基隆港船舶斷纜事件之研究

何秉均

臺灣港務股份有限公司基隆港務分公司工程處督導

摘要

港內停泊於船席上的船隻,其繫纜的纜繩,因船舶受到許多力量的影響,如港內波浪作用力、漲落潮的潮流、季風或颱風吹襲時,故導致繫纜力變化,纜繩張力不足,會有斷纜的事件發生。本研究蒐集基隆港 109 年的斷纜資料,比對斷纜當日中央氣象局,所測得的風速及風向資料,以及港研中心設於港內東 8 碼頭之實測的波高資料。所得結果可知,造成港內船舶的斷纜事件,最可能的影響因素是風速及風向。船艏或船艉的倒纜或順纜,因同向吹來的風,使船舶移動,牽動數量較少的纜繩,由於張力不足,故會容易有斷纜的狀況。但是在東岸的東 8 碼頭、東 9 碼頭、東 10 碼頭及東 11 碼頭,斷纜的原因是側風直接吹船體,造成斷纜事件,垂直於船體的陣風,亦會產生斷纜的事件。斷纜時,港內波高並無明顯的增高,顯示斷纜與港內波高兩者並無關係。

一、研究動機

1.1 基隆港港內斷纜

本研究蒐集基隆港務分公司所提供之船舶斷纜資料整理如表 1。各個斷纜的位置,在基隆港的碼頭上標示出來如圖 1。從斷纜位置圖中來看,分布在東岸碼頭的位置有東 8 碼頭、東 9 碼頭、東 10 碼頭、東 11 碼頭及東 12 碼頭,在東內碎波堤堤後的東 22 碼頭也有斷纜的事件。西岸碼頭的位置有西 15 碼頭、西 17 碼頭、西 20 碼頭及西 22 碼頭。而西 27 及西 29 碼頭在火號澳船渠最底部,一般而言,受到波浪影響小的區域,也有斷纜的事件。造成港內斷纜事件可能的影響因素是風速及風向,為本文主要討論議題。

1.2 斷纜的原因

一般而言,港內的波浪較小,約介於 10~30 公分間,在颱風時期,會稍微增大。蔡立宏等 (2019)實驗發現,颱風時港內的波浪,對船舶纜繩的影響,遠小於颱風的風力影響。輕船吃水較淺,船體受風面積加大,風力不斷吹襲,力量作用於船舶,容易加大繫泊纜繩的張力,倘港內有因颱風引起的盪漾,造成船舶嚴重晃動,纜繩將瞬間崩斷,船舶其他的纜繩可能一併崩斷,斷纜的船舶受強風催襲,在港內碰損其他船隻或碼頭,極容易造成港內船舶或設施嚴重的損失。

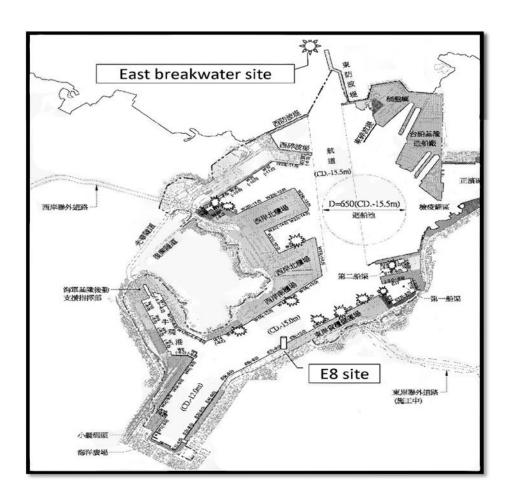


圖 1 基隆港 109 年港內船舶斷纜位置圖

表 1基隆港 109 年港內船舶斷纜時間之波高與風速資料表

案例	日期	碼頭	船名	噸數(T)	東堤當日平 均波高 Hs(M)	E8 當日平 均波高 Hs(M)	當日平 均風速 (M/S)	當日平均 陣風風速 (M/S)	當日最大 陣風風速 (M/S)
1	109.07.03	E22	TAI FU NO.8	1270	0.35	0.09	2.1	4.4	8.2
2	109.08.09	W15	TAI FU NO.8	1270	0.46	0.08	2.35	5.53	9.5
3	109.08.09	W29	SHIN HWA NO.8	1355	2.42	0.31	5.78	11.76	13.9
4	109.10.08	E12	CPC NO.9	490	3.32	0.36	6.8	14.49	18.3
5	109.12.03	W17	SCO SHANGHAI	6323	3.06	0.45	5.23	11.49	15.3
6	109.12.14	E11	PHILIPPOS- MICHALIS	17907	3.06	0.45	5.23	11.49	15.3
7	109.12.14	W20	OSG ADMIRAL	7197	3.06	0.45	5.23	11.49	15.3
8	109.12.14	E8	BLUE OCEAN	9949	3.06	0.45	5.23	11.49	15.3
9	109.12.14	E10	KUO LIN	18826	3.06	0.45	5.23	11.49	15.3
10	109.12.15	E09	NEW MINGZHOU 60	9998	3.06	0.35	5.4	11.37	13.9
11	109.12.15	W27	LUCKY PIONEER	4750	3.06	0.35	5.4	11.37	13.9
12	109.12.16	W20	QING YUN HE	20624	2.79	0.38	5.24	12.05	14.7

二、研究方法

2.1 港內波高

基隆港內港的東 8 測站位置,位於東 8 碼頭與東 7 碼頭交界處(座標 N25°08'21.08", E121°45'2.8"),如圖 2。測站儀器採用壓力式水位計量測水位,測量頻率為 1 小時 3 筆,即每 20 分鐘 1 筆。從 2020 年 6 月 1 日 0 時,取至 2021 年 6 月 30 日 23 時 40 分共計 24,048 筆資料。

圖2東8碼頭位置圖

從內港的整年波高時間序列(如圖 3)可以查出斷纜當日的港內浪高狀況,從而可以知道浪高 是否為斷纜的影響因素。

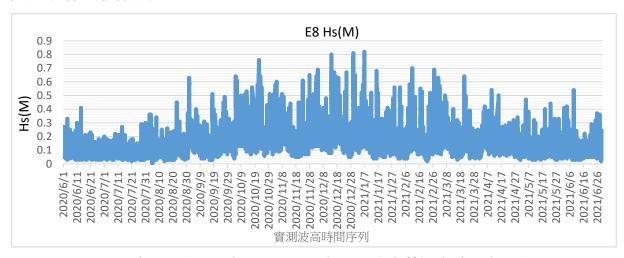


圖 3 東 8 碼頭 109 年 6 月至 110 年 6 月之有義波高時間序列圖

2.2 基隆港風速及風向資料

基隆港港口面對北太平洋,冬天時對港內作業船隻的影響,主要受到東北季風的吹襲,參 考中央氣象局歷年基隆港四季及全年風玫瑰圖,顯示全年風場統計來自北至東方的機率超越50%以上,可知東北風向為主要風向,其風速強度大多低於10 m/s,偶爾時間之鋒面過境或颱風 時期,其風速強度可高於 10 m/s 以上。本研究取斷纜日期的中央氣象局發布的風速及風向資料,以分析風向與斷纜處的碼頭,其兩者之間的關係。

三、研究結果與討論

3.1 斷纜日期及風向說明

109年時,東8碼頭有測波資料期間,蒐集基隆港務分公司所提供之船舶斷纜資料整理,其相關之位址在基隆港的碼頭上標示出來。從斷纜位置圖1中來看,分布在東岸碼頭的位置有東8碼頭、東9碼頭、東10碼頭、東11碼頭及東12碼頭,在東內碎波堤堤後的東22碼頭也有斷纜的事件。西岸碼頭的位置有西15碼頭、西17碼頭、西20碼頭及西22碼頭。西27及西29碼頭在一般稱為火號澳的船渠最底部,這個區域受到波浪影響小,在此區域,會有斷纜的事件,顯示,斷纜與波高似無強烈關聯。

在本研究中方位角的定義,以正北方的方位角為 0 度,順時針方向,增加角度,正東方位 角為 90 度,正南方位角為 180 度,正西方位角為 270 度。例如碼頭的方位角是 210 度(如圖 4), OA 線段左側為碼頭岸局,右側則為船席水域,210 度加 90 度為 300 度,則是推船舶離開碼頭 的離岸方向。

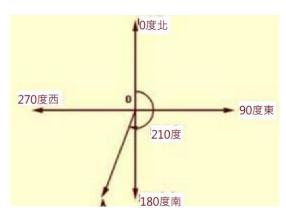


圖 4 方位角示意圖

九個碼頭之方位角、最大陣風方向、風速及相關分析說明如下:

1. 109 年 7 月 3 日東 22 號碼頭,碼頭方位角為 260 度,船體離岸迎風方位角 350 度。當日最大陣風方向有二,一個是介於 60 度至 220 度之陣風;另一個是介於 30 度至 50 度的陣風,當時最大陣風速約每秒鐘 6 公尺至 7 公尺,如圖 5。這個斷纜事件,最大陣風風速小於 9.5M/S,斷纜的原因可能不是風力的影響,但是圖 5 中灰色折線圖所表現的風向來看,變化從方位角 60 度到方位角 220 度,兩者風向的變化極大,可能是斷纜的因素之一。另外 E22 碼頭停靠的船多為較小噸位的船隻,所用的纜繩老舊,是斷纜原因之一。

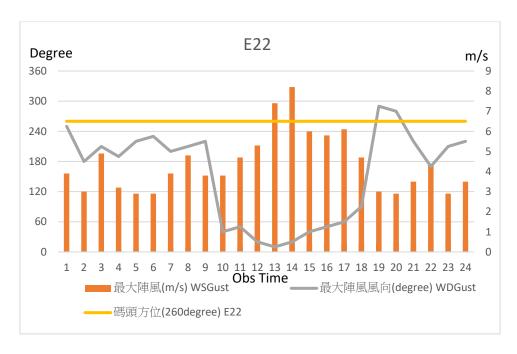


圖 5 東 22 號碼頭最大陣風之風速風向與碼頭方位圖

2. 109 年 8 月 9 日西 15 號碼頭,碼頭方位角為 230 度,船體離岸迎風方位角 320 度。當日最大陣風為介於 200 度至 270 度,最大陣風速約每秒鐘 7 公尺,如圖 6。在這個西 15 號碼頭斷纜事件中,最大陣風風速也小於 9.5M/S,斷纜的原因似非風力的影響,同樣從圖 6 中灰色折線圖所表現的風向來看,方位角介於 200 度到方位角 270 度,而主要風向與碼頭法線相近,兩者的變化一致,風一直吹船艏或船艉,造成纜繩斷裂,風向的變化是斷纜的因素之一。

圖 6 西 15 號碼頭最大陣風之風速風向與碼頭方位圖

3. 109 年 8 月 9 日西 29 號碼頭,碼頭方位角為 225 度,船體離岸迎風方位角 315 度。當日最大陣風為介於 200 度至 270 度,最大陣風速約每秒鐘 7 公尺,如圖 7。從圖 7 中看出,白天最大陣風約每秒鐘 8 公尺到 9.5 公尺,晚上的大陣風不到每秒鐘 5 公尺,變化相差 4 公尺,陣風的變化會造成斷纜事件。風是順者這個碼頭角度吹來,約 200 至 270 度,船被推送順著碼頭法線移動,纜繩可能老化,無法承受拉力,就會斷纜。

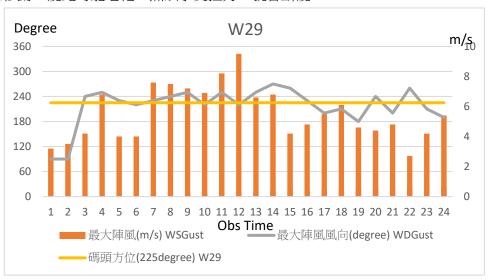


圖 7 西 29 號碼頭最大陣風之風速風向與碼頭方位圖

4. 109 年 10 月 8 日東 12 號碼頭,碼頭方位角為 300 度,船體離岸迎風方位角 30 度。當日最大 陣風為 350 度至 10 度,橘色的最大陣風速約介於每秒鐘 10 公尺至 12 公尺,如圖 8。灰色的 曲線,看出風的角度約是正北方吹來,顯示強烈的正北方來的陣風一直吹著船身,碼頭方位 角為 300 度,強烈的側風一直吹的船身,將船體推離碼頭,這是最主要的斷纜原因。此外,這案件的船舶噸數小,不到 500 噸,纜繩比較細,無法承受強風吹船體所增加的額外張力,最後斷纜,可能也是斷纜的原因。

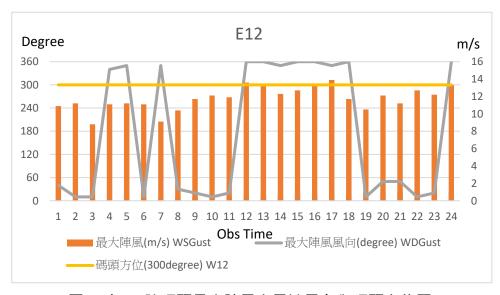


圖 8 東 12 號碼頭最大陣風之風速風向與碼頭方位圖

5. 109 年 12 月 3 日西 17 號碼頭,碼頭方位角為 230 度,船體離岸迎風方位角 320 度。當日最大陣風為 350 度至 10 度,最大陣風速約介於每秒鐘 11 公尺至 15 公尺,如圖 9。顯示強烈的陣風一直吹著船體,灰色的曲線,看出風的角度約是正北方吹來,碼頭方位角為 230 度,表示強烈的斜向側風一直吹的船艏或船艉,將船體從西 17 號碼頭推向西 16 號碼頭,與上一個案例相同,風吹船艏或船艉,造成船平行碼頭法線移動,纜繩張力不足,最後斷纜。故風向是造成斷纜的主要原因。

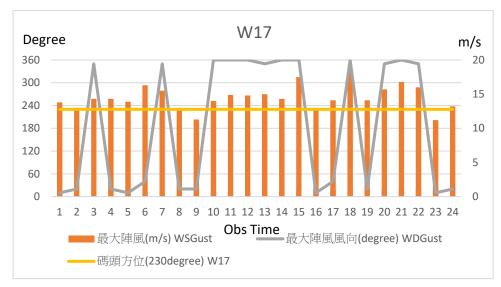


圖 9 西 17 號碼頭最大陣風之風速風向與碼頭方位圖

6. 109 年 12 月 14 日西 20 號碼頭,碼頭方位角為 60 度,船體離岸迎風方位角 150 度。當日最大陣風為介於 30 度至 50 度,最大陣風速約每秒鐘介於 10 公尺至 14 公尺,如圖 10。顯示更為強烈的陣風一直吹著西 20 碼頭靠泊的船艏或船艉,灰色的曲線,看出風的角度約是正北方偏東方 30 至 50 度吹來,碼頭方位角為 60 度,表示強烈的陣風一直吹的船艏或船艉,將船體向前或向後推,這個側風是造成船舶斷纜的原因。

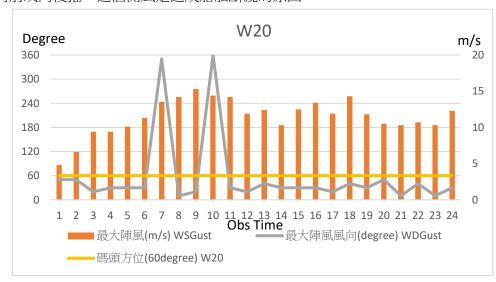


圖 10 西 20 號碼頭最大陣風之風速風向與碼頭方位圖

7. 109 年 12 月 14 日東 8 及東 10 號碼頭,碼頭方位角為 300 度,船體離岸迎風方位角 30 度。當日最大陣風為 30 度至 50 度,最大陣風速約每秒鐘 10 公尺至 14 公尺,如圖 11。顯示更為強烈的陣風一直吹著東 8 至東 10 碼頭靠泊的船體,灰色的曲線,看出風的角度約是正北方偏東方 30 度至 50 度吹來,碼頭方位角為 300 度,表示強烈的陣風一直吹的側方船體,將船體推離碼頭,這是最主要的斷纜原因。

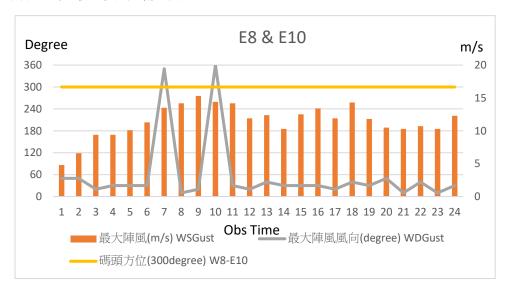


圖 11 東 8 及東 10 號碼頭最大陣風之風速風向與碼頭方位圖

8. 109 年 12 月 15 日東 9 號碼頭,碼頭方位角為 300 度,船體離岸迎風方位角 30 度。當日最大陣風為 20 度至 50 度,最大陣風速約每秒鐘 10 公尺至 12 公尺,如圖 12。圖中顯示陣風一直側向吹著東 9 碼頭靠泊的船體,灰色的曲線,看出風的角度約是正北方偏東方 20 度到 50 度吹來,碼頭方位角為 60 度,表示強烈的陣風一直吹的船體,將船體推離碼頭,繫船的纜繩可能因為張力不足,加上潮差或船身左右晃動,最後斷纜。故這個側風是最主要的斷纜原因。

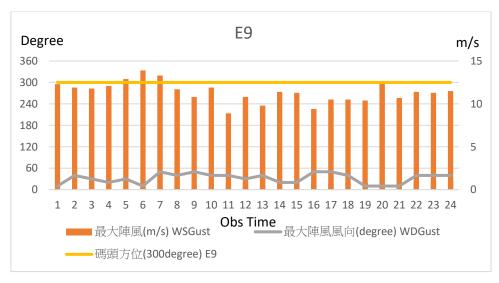


圖 12 東 9 號碼頭最大陣風之風速風向與碼頭方位圖

9. 109 年 12 月 15 日西 27 號碼頭,碼頭方位角為 50 度,船體離岸迎風方位角 140 度。當日最大陣風為 20 度至 50 度,最大陣風速約每秒鐘 10 公尺至 12 公尺,如圖 13。圖中顯示陣風一直吹著西 27 碼頭靠泊的船體,灰色的曲線,看出風的角度約是正北方偏東方 20 度到 50 度吹來,碼頭方位角為 50 度,表示強烈的陣風一直吹的前後船艏或船艉,將船體向前或向後推,這是最主要的斷纜原因。

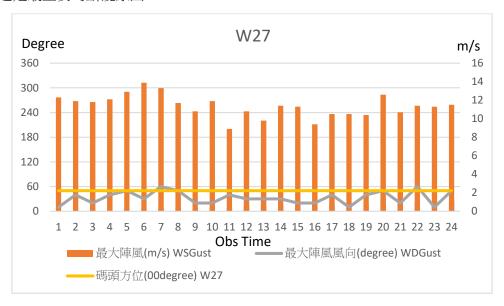


圖 13 西 27 號碼頭最大陣風之風速風向與碼頭方位圖

10.109 年 12 月 16 日西 20 號碼頭,碼頭方位角為 60 度,船體離岸迎風方位角 150 度。當日最大陣風為 20 度至 50 度,最大陣風速約每秒鐘 10 公尺至 12 公尺,如圖 14。圖中顯示陣風一直吹著西 20 碼頭靠泊的船體,灰色的曲線,看出風的角度約是正北方偏東方 20 度到 50 度吹來,碼頭方位角為 60 度,表示強烈的陣風一直吹的前後船體,將船體沿著碼頭法線向前或向後推動,造成纜繩張力不足而斷裂,這是最主要的斷纜原因。

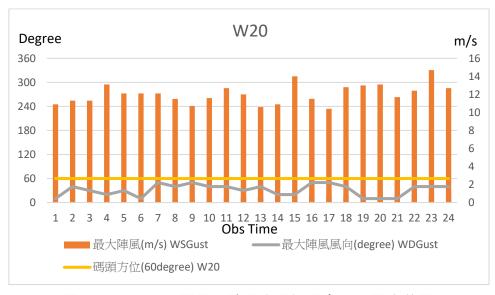


圖 14 西 20 號碼頭最大陣風之風速風向與碼頭方位圖

從上面的說明可以知道,順著碼頭方位角的陣風,會有極大的機會,造成船舶斷纜的現象。 換言之,船艏或船艉向的來風才會容易有斷纜的狀況。但是在東岸的東 8 碼頭、東 9 碼頭、東 10 碼頭及東 11 碼頭,斷纜的原因是側風直接吹船體,造成斷纜的事件。是故,垂直於船體的陣 風,亦會造成船舶斷纜的事件發生。值得一提的是,船舶的噸位代表船舶大小,亦是影響因素 之一。在東岸東 8 至東 11 碼頭,停泊的是 10000 噸到 20000 噸的大型貨櫃船,船上堆積貨櫃, 受風面積更為增大,強風吹大面積的貨櫃船,造成船體左右搖晃,纜繩在此晃動的狀況下,極 容易因張力不足,最後導致斷纜的事件發生。

本文所蒐集 109 年斷纜事件,因僅有表一的日期、碼頭、船名及船舶噸數,對於斷纜纜繩位置如艏纜、艏横纜、艏倒纜、艉纜、艉横纜或艉倒纜,並無詳細記載。經洽詢現場纜工表示,資料久遠,已無從查考。

3.2 波高狀況

蒐集基隆港務分公司所提供之船舶斷纜資料整理如表 1。從外港內波高時間序列圖 3 中可以看出來,當港內船舶有斷纜時,109年7月3日及8月9日港內東8碼頭所測得的平均波高僅9公分。109年10月8日、12月3日、12月14日至16日,港內東8碼頭所測得的平均波高介於31公分至45公分。而港內45公分的浪,對整個斷纜影響,確實有限。從以上的說明,顯示斷纜與港內波高,似無主要關係。

3.3 風速及風向狀況

從中央氣象局所提供的風速觀測值(如表 2)中所顯示,109 年 7 月 3 日及 8 月 9 日平均風速為 2.1 公尺/秒及 2.35 公尺/秒,平均陣風風速 4.4 公尺/秒及 5.53 公尺/秒,最大陣風風速為 8.5 公尺/秒及 9.5 公尺/秒,其陣風風速可能瞬間將纜繩拉斷。109 年 10 月 8 日、12 月 3 日及 12 月 14 日至 16 日,平均風速為 5.23 公尺/秒至 6.8 公尺/秒,平均陣風風速 11.37 公尺/秒至 14.49 公尺/秒,最大陣風風速為 13.9 公尺/秒至 18.3 公尺/秒。其陣風風速,一整天反覆作用在船身,加上潮汐漲落、纜繩數量不足或纜繩老化,倘再加上船身與碼頭的相對位置不良,確實容易將纜繩拉斷。

四、結論

一般人以為,垂直船體的離岸風,是造成船舶斷纜的主要原因,然而,從本文相關的論述中,知道垂直於船體的離岸陣風,確實會使東岸停泊的船產生斷纜的事件。船的橫纜,通常會加強多加幾條,可以避免斷纜的發生。船頭或船尾的倒纜或順纜,因為同向吹來的風,使船舶移動,牽動數量較少的纜繩,因為張力不足,才會容易有斷纜的狀況。換言之,順著碼頭方位角

的陣風,可能性成為船舶斷纜的因素之一。另外東岸的貨櫃碼頭,因船上載放貨櫃,使得船舶 受風面積更為增大,側風吹襲,將船舶推離碼頭或造成船體左右晃動,因為繫纜繩數量不足或 張力不夠而斷纜。是故,側風為東岸碼頭斷纜的主要原因。

船舶斷纜資料整理與從港內波高時間序列圖中可以看出來,當港內船舶有斷纜時,港內約 有介於 35 公分至 45 公分的浪,對整個斷纜影響,確實有限。換言之,斷纜與港內波高並無明 顯的增高,顯示兩者似無主要關係。

表 2 斷纜日期之碼頭、風速及陣風觀測值資料表

	109.7.3 E22 碼頭		109.8.9 W15 碼頭		109.8.9 W29 碼頭		109.10.8 E12 碼頭		109.12.3 W17 碼頭		109.12.14 W20 碼頭		109.12.14 E8&E10 碼 頭		109.12.15 E9&W27 碼頭		109.12.16 W20 碼頭	
觀測 時間 (hour)	風速 (m/s)	最大陣 風(m/s)	風速 (m/s)	最大 陣風 (m/s)	風速 (m/s)	最大 陣風 (m/s)	風速 (m/s)	最大 陣風 (m/s)	風速 (m/s)	最大 陣風 (m/s)	風速 (m/s)	最大 陣風 (m/s)	風速 (m/s)	最大 陣風 (m/s)	風速 (m/s)	最大 陣風 (m/s)	風速 (m/s)	最大 陣風 (m/s)
1	1.3	3.9	1.6	3.2	1.6	3.2	5.7	10.9	5.8	13.8	1.5	4.8	1.5	4.8	6.2	12.3	4.8	10.9
2	1.7	3.0	1.2	3.5	1.2	3.5	4.2	11.2	5.2	13.0	2.9	6.6	2.9	6.6	5.0	11.9	5.0	11.3
3	2.8	4.9	2.3	4.2	2.3	4.2	3.9	8.8	5.6	14.3	5.4	9.4	5.4	9.4	5.1	11.8	5.9	11.3
4	1.9	3.2	3.3	6.8	3.3	6.8	5.8	11.1	7.9	14.3	4.0	9.4	4.0	9.4	5.5	12.1	3.8	13.1
5	1.6	2.9	2.4	4.0	2.4	4.0	6.2	11.2	7.7	13.9	6.0	10.1	6.0	10.1	4.5	12.9	4.3	12.1
6	1.1	2.9	1.4	4.0	1.4	4.0	3.7	11.1	7.3	16.3	6.3	11.3	6.3	11.3	6.2	13.9	4.4	12.1
7	2.0	3.9	4.3	7.6	4.3	7.6	4.3	9.1	6.0	15.5	6.6	13.5	6.6	13.5	6.8	13.3	4.5	12.1
8	3.2	4.8	3.7	7.5	3.7	7.5	4.6	10.4	6.6	12.7	8.0	14.2	8.0	14.2	5.6	11.7	6.5	11.5
9	1.2	3.8	3.7	7.2	3.7	7.2	4.4	11.7	5.3	11.3	6.8	15.3	6.8	15.3	6.9	10.8	4.0	10.7
10	1.9	3.8	3.4	6.9	3.4	6.9	5.3	12.1	8.7	14.0	5.3	14.4	5.3	14.4	5.2	11.9	4.1	11.6
11	3.2	4.7	4.1	8.2	4.1	8.2	6.0	11.9	6.4	14.9	4.6	14.2	4.6	14.2	4.8	8.9	6.9	12.7
12	3.1	5.3	2.8	9.5	2.8	9.5	6.8	13.6	7.6	14.8	5.4	11.9	5.4	11.9	5.6	10.8	4.2	12.0
13	3.9	7.4	3.5	6.6	3.5	6.6	6.5	13.3	7.5	15.0	5.7	12.4	5.7	12.4	4.4	9.8	5.7	10.6
14	2.8	8.2	2.4	6.8	2.4	6.8	6.3	12.3	8.0	14.3	5.2	10.3	5.2	10.3	6.1	11.4	5.0	10.9
15	2.5	6.0	1.3	4.2	1.3	4.2	7.0	12.7	7.2	17.5	6.0	12.5	6.0	12.5	4.3	11.3	6.0	14.0
16	3.4	5.8	2.1	4.8	2.1	4.8	7.5	13.3	5.5	12.8	6.2	13.4	6.2	13.4	5.5	9.4	4.1	11.5
17	2.0	6.1	2.0	5.5	2.0	5.5	8.9	13.9	5.8	14.1	5.0	11.9	5.0	11.9	5.0	10.5	6.4	10.4
18	2.1	4.7	0.2	6.1	0.2	6.1	5.2	11.7	6.6	18.3	5.2	14.3	5.2	14.3	4.9	10.5	5.8	12.8
19	2.2	3.0	2.6	4.6	2.6	4.6	5.8	10.5	7.3	14.1	5.0	11.8	5.0	11.8	4.8	10.4	5.8	13.0
20	0.6	2.9	2.1	4.4	2.1	4.4	6.6	12.1	8.0	15.7	5.1	10.5	5.1	10.5	6.7	12.6	4.9	13.1
21	1.8	3.5	1.6	4.8	1.6	4.8	3.4	11.2	9.1	16.8	4.7	10.3	4.7	10.3	4.9	10.7	6.6	11.7
22	1.1	4.4	0.2	2.7	0.2	2.7	7.0	12.7	8.4	16.0	5.4	10.7	5.4	10.7	6.5	11.4	6.1	12.4
23	1.3	2.9	2.4	4.2	2.4	4.2	7.9	12.2	4.3	11.2	5.1	10.3	5.1	10.3	4.6	11.3	6.3	14.7
24	1.6	3.5	1.8	5.4	1.8	5.4	5.9	13.3	5.5	13.2	4.2	12.3	4.2	12.3	4.6	11.5	4.6	12.7

參考文獻

1. 蔡立宏、洪維屏、吳南靖、魏志強、蔡加正、吳冠德 (2019),「風力作用下船舶纜繩受力模式 建置」,港灣季刊,112,1-21頁。

誌謝

感謝交通部運輸研究所港研中心提供東 8 碼頭測波資料。 感謝交通部中央氣象局提供 109 年基隆風速資料。