台9線公路溢淹及沿岸地形變遷特性研究

陳鈞彥	交通部運輸研究所助理研究員
李俊穎	交通部運輸研究所研究員
蕭士俊	國立成功大學教授
吳漢倫	國立成功大學博士後研究員

一、前言

台9線為連結東部與南部地區之交 通幹道,於東部經濟產業連結上,扮演 相當重要的樞紐。然,每於颱風與強風 季節時,台9線公路常有因大浪侵襲導 致公路溢淹災害事件發生,不僅影響公 路上通行車輛與人員之安危,亦因長期 波浪侵襲下,易發生沙灘流失及海岸線 不斷地往內陸退縮之情況,進而提升近 岸大浪直接襲擊公路溢淹之可能性。 另,其碎波波浪更可能直接淘刷台9公 路之底部基座,造成更嚴重之災情。除 此之外,臺東海岸沿岸漂沙的問題存在 已久,長期沿岸漂沙變化所導致的海岸 地形變遷現象,已對臺東沿海公共工程 (包括公路地基維護及海岸養灘工程) 或漁業經濟層面 (如大武漁港航道長期 淤塞問題)造成長期負面的影響。

於民國 100 起開始實施台 9 線公路 拓寬工程,以利強化公路運輸系統通行 品質。然,於拓寬工程於實施中或實施 後時,均有影響海岸現況變化之可能性 (漂沙趨勢變化、地形變遷及灘線變化等 情況),進而導致台九線公路致災情況, 例如:如香蘭至大鳥路段辦理公路車道 拓寬,因颱風及強風季節大浪襲擊,產 生沙灘流失及海岸線不斷地往內陸退 縮;如金崙大橋路段,新建橋段較接近 海岸,是否有因漂沙變動而於墩柱周圍 產生淘刷之可能性;而大武漁港現階段 仍有長期淤塞,且漁船通行困難等問題 存在。

由上述可知,台9線公路實施拓寬 工程後,有重新評估災害潛勢(公路溢淹 及地形變遷特性)之必要性。本研究主要 為透過數值模擬方式,進行台9線海岸 公路近岸水動力與地形變遷特性分 析,以利探討現階段台9線公路有可能 致災之路段及災害潛勢情況。

二、台9線易致災區蒐集與分析

2-1 易致災區資料蒐集與分析

彙整過往文獻將台9線公路易致災

路段做劃分,相關彙整分析資料如表1 所示,大致可將易致災區域劃分為6個 **區域,分別為南興路段、大武漁港、多** 良路段、香蘭路段、美和海岸、三和海 岸及太麻里路段等6區域。其中,大武 漁港主要受「漂沙淤積」影響,使港口 經常性淤積,導致漁船無法出港作業。 而因大武漁港地形上影響,其「突堤效 應」導致位於南方的南興路段海岸有 「海岸侵蝕」現象發生,使其岸線逐漸 縮短進而常於颱風事件時發生「波浪侵 襲」之現象;多良、大溪、大竹及加津 林路段亦有部分路段因公路鄰近海灘 區域,易有「波浪侵襲」現象發生(黃學 美和朱志誠,民國 102 年);香蘭、美和 及太麻里路段過往則均有「海岸侵蝕」 之現象發生;本研究套疊臺東海岸 50 年重現期暴潮溢淹潛勢,顯示三和海岸 為「暴潮溢淹」潛勢區域。

2-2 近岸結構物對海岸影響之探討

透過太遙中心免費介接圖資(每年 均有一張衛星圖資),探討分析台9線海 岸區域近岸結構物對海岸影響情況。其 中,因大武漁港周圍長期以來的近岸結 構物變化較為頻繁,使海岸變化較為顯 著,因而本研究以大武漁港周圍海域為 對象進行海岸長期變化之探討。

由 1999 年至 2017 年太遙中心免費 介接圖資中可瞭解,大武段漁港周圍海 岸變化情況(參見圖 1)。而大武漁港周 圍,因長年來周遭常有結構物建置,使 之地形變動現象較為顯著。相關地形變 化概述如表 2 所示。

- L -				
路段地點	災害分類	致災情況說明		資料來源
大武漁港	淤積災害		1.	新聞
		大武漁港受地形和海流影響,每年10	2.	潮流作用下臺灣漁
		月到隔年 3 月,經常被海砂堵住港		港淤沙研究(2012)
		嘴,造成漁船無法出海。	3.	臺東海岸(尚武段)
				監測調查計畫(2/2)
南興路段	侵蝕災害 公路溢淹	因極端氣候,加上大武漁港「凸堤效	1.	新聞
		應」,漁港南端海岸線侵蝕嚴重。天	2.	應用地理資訊系統
		兔颱風侵襲臺東時,南興路段受災嚴		建置臺灣主要商港
		重,因離海岸近,有觀察到可能為被		溢淹災害潛勢圖之
		大浪帶到公路上的沙石。		研究
多良、大 溪、大竹及 加津林	公路溢淹		1.	新聞
		強颱(萬宜)外圍環流影響,長浪侵襲	2.	台9線海岸公路防
		路段造成傷亡。		浪保護工程之探討
				(2013)

表1 台9線易致災路段災害分類表

路段地點	災害分類	致災情況說明	資料來源
美和海岸	侵蝕災害	長期變化:民國 68 年至民國 75 年期	
		間,美和海灘呈現往海側延伸淤積;	
		於民國 75 年至民國 88 年期間,則全	
		面性地往陸側後退侵蝕。	臺東知本海岸與美和
		短期變化:以民國 88 年~民國 89 年	海岸變遷之研究
		間,前灘與後灘地形變遷部分是大致	
		不變的,然而在灘線附近則同時出現	
		一些礫石砂堆的堆積發展現象。	
	公路溢淹	在 50 年重現期水位下,淹水深度達1	
一和治出		m以上區域。	1. 本研究圖資套疊
二和海戸		山竹颱風事件(107 年 9 月),有浪襲	2. 新聞
		致災情況發生。	
太麻里段 香蘭段	侵蝕災害	太麻里鄉海岸因海底地形陡峭,當颱	1.臺東太麻里海洋及
		風波浪由外海傳遞至近岸時,底床摩	河口誉力對海岸地
		擦力較小,波浪能量不易折減,易對	形變遷之數值模擬
		近岸造成較明顯的海岸地形變遷,尤	研究(2011)
		以颱風季節最為顯著。	2. 臺東海岸(太麻里
		香蘭段海岸常年受颱風巨浪侵襲影	段)環境營造改善計
		響,尤其波浪溯上急遽作用常夾帶大	畫(2/2)
		量砂石推進至高灘上,其衝擊力常造	3.臺東海岸(香蘭段)
		成沿岸防護設施的破壞。	監測防護計畫(2-2)

圖1 大武漁港周圍海域長期地形變遷情況

衣厶 大武庶砲同凰海厈愛1	化何)	r
---------------	-----	---

年份	說明
1999	明顯看出大武漁港港口周圍已有漂沙累積現象產生,而該處漂沙概多由上
	游河川輸砂往南部帶動,再因漁港地形影響,使之易累積漁港口造成漁船
	通行不便。
2000	大武漁港北側攔砂堤已建置完成,藉以攔截上游輸砂,降低港口淤積現象
2000	發生。
2006	大武漁港北側海岸已有顯著堆淤現象產生。
	可看到漁港口內部有淤積現象發生。依據過往文獻 (溫志中等人,2012年)
2008	指出 6 月後因攔砂堤處砂灘淤滿,由北往南傳送之漂沙越過攔砂堤,傳至
	漁港南段,導致漁港口淤積。
	大武漁港內側有大量漂沙累積於港內,此現象可能與 2009 年 8 月莫拉克
2000	颱風事件有關。依據過往新聞報導表示,莫拉克颱風時,大武溪出海口淤
2009	積極大量砂石漂移造成大武漁港淤積嚴重,所以港區漁民亦可歸屬莫拉克
	受災戶。
2010	可看到懸浮載分布情況,由此可看到北側攔砂堤效應對懸浮載運動影響,
2010	使之造成北側淤積;南側港口出口處反而較無漂沙補助之情況。
2014	為解決南側海岸侵蝕問題,漁港南側興建突堤與離岸堤進行攔砂。
2015	可看到攔砂之成效,於漁港南側形成海灣灘岸。
	因將草埔隧道拓寬工程清出的土方用於南側養灘,因此影像中顯示南側海
2017	岸砂灘顯著增加,而本團隊於今年度(民國 107 年)於該處現勘時,已無
	發現離岸堤,應為堆積土砂掩埋。

2-3季節性漂沙變化分析探討

本研究透過衛星影像來分析季節 性的漂沙變化情況,影像資料方面則以 無償下載的SPOT衛星圖資為時間密度 較高且較完整之圖資,因而可合理運用 於該項分析。鑑於影像完整度,此分析 擇選 2006 年一系列的衛星影像,來進 行季節性漂沙變化探討。其中,以每個 月衛星影像中漂沙範圍做為探討對 象,透過影像分析方式,劃設出各月份 的漂沙範圍,並計算其面積,藉以瞭解 台9線沿岸漂沙季節變化趨勢。然目前 漂沙變化分析僅以「漂沙範圍」面積為 主,而無法分析其範圍內的「漂沙濃 度」。除非能夠獲致品質較佳之衛星影 像,再配合現場懸浮值濃度量測,進行 影像調校與率定,才能更為完善定義漂 沙整體量值,目前僅簡易的範圍分析來 判斷季節性的漂沙分布情況。

茲以三區塊範圍來進行漂沙分析

結果說明,分別為「南興至大武段」、 「加津林至多良段」及「香蘭至三和 段」,目前僅以「南興至大武段」各區 塊5月及12月之漂沙範圍分析結果, 如圖2所示。

圖 2 南興至大武段漂沙範圍分析圖

而由各月份漂沙範圍分析結果可 量化其漂沙範圍面積,並繪製各區塊於 各月份漂沙面積分布變化(參見圖 3), 其顯示台9線海岸漂沙趨勢由10月份 至隔年2月份時較為顯著,3月份至7 月份較不顯著。由此可知,海岸漂沙分 布範圍與東北季風盛行時段關係密 切。此外,2006年8月衛星影像拍攝時 間,剛好接近「寶發颱風」事件發生時 段,因而有漂沙趨勢較為顯著之現象發 生。

三、研究方法

為瞭解台9線公路有可能致災之路 段及災害潛勢情況,本研究採用數值模 擬方式進行相關評估。透過數值模式模 擬台9線海岸公路近岸水動力與地形變 遷之情況,再進一步分析災害特性,量 化災害數值,並繪製災害潛勢圖。各數 值評估相關流程與內容如下所述。

3-1 數值模式評估架構

考量本研究數值評估之完整性,必 須運用到遠域模式、中域模式及近域模 式三種數值評估方式。圖4為本研究數 值評估流程圖與相關評估作業內容,其 中可概分為三階段,分述說明如下:

(1) 遠域模式:運用 ADCIRC (Dvanced CIRCulation)與 SWAN (Simulating WAves Nearshore)耦合模式進行大 範圍模擬計算,產出成果包含暴潮 偏差與波浪資訊。本研究透過此模 式進行歷史颱風暴潮偏差及颱風波 高計算(民國 78至民國 106年之颱風 事件),計算結果透過頻率分析方式 推求波浪設計條件,並透過氣象局 潮位資料與暴潮偏差結果推算設計 水位,藉以做為本研究設計條件之 重要資訊。

- (2) 中域模式:透過遠域求得設計條件 結果做為中域模式之邊界條件,計 算中域範圍內波流場變化,再配合 PTM (Particle Tracking Model)模式 計算河川輸砂分布範圍。藉由中域 模式計算成果,再配合台9線易致 災區資料蒐集成果,可明確劃定致 災區模擬範圍,及後續近域尺度模 擬範圍界定。
- (3) 近域模式:近域模式主要是透過 CMS (Coastal Modeling System)與 PTM 來進行各近域區塊的數值模擬 ,其中包含水動力模擬 (近岸波流場 與水位變化)與地形變遷模擬。各近 域區塊模擬結果將提供後續針對台 9 線海岸公路災害特性分析加值運 用。

圖 4 數值評估流程圖

3-2 數值驗證-波浪

統計上而言,研究區海域較大的波

高盛行在冬季季風期間及颱風侵臺期間。因此本研究以颱風期間所觀測到的

水位、暴潮偏差及波高做為遠域模式的 驗證對象。本研究以 2016 年的莫蘭蒂 颱風 (Meranti) 及 2017 年尼莎颱風 (Nesat)做模式驗證說明。

中央氣象局所發佈的 2016 年莫蘭 蒂颱風及 2017 年的尼莎颱風路徑如圖 5 及圖 6°數值結果會與水位觀測站(富 岡漁港、大武漁港、蘭嶼潮位站)及波 浪觀測站(花蓮港、台東浮標、綠島波 浪站、台東外洋浮標),進行比較驗證, 實測數據比較結果如圖 7 與圖 8 所示。

圖 5 莫蘭蒂(Meranti)颱風路徑圖

圖 7 莫蘭蒂颱風期間水位數值 與觀測值驗證

圖 7(續 1) 莫蘭蒂颱風期間暴潮偏差 數值與觀測值驗證

圖 7(續 2) 莫蘭蒂颱風期間暴潮偏差 數值與觀測值驗證

35

圖 8 尼莎颱風期間水位數值 與觀測值驗證

圖 8 (續 1) 尼莎颱風期間暴潮偏差 數值與觀測值驗證

圖 8(續 2) 2017 尼莎颱風期間波高 數值與觀測值驗證

3-3 數值驗證-潮位及流速

中尺度模擬之水動力驗證,採用臺 東海岸(太麻里段)環境營造改善計畫 (99 年)實測海流之結果,該海流站名 (TMW1),設置於太麻里溪口約20m處 位置;海流資料觀測時間則為 2010/07/27~2010/08/21。

水動力模式計算之水位邊界條件 利用日本全球潮位模式 NAO99b 做為 潮位條件,計算驗證結果如圖 9。顯示 模式之水動力計算大致能夠符合近岸 實測的海流趨勢。

之海流流速結果驗證比較

3-4 地形變遷模式調校

採用「100 年度臺東海岸(太麻里段) 環境營造改善計畫」之實測地形結果, 進行地形變遷模式調校,俾利提升本研 究地形變遷模式之可靠度。模式計算使 用之地形須結合其他單位之實測資 料,例如陸地部分採用交通部的5米 DEM 資料,而外海水深超過 30 公尺之 地形則利用科技部臺灣周圍 200 公尺精 度的資料。

數值計算結果比對位置以太麻里 河口地形為例,數值計算成果與 2006/ 11~2007/06 之地形侵淤變化比較,成果 如圖 10。實測地形侵淤結果顯示,太麻 里溪河口為侵蝕之趨勢,位於太麻里河 口南側香蘭地區略有淤積情形。目前數 值計算結果也反映出此現象。

圖 10 太麻里地區海岸地形變 遷結果與實測資料比對

 (左) 實測資料結果 (右)數值計算結果左圖像 資料來源:101 臺東海岸(太麻里段)環境營造改
善計畫(2-2)

3-5 災害特性分析方法建立

本研究最終目的需繪製台9線海岸 公路段災害特性潛勢分布圖,以供未來 改善策略參酌。而災害特性則是採用本 研究近域模式水動力與地形變遷模擬 成果,進一步加值分析其災害特性。為 使災害特性分析標的更為明確,因而將 以「公路溢淹」、「侵蝕災害」及「淤 積災害」三種災害類型,做為後續災害 特性分析之方向,各災害類型之相關定 定義與災害特性分析之流程如圖 11 所 示。

4-1 遠域模式 - 設計條件評估結果

由臺東海岸防護研究(第八河川 局,106年),可知臺東海岸防護結構設 計年限為50年。為評估台9線整體安 全,需針對海域50年重現期暴潮偏差 及颱風波浪設計條件進行推估。為達上 述目的,需就歷史颱風事件進行模擬。 而經篩選後,對研究區影響較顯著之颱 風事件共計101場。而為決定臺東地區 代表性設計波高與暴潮偏差,選擇多良 村外海水深約1038 m處之計算結果進 行頻率分析。因該處颱風波浪未受近岸 地形影響,可做為颱風波浪入射近岸之 代表值。

頻率分析方面則採用 Weibull 分配 方法,分析多良村外海水深約 1038 m 處之 50 年暴潮偏差與颱風波高,其結 果分別為 0.59 m 及 15.71 m。另,根據 中央氣象局臺東潮位站資料 (1976-2017)顯示,其值為 0.73 m,氣象 潮則按各重現期暴潮偏差推估結果代 入;至於長期海水位變化量部分,本研 究則暫不納入考量。故彙整上述遠域數 值計算結果可知,本研究設計條件分別 為颱風波高 15.71 m;颱風時刻風浪週 期為 3.83*(颱風波高)0.5;設計潮位為 1.32 m。

4-2 中域模式 - 致災區範圍劃定

本研究主要標的是針對台9線海岸 公路進行災害特性分析,此需要以水動 力與地形變遷模擬結果為背景資料進 行分析。為顧及災害特性分析所需背景 資料之精確性,得藉由較細緻的網格系 統來進行數值計算,以產出較為可靠的 結果進行特性分析。然,細緻網格系統 所需計算量及時間較大,因而本研究將 研究區域劃分為若干近域範圍進行較 細緻網格系統模擬,藉以兼顧計算效率 與精確度。近域(致災區)範圍之劃定則 需以「資料蒐集分析成果」與「中域模 式定作業。其中,資料蒐集分析成果主 要以往昔致災區域資料與台9線公路高 程波高與河川輸砂趨勢模擬結果為考 量。

由前述台 9 線易致災區分析中可 知,南興、多良及三和路段均有公路溢 淹發生之記錄;而大武漁港則受長年淤 積災害影響;南興和太麻里太麻里(包含 香蘭段)則有海岸侵蝕之相關研究記 錄,這些資料均可做為致災區劃定的參 酌。另依據本研究蒐集台 9 線樁點資 料,可繪製海岸公路高程分布圖(參見圖 12a),其中除高架路段外,有部分路段 高程較低,尤以「南興段至大武段」(圖 中 A 紅框範圍)及「加津林至多良段」(圖 中 B 紅框範圍)最為顯著。

中域模式用於主要包含由設計條 件模擬之岸前波高與河川輸砂趨勢兩 種評估。其中,設計波浪條件模擬結果 如圖 12b,由圖可見臺東因其海岸水深 較深,外海波浪傳遞至近岸時波浪能量 不易衰減,整體相位平均波高衰減程度 不大。於此計算結果中,擷取公路海岸 的岸前波高(參見圖 12c)顯示,加津林 至多良段(B 紅框範圍)與香蘭至三和段 (C 紅框範圍),其岸前波高均於較大; 而河川輸砂模擬方面,研究區域內大多 數河川輸砂其底質皆沉積於河口位 置。於研究區南部河川對岸邊比較有補 注趨勢,圖 12d 所示。

綜上成果,可將研究區域劃定為 「南興至大武段」、「加津林至多良段」 及「香蘭至三和段」等三個致災區範圍 (即近域模擬區塊),其可參見圖 12a 中 紅框區塊(A、B及C三個紅框區塊)。

圖 12 中域模式成果圖

4-3 近域模式 - 公路溢淹致災區段特性 分析

本節主要探討台9線海岸公路易產 生「公路溢淹」災害之區段,並進行該 災害類型之相關分析。依據所擇取海岸 段環境與水深地形特徵,藉由潮位與波 浪等之海象蒐集資料,配合本研究近域 劃分範圍,進行各區域海岸線況波浪數 值模擬與分析,並透過CEM 溯上公式 (式 1)推算海岸公路沿岸波浪溯升之情 況及越波量,藉以檢討現有海岸防護設 施之安全性海水溯上之情況,並劃定公 路溢淹災害潛勢區段。

$$R_{2\%}/H_{0} = \begin{cases} 1.5\gamma_{f}\gamma_{h}\gamma_{\beta}\xi_{eq}, & 0.5 < \xi_{eq} \le 2.0 \ (\vec{\pm} 1) \\ 3.0\gamma_{f}\gamma_{h}\gamma_{\beta}\gamma_{b}, & \xi_{eq} > 2.0 \end{cases}$$

其中 γ_{f} 、 γ_{h} 、 γ_{β} 、 ξ_{eq} 分別為堤面 粗糙係數、水深對溯升影響係數、波浪 入射折減係數及等效碎波參數。

透過 CMS 計算結果,可得到岸邊 結構物前之波高分布(例如:堤前波 高),再進一步配合波浪溯升評估公式, 對公路側海岸計算其波浪溯上高度及 越波量。最後,再針對「公路溢淹」災 害類型進行特性分析,藉以研提台9線 海岸公路具有公路溢淹災害潛勢區 段,並提供該區段相關越波量資訊,俾 供未來工程實施和防災策略參酌。圖13 ~圖15為相關分析結果,其分述如下: (1) 南興至大武段:圖13 為南興至大武 段「公路溢淹」災害分布圖,其顯 示大武漁港以北 435K+000~ 435K+500 路段2間及 434K+000~ 434K+500 路段間均屬於災害潛勢

區段,該兩區段溯升高度均約達 16m, 而公路高程分別約為 8m 與 10m,因而有導致公路溢淹災害之可 能性;大武漁港以南至南興路段, 於 439K+500~441K+000 之間路段 具災害潛勢特性,然該路段區域溯 升高度較上述兩處偏低約 10m,惟 因該區域公路高程均低於 10m,導 致仍有公路溢淹災害之危機。於圖 13 越波分析結果可知,各「公路溢 淹 | 災害潛勢路段中,435K+500 周 圍區域越波量有大於 10-3 (cms/m) 現象發生,其餘潛勢路段均介於 10-4~10-3 (cms/m)之間。由此顯示 ,各潛勢區段均滿足護岸之容許越 波量 (5×10-2 (cms/m))以下,除了南 興路段接近臨界值外,其餘路段均 未满足交通安全之越流量(至少需低 於 5×10-4 (cms/m))。

(2) 加津林至多良段:圖14 為加津林至 多良段「公路溢淹」災害分布圖, 該區域為三區域中「公路溢淹」災 害較為嚴重之路段,其顯示 421K+500~422K+000 路段之間、 422K+000~422K+500 路段間、 423K+500~425K+000 路段間及 425K+500~426K+000 路段間,均有 多處災害潛勢區段。其中,423K+500 ~424K+000 路段間溯升高度較高(最高約達15m),且亦位於公路高程 相對低處 (最低高約為 11m), 此處 為易導致公路溢淹災害之區塊,必 須謹慎關注。其餘區段溯升高度均 約低於 15m;公路高程約 11m~13m 左右。於圖 14 越波分析結果可知, 各「公路溢淹」災害潛勢路段中,

424K+000 周圍區域越波量有約於 5×10-2 (cms/m),其餘潛勢路段均介 於 10-3~2×10-2 (cms/m)之間。由此 顯示,除 424K+000 周圍潛勢區段未 滿足護岸之容許越波量 (5×10-2 (cms/m))以下外,其餘路段大都符合 ,而各潛勢路段均未滿足交通安全 之越流量(至少 需低於 5×10-4 (cms/m))。

(3) 香蘭至三和段:圖 15 為香蘭至三和 段「公路溢淹」災害分布圖,該區 域為三區域中「公路溢淹」災害潛 勢區最少之路段,其顯示僅 395K+500 路段周圍為災害潛勢區 段。主要原因為該區域公路高程大 多較高,使之溯升高度影響公路較 小,395K+500路段於此區域中為公 路高程較低路段,且離岸距離較近 ,使其納為「公路溢淹」災害潛勢 區域,其中溯升高度最高約達10m ,且公路高程則略低於 10m。此外 ,407K+000 路段雖亦有相對高之溯 升高度,惟其公路段離灘岸較遠, 因而並未納入「公路溢淹」災害潛 勢區域之中。於圖 15 越波分析結果 可知,各「公路溢淹」災害潛勢路 段中,395K+500 路段越波量約為 2×10-3 (cms/m),其滿足護岸之容許 越波量 (5×10-2 (cms/m))以下, 惟未 满足交通安全之越流量(至少需低於 5×10-4 (cms/m))。因此,於颱風事件 發生時,該處仍有車輛仍須注意通 行安全,避免浪襲越波導致生命安 全受到威脅。

圖 13 南興至大武路段「公路溢淹」災 害分布圖

圖14 加津林至多良路段「公路溢淹」

圖 15 香蘭至三和路段「公路溢淹」災 害分布圖

4-4 近域模式 - 沿岸流與沿岸中長期地 形變遷特性分析

本為瞭解臺東海岸公路沿岸中長 期地形變遷特性,進行近岸水動力及地 形變遷數值模擬,針對易致災區段進行 兩種不同情境模擬分析: 1.外海入射代 表性波浪;2.夏、冬季代表性波浪條件。 並藉由代表波浪條件模擬成果,針對中 長期地形變遷進行分析,其成果概述如 下:

研究中長期地形變遷,首先分析研 究區長期代表性波浪趨勢。外海波浪條 件則蒐集中央氣象局臺東外海觀測浮 標之長期波浪觀測資料,資料長度為 2010/09~2018/03。進一步將夏季以及冬 季分開統計,根據季節性示性波高、週 期之累積機率分布可推估本研究區內 在夏季季風期間代表性波高為 1.43 m;代表性週期為 5.81 s;主要波向 ESE;群波波速為 4.81 m/s。冬季代表 性波高為 1.74 m;代表性週期為 6.44 s;主要波向 E 群波波速為 5.55 m/s;全 年度代表性波高=1.62 m;代表性週期 =6.12 s;主要波向 E 群波波速為 5.16 m/s。

透過CMS和PTM計算研究區域地 形變遷情況,再進一步將夏、冬季以及 全年度條件之地形變遷計算結果, 擷取 海岸零米線之變化分析, 茲分別以「南 興至大武段」、「加津林至多良段」及 「香蘭至三和段」此三段近域範圍於冬 夏季以及全年度長期條件下之地形變 化趨勢計算結果進行探討與說明, 相關 分述如后所示:

- (1)南興至大武段(圖 16):由計算結果 顯示南興至大武段,位於大武漁港 以北由 435K+000~438K+000,由於 此區有河條河川之關係,這段海岸 有明顯之淤積現象,大武漁港南側 至南興段長期結果屬於侵蝕趨勢, 但皆未達災害潛勢的標準,此區較 明顯之災害為淤積災害,位在 438K+000大武漁港位置,由最左側 海岸線顯示,此區剛好位於一個凹 槽海岸地形,由前章節研究結果顯 示,於大波浪時南北兩側流場皆會 往此地帶聚集,這可能是造成此區 域長期容易淤積之主因。
- (2)加津林至多良段(圖 17):此區域普 遍而言屬於略為侵蝕之趨勢,河口 除外,由於海岸線屬於直線型,故 其季節性變化差異不大,長期地形 變遷分析結果顯示於 418k+000、 420K+000 及 428K+000~428K+500 此三處位置,略為呈現中侵蝕潛勢 ,侵蝕情況尚不嚴重,建議定期注 意其變化。
- (3) 香蘭至三和段(圖 18):此段海岸多 數屬於侵蝕趨勢,除太麻里溪可口 南側位置 404K+000~407K+000 為 淤積,河口處其季節性侵淤差異較 大,其中三和海岸 397K+500 位置處 已達中潛勢侵蝕標準,且其距離公 路較近,應密切注意其地形變化。

圖 16 南興至大武段段海岸線侵淤趨 勢變化成果

圖17 加津林至多良段侵淤趨勢變化

圖18 加津林至多良段侵淤趨勢變化 成果

42

五、結論

本研究主要為針對「台9線」海岸 公路溢淹及沿岸地形變遷特災害性進 行探討,運用「數值模擬」及「災害特 性分析」方式進行評估,數值模式方 面,運用遠域模式、中域模式及近域模 式三種不同模擬範圍模擬方式,進行水 動力與地形變遷模擬;災害特性分析方 面,則採用各路段之近域模擬結果,進 行加值分析,藉以劃定各災害類型(公 路溢淹、侵蝕災害及淤積災害)於台9 線海岸之災害潛勢區域分布情況,此可 做為未來施工或防災作業之參酌。

參考文獻

- 經濟部水利署第八河川局 (2007), 臺東海岸(香蘭段)監測防護研究 (2-2),經濟部水利署。
- 謝世圳、林呈、張禎罐、張澤龍、 李鳴峻、賴文俊、蔡清標 (2000), 臺東知本海岸與美和海岸變遷之研 究,第二十二屆海洋工程研討會論 文集,第410-416頁。
- 經濟部水利署第八河川局 (2010), 臺東海岸(尚武段)監測調查研究 (2/2),經濟部水利署。
- 曹宴瑄、黃偉柏、張東宸、詹智為 (2011),臺東太麻里海洋及河口營力 對海岸地形變遷之數值模擬研究, 第三十三屆海洋工程研討會論文集 ,第399-404頁。
- 5. 温志中、張君名、莊文傑(2012), 潮

流作用下臺灣漁港淤砂研究,第三 十四屆海洋工程研討會論文集,第 375-380頁。

- 6. 黃學美、朱至誠(2013),台9線海岸 公路防浪保護工程之探討,第三十 五屆海洋工程研討會論文集,第 275-280頁。
- 陳冠宇、陳陽益、邱永芳、蘇青和 、單誠基、李俊穎(2016),應用地理 資訊系統建置臺灣主要商港溢淹災 害潛勢圖之研究(2/2),交通部運輸 研究所。
- 蕭士俊、蘇青和、李俊穎、陳鈞彦 (2018),臺東海岸公路溢淹及沿岸地 形變遷特性研究,交通部運輸研究 所。