臺中港單基海洋陣列雷達波浪及海流觀測之 分析研究探討

李政達 交通部運輸研究所港灣技術研究中心副研究員 林受勳 交通部運輸研究所港灣技術研究中心助理研究員 蔡立宏 交通部運輸研究所港灣技術研究中心主任

摘要

本研究以臺中港線性陣列海洋雷達 調查港區與鄰近海域之海象,利用雷達 產生的電磁波於海水表面所發生的共振 與都卜勒頻偏現象,觀測海象波浪波高 與週期的時序列變化趨勢,結果顯示與 本所臺中港底碇式水下觀測儀器之觀測 結果具有一致性,相關研究成果可提供 船舶航行與進出港區應用參考。

一、前言

本研究引進之雷達系統,係由美國 夏威夷大學無線電海洋學實驗室開發, 並提供通用相控陣列高頻都卜勒雷達服 務。量測原理係依據無線電波頻率能夠 將數公里遠的海流與波浪性質傳遞回 來,目前與夏威夷大學合作之國家,先後有義大利(2002~2004年)、墨西哥(2005年至今)、菲律賓(2008年至今)、 臺灣(2018年至今)等。本研究海洋陣列 雷達海洋現況,如圖1所示。

圖1臺中港線性陣列雷達海洋現況

本研究範圍為臺中港朝向臺灣海峽 外海 40km 遠,兩側夾角 120 度之扇形 區域,此範圍涵蓋臺中港船舶進出口要 道,如圖 2 所示。

圖 2 臺中港觀測範圍示意圖

二、研究方法與探討

2.1 雷達海象觀測原理

本研究所採用雷達系統為線性陣列 高頻雷達(Linear Phased Array High Fr equency Radar),其陣列之意係指雷達天 線排列方式,一般常見的陣列包含:線 陣列與方陣列,二者都是常見的陣列型 式,高頻之意係指雷達波發射時的頻 率, 簡要分類包含: 高頻(HF)、 甚高頻(V HF)、超高頻(UHF)、微波(Micro wave) 與毫米波(Millimeter wave)等,如圖 3 所示。不同的頻率引致不同物體將產生 反射現象,就像各種顏色的物體經由可 見光照射時,反射物體無法吸收波長的 光線,再由人類眼睛接收所見,本研究 以高頻雷達進行觀測,與物體反射可見 光模式類似,當雷達波正好為波浪波長 的2倍時,雷達回波將攜回海面的共振 訊號,因此,可以利用此特性與演算法, 求解海面之海氣象特性。

圖 3 訊號分類圖

研究追溯至美國 Barrick, D.E.任職 於國家海洋暨大氣總署(NOAA)研究期 間發表之基礎,發展布拉格散射機制的 公式與分析與半經驗方法,該方法不僅 同時適用於單基或雙基雷達站情況,成 功測量海流、風場及表面波,在 Barrick 研究中表面波理論是基於非線性流體動 力和水波電磁方程式之攝動理論展開而 發展。該文獻已提出許多理論,描述 HF 雷達散射回波的特徵,比如海面雷達回 波的都卜勒頻譜 Barrick, D.E. (1972b, 1971b)提出第一階與第二階的理論,透 過計算背景雜訊時,將使用背景散射定 律(Background scatter theory),雷達散射 面積(rad/s)等於每單位頻寬分之海表面 平均雷達橫截面積,該理論於參數上具 有限的收斂半徑,當雷達空間波數與表 面振幅的乘積等於1時,該理論將失去 效用,基此,存在飽和極限,高頻雷達 可獲得最大 Hs (有義波高), 有義波高受 到 2 倍雷達空間波數倒數的限制,因 此,在極端情況下,當波高大於飽和值 時,雷達量測有義波高的結果將被低 估,原則上計算背景雜訊並加以濾除, 後續應用布拉格能量大於平均能量,以 確認都卜勒頻譜的平均能量與布拉格波 範圍,最後利用第一階與第二階的邊界 條件與權重方程式,在第二階訊噪比要 大於 3dB 的情況下, 再利用 Barrick, D.E. (1977)所提出的權重係數,估計波高與 估計的平均週期。定位入射角(Direction of arrival),理論上接收天線量測的雷達 回波來自四面八方,所接收到的訊號, 包含海面初級回波與陸地結構及地表起 伏的多重反射,因此,僅藉由單一天線 並無法分析出訊號來源的實際方向,但 如接收天線排列成線陣列的型式,就能 透過海面回波訊號抵達各接收天線的不 同時間,分析彼此訊號間的相位差。波 束成形(Beam forming)演算技術便是利 用蒐集各接收天線的回波訊號與相位差 **闢係,解算來自不同方向之訊號成分**,

配合數學三角函數關係與計算相位差資 訊,反算出訊號的方向資訊,達成辨識 方位特徵的目的。

2.2 海洋陣列雷達基本資料

本研究雷達採用美國夏威夷大學研 製的LERA(Least-Expensive Radar, 簡稱 LERA)系統,於臺中港北淤沙區設置雷 達機房、4 支發射天線與 16 支接收天 線。其中,天線模組皆設置於 6m 高擋 沙牆頂部,雷達線性調頻發射週期設定 為 0.2166sec,最小線性調頻取樣數量 8,192 筆,觀測時距為 29.12mins(約為 30min 每筆),每小時可發布 2 筆觀測資 料,觀測範圍呈現扇形 120°,最遠觀測 距離可達 40km,空間中方向解析度為 8°,空間解析度為 500m,有關海洋陣列 雷達基本資料,如表 1 所示。

表1 海洋陣列雷達基本資料

雷達參數	參數值	單位
觀測時距	30	min
雷達頻率	27.75	MHz
頻寬	300	KHz
發射天線數量	4	支
接收天線數量	16	支
方位角	296	度
觀測距離	40	KM
空間解析度	500	m
方位解析度	8	度
線性調頻發射週期	0.2166	sec
A/DC 取樣頻率	740	Hz
線性調頻取樣數量	1,280	個
取 小線性調頻數量	8,192	個

2.3 雷達電磁理論

雷達電磁理論先由天線接收之複數 形式的 I/Q 資料開始說明, I/Q 資料其實 是 RF(Radio Frequency)通訊中常見的調 變型態,該資料可做為頻率調製、混頻 與解碼之基礎,本研究所需之回波強度 與相位訊息即可透過 I/Q 函數來求得, I 表示電磁場的實部,Q 表示電磁場的虛 部。每個啁啾 (Chirp) 訊號時間長 0.2166sec,經過 A/DC(Analog/Digital Converter,類比/數位轉換)以 740Hz 頻 率取樣,可以取出160個時序離散樣本, 經由傅立葉轉換,可用傅立葉係數計算 相應距離元的振幅與相位,資料處理後 將 8,192 個啁啾進行合併,可得到受波 浪影響之 I/Q 週期震盪的雷達回波強度 圖,同相位頻道 I 第 9 支天線的雷達回 波強度圖,如圖 4 所示。

圖 4 雷達回波強度圖

承上,先將雷達回波強度圖縱軸進 行第1次傅立葉轉換,原縱軸時間可 換為頻率再轉換為距離;此時,再將橫 軸做第2次傅立葉轉換,原橫軸的時間 可轉換為頻率,即可繪製出都卜勒距 譜圖(或稱 D-R 譜),由於海洋陣列雷達 具指向性,故都卜勒距離譜距離負數部 分,表示雷達訊號於天線發射方向之後 方,不具有物理的意義,將予以剔除, 如圖5所示。

DR Spectra (HTCN, Ant : 16, Direction = 0⁺) (COTING404 15:30 UTC) (COTING404 15:30 UTC)

圖 5 都卜勒距離譜(D-R spectrum)

雖然發射天線場型具有指向性發 射,但接收天線則係全向性接收,意即 來自四面八方的訊號全部接收,利用多 天線組的相位差進行波束成形(beam fo rming)以分析海面流速與波高。

2.3.1 海洋流場之徑向流速(V)

海洋雷達之回波訊號會隨著波浪運動產生都卜勒頻率位移效應,由於布拉格共振波所造成的連續性頻移可紀錄於都卜勒距離譜中,透過分析都卜勒距離譜中,透過分析都卜勒距離譜一階峰頻率位移的差值 fcurrent,再配合海面波浪波長等於雷達波長的 1/2 之公式(1),將公式(1)代入電磁波速度公式經過換算,波浪的徑向速度 Vradar current,即可表示為公式(2)所示。

因此利用高頻雷達蒐集都卜勒距離 譜一階峰之頻移,依據公式(2)公式求得 海面徑向流速度,將整個海域依序解算 各距離元的徑向速度,並標示在雷達範 圍圖內可繪製出雷達觀測流場圖,如圖 6所示。

2.3.2 海面波高(H)與週期(T)

Barrick, D. E.(1972b, 1971b)提出 許多海洋雷達的回波理論,有關都卜勒 頻譜一階與第二階的理論,如公式(3)與 公式(4)所示,計算背景雜訊的時候將使 用背景散射定律(Background scatter the orv),雷達散射面積(rad/s)等於每單位頻 寬分之海表面平均雷達橫截面積,原則 上計算背景雜訊並加以濾除,後續應用 布拉格能量大於平均能量,以確認都卜 勒頻譜的平均能量與布拉格波範圍,最 後利用第一階與第二階的邊界條件與權 重方程式,在第二階訊噪比要大於 3dB 的情況下, 再利用 Barrick, D. E. (1977) 所提出公式(5)、與公式(6)與權重係數, 其中參數 K₀ 雷達波的波數、w(ν)雷達 波於電磁和流體動力的散射效應總耦合 情況下的權重係數、@海面波浪的週波 率、WB 雷達布拉格週波率、Tm 平均週 期、 σ_1 第一階都卜勒譜、 σ_2 第二階都 卜勒,如圖7所示。

 $\sigma^{(1)}(\omega) = 2^{6}\pi k_{0}^{4} \sum_{m=\pm 1} S(-2mk_{0})\delta(\omega - m\omega_{B}).....(3)$ $\sigma^{(2)}(\omega) = 2^{6}\pi k_{0}^{4} \sum_{m_{1},m_{2}=\pm 1} \iint_{-\infty}^{+\infty} |\Gamma|^{2} S(m_{1}k_{1})S(m_{2}k_{2})\delta(\omega - m_{1}gk_{1}) - m_{2}gk_{2}dpdq....(4)$

2.3.3 雷達訊號處理步驟

本研究採用都卜勒距離譜之成分 譜,計算電磁理論的第一階分量的總能 量與第二階分量的總能量,配合權重函 數、比例因子與均方根波高演算法,估 算波浪波高與週期,將雷達訊號處理步 驟,如圖 8 所示。

三、海氣象觀測成果分析

本研究雷達觀測成果分析,將依據 臺中港海氣象之海流流速、波浪波高與 週期進行統計分析探討。本研究參與評 估之統計項目有:相關係數(r)、均方根 誤差(RMSE)、偏誤(BIAS)與散點因子 (Scatter Index,稱為 SI);其中 1.相關係 數(r)為判斷雷達觀測與實測資料間關聯 性之參數,數值越高表示兩數據彼此關 聯程度越高;2.均方根誤差(RMSE)表示 為統計後之標準誤差,標準誤差量越 高,則顯示誤差越大;3.偏誤(BIAS)為 數據間的偏差程度,用以衡量雷達觀測 與波流儀量測間的偏差,偏誤越小,表 示雷達觀測越接近實測值;4.散點因子 (SI)為無因次正規化均方根誤差,屬於統 計學誤差評估之另種方式,可視為一種 誤差百分比, 散點因子越接近 0, 資料 品質與觀測成效越好,如散點因子恰好 為0,表示與波流儀實測值完全一致。

3.1 海面波高(H)與週期(T)探討

本研究蒐集 109 年度雷達回波頻譜 資料與分析海面波浪觀測值,配合港研 中心臺中港北堤外海實測資料加以比 對,觀測時段介於 109 年 4 月 20 日至 109 年 4 月 25 日期間,雷達觀測波浪有 義波高(Hs)與實測資料結果比對,相關 係數為 0.87 高度相關,均方根誤差為 0.54,偏誤為 0.389,散點因子為 0.468, 如圖 9 所示。

同觀測時段之平均週期與實測資料 結果比對一階譜週期 (T_{m01}) 與二階譜週 期 (T_{m02}) , T_{m01} 相關係數為 0.78 高度相 關,均方根誤差為 1.28,偏誤為 1.172, 散點因子為 1.172,而 T_{m02} 相關係數為 0.74 高度相關,均方根誤差為 0.92,偏 誤為 0.76,散點因子為 0.762,如圖 10 所示,由於 T_{m02} 的散點因子小於 T_{m01} , 顯示於存在觀測誤差情形下, T_{m02} 誤差 較 T_{m01} 小,此與二者均方根誤差一致 (RMSE: $T_{m02} < T_{m01}$), T_{m02} 與實測資料 更為吻合;惟同觀測時段之尖峰週期與 實測資料結果比對, T_p 相關係數為 0.21 低度相關,均方根誤差為 1.38,偏誤為 0.385,散點因子為 0.820,如圖 11 所示, 比較週期偏誤值,尖峰週期偏誤值最 小,故雷達資料尖峰週期與實測更為吻 合。

圖 10 週期 109 年 4/20~4/26 比對

圖 11 尖峰週期 109 年 4/20~4/26 比對

觀測時段介於 109 年 5 月 20 日至 1 09 年 6 月 29 日期間, 雷達觀測波浪有 義波高(H_s)與實測資料結果比對, 相關 係數為 0.55 中度相關, 均方根誤差為 0. 34, 偏誤為 0.389, 散點因子為 0.274, 如圖 12 所示。

同觀測時段之平均週期與實測資料 結果比對,T_{m01}相關係數為0.02 微弱相 關,幾乎可稱之為無相關,均方根誤差 為 3.08, 偏誤為 2.869, 散點因子亦為 2.869, 而 T_{m02} 相關係數為 0.08 微弱相關, 均方根誤差為 2.48, 偏誤為 2.301, 散點 因子亦為 2.301, 如圖 13 所示; 惟同觀 測時段之尖峰週期與實測資料結果比 對, T_p 相關係數為 0.01 微弱相關,均方 根誤差為 5.99, 偏誤為 5.058, 散點因子 為 5.084, 如圖 14 所示。

圖 14 尖峰週期 109 年 5/20~6/29 比對

3.2 海流徑向流速(V)探討

由於本雷達系統目前為單基雷達站 系統僅能獲取逕向流資料,因此,本研 究以臺中港海域流速之成果分析,僅取 109年6月12日至109年6月14日於 鸚鵡颱風侵擾期間資料進行比對,該颱 風路徑係由菲律賓生成,行經南海至廣 州,如圖15所示。

15 鍋崎颱風路徑回(貝科尔源·父王 部中央氣象局)

實測海流流速係以港研中心波流儀 量側值約0.135~0.623m/s之間,如圖1 6所示,將實測流速轉換為逕向速度與 雷達向流速進行比對,如圖17所示, 逕向流速較大時,實測值與雷達值較為 接近,顯示颱風強度距離遙遠臺中港甚 遠,對雷達干擾程度有限,且速度值較 大時,雷達訊號品質較好,分析結果較 為準確。此外,本研究於鸚鵡颱風侵襲 期間72小時內,逕向速度實測與雷達觀 測散佈圖比較,相關係數0.762,如圖1 8所示。

圖 18 逕向速度實測與雷達觀測散佈圖

四、雷達分析之影響成因探討

由於無線電頻率、無線電通信、電 離層效應等干擾,對雷達觀測品質都有 影響,因此,環境類型影響之雜訊影響, 需於硬體增加能降低與濾除雜訊之濾波 器,藉以除去環境嗓音對雷達訊號品質 之干擾,有關雷達 D-R 譜背景雜訊,如 圖 19 所示。

五、結論與建議

本研究採用之雷達係臺灣目前唯一 運行中的海洋陣列雷達,港研中心發展 運用雷達測波浪與海流,並精進其遙 測技術,以海面波浪與海流之雷達訊號 進行多重處理,將所得海象資料進行蒐 集、分析與建檔,研究成果可提供臺中 港務分公司完整的海象資訊,協助掌握 港區與鄰近海域之海氣象現況。

5.1 結論

本研究運用雷達觀測波浪波高與週 期之時序列,顯示漲落趨勢與實測結 果,具有一致性。109 年 4 月份雷達觀 測分析結果,有義波高相關係數尚達 0. 87,相關係數仍呈現高度相關,平均週 前介於 0.74~0.78,亦屬高度相關範 圍,顯示雷達觀測波浪已具可參考性。 測值顯係數達 0.76,亦屬高度相關範 圍,顯示雷達逕向流速已具可參考性。

雷達背景雜訊探討部分,經測試冷 氣室外機風扇可能會產生噪音雜訊,但 量值小時,干擾可以忽略不計,而陸上 風力發電機葉片旋轉之重複反射干擾較 大,故無法忽略不計。此外,都卜勒譜 時常有很強的都卜勒斑點,由於雷達站 鄰近臺中港進出港口,該訊號比較像是 船舶的反射訊號,可以確定此反射訊號 屬於主動噪聲干擾的物體。

5.2 建議

雷達觀測波浪與海流參數觀測,取 決於雷達第一階與二階分量值的計算, 雜訊是影像訊號計算結果的重要因素, 故本研究特別重視控制雷達訊號與數據 品質,建議設置數據資料控制平台,並 利用控制數據品質之反演方法與資料平 台,針對雷達回波訊號進行改善處理。

本研究雷達觀測建議未來能建置可 視化介面平台提供查詢表面波高、平均 週期、流速、流向等觀測目標,此外, 後續期能與船舶自動辨識系統(AIS)進 行整合,提供臺中港周遭海域航行船舶 之參考,若於海上事故發生時,將有助 於監控港區與鄰近區域航行船舶與協助 救援或提供海象等資訊。

参考文獻

 林昆毅、陳少華、楊文昌、梁恩昱、 高家俊,「高頻雷達測流系統之建置與 天線場型測量之實例探討」,第 34 屆 海洋工程研討會,社團法人臺灣海洋 工程學會,2012年,763-768頁。

- 2.吴立中、湯世燦、黃清哲、高家俊,「S eaSonde 高頻雷達測流演算法之研究」,第34屆海洋工程研討會,社團 法人臺灣海洋工程學會,2012年,75 7-762頁。
- 3.董東璟、蔡政翰、陳盈智、顏志偉、 馬名軍,「應用岸基微波雷達量測近海 流空間分布」, 航測及遙測學刊,第1
 8 卷第3期, 2014年, 193-204頁。
- 4.黃郁軒、賴堅戊、吳立中、黃清哲、 黃清哲,「集成式高頻雷達波浪與風向 量測性能初探」,第40屆海洋工程研 討會,社團法人臺灣海洋工程學會,2 018年,367-372頁。
- 5. Duy-Toan Dao、HwaChien、蘇青和、 黃茂信、許義宏,「Assessment of pha se array HF radar for ocean surface wave monitoring in the Taiwan Strai t」,第41 屆海洋工程研討會,社團法 人臺灣海洋工程學會,2019 年,352-3 56 頁。
- 6.國家實驗研究中心台灣海洋科技中心,103年度台灣四周海域表層海流觀 測年報,2014年。
- 7.交通部運輸研究所,海洋雷達應用於 海象觀測之探討-應用案例探討,2018 年。
- 8.交通部運輸研究所,107年國際商港風 波潮流觀測與特性分析,2018年。
- 9.交通部運輸研究所,2018年12港域海 氣象觀測資料年報,2018年。
- 10.Barrick, D. E., "Dependence of secon d-order Doppler sidebands in HF se a echo upon sea state", IEEE, Ante nnas and Propagation Society Intern ational Symposium, 1971, Vol. 9, p p. 194-197.

- 11.YukiharuHisaki,"Ocean wave direc-ti onal spectra estimation from an HF ocean radar with a single antenna ar ray: Observation", Journal of Geo-ph ysical Research, 2011, Vol. 110.
- 12.Guiomar Lopez, Daniel C. Conley, "Comparison of HF Radar Fields of Directional Wave Spectra Against I n Situ Measurements at Multiple Lo cations", Journal of Marine Science and Engineering, 2019, 7, p. 271.
- 13.Barrick, D. E., "FM/CW radar signal s and digital processing", NOAA Te ch-nical report, 1973, ERL 283-WPL 26.
- 14.Barrick, D. E., "Extraction of wave parameters from measured HF radar sea-echo Doppler spectra", Radio S cience, 1977, Vol. 12, No. 3, pp. 41 5-424.
- 15.Lipa, B., "Derivation of directional o ceanwave spectra by integral inversi on of second order radar echoes", Radio Science, 1977, Vol. 12, No. 3, pp. 425-434.
- 16.Lipa, B.,D. Barrick, "Methods for the extraction of long-period ocean wa ve parameters from narrow beam H F radar sea echo", Radio Science, 1 980, 15 (04), pp. 843-853.
- 17.Wyatt, L. R.,J. J. Green and A. Mi dd-leditch, "HF radar data quality requirements for wave measurement", Coast. Eng., 2011, 58 (4), pp. 327-3 36.
- 18.Roarty, H., Cook, T., Hazard, L., G eorge, D., Harlan, J., Cosoli, S., ... &Grilli, S., "The global high frequen

cy radar network", Frontiers in Mari ne,2019, Science 6, p.164.