港灣防波堤堤頭波場定床三維數值模擬研究

- 李忠潘 國立中山大學海洋環境及工程學系教授
- 曾以帆 國立中山大學海洋環境及工程學系助理教授
- 邱永芳 交通部運輸研究所港灣技術研究中心主任
- 何良勝 交通部運輸研究所港灣技術研究中心科長
- 蔡金吉 交通部運輸研究所港灣技術研究中心助理研究員

摘要

本研究應用 FLOW-3D[®] CFD 軟體 對港灣防波堤堤頭附近海域進行波場 定床三維數值模擬,以台中港及麥寮 工業港外海 50 年重現期之颱風波浪作 為開放水域邊界條件,以實測水深建 立定床邊界,港口實體物理模型(CAD) 為封閉邊界,流場穩定包括網格獨立 性與計算領域邊界敏感性測試。本研 究模擬結果以視覺化呈現波場自由水 面時序變化,堤頭前之垂直流況變化, 防波堤頭附近最大底床水分子速度分 佈分析與渦流區底床 ESS(Excess Shear Stress)的分布情形與底床掏刷的關係, 並說明了應用 Stokes 5 階造波邊界與 RNG 紊流模式可以得到合理的計算 結果。

一、前言

波浪或海流通過海中結構物時, 可能在結構物臨近底床造成沖蝕,導

致結構的破壞甚或傾倒,如港灣防波 堤堤頭附近的海底地形,可能因為波 浪及海潮流的集中、下沖或轉向等造 成堤頭沖蝕。本研究以台灣西海岸中 部的台中港及麥寮工業港為例,其中, 台中港掏刷最深處位於北防波堤堤頭 向外海延伸方向約140m處,最深處 約-32m;麥寮工業港西防波堤堤頭處 之原設計水深約為-22m,根據 2012 年實測海底地形顯示,堤頭附近海域 底床已形成一個約 500 m×100 m 的深 坑,其最深處達-48m,掏刷之深度已 達 26 m,其嚴重程度將危及防波堤堤 身以及港灣船舶航行的安全。而應用 CFD 數值模擬正可以提供快速預測防 波堤堤頭海底地形侵蝕的機制,不但 合乎經濟性且其可信度高。本研究應 用 FLOW-3D[®] CFD 軟體對本區海域進 行波場定床三維數值模擬,以台中港 及麥寮工業港外海 50 年重現期之颱風 波浪作為開放水域邊界條件,以實測 水深建立定床邊界,港口實體物理模

型為封閉邊界,流場穩定包括網格獨 立性與計算領域邊界敏感性測試。本 研究模擬結果以視覺化呈現波場自由 水面時序變化,堤頭前之垂直流況變 化,防波堤頭附近最大底床水分子速 度分佈分析與渦流區底床 ESS(Excess Shear Stress)的分布情形與底床掏刷的 關係,並說明了應用 Stokes 5 階造波 邊界與 RNG 紊流模式可以得到合理的 計算結果。

二、研究範圍

本研究將以台中港及麥寮工業港 為主要研究範圍,針對防波堤堤頭附 近海域之波場及海底地形變化進行三 維數值模擬分析。

2.1 臺中港

臺中港北鄰大甲溪以及大安溪, 南鄰大肚溪,臺中港為因應淤積以及 航行安全,而延伸北防波堤,2002 年以來受到河川輸沙暴增的因素, 於2002~2005年之年平均淤沙量為 1994~2002年4.9倍之多,由於漂 沙已有部分繞過北防波堤堤頭進到航 道,未來勢必影響船隻航行安全。臺 中港於民國65年完成主體工程,民國 79~84年先延長北防波堤850m,民 國89~91年再延長北防波堤480m, 相關工程施工位置如圖1所示。

圖 1 臺中港北防波堤延伸歷程圖

2.2 麥寮工業港

雲林縣海岸北起濁水溪口南至北港 溪口,涵蓋麥寮鄉、台西鄉、四湖鄉及 口湖鄉四鄉,海岸線全長約58km。雲 林離島工業區自民國 83 年麥寮區動工 興建以來,麥寮區北側海堤受到濁水 溪砂源的補注,已有淤積現象產生。 圖 2 為麥寮工業區各區段海堤位置圖, 其中西防波堤Ⅰ約於民國 84 年期間完 工,南防波堤Ⅱ與西防波堤Ⅱ分別於 民國 85 年 6 月與 86 年 3 月完工,鄰近 外航道之西防波堤Ⅲ則於民國 87 年 3月開始逐漸施工延伸至民國 89 年 9 月,外航道內側之南防波堤 I 則於民國 87 年底完工 (成大水工所, 2002a)。麥 寮工業港其西防波堤 Ⅲ 堤頭之原設計 水深約為-22m,根據目前實測的海底 地形顯示,堤頭附近海底地形形成一個 約 500 m×100 m 的深坑,最深處達到 -48 m,堤基被沖刷的深度可達 26 m。

三、相關研究文獻

Dentale(2012) 根據水工模型試驗 之佈置建構防坡堤保護工模型,利用 FLOW-3D[®] 模擬三維石堆斜坡底床, 分析波流對於消波設施的反射、透射、 溯升、越波與碎波等現象,以及結構 體基礎的穩定性。陳(2009)分析有限 水深短峰波對海床處將形成波壓力, 引起海床變形乃至液化。應用 FLOW-3D[®] 模擬防波堤堤頭附近海床上的波 壓力,最大波高與海床超靜孔隙水壓 力最大值均位於距堤頭 0.5 倍波長附 近,也是最易發生液化的地方。賴 (2009)以FLOW-3D[®]計算不透水和孔 隙底床之波浪變形、流場及紊流特性。 結果顯示孔隙底床對波浪發生碎波之 型態產生影響,使得因捲波 (plunging) 而產生的迴流減弱消失。因孔隙層之 摩擦及渗透作用, 在碎波帶與沖刷

帶之間波能消散、流場及紊流特性 有很大的差異。Achartya(2011)利用 FLOW-3D[®] 的紊流模式模擬探討系列 丁壩平面底床沖刷機制,定量剖析丁 壩周圍縱向、橫向及垂直面紊流流場。 馬 (2011) 利用 FLOW-3D[®] 的紊流模式 求解非定常雷諾平均方程式 (RANS) 之 控制方程式,探討潛堤與直立堤間之 波高水位變化及波流場狀態。結果顯 示波浪通過潛堤後,受直立堤反射影 響,重複波波峰位置因兩堤間距不同 而變化,當兩堤間距為 0.25 倍和 0.75 倍波長時,波高與水位較高。侯等人 (2011)以FLOW-3D[®] 模擬港池內外波 浪繞射分佈特性,比較港池於外海為 不等水深的條件下,港池內外 Kd 值之 變化。

四、FLOW-3D[®]模式介紹

本計畫利用 FLOW-3D[®] 流體數值 模式分析軟體,模擬防波堤堤頭鄰近 海域波場的時空分佈和演變,並導入 淘刷模式,探討堤頭處地形變化。數 值模擬計算結構物與地形互制現象, 需考量黏性流理論,以控制方程式而 言,納維爾-史托克斯方程式(Navier-Stokes Equation)為具有黏性流體應 力、應變關係的運動方程式,相較於 勢流理論,可真實地描述渦流流場。 黏性流體的運動方程式求解有相當的 難度,而數值方法亦需求高速的計算

效能。Hirt(1963)提出VOF(Volume of Fluid Method) 流體動力學數值計算 方法,不僅大幅提高流體力學數值模 擬的穩定性,並可描述自由液面的變 動狀態。FLOW-3D[®]是 1985 年 Flow Science 公司推出的商業版流體分析軟 體,除了包含 VOF 自由液面處理法之 外,並含有其他諸多重要的核心技術, 如多重區塊網格 (Multi-Block Grids)、 通度係數法 (Fractional Area/Volume Obstacle Representation, FAVOR) 等。 FLOW-3D[®]以往常用之處理流體和 固體耦合運動的模擬計算,若能選擇 合適的水動力、淘刷及波浪等計算模 組,FLOW-3D[®]亦可適用於港灣工 程之領域,相關模組如表1所示。使 用 FLOW-3D[®] 進行防波堤堤頭附近之 波、流場數值計算及地形變化模擬結 果,另外可與現場調查資料和水工模 型試驗進行結果的驗證及輸入條件的 同化 (assimilation),以期進一步瞭解防 波堤堤頭侵蝕機制。

模組名稱	適用性簡述
Moving and deforming objects	波浪與潮流對結構物 之繞射與應力的耦合 分析
Particles model	波流場的分佈追蹤與 分析
Porous media model	海域孔隙結構物模型 的建立與處理

表1	港灣工程領域適用的計算模組	

模組名稱	適用性簡述
Sediment scour model	預測泥沙等的淘刷懸 浮沉降過程
Scour potential model	計算與評估定床面侵 蝕的趨勢
Shallow water model	水深平均應用於三維 垂直動量方程的處理
Viscosity and turbulence	流場粘性係數與紊流 模式的處理
Wave boundary	邊界線性波與非線性 波的產生與應用

4.1 理論基礎

FLOW-3D[®] 的理論基礎在於三維 的質量守恆及動量守恆方程式等,針 對本計畫所研究的物理現象,乃為水 動力學問題,其運動方程式為 Naiver-Stokes 方程式,其數學模式的架構為:

4.1.1 Naiver-Stokes 控制方程式

在古典力學中,物質體系所遵循 的物理法則是「質量守恆」及「動量 守恆」,對於三維不可壓縮黏性流體, 在直角座標系的形式下連續方程式為:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$
(1)

動量方程式,在X、Y和Z方向 分別表示如下:

$$\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z} = -\frac{1}{\rho}\frac{\partial P}{\partial x} + v\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right)$$
(2)

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = -\frac{1}{\rho} \frac{\partial P}{\partial y} + v \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right)$$
(3)

$$\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} = -\frac{1}{\rho} \frac{\partial P}{\partial z} + v \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right) - g$$
(4)

上式中(u, v, w)分別表示水平和垂 直方向之瞬時速度分量,(x, y, z)分別 為水平和垂直方向之座標,P為瞬時壓 力,而ρ、v分別為流體之密度和運動 黏滯係數,在數值模擬過程中假設不 受其他因素之影響而保持定值。

4.1.2 FLOW-3D[®] 控制方程式

(1) 質量連續方程式 (Mass Continuity Equation)

$$V_{F} \frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho u A_{x}) + \frac{\partial}{\partial y} (\rho v A_{y}) + \frac{\partial}{\partial z} (\rho w A_{z})$$

$$= R_{DIF} + R_{SOR}$$
(5)

上式中 V_F 是流體體積比, ρ 是流 體密度, R_{DIF} 是紊流擴散項, R_{SOR} 是質 量源項,(u, v, w) 是卡式座標系統的速 度分量, A_x , A_y , A_z 分別是 X, Y, Z 方向 流動的通量面積比,若以直角座標且 為不可壓縮,則可表示為:

 $R_{DIF} = \frac{\partial}{\partial x} \left(\upsilon_{\rho} A_{x} \frac{\partial \rho}{\partial x} \right) + \frac{\partial}{\partial y} \left(\upsilon_{\rho} A_{y} \frac{\partial \rho}{\partial y} \right) + \frac{\partial}{\partial z} \left(\upsilon_{\rho} A_{z} \frac{\partial \rho}{\partial z} \right)$ (6)

上式中係數 U_p 等於 $c_p \mu/p$,其中 μ 是動量分佈的係數(例如黏度), c_p 是 對應於紊流施密特數(turbulent Schmidt number)的常數。至於式(5)右邊最後 的 R_{SOR} 項可用於質量模式穿越孔隙介 質表面。

$$R_{SOR} = \frac{1}{\rho} \left(\frac{\partial}{\partial x} \left(u A_x \right) + \frac{\partial}{\partial y} \left(v A_y \right) + \frac{\partial}{\partial z} \left(w A_z \right) \right) (7)$$

上式中 u, v, w 分別表示水平和垂 直方向之瞬時速度分量, x, y, z 分別為 水平和垂直方向之座標, A_x, A_y, A_z 分 別是 X, Y, Z 方向流體通過之面積分 率, 而 ρ 為流體之密度, 在數值模擬 過程中假設不受其他因素之影響而保 持定值。

(2) 動量方程式 (Momentum Equations)

以直角座標的形式將 Navier-Stokes Equation 展開可得 (*X*, *y*, *z*) 三個方向的 流體速度 (*u*, *v*, *w*):

$$\frac{\partial u}{\partial t} + \frac{1}{V_F} \left\{ uA_x \frac{\partial u}{\partial x} + vA_y \frac{\partial u}{\partial y} + wA_z \frac{\partial u}{\partial z} \right\}$$

$$= -\frac{1}{\rho} \frac{\partial P}{\partial x} + f_x - \frac{R_{SOR}}{\rho V_F} (u - \delta u_s)$$
(8)

$$\frac{\partial v}{\partial t} + \frac{1}{V_F} \left\{ uA_x \frac{\partial v}{\partial x} + vA_y \frac{\partial v}{\partial y} + wA_z \frac{\partial v}{\partial z} \right\}$$

$$= -\frac{1}{\rho} \frac{\partial P}{\partial y} + f_y - \frac{R_{SOR}}{\rho V_F} (v - \delta v_s)$$
(9)

$$\frac{\partial w}{\partial t} + \frac{1}{V_F} \left\{ uA_x \frac{\partial w}{\partial x} + vA_y \frac{\partial w}{\partial y} + wA_z \frac{\partial w}{\partial z} \right\}$$

= $-\frac{1}{\rho} \frac{\partial P}{\partial z} + f_z - \frac{R_{SOR}}{\rho V_F} (w - \delta w_s)$ (10)

上式中*u*_s, *v*_s, *w*_s是流體表面速度, *f*_x, *f*_y, *f*_z 為 X, Y, Z 三個方向的黏滯項 即

$$\rho V_F f_x = wsx - \left\{ \frac{\partial}{\partial x} (A_x \tau_{xx}) + R \frac{\partial}{\partial y} (A_y \tau_{xy}) + \frac{\partial}{\partial z} (A_z \tau_{xz}) \right\}$$
(11)

$$\rho V_F f_y = wsy - \left\{ \frac{\partial}{\partial x} \left(A_x \tau_{xy} \right) + R \frac{\partial}{\partial y} \left(A_y \tau_{yy} \right) + \frac{\partial}{\partial z} \left(A_z \tau_{yz} \right) \right\}$$
(12)

$$\rho V_F f_z = wsz - \left\{ \frac{\partial}{\partial x} (A_x \tau_{xz}) + R \frac{\partial}{\partial y} (A_y \tau_{yz}) + \frac{\partial}{\partial z} (A_z \tau_{zz}) \right\}$$
(13)

上式中wsx、wsy、wsz 分別為 壁面在X、Y、Z 方向的剪應力(wall shear stress), τ_{ij} 代表流體剪應力,下 標I為作用面,下標j為作用方向:

$$\tau_{xx} = -2\mu \left\{ \frac{\partial u}{\partial x} - \frac{1}{3} \left(\frac{\partial u}{\partial x} + R \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) \right\}$$
(14)

$$\tau_{yy} = -2\mu \left\{ R \frac{\partial v}{\partial y} + \xi \frac{u}{x} - \frac{1}{3} \left(\frac{\partial u}{\partial x} + R \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) \right\} (15)$$

$$\tau_{zz} = -2\mu \left\{ \frac{\partial w}{\partial z} - \frac{1}{3} \left(\frac{\partial u}{\partial x} + R \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) \right\}$$
(16)

$$\tau_{xy} = -\mu \left\{ \frac{\partial v}{\partial x} + R \frac{\partial u}{\partial y} \right\}$$
(17)

$$\tau_{xz} = -\mu \left\{ \frac{\partial u}{\partial z} + R \frac{\partial w}{\partial x} \right\}$$
(18)

$$\tau_{yz} = -\mu \left\{ \frac{\partial v}{\partial z} + R \frac{\partial w}{\partial y} \right\}$$
(19)

FLOW-3D[®]以不可壓縮黏性流體 之N-S方程作為控制方程式,加入k-*e*、 RNG及大渦模擬等多種紊流模式, 配合VOF方法處理自由液面,利用 FAVOR技術來描述網格中之結構物。

透水結構物部分以 FLOW-3D[®]內 建孔隙介質模組中之雷諾數依存法處 理,並以有限差分法將控制方程式離 散,其連續方程式和動量方程式對於 體積分數、面積分數、速度分量、物 體重力加速度以及物體粘滯力加速度 等,都以三個方向運算。

(3) FLOW-3D[®] 數值的方法

FLOW-3D[®]提供三種演算法對 壓力速度式求解:超鬆弛反覆運算法 (Successive Over Relaxation, SOR)、交替 方向隱式 (Alternating Direction Implicit, ADI) 算法和廣義最小殘量 (Generalized Minimum RESidual, GMRES) 演算法。 其中 GMRES 支援 CPU 平行處理, 演算法收斂速度快、計算精度高、不 易發散,特別在求解 N-S 方程時效率 較高。為提高計算效率,避免同一時 刻求解所有變數,FLOW-3D[®]採用目 前應用較廣的流場數值解法,不直接 求聯立方程組的解,而是有序地、逐 一求解各個變數的代數方程組。在求 解的過程中,FLOW-3D[®]中引入兩個 量--中間速度和當前時刻的壓力修正 值,中間速度是不考慮新時刻壓力場 的影響。通過求解動量方程所獲得中 間速度,然後將中間速度和壓力修正 值的關係式代入連續性方程,得到含 有壓力修正值的壓力泊松方程,再應 用 GMRES 演算法求解壓力泊松方程。 求解步驟如下:

首先,將中間速度 $u_{i,j,k}^{*}$ 、 $v_{i,j,k}^{*}$ 、 $w_{i,j,k}^{*}$ 帶入差分後的動量方程中,其 x

方向的動量方程將改寫成下面的形式 (其他兩個方向 y、z 亦同):

$$\frac{u_{i,j,k}^{*} - u_{i,j,k}^{n}}{\delta t} = fx_{i,j,k}^{n} - (FUX + FUY + FUZ)_{i,j,k}^{n}$$

$$-\frac{1}{\rho} \frac{p_{i+1,j,k}^{*} - p_{i,j,k}^{n}}{\delta x} - \frac{\mu}{\rho} \left(\frac{u_{i+1,j,k}^{n} - 2u_{i,j,k}^{n} + u_{i-1,j,k}^{n}}{\delta x^{2}} + \frac{u_{i,j+1,k}^{n} - 2u_{i,j,k}^{n} + u_{i,j-1,k}^{n}}{\delta y^{2}} + \frac{u_{i+1,j,k+1}^{n} - 2u_{i,j,k}^{n} + u_{i,j,k-1}^{n}}{\delta z^{2}} \right)$$

$$(20)$$

$$\frac{u_{i,j,k}^{n+1} - u_{i,j,k}^*}{\delta t} = \frac{1}{\rho} \frac{p_{i+1,j,k}' - p_{i,j,k}'}{\delta x}$$
(21)

其中, p'為當前時刻 n 的壓力修正 值,則下一時刻的壓力為pⁿ⁺¹ = pⁿ + p', 通過解方程 (20) 可獲得中間速度 u^{*}_{i,j,k}。 其次,將方程 (21) 代入到離散後的連 續性方程 (22):

$$\frac{AFR_{i,j,k}^{n+1}u_{i,j,k}^{n+1} - AFR_{i-1,j,k}^{n+1}u_{i-1,j,k}^{n+1}}{\delta x} + \frac{AFB_{i,j,k}^{n+1}u_{i,j,k}^{n+1} - AFB_{i,j-1,k}^{n+1}u_{i,j-1,k}^{n+1}}{\delta y} + \frac{AFT_{i,j,k}^{n+1}u_{i,j,k}^{n+1} - AFT_{i,j,k-1}^{n+1}u_{i,j,k-1}^{n+1}}{\delta z} = 0$$
(22)

得到含有壓力修正值的壓力泊松 方程式(23):

$$\nabla \cdot u^* - \frac{\delta t}{\rho} \nabla^2 p' = 0 \tag{23}$$

求解方程 (23) 得到修正後的壓力 值 p',則 n+1 時刻的壓力值 pⁿ⁺¹ 也可求 出,並將得到 p'代入到方程 (21) 中求 得 n+1 時刻的速度場。然後檢驗計算 出來速度場是否收斂,若不收斂,程 式自動調整時間步長,直到獲得收斂 的速度場。最後,在求得新時刻速度 場和壓力場後,再應用 Hirt-Nichols 施 主—受主 (donor-acceptor) 方法計算出 各個單元體 n+1 時刻的的流體體積函 數 F 值,並重構新時刻的自由表面和 位置,同時更新其他的變數。

(4) 紊流模式與選擇

紊流模式的好壞決定了淘刷模組 的成敗,FLOW-3D[®]中包含五種紊流 模式,分別是 Prandtl 混合長度模式、 單一方程模式、二方程之標準K-E模 式、雷諾平均 (RNG)模式和大渦模擬 (Large eddy simulation)。前四種模式需 要設置紊流參數,大渦模擬模式雖然 不需要設置紊流參數,但是它主要適 用於三維數學模式,而且對網格尺寸 的要求非常高。FLOW-3D[®] 泥沙淘刷 模組適用所有的紊流模式,但一般建 議使用 RNG 紊流模式,因為 RNGK-E 紊流模適合模擬劇烈變形的底層邊界。 RNG 紊流模式方程式:

$$\frac{\partial k_T}{\partial t} + \frac{1}{V_F} \left\{ uA_x \frac{\partial k_T}{\partial x} + uA_y \frac{\partial k_T}{\partial y} + uA_z \frac{\partial k_T}{\partial z} \right\}$$
(24)
$$= P_T + G_T + Diff_{k_T} - \varepsilon_T$$
(4-20)
$$\frac{\partial \varepsilon_T}{\partial t} + \frac{1}{V_F} \left\{ uA_x \frac{\partial \varepsilon_T}{\partial x} + uA_y \frac{\partial \varepsilon_T}{\partial y} + uA_z \frac{\partial \varepsilon_T}{\partial z} \right\}$$
$$= \frac{CDIS1 \cdot \varepsilon_T}{k_T} (P_T + CDIS3 \cdot G_T) + Diff_\varepsilon - CDIS2 \frac{\varepsilon_T^2}{k_T}$$
(25)

其中, P_T 為速度梯度引起的紊流動 能 k 的產生項, G_T 為浮力引起的紊流 動能產生項,對於不可壓縮流體, G_T = 0, ε_T 為紊流動能耗散率,CDIS1、 CDIS2 和 CDIS3 為使用者可調整的無 因次參數。 P_T 和 G_T 的運算式如下:

$$P_{T} = CSPRO\left(\frac{u}{\rho V_{F}}\right) \begin{cases} 2A_{x}\left(\frac{\partial u}{\partial x}\right)^{2} + 2A_{y}\left(\frac{\partial v}{\partial y}\right)^{2} + 2A_{z}\left(\frac{\partial w}{\partial z}\right)^{2} \\ + \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) \left[A_{x}\frac{\partial v}{\partial y} + A_{y}\left(\frac{\partial u}{\partial y}\right)\right] \\ + \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}\right) \left(A_{z}\frac{\partial u}{\partial z} + A_{x}\frac{\partial w}{\partial x}\right) \\ + \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}\right) \left(A_{z}\frac{\partial v}{\partial z} + A_{y}\frac{\partial w}{\partial y}\right) \end{cases}$$

$$(26)$$

$$Diff_{k_{T}} = \frac{1}{V_{F}} \begin{cases} \frac{\partial}{\partial x} \left(v_{k} A_{x} \frac{\partial k_{T}}{\partial x} \right) + R \frac{\partial}{\partial y} \left(v_{k} A_{y} \frac{\partial k_{T}}{\partial y} \right) \\ + \frac{\partial}{\partial y} \left(v_{k} A_{z} \frac{\partial k_{T}}{\partial z} \right) \end{cases}$$

$$(27)$$

$$Diff_{\varepsilon} = \frac{1}{V_{F}} \begin{cases} \frac{\partial}{\partial x} \left(v_{\varepsilon} A_{x} \frac{\partial \varepsilon_{T}}{\partial x} \right) + R \frac{\partial}{\partial y} \left(v_{\varepsilon} A_{y} \frac{\partial \varepsilon_{T}}{\partial y} \right) \\ + \frac{\partial}{\partial y} \left(v_{\varepsilon} A_{z} \frac{\partial \varepsilon_{T}}{\partial z} \right) \end{cases}$$

$$(28)$$

$$v_T = CNU \frac{k_T^2}{\varepsilon_T}$$
(29)

$$\mu = \rho \left(v + v_T \right) \tag{30}$$

其中, v_{τ} 為運動粘滯係數, μ 為動 力粘滯係數, CSPRO為紊流參數,預 設值為 1.0。

選擇紊流模式 (one equation, two

equation, 或 RNG *k*-*ɛ* model), 不建議 使用 dynamically computed maximum turbulent mixing length model,因為該 模式顯示,接近底床載介面時計算結 果不是很理想,可能是自動縮小了紊 流的長度。因此,最好直接給定最大 的紊流混合長度 (maximum turbulent mixing length)。因為在 RNG κ-ε 紊流 模式中為了控制紊流能耗散率式(30), *ε*_T模式中引入了紊流特徵長度參數 TLEN。TLEN 長度設置太小將高估能 量耗散,底床載邊界上幾乎沒有動靜; 太大則能量耗散值偏小從而導致不能 準確模擬紊流。經過大量的數值模擬, FLOW-3D[®] 預設 TLEN 取計算域三個 方向最小長度的7%倍。進行底床淘刷 預測數值模擬時,計算域通常在垂直 方向最小,如果從 Zmin 至 Zmax 是 50 m, 則 TLEN 的輸入值等於 50×0.07 = 3.5。

$$\varepsilon_T = CNU \sqrt{\frac{3}{2}} \frac{k_T^{\frac{3}{2}}}{TLEN}$$
(31)

CNU 紊流黏度預估係數, RNG 紊 流模式預設值為 0.085, κ-ε 紊流模式 預設值為 0.085。

在 RNG 紊流模式求解式 (25) 中 的 ε_T 值時,如果小於式 (31) 的計算值, 則程式將式 (25) 的計算值作為 ε_T 的 值。RNG 紊流模式中引入的各個參數 $CNU \times v_k \times v_c \times CDIS1 \times CDIS2$ 和 CDIS3 均為常數,其值見表 2。

表 2 RNG	表 2	G 紊流模式系數值
---------	-----	-----------

係數項	CNU	v_k	V _ε	CDIS1	CDIS2	CDIS3
數值	0.085	1.39	1.39	1.42	1.92	0.2

4.2 邊界與網格處理方法

4.2.1 開放邊界

在非主要波、流輸入方向的邊界條件,可選用 Sommerfeld 輻射邊界條件 (radiation boundary condition),表示為

$$\frac{\partial Q}{\partial t} + C_c \frac{\partial Q}{\partial x} = 0 \tag{32}$$

其中Q表示任何求解之變數,而 C_c則為通過邊界之波浪相位速度。

4.2.2 造波邊界

FLOW-3D[®] 三維波場造波邊界條 件是依據 Stokes 5 階理論, Stokes 波 是一種非線性有限幅度的前進波,比 較線性波理論,它允許更高的波動幅 度。圖 3 表示 Stokes 5 階造波由平底 水槽傳播至計算領域的邊界網格。

圖 3 Stokes 5 階造波邊界示意圖

如上圖中所示,假設平底水域之 前進波列通過網格邊界進入計算領域, 垂直向上為+z,水平為波列前進方向, 為 ±x 或 ±y。波高 H 是波谷到波峰 的垂直距離,L表波長,T表週期,靜 止水深h=常數,水位η隨時間變化, 並沿著+z從底部量至水面,波角頻率 ω和波速度c關係式如(33)所示。

$$v = \frac{2\pi}{T} = ck, \quad c = \frac{L}{T}, \quad k = \frac{2\pi}{L}$$
 (33)

其中 k 代表造波數、ω 為頻率。 Stokes 波假設勢流理論,即是不可壓 縮非旋轉流。因此,流線函數 ψ 存在 且滿足拉普拉斯方程理論

$$\nabla^2 \psi = 0 \tag{34}$$

由拉普拉斯控制方程式 (Laplace Equation) 之解可求得水粒子運動速度為

$$u = \frac{\partial \psi}{\partial x}, \ w = \frac{\partial \psi}{\partial z}$$
 (35)

進一步的假設波峰存在 (x = 0, t = 0), 拉普拉斯控制方程式 ψ, 隨著自由 表面和底部的邊界條件,利用攝動法 求解拉普拉斯方程。該攝動參數是無 因次的波幅 ε = KH /2, 也被稱為波的 尖銳度。水位和水粒子速度之相對於 ε 五階解如下:

$$\eta(x,t) = d + \frac{\varepsilon}{k} \cos kX + \frac{\varepsilon^2}{k} B_{22} \cos 2kX$$

+ $\frac{\varepsilon^3}{k} B_{31} (\cos kX - \cos 3kX)$
+ $\frac{\varepsilon^4}{k} (B_{42} \cos 2kX + B_{44} \cos 4kX)$
+ $\frac{\varepsilon^5}{k} \begin{bmatrix} -(B_{53} + B_{55}) \cos kX \\ +B_{53} \cos 3kX + B_{55} \cos 5kX \end{bmatrix}$
 $u(x,z,t) = U + C_0 \left(\frac{g}{k^3}\right)^{1/2} \sum_{i=1}^5 \varepsilon^i \sum_{j=1}^i A_{ij} jk \cosh jkz \cos jkX$

 $w(x, z, t) = C_0 \left(\frac{g}{k^3}\right)^{1/2} \sum_{i=1}^5 \varepsilon^i \sum_{j=1}^i A_{ij} jk \sinh jkz \sin jkX$ (38)

其中X = x - ct, $kX = kx - \omega t$ 。係 數 A_{ij} 、 B_{ij} 和 C_0 都是 kd 的非線性函數, 可視為 Stokes 波一階近似線性波理 論。換句話說, Stokes 五階理論精度 高於線性波 ε 的四階,波數和波頻相 依且滿足非線性方程。

$$\left(\frac{k}{g}\right)^{1/2}U - \frac{\omega}{(gk)^{1/2}} + C_0 + \left(\frac{kH}{2}\right)^2 C_2 + \left(\frac{kH}{2}\right)^4 C_4 = 0$$
(39)

上式中 C_0 、 C_2 和 C_4 是kd的非線 性函數[Fenton-1985],這是不考慮(39) 式左側末兩項的線性波分散關係式一 階近似的計算結果。網格邊界造波初 始條件必須使用時只需於波長或週期 其中擇一輸入即可,迭代計算k的初 始近似值[Fenton-1988]如(40)式:

$$k = \frac{\alpha + \beta^{2} \sec h^{2} \beta}{(\tanh \beta + \beta \sec h^{2} \beta)d}$$
(40)
$$\vec{x} \neq$$

$$\alpha = \frac{\omega^2 d}{g}, \ \beta = \alpha \sqrt{\coth \alpha} \tag{41}$$

這個理論同時適用於深水波和淺水波,參數 ε 不能太大,亦即波的尖銳度儘可能小,此外,更須考慮波長與水深比,波長的合理上限為 $T(g/h)1/2 \approx L/h \approx 10$ [Fenton-1985]。

(1) VOF 自由液面處理方法

FLOW-3D[®] 的自由液面追蹤法使 用 VOF 計算,可以精確的模擬流體介 面結合與分離狀態,FAVOR 定義矩形 網格內一般幾何形狀的區域,利用矩 形立方體所構成的網格定義複雜的幾 何形體,定義每一個矩形立方體六個 面的流通面積比與自由出入的體積。 這些部分面積與體積將會結合到有限 體積的運動方程式中,例如,在二個 元素的公共面上,對流的質量、動量 與能量通量必須包含此面可讓流體自 由通過的面積當作一個乘數,若沒有 可讓流體自由通過的面積,則不可能 有對流的通量。FAVOR 的優越之處在 於它提供建立模式時的彈性。對於不 可壓縮、黏性流而言, FAVOR 以下列 方程組表示:

$$\nabla \cdot \left(\overline{Au}\right) = 0 \tag{42}$$

$$\frac{\partial \vec{u}}{\partial t} + \frac{1}{V} \left(\vec{A} \vec{u} \cdot \nabla \right)^{\mathrm{r}} u = -\frac{1}{\rho} \nabla P + \frac{1}{\rho V} \left(\nabla \vec{A} \right) \cdot \left(\mu \nabla \right) \vec{u} + g$$
(43)

其中

$$\overline{Au} = \left(A_x u_x, A_y u_y, A_z u_z\right) \tag{44}$$

$$\left(\nabla \overline{A}\right) = \left(\frac{\partial}{\partial x}A_x, \frac{\partial}{\partial y}A_y, \frac{\partial}{\partial z}A_z\right)$$
(45)

上式中7是相關於流體可自由通 過的部分面積,V表示可自由進出的 部分體積,ρ是密度,P是壓力,ū表示 速度,μ是流體的黏滯係數,g表重力。 FLOW-3D[®]除了能夠計算單一流 體的運動,亦可計算液/氣界面(不可 壓縮流體/可壓縮流體),甚至模擬多 相流體界面。

定義一 VOF 函數 F(X, Y, Z) 代表 控制體積內不同特性流體所佔體積分 率,以液/氣體混合界面為例,F=0 代表控制體積內充滿氣體,F=1 則表 示控制體積內皆為液體,而0<F<1 時存在自由液面。F函數亦應滿足直角 坐標下的控制方程式:

$$\frac{\partial F}{\partial t} + \frac{1}{V_F} \begin{bmatrix} \frac{\partial}{\partial x} (FA_x u) + R \frac{\partial}{\partial y} (FA_y v) \\ + \frac{\partial}{\partial z} (FA_z w) + \xi \frac{FA_x u}{x} \end{bmatrix} = F_{DIF} + F_{SOR}$$
(46)

$$F_{DIF} = \frac{1}{V_F} \begin{bmatrix} \frac{\partial}{\partial x} \left(v_F A_x \frac{\partial F}{\partial x} \right) + R \frac{\partial}{\partial y} \left(v_F A_y \frac{\partial F}{\partial y} \right) \\ + \frac{\partial}{\partial z} \left(v_F A_z \frac{\partial F}{\partial z} \right) + \xi \frac{v_F A_x F}{x} \end{bmatrix}$$
(47)

其中 $v_F = c_F \mu / \rho$ 表擴散常數, c_F 為 參照紊流施密特數, F_{DIF} 是紊流擴散 項,藉以計算兩種流體發生紊流混合 時的分佈狀況。 F_{SOR} 與 R_{SOR} 具相關性, 表示體積分率的時間變化率。

(2)網格處理方法-多區塊結構網格

多區塊結構網格(Multi-block Grids), 能減少網格數目,網格與幾何現狀自 動耦合,精確、穩定、可以加快運算 的收斂性。

(3) FAVOR 障礙物體積分率表示法

FLOW-3D[®] 數值方法採用 FAVOR (Fractional Area/Volume Obstacle Representation) 表示法及控制體積 (Control Volume) 的 觀 念, 使 網 格 與 幾 何 形 狀完全獨立。這種方法比變形網格 (Deformation Mesh)的方法簡單,避開 了冗長的網格整理工作,即使模式非 常複雜,也能夠精確的描述外型。利 用矩形立方體所構成的網格,能夠定 義每一個矩形立方體六個面的流通面 積比與自由出入的體積。這些部分面 積與體積將會結合到有限體積的運動 方程式中,例如,在自由液面上,對 流的質量、動量與能量通量必須包含 此面可讓流體自由通過的面積當作一 個乘數,若沒有可讓流體自由通過的 面積,則不可能有對流的通量。

對於防波堤堤頭地形淘刷的模擬,FLOW-3D[®]可以波場或流場分別 進行模擬,或是當造波邊界導入流場時,FLOW-3D[®]的求解器可同時混合 流場與波場的數值計算。

五、波場定床三維數值模擬

數值模擬流程概略分為前處理、 數值求解及後處理三個階段。前處理 階段:選定適當的控制模組,確立初 始條件及邊界條件,劃分計算網格與 生成計算節點。數值求解階段:導入 離散方程,設定求解控制參數,求解 離散方程,判斷求解是否收歛,若還 未收斂,調整控制參數再導入離散方 程;若已收斂,則以後處理展示和輸 出計算結果。

5.1 模式驗證

陳彥彰 (2004) 以 Wei 等人 (1995) 之二階非線性 Boussinesq 方程式為 控制方程式,再加入 Kennedy 等人 (2000)之方法以模擬波浪碎波及溯升。 在數值模式的建立上,則參考 Wei 及 Kirby(1995)之研究,為避免數值離 散之捨去項造成數值頻散,建議在空 間離散上,對一階微分項採四階精確 度之中央差分法,二階以上之微分項 則離散至二階準確度後進行計算,以 解決數值頻散的問題。另外, Wei 和 Kirby(1995) 在計算網格上是以非交錯 網格 (non-staggered grid) 進行離散,其 會造成數值計算上有鋸齒狀波形的出 現,會使得模式較不穩定,為改善此 一情況,此研究採用 Banijamali(1997) 提出的交錯網格 (staggered grid) 進行 有限差分法之離散。在時間離散上, 利用四階精確度之 Adams-Bashforth-Moultor 預測與修正 (predictor-corrector) 技巧。模式計算規則波通過潛堤及斜 坡底床上的波場變化,計算結果並與 理論值或試驗值進行一系列比較驗証, 用以確認此模式適用於近岸波場的 模擬。

本研究以 FLOW-3D[®] 模式計算規 則波通過潛堤及斜坡底床上的波場變 化,計算結果與陳彥彰(2004)、理論 值及試驗值進行一系列比較驗証,驗 證案例如表 3、試驗佈置圖如圖 4,模 擬結果如圖 5、6 所示。結果顯示, 以 FLOW-3D[®] 模式計算所得均可適 當描述規則波通過潛堤及斜坡底床上 的波場變化,結果亦比二階非線性 Boussinesq 方程式所得結果為佳。

模擬案例		長 度 (m)	網格 (m)		造波 條件		模擬時間	網格總數
				h	Н	Т	(6)	
				(m)	(m)	(s)	(3)	
Q	Х	32	$\delta x = 0.05$					
SE	Y	1.5	$\delta y = 1$	0.4	0.02	2	30	64000
-	Ζ	0.5	$\delta z = 0.005$					
Ç	Х	32	$\delta x = 0.05$					
ASE	Y	1.5	$\delta y = 1$	0.4	0.025	1.25	30	64000
2	Ζ	0.5	$\delta z = 0.005$					

表 3 驗證案例列表

圖 4 Beji 等人 (1992) 之試驗佈置圖

圖 5 CASE 1 (─):陳論文模式;(o): Beji 等人試驗值;(---):FLOW 3D 模擬

圖 6 CASE 2 (一):陳論文模式;(o): Beji 等人試驗值;(---):FLOW 3D 模擬

5.2 防波堤堤頭波場計算範圍及水 深地形

台中港波場數值模擬以台中港北 防波堤堤頭附近海域並包含南防波堤 為計算範圍,如圖7所示。防波堤堤 頭附近計算範圍為4.3km×3.8km,底 床邊界採用附近海域實測地形資料。 根據網格獨立性測試結果,垂直入射 波向(δy)網格設定為1/20波長,平行 入射波向網格(δx)設定為1/10波長, 而垂直水層網格(δz)則設定為1/180 波長。

麥寮工業港波場數值模擬以麥 寮工業港西防波堤堤頭附近海域並包 含東防波堤為計算範圍,如圖 8 所 示。防波堤堤頭附近計算範圍為 2.3 km×2.6 km,底床邊界採用附近海域 實測地形資料。根據網格獨立性測試 結果,垂直入射波向(δy)網格設定 1/20 波長,平行入射波向網格(δx)設 定為 1/10 波長,而垂直水層網格(δz) 則設定為 1/130 波長。

圖 7 台中港波場數值模擬海域示意圖

圖 8 麥寮工業港波場數值模擬海域 示意圖

5.3 輸入條件

為瞭解堤頭附近因波浪所引發的 波場與流場分佈,將縮小計算範圍, 加密堤頭處的網格分佈,專注於堤頭 附近的解析;台中港西防波堤堤頭海 域及麥寮工業港西防波堤堤頭海域波 場計算案例如表4所示,模擬時間以 成熟波完成傳遞計算海域為考量,入 射波浪邊界以北側海域為主西側海域 為輔,海象包括50年期颱風、夏季 平均、夏季最大、冬季平均及冬季最 大等。

表4 FLOW-3D[®]計算案例

計算案例	H (波高)	T (週期)	波向	模擬 時間
台中港 50 年期颱風	7.40m	11.4s	N	27T
台中港 50 年期颱風	7.40m	11.4s	W	30T

計算案例	H (波高)	T (週期)	波向	模擬 時間
台中港 夏季平均	1.02m	5.8s	N	27T
台中港 夏季最大	7.50m	6.0s	N	27T
台中港 冬季平均	2.08m	6.3s	N	27T
台中港 冬季最大	6.91m	6.0s	N	27T
麥寮港 50 年期颱風	5.90m	10.2s	N	30T
麥寮港 50 年期颱風	5.90m	10.2s	W	30T

5.4 Stokes 5 階造波波場水粒子運動 軌跡

為了檢視 FLOW-3D[®] Stokes 5 階 造波數值解之生成與傳遞現象,於數 值水槽造波邊界處預先設定追蹤粒子 五個在一垂直線上,粒子直徑 0.5 m, 密度 1000 kg/m³,入射波高 5.9 m,造 波週期 10.2 s,水深依本計畫麥寮工業 港附近海域底床地形變化,如圖 9 至 圖 13 所示。圖中粒子代號 P[T] 表示 位於自由液面 (z = -0.25 m)處, P[U] 表示位於上水層 (z = -10 m)處, P[M] 表示位於下水層 (z = -20 m)處, P[L] 表示位於下水層 (z = -30 m)處, P[B] 表示位於底床邊界上 (z = -39 m)處。

圖 9 Stokes 5 階波場速度剖面水粒子 於造波時間 306 s 之位置圖

圖 11 Stokes 5 階波場速度剖面水粒子 運動速度大小之比較

5.5 波場中自由水面變化

波場數值模擬的自由水面時序變 化是檢視波場結果合理性最直接的現 象,在此為節省篇幅僅擷取4個造波 週期模擬結果繪製水面時序變化如圖 14 至圖 17 所示。

5.5.1 台中港北側入射波自由水面變化

台中港北侧海域入射波浪的水面 時序變化如圖 14、15 所示,北防波堤 由邊界的東側分成三段向西邊偏北方 延伸,與海岸線包圍略呈狹灣,北側 海域入射波浪進入之後即受到地形的 影響,東側近岸區隨即呈現淺化現象, 模擬時間經過第9個造波週期時,波 浪已傳播抵達堤頭,入射波浪受到防 波堤影響而致產生東至東北側海域的 反射波,至第12造波週期(12T)時與北 侧海域入射波、東北側海域反射波及東 北側海域二次反射波交互疊合形成水 面變化情況複雜的短峰波場。需注意 的是,為便於觀察小振幅的變化,圖 中水位尺度色標設定的限制值為 ±5 m 幅度,當計算結果超過 ±5 m 時仍以 上、下限顏色表示,入、反射波浪疊 合後的水位變化已超過此範圍,並非 水位變化最大僅達±5m之程度。隨 著模擬時間的增加,繞射波浪逐漸進 入北防波堤南侧的遮蔽區域,而波浪 繞射現象於堤頭處所形成點波源的波 動,亦可於第 15 造波週期 (15T) 時後

清楚地觀察到。比較第18造波週期 (18T)時至第24造波週期(24T)時間變 化,除北防波堤南側繞射波浪持續向 東傳遞之外,各波峰線與短峰波峰點 所在位置與水位高程已接近穩定。

圖 14 台中港北側入射波第 9 週期

圖 15 台中港北側入射波第 24 週期

5.5.2 台中港西側入射波自由水面變化

台中港西側海域入射波浪的水面 時序變化如圖 16、17 所示,隨著西側 海域入射波浪向岸傳遞,北防波堤堤 頭首當其衝,將入射角接近正向的群 波南北分隔,在防波堤北側海域之群 波隨著地形逐漸淺化,而進入防波堤 南側海域的波浪則產生顯著的繞射現 象。當模擬時間經過第18個造波週期 (18T)時,進出港航道海域則是堤頭繞 射波與入射前進波疊合區,這種情於 對於進出港船舶造成航行安全上的考 量,至第30個造波週期(30T)波浪傳 遞進入港內水域,對於港內停泊船隻 的裝卸作業也會產生一定的影響,因 此顯見台中港北防波堤的設計對於西 側海域入射波的遮蔽效果不佳。

圖 17 台中港西側入射波第 30 週期

5.5.3 麥寮工業港北側入射波自由水 面變化

麥寮工業港北側海域入射波浪的 水面時序變化如圖 18、19 所示,西防 波堤由邊界的東北角分成兩段向西南

方延伸,因此北侧海域入射波浪進入 之後即受西防波堤阻擋而產生反射波, 其波向約為東至東北方向之間,模擬 時間經過第12造波週期後,入射波浪 逐漸受第二段西防波堤影響而致發東 至東北側海域的反射波,並與北側海 域入射波、東北側海域反射波及東北 侧海域二次反射波交互叠合形成水面 變化情況複雜的短峰波場。約於第18 造波週期時波浪已傳播抵達堤頭,並 隨著模擬時間的增加,繞射波浪逐漸 進入西防波堤南側的遮蔽區域,而波 浪繞射現象於堤頭處所形成點波源的 波動,亦可於第24 造波週期時觀察 到。由本模擬的波浪水面時序變化觀 察,顯現本防波堤對於北側入射波浪 的遮蔽效果良好,至於堤頭附近總是 處於一個紛紜與平靜的分際點。

圖 18 麥寮工業港北側第 18 造波週期

5.5.4 麥寮工業港西側入射波自由水 面變化

麥寮工業港西側海域入射波浪的 水面時序變化如圖 20、21 所示,西側 海域入射波浪群波的傳遞方向和台中 港一樣,西防波堤堤頭也是首當其衝, 只是夾角較大(大約10度)。因波浪 群波入射方向與堤頭逆向銳角,亦呈 現分隔現象,進入防波堤北側海域之 群波則隨地形逐漸淺化,而進入防波 堤南側海域的波浪不但受到地形淺化 的影響,接近東防波堤時亦與反射波 會,對於西側海域入射波的遮蔽效 果雖然比台中港稍佳,但對於船舶進 出港的導航以及港內裝卸貨作業都會 造成一定程度的影響。

圖 20 麥寮工業港西側第 9 造波週期

圖 21 麥寮工業港西側第 24 造波週期

5.6 堤頭前之垂直流況變化

5.6.1 台中港北側入射波堤頭垂直流況

台中港北側海域入射波通過緊鄰 北防波堤堤頭的流況垂直剖面,如圖 22 所示。波浪水粒子運動速度的計算 等於 (u² + v² + w²) 和的開平方,右上 方黑色箭頭符號長度表示速度每秒 5 m 的單位。圖中第 9 個造波週期時波浪 剛好抵達且波峰正通過堤頭,其北側 緊鄰的網格顯示此時的波浪水粒子運 動方向沿著垂直壁下潛,由色階判斷 速度介於1m/s至2m/s之間;第12個 造波週期時成熟的波浪與堤頭開始劇 烈的耦合運動,水粒子下潛的趨勢明 顯,速度由底床至水面增加到6m/s, 評估此波浪條件下所引發的流場,應 造成底床相當程度的影響。堤頭的下 游面,受到結構物的遮蔽,垂直流場 則仍有1m/s左右、運動方向向上的流 動;第18個造波週期至第24個造波 週期的波浪水粒子運動趨於穩定,速 度介於1m/s至2m/s之間。

圖 22 台中港北側入射波堤頭垂直流況

5.6.2 台中港西側入射波堤頭垂直流況

台中港西側海域入射波通過緊鄰 北防波堤堤頭垂直剖面流況的時序變 化,如圖 23 所示,為了便於分辨低速 底層流況之分布情形將流況圖色階範 圍全面降低,由於堤身與群波入射方向 接近平行且有 20 度的偏北,因此波浪 傳遞並未有明顯的流固耦合現象,底 床流速分布與時序變化均小於0.5m/s, 對於堤頭附近海床的掏刷影響小於北 側入射波浪。

圖 23 台中港西側入射波堤頭垂直流況

5.6.3 麥寮工業港北側入射波堤頭垂 直流況

麥寮工業港北側海域入射波通過 緊鄰西防波堤堤頭垂直剖面流況,如 圖 24 所示。波浪水粒子運動速度的計 算等於 $(u^2 + v^2 + w^2)$ 和的開平方。圖中 波浪在第12個造波週期時抵達堤頭, 波浪水粒子運動速度低於 1m/s, 至第 18 個造波週期時波浪與堤頭開始劇烈 的耦合運動,水粒子下潛抬升起伏上 下趨勢明顯,速度由底床而水面增加 到 4m/s,評估此波浪條件下所引發的 流場,應造成底床相當程度的影響。 堤頭的下游面,受到結構物的遮蔽, 垂直流場則仍有 1m/s 左右、運動方向 向上的流動;第18個造波週期至第24 個造波週期的波浪水粒子運動趨於穩 定,速度介於1m/s至2m/s之間。

圖 24 麥寮工業港北側入射波堤頭垂 直流況

5.6.4 麥寮工業港西側入射波堤頭垂 直流況

麥寮工業港西側海域入射波通過 緊鄰西防波堤堤頭垂直剖面流況,如圖 25 所示。深藍色趨近於零的向量分布 於底床坑洞上方水層,而在坑洞的斜坡 與坑底顯示的的流速推估大於 1m/s。

圖 25 麥寮工業港西側入射波堤頭垂 直流況

5.7 防波堤頭附近最大底床水分子速 度分佈

為了進一步瞭解數值模型波場內 的流況,並提供更易於理解的資訊, 對數值的時序列計算結果,進行統計與 分析。首先定義分析海域範圍,以台 中港北防波堤堤頭為原點,其方形對 角點座標:([-400,-100]、[100, 200]); 以麥寮工業港西防波堤堤頭為原點, 其方形對角點座標:([-400,-300]、 [100, 200]),如圖 26、圖 27 所示。對 該波場內所有模擬時間步階的水分子 速度由大至小進行排序,其第一筆資 料即為最大值(V_{max}),並計算其總資料 量的前十分之一的水分子速度平均值 (V_{1/10})及前三分之一的水分子速度平均值 (V_{1/10}),各分析案例如表5所示。

圖 26 麥寮工業港北側入射波堤頭垂 直流況

圖 27 麥寮工業港西側入射波堤頭垂 直流況

分析 案例	造邊	波界	海條	象件	波 高 (m)	週 期 (s)	底床 流速 V _{max}	底床 流速 V _{1/10}	底床 流速 V _{1/3}
台中 港場	北	側	颱 50	風年	7.40	11.4	2.82	1.23	0.91
台中 港場	西	側	颱 50	風年	7.40	11.4	2.38	1.45	0.99
台中 港 波場	北	側	夏平	季均	1.02	5.8	0.02	0.01	0.008
台中 港 波場	北	側	夏最	季大	7.50	6.0	0.31	0.10	0.08
台中 港波場	北	側	冬平	季均	2.08	6.3	0.11	0.03	0.02
台中 港 波場	北	側	冬最	季大	6.91	6.0	0.26	0.09	0.07

表 5 防波堤頭附近最大底床水分子 速度分佈

分析 案例	造波 邊界	海象 條件	波 高 (m)	週 期 (s)	底床 流速 V _{max}	底床 流速 V _{1/10}	底床 流速 V _{1/3}
麥寮 港 波場	北側	颱風 50 年	5.90	10.2	2.73	0.87	0.59
麥蒂 港場	西侧	颱風 50 年	5.90	10.2	2.30	1.63	1.13

台中港北側海域 50 年期颱風入射 波浪條件,波高 7.4 m,週期 11.4 s,模 擬結果的水分子速度最大值 2.82 m/s, 極值排序前十分之一的平均值 1.23 m/s, 極值排序前三分之一的平均值 0.91 m/s。 在同樣區域, V_{1/10} 約為 V_{max} 的 43%, V_{1/3} 約為 V_{max} 的 32%。

台中港西側海域 50 年期颱風入射 波浪條件,波高 7.4 m,週期 11.4 s,模 擬結果的水分子速度最大值 2.38 m/s, 極值排序前十分之一的平均值 1.45 m/s, 極值排序前三分之一的平均值 0.99 m/s。在同樣區域, V_{1/10} 約為 V_{max} 的 61%, V_{1/3} 約為 V_{max} 的 42%。

台中港北側海域夏季最大入射波 浪模條件,波高7.5m,週期6.0s,擬 結果的水分子速度最大值 0.31 m/s,極 值排序前十分之一的平均值 0.1 m/s, 極值排序前三分之一的平均值 0.08 m/s。 在同樣區域, V_{1/10} 約為 V_{max} 的 32%, V_{1/3} 約為 V_{max} 的 26%。

台中港北側海域冬季平均入射波 浪條件,波高2.08m,週期6.3s,模擬 結果的水分子速度最大值0.11 m/s,極 值排序前十分之一的平均值0.03 m/s, 極值排序前三分之一的平均值0.02 m/s。 在同樣區域,V_{1/10}約為V_{max}的27%, V_{1/3}約為V_{max}的18%。

台中港北側海域冬季最大入射波 浪條件,波高 6.91 m,週期 6.0 s,模擬 結果的水分子速度最大值 0.26 m/s,極 值排序前十分之一的平均值 0.09 m/s, 極值排序前三分之一的平均值 0.07 m/s。在同樣區域,V_{1/10} 約為 V_{max} 的 35%,V_{1/3} 約為 V_{max} 的 27%。

麥寮工業港北側海域 5 0 年期颱 風入射波浪條件,波高 5.9 m,週期 10.2 s,模擬結果的水分子速度最大值 2.73 m/s,極值排序前十分之一的平均 值 0.87 m/s,極值排序前三分之一的平 均值 0.59 m/s。在同樣區域,V_{1/10} 約為 V_{max} 的 32%, V_{1/3} 約為 V_{max} 的 22%。

麥寮工業港西側海域 50 年 期颱 風入射波浪條件,波高 5.9 m,週期 10.2 s,模擬結果的水分子速度最大值 2.3 m/s,極值排序前十分之一的平均 值 1.63 m/s,極值排序前三分之一的平 均值 1.13 m/s。在同樣區域,V_{1/10} 約為 V_{max} 的 71%,V_{1/3} 約為 V_{max} 的 49%。

針對台中港及麥寮工業港 50 年期 颱風入射波浪條件的模擬結果,其西 側海域的入射波場 V_{1/10} 值與 V_{1/3} 值都 較北側海域的入射波場大,推測是受 到防波堤遮蔽的影響。

比較 50 年期颱風北側入射波浪條件,麥寮工業港的 V_{1/10}V_{max} 比值遠大 於台中港的 V_{1/10} V_{max} 比值為 21%,推 測原因是防波堤的配置方向與海域地 形的關係。

5.8 掏刷區底床流速與 ESS 之分布

應用多餘剪應力((Excess Shear Stress, ESS = r/r_c)模式可以在定床的 底床邊界條件下快速預估動床的掏刷 趨勢,本研究麥寮工業港北側入射波 浪第20造波周期於掏刷區底床的流速 及ESS 之分布分別如圖28、圖29所 示,流速ESS 的大小隨著造波週期增 減。圖中以防波堤堤頭水面切點為原 點,取紅色框選區座標 [x = -222 m, y = -39 m, z = -44 m] 作時序分析如 圖30、圖13 所示,顯示底床流速與 ESS 時序具有一致性的發展趨勢。

六、初步結論

利用 FLOW-3D[®] 對台中港與麥 察工業港防波堤堤頭附近海域進行波 場數值模擬,台中港範圍 4.3 km×3.8 km,麥寮工業港計算範圍 2.3 km×2.6 km,其底床邊界均採用附近海域實測 地形資料,海象條件包括 50 年期颱 風、夏季平均、夏季最大、冬季平均 及冬季最大等,入射波浪邊界以北向 為主西向為輔,模擬時間以成熟波完 成傳遞該計算海域為考量。

分析台中港 50 年期颱風北側及西 侧入射波,波高 7.4 m、週期 11.4 s 的 極端波浪條件,計算造波週期 27 個的 波場以及波浪引發的流場變化。以北 防波堤堤頭為原點,北側海域入射波 浪受北防波堤北侧阻擋形成反射波, 東側沿岸亦同時形成反射波,此兩股 反射波再與入射波交會,海況紛紜, 也證明了防波堤的設置達到了保護港 口的目的。至於堤趾附近海床水粒子 的運動速度,同樣的波浪條件北側入 射波比西側入射波大 0.44 m/s,海床淺 化和防波堤交會角度是主要原因,至 於整體的平均值 (V1/3、V1/10) 卻是西側 入射波比北侧入射波大,防波堤的反 射與遮蔽是主要因素。

分析台中港海域夏季平均、夏季 最大、冬季平均及冬季最大等北側入 射波浪條件的計算結果,發現其波場 引發的底床流速最大值為 0.31 m/s, 約為 50 年期颱風北側入射波的十分之 一,針對防波堤附近海床掏刷機制探 討的必要性,麥寮工業港季節波浪條 件的計算因此先予省略等待商榷。

分析麥寮工業港,波高 5.9 m、週 期 10.2 s 的極端颱風波浪條件,計算造 波週期 30 個的波場以及波浪引發的流 場變化。以西防波堤堤頭為原點,以北 側海域入射波而言,波浪受西防波堤 北側阻擋形成反射波,大幅增長了此 海域的波高,亦提高了波場下的流速, 而西防波堤南側海域受到堤體的遮蔽, 波高變化與流速變化皆小於北側。

藉由模擬波場、波浪引發的流場, 至今對堤頭近域的流體動力狀態已有 初步認識,未來進一步的數值模擬, 將朝向波流交會與漂砂動床等領域持 續測試,以協助釐清與理解堤頭沖蝕 的機制與變化。

參考文獻

- ACHARYA, A. (2011) "Experimental study a-nd numerical simulation of flow and sediment transport around a series of spur dikes," Ph.D. thesis, Univ. of Arizona, USA.
- Dentale, F., G. Donnarumma and E. Pugli-ese Carratelli (2012) "Wave Run Up and Reflection on Tridimensional Virtual Break-water," Journal of Hydrogeology & Hydro-logic Engineering, 1:1.

- Hsu, J.R.C., Y. Tsuchiya and R. Silvester (1979) "Third-order approximation to short-crested waves," J. Fluid Mech., Vol. 90, part 1, pp. 179-196.
- Lin M. and D.S. Jeng (2004) "A 3-D model for ocean waves over a Columb-damping poroelastic seabed," Ocean Engineering, Vol.31, pp. 561– 585.
- Sato, S. and I. Irie (1970) "Variation of t-opography of sea-bed caused by the const-ruction of breakwaters," Proc.12th Int. Co-nf. Coastal Eng., Washington D.C., USA, ASCE 2, 1301-1319.
- Sumer, B. M. and J. Fredsøe (1997) "Sco-ur at the head of a vertical-wall breakwater," Coastal Engineering 29, 201-230.
- Sumer, B. M. and J. Fredsøe (2000) "Exp-erimental study of 2D scour and its prote-ction at a rubble-mound breakwater," Coas-tal Engineering 40, 59-87.
- Sumer, B. M., Richard J. S. Whitehouse a-nd A. Tørum (2001) "Scour around coastal structures: A summary of recent research," Coastal Engineering 44(2), 153-190.
- Sumer, B. M., J. Fredsøe, A. Lamberti, B. Zanuttigh, M. Dixen, K.

Gislason and A. F. Di Penta (2005) "Local scour at roundhead and along the trunk of low crested structures," Coastal Engineering 52, 995-1025.

- 10.林銘崇、盧衍琪、梁乃匡、吳啟東 (1984)「短峰波對防波堤基礎沖刷 影響之研究」,第七屆海洋工程研 討會論文集,pp44-1~44-21。
- 11.劉景毅、黃煌煇 (2000)「直立防波 堤前海流造成之底床沖刷預測」,
 第二屆國際海洋大氣會議論文彙 編,第331-336頁。
- 12.許泰文、黃清哲、藍元志、蔡金 晏、曾以帆、謝志敏、林俊遠(2003) 「防波堤堤前沖刷問題數值模擬研 究」,財團法人中華顧問工程司主 辦,中華民國 92 年 12 月。
- 13.陳海鋒(2009)「波浪作用下的三維 海床回應及液化分析」,天津大學 建築工程學院碩士論文。
- 14. 賴堅戊 (2009)「波浪於粗粒徑斜坡 底床傳遞之試驗與數值研究」,國 成功大學水及海洋工程研究所博士 論文。
- 15.馬煒倫(2011)「潛堤與海堤間波流 場特性之數值模擬」,國立中興大 學土木工程學系碩士論文。