimize
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the total transportation risk of solution / of route p at time 7. Equation (3-8) minimize
the total transportation cost of solution / of route p at time ¢. In order to address different
unit simultaneously, it is needed to standardize the two considered objectives and
presented in (3-9) and (3-10). Each link of calculation value divided by the maximum
of all of the links is the chosen standardized procedure. Last equations (3-11) and (3-
12) are flow conservation equations. Then based on the descriptions and definitions of
transportation risk and transportation cost in this section, the solution algorithm is built

in the next section.

3.5 Solution Algorithm

This section shows the overall model for real time route optimization for hazmat
transportation. We adopt a real time multi-objective genetic algorithm with two
conflicting objectives including minimum total transportation risk and cost. Then
consider the time characteristic, so we update the two objectives and vehicle location
under particular time interval. The procedure of model framework is presented as

Figure 3.5.
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Environmental

Set model parameters Network structure

l
Identify Location of shipping O-D

Real-time MOGA

MOGA
Initialization Update dynamic components with
I particular time interval
Breeding Selection Network
operation 3 New start node conditions:
3 and destination Cost, risk
(DynaTAIWAN)
Termination condition
NO
Yes
If next node of vehicle
location is destination NO
Yes

Arrived destination(s)

End

Figure 3.5 Model framework

First, we set up an experimental network, model parameters, and the O-D pair.
Second, execute the multi-objective genetic algorithm with two objectives to obtain
Pareto optimal solutions (optimal route). Third, we identify the optimal route and get
vehicle location at particular time interval. If the next node of vehicle location is not
destination, we update the dynamic components and new start node at particular time
interval. Last, execute the second step until next node is destination. The detailed

procedure of real-time MOGA is formulated in Section 3.5.1 and Section 3.5.2. Last, if
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the vehicle has not arrived the destination yet, trigger the particular time interval to
return to second step. If the vehicle has arrived the destination, the procedure is

terminated.
3.5.1 Procedure of Genetic Algorithm

This section provides basic procedure of genetic algorithm including encoding,
generating initial population, fitness evaluation and offspring. Stepl: Encoding of
problem is depicted as Figure 3.6. Each of populations, we define the basic unit of
chromosome as alternative routes and the genes in each chromosome as nodes. Step2:
Generating initial population is depicted as Figure 3.7, we use the shortest path
algorithm (Dijkstra algorithm) (Dijkstra, 1959) and random walk to generate initial
population (P§) with n alternative routes at time z. (Note that the network does not
include negative edges) Step3: Fitness evaluation is depicted as Figure 3.7, the total
transportation risk (TR;O’t) and cost (TCzl,’t) of each alternative route are fitness

evaluation.

-
-
-
-
-«

Figure 3.6 Encoding procedure
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Chromosome number

Fitness evaluation

Figure 3.7 Generating initial population and fitness evaluation procedure

Step4: Generating of offspring is divided into three part: selection, crossover

operator and mutation. 1. Selection follows the procedure NSGA-II. That is discussed

in Section 3.5.2. 2. The crossover operator is that randomly pick two chromosomes up

and crossover the routes at same genes (nodes) depending on setting the crossover rate,

which is depicted as Figure 3.8. The mutation is that select a node randomly in the route

besides origin and destination. Using shortest path algorithm to renew the route after

the selected node, which is depicted as Figure 3.9.

45

doi:10.6844/NCKU201901038



0 2 5| 7 11 19 22 | 25] 32| d
0 3 12| 6 11 28| 29| 33| 38| d
Crossover at node 11
0 21 5|7 11 |28 29| 33| 38| d
0 3126|1119 2225 32| d
Figure 3.8 Crossover operator procedure
0 2 S| 71119 22|25 32| d
Mutation at node 11
0 2 501 7 11 {22 27 30| 35| d

Figure 3.9 Mutation procedure

3.5.2 Procedure of NSGA-II

As mentioned in Section 3.5.1, NSGA II (Non-dominated Sorting Genetic

Algorithm II) is one of multi-objective genetic algorithm. Using fast dominated

sorting approach and crowding distance to select and duplicate the next generation is

main characteristic. Thus, this section introduces the characteristic and solution

procedure of NSGA-II.
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Fast non-dominated soring

Fast non-dominated soring is a method to sort all of the solutions (alternative routes)
in population into respective front, whose procedure is showed in Figure 3.10. Then
Figure 3.11 is a two-objective example. Each solution includes total transportation risk
and cost of. The solutions (number 1) in 1st front (Pareto front) means that it cannot
find any solution to dominate this solution, that is, no solutions exist in the space
between the solution intersecting the x and y axis. If there are n solutions in the space,
the ranking number of solutions is n+/. For example, the number 3 in Figure 3.11
means the solution belong to the third front. This solution is dominated by 2 solutions.
Hence, the formulation of fast non-dominated sorting is presented as follow:

r(x,t) =1+ nq(xt) (3-13)

Non-dominated
sorting

N __:>;-. ________ |-

Q

R

Figure 3.10 Procedure of fast non-dominated soring
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n risk
_I_
(9]

ansportatio

Total tr

4

Total transportation cost

Figure 3.11 Example of fast non-dominated sorting

Crowding distance

According to the ranking number of solutions, the solutions in the 1st front is better
than other solutions of front. Thus, the smaller ranking number of solutions represents
that the solution is better. Then the solutions from first non-dominated front F; and the
set F, are chosen to fill next population until select N (population size) solutions.
When the quantities of solutions from the selected front third F; are more than the
needs of next population, we use crowding distance to sort the solutions in descending
order and choose the best solutions to fill the next population. The procedure of

crowding distance is depicted in Figure 3.12.
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Crowding
distance sorting
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F, N EEnEEEEEEEEP PR .
F, N EEEECEEEEEEREEEE .
F; P

Ol N o :
Rejected

I:l Rejected

Figure 3.12 Procedure of crowding distance
The selection process is that let [ = |F]| represents the quantities of solutions in
front F; and xp;x; represents the ith solution in the sorting list with respect to the
objectives function k. Set cdy(x[1x)) = % and cdy (X[ k) = . Equation (3-14)
means taking the near solution values in the same front to minus then dividing by the
difference of maximum and minimum objective value of k objective (i = 2,...,[ — 1).
Equation (3-15) means to find the total value of crowding distance, that is, sum all

cdy (x) from different objective k.

cdi (xjin) = Zk(x[i;;glj};{,fjﬁfi‘“‘]) vk i=23..I1 (3-14)
cd(x) = Y cdp(x) VK (3-15)

Figure 3.13 is example of crowding distance; the two objectives k are total
transportation risk and cost. We calculate the solution 1 in second front F,, minus the
near solutions’ objective value x[;1x and x[;_q k) respectively then divided by the
maximum minuses minimum in that objective. Sum the all cdj(x) from different

objective k. Then calculate the total crowding distance value of each solution in selected
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Total transportation cost

Figure 3.13 Example of crowding distance
In crowding distance operator, small crowding distance value means the solution is
close to near solutions. We select the solutions with large crowding distance value in
selected front to fill next population N for keeping the diversity and uniform

distribution.

Solution Process of NSGA-IT
In real-time MOGA, we use NSGA II to minimize two objectives simultaneously
and obtain Pareto solutions. Figure 3.14 shows the solution process of NSGA-II and
steps are presented as below in detail.
For t=0
Step 1:  Set the parameters of algorithm: population size N, crossover rate P,
mutation rate P,,, generation size and the origin-destination node of route,
the initial population P;_, based on shortest path algorithm and random

walk.
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Step 2. Generate offspring population Q; of size N through crossover and mutation
procedure from parent population P;. Further only the population P; is
generated by step 2, the other population P; are generated by all steps.

Fort>1

Step 3:  Combine the Q, with P;, whichcalled R, presentedas R; = P; U Q;(2N).

Step 4:  Form the next population P;,; (N solutions) from R; based on fast non-
dominated sorting approach and crowding distance.

Step 5:  If fit the setting generation, stop the procedure. If not, go to Step 2.
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Figure 3.14 Solution process of NSGA-II
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CHAPTER 4 EMPIRICAL STUDY

In order to develop a real time route optimization for hazmat transportation based
on a multi-objective genetic algorithm, this chapter describes the empirical experiment
on Kaohsiung network and presents the proposed algorithm. Section 4.1 illustrates the
basic data of experimental network. Section 4.2 illustrates program flowchart of real
time NSGA-II. Section 4.3 presents the results of analysis. 4.4 summarizes the results

of empirical experiments.

4.1 Data Description

After the gas explosions in 2014, numerous chemical trucks were increasingly
needed for remediation to original demand. Besides, many industrial parks are located
in Kaohsiung City, which is showed in Figure 4.1. In the end of 2014, the regulation of
the restricted route (red dotted line) to chemical trucks, which was announced by
Kaohsiung city government. Moreover, the routes of chemical trucks are forbidden in
specific sections and only allowed to pass within 6:00 a.m.-18:00 p.m. It is worth
mention that there are not any restrictions in the region which has high population
density (red frame with dotted line). For the reason, the proposed model is tested on the
Kaohsiung network with realistic network characteristic and regulation which is
showed in Figure 4.2. The network includes 5 districts (Cianjin district, Xinxing
district, Lingya district, Qianzhen district and Fengshan district) which are presented as
every blue frame with dotted line. There are 7 demand zones, 133 nodes and 466 links.
The red line in the network is the link which damaged in gas explosion in 2014. The
yellow nodes mean the preset O-D pairs in the experiment. It represents the possible
distribution or storage nodes of hazmat. The design of 6 O-D pairs is showed in Table

4.1, including preset start node and destination node.
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Figure 4.1 Restricted route to chemical trucks in 2014
Source: Kaohsiung city government, Google Maps
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Figure 4.2 Kaohsiung network (Liao et al., 2017)
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Table 4-1 O-D pairs design

O-D1 O-D2 O-D3 O-D 4 O-D5 O-D6

Start node 1 1 133 133 122 1

Destination node 9 97 41 97 41 134

4.1.1 Basic Data of Experimental Network

A briefly list of collected data and their sources are shown in Table 4-2. The data
applied in the algorithm are retrieved from statistical data of government department,
open data on the internet and traffic simulation software.

Table 4-2 Data sources

Objective | Data Source
Cost Link travel time DynaTAIWAN
Civil Affairs Bureau of Kaohsiung City
Population
Government
District area Internet statistical data from Sheethub
Accident rate (Toumazis & Kwon, 2013)
Risk
Length of link Google Map

Hourly traffic volume | DynaTAIWAN

Hazard modeling program,

Impact radius
ALOHA (Version 5.4.7, 2016)

There are two real time data (link travel time and hourly traffic volume) in the
network. These are simulated by traffic simulation software (DynaTAIWAN). In this
research, we collect the real time data with particular time interval (per 5 minute).

However, at some time interval, some links without traffic volume will cause the links
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risk to be zero. But for these links, the population density still needs to be considered,

so we set that the minimum traffic volume is equal to 1.

4.1.2 Hazmat Impact Radius

In order to calculate the affected area when accidents happen, we adopt the hazmat
impact radius as measurement method. This research uses a hazard modeling program,
ALOHA (Version 5.4.7, 2016), which is a software that allows us enter details about a
realistic environment. It also could estimate threat zones associated with different types
of hazardous chemical releases.

Thus, we chose the chemical named propylene as our hazmat to be transport
because propylene is one of the most important and basic chemicals in the
petrochemical industry, but it also could cause disastrous consequences if leak out. We
set the simulation parameters with meteorology data, temperature and wind data are the
average data in Kaohsiung, and assume the worst situation, Boiling Liquid Expanding
Vapor Explosions, happened when accident, other parameters are presented in Figure

4.3.
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¥ ALOHA 547

File Edit SiteData SetUp Display Sharing Help

2] Text Summary
SITE DATA:

Location: TAIWAN, KAOHSIUNG
Building Air Exchanges Per Hour: 0.67 (user specified)
Time: April 8, 2019 1557 hours ST (using computer's clock)

CHEMICAL DATA:

Chemical Name: PROPYLENE

CAS Number: 115-7-1

Molecular Weight: 42.08 g/mol

PAC-1: 1500 ppm PAC-2: 2800 ppm PAC-3: 17000 ppm

LEL: 21500 ppm UEL:

Ambient Boiling Point:

112000 ppm
-53.9?F

Vapor Pressure at Ambient Temperature: greater than 1 atm

Ambient Saturation Concentration: 1,000,000 ppm or 100.0%

ATMOSPHERIC DATA: (MANUAL INPUT OF DATA)
Wind: 2.6 meters/second from 155?true at 2 meters

Ground Roughness: open country
Air Temperature: 29.22C

Cloud Cover: 5 tenths

Stability Class: E (user override)

Inversion Height: 3 meters

SOURCE STRENGTH:

Relative Humidity: 79%

BLEVE of flammable liquid in horizontal cylindrical tank

Tank Diameter: 2.76 meters

Tank Length: 9 meters

Tank Volume: 53.8 cubic meters

Tank contains liquid

Internal Storage Temperature: 29.22C

Chemical Mass in Tank:
erce = o

Fireball Diameter: 180

25 tons Tank is 84% full
all. 1003
yards Burn Duration: 11 seconds

THREAT ZONE:
Threat Modeled: Thermal radiation from fireball
Red : 388 yards --- (10.0 kW/(sq m) = potentially lethal within 60 sec)
Orange: 548 yards --- (5.0 kW/(sq m) = 2nd degree burns within 60 sec)
Yellow: 854 vards --- (2.0 kW/(sg m) = pain within 60 sec)

Figure 4.3 ALOHA 5.4.7 simulation setting and results

Through simulation, the detailed results also could be found from Figure 4.3 with

red frame. The fireball diameter is 180 yards, is equal to 0.16 km. The threat zone could

be divided into three levels due to the thermal radiation from fireball. The most serious

is potentially lethal within 60 sec. Second 1s 2nd degree burns within 60 sec. Last is to

get pain within 60 sec. The schematic diagram is shown in Figure 4.4, and the detailed

radiation is shown in Table 4-3.

In order to minimize the possible impact to the

network, we adopt the maximum threat zone, 854 yards (0.78km), as our impact radius

when accident happens.
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yard:
1000

500

\/

1000 500 0 500 1000 1500
yards

[] greater than 10.0 kW/(sq m) (potentially lethal within 60 sec)
greater than 5.0 kW/(sq m) (2nd degree bumns within 60 sec)
[] greater than 2.0 kW/(sq m) (pain within 60 sec)

Figure 4.4 Thermal Radiation Threat Zone (Output from ALOHA)

Table 4-3 Thermal radiation from fireball

Theat zone Thermal radiation (yards) | Thermal radiation (km)
Fireball Diameter 180 0.16
Potentially lethal 388 0.35
2" degree burns 548 0.5

Pain 854 0.78

4.1.3 Population Density

This research adopts village as the basic unit when calculate population
density. According to the statistics data from the Civil Affairs Bureau of
Kaohsiung City Government, we could collect the population data of each
village in 2018. Links’ length is measured by google map, and villages’ area is
obtained through open data integrated by Sheethub. Because the partition of each
village is trivial, it causes a link might pass through several villages, we use the

average population density when this situation happens:
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Population density on link j =

Y:j village population

Yjvillage area

(people per km-sq),

(4-1)

where 1 represent the villages link j pass through, j represent the links in network.

Table 4-4 shows the example of calculating population density in each link. The

population density is equal to the total population divided by the total area.

Table 4-4 The population density in each link

. . ) _ Population
Origin | Destination Passed villages Population Area )
density

Weiwu  Vil.  +

1 2 . . 8825 1.0495 8408.75
Xingiang Vil.
Xingiang Vil. +
Xinfu Vil. + Xintai

2 3 i ) 27149 2.354193 | 11532.19
Vil. + Lauye Vil. +
Zhonglun Vil.

2 75 Xingiang Vil. 6395 0.967553 6609.46
Zhonglun Vil. +
Bauan  Vil. +

3 4 i 24348 4.847163 5023.14
Nancheng Vil. +
Mingzheng Vil.
Zhonglun Vil.+
Bauan Vil.+

4 5 i 24348 4.847163 5023.14
Nancheng Vil.+
Mingzheng Vil.
Mingzheng  Vil.+

4 112 _ ) 13062 1.88025 6946.95
Fuxing Vil.

4.2 Program Flowchart

In order to solve the problem of real time hazmat transporting, the proposed

algorithm (Real time NSGA-II) was coded in Python and tested on a Windows 10

machine (Intel Core 15-7200U/ 2.70 GHz processer with 8GB RAM).

The Figure 4.5 shows the program flowchart and the explanation is described as

follow:
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t=1t+1

The input of program parameters includes network data from DynaTAIWAN,
crossover rate, mutation rate, termination condition, population size, and the proportion
of initial population. In terms of initial population, if we only apply random walk to
generate chromosomes (routes), it may lead to poor performance, on a large network
especially. It means that could result in taking too much time to generate unusual
chromosomes route. Thus, according to Li et al. (2013), the heuristic initialization based
on Dijkstra’s algorithm is applied to generate 20% chromosomes of initial population.
Because this research considers two objectives, there are two types of shortest routes

produced by the algorithm based on cost and risk network respectively. In other words,

Input the
parameters

Input network
data simulated by
DynaTAWAN

Generate initial population Py:
Random Walk and Dijkstra algorithm

]

Generate offspring Qx:
Using crossover and mutation

I

Combine R;=P; U Q,

Evaluate Fitness:
Calculate the value of each chromosomes
(Route)

Update new start
node

I

Update network
data simulated by
DynaTAWAN

I

Selection and Duplicate:
Fast non-dominated sorting and Crowding
distance

Identify the vehicle location and the time
interval for the update

]

Create new population Pj.;

Termination
condition

Next node of vehicle
location is destination

Figure 4.5 Program flowchart
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the number of shortest routes is six in first generation (The shortest routes based on cost
and risk account for fifty percentage respectively). By this way, it not only could
preserve population diversity to a certain extent, but also result in higher quality of the
initial population simultaneously. The random walk and Dijkstra algorithm are
described as follow:

Random Walk:

Given the O-D nodes, we start from the origin node and search connected node
through the input network. Then, randomly choose the connected node as next node
until arrive the destination node. The process is suitable for each node. But it might
form the loop of route or no connected node in search process, so we put restriction on
choosing a node which has already chosen in the route.

Dijkstra algorithm:

Step 1: Assign to every node a tentative distance value. Set distance value of initial
node to zero and distance value of all other node to infinity.

Step 2: Generate a set of visited nodes with just the initial node and unvisited set
with all node without initial node.

Step 3: For the initial node or current node, consider all its unvisited neighbors and
calculate the distance (distance to the current node and distance from current node to
the neighbor). If the calculated distance is less than their current tentative distance,
replace it with this new distance.

Step 4: When we are done considering neighbors of the current node, put the
current node into visited set and remove it from unvisited set.

Step 5: If the destination node has been put into visited set, the algorithm has
finished. If not, go to step 6.

Step 6: Set the unvisited node marked with smallest tentative distance as the next
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current node and go back to step 3.

After the procedure of initialization, we generate the optimal solutions (routes) by
crossover, mutation, selection and duplicate. The detailed process is depicted in Section
3.5. Because size of the optimal solutions (routes) are same preset population size, we
pick the route with highest occurrence in the optimal solutions (routes) as transporting
route. Then we calculate the total travel time of the transporting route and examine the
next node of driving route at particular time interval. If the next node is destination, the
program has finished. If not, we update the network and the new start node at particular
time interval. Finally, it is to generate new route by NSGA-II with these updated

parameters until next node of driving route is destination.

4.3 Results of Analysis

4.3.1 Sensitivity Analysis

In order to prove that the Pareto solutions by NSGA-II are the best, the sensitivity
analysis is proposed to test preset parameter specification based on Li et al. (2013). We
take O-D 3 for example, Table 4-5 and Table 4-6 show the Pareto solutions with
different parameters including crossover rate, mutation rate, and Generation. The cost
and risk of average values in each test are calculated by the values of chromosomes in
last generation. The difference of two tables is that if initial population includes the
routes generated by Dijkstra algorithm. We could find that even though the all standard
deviations could converge into approximate zero, the all averages indeed have different
results. Thus, we also compare the all averages in Figure 4.6, Figure 4.7, and Figure

4.8.
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Table 4-5 Pareto solutions with different parameters and Dijkstra algorithm

With Dijkstra algorithm
Crossover rate Objectives | Average Standard deviation Time (s)
Cost 3.650 0.044
0.1 6
Risk 0.944 0.036
Cost 3.612 0.028
0.3 6.9
Risk 0.949 0.021
Cost 3.616 0.016
0.5 6.1
Risk 0.946 0.009
Cost 3.611 0.281
0.7 6.2
Risk 0.986 0.060
Cost 3.607 0.022
0.8 6.1
Risk 0.952 0.018
Cost 4.201 0.768
0.9 6.5
Risk 0.928 0.105
Mutation rate Objectives | Average Standard deviation Time (s)
Cost 4.340 0.785
0.001 1.7
Risk 0.918 0.110
Cost 4.189 0.777
0.005 2.9
Risk 0.937 0.110
Cost 4.131 0.773
0.01 3.5
Risk 0.949 0.111
Cost 4.288 0.787
0.03 3.1
Risk 0.926 0.111
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Cost 3.616 0.016

0.05 6
Risk 0.946 0.009
Cost 4.340 0.785

0.1 10.4
Risk 0.918 0.110

Generation Objectives | Average Standard deviation Time (s)

Cost 4.131 0.773

30 33
Risk 0.949 0.111
Cost 4.297 0.761

50 4.1
Risk 0.920 0.109
Cost 3.652 0.032

100 6
Risk 0.949 0.030
Cost 4.131 0.773

200 10.9
Risk 0.949 0.111
Cost 3.660 0.013

500 25.8
Risk 0.922 0.007
Cost 3.611 0.000

1000 48.7
Risk 0.949 0.000

Table 4-6 Pareto solutions with different parameters and no Dijkstra algorithm

With no Dijkstra algorithm

Crossover rate | Objectives | Average Standard deviation Time (s)

Cost 4.833 0.108

0.1 6.5
Risk 1.007 0.002
Cost 4.672 0.268

0.3 5.7
Risk 1.067 0.009
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Cost 4.453 0.377
0.5 6.3
Risk 1.235 0.067
Cost 4.203 0.047
0.7 5.7
Risk 1.532 0.008
Cost 4.506 0.005
0.8 6.3
Risk 1.252 0.016
Cost 4.384 0.087
0.9 6.2
Risk 1.049 0.012
Mutation rate Objectives | Average Standard deviation Time (s)
Cost 4.632 0.181
0.001 2.8
Risk 1.593 0.135
Cost 4.471 0.295
0.005 3.7
Risk 1.706 0.091
Cost 4.330 0.109
0.01 5.2
Risk 1.537 0.020
Cost 4.523 0.082
0.03 5.7
Risk 0.988 0.015
Cost 4.069 0.019
0.05 6.2
Risk 1.067 0.013
Cost 3.938 0.013
0.1 11.8
Risk 0.952 0.007
Generation Objectives | Average Standard deviation Time (s)
Cost 4.512 0.185
30 33
Risk 1.173 0.129
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Cost 4.313 0.025
50 4.6
Risk 1.010 0.111
Cost 4.506 0.005
100 59
Risk 1.252 0.016
Cost 5.677 0.260
200 9.2
Risk 1.107 0.036
Cost 4.017 0.000
500 21.9
Risk 1.026 0.000
Cost 3.812 0.000
1000 37.2
Risk 1.063 0.000

Crossover rate
6.000

5.000 —
+
— e
4.000 o _/'
= i i L
3.000
2.000

1.000 o e - — i —— —_
0.000

0.1 0.3 0.5 0.7 0.8 0.9

—a— Average cost (With Dijkstra) == Average risk (With Dijkstra)
--Average cost (With no Dijkstra) Average risk (With no Dijkstra)

Figure 4.6 Averages for different crossover rate
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Mutation rate
5.000

O =
4000 = :':j§:74

3.000

2.000

1.000 — = e e = —

0.000
0.001 0.005 0.01 0.03 0.05 0.1

—=— Average cost (With Dijkstra)  =—#=Average risk (With Dijkstra)
- Average cost (With no Dijkstra) Average risk (With no Dijkstra)

Figure 4.7 Averages for different mutation rate

Generation
6.000
5.000
4.000
3.000
2.000
1.000 — v o = . =
0.000
30 50 100 200 500 1000
—=— Average cost (With Dijkstra) == Average risk (With Dijkstra)
——Average cost (With no Dijkstra) Average risk (With no Dijkstra)

Figure 4.8 Averages for different generation
In Figure 4.6, Figure 4.7, and Figure 4.8, we could discover two information. First,
it proves the Pareto solutions with parameter specification based on Li et al. (2013) are
relatively better. Second, it will hardly generate convergent solutions with no Dijkstra’s
algorithm. Thus, if the initial population including Dijkstra’s algorithm, we indeed find

better and convergent solutions within a short time.
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4.3.2 Single O-D Pair

Based on Li et al. (2013), we execute real time NSGA- II with following parameter
specification to generate the two-objectives Pareto solutions: Population size (N): 30,
crossover rate: 0.8, mutation rate: 0.05, termination condition: 100 generation.

Given 6 O-D pairs and the network with same time interval, the output of this
algorithm is the latest population which arrives our termination condition. The optimal
routes of each pair considering two objectives is listed in Table 4-7.

Table 4-7 Optimal Routes of Origin-Destination Pair

CPU Hyper-
oD # Link Cost Risk
Time(s) volume
[ 2955, 54, 73592471, 90,69
1 3463 | 0475 | 81.059
68, 67, 46, 40, 33, 32, 25, 26, 9]
1 5.7
[1, 2, 75, 74, 73, 56, 52, 17, 18,
2 3486 | 0.329 | 83.766
13, 12, 11, 10, 9]
[1, 2,75, 74, 76, 77, 100, 99, 98,
1 2.027 | 0.253 | 81.427
97],
2 2.9 [1, 2, 75, 74, 73, 72, 78, 99, 98,
2 2.047 | 0.229 | 82.200
97]
3 1[1,2,75,74,73,72,71, 80, 97] 2.128 | 0.229 | 81.854
[133, 135, 124, 121, 107, 103,
1]100,77,73,72,71,58,50,20,21, | 3.664 | 0.92 | 84.617
3 5.7 41]
[133, 135, 124, 121, 107, 103,
2 3.492 | 1.048 | 83.790
100, 77,73,72,71, 70, 69, 68, 47,
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41]

[133, 135, 124, 121, 107, 103,
100, 77,73,72,71, 70, 59, 49, 48,

21, 41]

3.611

0.949

84.456

[133, 113, 4, 112, 114, 128, 129,
130, 131, 124, 122, 106, 104, 76,

74,73, 72,71, 58, 50, 20, 21, 41]

5.061

0.821

82.949

2.6

[133, 135, 124, 121, 122, 106,

104, 103, 102, 99, 98, 97]

2.345

0.772

84.841

[133, 113, 4, 112, 114, 128, 129,
130, 131, 124, 122, 106, 104, 103,

102, 97]

3.511

0.758

82.052

[133, 135, 124, 121, 107, 103,

102, 99, 98, 97]

2.152

0.83

84.675

[133, 135, 124, 121, 122, 106,

104, 103, 102, 97]

2.261

0.777

84.997

[133, 135, 124, 121, 107, 103,

102, 97]

2.064

0.835

84.839

[133, 113, 4, 112, 114, 128, 129,
130, 131, 124, 122, 106, 104, 103,

102, 99, 98, 97]

3.599

0.753

81.884

4.1

[122, 106, 104, 76, 74, 73, 72, 71,

70, 69, 68, 47, 41]

2.425

0.281

81.596

[122, 106, 104, 76, 74, 73, 72, 71,

58, 50, 20, 21, 41]

2.597

0.153

85.100
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[122, 106, 104, 76, 74, 73, 72, 71,
3 2.544 | 0.182 | 84.362
70, 59, 49, 48, 21, 41]

[1, 2, 75, 55, 56, 52, 17, 18, 13,

1 3.299 | 0.351 | 81.041
12, 134]
6 5.6
[1, 2, 75, 74, 73, 56, 52, 17, 18,
2 3314 | 0317 | 81.872
13, 12, 134]

Among the latest population for each pair, it all could be divided into two
situations. First, the routes generated from Dijkstra’s algorithm actually are the optimal
route. Thus, it exists in each iteration and presents in latest population. The situation
happens in O-D 1 and O-D 6. Second, the algorithm could find the optimal routes except
for the routes generated from Dijkstra’s algorithm. Among these routes, the one of
values of cost and risk is smaller than the value of routes generated from Dijkstra’s
algorithm. It is optimal trade-off solutions. The situation happens in O-D 2,3,4, and 5.

In order to choose one optimal driving route from latest population, the selection
process is that if there are trade-off solutions, we choose one of these as optimal route
because it could reflect the spirit of multi-objective most. If not, we choose one of routes
from Dijkstra’s algorithm. Then, the comparative method, called hypervolume
proposed by Zitzler and Thiele (Zitzler and Thiele, 1999) is applied to compare the
solutions. However, we estimate the hypervolume by normalizing in same unit set point
(10,10) as reference point. The larger the hypervolume, the better is the solution.

As for improvement rate for each pair, we present it in Figure 4.9. The

improvement rate represents an average of cost and risk in each iteration.
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Figure 4.9 Improvement rate for each pair
The blue line means initial population does not include 20 % routes generated from

Dijkstra’s algorithm. On the contrary, the orange line includes that. We found that the
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initial population including routes from Dijkstra’s algorithm could find better solutions.

Moreover, the initial population not including routes from Dijkstra’s algorithm could

generate worse latest population. Thus, its value of cost and risk all are higher than the

minimum cost and risk from Dijkstra’s algorithm.

Based on the comparative method, we choose one optimal driving route and update

it with particular time interval. Then we evaluate travel time of driving route and update

the new start node at next time interval. Therefore, for each O-D pair, the optimal routes

in each time interval presented by real time NSGA- II are listed in Table 4-8.

Table 4-8 Real Time Optimal Routes of Origin-Destination Pair

OD | Time Link Cost Risk
[1,2,75,74,73,56,52,17,18, 13,12, 11, 10,
T=5 3.4858 | 0.3299
9]
1
T=10 | [74, 73, 56, 52, 17, 18, 13, 12, 11, 10, 9] 1.5235 | 0.1422
T=15 | [17, 18, 13, 12, 11, 10, 9] 0.7333 | 0.0866
T=20 | [10, 9] 0.1196 | 0.0003
5 T=5 |[1,2,75,74,73,72,78,99, 98, 97] 2.0456 | 0.2293
T=10 | [74, 73, 72, 71, 80, 97] 0.5803 | 0.0315
[133, 135, 124, 121, 107, 103, 100, 77, 73, 72,
T=5 3.6635 | 0.9207
71, 58, 50, 20, 21, 41]
3 [107, 106, 104, 76, 74, 73, 72, 71, 58, 50, 49,
T=10 1.5451 0.1578
48,21, 41]
T=15 | [73, 72,71, 70, 69, 68, 47, 41] 0.8058 | 0.0470
T=20 | [47, 41] 0.0807 | 0.0019
T=5 |[133, 135,124, 122, 106, 104, 103, 102, 97] 2.2570 | 0.7770
4 T=10 | [122, 106, 104, 103, 102, 99, 98, 97] 0.7795 0.1100
T=15 | [98, 97] 0.0975 | 0.0003
[122, 106, 104, 76, 74, 73, 72, 71, 70, 59, 49,
5 T=5 2.5455 | 0.1824
48, 21, 41]
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T=10 | [72, 71, 70, 59, 49, 48, 21, 41] 0.8758 | 0.0979
T=15 | [21, 41] 0.0997 | 0.0002
T=5 |[1,2,75, 74,73, 56,52, 17,18, 13, 12, 134] | 3.3147 | 0.3178

6 | T=10 | [74,73, 56, 52, 17, 18, 13, 12, 134] 1.4241 | 0.1601
T=15 [[17, 18, 13, 12, 134] 0.6290 | 0.0769

For O-D 1 to O-D 6, we could find the optimal routes with different time interval.

The red numbers in routes represent new start node. We terminate the program when

new start node is termination node. It means that we do not need to update the driving

route. In Table 4-9, we take O-D 3 to demonstrate and compare the changes with

different time interval (T=5 and T=10).

Table 4-9 Comparison of different links in O-D 3

T=5 T=10

Link 1 Volume Cost Risk Volume Cost Risk

107—103 178 0.99 1.05 270 0.99 1.69
103—100 146 0.81 0.69 186 0.90 0.91
100—77 97 0.37 0.21 97 0.37 0.21
77—73 198 1.05 0.44 170 1.01 0.36
73—72 81 0.75 0.09 69 0.75 0.07
72—71 75 1.08 0.17 100 1.08 0.24
71—58 164 1.74 0.42 149 1.74 0.38
58—50 151 1.23 1.15 159 1.23 1.22
50—20 123 1.17 0.37 153 1.17 0.48
20—21 7 0.55 0.02 1 0.52 0.00
21—41 27 0.77 0.17 10 0.73 0.06
Total 1247 10.50 4.80 1364 10.48 5.62

T=5 T=10

Link 2 Volume Cost Risk Volume Cost Risk

107—106 219 0.85 1.14 52 0.54 0.24
106—104 54 0.54 0.16 90 0.54 0.27
104—76 71 0.93 0.66 76 0.98 0.71
76—74 146 1.01 0.30 122 1.09 0.24
74—73 66 0.81 0.09 46 0.81 0.06
73—72 81 0.75 0.09 69 0.75 0.07
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72—71 75 1.08 0.17 100 1.08 0.24

71—358 164 1.74 0.42 149 1.74 0.38
58—50 151 1.23 1.15 159 1.23 1.22
50—49 9 0.39 0.03 1 0.29 0.00
49—48 15 0.26 0.05 1 0.23 0.00
48—21 244 1.12 1.10 163 0.91 0.68
21—41 27 0.77 0.17 10 0.73 0.06
Total 1322 11.47 5.53 1038 10.91 4.17

We examine the difference between two routes which are chose in two time
interval. Table 4-9 shows that the total traffic volume and total risk of route (Link 1)
are relatively low at 5th time interval even though the cost is a little higher. On the
contrary, the ones of route (Link 2) are relatively low at 10th time interval. Furthermore,
we compare the results of two routes (no updated route and updated route). The no
updated route is [133, 135, 124, 121, 107, 103, 100, 77, 73, 72, 71, 58, 50, 20, 21, 41].
The total transportation cost and risk are 16.934, 25.030 (unstandardized value)
respectively. The updated route is [133, 135, 124, 121, 107, 106, 104, 76, 74, 73, 72,
71, 70, 69, 68, 47, 41]. The total transportation cost and risk are 15.995, 23.144
(unstandardized value) respectively. The degree of improvement in percentage for cost
and risk is 6% and 8%. Thus, real time route optimization for hazmat transportation
indeed bring lower risk and cost.

Figure 4.10 shows a part of program command of real time NSGA-II. The rest is

an infinite iteration for finding destination.
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NSGAII NSGAII
read_network_dict read_network_dict
route_minutes evaluation_minutes
pick_update_route pick_update_route
evaluation evaluation_value

copy

crossover_rate
mutation_rate
termination_generation
number_of_random - 24

dijkstra_cost
dijkstra_risk

start 1
termination 9
update_interval 5

def 1_time_ NSGAII(

3
=

graph_copy - copy.deepcopy(graph_raw[8])
graph_standerize copy - graph_standerize[0]
result = NSGAII(graph_standerize copy,
crossover_rate,
mutation_rate,
termination_generation,
number_of_random,
dijkstra_cost,
dijkstra_risk,
start,
termination)

result?2 - pick update route(result[2],result[8],result[1])
evaluation_value_route- []

evaluation_value_route.a nd(result2[@])
rrint('T= 5',result2[8], e uation_value(graph_standerize_ copy, evaluation_value_route))

Figure 4.10 Program command of real time NSGA-II

4.3.3 Multiple O-D Pairs

Given a multiple O-D pairs, even though we could get the optimal routes of each
pair at particular time interval, the driving route of hazmat trucks causes risk to some

extent. Figure 4.11 shows the optimal routes of each pair at t=5 time interval. Except
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for highway, on-ramp, and off-ramp, we discover that link [75, 74] and link [74, 73] is

used more than three times. It reflects these links have relatively higher pressure.

—— O-D 1
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Figure 4.11 Optimal routes of each pair (t=5 time interval)
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Thus, in order to avoid this situation and achieve risk equality, we execute a

method and Figure 4.12 shows the flowchart. Step1: we input or renew the multiple O-

D pairs, the sequence, the network data at particular time interval in advance. Step2:

Pick one of O-D pairs based on the sequence and execute the NSGA-II to obtain an

optimal route. Then we multiply the accident probability of used links by ot and set «

as infinite number at the same time interval. In other words, the hazmat trucks are

prohibited from driving in the links which is used. It is worth mention that if the risk of

links from the same node all have been multiplied by infinite number, we reset the risk

of links. By this way, if the demand of chemical trucks for transporting hazmat increase,
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we could propose a solution to solve this problem. Step3: Once one of O-D pairs have
not been processed at particular time interval, it goes to Step2. If all O-D pairs have
been processed and all chemical trucks arrive at the destination(s), the program is

finished. If not, it goes to Stepl until all chemical trucks arrive at the destination(s).
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Input/renew the multiple O-D
pairs and the sequence
l
Input/renew the network data
at particular time interval

| Pick one O-D pair based on
sequence, start from first one (s=1)

l

NSGA-II

l

Multiply the accident probability of
used links by a

s=s+1

NG All O-D pairs have been processed

All hazmat trucks arrive

at the destination(s) NO

Optimal transporting network

End

Figure 4.12 The program-processing procedure for multiple O-D pairs
Table 4-10 shows the routes of each pair at different time interval. It presents the

multiple O-D pairs and there are no links which is used more than once except for
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highway, on-ramp, and off-ramp.

Table 4-10 Optimal routes of each pair at different time interval

Update time
O-D Link Cost | Risk
(minute)

[1,2,75,74,73,56,52,17, 18,13, 12,

O-D1 3.486 | 0.330
11, 10, 9]
[1, 2, 75, 105, 104, 103, 102, 99, 98,

0-D2 2.367 | 0.342
97]
[133, 135, 124, 121, 107, 103, 100, 77,

O-D3 3.664 | 0.921
73,72,71, 58, 50, 20, 21, 41]

5 [133, 113, 4, 112, 114, 115, 111, 110,

0O-D4 2.600 | 0.885
109, 101, 96, 97]
[122, 124, 125, 126, 119, 116, 115,

O-D5 | 111, 94, 93, 90, 89, 88, 87, 63, 64, 65, | 3.697 | 0.252
66, 45, 46, 40, 41]
[1, 2, 75, 55, 53, 52, 51, 19, 20, 12,

0O-D6 3.543 | 0.419
134]
[74, 73, 56, 52, 17, 18, 13, 12, 11, 10,

O-D1 2.331 | 0.143
9]

O-D2 | [105,104, 103, 102, 99, 98, 97] 0.856 | 0.071
[107, 106, 104, 76, 77, 73, 72, 71, 58,

10 0-D3 2.482 | 0.230

50, 49, 48, 21, 41]

O-D4 |[112, 114,115,110, 109, 101,96,97] | 1.338 | 0.276
[111, 94, 93, 90, 84, 85, 86, 66, 45, 46,

O-D5 2.369 | 0.285
47, 41]
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O-D6 | [55, 53, 52,51, 50, 20, 12, 134] 2.093 | 0.213
[17, 52, 51, 50, 49, 48, 47, 41, 42, 23,
0O-D1 2.203 | 0.404
32,25, 26, 9]
0O-D2 | Arrived 0.000 | 0.000
15 O-D3 | [72,71, 58, 50, 20, 21, 41] 1.414 | 0.085
O-D4 | [96, 97] 0.120 | 0.027
O-D5 | [90, 84, 68, 47, 46, 40, 41] 1.539 | 0.411
O-D6 | [50, 51, 19, 20, 12, 134] 1.299 | 0.112
O-D1 | [23, 24, 10, 9] 0.372 | 0.034
O-D2 | Arrived 0.000 | 0.000
0O-D3 | [20, 21, 41] 0.286 | 0.007
# O-D4 | Arrived 0.000 | 0.000
O-D5 | Arrived 0.000 | 0.000
O-D6 | Arrived 0.000 | 0.000
Highway, on-ramp, and off-ramp are link
[15,1],[1,2],2,75],2,3],[122,3],[3,4].[4,112],[ 113,4],[4,5],[5,123],[135,5],[5,6].[ 6,
541,[6,1]

Figure 4.13 presents that the optimal network for transporting hazmat at t=5, t=10,

t=15, and t=20 time interval. By this method, we clearly find that link [75, 74] and link

[74, 73] are used once at t=5 time interval and others are the same situation. By the way,

because some links are two-way roads, such as link [109,110] and link [110,111], the

two-way roads are all used and are marked by two colors.

Thus, given multiple O-D pairs, we not only could change the routes to avoid the

links with high risk at different time interval but also disperse the pressure on same link.
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Figure 4.13 Optimal routes of each pair (No links which is used more than once): (a) t
=5 time interval, (b) t =10 time interval, (c) t=15 time interval, and (d) 20™ time

interval
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4.3.4 Weighting Objectives
In the process of optimization, we execute standardized procedure in order to
address different unit simultaneously. After that, we adopt NSGA-II to solve our
problem. Although this method does not need to have prior preference, scale, or weight
objectives previously, we would like to test and observe whether there are different
results by weighting (W, and W,) two objectives and solving it. Therefore, a number of
weighting combinations will be conducted to transform into a single objective problem.
Objective function:
Min ZieNZieNR—f]XXitj X W +ZiENZiENC—lt]XXitj X Wy (3-21)
The objective function is presented in equation (3-21). Then, we execute Dijkstra
algorithm to find the optimal solutions and compare with the results from NSGA-II.

Figure 4.14 shows the flowchart of the process of two methods.

Objective function
Cost Risk

v
Standardized procedure

]
Weighting two
objectives

' ]
NSGA-I| Dijkstra

algorithm

| [
v

Compare two methods

Figure 4.14 Process of two methods.
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Table 4-11 NSGA-II vs. Weighting Method (O-D 2)

O-D2
CPU
Hyper-
Methods | W, | W, # Routes Cost | Risk time
volume
(s)
#1 | [1, 2, 75, 74,]2.027 |0.253 | 81.427
76,77, 100, 99,
98, 97]
#2 | [1, 2, 75, 74,|2.047 |0.229 | 82.200
NSGA-II None 73, 72, 78, 99, 2.9
98, 97]
#3 | [1, 2, 75, 74,]2.128 | 0.229 | 81.854
73, 72, 71, 80,
97]
0.1 {09 |#4 2.047 |0.229 | 82.200
02 |08 |#5 |[1, 2, 75, 74,|2.047 |0.229 |82.200
03 0.7 |#6 |73, 72,78, 99,|2.047 |0.229 | 82.200
04 |0.6 |#7 |98,97] 2.047 |0.229 | 82.200
Weighting
0.5 |05 |#8 2.047 |0.229 | 82.200 0.2
Method
0.6 |04 |#9 2.027 |0.253 | 81.427
[1, 2, 75, 74,
0.7 (03 |#10 2.027 |0.253 | 81.427
76,77, 100, 99,
0.8 0.2 |#l1 2.027 |0.253 | 81.427
98, 971
09 (0.1 |#12 2.027 |0.253 | 81.427

84

doi:10.6844/NCKU201901038



Table 4-12 NSGA-II vs. Weighting Method (O-D 3)

O-D3

CPU
Hyper-
Methods | W, | W, # Routes Cost | Risk time
volume

(s)

#1 | [133, 135, 124, | 3.664 | 0.920 | 84.617
121, 107, 103,
100, 77, 73, 72,
71, 58, 50, 20,

21, 41]

#2 [ [133, 135, 124, | 3.492 | 1.048 | 83.790
121, 107, 103,
100, 77, 73, 72,
71, 70, 69, 68,
47, 41]

NSGA-II None 5.7
#3 | [133, 135, 124, | 3.611 | 0.949 | 84.456

121, 107, 103,
100, 77, 73, 72,
71, 70, 59, 49,

48, 21, 41]

#4 | [133, 113, 4,|5.061 |0.821 | 82.949
112, 114, 128,
129, 130, 131,
124, 122, 106,

104, 76, 74, 73,
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72, 71, 58, 50,

20, 21, 41]

Weighting

method

0.1

0.9

#5

0.2

0.8

#6

0.3

0.7

#7

[133, 135, 124,
122, 106, 104,
76, 74, 73, 72,
71, 58, 50, 20,

21, 41]

3.808

0.841

85.058

3.808

0.841

85.058

3.808

0.841

85.058

0.4

0.6

#8

[133, 135, 124,
121, 107, 103,
100, 77, 73, 72,
71, 70, 59, 49,

48, 21, 41]

3.611

0.949

84.456

0.5

0.5

#9

[133, 135, 124,
121, 107, 103,
100, 77, 73, 72,
71, 70, 69, 68,

47, 41]

3.492

1.048

83.790

0.3

0.6

0.4

#10

0.7

0.3

#11

0.8

0.2

#12

0.9

0.1

#13

[133, 135, 124,
121, 107, 103,
100, 77, 73, 72,
71, 70, 69, 68,

47, 41]

3.492

1.048

83.790

3.492

1.048

83.790

3.492

1.048

83.790

3.492

1.048

83.790

In Table 4-11 and Table 4-12, we take O-D 2 and O-D 3 for example and compare

the results of two methods. We discovered and verified two situations. (1) We could

find that the optimal solution (#5) obtained by the weighting method (W, = 0.5, W, =
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0.5) is the same as the optimal solution (#8) obtained by NSGA-II. Additionally,
because the value of hypervolume of this solution is higher than the others in O-D 2, it
proves again that no other solution is better than this optimal solution. (2) In second
example (O-D 3), we could find that the solutions (#5, #6 and #7) obtained by the
weighting method (W, = 0.1,W,. = 0.9) (W, = 0.2,W,. = 0.8) (W, = 0.3, W, = 0.7)
are better than the optimal solution (#1) obtained by NSGA-II based on the two values
of hypervolume. This means that even though genetic algorithm could find optimal
solutions within a reasonable time, it does not guarantee the solutions are best. (Rocha
& Neves, 1999) The main reason is premature convergence to solutions coding local
optima of the objective function. Thus, diversity of each iterations is the key point with

the use of genetic algorithm.

4.4 Summary

In the empirical experiments, we present different situations on Kaohsiung City to
solve the route optimization for hazmat transportation. It includes the problem of real
time single pair and real time multiple O-D pairs. In process of generating real time
network data, a traffic simulation software (DynaTAIWAN) is applied.

In the results, we discover and prove that if initial population includes the routes
generated by Dijkstra algorithm, NSGA II could generate better solutions and get
convergent solutions within a short time. Among these solutions, we choose one as
driving route based on the comparative method, called hypervolume proposed by
Zitzler and Thiele (Zitzler & Thiele, 1999). Then we could update the route at different
time interval according to travel time of driving route and the new start node.

Moreover, we compare the solution obtained by NSGA-II to the solution obtained

by weighting method and prove two things. 1. If no other solution is better than the
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solution generated from NSGA-II, we prove this solution is best. 2. If the solution is
better than the solution generated from NSGA-II, it shows the heuristic algorithm falls

into local optimum. Thus, we could examine the results by the weighting method.
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CHAPTER 5 CONCLUSIONS AND SUGGESTIONS

This research develops a real time multi-objective genetic algorithm to design
transportation routes for hazmat routing problem. From the results of experiments, the
conclusions and suggestions are summarized in Section 5.1 and Section 5.2

respectively.

5.1 Conclusions

This research identifies the important issues of hazmat transportation and deals
with it on realistic network. Based on the empirical analysis, the conclusions of this
research are summarized as follows:

1. When we face the problem ofreal time route optimization for hazmat transportation,
two things are worth it to mention. First, compared with other optimization
methods, genetic algorithm does not need to have prior preference, scale, or weight
objectives. Second, with the ability of multi-objective genetic algorithm to search
the global domain, the optimal solutions could be obtained within a reasonable time.
(Sivanandam & Deepa, 2008) Especially in real time optimal route for hazmat
transportation, it is indeed an effective algorithm to deal with.

2. This research constructs Kaohsiung City network and adopts real time NSGA-II to
find the Pareto solutions at particular time interval. We consider two objectives
including risk and cost. Among these, traffic volume and travel time simulated by
DynaTAIWAN are the main time-dependent components.

3. The results present that if initial population includes the routes generated by
Dijkstra algorithm, the real time NSGA-II could generate better solutions. Given
multiple O-D pairs, we could generate optimal transporting network with no links

which is used more than once. It not only could update the route at particular time
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interval but also alleviate risk on the network.

5.2 Suggestions

The suggestions for future study on real time route optimization for hazmat
transportation problem are summarized as follows:

1. In the process of generating the routes of multiple O-D pairs, this research adopts
that first come, first served. The O-D pairs are sequenced in order of preset order.
Although this strategy could generate a good solution, it is not guaranteed to be the
best. The reason is computing time. The computing time of generating a route of
multiple O-D pairs takes approximately 280 seconds, but there are 720 permutations
of'the six O-D pairs. If we would like to get the best permutations which is minimum
total cost and risk, it takes approximately 201,600 seconds. That means that we
could not update the each of pair immediately. Thus, in order to get better solutions,
another method should be applied.

2. When we use the genetic algorithm to find Pareto solutions, we could face the
problem of premature convergence. There are some of the techniques used to
prevent this situation. (1) Adaptive mutation rate. (2) Random offspring generation.
(3) Social disasters technique. The main operator of these techniques is to increase
the diversity of population and prevent ineffective process. (Rocha & Neves, 1999)

3. In the future, if real time network data could be collected by innovative
communication technology such as sensors, 5G, IoT, it could substitute for the
assumed network data. For Kaohsiung city government or decision maker, that not
only assists in more effective traffic management but also could provide more
precise decisions for hazmat transportation. Thus, we could actively avoid large-

scale accidents instead of passive control for chemical trucks’ driving route.
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APPENDIX

Table A-1 Incident of chemical trucks in Taiwan (2017-2019)

Impact
Date Accident Treatment Injury/
Congestion | Pollution
Fatality
The police and
firefighters
A chemical | cordoned off the
truck carried | accident and
Methyl sprinkle water to
acrylate dilute the smell.
2017/05/27 | caused lots of | The injury © 1 .
gas leaked in | Environmental
Daliao Protection
District. Agency fined the
operator ten
thousand
according to the
air pollution law.
A chemical | The police and
truck carried | firefighters
Styrene cordoned off the
overturned accident
and caused | instantly. The
4,50 kilogram | operator also |
2017/08/25 injury - 1 ° °
of  styrene | called staff
leakage in | and equipment to
Renda stop leakage and
Industrial follow-up
Park. accidents.
2017/11/21 A chemical | Manufacturers injury : 1 . .
truck carried | putted sand and
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Impact
Date Accident Treatment Injury/
Congestion | Pollution
Fatality
emulsion sawdust on
overturned emulsion to
and caused | remove it and
leakage in | some flowed into
Linyuan the gutter.
District.
A CPC
chemical )
. The police and
truck carried
firefighters
Methanol e
2018/01/31 sprayed  water | injury - 1 °
overturned
and cordoned off
due to less I
the accident first.
carefully
turning.
A chemical
truck carried | The fire
sulfuric acid | department sent
overturned 26  firefighters,
2018/03/26 | because 10 fire engines | injury - 1 °
turning angle | and cordoned off
was too great | the on-site
in Luzhu | accident.
District.
A chemical | |
. Firefighters
truck hit on o
2018/07/17 rescued and sent | injury - 3 °
BMW at 72 ] )
their to hospital.
County Road.
A chemical | Firefighters
truck carried | brought LN2,
2018/07/22 | phenol  and | chemical sorbent | fatality * 1 ° °
diesel pad and sawdust
overturned to cover the
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Impact
Date Accident Treatment Injury/
Congestion | Pollution
Fatality
and had | phenol lest much
leakage in Tai | more leakage.
Western
Coast
Expressway.
A chemical
truck carried
Firefighters
Propene
rescued the
overturned
driver and
2018/09/27 and had fatality : 1 ° °
sprinkled water
leakage in
to protect from
National
explosion.
Freeway No.
1.
A chemical Firefighters
truck carried rescued the
Acetic acid driver and
2018/12/05 fatality © 1 ° °
overturned sprinkled water
and had to protect from
leakage. explosion.
A chemical Firefighters
2019/01/09 | truck carried rescued the None . .
Sulfuric acid | accident which
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Impact
Date Accident Treatment Injury/
Congestion | Pollution
Fatality
was burned lasts more than
with one hour.
unknown
reason and
caused
leakage.
A chemical
truck carried
Firefighters
Sulphur had
sprinkled water
2019/01/17 | leakage in injury : 1 ° °
to protect from
National
explosion.
Freeway No.
1.
A chemical
The staff of the
truck carried
Environmental
Sodium
Protection
hydroxide
2019/01/24 Bureau prevent | fatality : 1 °
bumped
pollution from
hillside and
flowing into the
caused
river.
leakage.
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Impact

Date Accident Treatment Injury/
Congestion | Pollution
Fatality
A chemical
truck carried Firefighters
Calcium rescued the
2019/02/23 chloride accident and injury - 1 ° °
bumped three | prevented from
trucks and more leakage.
had leakage.
A chemical
Firefighters
truck carried
closed the some
2019/03/12 | Styrene had a None °
lanes in National
collision with
Freeway No. 1.
front vehicle.
Firefighters
A chemical
closed the
truck carried
2019/03/21 expressway and | injury © 1 °
Isoprene
removed the
overturned.
truck.
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