港區海域油污擴散數值模式評估

邱啟敏 國立成功大學水利及海洋工程學系博士生
黃清哲 國立成功大學水利及海洋工程學系教授
范揚洛 國立成功大學近海水文中心研發組組長
莊士賢 國立成功大學海洋科技與事務研究所副教授
簡仲璟 交通部運輸研究所港灣技術研究中心科長
李倹穎 交通部運輸研究所港灣技術研究中心副研究員

摘要

港區海域的大型油污不但會對海 洋生態與經濟活動造成嚴重衝擊,也 影響到國家的門面形象。掌握並預測 油污的發生區域與運動特徵,將能更 有效地進行油污災情控制與清理工作。 本文目的為綜整與評估適用於港區海 域油污擴散模擬之數值模式,以初步 規畫作業化模式之架構。

一、前言

港埠區域的船舶進出頻繁,若不 慎發生漏油事件,將嚴重影響港區的 環境生態。1982年決議的聯合國海 洋公約法(United Nations Convention on the Law of the Sea)認定來自船舶的 污染物是海洋污染的主要來源之一。 根據統計,海上油污的污染來源有 48%來自於燃油;29%則來自於原油 (Fingas, 2000)。海上運輸工具所載運 之油料洩漏,或污水傾倒注入海洋後, 海域被這些物質污染,進而影響生物 圈之生態平衡,並造成水產資源的嚴 重損失。根據北海行動論壇全球協會 (Bremer Unweltvereins Aktionskonferenz Nordsee)公佈的資料顯示,全球海域 每年大約有超過300萬噸的廢油漂流 於海上,其中有13%是來自於船難漏 油。臺灣海域為東亞航運必經之地, 經濟快速開發使得臺灣對外的航運更 趨頻繁,尤其是石化工業的興起,油 品及化學品的進出口更增加了港灣環 境管理的不確定性,例如民國97年11 月10日巴拿馬籍 Morning Sun(晨曦號) 汽車貨輪擱淺臺北縣石門鄉外海即造 成海洋油污污染。

根據我國海洋污染防治法(103年 6月4日修正)之規定,行政院環境保 護署(簡稱環保署)為海洋污染防治的 主管機關,其職掌包括:防治海洋污 染、保護海洋環境、維護海洋生態、 確保國民健康、及永續利用海洋資源。 為有效完成這些工作,環保署已發展 出利用無人飛機、衛星、及X-band 雷 達等平台為基礎的監測技術。根據海 洋污染防治法第二條之規定,該法適 用範圍,亦即環保署針對海域油污之 權責監控範圍包括了中華民國管轄之 潮間帶、內水、領海、鄰接區、專屬 經濟海域及大陸礁層上覆水域。相較 於環保署之執掌,根據我國海洋污染 防治法第十一條之規定,各類港口管 理機關應依該法及其他相關規定採取 措施,以防止、排除或減輕所轄港區 之污染。

油污洩漏後,會產生各種風化過 程,除了隨水流、潮流和風向造成水平 擴散之外,部分還會蒸發;部分會與垃 圾漂浮物混合,或是與沉澱物結合而成 垂直擴散或是滲入沙灘;此外還會被海 中生物分解後,又被魚蝦等生物攝食。 若能在事發現場即時掌握油污擴散範 圍,並有效掌握未來的油污擴散方向, 將可有效降低對自然環境的衝擊。為 能控制海上油污擴散,目前常見的方 法是透過攔油索控制油污的擴散範圍, 若能事先掌握海流的運動特性,從中 預測出油污的漂移路徑,則必能有效 的透過攔油索控制海上油污。

二、適用於油污擴散模擬之海 潮流模式評估

本文規劃的海域油污擴散數值模 式的主要組成有二:(1)海域海潮流運 動之模擬,及(2)溢油污染擴散之模 擬。海潮流運動模擬結果提供溢油污 染擴散模擬所需之流場資料,而準確 的海潮流資訊是油污擴散模擬成功的 關鍵。因此本文先針對現有的海潮流 模式進行評估。

全球使用的海潮流模式眾多, 早期純粹以海潮流模式進行模擬河口 的潮流及暴潮位的演變。近十年來, 由於電腦科技迅速的進步,海潮流模 式已結合大氣與波浪模式來提昇河口 流體動力現象預測的精度。眾多的海 潮流模式雖各具不同的優缺點, 在理 論基礎上各模式皆差異不大,唯一的 差異即不同的數值技巧,但一致目標 皆是希望能達到一套具備有快速的計 算效率與精度佳的模式。海潮流模 式建置的計算網格可區分為結構性 網格 (structured grids) 及非結構性網 格 (unstructured grids), 在結構性網格 模式分別有 POM (Blumberg and Mellor, 1987) \ TRIM (Casulli and Cheng, 1992) \ ROMS (Shchepetkin and McWilliams, 2005) \ NCOM (Barron et al., 2006) ; 非結構性網格模式分別有 ADCIRC (Luettich et al., 1991) \ QUODDY (Lynch and Werner, 1991) \ UnTRIM (Casulli and Walters, 2000)
 ELCIRC (Zhang et al., 2004) SCHISM (Zhang and M. Baptista, 2008) (2014 年 12 月 13 日 前 為 SELFE)、SEOM (Iskandarani et al., 2003)、及FVCOM (Chen et al., 2003), 其中 SCHISM 於 2014 年底起修改為無 縫跨尺度網格模式 (seamless cross-scale modelling),意即結合結構性與非結構 性網格。

海潮流模式面臨的挑戰是需包含 河川、複雜的河口與海岸地形、以及 到海岸陸棚整個系統,因需結合不同 的空間與時間尺度,所以海潮流模式 使用的數值方法可分為顯式法與隱式 法兩種。顯式法的優點在於記憶體空 間較為節省,在高速運算上的應用也 比隱式法簡單,缺點是在時間步長上 須配合模擬範圍的水深作修正,才能 達到穩定。隱式法較為穩定,且時間 格點的大小不受模式區域內水深所影 響,缺點則是較耗記憶體空間,在應 用上比顯式法複雜。自1990年起,半 隱式非結構性網格模式 (semi-implicit unstructured grid models) 開始盛行, 如 UnTRIM、SUNTANS (Fringer et al., 2006)、及 ELCIRC 等。如 UnTRIM 模 式利用隱式法處理動量方程 (momentum equations) 中的正壓梯度 (barotropicpressure gradient) 與垂直黏性 (vertical viscosity) 項,以及連續方程 (continuity equation) 的發散項 (divergence term), 如此會得到較佳的計算結果。ELCIRC 模式曾成功應用在美國哥倫比亞河口 系 統 (Columbia River estuary-plumeshelf system), 哥倫比亞河口有寬廣的

潮間帶、強烈的潮流、與明顯的流速 梯度。即便如哥倫比亞河口複雜的地 形,ELCIRC亦能提供快速計算效率 來模擬及預測三維河口海流與擴散的 演變 (Baptista et al., 2005),並結合實 測資料變成一個重要觀測系統 (CORIE, Baptista, 2006)。

SCHISM 利用 ELM (Eulerian -Lagrangian Method) 計算對流項,並利用 半隱式法求解,可使用較大的時間步 長計算,並確保模式的穩定與精度。 意即模式不受 CFL 條件限制。CFL 條 件 (Courant-Friedrichs-Lewy condition) 指流體質點在一個時間步階 Δt 內,不 能流過一個空間大於網格的距離 Δx 。 因此當網格尺寸 Δx 非常小時,必需選 很小的 Δt 才能使數值穩定。油污的移 動速度可能會很緩慢, Δt 需配合油污 的可能移動速度,又模擬港區油污擴 散時,為了完整描述複雜地形, Δx 可 能會非常小,因此半隱式法適用於油 污擴散模擬。

歐美各國作業化海潮流模式的發展趨勢由於大範圍模式(全球海洋模式 或大西洋海洋模式等)之範圍、邊界、 驅動力等條件多類似甚至相同,所以 模式之發展已由各國或研究機構獨自 發展建置而趨向於共同研發的模式系統。整理歐美現今主要的作業化海潮 流模式如表1,唯 SCHISM 模式具備 模擬溢油擴散的能力,且結合大氣與 波浪模式能有更高精度的模擬結果, 另一重點是具有快速的電腦計算效率, 可以達到災害緊急應變與防災預警之 時效要求。

三、SCHISM 模式

3.1 SCHISM 模式物理公式

SCHISM 模式是由 Zhang and Baptista 以 ELCIRC 模式基礎改成 SCHI-SM (Semi-implicit Cross-scale Hydroscience Integrated System Model, http:// ccrm.vims.edu/schism/) 海洋模式,是一 個求解三維淺水波方程 (3D shallowwater equaions)、靜水壓方程 (Hydrostatic)、包氏近似 (Boussinesq approximations)、與鹽度及溫度的傳輸方程的 海洋流體動力數值模式。SCHISM 模 式主要求解海氣交界自由液面 (Free surface) 的運動情況、水體中三維的流 場與鹽度及溫度分佈。

SCHISM 模式的基本控制方程式 有連續與動量方程式,為簡化 SCHISM 模式的方程式,第一個假設為不可壓 縮流體運動,則在卡氏座標下描述水 體的連續方程式可寫為:

$$\nabla \cdot \mathbf{u} + \frac{\partial w}{\partial z} = 0 \tag{1}$$

海流模式	數值方法	驅動力	垂直方向座標系統	模組
NEMO	有限 差分法	潮汐、各種氣象 資料、河流等	S 座標 Z 座標 混合 SZ 座標	海冰、示踪劑、生物化學
COHERENS	有限 差分法	潮汐、各種氣象 資料、河流等	σ座標系統	生態、漂砂、粒子追蹤
FVCOM	有限 體積法	潮汐、各種氣象 資料、河流等	σ座標系統 S座標系統	資料同化、系集卡門濾 波、多層網格嵌套、三維 乾濕處理、波浪、GOTM 紊流、三維漂砂、水質生 態、追蹤顆粒、極區冰
НҮСОМ	有限 差分法	各種氣象資料	垂向混合座標(等 密度坐標、σ座標 及z座標的混合)	
РОМ	有限 差分法	潮汐、各種氣象 資料、河流等	σ座標系統	
ROMS	有限 差分法	潮汐、各種氣象 資料、河流等	S座標系統	波浪、大氣、生態系統、 資料同化、沉積、極區冰
SCHISM	有限 元素法	潮汐、各種氣象 資料、河流等	混合 SZ 座標或 S 座標	油污擴散、波浪、生態系 統、資料同化、漂砂、水質

表1 海潮流模式比較表

為描述自由液面 η(x,y,t)隨著流場 演變,模式求解下式:

$$\frac{\partial \eta}{\partial t} + \nabla \cdot \int_{-h}^{\eta} \mathbf{u} \, dz = 0 \tag{2}$$

第二個假設則是使用近似的方法 簡化流體的動力方程式,引用包氏近 似 (Boussinesq approximations),因此 求解三維的動量方程 (3D momentum equations)如下:

$$\frac{\mathbf{D}\mathbf{u}}{\mathbf{D}t} = \mathbf{f} - g\nabla\eta + \frac{\partial}{\partial z} \left(\nu \frac{\partial \mathbf{u}}{\partial z} \right)
- \frac{1}{\rho_0} \nabla p_A - \frac{g}{\rho_0} \int_z^\eta \nabla \rho \ d\varsigma + \nabla \cdot \left(\mu \nabla \mathbf{u} \right)$$
(3)

其中, $\mathbf{f} = -f \mathbf{k} \times \mathbf{u} + \alpha g \nabla \psi$ 。

鹽度對流擴散傳輸方程 (salt advection-diffusion-reaction) 如下式:

$$\frac{\mathbf{D}S}{\mathbf{D}t} = \frac{\partial}{\partial z} \left(\kappa \frac{\partial S}{\partial z} \right) + F_{\rm S} \tag{4}$$

溫度對流擴散傳輸方程 (temperature advection-diffusion -reaction) 為:

$$\frac{\mathbf{D}T}{\mathbf{D}t} = \frac{\partial}{\partial z} \left(\kappa \frac{\partial T}{\partial z} \right) + \frac{Q}{\rho_o C_P} + F_{\rm h}$$
(5)

以上程式中符號標記說明如下: (x,y):水平卡式座標;z:垂直座標, 向上為正; ∇ : $\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)$; $\eta(x,y,t)$:自 由液面高度;h(x,y):水深; $\mathbf{u}(x,y,z,t)$:水平速度向量,於卡式座標速度分 量為(u,v);w:垂直速度;f:科氏因子; g:重力加速度;ψ(φ , λ):地球潮汐 位能; α :有效地球彈性因子(=0.69) (Schwiderski, 1980a, 1980b); ρ (**x**, t): 水密度, ρ_0 唯一常數,1025 kg m⁻³; $p_A(x, y, t)$:自由液面的大氣壓力;**S**, **T**: 水體中鹽度(practical salinity units (psu)) 與溫度; ν :垂直渦流黏滯係數; μ : 水平渦流黏滯係數; κ :鹽度垂直渦流 擴散係數或熱通量垂直渦流擴散係數; F_s , F_h :擴散作用造成的側向應力(在 SCHISM 中予以忽略);Q:太陽輻射 的吸收率; C_p :水的比熱。

SCHISM 模式採用 Generic Length Scale (GLS) 紊流閉合模式 (turbulence closure models) (Umlauf and Burchard, 2003) 來處理垂直方向的混合作用, 其優點包含多種閉合模式 ($k-\varepsilon$ (Rodi, 1984); $k-\omega$ (Wilcox, 1998); Mellor and Yamada (1982))。紊流閉合模式中紊流 動能 (k) 與通用長度尺度 (generic lengthscale) (Ψ) 的傳輸、產生及消散如下:

$$\frac{\mathbf{D}K}{\mathbf{D}t} = \frac{\partial}{\partial z} \left(\nu_K^{\psi} \frac{\partial K}{\partial z} \right)$$
(6)

$$+\nu M^{2} + \mu N^{2} - \varepsilon$$

$$\frac{\mathbf{D}\psi}{\mathbf{D}t} = \frac{\partial}{\partial z} \left(v_{\psi} \frac{\partial \psi}{\partial z} \right)$$

$$+ \frac{\psi}{K} \left(c_{\psi 1} \nu M^{2} + c_{\psi 3} \mu N^{2} - c_{\psi 2} F_{W} \varepsilon \right)$$
(7)

其中, V_{K}^{ψ} 與 V_{ψ} 為垂直紊流擴散 (vertical turbulent diffusivities); $C_{\psi 1}$ 、 $C_{\psi 2}$ 、 $C_{\psi 3}$ 為模式特定常數 (model-specific constants) (Umlauf and Burchard, 2003; Zhang et al., 2004); F_W 為接近壁面函數 (wall proximity function); M 與 N 為 剪力與浮力頻率 (shear and buoyancy frequencies); \mathcal{E} 是消散率 (dissipation rate)。 通用長度尺度定義為:

$$\psi = \left(c^{0}_{\mu}\right)^{p} K^{m} \ell^{n} \tag{8}$$

其中 $c^0_\mu = 0.3^{1/2}$, ℓ 是紊流混合長度 (turbulence mixing length), $p \setminus m$ 及 n 在不同紊流閉合模式皆有不同的特定常數。

根 據 Umlauf and Burchard (2003)
 之紊流閉合理論,式(3)與式(5)的垂
 直紊流黏滯與擴散係數是參考 k、 l 及
 穩定函數 (stability functions),可寫作:

$$\begin{aligned}
\nu &= \sqrt{2} s_m K^{1/2} \ell_w \\
\mu &= \sqrt{2} s_h K^{1/2} \ell_w \\
\nu_k^{\psi} &= \frac{\nu}{\sigma_k^{\psi}} \\
\nu_{\psi} &= \frac{\nu}{\sigma_{\psi}}
\end{aligned} \tag{9}$$

其中, K 為紊流運動能量, l為 紊流混合長度, 施密特數 (Schmidt numbers) 為 V_k^{ψ} 與 V_{ψ} ,穩定函數 (stability functions) 為 s_m 與 s_h (Kantha and Clayson, 1994; Canuto et al., 2001; or Galperin et al., 1988)。

在河川與海洋的表面與底床,紊 流動能 (turbulent kinetic energy) 與混合 長度 (mixing length) 來自於狄利克雷邊 界條件 (Direchlet boundary conditions), 如下:

$$K = \frac{1}{2} B_1^{2/3} \left| \tau_b \right|^2 \tag{10}$$

$$\ell = \kappa_0 d_b \text{ or } \kappa_0 d_s \tag{11}$$

其中 τ_b 為底部摩擦剪應力; $\kappa_0 = 0.4$ 為馮卡門常數 (von Karman's constant); B_1 是常數; d_b 與 d_s 分別是 底部與海水表面邊界的距離。

SCHISM 模式動量方程的垂直邊 界條件如下:

在海水面有考慮內部雷諾應力與 剪應力的平衡可寫作:

$$\nu \frac{\partial \mathbf{u}}{\partial z} = \tau_w , \ \mathbf{E} \mathbf{z} = \eta$$
 (12)

其中 T_w 為剪應力。

在底床邊界層考慮無滑移條件 (no-slip condition),則內部雷諾應力與 底床磨擦力的平衡可寫作:

$$v \frac{\partial \mathbf{u}}{\partial z} = \tau_b$$
, $\mathbf{E} \mathbf{z} = -h$ (13)

其中 T_b 為底床磨擦力。

紊 流 邊 界 層 中 (Blumberg and Mellor, 1987),底床磨擦力可寫作:

$$\boldsymbol{\tau}_b = \boldsymbol{C}_D \left| \mathbf{u}_b \right| \mathbf{u}_b \tag{14}$$

邊界層內速度剖面遵守對數率 (logarithmic law),可寫作:

$$\mathbf{u} = \frac{\ln\left[\left(z+h\right)/z_{0}\right]}{\ln\left(\delta_{b}/z_{0}\right)}\mathbf{u}_{b} , \qquad (15)$$
$$\left(z_{0}-h \le z \le \delta_{b}-h\right)_{b}$$

其中δ,為計算網格邊界層的厚度。 邊界層的雷諾應力可由式(15)推 導出:

$$\nu \frac{\partial \mathbf{u}}{\partial z} = \frac{\nu}{\left(z+h\right) \ln\left(\delta_b / z_0\right)} \mathbf{u}_b \tag{16}$$

紊流閉合模式的渦流黏性 (eddy viscosity) 可從穩定函數 (stability function)、紊流動能 (turbulent kinetic energy)、 與中尺度的混合長度 (mesoscale mixing length) 得到:

$$s_{m} = g_{2}$$

$$K = \frac{1}{2} B_{1}^{2/3} C_{D} \left| \mathbf{u}_{b} \right|^{2}$$

$$\ell = \kappa_{0} \left(z + h \right)$$
(17)

其中 g_2 與 B_1 是常數, $g_2B^{1/3} = 1$ 。 然而,邊界層內的雷諾應力 (Reynolds stress) 可改寫作:

$$\nu \frac{\partial \mathbf{u}}{\partial z} = \frac{\kappa_0}{\ln(\delta_b / z_0)} C_D^{1/2} |\mathbf{u}_b| \mathbf{u}_b , \qquad (18)$$
$$(z_0 - h \le z \le \delta_b - h)_b$$

阻力係數 (drag coefficient) 可由式 (13)、式 (14) 與式 (18) 計算求得:

$$C_D = \left(\frac{1}{\kappa_0} \ln \frac{\delta_b}{z_0}\right)^{-2} \tag{19}$$

3.2 SCHISM 海洋模式數值方法

SCHISM 模式中,結構性網格與 非結構三角形網格使用在水平方向, 而垂直方向則結合隨地形變化 (terrainfollowing)的 S 與 Z 座標系統, 如圖 1。垂直座標 (Z-axis) 起始點在平均水位 (Mean Sea Level, MSL)。S座標(Song and Haidvogel, 1994) 放置於Z座標的 上層 (如圖1中a及b), S與Z座標 的區分線 (demarcation line) 在 $k^{z} = -h_{s}$ 處,意即h。在S垂直座標上隨最高水 面位至改變而變動。底部邊界線 k^b在 Z座標上會如圖1中呈現階梯式的變 化。SCHISM 模式在垂直座標結合 S 與Z座標系統,S座標區域計算的層數 皆使用在淺水區 $(h \le h_a)$; 為解決底部 效率則在深水區 $(h \ge h_a)$ 使用 Z座標。

圖 1 SCHISM 模式垂直座標系統 (Zhang and M. Baptista, 2008)

綜合上述結果,S座標可隨著自由 液面的曲線變動,且可在自由液面下 計算網格作局部加密,以求得精度更 佳的自由液面下各項物理量的演變情 況。另Z座標於底床處以階梯式方法 處理,更能描述複雜海底地形的變化 情形。

3.3 驅動模式之初始條件與邊界條件

在模式邊界條件方面,本文蒐集 現有的海氣象資料庫作為驅動模式所 需之外力與初始條件,以下則簡述各 資料庫之基本參數與時空範圍。

一、海表面風場資料

風場資料來源為中央氣象局區域 數 值 預 報 模 式 (Weather Research and Forecast, WRF) 提供海面風場資料,空 間格網有 45km、15km 及 5km 三種解 析度。資料範圍皆涵蓋臺灣海域,將 視 SCHISM 網格設置配合採用適用解 析度的風場資料。

二、海平面大氣壓力資料

採用與海面風場相同來源之 WRF 模式提供海面氣壓資料,空間格網 解析度亦有45km、15km及5km 三 種。資料範圍皆涵蓋臺灣海域,將視 SCHISM 網格設置採用適用解析度的 氣壓場資料。

三、海面溫度

採用與海面風場相同來源之 WRF 模式提供海面溫度 (SST) 資料,空間 格網解析度亦有 45km、15km 及 5km 三種。資料範圍皆涵臺灣海域,將視 SCHISM 網格設置採用適用解析度的 溫度資料。

四、海洋鹽度與溫度

蒐集 NODC (National Oceanographic Data Center) 的 WOA (World Ocean Atlas) 海洋水文資料庫,其分析場資料 包含海洋溫度、鹽度、溶氧、磷酸鹽、 矽酸鹽等資料,資料時間為 2005 年, 水平空間解析度為 1.0 度,垂直方向共 有 33 層,最上層為表面,最深為 5500 公尺,其資料範圍涵蓋全球。

五、地形水深

在水深地形資料方面,採用美國地 球物理資料中心 (National Geophysical Data Center, NGDC) 的 ETOPO1 地 形 水深資料庫,資料範圍涵蓋全球,資 料格網解析度為1弧分,SCHISM 使 用的水深地形網格將選取適用範圍的 風場資料並輔以 SMS 處理。

四、油污擴散模式理論介紹

4.1 油污擴散過程

溢油污染之嚴重與否著重於數日 至數週之短期變化,對生態之影 響破 壞亦在此一短暫期間所造成。在長期 情況下,油污下沉及沉積後則含有生 物分解作用,油污將漸漸自環境中消 除。國際油輪船東防污染聯合會 (The International Tanker Owners Pollution Federation, ITOPF) 指出油污主要風化 過程 (weathering processes) 涵蓋: 擴 展 (spreading)、蒸發 (evaporation)、延 散 (dispersion)、乳化 (emulsification)、 溶解 (dissolution)、氧化 (oxidation)、 沉澱及沉降 (sedimentation/sinking)、 生物分解 (biodegradation) 及結合過程 (combined processes) 等過程,以下即 針對各種過程作說明。

早期溢油模式的發展主要以海洋 環境為主,多數模式僅以模擬油塊平 移 (advection) 及分散兩個機制,或有 其他模式僅專注於油污之物理與化學 變化,而較近期之模式則包括油污之 運動 (transport) 及風化 (weathering) 現 象。由於本文關心的油污擴散問題是 在污染開始的兩三天內的擴散情形, 污染的開始,即可掌握未來油污擴散 方向,進而立即清除油污,所以影響 較深的效應為分散 (spreading)、蒸發 (evaporation)、延散 (dispersion) 及乳化 (emulsification),這四項效應在溢油開 始產生的幾小時至一星期內影響最大, 其他效應產生在一星期之後,故可不 予考慮。

4.2 油污擴散模式理論

溢油擴散模擬軟體可描述海水 表層浮油與沉入水團之油污的傳輸過 程(如圖 2),在海水表層浮油描述採 用二維溢油傳輸擴散模式(Oli-veira et al., 2000; Oliveira and Fortunato, 2002) (2D-VOILS),而沉入水團之油污則採 用三維溢油傳輸擴散模式(3D-VOILS) (Azevedo et al., 2014)。二維與三維溢 油擴散模式需要水深地形、全球或區 域潮流模式、氣象資料、大氣作用力、 波浪、溢油特性及油品成份等輸入資 料與模式的結合,來描述油污在海上 傳輸與擴散的過程。在流體動力模式 中採用 SCHISM 模式來提供水位、流 速場、溫度、以及鹽度等資料。

圖 2 油污擴散模擬流程圖 (Tkalich, 2006)

二維與三維溢油傳輸擴散模組分 別說明如下:

4.2.1 油污的擴散與初始溢油面積 (Spreading and initial area of the slick)

油污在海面上擴散可由重力 (gravitational)、慣性力 (inertial)、黏滯 力 (viscous forces)、表面張力 (interfacial tension stresses) 之間的平衡關係來描 述,海水表層浮油範圍與厚度在溢油 模式中是很重要的參數 (Lehr, 2001)。 溢油在海上的傳輸擴散過程非常複雜, 需考慮油污的物理特性與海水表面的 環境條件,特別是海水表面與水團中 的紊流現象。

4.2.2 二維溢油傳輸擴散模式 (The 2D oil spill model)

在二維溢油傳輸擴散模式 (2D-VOILS)中,油污初始溢油面積定 義(Lehr et al., 1984; Lehr, 2001)如下式:

$$A_{ini} = 2.27 \left(\Delta_w V\right)^{\frac{2}{3}} t^{\frac{1}{2}} + 0.04 \left(\Delta_w V U_{10}^4\right) t$$
(20)

其中 A_{ini} 為初始溢油面積; $\Delta_w = (\rho_w - \rho_0) / \rho_w$ 為油與水密度差; ρ_w 為水的密度;V為初始溢油體積; t為溢油後時間; U_{10} 為水面上10 m處 之風速;v為水的運動黏滯係數。

海水表層浮油以歐拉-拉格朗日方法 (Eulerian-Lagrangian scheme) 求解油

污在海水表層的傳輸過程現象,包括 蒸發、乳化、及黏附於海岸邊等物理 化學現象,如下對流-擴散方程式:

$$\frac{\partial h}{\partial t} + \frac{\partial}{\partial x_i} (hu_i) - \frac{\partial}{\partial x_i} \left(D_s \frac{\partial h}{\partial x_i} \right)$$

$$= R_{h_2D}$$
(21)

$$R_{h_2D} = -Evap$$

$$+Emul - \text{ShoreRetention}$$
(22)

其中t:時間;h:表層浮油厚度; x_i:水平卡式坐標系統;u_i:表層浮油 對流速度;R_{h_2D}:油污的風化過程, 即表層浮油的來源與沉降及與水團的 交互作用,有蒸發、乳化及黏附海岸 邊等物理化學現象;油污擴散係數:

$$D_s = gh^2 \left(\rho_w - \rho_o \right) \frac{\rho_o}{\rho_w C_f} ,$$

 $C_f = 0.02 \ kg \cdot m^{-2} \cdot s^{-1}$ 為水表面浮油阻力 係數。

油污的風化過程包含蒸發 (evaporation)、乳化 (emulsification)、黏附海岸 邊 (shoreline retention) 等現象,如下分 別作說明:

1. 蒸發 (evaporation)

蒸發需考慮溢油特性與油的蒸汽 壓,依序表示如下:

$$\frac{dF_{evap}}{dt} = \frac{K_e A_s}{V_0}$$

$$\cdot \exp\left[A - \frac{B}{T} \left(T_0 + T_G F_{evap}\right)\right]$$
(23)

其中 F_{evap} 為油污分餾蒸發的作用; T為時間; A_s 為溢油面積; V_0 為初 始溢油體積;常數A = 6.3,常數B =10.3;乳化常數 $K_e = C_{evap} \times U_{10}^{0.78}(C_{evap} =$ $2.0 \times 10^{-3})$, T_0 , T_G 為油污相關性參數, 以 API (American Petroleum Institute density) 來區分不同油品的參數。

2. 乳化 (emulsification)

乳化的過程為水滴進入到海面油 污的混合過程,可分別由 Mackay et al. (1980)與 Rasmussen (1985)提出的公 式描述:

Mackay et al. (1980):

$$\frac{dF_{emul}}{dt} = K_{emul}$$

$$- \left(1 + U_{10}\right)^2 \left(1 - \frac{F_{emul}}{F_{emul}}\right)$$
(24)

其中 F_{emul} 為部份含水量 (fractional water content); F_{emul}^{final} 為油污乳化現象中可結合的最大水體積; F_{emul}, K_1 and K_2 : 乳化現象之無因次參數。

Rasmussen (1985):

$$\frac{dF_{emul}}{dt} = R_1 - R_2 \tag{25}$$

其中 R₁ 與 R₂ 分別為水進入油污 中的進流與出流量,

$$\begin{split} R_1 &= \frac{K_1}{\mu_0} \left(1 + U_{10} \right)^2 * \left(F_{emul}^{final} - F_{emul} \right) , \\ R_2 &= \frac{K_2}{AsphWax\mu_0} F_{emul} ; \mu_0 為 溢 油 的 \end{split}$$

初始動黏滯度; Asph and Wax:瀝青物 質與礦臘含量的百分比。

3. 海岸邊黏附與脫離 (shoreline retention and reposition)

油污黏附海岸邊是油污染在海岸 地區最重要的部份,因對環境與社會-經濟的影響非常大,其過程可由下式 表示:

$$M_{naxret} = \rho_0 h_{\max} A_{node} \tag{26}$$

其中 M_{naxret} 為海岸邊最多的油污 黏附量; h_{max} 為最大黏附油污厚度容 量; A_{node} 為模式中每個計算節點影響的 範圍。

$$M_{t} = \sum_{ret=i} \left\{ M_{i} - M_{i} \left(\frac{t - t_{ret_{i}}}{t_{removal}} \right) \right.$$

$$\cdot \exp\left[\left(\frac{t - t_{ret_{i}}}{t_{removal}} \right) - 1 \right]$$
(27)

其中 M_i 為模式中每個計算節點的 油污殘留量, i 為節點數; t_{removal} 為在 每個海岸斷面時間移動常數; t_{ret_i} 為油 污殘留出現的時間。

$$M_{rep_{1}} = M_{1} \left(\frac{t - t_{ret_{i}}}{t_{removal}} \right)$$

$$\cdot \exp \left[\left(\frac{t - t_{ret_{i}}}{t_{removal}} \right) - 1 \right]$$
(28)

其中 M_{rep1} 為油污脫離海岸邊再返 回到水中的時間。

4.2.3 三維溢油傳輸擴散模式 (The 3D oil spill model)

沉入水團之油污採用三維溢油傳 輸擴散模式 (3D-VOILS) 求解油污在 水團中的延散與溶解的傳輸與擴散如 下式:

$$\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} + w \frac{\partial C}{\partial z}$$

$$= \frac{\partial}{\partial z} \left(\kappa \frac{\partial C}{\partial z} \right) + Fc + R_{h_{3D}}$$
(29)

其中 C 為一般的追蹤者 (generic tracer); u, v, w 分別為 x, y, z 方向速度 分量 κ : 垂直渦流擴散係數 (vertical eddy diffusivity); F_c : 水平擴散項; $R_{h_{3D}}$ 為水團中油污的源流與沉流 (sources and sinks), 定義如下式:

 $R_{h_{3D}} = -Dispersion - Dissolution$ (30)

其中 Dispersion 表示油污在水團 中延散過程; Dissolution 表示溶解過 程。延散與溶解過程分別說明如下。

1. 延散過程 (dispersion process)

油污在水團中分散過程為浮力與 剪應力在平衡過程中導致油污進入水 體中,較大的油滴受浮力作用會再上 浮到水面,小的油滴會沉入水中甚至 沉入海底。油污在海水表層、混合層 及水團中的質量傳輸,可由下列式子 表示:

$$\frac{dh}{dt} = \frac{k_{es}}{\rho_0} \left(\Lambda \rho_0 h - Z_m C_{em} \right) \tag{31}$$

$$\frac{dC_{em}}{dt} = \frac{K}{Z_m} \left(\Lambda \rho_0 h - Z_m C_{em} \right)$$
(32)

$$k_{es} = \frac{\left(\lambda_{ow} + \lambda_{wo}\right)\lambda_{wo}B_{1}}{\left(\lambda_{ow} + \lambda_{wo}B_{1}\right)}$$
(33)

$$\Lambda = \frac{\lambda_{ow}}{\lambda_{wo}B_1} \tag{34}$$

式 (31) 中 k_{es} 為油質量交換率; Λ 為油滴或混合因子; C_{em} 為油水混合層 中的油滴濃度; $Z_m = \alpha H_s$ 為油水混合 層的厚度, $\alpha = 1.2 - 1.6$ 為無因次比例 因子(取決於海面上狀態), H_s 為示性 波高。式(33) 中 λ_{ow} 為油滴沉入水中 的速率; λ_{wo} 為油滴再上浮到水面的速 率; B_1 為再上浮到水面油滴的阻力。

在油污質量項,海水表層與水團 中油污之間的運動(kinetic)有由下列 式子表示:

$$\frac{dM_s}{dt} = -k_{es} \left(\Lambda M_s - M_e \right) \tag{35}$$

$$\frac{dM_e}{dt} = k_{es} \left(\Lambda M_s - M_e \right) \tag{36}$$

其中 $M_s = h \rho_0 A_{node}$ 為每個水平計算 格點中浮油的質量; $M_e = Z_m C_m A_{node}$: 在混合層垂直計算格點中浮油的質量。

2. 溶解過程 (dissolution process)

在溢油發生的第一至第二天,油 分子可能會溶解進入到水體中,約占 總溢油質量的 5%。溶解過程取決於油 的成份,或許不會有溶解現象的發生。 油污質量項的關係式如下:

$$\frac{dM_d}{dt} = k_{ds} \left(\Lambda_{ds} M_{ds} - M_d \right) \tag{37}$$

其中 k_{ds} 為油污溶解過程中質量交換率; Λ_{ds} 為油污溶解過程中混合係數; M_{ds} 為油污溶解過程中混合係數; $= M_{ds}$ 為油污溶解過程中表層浮油含有的質量。

綜合上述二維與三維油污模式可 知,海水表層油污風化過程可由式(22) 來表示,其演變過程有油包水(water-in oil)的蒸發、乳化及處理黏附海岸邊有 源流與沉流(sources and sinks)。另在 水團中的風化過程則以式(30)來描述, 分別有分散與溶解過程。因此油污在 海上的傳輸與擴散之物理化學現象可 表示為:

$$R_h = R_{h_2D} + R_{h_3D} \tag{38}$$

4.3 OILMAP 與 SCHISM-ILSPILL MODEL 之比較

目前全球所使用的油污染擴散數 值模式可分為開放程式取得與商業用 的軟體(如OILMAP),OILMAP 為較 常見的商業用軟體,其能預測溢油在 水表面移動的情況與對環境衝擊影響 程度,輸入條件包括:溢油地點(經緯 度)、溢油數量、油品種類等溢油狀況 資料,及風場、海潮流和波浪等海洋 環境資料等。進一步比較 SCHISM 的 油污擴散模組理論與OILMAP,如表2

表 2 溢油模式功能比較表

模式功能	項目	SCHISM-OILSPILL MODEL	OILMAP MODEL
外部輸入 條件	風	\checkmark	\checkmark
	波浪	輸入波浪場資料	輸入單點波浪資料
	流	SCHISM model	HYDROMAP model
油污風化 過程	延散 (dispersion)	\checkmark	\checkmark
	擴展 (spreading)	\checkmark	\checkmark
	乳化 (emulsification)	\checkmark	\checkmark
	溶解 (dissolution)	\checkmark	\checkmark
	蒸發 (evaporation)	\checkmark	\checkmark
	氧化 (oxidation)	\checkmark	\checkmark
	沉澱及沉降 (sedimentation/sinking)	\checkmark	\checkmark
	生物分解 (biodegradation)	×	
	海岸交互作用 (coastal-interaction)	\checkmark	\checkmark

√:表示具有此功能、×:表示不具有此功能

所示,雖然 SCHISM 的油污擴散模組 理論缺少了生物分解的功能,但由油 污分解時間尺度來看,此項功能可以 不予考慮。又本文採用的 SCHISM 的 油污擴散模組考慮了波浪場資料,亦 即空間上的波高、週期及波向,相較 於單點的波浪資料更能完整描述溢油 在海面上受到波浪的影響。

五、結論

為了解目前世界各國作業化海流 模式的發展現況,本文蒐集與綜整世 界各國作業化海流模式,並評估適用 於港區油污擴散之海流模式。SCHISM 模式採用有限元素的非結構性網格設 置,垂直網格結合S與Z座標可提 高表底層之解析度與避免因地形變化 較大產生之水平壓力梯度不一致性。 又SCHISM模式利用半隱式法求解, 可使用較大的時間步長計算,並確保 模式的穩定與精度,因此本文採用 SCHISM模式做為油污擴散模擬之海 潮流資料來源。

在海潮流預報模式建置的輸入與 初始條件方面,採用中央氣象局WRF 區域數值預報模式提供的海面風場、 大氣壓力、溫度等資料做為模擬海流 所需的輸入資料;初起條件是蒐集 WOA海洋水文資料庫的海洋溫度與 鹽度。

油污擴散模式除需結合海洋流體

動力數值模式,亦需加入地形、氣象、 波浪、潮流及油品特性等條件。本文 選用的 SCHISM-Oil spill model 結合數 值波浪模式,可輸入區域波浪場的資 料,相較於商業用軟體 OILMAP 僅輸 入單點的波浪資料更能完整描述溢油 在海面上受到波浪的影響。

參考文獻

- Azevedo, A., Oliveira, A., Fortunato, Andre B., Zhang, J., Baptista, Antonio M., (2014), A cross-scale numerical mod.eling system for management support of oil spill accidents, Marine pollution bulletin: 80, 132-147.
- Baptista, A.M., (2006), CORIE: the first decade of a coastal-margin collaborative observatory, In: Oceans'06, MTS/ IEEE, Boston, MA.
- Baptista, A.M., Zhang, Y.L., Chawla, A., Zulauf, M., Seaton, C., Myers III, E.P., Kindle, J., Wilkin, M., Burla, M., Turner, P.J., (2005), A cross- scale model for 3D baroclinic circulation in estuary–plume–shelf systems: II. Application to the Columbia River, Cont. Shelf Res. 25, 935-972.
- Barron, C.N., Kara, A.B., Martin, P.J., Rhodes, R.C., Smedstad, L.F., (2006), Formulation, implementation and examination of vertical coordinate

choices in the Global Navy Coastal Ocean Model (NCOM), Ocean Modell. 11, 347-375.

- Blumberg, A.F., Mellor, G.L., (1987), A description of a three-dimensional coastal ocean circulation model, In: Heaps, N. (Ed.), Three-Dimensional Coastal Ocean Models, 1-16.
- Canuto, V.M., Howard, A., Cheng, Y., Dubovikov, M.S., (2001), Ocean turbulence I: one-point closure model. Momentum and heat vertical diffusivities, J. Phys. Oceanogr, 31, 1413-1426.
- Casulli, V., Cheng, R.T., (1992), Semiimplicit finite difference methods for three-dimensional shallow water flow, Int. J. Numer. Methods Fluids 15, 629-648.
- Casulli, V., Walters, R.A., (2000), An unstructured grid, three-dimensional model based on the shallow water equations, Int. J. Numer. Methods Fluids 32, 331-348.
- Chen, C., Beardsley, R.C., Luettich Jr, R.A., Westerink, J.J., Wang, H., Perrie W., Xu, Q., Donahue, A.S., Qi, J., Lin, h., Zhao, L., Kerr, P.C., Meng, Y., Toulany, B., (2013), Extratropical storm inundation testbed: Intermodel comparisons in Scituate,

Massachusetts. Journal of Geophysical Research: Oceans, 118, 1-20.

- Fingas, M., (2000), The Basics of Oil Spill Cleanup, Second Edition, Taylor & Francis.
- Fringer, O.B., Gerritsen, M., Street, R.L., (2006), An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal ocean simulator, Ocean Modell., 139-173.
- Galperin, B., Kantha, L.H., Hassid, S., Rosati, A., (1988), A quasiequilibrium turbulent energy model for geophysical flows, J. Atmos, Sci. 45, 55-62.
- Iskandarani, M., Haidvogel, D.B., Levin, J.C., (2003), A threedimensional spectral element model for the solution of the hydrostatic primitive equations, J. Comput. Phys. 186, 397-425.
- Kantha, L.H., Clayson, C.A., 1994. An improved mixed layer model for geophysical applications, Journal of Geophyscial Research 99 (25), 235-266.
- 15. Lehr, W.J., (2001), Review of modeling procedures for oil spill weathering behavior, In: Brebbia, C.A. (Ed.), Oil Spill Modeling and Processes, WIT Press, 51-90.

- 16. Lehr, W.J., Fraga, R.J., Belen, M.S., Cekirge, H.M., (1984), A new technique to estimate initial spill size using a modified Fay-type spreading formula, Marine Pollution Buletin, 15, 326-329.
- 17. Luettich, R.A., Westerink, J.J., Scheffner, N.W. (1991), ADCIRC: an advanced three-dimensional circulation model for shelves, coasts and estuaries. Coast. Engrg. Res. Ct., US Army Engs. Wtrways. Experiment Station, Vicksburg, MS Report 1: Theory and Methodology of ADCIRC-2DDI and ADCIRC-3DL.
- Lynch, D.R., Werner, F.E., (1991), Three-dimensional hydrodynamics on finite elements. Part II: non-linear time-stepping model. Int. J. Numer. Methods Fluids 12, 507-533.
- Mackay, D., Paterson, S., Trudel, K., (1980), A Mathematical Model of Oil Spill Behavior, Environmental Protection Service, Canada. Report EE-7.
- 20. Mellor, G.L., Yamada, T., (1982), Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys, 20, 851-875.
- 21. Oliveira, A., Fortunato, A.B., (2002), Towards an oscillation-free, mass

conservative, Eulerian–Lagrangian transport model. J. Comput, Phys. 183 (1), 142-164.

- 22. Oliveira, A., Fortunato, A.B., Baptista,
 A.M., (2000), Mass conservation in Eulerian–Lagrangian simulations of transport in estuaries. ASCE J. Hydraul, Eng. 126 (8), 605-614.
- 23. Rasmussen, D., (1985), Oil spill modeling – a tool for cleanup operations, In: Proceeding of the 1985 Oil Spill Conference, API, Washington DC, USA, 243-249.
- 24. Rodi, W., (1984), Turbulence models and their applications in hydraulics: a state of the art review. International Association for Hydraulics Research, Delft, The Netherlands.
- 25. Shchepetkin, A.F., McWilliams, J.C., (2005), The regional oceanic modeling system (ROMS): a splitexplicit, free-surface, topographyfollowing-coordinate, oceanic model. Ocean Modell. 9, 347-404.
- 26. Schwiderski, E. W., (1980a), Ocean tides: I. Global ocean tidal equations, Marine Geodesy, 3(1-4), 161-217.
- 27. Schwiderski, E. W., (1980b),
 Ocean tides: II . Global ocean tidal equations, Marine Geodesy, 3(1-4), 219-255.

- 28. Song, Y.T., and D.B. Haidvogel, (1994), A semi-implicit ocean circulation model using a generalized topography following coordinate system, J. Comp, Phys., 115, 228-248.
- 29. Tkalich, P., (2006), A CFD solution of oil spill problems. Environ. Model. Softw, 21, 271-282
- 30. Umlauf, L., Burchard, H., (2003), A generic length-scale equation for geophysical turbulence models, J. Mar. Res, 6, 235-265.
- Wilcox, D.C., (1998), Reassessment of scale determining equation for advance turbulence models, AIAA J, 26, 1299-1310.
- 32. Zhang, Y., Baptisa, A.M., (2008), SELFE: A semi-implicit Eulerian– Lagrangian finite-element model for cross-scale ocean circulation, Ocean Modelling, 21, 71-96.
- 33. Zhang, Y.L., Baptista, A.M., Myers,
 E.P., (2004), A cross-scale model for
 3D baroclinic circulation in estuary– plume–shelf systems: I. Formulation and skill assessment, Cont. Shelf Res, 24, 2187-2214.