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I 

 

ABSTRACT 

On July 30, 2014, a series of gas pipeline explosion accidents occurred in the 

Kaohsiung City, Taiwan, which caused 32 people killed and 321 others injured. After 

this, local government decided to substitute chemical truck for pipeline transporting 

hazmat, so the risk of hazmat accidents was transferred to the city road system. 

Therefore, the risk management of route for hazmat transporting needs to be noticed.  

Hazmat transportation accidents usually followed with catastrophic losses and 

cause heavy impact to society and environment, especially in populous or heavy traffic 

area such Taiwan city. Further, the real traffic conditions are changing rapidly, which 

leads to many uncertainties. Despite a large number of researches discussing the route 

planning of hazmat transportation, most are static research. Thus, this research adopts 

dynamic traffic characteristics. Besides, more and more cities tend to develop smart 

city, which implies a growing number of real time traffic data are generated. That also 

could provide decision maker to generate better decisions for hazmat transportation. 

This research aims to develop a model for real time route optimization of hazmat 

transportation based on multi-objective genetic algorithm. We consider two objectives 

(transportation risk and cost) involving traffic travel time and traffic volume. The 

proposed model is tested on realistic Kaohsiung network. Finally, the results present 

the optimal routes of single O-D pair, multiple O-D pairs, and sensitivity analysis. This 

research is expected to provide some recommendations and references for related 

stakeholders such as hazmat industries, government, and residents. 

Keywords: Hazmat transportation, Multi-objective, Genetic algorithm, Real time, 

Route planning 

 

 

 



doi:10.6844/NCKU201901038

 

II 

 

摘要 

近年來危險物品的風險管理已成為全世界的重要課題，特別是在以工業為主

的國家裡，因其危險物品之事故往往會造成環境和社會嚴重的破壞。在2014年，

作為台灣石化工業重鎮的高雄市，因其管線設計不當以及疏於維護，發生嚴重的

管線氣爆事件，日後考量到高雄市居民對於舊管線仍存在著安全之疑慮，故高雄

市政府即宣布汰除舊有管線，則改以化學槽車來運送危險物品，雖然如此，槽車

的行駛路線仍會造成民眾與車輛有一定程度的危害風險，因此，此事件突顯出危

險品運輸路線設計的重要性，台灣國內也應對此課題加以關注。 

相較於國外對於危險物品運輸路徑規劃之研究趨於完整，台灣國內則尚未有

完善的管理部門及研究計畫，再者，過去國外文獻中所提出的模型大多以靜態路

網作為試驗，故本研究於危險物品運輸之最佳路徑中考量動態元素，以因應即時

的交通路網路況。另外，在未來城市趨於智慧化的形況下，透過感測器甚至是物

聯網之通訊設備，將擁有更多即時性的交通數據作為監控管理，且日後也能應用

於危險物品路徑規劃上做更精準之決策。 

本研究建構一模型為即時性之路徑規劃於危險物品運輸，在考量運輸風險和

運輸成本之目標下，納入動態元素如隨時間變動之車流量、平均旅行時間當作評

估項目，並基於多目標基因演算法求解最佳路徑，結果則以高雄氣爆案周遭路網

做實證，將產生之結果繪於路網中。其中，對於設定的起訖對分別以個別以及同

時考慮多起迄對的方式來呈現其變化，最後，設定不同之演算法參數以比較結果

之優劣。期望提供政府、居民以及業者(化工廠、煉油廠、油罐車業者)對於危險

品運輸更進一步之參考與建議。 

關鍵字：危險物品運輸、多目標、基因演算法、即時性、路徑規劃 
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CHAPTER 1 INTRODUCTION 

1.1 Research Background and Motivation 

With the advance of communication technology, a growing number of real time 

traffic data not only redefine the risk assessment but also assist in renewing the optimal 

route for hazard materials (hazmat) transportation. On the other hand, it could timely 

mitigate risk and decrease cost simultaneously for daily hazmat transporting on roads. 

(Giglio et al., 2004). Because many time-varying components (the state of the road, of 

the weather, of the driver, of the hazardous material) are no longer suitable for 

conventional definitions proposed by past researches, this research needs to discuss the 

tough problem and focuses on real time route planning of hazmat transportation. 

Nowadays, enormous quantities of hazmat are transported to create numerous 

chemical products for growing needs of daily commodities. But in terms of daily 

transporting of chemical trucks, it causes an unpredictable damage when accidents 

happen. In the United States, consequence of accidents caused huge damage during the 

past decade: an average of 59 million dollars lost on the highway per year (Hazmat 

Summary by Mode of Transportation, PSMSA, 2018). As for Taiwan, the related 

statistics is so relatively insufficient that we could not know how severe the accidents 

caused. But accidents of chemical trucks still happen somewhere in Taiwan to pose an 

unreasonable risk to our health, safety, or property. Further route planning accounts for 

the majority of hazmat transportation issues comparing with risk assessment and 

facility location/emergency planning in the industrial countries (Faghih-Roohi et al., 

2016). Therefore, especially in Taiwan, which is a small island and high population 

density, the problem of real time optimal route for hazmat transportation cannot be 
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ignored in a rapidly changing traffic condition. 

On 1st August 2014, a series of gas explosions happened in the southern Taiwanese 

city of Kaohsiung. Not only the blasts rocked the city’s roads and vehicles but also 

killed 32 people and injured 321 unfortunately. According to the investigation report 

(Control Yuan Republic of China, Taiwan, 2014), bad transportation pipeline design 

and careless management were the main reasons of the accident. Afterwards, due to the 

residents lived nearby the affected area strongly worried that the pipeline accident will 

be occurred again, the Kaohsiung city government to abandon the all hazmat pipeline 

of the disaster area. Thus, the mode of hazmat transportation was changed from pipeline 

transportation to chemical trucks to reduce citizens’ fear. Then numerous chemical 

trucks were increasingly needed for remediation to original demand, whereas the 

citizen’s safety concern shifts from pipeline transportation to the road, particularly in 

the route assignment of chemical truck. 

 In the end of 2014, Kaohsiung city government announced that the regulation of 

the restricted route and only allowed to pass within 6:00 a.m.-18:00 p.m. for chemical 

trucks. In 2017, Toxic and Chemical Substances Bureau, Environmental Protection 

Administration Executive Yuan, R.O.C. also regulated that the chemical trucks need to 

equipped GPS for control easier. As described above, the restricted route not only lacks 

risk assessment, but also the related academic research for endorsement. The hazmat 

transporting route still poses a certain level of risk. Thus, the risk management of route 

should be more noticed in Taiwan. 

In the past, a large number of researches which related to route planning of hazmat 

took static components as objectives. But many components should be time-dependent 

and spatial characteristic in real traffic conditions. Such as driver behavior, status of 

chemical truck, hazmat, and route segment, could cause different traffic conditions and 
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different risk/cost levels. Thus, if the components are not dynamic, the results also could 

not meet real conditions even though the proposed model could decide precisely 

optimal route. In other words, the more accurate the analytical data is, the more 

effective the analytical results are. Besides, more and more cities tend to develop 

‘‘smart city’’ (Chourabi et al., 2012), which implies a growing number of real time 

traffic data are generated under the communication technology such as Internet of 

Things (IoT) (Zanella et al., 2014). For decision maker, that not only assists in more 

effective traffic management but also could provide more precise decisions for hazmat 

transportation (Liu et al., 2012). 

In order to enhance safety and meet real traffic conditions, this research constructs 

a model based on multi-objective genetic algorithm for real time route optimization of 

hazmat transportation. The model considers two objectives (transportation risk and 

transportation cost) with dynamic components (traffic volume and travel time) because 

high traffic volume may bring high risk of accidents and traffic congestion may cause 

travel time lower over time. Further it is hard to collect the dynamic components 

including traffic volume and travel time in traffic network, thus it is evaluated from 

traffic simulation software (DynaTAIWAN) (Hu et al., 2007). The proposed model is 

tested on realistic Kaohsiung city network and the results of experiments are presented 

by different scenarios.  

1.2 Research Objectives  

The purpose of this research is to find optimal route of hazmat transportation with 

different time interval. It means that we could and simultaneously mitigate risk and 

decrease cost on the route assignment of chemical trucks over time. The results are 

expected to provide practical recommendations and references for related stakeholders 
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such as hazmat carrier, government and residents for further discussion. The objectives 

are summarized as follows: 

1. Define two objectives (transportation risk and cost) with real time traffic 

characteristics. Static components include population distribution, accident rate, 

average radius of the exposure region and so on. Dynamic components include 

traffic volume and travel time. We update the time-varying traffic data with 

particular time interval in our traffic network. 

2. Develop a model based on real time multi-objective genetic algorithm and a 

solution algorithm to find the Pareto solutions (minimize cost and risk 

simultaneously). The results are divided into three parts: 1. presenting real time 

optimal route for single O-D pair, 2. presenting sensitivity analysis by setting 

different parameters of algorithm 3. presenting real time optimal routes of 

multiple O-D pairs. 

3. Develop a strategy based on weighting objectives to find the optimal routes and 

to verify the results from multi-objective genetic algorithm. The reason is that 

although heuristic algorithm could find optimal solutions within a reasonable 

time, it does not guarantee the solutions are best. (Rocha & Neves, 1999) 

1.3 Research Flow Chart 

Figure 1.1 is the research flow chart and the following briefly describes research 

tasks in respectively. 

1. Research Background and Motivation 

Explain the important issue of the hazmat transportation management and real time 

route in Taiwan. Besides, define the purpose of research and outline the research 

objectives. 
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2. Literature Review 

Review the hazmat transportation route problem, risk assessment, multi-objective 

optimization and genetic algorithm. Further we reviewed the recent research about 

real time hazmat route problem. 

3. Problem Statement 

Based on the research background and motivation, describe this issue in detail and 

define the clear problem in this research.  

4. Model Formulation and Solution Algorithms 

We propose a model for real time route optimization of hazmat transportation. 

Present the real time multi-objective genetic algorithm whose core is NSGA-II and 

real time optimal route with two objectives including minimum transportation risk 

and cost. Further, present the detailed definition, formulation and solution 

algorithms. 

5. Numerical experiments &Empirical Analysis 

Beneath the Kaohsiung City network, collect the two objectives (transportation risk, 

cost) with dynamic components and program the proposed model based on real time 

multi-objective genetic algorithm. 

6. Results and Discussion 

This research presents the results of real time optimal routes and depicts the routes 

on the Kaohsiung City network. Last, presents the empirical study by different 

scenarios. 

7. Conclusions and Suggestion 

Because Taiwan has rare research related to real time hazmat route problem, this 

research devoted to providing recommendations and references for related 

stakeholders based on the results of numerical experiments in this section. 
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CHAPTER 2 LITERATURE REVIEW 

The purpose of this research is to develop a real time route optimization for hazmat 

transportation base on a multi-objective genetic algorithm. Therefore, we focus on the 

problem of multi-objective hazmat transportation combining with dynamic 

components. Each of sections are detailed summarizing as follow: Section 2.1 reviews 

the definitions, international regulations and accidents of hazmat transportation. 

Section 2.2 reviews the risk assessment for hazmat transportation. Section 2.3 reviews 

the multi-objective optimization approach and its application in hazmat management. 

Section 2.4 reviews genetic algorithm, multi-objective genetic algorithm (MOGA) and 

the elitist non-dominated sorting genetic algorithm Ⅱ(NSGA-II). Section 2.5 reviews 

real time hazmat route problem and the dynamic components. Section 2.6 summarizes 

Chapter 2 by providing the key point from each section. 

2.1 Hazmat Transportation 

With the rapid development of the logistics industry, the transportation modes of 

land, sea and air are closely related. Among those, also includes a considerable 

quantities of hazmat transportation. However, hazmat possesses explosive, 

flammability, toxic, corrosive infectious and radiative properties. In case hazmat 

accidents happen, it often brings much greater harm to health, life, property and the 

environment than general cargo. Thus, we must pay more attention to risk management. 

The following sections focus on reviewing international regulations, definitions of 

hazmat and practical accidents of hazmat transportation. 
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2.1.1 International Regulations and Definitions  

From first version of Recommendations on the Transport of Dangerous Goods 

(1956) publishing, the United Nations Economic and Social Council (ECOSOC), 

continuously revised it. In 2017, the version was updated to Twentieth revised edition. 

Above shows that numerous issues of hazmat still be constantly discussed and revised. 

The main concept of the recommendations is requirement for ensuring the safety of 

people, property and the environment in the light of technical progress, the advent of 

new substances and materials, the exigencies of modern transport systems.  

In 1957, the United Nations Economic Commission for Europe (UNECE) enacted 

the European Agreement concerning the International Carriage of Dangerous Goods by 

Road (ADR) whose structure is consistent with that of the United Nations 

Recommendations on the Transport of Dangerous Goods. The purpose of agreement is 

mainly for hazmat regulations including packaging, labeling, equipment and transport. 

Taiwan and more than forty countries complied with this to regulate the national 

regulations for hazmat transportation.  

As for United States, they established the Hazardous Materials Transportation Act 

(HMTA) in 1975 based on Title 49 of the Code of Federal Regulations (CFR). It defined 

hazmat as: if we cannot control the hazmat substance safely, it may cause health, safety 

and property to unreasonable harm in commercial transportation. The purpose of the 

Act is to protect and prevent the life, property and the environment from the impact of 

the risks posed by hazmat in interstates, states and international business. Regulation 

under the Act are categorized into four terms, including Procedures and Policies, 

Material Designations & Labeling, Packaging Requirements and Operational Rules. 
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2.1.2 Hazmat Transportation Accidents in United States 

Figure 2.1 and Figure 2.2 shows the accidents of hazmat transportation during the 

past decade. A total of 163,086 accidents have been reported to Pipeline and Hazardous 

Materials Safety Administration (PHMSA). Accidents of land transportation (highway) 

accounted for majority of percentage. Moreover, the number of accidents has gradually 

increased. The consequence of these accidents caused totally 594 million dollars and the 

average of 59 million dollars per year damage on the highway. Figure 2.3 indicates that 

the damage is no significant decreasing during the past decade. 

 

 

Figure 2.1 Accidents by Mode and Incident Year 

Source: Pipeline and Hazardous Materials Safety Administration  

(2018 Hazmat Summary by Mode of Transportation) 

 

Figure 2.2 Accidents By Mode and Incident Year 

Source: Pipeline and Hazardous Materials Safety Administration  
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(2018 Hazmat Summary by Mode of Transportation) 

 

Figure 2.3 Damages on highway Incident Year 

Source: Pipeline and Hazardous Materials Safety Administration  

(2018 Hazmat Summary by Mode of Transportation) 

2.1.3 Hazmat Transportation Accidents in Taiwan 

The accidents of chemical trucks in Taiwan recently for two year shows in 

Appendix (Table A-1). The table shows that overturn and collision accidents of 

chemical truck are endless. Although the police officers and firefighters could be 

immediately on-site accident after receiving the emergency notification, the accident 

caused by the chemical truck requires more professional treatment than the general 

traffic accident. Moreover, the traffic chaos and impact to environmental caused by 

accidents are often more serious. After being transferred from pipeline transportation 

to chemical truck, it appears to be more important for the regulation of hazmat 

transportation. 
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2.2 Risk Assessment for Hazmat transportation 

As was mentioned in the beginning of this chapter, many academic research had 

devoted great effort to exploring risk assessment. Because the accident of chemical 

trucks might have spillage, flash fire or explosion when the collision and overturn 

happened, the risk always have higher impact than the normal accident in general. They 

also denote “danger circle” as the range of risk, because it is difficult to estimate some 

characteristics such as meteorological conditions and topography, the effect on humans, 

and the location of individuals at the time of the release. Then the danger circle is related 

to probability of an accident, accident rate, conditional release probability, population 

density, impact region and the length of the link. (Erkut & Verter, 1998) The following 

focus on the definitions of risk and how risk assessment applied to hazmat 

transportation problems.  

Erkut and Verter summarized an overview of the risk definition of the transport of 

hazmat, including the traditional risk, edge risk and path risk. They also define societal 

risk as the product of link length, accident rate, conditional release probability, 

population density and impact radius. (Erkut & Verter, 1998) 

 Erkut and Ingolfsson summarized the various classic path risk evaluation models 

for hazmat transportation as Table 2-1, focusing either on one of the two attributes only 

or on both. They illustrate that different researchers quantify hazmat transportation risk 

depend on different perspectives and scenarios of problem. But they all have a common 

objective—by finding an optimal route to maximally reduce its impact on society for 

the hazmat transportation. (Erkut & Ingolfsson, 2005) 
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Table 2-1 Classic path risk evaluation models 

Model Risk measure Formula 

TR Expected risk 

(Traditional risk) 

min
𝑙∈𝑃

∑ 𝑝𝑖𝑗𝑐𝑖𝑗(𝑖,𝑗)∈𝐴𝑙   

PE Population exposure min
𝑙∈𝑃

∑ 𝑐𝑖𝑗(𝑖,𝑗)∈𝐴𝑙   

IP Incident probability min
𝑙∈𝑃

∑ 𝑝𝑖𝑗(𝑖,𝑗)∈𝐴𝑙   

PR Perceived risk min
𝑙∈𝑃

∑ 𝑝𝑖𝑗(𝑐𝑖𝑗)𝑞
(𝑖,𝑗)∈𝐴𝑙   

MM Maximum risk min
𝑙∈𝑃

max
(𝑖,𝑗)∈𝐴𝑙

𝑐𝑖𝑗  

MV Mean variance min
𝑙∈𝑃

∑ (𝑝𝑖𝑗𝑐𝑖𝑗 + 𝑘𝑝𝑖𝑗(𝑐𝑖𝑗)
2

)(𝑖,𝑗)∈𝐴𝑙   

DU Disutility min
𝑙∈𝑃

∑ 𝑝𝑖𝑗(exp(𝑘𝑐𝑖𝑗 − 1))(𝑖,𝑗)∈𝐴𝑙   

CR Conditional probability min
𝑙∈𝑃

∑ 𝑝𝑖𝑗𝑐𝑖𝑗(𝑖,𝑗)∈𝐴𝑙

∑ 𝑝𝑖𝑗(𝑖,𝑗)∈𝐴𝑙
  

Kang et al. proposed a new measurement of risk model, value-at-risk (VaR) which 

was most used in financial application in the past. The model introduced a new factor 

of confidence level α meaning the decision maker’s risk preference. The objective of 

the VaR model is to set the worst risk threshold by a shipment within a certain 

confidence interval. That means the optimal VaR path varies under different α. In case 

study, they addressed single-trip optimal hazmat shipment problem by selecting the 

lowest VaR value. Further, they combined the VaR model with other models to list 

several paths (better VaR values). (Kang, Batta, & Kwon, 2014) 

Kwon extended the framework to conditional value-at-risk (CVaR) models which 

was applied to deal with financial portfolio optimization. In VaR model, usually ignore 

some road segments with very small accident probability but large accident 

consequence. Compared with VaR, CVaR models can avoid the use of the links with 
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large consequence by selecting a sufficiently large confidence level that stands for 

extreme risk averse attitude. Further CVaR has better mathematical and computational 

properties, in addition to the better behavior in long tail. (Kwon, 2011) 

2.3 Multi-objective Optimization Approach 

Hsu indicated that Multiple Criteria Decision Making (MCDM) includes Multiple 

Objective Programming (MOP) and Multiple Attribute Decision Making (MADM). 

The main difference could be summarized as the aspects of alternative solutions and 

evaluated approach. MOP obtains the non-dominated solutions via mathematical 

programming from infinite solutions (discrete). MADM obtains the non-dominated 

solutions via relative importance from limited solutions. Further, MOP could be divided 

into three categories as figure 2.4 which is related to informations, preference selection 

and pratical method. (Hsu, 2003) 

MOP

Informations
Analyst to decision maker

(Bottom-up) 
Decision maker to analyst 

(Top-down)

Combination of analyst and 

decision maker (Interaction)

Prior Posterior Progressive preference Preference

Noninferior solutions Set of noninferior solutionsNoninferior solutions

Noninferior solutions

Compromise Programming 

Fuzzy Programming 

Utility Function

Weight Method

ε-Constraint

NISE

Simplex Method

Step Method

Geoffrion Method

Interactive Weight 

Tchebycheff Procedure 

Method

 

Figure 2.4 Categories of multiple objective programming 
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Multi-objective optimization (also named as multi-objective programming, vector 

optimization, and Pareto optimization etc.) has been applied in many fields of science, 

including engineering, economics and logistics. In the field of transportation, most of 

the objectives we considered such as travel time, distance, cost, congestion for the 

transporting, considering the price, service level, and seamless transfer service always 

have conflict. Thus, the goal of multi-objective optimization is to consider more than 

one objective to be optimized simultaneously with mathematical optimization problems 

involving. The optimal solutions of multi-objective optimization need to be taken in the 

presence of trade-offs between two or more conflicting objectives. Besides, there exists 

a (possibly infinite) number of Pareto optimal solutions, and none of the objective 

functions can be improved in value without degrading some of the other objective 

values. Then the general form, some applications of the multi-objective optimization 

approach in hazmat and multi-objective genetic algorithm are reviewed as below. 

2.3.1 General Form of Multi-objective Optimization 

The model of multi-objective programming (MOP) is basically the expansion of 

the single objective linear programming. The difference between them is that MOP can 

simultaneously address two or more than two objectives, whereas single objective 

programming only address one objective. The concept of MOP is vector optimization, 

namely max 𝑍 = [𝑍1, 𝑍2, … … , 𝑍𝑝] which is a set of alternative solution, not a point 

which obtain in the single objective programming. 

Take a general mathematical form as example, there are n variables, m constraints 

and p objectives, the form of multi-objective programming formulated as equation (2-

1) to (2-3). 
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max 𝑍(𝑋1, 𝑋2, … … , 𝑋𝑛) = [𝑍1(𝑋1, 𝑋2, … … , 𝑋𝑛), … … , 𝑍𝑝(𝑋1, 𝑋2, … … , 𝑋𝑛)] (2-1) 

s. t. ∑ 𝑎𝑖𝑗𝑋𝑗 ≥ 𝑏𝑖 ,

𝑛

𝑗=1

  𝑖 = 1,2, … … , 𝑚 (2-2) 

   𝑋𝑗 ≥ 0, j = 1,2, … … , n (2-3) 

𝑍1, 𝑍2, … … , 𝑍𝑝 represent p single objective function, 𝑍(𝑋1, 𝑋2, … … , 𝑋𝑛) 

represent the objective function. Given vector Z optimization situation, obtain one or 

several solutions. A solution 𝑋 = (𝑋1, 𝑋2, … … , 𝑋𝑛)𝑇 is a vector of n decision variables 

which is the non-dominated solution (Pareto solution, Pareto optimal, Pareto efficient 

or non-inferior) of the multiple objective programming. Given the inherent resource 

allocation, non-dominated solution means that one feasible solution which have none 

of the value of objective functions can be improved without reducing any the other 

objective values. 

For two solution x and y, x is said to dominate y if and only if equation (2-4) is 

satisfied in a maximum problem, which represents that solution x is no worse than 

solution y in all objectives, and strictly better than y in at least one variable 

i ∈ (1,2, … , N), 𝐹𝑖(𝑥) ≥ 𝐹𝑖(𝑦), 𝑎𝑛𝑑 𝑗 ∈ (1,2, … , 𝑁), 𝐹𝑗(𝑥) ≥ 𝐹𝑗(𝑦) (2-4) 

 

 In Deb’s research, Figure 2.5 presented that Pareto-optimal set is continuous 

curves. It could have four scenarios with two objectives. Each objective can be 

minimized or maximized, so the objectives combinations are min-min, min-max, max-

min, and max-max. The gray region means the feasible solution region, and the black 

continuous curves are the Pareto optimal sets (non-dominated solutions). (Deb, 2001) 

Given the same search space, in the top-left of figure 2.5, the task is to minimize 

both objectives f1 and f2. The black continuous curves mark the Pareto-optimal solution 

set. If f1 is to be minimized and f2 is to be maximized, the result of Pareto-optimal set 
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is different, which is shown in the top-right of figure 2.5. Similarly, the Pareto-optimal 

sets for two other cases— (maximizing f1, minimizing f2) and (maximizing f1, 

maximizing f2)—are shown in the bottom-left and bottom-right of figure 2.5, 

respectively. In any case, the Pareto-optimal set always consists of solutions from a 

particular edge of the feasible search region. 

Figure 2.5 Pareto-optimal set with continuous curves (Deb, 2001) 

Figure 2.6 presents the procedure of the principles in an ideal multi-objective 

optimization. In Step 1 (vertically downwards), multiple trade-off solutions are found 

(Pareto optimal). Moreover, the case of single-objective optimization is completed in 

this step, because the optimal solution is only one. Thus, it will not enter next step. In 

Step 2 (horizontally, towards the right), the higher-level information is provided to 

choose one of the trade-off solutions. In the case of multi-objective optimization with 

multiple global optimal needs to take both steps to first find all or many of the global 

optimal and then to choose one from them by using the higher-level information in 

some problems. 
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Figure 2.6 Procedure of an ideal multi-objective optimization  

Source: Multi-objective optimization (Deb, 2014) 

2.3.2 Application of Multiple Objective Approach in Hazmat Management 

The route planning of hazmat transportation is a multi-objective problem because 

of different concerns from all parties. The government hopes that the transportation 

route could be far away to the densely populated area to eliminate citizen’s fear, which 

means risk consideration. On the other hand, the carriers hope that transportation cost 

could be the least, which means cost consideration. However, the two factors often exist 

conflict during simultaneously adopting as consideration objectives, so it be regarded 

as multi-objective problem. Thus, a great number of researchers mainly concerned with 

minimum cost and minimum risk simultaneously, some researchers concerned with 

other objectives. In this section, multiple objective methodologies and objectives 

applied in the issues are summarized in following Table 2-2.  
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Table 2-2 Multiple objective approach in hazmat route  

Reference 
Authors& 

Year 
Methodology Objectives  

A multi-objective 

programming model 

for locating treatment 

sites and routing 

hazardous wastes 

(Zografos & 

Davis, 1989) 
 

Mathematical 

formulation 

Risk 

Risk of special 

population categories 

Travel time 

Property damages 

Multi-objective 

routing of hazardous 

materials in stochastic 

network 

(Wijeratne et 

al., 1993) 
 

Stochastic 

Multi-objective 

Shortest Path 

Travel time 

Rates of occurrence 

for accidents 

resulting in a release 

of hazardous material 

Operating cost 

A model to assess 

risk, equity and 

efficiency in facility 

location and 

transportation 

(Current & 

Ratick, 1995) 
 

Weighting 

method 

Total transportation 

risk 

Total facility risk 

Maximum transport 

exposure 

Total operating costs 

A multi-objective 

programming model 

for locating treatment 

sites and routing 

hazardous wastes 

(Giannikos, 

1998) 
 

Goal 

programming 

Total operating cost 

Total perceived risk 

Distribution of risk 

among population 

centres  

Equitable distribution 

of the disutility 

caused by the 

operation of the 

treatment facilities 

A multi-objective 

geographic 

information system 

for route selection of 

(Chen et al., 

2008) 
 

Multi-objective 

GIS 

Travel time 

Transportation risk 

The exposed 

population 
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Reference 
Authors& 

Year 
Methodology Objectives  

nuclear waste 

transport 

Multi-objective route 

planning for 

dangerous goods 

using compromise 

programming 

(R. Li & 

Leung, 2011) 
 

compromise 

programming 

Travel time, accident 

probability, road 

users at risk, off-road 

population at risk, 

special population at 

risk and expected 

damage on economy 

A multi-objective 

model for the 

hazardous materials 

transportation 

problem based on 

lane reservation. 

(Zhou et al., 

2012) 
 

ε-constraint Impact on the normal 

traffic 

Population exposure 

and the probability of 

hazardous material 

accident 

A multi-objective 

mathematical model 

for the industrial 

hazardous waste 

location-routing 

problem 

(Samanlioglu, 

2013) 
 

The 

lexicographic 

weighted 

Tchebycheff 

implementation 

Total cost  

Total transportation 

risk related to the 

population exposure 

along transportation 

routes of hazardous 

materials and waste 

residues 

Total risk for the 

population around 

treatment and 

disposal centers (site 

risk) 
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Reference 
Authors& 

Year 
Methodology Objectives  

A genetic algorithm 

for multi-objective 

dangerous goods 

route planning 

(R. Li et al., 

2013) 
 

Genetic 

algorithm 

Travel time, accident 

probability, on-road 

exposure risk, off-

road exposure risk, 

people with special 

needs at risk, 

negative impact on 

economy, and 

emergency response 

capabilities 

Optimization for 

Hazardous Materials 

Road Transportation 

Based on Multi-

objective Method 

(X. Li & 

Jiang, 2013) 
 

Dijkstra 

Algorithm, 

AHP 

Transportation risk 

Distance 

Cost 

Cost and risk 

aggregation in multi-

objective route 

planning for 

hazardous materials 

transportation—A 

neuro-fuzzy and 

artificial bee colony 

approach 

(Pamučar et 

al., 2016) 
 

Adaptive neuro 

fuzzy inference 

system, 

Artificial bee 

colony 

algorithm, 

Dijkstra’s 

algorithm 

Operating cost 

Emergency response 

Risk associated with 

the environment 

Risk of an accident 

The Consequences of 

an accident  

Risk associated with 

infrastructure 

Risk of terror 

attack/hijack 

An Improved Multi-

Objective 

Programming with 

Augmented ε-

Constraint Method 

for Hazardous Waste 

(Yu & 

Solvang, 

2016) 
 

Augmented ε-

constraint 

method 

Facility risk and 

transportation risk 

fixed facility costs, 

processing costs of 

hazardous waste, and 

transportation costs 
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Reference 
Authors& 

Year 
Methodology Objectives  

Location-Routing 

Problems 

Using metaheuristic 

algorithms to solve a 

multi-objective 

industrial hazardous 

waste location-

routing problem 

considering 

incompatible waste 

types 

(Rabbani et 

al., 2018) 
 

NSGA-II, 

Multi-

Objective 

Particle Swarm 

Optimization 

Total site risk  

Transportation cost 

Transportation risk 

2.4 Genetic Algorithm 

Multi-objective problem always considers two or more than two objectives, but 

most of methods still use general single-objective optimization by regarding one of 

them as an objective function and the other objectives as constraint. The usual process 

is to normalize the objectives and give weight depend on their importance in the 

objective function such as like weighting method. However, it is troublesome for 

decision makers to express their preferences for various objectives in an abstract and 

specific circumstance without earlier information (Zionts & Wallenius, 1976). But in 

Genetic Algorithm (GA) application, the decision makers do not need to decide the 

objectives priority, preferences and weight in main objective function. 

In 1975, Holland (1975) first proposed Genetic Algorithm (GA) which is used for 

finding optimized solutions to deal with problems based on the theory of natural 

selection and evolutionary biology. It is not only a heuristic search method, but also a 
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branch of Artificial Intelligent. Moreover, GA is suitable and excellent to address a wide 

range of real-world problems through large and complex data sets. Even more, it could 

find reasonable and optimal solutions within quick time. A genetic algorithm 

optimization framework was illustrated in Figure 2.7. 

 

 

Figure 2.7 Genetic algorithm framework 
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1. Encoding: 

Encoding represents that we need to transfer the problem to program language such 

as binary digit (0,1). Then various presenting method has been raised to evaluate it. 

Thus, the encoding code corresponds to genes, and genes are also the basic unit of 

chromosome. In other words, we encode the genes in a chromosome. Last, the final 

solution vector is selected by GA among the chromosomes. 

2. Generate Initial Population: 

A set of chromosomes construct initial population. Each chromosome is a solution 

to the problem that research want to solve. The constructive methods are various 

such as random walk and heuristic initialization. Further the size of population 

could cause the solving efficiency. Large size of population has higher probability 

and longer computing time to find the optimal solution while small size of 

population could converge too early for finding the optimal solution. 

3. Evaluate Fitness: 

The fitness function could determine whether a chromosome has the ability to 

compete with other chromosomes. The fitness function gives each chromosome 

fitness score. In general, higher fitness score has higher probability to be selected 

to the next generation. Thus, excellent chromosome could be reserved. 

4. Selection and Reproduction: 

There are various selection methods to select the chromosome with higher fitness 

scores, and the Roulette Wheel (or fitness proportional) selection is traditional 

selection method. This proportionally allocates each chromosome a probability of 

being selected depend on fitness score. Then the chromosomes with higher fitness 

score have more chance to be selected for reproduction. 
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5. Crossover Operator: 

The phase in a genetic algorithm is core mechanism. For each chromosome could 

be mated by another one to generate offspring. These are created by exchanging the 

genes of parents among themselves until the crossover point is matched. 

6. Mutation: 

During period of forming new offspring, a mutation with a low random probability 

happen in some of their genes. There are two goals, one is building the new solving 

possible to keep diversity. The other one is to reimport the lost information in the 

evaluated process. 

7. Termination Condition: 

General termination conditions have three situation and means that reach the 

optimal solution. 

(1) Setting numbers of generation: This method could stop the solving process 

when fit the numbers of generation and control the computing time, but might 

not find the best optimal solution or could not converge. 

(2) Reach the target fitness score: Reaching the target fitness score setting is to find 

the optimal solution. 

(3) Convergence: It causes evolution to halt because precisely every fitness score 

of chromosomes in the population is identical meaning convergence and find 

the optimal solution.  

2.4.1 Multi-objective Genetic Algorithm (MOGA) 

Konak et al. (Konak et al., 2006) presented multi-objective GA (MOGA) and 

summarized a list of well-known multi-objective GA. Research focused on their 

components and the distinguished issues encountered while implementing multi-
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objective GA. The main goal is to compare the evaluation of different multiple objective 

genetic algorithm. Table 2-3 highlights a list of representative multi-objective GA with 

their characteristics and authors. Compared with single objective GA, multi-objective 

GA needs to face the conflicting problem and satisfy three claims as our literature 

knowledge. 1. Assess and select properly the Pareto optimal solution and reproduce to 

next population. 2. Keep the chromosomes set and Pareto optimal solution in diversity. 

3. Construct the effective mechanism with crossover, mutation and reproduction for 

forming Pareto optimal solution. 

Table 2-3 A list of representative multi-objective GA 

Generation Characteristics Algorithm Authors 

I Pareto sorting VEGA (Schaffer, 1985) 

II Pareto sorting and 

keeping diversity 

MOGA (Fonseca & Fleming, 1993) 

III Multi-objective 

function with 

weight and elitism  

RWGA 

AWGA 

SPEA-II 

NSGA-II 

I-AWGA 

(Ishibuchi & Murata, 1998) 

(Gen & Cheng, 2000) 

(Zitzler et al., 2001) 

(Deb et al., 2002) 

(Gen, Cheng, & Lin, 2008) 

 

Schaffer (Schaffer, 1985) proposed the first multi-objective GA, called vector 

evaluated GA (VEGA). The procedure is introduced as below. Step 1, it divided 

population Pt into K equal sized sub-populations: 𝑃1, 𝑃2, … , 𝑃𝑘. Then, each solution in 

sub-population Pi is assigned a fitness value based on objective function 𝑍𝑖. Step 2, 

combine all sub-populations. Step 3, solutions Pt+1 are selected from these sub-

populations by proportional selection for crossover and mutation. Step 4, satisfy the 
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terminal condition or return to Step 1. But the final Pareto solutions from the model 

cannot uniformly satisfy the conflicting objectives. 

Deb et al. (Deb et al., 2002) introduced the elitist non-dominated sorting genetic 

algorithm Ⅱ  (NSGA Ⅱ) in order to modify a number of criticisms of the non-

dominated sorting genetic algorithm (NSGA) (Srinivas & Deb, 1994). Compared with 

NSGA, there are three main improvements for more effective solutions. That is fast 

non-dominated sorting approach, elitism strategy and crowded comparison operation. 

The procedure of fitness computation and choosing are depicted as Figure 2.8.  

 

Figure 2.8 NSGA Ⅱ fitness computation and select procedure 

 

 

A more comprehensive steps are presented. 

For t=0 

Step 1:  A random parent population 𝑃0 of size N is created  
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Step 2:  The child population 𝑄0  of size N is created by crossover and mutation 

procedure from 𝑃0 

For t≥ 1 

Step 3:  Combine parent and children population as 𝑅𝑡 = 𝑃𝑡 ∪ 𝑄𝑡. 𝑅𝑡 is size 2N. 

Step 4:  Sorting the non-dominated fronts 𝐹1, 𝐹2, … , 𝐹𝑘 in 𝑅𝑡 as figure 2.9 

Step 5 :  Calculate crowding distance of the sorted solutions in all the fronts 𝐹𝑖. 

Step 6 :  Create 𝑃𝑡+1 as follows: 

Case 1: If |𝑃𝑡+1| + |𝐹𝑖| ≤ N, then set 𝑃𝑡+1 = 𝑃𝑡+1 ∪ 𝐹𝑖. 

Case 2: If |𝑃𝑡+1| + |𝐹𝑖| > N , then add the least crowded N − |𝑃𝑡+1| 

solutions from 𝐹𝑖 to 𝑃𝑡+1. 

Step 7:  Use tournament selection based on the crowding distance to select parents 

from 𝑃𝑡+1 . Then apply crossover and mutation to 𝑃𝑡+1  to create child 

population 𝑄𝑡+1 of size N. 

Step 8:  Set t = t + 1, and go to Step 3. 

 

Figure 2.9 Fast non-dominated sorting approach 

2.5 Real Time Hazmat Route Problem  

 In a real environment, many components should be dynamic including time-
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dependent and spatial characteristics. Components such as driver behavior, status of 

chemical truck, hazmat, and route segment, can cause different traffic conditions and 

different risk/cost levels. Thus, if the components are not dynamic, the results also could 

not meet real traffic conditions even though the proposed model could decide precisely 

optimal route. In other words, the more accurate the data is, the more effective the 

results are. Thus, due to the influence of rapidly changing traffic conditions, the real 

time optimal route could timely mitigate risk and decrease cost for daily hazmat 

transporting on roads (Giglio et al., 2004). 

2.5.1 Static and Dynamic Components 

More and more cities tend to develop ‘‘smart city’’ (Chourabi et al., 2012), which 

implies a growing number of real time traffic data are generated under the innovative 

communication technology such as sensors, 5G, IoT and communication equipment 

(Zanella et al., 2014). For decision maker, that not only assists in more effective traffic 

management but also could provide more precise decisions for hazmat transportation 

(Liu et al., 2012). In fact, the objectives of model include static and dynamic 

components. The Table 2-4 shows main factors affecting the risk and cost in hazmat 

transportation. Therefore, the most of sources of static components could be collected 

from government open platform, but the dynamic components are hardly observed 

because of lacking various technologies to collect. Thus, these real time traffic data are 

collected by traffic simulation software and past researches to closely meet real traffic 

conditions. (Giglio et al., 2004) 
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Table 2-4 Factors affecting route risk and cost in hazmat transportation 

Factors Static components Dynamic components 

Driver Age, training condition Physiological state 

Mental state 

Roads familiarity 

Chemical Truck Periodic examination  Components conditions 

Speed 

Hazmat Type of Hazmat at start of 

route 

 

Chemical and physical 

conditions 

Route segment Length of road 

Type of road 

Residents 

Prohibited route for hazmat 

transportation 

Traffic flow 

Travel time 

Not fixed population on the 

route 

Weather condition 

2.5.2 Applications of Real Time Hazmat Route Problem 

Toumazis and Kwon first proposed a new method for hazmat routing on time-

dependent networks based on conditional value at risk (CVaR). CVaR is generally used 

to deal with financial institutions for portfolio optimization, but this research considers 

CVaR as the main risk objective in optimization of hazmat transportation network. They 

also extended the static model to the dynamic model by regarding accident probabilities 

and accident consequences as time-dependent components. That is, the probability of 

the components in the links mainly depend on the traffic conditions. Further, they 

computed the accident probabilities based on Poisson distribution which is suitable for 

rare event like hazmat accidents. (Toumazis & Kwon, 2013) 

Faghih-Roohi et al. also proposed a dynamic model for hazmat transportation 

routing and scheduling with conditional value at risk (CVaR). CVaR model was prove 

as a flexible, suitable, efficient method for hazmat transportation. The design of 

experiment in this research is to input several scenarios including different sort of 
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hazmat and time schedules. First, find the lowest risk of sort of hazmat to transport, 

then compute the other hazmat risk and update the optimal route again. Repeat above 

process until every hazmat finish the transporting tasks. (Faghih-Roohi et al., 2016) 

Qu et al. used a new methodology for addressing dynamic routing optimization of 

the chemical hazmat transportation. The process is divided into four major stages: (i) 

information collection and preparation; (ii) modeling and solving individual and system 

routing models; (iii) reactive routing optimization under uncertainties; and (iv) trade-

off study for potential shipping delays. A novel mixed integer linear programming 

(MILP) model is developed to determine the optimal shipping path via minimizing the 

transportation risk, then the routing model consists two parts: the individual and system 

routing models. The strategy of this research considers updating the optimal route when 

uncertainties occur. The uncertainties refer to change of weather and the occurrence of 

incidents. Moreover, if some shipping time violates the time limits, optimal solutions 

subject to different allowable shipping time (AST) are iteratively identified, so that the 

relation between AST and the corresponding transportation risk can be figured out. (Qu 

et al., 2018) 

2.6 Summary 

 As was mentioned in the previous sections, many models had been proposed to 

obtain optimal hazmat transportation route, but most of them deal with various 

problems by different approaches. All evaluated manner mainly considered two of the 

most important objectives – risk and cost, which usually have conflicting situation. 

Thus, they applied diverse multi-objective optimization to solve dilemma situation. 

Moreover, because some of multi-objective optimization have the requirement of prior 

preference, the weight needs to be collected by experts through analytic hierarchy 
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process (AHP) or other methods.  

 Dréo et al. (Dréo et al., 2006) had proposed, in MOP, there are two kinds of 

problems which cause ineffective solutions. First is ‘‘NP-difficult’’ whose computing 

time is too long to generate effective solutions. Second is ‘‘Global and Local optimum’’, 

that is difficult to completely ensure that the solutions are the best. Therefore, this 

research constructs heuristic algorithm based on multi-objective genetic algorithm. 

With the ability of multi-objective genetic algorithm to search the global domain, the 

optimal solutions could be obtained within a reasonable time. (Sivanandam & Deepa, 

2008) Especially in real time optimal route for hazmat transportation, it needs also more 

effective algorithm to deal with the complex network. This research aims at solving the 

hazmat transportation risk and cost objectives simultaneously and using NSGA-II to 

solve the real time route problem. The detailed description of the model formulation is 

discussed in the next chapter.  
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CHAPTER 3 RESEARCH METHODOLOGY 

As described in Chapter 1, the purpose of this research is to formulate a model for 

real time route optimization of hazmat transportation. Use real time multi-objective 

genetic algorithm to deal with the route planning problem and obtain Pareto optimal 

which also called real time optimal route with two objectives including minimum 

transportation risk and cost. Chapter 3 is organized as follows. Section 3.1 presents the 

conceptual framework. Section 3.2 presents the problem statement and the research 

assumptions of this research. Section 3.3 illustrates the research framework to describe 

the procedure of the methodology. Section 3.4 proposes and discusses the model 

formulation of problem. Section 3.5 discusses the solution algorithm applied in this 

problem. 

3.1 Conceptual Framework 

Most of research takes static components as objectives to develop optimal route 

for hazmat transportation. But in a real world, due to the influence of rapidly changing 

traffic conditions, many elements should be dynamic including time-dependent and 

spatial characteristic. Such as driver behavior, status of chemical truck, hazmat, and 

route segment, could cause different traffic conditions and different risk/cost levels. 

Thus, this research considers two objectives (risk, cost) with dynamic components, 

which concerns carrier and government points of view. Based on real time multi-

objective genetic algorithm, we obtain real time optimal route that timely mitigate risk 

and decrease cost on roads (Giglio et al., 2004). We extend static model proposed by 

Liao et al. to dynamic model (Liao et al., 2017). In selecting the objectives, we do not 

consider the emergency response capability because it is static characters. The 

algorithm is also changed from MOGA to Real time-MOGA. The main conceptual 
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framework is formulated in Figure 3.1. 

MOGA

Objectives

 Cost Risk

 Traffic conditions

Real time-MOGA

Emergency 

Response 

Capability

Objectives

Cost Risk
Location of 

vehicle

Static

Dynamic

Real time

 

Figure 3.1 Conceptual framework   

3.2 Problem Statement and Research Assumptions 

 In this research, we define time as t, which means the planning horizon is 

discretized into small time interval, such as one, two or five minutes. The model is 

formulated as follows: Given a hazmat transportation network G= (N; A), where N is 

the set of nodes and A is the set of directed links. Each link (i , j ) is associated with 

transportation risk (𝑅𝑖𝑗
𝑡 ), and transportation cost (𝐶𝑖𝑗

𝑡 ). In this network, for a single-trip 

risk and cost optimization problem, we define that the origin node is s, the destination 

is i and the others are intermediate nodes. Each route belongs to a solution set, which 

has the total transportation risk of solution l of route set p (𝑇𝑅𝑝
𝑙,𝑡

 ) and the total 

transportation cost of solution l of route set p (𝑇𝐶𝑝
𝑙,𝑡

). Besides, we update the vehicle 

location and the objectives within particular time interval to generate next round’s 

parameter including O-D pair, risk and cost. 
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According to above description, the assumptions and framework of this research 

are described as follows:  

1. While conducting the experiment, only single hazmat with highest risk level 

of hazmat is considered. Moreover, the problem of fleet vehicles is not under 

consideration. 

2. Updating optimal hazmat route depends on vehicle location and particular time 

interval. 

3. Due to insufficient hazmat transportation data in Taiwan, we set the parameter 

in Poisson distribution based on the definition proposed by Toumazis and 

Kwon (2013).  

4. Only two types of dynamic components (travel time and traffic volume) are 

considered in real traffic conditions. The population density of every area 

changes during the day is not under consideration. 

3.3 Research Framework 

The research framework of real time route optimization for hazmat transportation 

network planning is presented in Figure 3.2. The framework includes four main parts: 

Objectives setting, applying dynamic components in real time-MOGA, non-dominated 

solutions and optimal decision making. The details of each part are described as 

follows: 

1. Objectives setting: As previous reviewed in Section 2.2, the hazmat transportation 

problem usually takes transportation risk and transportation cost and into 

consideration. Further, the risk of link is defined as ‘‘danger circle’’, which includes 

probability and consequence of an accident of the link at different time interval. 
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Then, the cost is defined as operator cost, travel time and length of the link at 

different time interval. In this research, the objectives definition of risk, cost, 

vehicle location are defined as following Section 3.4.1 and be calculated on each 

links.  

2. Applying dynamic components in real time-MOGA: For the real time optimal route 

of hazmat transportation, we update vehicle location, the two objectives (risk, cost) 

with dynamic components under particular time interval. Then we also identify the 

vehicle location en route to renew the O-D pair. Because we have to consider 

simultaneously the minimum risk and cost objectives in route planning, we 

proposed the real time-MOGA to deal with the dilemma situation.  

3. Non-dominated solutions: We solve the non-dominated solutions (optimal route) by 

a real time multi-objective genetic algorithm. The core of real time-MOGA is 

NSGA-II. Section 2.4.1 shows the basic concept and flowchart of NSGA-II. The 

more detailed flow chart about real time multi-objective genetic algorithms are 

presented in Figure 3.5. Under the particular time interval, if the hazmat vehicle has 

not arrived at the final destination yet, the procedure turns back to step 2 to update 

the dynamic components. 

4. Optimal decision making: For each single O-D pair, we pick the final transporting 

route form the non-dominated solution generated by the real time-MOGA as 

suggested hazmat transportation routes. As for multiple O-D pairs, we proposed a 

strategy to balance the transportation risk on our transporting network. As the result, 

the optimal route network for hazmat transportation has gradually been formed. 
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Figure 3.2 Research framework 

3.4 Model Formulation 

This section shows descriptions and definitions of criteria. This research develops 

real time multi-objective genetic algorithm models with two conflicting objectives 

including minimum total cost, minimum total risk. The definitions of risk and cost in 

each link are discussed in Section 3.4.1. The summary of notations and model 

formulations are listed in Section 3.4.2. 

Real time route optimization for 

hazmat transportation problem

Objectives  with dynamic components

Link Cost Link Risk

Suggested Hazmat Transportation Routes

Optimal Hazmat Transportation Network

Real time-MOGA

Non-dominated Solutions

Vehicle 

Location
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3.4.1 Definition of Criteria 

Particular time interval and vehicle location 

We set time t as particular time interval of hazmat transporting. Two conditions 

are addressed. First, if the next node of vehicle location at time t is not destination, we 

need to update optimal route with real time-MOGA as Figure 3.3. Second, if the next 

node of vehicle location at time t is destination, we do not need to update optimal route 

as Figure 3.4. When vehicle arrive destination, we terminate the procedure of hazmat 

transporting. 

 

 

Figure 3.3 Condition of updating optimal route 

 

 

Figure 3.4 Condition of terminating updating optimal route 
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Link cost 

 For each link on the network, this research adds t as the time characteristic which 

depends on vehicle location and defined transportation cost as travel time  (𝐶𝑖𝑗
𝑡 ) . 

Compared with past static researches, we select the travel time evaluated by link length 

and travel velocity as the operating cost as equation (3-1). Then with particular time 

interval, the travel velocity is obtained by the result of traffic simulation software 

(DynaTAIWAN), and the link length is measured by Google Map. The link cost is 

evaluated as follow: 

Time-dependent link cost 𝐶𝑖𝑗
𝑡 = Time-dependent link travel time =  

Link length (𝐿𝑖𝑗) / Time-dependent link travel velocity (𝑉𝑖𝑗
𝑡 )  (∀𝑖, 𝑗 ∈ 𝐴, ∀𝑡),  (3-1) 

The definition of transportation cost for link (i, j) includes link length and travel 

velocity of link at time interval t. 

Link risk 

In Section 2.2, various risk models had been proposed to assess the risk on the 

hazmat transporting route. In this research, we adopt the concept of risk assessment 

proposed by Erkut and Verter (Erkut & Verter, 1998) and the accident probability and 

accident consequences proposed by (Toumazis & Kwon, 2013). For each link on the 

network, the time-dependent accident probability ( 𝑃𝑖𝑗
𝑡  ) was defined as a Poisson 

distribution whose parameter is presented as 𝑢𝑖𝑗
𝑡  . Parameter 𝑢𝑖𝑗

𝑡   can be measured 

based on the information derived from road conditions such as accident rates, length of 

link and hourly traffic volume with particular time interval. As for time-dependent link 

accident consequences can be measured based on radius of the exposure region, 

population density in the neighborhood of link, length of link and hourly traffic volume 

with particular time interval. Radius of the exposure region is estimated by hazard 

modeling program, ALOHA 5.4.4. As mentioned above, the main reason we adopt 



doi:10.6844/NCKU201901038

 

39 

 

hourly traffic volume as time-dependent parameter is that we would like to avoid large-

scale vehicle exposure when accident happens. The link risk is evaluated as follow: 

Time-dependent link risk (𝑅𝑖𝑗
𝑡 ) =                                     

Time-dependent link accident probability (𝑃𝑖𝑗
𝑡 ) 

*Time-dependent link accident consequences (𝐴𝐶𝑖𝑗
𝑡 )  

(∀𝑖, 𝑗 ∈ 𝐴, ∀𝑡), (3-2) 

𝑢𝑖𝑗
𝑡 =  

(Hazmat accident rate per mile/vehicle) * (Length of 

link)* (Hourly traffic volume at time t) 

= (3.19922*10−7)*𝐿𝑖𝑗*𝑇𝑉𝑖𝑗
𝑡  

(∀𝑖, 𝑗 ∈ 𝐴, ∀𝑡), (3-3) 

𝑛𝑖𝑗
𝑡 ~ Poisson (𝑢𝑖𝑗

𝑡 ) (∀𝑖, 𝑗 ∈ 𝐴, ∀𝑡), (3-4) 

𝑃𝑖𝑗
𝑡 = 1 − 𝑝𝑟{𝑁𝑜 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡 𝑜𝑐𝑐𝑢𝑟𝑠} 

= 1 −
(𝑢𝑖𝑗

𝑡 )
𝑛𝑖𝑗

𝑡

𝑛𝑖𝑗
𝑡 !

∗ 𝑒−𝑢𝑖𝑗
𝑡

 , 𝑛𝑖𝑗
𝑡  = 0 

(∀𝑖, 𝑗 ∈ 𝐴, ∀𝑡), (3-5) 

Time-dependent link accident consequences (𝐴𝐶𝑖𝑗
𝑡 )  =                       

 𝑤1 ∗ (𝜋 ∗ 𝑟𝑖𝑗
2 ∗ 𝐷𝑖𝑗) + 𝑤2 ∗

(2∗𝑟𝑖𝑗∗𝑇𝑉𝑖𝑗
𝑡 )

𝐿𝑖𝑗
 

(∀𝑖, 𝑗 ∈ 𝐴, ∀𝑡), (3-6) 

The definition of transportation risk for link (i, j) includes accident probabilities 

and accident consequences of link at time interval t. Equation (3-3) is the Poisson 

parameter evaluated by accident rate, length of link and traffic volume at time interval 

t. Equation (3-4) represents that the accident probabilities is subjected to Poisson 

distribution. Equation (3-5) is the definition of accident consequences evaluated by 

average radius of the hazmat exposure region, population density, length of link and 

traffic volume at time interval t. Note here that the hazmat accident rate per mile/vehicle 

is based on Comparative Risks of Hazardous Materials and Non-Hazardous Materials 

Truck Shipment Accidents/Incidents (2001) from Federal Motor Carrier Safety 

Administration.  
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3.4.2 Formulation 

This section discusses the model formulation of the real time multi-objective 

hazmat transportation routing problem. Two objectives are considered including cost 

and risk with particular time interval. The notations of the formulation are listed in 

Table 3-1.  

Table 3-1 Notations of the model formulation 

Notation Definition 

Set 

G = (N, A) A set of nodes N and a set of links A build up the network. 

M The set of intermediate nodes. 

Decision variables 

X𝑖𝑗
𝑡  If link (i,j) is selected into the route, 𝑋𝑖𝑗

𝑡 =1 at time interval t  

Otherwise, X𝑖𝑗
𝑡 =0 (time: t) 

Parameters 

𝑇𝑅𝑝
𝑙𝑡  The total transportation risk of alternative p of route l at time 

interval t 

𝑇𝐶𝑝
𝑙𝑡  The total transportation cost of alternative p of route l at time 

interval t 

𝑅𝑖𝑗
𝑡  The risk of link (i, j) at time interval t 

𝐶𝑖𝑗
𝑡  The cost of link (i, j) at time interval t 

𝑅𝑖𝑗
𝑡̅̅ ̅̅  Standardization of the risk of link (i, j) at time interval t 

𝐶𝑖𝑗
𝑡̅̅̅̅  Standardization of the cost of link (i, j) at time interval t 

𝑉𝑖𝑗
𝑡  The travel velocity of link (i, j) at time interval t 

𝐿𝑖𝑗 The length of link (i, j) 
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𝑃𝑖𝑗
𝑡  Accident probabilities on link (i, j ) at time interval t 

𝐴𝐶𝑖𝑗
𝑡  The accident consequences of link (i, j) at time interval t 

𝑢𝑖𝑗
𝑡  The parameter in Poisson distribution  

𝑛𝑖𝑗
𝑡  The number of hazmat accidents of link (i, j) at time interval t 

𝑇𝑉𝑖𝑗
𝑡  The hourly traffic volume of link (i, j) at time interval t 

𝑟𝑖𝑗 The average radius of the exposure region on link (i, j ) 

𝐷𝑖𝑗 The population density in the neighborhood of arc (i, j) 

𝐴𝑅𝑖𝑗 The hazmat accident rate of link (i, j) 

𝑤1 The weight of population density 

𝑤2 The weight of traffic volume 

 

Objective function 

Risk  

Min 𝑇𝑅𝑝
𝑙𝑡 = ∑ ∑ 𝑅𝑖𝑗

𝑡̅̅ ̅̅
𝑗∈𝑁𝑖∈𝑁 × 𝑋𝑖𝑗

𝑡   (3-7) 

Cost  

Min 𝑇𝐶𝑝
𝑙𝑡 = ∑ ∑ 𝐶𝑖𝑗

𝑡̅̅̅̅
𝑗∈𝑁𝑖∈𝑁 × 𝑋𝑖𝑗

𝑡   (3-8) 

Subject to   

𝐶𝑖𝑗
𝑡̅̅̅̅ =

𝐶𝑖𝑗
𝑡

𝑀𝑎𝑥(𝐶𝑖𝑗
𝑡 )

                                                                  (3-9)  

𝑅𝑖𝑗
𝑡̅̅ ̅̅ =

𝑅𝑖𝑗
𝑡

𝑀𝑎𝑥(𝑅𝑖𝑗
𝑡 )

     (3-10) 

∑ 𝑋𝑖𝑗
𝑡 −𝑗 ∑ 𝑋𝑗𝑖

𝑡
𝑗 = {

1 ∀𝑖 ∈ 𝑠
−1 ∀𝑖 ∈ 𝑖
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   
(3-11) 

𝑋𝑖𝑗
𝑡 ≥ 1   ∀(𝑖, 𝑗) ∈ 𝐴 (3-12) 

Two objectives are described in equation (3-7) and (3-8). Equation (3-7) minimize 
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the total transportation risk of solution l of route p at time t. Equation (3-8) minimize 

the total transportation cost of solution l of route p at time t. In order to address different 

unit simultaneously, it is needed to standardize the two considered objectives and 

presented in (3-9) and (3-10). Each link of calculation value divided by the maximum 

of all of the links is the chosen standardized procedure. Last equations (3-11) and (3-

12) are flow conservation equations. Then based on the descriptions and definitions of 

transportation risk and transportation cost in this section, the solution algorithm is built 

in the next section. 

3.5 Solution Algorithm 

This section shows the overall model for real time route optimization for hazmat 

transportation. We adopt a real time multi-objective genetic algorithm with two 

conflicting objectives including minimum total transportation risk and cost. Then 

consider the time characteristic, so we update the two objectives and vehicle location 

under particular time interval. The procedure of model framework is presented as 

Figure 3.5. 
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Figure 3.5 Model framework 

 

First, we set up an experimental network, model parameters, and the O-D pair. 

Second, execute the multi-objective genetic algorithm with two objectives to obtain 

Pareto optimal solutions (optimal route). Third, we identify the optimal route and get 

vehicle location at particular time interval. If the next node of vehicle location is not 

destination, we update the dynamic components and new start node at particular time 

interval. Last, execute the second step until next node is destination. The detailed 

procedure of real-time MOGA is formulated in Section 3.5.1 and Section 3.5.2. Last, if 
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the vehicle has not arrived the destination yet, trigger the particular time interval to 

return to second step. If the vehicle has arrived the destination, the procedure is 

terminated.   

3.5.1 Procedure of Genetic Algorithm 

 This section provides basic procedure of genetic algorithm including encoding, 

generating initial population, fitness evaluation and offspring. Step1: Encoding of 

problem is depicted as Figure 3.6. Each of populations, we define the basic unit of 

chromosome as alternative routes and the genes in each chromosome as nodes. Step2: 

Generating initial population is depicted as Figure 3.7, we use the shortest path 

algorithm (Dijkstra algorithm) (Dijkstra, 1959) and random walk to generate initial 

population (𝑃0
𝑡) with n alternative routes at time t. (Note that the network does not 

include negative edges) Step3: Fitness evaluation is depicted as Figure 3.7, the total 

transportation risk (𝑇𝑅𝑝
𝑙,𝑡)  and cost (𝑇𝐶𝑝

𝑙,𝑡)  of each alternative route are fitness 

evaluation.  

 

Figure 3.6 Encoding procedure 
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Figure 3.7 Generating initial population and fitness evaluation procedure 

 

Step4: Generating of offspring is divided into three part: selection, crossover 

operator and mutation. 1. Selection follows the procedure NSGA-II. That is discussed 

in Section 3.5.2. 2. The crossover operator is that randomly pick two chromosomes up 

and crossover the routes at same genes (nodes) depending on setting the crossover rate, 

which is depicted as Figure 3.8. The mutation is that select a node randomly in the route 

besides origin and destination. Using shortest path algorithm to renew the route after 

the selected node, which is depicted as Figure 3.9. 



doi:10.6844/NCKU201901038

 

46 

 

 

Figure 3.8 Crossover operator procedure 

 

 

Figure 3.9 Mutation procedure 

 

 

3.5.2 Procedure of NSGA-II 

 As mentioned in Section 3.5.1, NSGA Ⅱ  (Non-dominated Sorting Genetic 

Algorithm Ⅱ ) is one of multi-objective genetic algorithm. Using fast dominated 

sorting approach and crowding distance to select and duplicate the next generation is 

main characteristic. Thus, this section introduces the characteristic and solution 

procedure of NSGA-II.  
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Fast non-dominated soring 

Fast non-dominated soring is a method to sort all of the solutions (alternative routes) 

in population into respective front, whose procedure is showed in Figure 3.10. Then 

Figure 3.11 is a two-objective example. Each solution includes total transportation risk 

and cost of. The solutions (number 1) in 1st front (Pareto front) means that it cannot 

find any solution to dominate this solution, that is, no solutions exist in the space 

between the solution intersecting the x and y axis. If there are n solutions in the space, 

the ranking number of solutions is n+1. For example, the number 3 in Figure 3.11 

means the solution belong to the third front. This solution is dominated by 2 solutions. 

Hence, the formulation of fast non-dominated sorting is presented as follow: 

𝑟2(𝑥, 𝑡) = 1 + 𝑛𝑞(𝑥, 𝑡)                                     (3-13) 

 

 

Figure 3.10 Procedure of fast non-dominated soring 
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Figure 3.11 Example of fast non-dominated sorting  

Crowding distance 

According to the ranking number of solutions, the solutions in the 1st front is better 

than other solutions of front. Thus, the smaller ranking number of solutions represents 

that the solution is better. Then the solutions from first non-dominated front 𝐹1 and the 

set 𝐹2  are chosen to fill next population until select N (population size) solutions. 

When the quantities of solutions from the selected front third 𝐹3 are more than the 

needs of next population, we use crowding distance to sort the solutions in descending 

order and choose the best solutions to fill the next population. The procedure of 

crowding distance is depicted in Figure 3.12. 
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Figure 3.12 Procedure of crowding distance 

The selection process is that let 𝑙 = |𝐹𝑗| represents the quantities of solutions in 

front 𝐹𝑗  and 𝑥[𝑖,𝑘]  represents the ith solution in the sorting list with respect to the 

objectives function k. Set 𝑐𝑑𝑘(𝑥[1,𝑘]) = ∞  and 𝑐𝑑𝑘(𝑥[𝑙,𝑘]) = ∞ . Equation (3-14) 

means taking the near solution values in the same front to minus then dividing by the 

difference of maximum and minimum objective value of k objective (𝑖 = 2, … , 𝑙 − 1). 

Equation (3-15) means to find the total value of crowding distance, that is, sum all 

𝑐𝑑𝑘(𝑥) from different objective k. 

𝑐𝑑𝑘(𝑥[𝑖,𝑘]) =
𝑧𝑘(𝑥[𝑖+1,𝑘])−𝑧𝑘(𝑥[𝑖−1,𝑘])

𝑧𝑘
𝑚𝑎𝑥−𝑧𝑘

𝑚𝑖𝑛   ,∀ 𝑘 , i=2,3,...l-1                (3-14) 

𝑐𝑑(𝑥) = ∑ 𝑐𝑑𝑘(𝑥)𝑘  ,∀ k                                       (3-15) 

Figure 3.13 is example of crowding distance; the two objectives k are total 

transportation risk and cost. We calculate the solution i in second front 𝐹2, minus the 

near solutions’ objective value 𝑥[𝑖+1,𝑘] and 𝑥[𝑖−1,𝑘] respectively then divided by the 

maximum minuses minimum in that objective. Sum the all 𝑐𝑑𝑘(𝑥)  from different 

objective k. Then calculate the total crowding distance value of each solution in selected 



doi:10.6844/NCKU201901038

 

50 

 

front. 

 

Figure 3.13 Example of crowding distance 

In crowding distance operator, small crowding distance value means the solution is 

close to near solutions. We select the solutions with large crowding distance value in 

selected front to fill next population N for keeping the diversity and uniform 

distribution. 

 

Solution Process of NSGA-II 

 In real-time MOGA, we use NSGA Ⅱ to minimize two objectives simultaneously 

and obtain Pareto solutions. Figure 3.14 shows the solution process of NSGA-II and 

steps are presented as below in detail. 

For t=0 

Step 1:  Set the parameters of algorithm: population size N, crossover rate 𝑃𝑐 , 

mutation rate 𝑃𝑚, generation size and the origin-destination node of route, 

the initial population 𝑃𝑖=0  based on shortest path algorithm and random 

walk. 
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Step 2:  Generate offspring population 𝑄𝑖 of size N through crossover and mutation 

procedure from parent population 𝑃𝑖 . Further only the population 𝑃1  is 

generated by step 2, the other population 𝑃𝑖 are generated by all steps. 

For t≥ 1 

Step 3:  Combine the 𝑄0 with 𝑃𝑖, which called 𝑅0, presented as 𝑅𝑖 = 𝑃𝑖 ∪ 𝑄𝑖(2N). 

Step 4:  Form the next population 𝑃𝑖+1  (N solutions) from 𝑅𝑖  based on fast non-

dominated sorting approach and crowding distance. 

Step 5:  If fit the setting generation, stop the procedure. If not, go to Step 2. 
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Figure 3.14 Solution process of NSGA-II 
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CHAPTER 4 EMPIRICAL STUDY 

In order to develop a real time route optimization for hazmat transportation based 

on a multi-objective genetic algorithm, this chapter describes the empirical experiment 

on Kaohsiung network and presents the proposed algorithm. Section 4.1 illustrates the 

basic data of experimental network. Section 4.2 illustrates program flowchart of real 

time NSGA-II. Section 4.3 presents the results of analysis. 4.4 summarizes the results 

of empirical experiments. 

4.1 Data Description 

After the gas explosions in 2014, numerous chemical trucks were increasingly 

needed for remediation to original demand. Besides, many industrial parks are located 

in Kaohsiung City, which is showed in Figure 4.1. In the end of 2014, the regulation of 

the restricted route (red dotted line) to chemical trucks, which was announced by 

Kaohsiung city government. Moreover, the routes of chemical trucks are forbidden in 

specific sections and only allowed to pass within 6:00 a.m.-18:00 p.m. It is worth 

mention that there are not any restrictions in the region which has high population 

density (red frame with dotted line). For the reason, the proposed model is tested on the 

Kaohsiung network with realistic network characteristic and regulation which is 

showed in Figure 4.2. The network includes 5 districts (Cianjin district, Xinxing 

district, Lingya district, Qianzhen district and Fengshan district) which are presented as 

every blue frame with dotted line. There are 7 demand zones, 133 nodes and 466 links. 

The red line in the network is the link which damaged in gas explosion in 2014. The 

yellow nodes mean the preset O-D pairs in the experiment. It represents the possible 

distribution or storage nodes of hazmat. The design of 6 O-D pairs is showed in Table 

4.1, including preset start node and destination node. 
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Figure 4.1 Restricted route to chemical trucks in 2014 

Source: Kaohsiung city government, Google Maps 

 

Figure 4.2 Kaohsiung network (Liao et al., 2017) 
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Table 4-1 O-D pairs design 

 O-D 1 O-D 2 O-D 3 O-D 4 O-D 5 O-D 6 

Start node 1 1 133 133 122 1 

Destination node 9 97 41 97 41 134 

 

4.1.1 Basic Data of Experimental Network 

A briefly list of collected data and their sources are shown in Table 4-2. The data 

applied in the algorithm are retrieved from statistical data of government department, 

open data on the internet and traffic simulation software.  

Table 4-2 Data sources 

Objective Data Source 

Cost Link travel time DynaTAIWAN 

Risk 

Population 
Civil Affairs Bureau of Kaohsiung City 

Government 

District area Internet statistical data from Sheethub 

Accident rate (Toumazis & Kwon, 2013) 

Length of link Google Map 

Hourly traffic volume DynaTAIWAN 

Impact radius 
Hazard modeling program, 

ALOHA (Version 5.4.7, 2016) 

There are two real time data (link travel time and hourly traffic volume) in the 

network. These are simulated by traffic simulation software (DynaTAIWAN). In this 

research, we collect the real time data with particular time interval (per 5 minute). 

However, at some time interval, some links without traffic volume will cause the links 
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risk to be zero. But for these links, the population density still needs to be considered, 

so we set that the minimum traffic volume is equal to 1. 

 

4.1.2 Hazmat Impact Radius 

In order to calculate the affected area when accidents happen, we adopt the hazmat 

impact radius as measurement method. This research uses a hazard modeling program, 

ALOHA (Version 5.4.7, 2016), which is a software that allows us enter details about a 

realistic environment. It also could estimate threat zones associated with different types 

of hazardous chemical releases. 

Thus, we chose the chemical named propylene as our hazmat to be transport 

because propylene is one of the most important and basic chemicals in the 

petrochemical industry, but it also could cause disastrous consequences if leak out. We 

set the simulation parameters with meteorology data, temperature and wind data are the 

average data in Kaohsiung, and assume the worst situation, Boiling Liquid Expanding 

Vapor Explosions, happened when accident, other parameters are presented in Figure 

4.3. 



doi:10.6844/NCKU201901038

 

57 

 

 

Figure 4.3 ALOHA 5.4.7 simulation setting and results 

Through simulation, the detailed results also could be found from Figure 4.3 with 

red frame. The fireball diameter is 180 yards, is equal to 0.16 km. The threat zone could 

be divided into three levels due to the thermal radiation from fireball. The most serious 

is potentially lethal within 60 sec. Second is 2nd degree burns within 60 sec. Last is to 

get pain within 60 sec. The schematic diagram is shown in Figure 4.4, and the detailed 

radiation is shown in Table 4-3.  In order to minimize the possible impact to the 

network, we adopt the maximum threat zone, 854 yards (0.78km), as our impact radius 

when accident happens. 
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Figure 4.4 Thermal Radiation Threat Zone (Output from ALOHA) 

Table 4-3 Thermal radiation from fireball 

Theat zone Thermal radiation (yards) Thermal radiation (km) 

Fireball Diameter 180 0.16 

Potentially lethal 388 0.35 

2nd degree burns 548 0.5 

Pain 854 0.78 

 

 

 

4.1.3 Population Density 

This research adopts village as the basic unit when calculate population 

density. According to the statistics data from the Civil Affairs Bureau of 

Kaohsiung City Government, we could collect the population data of each 

village in 2018. Links’ length is measured by google map, and villages’ area is 

obtained through open data integrated by Sheethub. Because the partition of each 

village is trivial, it causes a link might pass through several villages, we use the 

average population density when this situation happens: 
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Population density on link j = 
∑ village populationi

∑ village areai
 (people per km-sq),       (4-1) 

where i represent the villages link j pass through, j represent the links in network. 

Table 4-4 shows the example of calculating population density in each link. The 

population density is equal to the total population divided by the total area. 

Table 4-4 The population density in each link 

Origin Destination Passed villages Population Area 
Population 

density 

1 2 
Weiwu Vil. + 

Xinqiang Vil. 
8825 1.0495 8408.75 

2 3 

Xinqiang Vil. + 

Xinfu Vil. + Xintai 

Vil. + Lauye Vil. + 

Zhonglun Vil. 

27149 2.354193 11532.19 

2 75 Xinqiang Vil. 6395 0.967553 6609.46 

3 4 

Zhonglun Vil. + 

Bauan Vil. + 

Nancheng Vil. + 

Mingzheng Vil. 

24348 4.847163 5023.14 

4 5 

Zhonglun Vil.+ 

Bauan Vil.+ 

Nancheng Vil.+ 

Mingzheng Vil. 

24348 4.847163 5023.14 

4 112 
Mingzheng Vil.+ 

Fuxing Vil. 
13062 1.88025 6946.95 

4.2 Program Flowchart 

In order to solve the problem of real time hazmat transporting, the proposed 

algorithm (Real time NSGA-II) was coded in Python and tested on a Windows 10 

machine (Intel Core i5-7200U/ 2.70 GHz processer with 8GB RAM).   

  The Figure 4.5 shows the program flowchart and the explanation is described as 

follow: 



doi:10.6844/NCKU201901038

 

60 

 

t = t+1

Generate initial population P0: 

Random Walk and Dijkstra algorithm 

Create new population Pi+1  
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Selection and Duplicate:

 Fast non-dominated sorting and Crowding 
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Termination

condition
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NO

End
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Figure 4.5 Program flowchart 

The input of program parameters includes network data from DynaTAIWAN, 

crossover rate, mutation rate, termination condition, population size, and the proportion 

of initial population. In terms of initial population, if we only apply random walk to 

generate chromosomes (routes), it may lead to poor performance, on a large network 

especially. It means that could result in taking too much time to generate unusual 

chromosomes route. Thus, according to Li et al. (2013), the heuristic initialization based 

on Dijkstra’s algorithm is applied to generate 20% chromosomes of initial population. 

Because this research considers two objectives, there are two types of shortest routes 

produced by the algorithm based on cost and risk network respectively. In other words, 
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the number of shortest routes is six in first generation (The shortest routes based on cost 

and risk account for fifty percentage respectively). By this way, it not only could 

preserve population diversity to a certain extent, but also result in higher quality of the 

initial population simultaneously. The random walk and Dijkstra algorithm are 

described as follow:  

Random Walk: 

Given the O-D nodes, we start from the origin node and search connected node 

through the input network. Then, randomly choose the connected node as next node 

until arrive the destination node. The process is suitable for each node. But it might 

form the loop of route or no connected node in search process, so we put restriction on 

choosing a node which has already chosen in the route. 

Dijkstra algorithm: 

Step 1: Assign to every node a tentative distance value. Set distance value of initial 

node to zero and distance value of all other node to infinity. 

Step 2: Generate a set of visited nodes with just the initial node and unvisited set 

with all node without initial node.  

Step 3: For the initial node or current node, consider all its unvisited neighbors and 

calculate the distance (distance to the current node and distance from current node to 

the neighbor). If the calculated distance is less than their current tentative distance, 

replace it with this new distance. 

Step 4: When we are done considering neighbors of the current node, put the 

current node into visited set and remove it from unvisited set. 

Step 5: If the destination node has been put into visited set, the algorithm has 

finished. If not, go to step 6. 

Step 6: Set the unvisited node marked with smallest tentative distance as the next 
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current node and go back to step 3. 

After the procedure of initialization, we generate the optimal solutions (routes) by 

crossover, mutation, selection and duplicate. The detailed process is depicted in Section 

3.5. Because size of the optimal solutions (routes) are same preset population size, we 

pick the route with highest occurrence in the optimal solutions (routes) as transporting 

route. Then we calculate the total travel time of the transporting route and examine the 

next node of driving route at particular time interval. If the next node is destination, the 

program has finished. If not, we update the network and the new start node at particular 

time interval. Finally, it is to generate new route by NSGA-II with these updated 

parameters until next node of driving route is destination. 

4.3 Results of Analysis 

4.3.1 Sensitivity Analysis 

In order to prove that the Pareto solutions by NSGA-II are the best, the sensitivity 

analysis is proposed to test preset parameter specification based on Li et al. (2013). We 

take O-D 3 for example, Table 4-5 and Table 4-6 show the Pareto solutions with 

different parameters including crossover rate, mutation rate, and Generation. The cost 

and risk of average values in each test are calculated by the values of chromosomes in 

last generation. The difference of two tables is that if initial population includes the 

routes generated by Dijkstra algorithm. We could find that even though the all standard 

deviations could converge into approximate zero, the all averages indeed have different 

results. Thus, we also compare the all averages in Figure 4.6, Figure 4.7, and Figure 

4.8. 
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Table 4-5 Pareto solutions with different parameters and Dijkstra algorithm 

With Dijkstra algorithm 

Crossover rate Objectives Average  Standard deviation Time (s) 

0.1 

Cost 3.650 0.044  

6 

Risk 0.944 0.036  

0.3 

Cost 3.612 0.028  

6.9 

Risk 0.949 0.021  

0.5 

Cost 3.616 0.016  

6.1 

Risk 0.946 0.009  

0.7 

Cost 3.611 0.281  

6.2 

Risk 0.986 0.060  

0.8 

Cost 3.607 0.022  

6.1 

Risk 0.952 0.018  

0.9 

Cost 4.201 0.768  

6.5 

Risk 0.928 0.105  

Mutation rate Objectives Average  Standard deviation Time (s) 

0.001 

Cost 4.340 0.785  

1.7 

Risk 0.918 0.110  

0.005 

Cost 4.189 0.777  

2.9 

Risk 0.937 0.110  

0.01 

Cost 4.131 0.773  

3.5 

Risk 0.949 0.111  

0.03 

Cost 4.288 0.787  

3.1 

Risk 0.926 0.111  
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0.05 

Cost 3.616 0.016  

6 

Risk 0.946 0.009  

0.1 

Cost 4.340 0.785  

10.4 

Risk 0.918 0.110  

Generation Objectives Average  Standard deviation Time (s) 

30 

Cost 4.131 0.773  

3.3 

Risk 0.949 0.111  

50 

Cost 4.297 0.761  

4.1 

Risk 0.920 0.109  

100 

Cost 3.652 0.032  

6 

Risk 0.949 0.030  

200 

Cost 4.131 0.773  

10.9 

Risk 0.949 0.111  

500 

Cost 3.660 0.013  

25.8 

Risk 0.922 0.007  

1000 

Cost 3.611 0.000  

48.7 

Risk 0.949 0.000  

Table 4-6 Pareto solutions with different parameters and no Dijkstra algorithm 

With no Dijkstra algorithm 

Crossover rate Objectives Average  Standard deviation Time (s) 

0.1 

Cost 4.833 0.108 

6.5 

Risk 1.007 0.002 

0.3 

Cost 4.672 0.268 

5.7 

Risk 1.067 0.009 
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0.5 

Cost 4.453 0.377 

6.3 

Risk 1.235 0.067 

0.7 

Cost 4.203 0.047 

5.7 

Risk 1.532 0.008 

0.8 

Cost 4.506 0.005 

6.3 

Risk 1.252 0.016 

0.9 

Cost 4.384 0.087 

6.2 

Risk 1.049 0.012 

Mutation rate Objectives Average  Standard deviation Time (s) 

0.001 

Cost 4.632 0.181 

2.8 

Risk 1.593 0.135 

0.005 

Cost 4.471 0.295 

3.7 

Risk 1.706 0.091 

0.01 

Cost 4.330 0.109 

5.2 

Risk 1.537 0.020 

0.03 

Cost 4.523 0.082 

5.7 

Risk 0.988 0.015 

0.05 

Cost 4.069 0.019 

6.2 

Risk 1.067 0.013 

0.1 

Cost 3.938 0.013 

11.8 

Risk 0.952 0.007 

Generation Objectives Average  Standard deviation Time (s) 

30 

Cost 4.512 0.185 

3.3 

Risk 1.173 0.129 
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50 

Cost 4.313 0.025 

4.6 

Risk 1.010 0.111 

100 

Cost 4.506 0.005 

5.9 

Risk 1.252 0.016 

200 

Cost 5.677 0.260 

9.2 

Risk 1.107 0.036 

500 

Cost 4.017 0.000 

21.9 

Risk 1.026 0.000 

1000 

Cost 3.812 0.000 

37.2 

Risk 1.063 0.000 

 

 

Figure 4.6 Averages for different crossover rate 
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Figure 4.7 Averages for different mutation rate 

 

 

Figure 4.8 Averages for different generation 

In Figure 4.6, Figure 4.7, and Figure 4.8, we could discover two information. First, 

it proves the Pareto solutions with parameter specification based on Li et al. (2013) are 

relatively better. Second, it will hardly generate convergent solutions with no Dijkstra’s 

algorithm. Thus, if the initial population including Dijkstra’s algorithm, we indeed find 

better and convergent solutions within a short time.  
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4.3.2 Single O-D Pair 

Based on Li et al. (2013), we execute real time NSGA-Ⅱwith following parameter 

specification to generate the two-objectives Pareto solutions: Population size (N): 30, 

crossover rate: 0.8, mutation rate: 0.05, termination condition: 100 generation. 

Given 6 O-D pairs and the network with same time interval, the output of this 

algorithm is the latest population which arrives our termination condition. The optimal 

routes of each pair considering two objectives is listed in Table 4-7. 

Table 4-7 Optimal Routes of Origin-Destination Pair 

OD 

CPU 

Time(s) 

# Link Cost Risk 

Hyper-

volume 

1 5.7 

1 
[1, 2, 75, 74, 73, 72, 71, 70, 69, 

68, 67, 46, 40, 33, 32, 25, 26, 9] 
3.463 0.475 81.059 

2 
[1, 2, 75, 74, 73, 56, 52, 17, 18, 

13, 12, 11, 10, 9] 
3.486 0.329 83.766 

2 2.9 

1 
[1, 2, 75, 74, 76, 77, 100, 99, 98, 

97], 
2.027 0.253 81.427 

2 
[1, 2, 75, 74, 73, 72, 78, 99, 98, 

97] 
2.047 0.229 82.200 

3 [1, 2, 75, 74, 73, 72, 71, 80, 97] 2.128 0.229 81.854 

3 5.7 

1 

[133, 135, 124, 121, 107, 103, 

100, 77, 73, 72, 71, 58, 50, 20, 21, 

41] 

3.664 0.92 84.617 

2 
[133, 135, 124, 121, 107, 103, 

100, 77, 73, 72, 71, 70, 69, 68, 47, 

3.492 1.048 83.790 
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41] 

3 

[133, 135, 124, 121, 107, 103, 

100, 77, 73, 72, 71, 70, 59, 49, 48, 

21, 41] 

3.611 0.949 84.456 

4 

[133, 113, 4, 112, 114, 128, 129, 

130, 131, 124, 122, 106, 104, 76, 

74, 73, 72, 71, 58, 50, 20, 21, 41] 

5.061 0.821 82.949 

4 2.6 

1 
[133, 135, 124, 121, 122, 106, 

104, 103, 102, 99, 98, 97] 
2.345 0.772 84.841 

2 

[133, 113, 4, 112, 114, 128, 129, 

130, 131, 124, 122, 106, 104, 103, 

102, 97] 

3.511 0.758 82.052 

3 
[133, 135, 124, 121, 107, 103, 

102, 99, 98, 97] 
2.152 0.83 84.675 

4 
[133, 135, 124, 121, 122, 106, 

104, 103, 102, 97] 
2.261 0.777 84.997 

5 
[133, 135, 124, 121, 107, 103, 

102, 97] 
2.064 0.835 84.839 

6 

[133, 113, 4, 112, 114, 128, 129, 

130, 131, 124, 122, 106, 104, 103, 

102, 99, 98, 97] 

3.599 0.753 81.884 

5 4.1 

1 

[122, 106, 104, 76, 74, 73, 72, 71, 

70, 69, 68, 47, 41] 
2.425 0.281 81.596 

2 

[122, 106, 104, 76, 74, 73, 72, 71, 

58, 50, 20, 21, 41] 
2.597 0.153 85.100 



doi:10.6844/NCKU201901038

 

70 

 

3 
[122, 106, 104, 76, 74, 73, 72, 71, 

70, 59, 49, 48, 21, 41] 

2.544 0.182 84.362 

6 5.6 

1 
[1, 2, 75, 55, 56, 52, 17, 18, 13, 

12, 134] 

3.299 0.351 81.041 

2 

[1, 2, 75, 74, 73, 56, 52, 17, 18, 

13, 12, 134] 
3.314 0.317 81.872 

 Among the latest population for each pair, it all could be divided into two 

situations. First, the routes generated from Dijkstra’s algorithm actually are the optimal 

route. Thus, it exists in each iteration and presents in latest population. The situation 

happens in O-D 1 and O-D 6. Second, the algorithm could find the optimal routes except 

for the routes generated from Dijkstra’s algorithm. Among these routes, the one of 

values of cost and risk is smaller than the value of routes generated from Dijkstra’s 

algorithm. It is optimal trade-off solutions. The situation happens in O-D 2,3,4, and 5. 

 In order to choose one optimal driving route from latest population, the selection 

process is that if there are trade-off solutions, we choose one of these as optimal route 

because it could reflect the spirit of multi-objective most. If not, we choose one of routes 

from Dijkstra’s algorithm. Then, the comparative method, called hypervolume 

proposed by Zitzler and Thiele (Zitzler and Thiele, 1999) is applied to compare the 

solutions. However, we estimate the hypervolume by normalizing in same unit set point 

(10,10) as reference point. The larger the hypervolume, the better is the solution. 

 As for improvement rate for each pair, we present it in Figure 4.9. The 

improvement rate represents an average of cost and risk in each iteration. 
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Figure 4.9 Improvement rate for each pair 

 The blue line means initial population does not include 20 % routes generated from 

Dijkstra’s algorithm. On the contrary, the orange line includes that. We found that the 
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initial population including routes from Dijkstra’s algorithm could find better solutions. 

Moreover, the initial population not including routes from Dijkstra’s algorithm could 

generate worse latest population. Thus, its value of cost and risk all are higher than the 

minimum cost and risk from Dijkstra’s algorithm. 

Based on the comparative method, we choose one optimal driving route and update 

it with particular time interval. Then we evaluate travel time of driving route and update 

the new start node at next time interval. Therefore, for each O-D pair, the optimal routes 

in each time interval presented by real time NSGA-Ⅱare listed in Table 4-8.  

Table 4-8 Real Time Optimal Routes of Origin-Destination Pair 

OD Time Link Cost Risk 

1 
 

T= 5 
[1, 2, 75, 74, 73, 56, 52, 17, 18, 13, 12, 11, 10, 

9] 

3.4858 0.3299 

T= 10 [74, 73, 56, 52, 17, 18, 13, 12, 11, 10, 9] 1.5235 0.1422 

T= 15 [17, 18, 13, 12, 11, 10, 9] 0.7333 0.0866 

T= 20 [10, 9] 0.1196 0.0003 

2 
 

T= 5 [1, 2, 75, 74, 73, 72, 78, 99, 98, 97] 2.0456 0.2293 

T= 10 [74, 73, 72, 71, 80, 97] 0.5803 0.0315 

3 
 

T= 5 
[133, 135, 124, 121, 107, 103, 100, 77, 73, 72, 

71, 58, 50, 20, 21, 41] 

3.6635 0.9207 

T= 10 
[107, 106, 104, 76, 74, 73, 72, 71, 58, 50, 49, 

48, 21, 41] 
1.5451 0.1578 

T= 15 [73, 72, 71, 70, 69, 68, 47, 41] 0.8058 0.0470 

T= 20 [47, 41] 0.0807 0.0019 

4 
 

T= 5 [133, 135, 124, 122, 106, 104, 103, 102, 97] 2.2570 0.7770 

T= 10 [122, 106, 104, 103, 102, 99, 98, 97] 0.7795 0.1100 

T= 15 [98, 97] 0.0975 0.0003 

5 
 

T= 5 

[122, 106, 104, 76, 74, 73, 72, 71, 70, 59, 49, 

48, 21, 41] 
2.5455 0.1824 
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T= 10 [72, 71, 70, 59, 49, 48, 21, 41] 0.8758 0.0979 

T= 15 [21, 41] 0.0997 0.0002 

6 
 

T= 5 [1, 2, 75, 74, 73, 56, 52, 17, 18, 13, 12, 134] 3.3147 0.3178 

T= 10 [74, 73, 56, 52, 17, 18, 13, 12, 134] 1.4241 0.1601 

T= 15 [17, 18, 13, 12, 134] 0.6290 0.0769 

 For O-D 1 to O-D 6, we could find the optimal routes with different time interval. 

The red numbers in routes represent new start node. We terminate the program when 

new start node is termination node. It means that we do not need to update the driving 

route. In Table 4-9, we take O-D 3 to demonstrate and compare the changes with 

different time interval (T=5 and T=10). 

Table 4-9 Comparison of different links in O-D 3 

 T=5 T=10 

Link 1 Volume Cost Risk Volume Cost Risk 

107→103 178 0.99  1.05  270 0.99  1.69  

103→100 146 0.81  0.69  186 0.90  0.91  

100→77 97 0.37  0.21  97 0.37  0.21  

77→73 198 1.05  0.44  170 1.01  0.36  

73→72 81 0.75  0.09  69 0.75  0.07  

72→71 75 1.08  0.17  100 1.08  0.24  

71→58 164 1.74  0.42  149 1.74  0.38  

58→50 151 1.23  1.15  159 1.23  1.22  

50→20 123 1.17  0.37  153 1.17  0.48  

20→21 7 0.55  0.02  1 0.52  0.00  

21→41 27 0.77  0.17  10 0.73  0.06  

Total 1247 10.50  4.80  1364 10.48  5.62  

 T=5 T=10 

Link 2 Volume Cost Risk Volume Cost Risk 

107→106 219 0.85  1.14  52 0.54  0.24  

106→104 54 0.54  0.16  90 0.54  0.27  

104→76 71 0.93  0.66  76 0.98  0.71  

76→74 146 1.01  0.30  122 1.09  0.24  

74→73 66 0.81  0.09  46 0.81  0.06  

73→72 81 0.75  0.09  69 0.75  0.07  
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72→71 75 1.08  0.17  100 1.08  0.24  

71→58 164 1.74  0.42  149 1.74  0.38  

58→50 151 1.23  1.15  159 1.23  1.22  

50→49 9 0.39  0.03  1 0.29  0.00  

49→48 15 0.26  0.05  1 0.23  0.00  

48→21 244 1.12  1.10  163 0.91  0.68  

21→41 27 0.77  0.17  10 0.73  0.06  

Total 1322 11.47  5.53  1038 10.91  4.17  

 We examine the difference between two routes which are chose in two time 

interval. Table 4-9 shows that the total traffic volume and total risk of route (Link 1) 

are relatively low at 5th time interval even though the cost is a little higher. On the 

contrary, the ones of route (Link 2) are relatively low at 10th time interval. Furthermore, 

we compare the results of two routes (no updated route and updated route). The no 

updated route is [133, 135, 124, 121, 107, 103, 100, 77, 73, 72, 71, 58, 50, 20, 21, 41]. 

The total transportation cost and risk are 16.934, 25.030 (unstandardized value) 

respectively. The updated route is [133, 135, 124, 121, 107, 106, 104, 76, 74, 73, 72, 

71, 70, 69, 68, 47, 41]. The total transportation cost and risk are 15.995, 23.144 

(unstandardized value) respectively. The degree of improvement in percentage for cost 

and risk is 6% and 8%. Thus, real time route optimization for hazmat transportation 

indeed bring lower risk and cost. 

Figure 4.10 shows a part of program command of real time NSGA-II. The rest is 

an infinite iteration for finding destination. 
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Figure 4.10 Program command of real time NSGA-II 

 

4.3.3 Multiple O-D Pairs  

Given a multiple O-D pairs, even though we could get the optimal routes of each 

pair at particular time interval, the driving route of hazmat trucks causes risk to some 

extent. Figure 4.11 shows the optimal routes of each pair at t=5 time interval. Except 
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for highway, on-ramp, and off-ramp, we discover that link [75, 74] and link [74, 73] is 

used more than three times. It reflects these links have relatively higher pressure.  

 

 

Figure 4.11 Optimal routes of each pair (t=5 time interval) 

Thus, in order to avoid this situation and achieve risk equality, we execute a 

method and Figure 4.12 shows the flowchart. Step1: we input or renew the multiple O-

D pairs, the sequence, the network data at particular time interval in advance. Step2: 

Pick one of O-D pairs based on the sequence and execute the NSGA-II to obtain an 

optimal route. Then we multiply the accident probability of used links by α and set α 

as infinite number at the same time interval. In other words, the hazmat trucks are 

prohibited from driving in the links which is used. It is worth mention that if the risk of 

links from the same node all have been multiplied by infinite number, we reset the risk 

of links. By this way, if the demand of chemical trucks for transporting hazmat increase, 
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we could propose a solution to solve this problem. Step3: Once one of O-D pairs have 

not been processed at particular time interval, it goes to Step2. If all O-D pairs have 

been processed and all chemical trucks arrive at the destination(s), the program is 

finished. If not, it goes to Step1 until all chemical trucks arrive at the destination(s).  
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Input/renew the multiple O-D 

pairs and the sequence

NSGA-II

Multiply the accident probability of 

used links by α 

All O-D pairs have been processed 

Start

End

Optimal transporting network

Yes

NO

Pick one O-D pair based on 

sequence, start from first one (s=1)

s = s+1

Input/renew the network data 

at particular time interval

All hazmat trucks arrive 

at the destination(s) 

Yes

NO

 

Figure 4.12 The program-processing procedure for multiple O-D pairs 

Table 4-10 shows the routes of each pair at different time interval. It presents the 

multiple O-D pairs and there are no links which is used more than once except for 
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highway, on-ramp, and off-ramp. 

Table 4-10 Optimal routes of each pair at different time interval 

Update time 

(minute) 

O-D Link Cost Risk 

5 

O-D1 
[1, 2, 75, 74, 73, 56, 52, 17, 18, 13, 12, 

11, 10, 9] 

3.486 0.330 

O-D2 

[1, 2, 75, 105, 104, 103, 102, 99, 98, 

97] 
2.367 0.342 

O-D3 

[133, 135, 124, 121, 107, 103, 100, 77, 

73, 72, 71, 58, 50, 20, 21, 41] 
3.664 0.921 

O-D4 

[133, 113, 4, 112, 114, 115, 111, 110, 

109, 101, 96, 97] 
2.600 0.885 

O-D5 

[122, 124, 125, 126, 119, 116, 115, 

111, 94, 93, 90, 89, 88, 87, 63, 64, 65, 

66, 45, 46, 40, 41] 

3.697 0.252 

O-D6 
[1, 2, 75, 55, 53, 52, 51, 19, 20, 12, 

134] 

3.543 0.419 

10 

O-D1 
[74, 73, 56, 52, 17, 18, 13, 12, 11, 10, 

9] 

2.331 0.143 

O-D2 [105, 104, 103, 102, 99, 98, 97] 0.856 0.071 

O-D3 
[107, 106, 104, 76, 77, 73, 72, 71, 58, 

50, 49, 48, 21, 41] 
2.482 0.230 

O-D4 [112, 114, 115, 110, 109, 101, 96, 97] 1.338 0.276 

O-D5 
[111, 94, 93, 90, 84, 85, 86, 66, 45, 46, 

47, 41] 
2.369 0.285 
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O-D6 [55, 53, 52, 51, 50, 20, 12, 134] 2.093 0.213 

15 

O-D1 
[17, 52, 51, 50, 49, 48, 47, 41, 42, 23, 

32, 25, 26, 9] 
2.203 0.404 

O-D2 Arrived 0.000 0.000 

O-D3 [72, 71, 58, 50, 20, 21, 41] 1.414 0.085 

O-D4 [96, 97] 0.120 0.027 

O-D5 [90, 84, 68, 47, 46, 40, 41] 1.539 0.411 

O-D6 [50, 51, 19, 20, 12, 134] 1.299 0.112 

20 

O-D1 [23, 24, 10, 9] 0.372 0.034 

O-D2 Arrived 0.000 0.000 

O-D3 [20, 21, 41] 0.286 0.007 

O-D4 Arrived 0.000 0.000 

O-D5 Arrived 0.000 0.000 

O-D6 Arrived 0.000 0.000 

Highway, on-ramp, and off-ramp are link 

[15,1],[1,2],[2,75],[2,3],[122,3],[3,4],[4,112],[113,4],[4,5],[5,123],[135,5],[5,6],[6,

54],[6,1] 

Figure 4.13 presents that the optimal network for transporting hazmat at t=5, t=10, 

t=15, and t=20 time interval. By this method, we clearly find that link [75, 74] and link 

[74, 73] are used once at t=5 time interval and others are the same situation. By the way, 

because some links are two-way roads, such as link [109,110] and link [110,111], the 

two-way roads are all used and are marked by two colors.  

Thus, given multiple O-D pairs, we not only could change the routes to avoid the 

links with high risk at different time interval but also disperse the pressure on same link. 
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  (d) 

Figure 4.13 Optimal routes of each pair (No links which is used more than once): (a) t 

=5 time interval, (b) t =10 time interval, (c) t=15 time interval, and (d) 20th time 

interval 
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4.3.4 Weighting Objectives 

In the process of optimization, we execute standardized procedure in order to 

address different unit simultaneously. After that, we adopt NSGA-II to solve our 

problem. Although this method does not need to have prior preference, scale, or weight 

objectives previously, we would like to test and observe whether there are different 

results by weighting (Wc and Wr) two objectives and solving it. Therefore, a number of 

weighting combinations will be conducted to transform into a single objective problem.  

Objective function: 

Min  ∑ ∑ 𝑅𝑖𝑗
𝑡̅̅ ̅̅

𝑖∈𝑁𝑖∈𝑁 × 𝑋𝑖𝑗
𝑡 × 𝑊𝑐 + ∑ ∑ 𝐶𝑖𝑗

𝑡̅̅̅̅
𝑖∈𝑁𝑖∈𝑁 × 𝑋𝑖𝑗

𝑡 × 𝑊𝑟                 (3-21) 

The objective function is presented in equation (3-21). Then, we execute Dijkstra 

algorithm to find the optimal solutions and compare with the results from NSGA-II. 

Figure 4.14 shows the flowchart of the process of two methods. 

 

 

Figure 4.14 Process of two methods. 

NSGA-II

Objective function

Cost Risk

Dijkstra 

algorithm

Weighting two 

objectives

Standardized procedure

Compare two methods
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Table 4-11 NSGA-II vs. Weighting Method (O-D 2) 

O-D 2 

Methods 𝑊𝑐  𝑊𝑟  # Routes Cost Risk 
Hyper-

volume 

CPU 

time 

(s) 

NSGA-II None 

#1 [1, 2, 75, 74, 

76, 77, 100, 99, 

98, 97] 

2.027  0.253  81.427 

2.9 

#2 [1, 2, 75, 74, 

73, 72, 78, 99, 

98, 97] 

2.047  0.229  82.200 

#3 [1, 2, 75, 74, 

73, 72, 71, 80, 

97] 

2.128  0.229  81.854 

Weighting 

Method 

0.1 0.9 #4 

[1, 2, 75, 74, 

73, 72, 78, 99, 

98, 97] 

2.047  0.229  82.200 

0.2 

0.2 0.8 #5 2.047  0.229  82.200 

0.3 0.7 #6 2.047  0.229  82.200 

0.4 0.6 #7 2.047  0.229  82.200 

0.5 0.5 #8 2.047  0.229  82.200 

0.6 0.4 #9 

[1, 2, 75, 74, 

76, 77, 100, 99, 

98, 97] 

2.027  0.253  81.427 

0.7 0.3 #10 2.027  0.253  81.427 

0.8 0.2 #11 2.027  0.253  81.427 

0.9 0.1 #12 2.027  0.253  81.427 
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Table 4-12 NSGA-II vs. Weighting Method (O-D 3) 

O-D 3 

Methods 𝑊𝑐  
 

𝑊𝑟  
 

# Routes Cost Risk 

Hyper-

volume 

CPU 

time 

(s) 

NSGA-II None 

#1 [133, 135, 124, 

121, 107, 103, 

100, 77, 73, 72, 

71, 58, 50, 20, 

21, 41] 

3.664  0.920  84.617 

5.7 

#2 [133, 135, 124, 

121, 107, 103, 

100, 77, 73, 72, 

71, 70, 69, 68, 

47, 41] 

3.492  1.048  83.790 

#3 [133, 135, 124, 

121, 107, 103, 

100, 77, 73, 72, 

71, 70, 59, 49, 

48, 21, 41] 

3.611  0.949  84.456 

#4 [133, 113, 4, 

112, 114, 128, 

129, 130, 131, 

124, 122, 106, 

104, 76, 74, 73, 

5.061  0.821  82.949 
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72, 71, 58, 50, 

20, 21, 41] 

Weighting 

method 

0.1 0.9 #5 [133, 135, 124, 

122, 106, 104, 

76, 74, 73, 72, 

71, 58, 50, 20, 

21, 41] 

3.808  0.841  85.058 

0.3 

0.2 0.8 #6 3.808  0.841  85.058 

0.3 0.7 #7 3.808  0.841  85.058 

0.4 0.6 #8 [133, 135, 124, 

121, 107, 103, 

100, 77, 73, 72, 

71, 70, 59, 49, 

48, 21, 41] 

3.611  0.949  84.456 

0.5 0.5 #9 [133, 135, 124, 

121, 107, 103, 

100, 77, 73, 72, 

71, 70, 69, 68, 

47, 41] 

3.492  1.048  83.790 

0.6 0.4 #10 [133, 135, 124, 

121, 107, 103, 

100, 77, 73, 72, 

71, 70, 69, 68, 

47, 41] 

3.492  1.048  83.790 

0.7 0.3 #11 3.492  1.048  83.790 

0.8 0.2 #12 3.492  1.048  83.790 

0.9 0.1 #13 3.492  1.048  83.790 

In Table 4-11 and Table 4-12, we take O-D 2 and O-D 3 for example and compare 

the results of two methods. We discovered and verified two situations. (1) We could 

find that the optimal solution (#5) obtained by the weighting method (𝑊𝑐 = 0.5, 𝑊𝑟 =
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0.5 ) is the same as the optimal solution (#8) obtained by NSGA-II. Additionally, 

because the value of hypervolume of this solution is higher than the others in O-D 2, it 

proves again that no other solution is better than this optimal solution. (2) In second 

example (O-D 3), we could find that the solutions (#5, #6 and #7) obtained by the 

weighting method (𝑊𝑐 = 0.1, 𝑊𝑟 = 0.9 ) (𝑊𝑐 = 0.2, 𝑊𝑟 = 0.8 ) (𝑊𝑐 = 0.3, 𝑊𝑟 = 0.7 ) 

are better than the optimal solution (#1) obtained by NSGA-II based on the two values 

of hypervolume. This means that even though genetic algorithm could find optimal 

solutions within a reasonable time, it does not guarantee the solutions are best. (Rocha 

& Neves, 1999) The main reason is premature convergence to solutions coding local 

optima of the objective function. Thus, diversity of each iterations is the key point with 

the use of genetic algorithm. 

4.4 Summary 

In the empirical experiments, we present different situations on Kaohsiung City to 

solve the route optimization for hazmat transportation. It includes the problem of real 

time single pair and real time multiple O-D pairs. In process of generating real time 

network data, a traffic simulation software (DynaTAIWAN) is applied. 

In the results, we discover and prove that if initial population includes the routes 

generated by Dijkstra algorithm, NSGA Ⅱ could generate better solutions and get 

convergent solutions within a short time. Among these solutions, we choose one as 

driving route based on the comparative method, called hypervolume proposed by 

Zitzler and Thiele (Zitzler & Thiele, 1999). Then we could update the route at different 

time interval according to travel time of driving route and the new start node. 

Moreover, we compare the solution obtained by NSGA-II to the solution obtained 

by weighting method and prove two things. 1. If no other solution is better than the 
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solution generated from NSGA-II, we prove this solution is best. 2. If the solution is 

better than the solution generated from NSGA-II, it shows the heuristic algorithm falls 

into local optimum. Thus, we could examine the results by the weighting method. 
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CHAPTER 5 CONCLUSIONS AND SUGGESTIONS 

This research develops a real time multi-objective genetic algorithm to design 

transportation routes for hazmat routing problem. From the results of experiments, the 

conclusions and suggestions are summarized in Section 5.1 and Section 5.2 

respectively. 

5.1 Conclusions 

This research identifies the important issues of hazmat transportation and deals 

with it on realistic network. Based on the empirical analysis, the conclusions of this 

research are summarized as follows:  

1. When we face the problem of real time route optimization for hazmat transportation, 

two things are worth it to mention. First, compared with other optimization 

methods, genetic algorithm does not need to have prior preference, scale, or weight 

objectives. Second, with the ability of multi-objective genetic algorithm to search 

the global domain, the optimal solutions could be obtained within a reasonable time. 

(Sivanandam & Deepa, 2008) Especially in real time optimal route for hazmat 

transportation, it is indeed an effective algorithm to deal with. 

2. This research constructs Kaohsiung City network and adopts real time NSGA-II to 

find the Pareto solutions at particular time interval. We consider two objectives 

including risk and cost. Among these, traffic volume and travel time simulated by 

DynaTAIWAN are the main time-dependent components. 

3. The results present that if initial population includes the routes generated by 

Dijkstra algorithm, the real time NSGA-II could generate better solutions. Given 

multiple O-D pairs, we could generate optimal transporting network with no links 

which is used more than once. It not only could update the route at particular time 
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interval but also alleviate risk on the network.  

5.2 Suggestions 

The suggestions for future study on real time route optimization for hazmat 

transportation problem are summarized as follows: 

1. In the process of generating the routes of multiple O-D pairs, this research adopts 

that first come, first served. The O-D pairs are sequenced in order of preset order. 

Although this strategy could generate a good solution, it is not guaranteed to be the 

best. The reason is computing time. The computing time of generating a route of 

multiple O-D pairs takes approximately 280 seconds, but there are 720 permutations 

of the six O-D pairs. If we would like to get the best permutations which is minimum 

total cost and risk, it takes approximately 201,600 seconds. That means that we 

could not update the each of pair immediately. Thus, in order to get better solutions, 

another method should be applied. 

2. When we use the genetic algorithm to find Pareto solutions, we could face the 

problem of premature convergence. There are some of the techniques used to 

prevent this situation. (1) Adaptive mutation rate. (2) Random offspring generation. 

(3) Social disasters technique. The main operator of these techniques is to increase 

the diversity of population and prevent ineffective process. (Rocha & Neves, 1999)    

3. In the future, if real time network data could be collected by innovative 

communication technology such as sensors, 5G, IoT, it could substitute for the 

assumed network data. For Kaohsiung city government or decision maker, that not 

only assists in more effective traffic management but also could provide more 

precise decisions for hazmat transportation. Thus, we could actively avoid large-

scale accidents instead of passive control for chemical trucks’ driving route. 
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APPENDIX 

Table A-1 Incident of chemical trucks in Taiwan (2017-2019) 

Date Accident Treatment 

Impact 

Injury/ 

Fatality 
Congestion Pollution 

2017/05/27 

A chemical 

truck carried 

Methyl 

acrylate 

caused lots of 

gas leaked in 

Daliao 

District. 

 

The police and 

firefighters 

cordoned off the 

accident and 

sprinkle water to 

dilute the smell. 

The 

Environmental 

Protection 

Agency fined the 

operator ten 

thousand 

according to the 

air pollution law. 

injury：1  ● 

2017/08/25 

A chemical 

truck carried 

Styrene 

overturned 

and caused 

4,50 kilogram 

of styrene 

leakage in 

Renda 

Industrial 

Park. 

 

The police and 

firefighters 

cordoned off the 

accident 

instantly. The 

operator also 

called   staff 

and equipment to 

stop leakage and 

follow-up 

accidents. 

 

injury：1 ● ● 

2017/11/21 
A chemical 

truck carried 

Manufacturers 

putted sand and 
injury：1 ● ● 
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Date Accident Treatment 

Impact 

Injury/ 

Fatality 
Congestion Pollution 

emulsion 

overturned 

and caused 

leakage in 

Linyuan 

District. 

sawdust on 

emulsion to 

remove it and 

some flowed into 

the gutter. 

 

2018/01/31 

A CPC 

chemical 

truck carried 

Methanol 

overturned 

due to less 

carefully 

turning. 

The police and 

firefighters 

sprayed water 

and cordoned off 

the accident first. 

injury：1  ● 

2018/03/26 

A chemical 

truck carried 

sulfuric acid 

overturned 

because 

turning angle 

was too great 

in Luzhu 

District. 

The fire 

department sent 

26 firefighters, 

10 fire engines 

and cordoned off 

the on-site 

accident. 

injury：1  ● 

2018/07/17 

A chemical 

truck hit on 

BMW at 72 

County Road.  

Firefighters 

rescued and sent 

their to hospital. 

injury：3 ●  

2018/07/22 

A chemical 

truck carried 

phenol and 

diesel 

overturned 

Firefighters 

brought LN2, 

chemical sorbent 

pad and sawdust 

to cover the 

fatality：1 ● ● 
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Date Accident Treatment 

Impact 

Injury/ 

Fatality 
Congestion Pollution 

and had 

leakage in Tai 

Western 

Coast 

Expressway. 

phenol lest much 

more leakage. 

2018/09/27 

A chemical 

truck carried 

Propene 

overturned 

and had 

leakage in 

National 

Freeway No. 

1. 

Firefighters 

rescued the 

driver and 

sprinkled water 

to protect from 

explosion. 

fatality：1 ● ● 

2018/12/05 

A chemical 

truck carried 

Acetic acid 

overturned 

and had 

leakage. 

Firefighters 

rescued the 

driver and 

sprinkled water 

to protect from 

explosion. 

fatality：1 ● ● 

2019/01/09 

A chemical 

truck carried 

Sulfuric acid 

Firefighters 

rescued the 

accident which 

None ● ● 
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Date Accident Treatment 

Impact 

Injury/ 

Fatality 
Congestion Pollution 

was burned 

with 

unknown 

reason and 

caused 

leakage. 

lasts more than 

one hour. 

2019/01/17 

A chemical 

truck carried 

Sulphur had 

leakage in 

National 

Freeway No. 

1. 

Firefighters 

sprinkled water 

to protect from 

explosion. 

injury：1 ● ● 

2019/01/24 

A chemical 

truck carried 

Sodium 

hydroxide 

bumped 

hillside and 

caused 

leakage. 

The staff of the 

Environmental 

Protection 

Bureau prevent 

pollution from 

flowing into the 

river. 

fatality：1  ● 
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Date Accident Treatment 

Impact 

Injury/ 

Fatality 
Congestion Pollution 

2019/02/23 

A chemical 

truck carried 

Calcium 

chloride 

bumped three 

trucks and 

had leakage. 

Firefighters 

rescued the 

accident and 

prevented from 

more leakage.  

injury：1 ● ● 

2019/03/12 

A chemical 

truck carried 

Styrene had a 

collision with 

front vehicle.   

Firefighters 

closed the some 

lanes in National 

Freeway No. 1. 

None ●  

2019/03/21 

A chemical 

truck carried 

Isoprene 

overturned. 

Firefighters 

closed the 

expressway and 

removed the 

truck. 

injury：1 ●  

 




