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ABSTRACT

The best wavelet, either in the discrete or in the continuous domain, for water wave

simulations is named. The best basis in the discrete domain is the semi-orthogonal car-

dinal spline wavelet; the counterpart wavelet in the continuous domain is the Morlet

wavelet. In the identification and verification processes, comprehensive basis categories

of discrete wavelet groups are taken into account and inclusive entropy measures are

adopted. In addition, cumulative probability distributions of transform coefficients of var-

ious wavelet groups are examined. Entropy statistics of transform coefficients under all

criteria shows unambiguous jurisdiction for the comparisons; moreover, those statistics

related to the Fourier basis is included in the comparisons. Results show the univocal

superiority of the present best basis over any other bases, including the Fourier basis, for

wind wave signals in the tank. Furthermore, the practical deficiency of the best wavelet

regarding its energy description on water waves is illustrated and an optimization aim-

ing for better physics is devised. Such a refinement is done through the adaptation of a

carrier frequency parameter associated with wavelet time-frequency windows. At last, as

a definitive proof of the present realization of the best basis, the wavelet coherences are

compared to the Fourier spectral coherences for measurements of wave and aqueous flow

fields in a wind-wave tank. The absolute superiority, as well as the outstanding and infor-

mative results, of wavelet coherences make the full vindication of the present study. It is

believed that, concerning wavelets’ applications to water waves, the best basis identified

here is the last and ultimate word in wavelets.
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Chapter 1
Introduction

1.1 Background

In wavelet’s applications to water wave physics, it is quite often seen that a specific func-

tion basis is adopted for no reason at all. The results thus yielded are destined to be

inconclusive and problematic, or even misleading and erroneous — mathematics does not

need to be liable to physics. Mathematics provides the tools without any precondition

while physics needs proper instrumentation and should be reasonable. Moreover, the use-

fulness of a particular data analysis methodology is highly case dependent; there simply

exists neither a full-fledged analyzing function basis nor an all-purpose numerical scheme

for all sorts of signals and applications.

Chronically, from the somewhat traditional and well established spectral perspective

to the more recent wavelet viewpoints, we have the following instrumentations:

• Fourier transform;

• Short time Fourier transform or windowed Fourier transform;

• The Gabor’s analytical signal procedure and the relevant Hilbert transform;

• Various time-frequency transforms associated with individual distributions or ker-

nels, such as Wigner Distribution, Page distribution, Choi-Williams distribution,

etc. [9];



• The continuous wavelet transform or the integral wavelet transform;

• The discrete wavelet transform.

It is noted that, unlike the discrete and continuous Fourier transforms, which are basically

identical in both function bases and formulations, the discrete wavelet transform and the

continuous wavelet transform are two essentially different categories with regard to the

following two aspects. First, they generally use completely different function bases; Sec-

ond, they involve relatively quite independent mathematical formulations.

In the following descriptions let assume the analytical target to be a one-dimensional

time series signal and let outline the most basic attributes for individual analytical method-

ologies.

The Fourier transform yields another one-dimensional data in frequency domain. The

transform correspondence is one to one. And the correspondence is a time domain vari-

able to a frequency one.

For short time Fourier transform, it yields somewhat localized frequency contents

by capping the signal with a window. And, when the capping window is shifted along

the time line, it provides time-dependent spectral information. Through such multiple

processes the transform correspondence is from the one dimensional time variable to the

two dimensional time and frequency variables.

For Gabor’s analytical signal procedure, it is based upon the Hilbert transform, which

is basically the inverse Fourier transform of a one-sided spectrum that is formed through

the chopping off the part of negative frequency. here the independent variable in the two

corresponding transform domains is both time. And the procedure yields instantaneous

frequency distribution and amplitude envelop curve along the time line [9, 17]. Ideally,

the instantaneous frequency and amplitude should be independent with each other (since

they are of two completely different physical units) but in reality they are intertwined and

sometimes twine in an unimaginable way. Moreover, the interaction is extremely serious

when the relative rate of variation of amplitude is significant. And the symptoms intro-
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duced here manifest its Fourier transform relevance. Thusly, insurmountable uncertainty

involved is always a concern [17].

As for various time-frequency transforms associated with individual distributions (or

kernels), they also provide time-varying frequency contents that are conceptually identi-

cal to the short time Fourier transform, except that the involved analyzing kernels are re-

lated to individual distribution kernels rather than the Fourier kernel of short time Fourier

transform. For these transforms they always have their individual pros and cons; none is

perfect.

For the discrete wavelet transforms, a one-dimensional time series yields directly an-

other one-dimensional coefficient series that contains the information that covers both

“time” and “scale”. The correspondence is one independent variable to a variable that

mixes two independent variables into one in one transform process. But here, for almost

all of the discrete wavelets, the “scale” is generally quite different from the sinusoidal

frequency and normally not even possible to be assigned to a “representative frequency”.

And this causes tremendous difficulties in physics apprehension. Besides, we rarely see

a complex discrete wavelet in water wave applications. The dual-tree complex discrete

wavelet transform may still provide a quantity different from the general concept of sinu-

soidal “frequency”.

As to the continuous wavelet transform, the one-dimensional time series yields two-

dimensional coefficients that contain information varying both in time and in scale. But

now, due to its loosen theoretical requirement and hence its flexibility in design, it is

possible to bring in a physically meaningful “representative frequency” rather than just

“scale”. The numerical implementation is a multi-process scheme conceptually similar to

the short time Fourier transform, except its core differences in the design of the capping

windows of varying sizes and its better localization for the fulfillment of the requirement

of the wavelet “resolution of identity”. Again, every time point has a component scale

distribution and every scale may play a role at a specific time.
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1.2 Local and transient effects

It is well known that Fourier transform is suitable for characterizing stationary signals

and not quite satisfactory for analyzing transient local phenomena. The reasons can be

illustrated by the following properties of the transform.

• Any Function cannot be both time- and band-limited. If a function is limited (fi-

nitely supported) in one domain, then the independent variable of its corresponding

function in the other domain stretches the entire real line (R). In real world situ-

ations, however, signals are almost always limited in time and space; meanwhile,

hardware’s capability is generally band-limited. This simply implies that there is

not going to be a function basis that perfectly matches theory to practice. A slight

variation of the Fourier transform is the short time Fourier transform, which is just

the Fourier transform of the windowed signal, i.e., the original signal capped with

or multiplied by a window function. In short time Fourier transform this property of

mutual exclusivity in time and frequency localizations is indicated by the Balian-

Low theorem, which basically states that if the window function g(t) of a Gabor

type frame

gm,n(t) = e−2π imt g(t − n), (1.1)

in which m, n ∈ Z, is well localized in time, then the associated Fourier transform

window can not be well localized in frequency. The point here sounds a bit abstract,

but, in reality, this is conceptually equivalent to the following points.

• The Gibbs phenomenon states that, if there is a jump in signal, then the overshoots,

occurring at both sides of the discontinuity when the inverse Fourier transform is

implemented, can never disappear and remain at constant. This amounts to say

that it takes quite many a spectral component to make up a sharp transient feature

and that a local variation affects a broad range of the spectrum just as the Fourier

transform of the delta function (more precisely, delta distribution) covers the whole
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frequency axis.

• Fourier basis functions are periodic and extend bi-infinitely; signals thus studied

are better to be periodic and sampled infinitely. The unavoidable side effects for not

fulfilling these requirements are many: frequency leakages, smoothing errors, edge

effects due to data truncations, aliasing due to under-sampling or non-periodicity

(figure 1.1 (TFW–WP BB) is actually a case of under-sampling, where a linear chirp

is sampled at a rate half of the Nyquist frequency), and, uncontrollable spectral

variance due to the finite resolution or histogram processing.

Overall, the syndromes associated with the above listed items can be referred to the

non-stationary effects.

1.3 Windowed transforms

Except the fourier transform all the transforms mentioned in the preceding section can be

classified as a form of windowed transform (either in time or in frequency).

Both short-time Fourier transform and wavelet transform try to remedy Fourier ba-

sis’s deficiencies in characterizing transient phenomena by analyzing the set of localized

signals. For the short time Fourier transform this can easily be executed by varying m and

n in equation 1.1. For the wavelet transform this can be illustrated through the use of the

Morlet wavelet by varying its translation and dilation variables.

Both transforms yield local spectral information – more precisely, local scale infor-

mation, if the term ”frequency”, “Hz”, or “spectrum” is strictly reserved for sinusoidal

functions. However, due to the Balian-Low theorem mentioned above, the waveform as-

sociated with short time Fourier transform can never be truly local in time since in reality

the frequency domain of discrete Fourier transform is always band-limited by obeying

the Nyquist law. In this regard, wavelets can be of exactly local; at least, they must have

suitable or better decaying property such that they contain no zero-frequency component.

Let us further outline a few specific properties pertaining to individual transform:
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• Both short time Fourier transform and wavelet transform are windowed transforms.

In short time Fourier transform there exist two quite distinctive operations. The

first operation is applying a suitable time-window to the signal; the second opera-

tion is performing the Fourier transform for the capped signal. The corresponding

inverse transform (or reconstruction process) of the short time Fourier transform is

naturally associated with a frequency-window and involves two similar distinctive

operations too. However, in wavelet transform these two distinctive steps are not

clearly observable — rather than using the very distinctive “window (either time- or

frequency-window)” and “Fourier basis function (i.e., sine or cosine function)”, the

“window” and the “basis function” are synthesized in an inseparable specific form

called “wavelet”. In fact, one can clearly solidify this notion by comparing the Ga-

bor type frame (equation 1.1) with the Morlet wavelet when the window function

g(t) of equation 1.1 is assumed to be a Gaussian bell. The intention for either the

combined operation or synthesized operation is completely the same: to provide a

mechanism (or kernel) for projecting a signal into modulated or oscillating wave

constituents.

• The time-frequency windows in short time Fourier transform keep rigid for different

scales since the window function g(t) in Equation 1.1 does not depend on m, i.e.,

their widths (usually referring to time) and heights (usually referring to frequency)

do not change for all frequencies. In wavelet transform, the windows are adjusted

to different scales, but the sizes (or areas) of different windows are still fixed, i.e.,

each window’s height and width are inversely proportional and the product remains

constant (either for discrete wavelet transform or continuous wavelet transform).

The concept of fixed size windows is illustrated by the fixed area of the gray blocks

in the phase planes shown in figures 1.1 (TFW–WP BB) and 1.2 (TFW–WP BL), where the

discrete wavelet packet transforms are performed for a chirp signal using different

bases originating from the same seeding mother wavelet. In the figures, since the

bases are orthonormal, all time-frequency windows do not overlap. As for the con-
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tinuous wavelet transform, various time-frequency windows severely tangle with

each others. And we generally do not show the actual sizes and shapes of various

windows — rather, each window is represented by a point (or a small area depicting

the time-frequency resolution) having coordinates corresponding to its centroids in

the time and frequency axes.

• The function basis of the short time Fourier transform is the unique orthonormal

Fourier basis comprised of sine and cosine functions; whereas, for wavelet trans-

form, apart from the very loose constrain that the basis function (or the mother

wavelet) satisfies the admissibility condition (for continuous wavelet transform) or

stability condition (for discrete wavelet transform), there is virtually no restriction

on the choice of basis functions. The coefficients of short time Fourier transform,

which represent local Fourier spectral information, still have the exact meaning

of “frequency”. In wavelet transform, wavelet coefficients refer to specific scales

rather than “frequencies”. Here, we generally suffer from their physical inter-

pretability due to the following reasons: (1) No unique basis — the analyzing

function or mother wavelet can be designed in a plenty of ways, and the basis

functions related to the mother wavelet can be either dependent or independent

(orthogonal or non-orthogonal); (2) Scale does not have unit — together with the

first point, it severely hampers out ability to directly perceive the wavelet’s size

and physical shape; and, (3) No fixed algorithm to implement wavelet transform —

many techniques and various adaptations exist, such as, the treatment using flexible

time-frequency windows for continuous wavelet transform [16], multi-voice [12]

or multi-wavelet [10, 11, 33] frames, and discrete wavelet transform using different

dilation factors other than the most often seen value of 2 [3]. Generally speaking,

these varieties may not be as disturbing in certain application fields (such as data

transmission or signal decomposition and reconstruction) as they are for our studies

focusing on the water wave physics.
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Fig 1.1 (TFW–WP BB) The time-frequency window distribution (or phase plane) of a wavelet
packet’s best basis (top) for a linear chirp signal that is sampled under an
aliasing condition (thus the symmetric frequency distribution (bottom) is
yielded). Here the wavelet packet is associated with a Coiflet of 30 convolu-
tion weights and the basis refers to the best basis rather than basis associated
with the best level as to be shown in the next figure. The original signal,
if not under-sampled, has linear instantaneous frequency distribution form
0 to 100 Hz in the full span of time. Note the non-symmetric distribution
and and the scattering of windows. These phenomena reflect the composite
frequency bands of a mother wavelet and inherent quarks that may arise, as
well as the shift-non-invariant transform property.
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Fig 1.2 (TFW–WP BL) Choosing an appropriate wavelet basis is a dilemma to be resolved first. Here
are shown two different wavelet packet phase plane representations associ-
ated with the same Coiflet and the same aliasing signal as the preceding
figure. The distributions are now based on wavelet packet’s best level, which
occurs at transform level 5 for such a signal. The top sub-figure is in log-
arithmic measure and the bottom is in linear measure. In view of the fact
that a single orthonormal mother wavelet can yield many different wavelet
representations, and the fact that there are basically infinitely many wavelet
bases, as well as the fact that we may use different graphic renderings; we
are easily trapped in the quandaries of wavelet analyses.
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• We note that the present scope focuses on the L2(R) Banach space, i.e., the Hilbert

space, since some of the statements here may not apply to other function spaces

or classes [12, 29]. Nevertheless, most of the intricacies that differentiate different

spaces are only of analytic interest up until now (e.g., on the existence of multires-

olution analysis (MRA), on the regularity and differentiability of wavelets and its

associated scaling functions). From the practical point of view, it is far enough to

restrict to the Hilbert space, i.e., a space of functions with finite “energy” contents.

1.4 The objectives

There are basically infinitely many wavelet function bases to choose from in any data

analyses or in any applications. Nevertheless, it is not uncommon to see that a particular

wavelet is chosen without given any usage specificity. The arising problems thusly quite

often exceed the problems they want to solve, and the provided results in most cases are

shoddy and misleading, or even erroneous. A mathematical existence does not always

accommodate a reasonable physical nicety. And this is particularly true for wavelets’

employment in our field concerning water wave physics.

The foothold to use localized transforms in our water wave applications can be stated

quite simply, as well as intuitively — if we perceive our signal as composed of waves

which are limited both in life span and in covering distance, i.e., constituent components

are evolving with time and in space, then it is natural to adopt wavelet as our analyzing

function. Furthermore, in addition to waves’ modulation nature, if we also acknowledge,

even for regular waves, that intrinsic instability due to nonliner effects may exist and that

interactions and boundary conditions are everywhere to be observed, then it is still quite

possible that, for stationary signals, wavelet decomposition can provide better descrip-

tions of physics than can the Fourier decomposition. Besides, another advantage of using

wavelets is the possible flexibility in adapting their wave forms to our desires; this is

related to the modifications of time-frequency windows for better physical implications.
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In this study the subject matter can essentially be separated into three main indepen-

dent parts — the identification, the optimization, and the vindication. And the contents

can basically be divided into six main core constituents.

1. In the first constituent we mainly focus on the characterizations of discrete wavelet

categories. And the covered discrete wavelet categories should be quite compre-

hensive — in the sense that they have included all the extreme analytical properties

in wavelet designs. And it is the author’s belief that if you ever find an individual

wavelet you have great chance to assign it into one of these categories, and if not,

you have great reason to say that its properties fall within (or between) the covered

characterizations and thus its possible usefulness (or destiny) trapped accordingly.

The relevant characterizations and intrinsic properties for all the categories are ex-

tensively illustrated through the depictions of their mother and farther wavelets,

the translations and dilations of wavelets, the zoom-ins or blowups of any kind

of wavelets, the linear phase filtering features. Physical counterparts of analytical

aspects are provided when possible.

2. In the second constituent, we work on the identification of optimum discrete wavelet

basis specifically for studies of water wave related signals, and signals obtained

from wind-wave-tank experiments are used. Here inclusive entropy criteria are

adopted for both the whole comprehensive sets of wavelets and the Fourier basis.

3. In the third constituent we mainly focus on exploring the analytical essence of the

behavior of any wavelet function basis concerning its performance or fitness in our

water applications, in other words, what is the mathematical factor that leads to

the different statistical performances based on the entropy. And this is related to

the study of the phase distribution of a wavelet characterizing function (the m0(ξ)

function in a later chapter) for each individual basis.

4. In the fourth constituent we mainly focus on the identification of the continuous

counterpart wavelet of the optimum discrete basis, i.e., a continuous wavelet trans-
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form corresponding to the multiresolution analysis of the semi-orthogonal cardinal

spline dual wavelet. Here we address why there is the need of a continuous trans-

form both mathematically and physically; that is to say, what are the advantages

and disadvantages of discrete and continuous wavelet transforms concerning their

applications to water waves.

5. In the fifth constituent we address what can be done to improve the physical rel-

evance between the basis functions in the continuous domain and the wave con-

stituents of our signals. Here the topics include: the demand of better physics

in modeling the energy phenomenon; the uncertainty relationship and the degrees

of freedom for adaptivity; the physics of the “carrier frequency” and the time-

frequency windows of flexible size and shape; and finally the proof of the existence

of admissability condition under such an adaptation.

6. In the sixth constituent we make the comparisons between the wavelet coherences

based upon the best wavelet and the spectral coherences based upon the Fourier

bases. The absolute superiority of wavelet coherences is shown and the reasons are

delineated.

1.5 Summary

In summary, the study is to put forward an optimal wavelet basis that is both mathemat-

ically and physically right for water wave analyses; moreover, to prove it beyond doubt.

v
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Chapter 2
The Wavelet Categories and Their
Characterizations

2.1 Introduction

In almost all lab or model experiments various modeling or scaling laws can at best

be partially satisfied. The situation is further complicated for a multi-scale and multi-

dimensional phenomenon in a multi-factor system.

In the introduction chapter we noted the problems of transient effects that attested

to diversified scales. Moreover, for water wave experiments, it is acknowledgeable that

there may exist significant distortions concerning the coupling mechanisms targeted. For

example, a limitation in space and time in the tank, on the one hand, introduces the lack

of scale diversification that may hinder the development of certain mechanisms and im-

pose restrictions upon the evolutions of certain interactions; on the other hand, introduces

serious boundary and initial conditions that may act as exploitations of factual consider-

ations. With these understandings, as well as the cognizance regarding the inadequacy

of the Fourier spectral approach in our applications as discussed earlier, it is understand-

able that, if the modeling of the proposed physics is at all possible, the deployment of

an optimized analyzing scheme using sensitive and appropriate basis functions is desired.

Specifically speaking, we shall select among a broad array of functional bases the most

appropriate one for our signals and describe the proper analyzing method. Akin to such



an attempt, it warrants to give more systematical descriptions of different properties of

various categories of wavelet function bases.

Herein comprehensive categories of discrete wavelet are studied. Their comprehen-

siveness is essentially reflected by the inclusions of all the extreme and opposite analytical

properties in wavelet designs. That is to say, the characterization of a particular wavelet

not seen or not named here should fall between or within the basis properties covered

here.

2.2 Program and workbench developments

The wavelet programming and all relevant numerical characterizations were developed

from the ground up using mainly the Asyst programming language [18]. The programs

not only cater comprehensive wavelet bases but also provide broad characterizations of

their relevant functions and intrinsic properties. The code is written with the mind of

being flexible, friendly, and versatile. Accuracy and error-free requirements are highly

abided by. And it is followed that keyboard inputs should be minimized and manual

input of original and intermediate data should not be allowed. In addition, several add-in

programs and auxiliary applications are integrated. Overall, they mainly consist of the

following.

• The Postfix language — The Postfix add-in to the Asyst core programming enables

the real-time, as well as direct, generation of high quality Adobe Encapsulated Post-

script figures. The process secures the proper labeling and correct legends. And it

is confidently guaranteed that the statements or analyses deriving from the figures

make no mistakes. Besides, the automation exceeds the condition that the gen-

eration of quality figures as many as one wishes is surely possible, and that the

elimination of the painful task of plotting seemly countless figures when making

parametric alterations or test cases is certainly true. Using a commercial graphical

application software can never archive such functionalities, moreover, it is basically
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error-prone.

• The on-screen real time display of PCX format figures — The Encapsulated Post-

script figures are mainly for quality printing and created in the background. A real-

time and interactive monitor display is desirable and essential. This should greatly

enhance the debugging efficiency and make possible the writing of a huge and com-

plex code that is user-friendly, easy to maintain, as well as flexible, interactive and

accurate.

• The data spreadsheet interface — The output or input of data to or from the Excel or

Lotus-123 compatible worksheets is integrated. In cases that articulated or complex

figures are desired or post-processing and supplementary analysis are needed such

an interface is readily convenient and trouble free.

• The Mathematica programming language — This coding is mainly for the stream-

lined generation of various high quality graphical renditions for the two-dimensional

or three-dimensional time-scale data, such as the modulus and phase information

derived from the Asyst programs. There is no manual intervention when commut-

ing between the Asyst outputs and the Mathematica inputs.

• The LATEXmacros and packages — In addition to the utilization of various existing

LATEXpackages, a vast amount of LATEXcodes and macros were also written for the

following purposes: the systematic displays and printouts of numerous all sorts

of figures for analyzing, reasoning, and comparing; the eye-pleasant code listings

for programs and somewhat easy debugging; the casual generations of printouts,

papers, reports, etc., for archiving and proof-reading; the facilitation for efficient

management and pain-free integration of different case studies.

• The WinEdt macro programming language — The language is specifically used

to develop a non-fallible workbench. Hundreds of these macros were written and

integrated. The workbench provides a working platform or shell environment for
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writing the codes of various programming languages, as well as provide various

add-on operations, such as file management, various format operations, code com-

piling, cloud backups (these were developed in the Windows 2000 or pre XP era

when handsets and cloud concept were unfamiliar to the general public), etc. Lots

of attention were paid to the accomplishment of an environment that is pleasant,

efficient, easy and safe. With this workbench all the code pieces, subroutines, and

component files are managed and displayed in a way of being scientific, organized

and reflexive. Moreover, various tasks can be integrated and streamlined. Without

such a workbench the editing and debugging, as well as the whole work, must be

extremely painful and exhausting and the present study is surely inconceivable.

2.3 Wavelet basis categories

The Riesz wavelet bases tested here can basically be divided into four categories: or-

thonormal (ON), semi-orthogonal (SO), bi-orthogonal (BO), and orthonormal wavelet

packets bases. For the orthonormal category it is divided into several different subgroups:

Daubechies wavelets (both the most and least asymmetric), Coiflets, Meyer wavelet, and

Battle-Lemarié wavelets.

No detail accounts of these wavelets will be given; only the main criteria and core

features of each categories will be briefed. Let first state the related notations and conven-

tions needed for the context that follows. Let a function or a signal be denoted by f (t);

the two-scale scaling function of a Riesz basis be φ(t); the associate mother wavelet be

ψ(t) and its dyadic wavelets be ψ j,k(t) =
√

2 jψ(2 j t − k), where j, k ∈ Z and k stands

for translation and j for dilation. The concept of translations and dilations are illustrated

in figures 2.1 (Wavelet T&D-1) through 2.6 (Wavelet T&D-6).

The space V j (formed by ψ j,k , k ∈ Z for a given j) in the multiresolution ladder are

nested in · · · ⊂ V−1 ⊂ V0 ⊂ V1 · · ·, and the finest and the coarsest scale space, say,

for a 1024-point signal, are V10 and V0, respectively; the number of filter coefficients or
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the number of convolution weights be N if the associated wavelet is finitely supported

(support length equals to N − 1); the dual wavelet and dual scaling function, if exist, be

ψ̃(t) and φ̃(t); the inner product be 〈·, ·〉; and the Kronecker delta be δ j,k, j, k ∈ Z, which

is equal to 0 for j 6= k and 1 for j = k.

Up until now, all practical wavelets of discrete transform are associated with the the-

ory of multiresolution analysis (MRA) [2, 12, 25, 26]. For Riesz wavelets there always

exist dual wavelets except for orthonormal wavelets, which are self-dual. Any discrete

wavelet transform involves two convolution operations: one yields detail information; an-

other yields smooth information [31]. Convolutions can either be implemented in a direct

way in the time domain for compactly supported wavelets or in an indirect way in the

frequency domain. We list the basic properties (restricted to real-valued wavelets) and

give the symbols of representation for various categories and subgroups as follows.

2.4 Orthonormal wavelets

The orthonormal wavelets covered here include the following categories: Daubechies

most compactly supported wavelets (denoted as ONxxA); Daubechies least asymmet-

ric wavelets (ONxxS); Coiflets (ONxxC); Meyer wavelet (Meyer); Battle and Lemarié

wavelet (B&L). Here in all the subsequent annotation x is an integer related to support

length (physically, the span of mother wavelet curve).

ψ = ψ̃, (2.1)

φ = φ̃, (2.2)

〈ψ j,k, ψ̃l,m〉 = δ j,lδk,m, (2.3)

f (t) =

∑
j,k

〈 f, ψ j,k〉ψ j,k, (2.4)

One MRA ladder (single set of frame bounds),
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Fig 2.1 (Wavelet T&D-1) Wavelet’s time-scale constructs – The time-scale concept of wavelet analy-
sis is associated with two variables, i.e., the translation and the dilation.
Here the concept of translation and dilation on the scales of transform
level 3 is shown for two different wavelets (BO31D (top) and ON55C
(bottom)). Individual curves are the inverse transforms of unit value at
points 16, 20, 24, 28, and 32 that are situated upon level 3.
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Fig 2.2 (Wavelet T&D-2) Wavelet’s time-scale constructs for a bi-orthogonal wavelet – Here the con-
cept of dilation and the fractal nature across scales of wavelet are shown
for scales from transform level 0 to level 7 for the BO22O wavelet. Each
curve corresponds to an individual scale and specific location as labeled in
the sub-figures.
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Fig 2.3 (Wavelet T&D-3) The fractal nature across scales of the dual wavelet (BO22D) and its di-
lation constructs are shown here. The dual wavelet refers to the wavelet
used in the preceding figure (BO22O). Each wavelet curve corresponds to
an individual scale (from scale level 0 to level 7) and its specific translation
location as labeled in individual sub-figure.
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Fig 2.4 (Wavelet T&D-4) The wavelet dilation concept and smoothly fractal nature from scale level
0 to level 7 for the dual BO31D wavelet. Each wavelet curve corresponds
to an individual scale and its specific time location as labeled in individual
sub-figure.
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Fig 2.5 (Wavelet T&D-5) The wavelet dilation concept and the fractal nature from scale level 0 to
level 7 for the BO370 wavelet. Each wavelet curve corresponds to an in-
dividual scale and its specific time location as labeled in individual sub-
figure.
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Fig 2.6 (Wavelet T&D-6) The wavelet dilation concept and the fractal nature for the ON66A wavelet,
which belongs to the most asymmetric category. Each wavelet curve corre-
sponds to an individual scale (from level 0 to level 7) and its specific time
location as labeled in individual sub-figure.
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One filter pair (one smooth and one detail).

2.4.1 Daubechies most compactly supported wavelets (ONxxA)

The wavelets in this group have maximum number of vanishing moments for given com-

patible support width. Or stated otherwise, they are the most compactly supported wavelets

for given compatible number of vanishing moments. The famous most compactly sup-

ported continuously distributed wavelet belongs to this group and has only four filter

coefficients. These wavelets are quite asymmetry (so, the “A” in ONxxA). The mother

and farther wavelets for the group corresponding to the originating points of 12 (bound-

ary point based on level 2) and 6 (boundary point based on level 3), respectively, for this

group are shown in figures 2.7 (MW–ONxxA) and 2.8 (FW–ONxxA). The vanishing moments and

the number of filter coefficients are, respectively,

∫
∞

−∞

t lψ(t)dt = 0, l = 0, 1, · · · , x, (2.5)

N = 2x, (2.6)

where x is the integer number in ONxxA. The minimum number of x is 2.

2.4.2 Daubechies least asymmetric wavelets (ONxxS)

For a given support width, these wavelets, in contrast to those of the ONxxA subgroup,

are the most symmetric ones (so, the “S” in ONxxS, but still not symmetric). They have

the same representations of vanishing moments and number of filter coefficients as those

of ONxxA. But the known minimum number of x is 4. The mother and farther wavelets

for this group corresponding to the same originating points as the previous ones are shown

in figures 2.9 (MW–ONxxS) and 2.10 (FW–ONxxS).
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2.4.3 Coiflets (ONxxC)

The Coiflets have vanishing moments for both ψ and φ; therefore, from Taylor expansion

point of views [12], they have high compressibility for fine detail information (i.e., a great

portion of the fine scale wavelet coefficients are relatively small); and henceforth, they

have simple quadrature rule to calculate the fine smooth information (i.e., the calculation

of the inner product of a function and the fine-scale scaling functions is more efficient).

Since every discrete wavelet transform involves both smoothing and detailing operations,

there may exist some advantages from these two properties for certain applications such

as applications that do not stress lossless of signal contents or perfect reconstructions

[10, 34]. Their vanishing moments and number of filter coefficients are

∫
∞

−∞

t lψ(t)dt = 0, l = 0, 1, · · · , x, (2.7)

∫
∞

−∞

φ(t)dt = 1, (2.8)

∫
∞

−∞

t lφ(t)dt = 0, l = 1, · · · , x, (2.9)

N = 6x . (2.10)

For this group the mother and farther wavelets are shown in figures 2.11 (MW–ONxxC)

and 2.12 (FW–ONxxC).

2.4.4 Meyer wavelet (Meyer)

The Meyer wavelet (denoted as Meyer or ME in figures) is the wavelet with most com-

pact support in frequency domain (here, if without any specific assignment, “finitely sup-

ported” refers to time domain). Therefore, due to contrast properties between the two

Fourier domains, the wavelet is infinitely differentiable in time domain, i.e., has an in-

finite Lipschitz regularity C∞ and does not have exponential decay. And the support

length N → ∞. The associated mother and farther wavelets corresponding to the same
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originating points are shown in figure 2.13 (MFW–Meyer).

2.4.5 Battle and Lemarié wavelet (B&L)

The Battle and Lemarié wavelet (denoted as B&L or LE in figures) of m th order is con-

structed from the orthonormal scaling function derived by applying the standard orthonor-

malization trick to the m th order cardinal B-spline Nm [4, 6]. For m = 1, it is exactly the

Haar wavelet. The latter is the only finitely supported wavelet in this group (also the case

of BO11O=BO11D to be mentioned below) and is also a non-continuously distributed

wavelet with the most compact support. All other wavelets in this group are infinitely

supported. These wavelets have an exponential decay and possess Cm−2 regularity. The

mother and farther wavelets for the Battle-Lemarié wavelet are shown in figure 2.14 (MFW–

B&L). Compared to the curves of Meyer wavelet (figure 2.13 (MFW–Meyer)), they look quite

identical even though their constructions, or derivations, or formula involved (including

Lipschitz regularity and decay property) are completely different.

2.5 Semi-orthogonal wavelets (SOxO and SOxD)

The semi-orthogonal wavelets are inter-scale, but not inner-scale, orthogonal. Their scal-

ing functions are cardinal B-spline Nm and have finite two-scale relations. Although there

are two distinctive (independent) filter pairs (one for the decomposition and the other for

the reconstruction), there is only one MRA V j -ladder. It was shown by Chui [6, 7] that the

cardinal B-spline wavelet of an order higher than m = 3 is almost a modulated Gaussian

(but a modulated Gaussian is not a wavelet). Therefore only the fourth order Cubic B-

spline wavelet (m = 4) is tested. It has the following characterizations.

ψ 6= ψ̃, (2.11)

φ = φ̃, (2.12)
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〈ψ j,k, ψl,m〉 = 〈ψ̃ j,k, ψ̃l,m〉 = δ j,l, (2.13)

f (t) =

∑
j,k

〈 f, ψ j,k〉ψ̃ j,k =

∑
j,k

〈 f, ψ̃ j,k〉ψ j,k, (2.14)

N = 3x − 1 for SOxD, (2.15)

N → ∞ for SOxO. (2.16)

One MRA ladder ,

Two filter pairs ,

The mother and farther wavelets of the fourth order and the associated dual wavelets

are shown in figures 2.15 (MFW–SO0) and 2.16 (MFW–SOD).

2.6 Bi-orthogonal wavelets (BOxyO and BOxyD)

The wavelets in this category are constructed also by Daubechies, and are sometimes

called non-orthogonal wavelets. As is well known all real-valued orthonormal com-

pactly supported wavelets, except the Haar wavelet, are not symmetrical. However, from

the point of view of reconstructing a signal from its partially truncated wavelet coeffi-

cients, the symmetry is a desired property of the filter when a more natural perception

or smoother variations is important. There is a very practical implication here: if non-

symmetrical function bases are used, then a small change in the wave form causes signif-

icant variations of scale information. In other words, to have minor impacts to the data

analysis, it is desirable to have bases as symmetrical as possible. Moreover, when consid-

ering that random errors, or noise, or uncontrolled factors are present, we should be able

to comprehend the significance of this property. In fact many of the figures given in this

study indicate such a feature. The symmetry can be achieved by sacrificing orthogonality;

if this is the case one has dual pairs for both wavelets and scaling functions. It is obvious

that conditions for semi-orthogonal cases are more general than those of orthogonal ones,
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and the bi-orthogonal cases are even more general. This situation is clearly indicated by

the additional freedom of dual scaling function, as is reflected by the two parameters x

and y in the notations of BOxyO and BOxyD. Nevertheless, the wavelets in this category

involve only one pair of independent filters for both decomposition and reconstruction

even though there involve two different MRA ladders that are associated with their own

individual sets of Riesz bounds. This is quite opposite to the case of semi-orthogonal

wavelets where they involve one MRA ladder but with two filter pairs.

ψ 6= ψ̃, (2.17)

φ 6= φ̃, (2.18)

〈ψ j,k, ψ̃l,m〉 = 〈φ j,k, φ̃l,m〉 = δ j,lδk,m, (2.19)

f (t) =

∑
j,k

〈 f, ψ j,k〉ψ̃ j,k =

∑
j,k

〈 f, ψ̃ j,k〉ψ j,k, (2.20)

N = 2y + x − 1 for BOxyO and x odd, (2.21)

N = 2y + x − 2 for BOxyO and x even, (2.22)

N = 2y + x − 1 for BOxyD and y odd, (2.23)

N = 2y + x − 2 for BOxyD and y even. (2.24)

Two MRA ladders,

One filter pair,

The mother and farther wavelets for this group and the associated dual wavelets are

shown in figures 2.17 (MW–BOxy0) through 2.20 (FW–BOxyD).
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2.7 Wavelet packets

The wavelet coefficients derived from an orthonormal wavelet decomposition can be fur-

ther decomposed by using either the set of filter coefficients (called two-scale sequence

in Chui [6]) associated with the original wavelet, or different sets of filter coefficients

associated with other orthonormal wavelets. Therefore, basically there can be infinitely

many wavelet packet decompositions. These further decompositions are of a tree-like

refinement process and are called the wavelet packet transform. The wavelet packet coef-

ficients give better frequency resolutions with longer time supports. There are no simple

formulas to describe the tree-like decompositions, but a schematic plot help elucidate the

mechanism shown in figure 2.21 (WP Tree). The branch patterns and the number of branches

can be chosen in any way so long as there is no repeat occurrences within any column un-

der the stretch of the coefficients. That is to say, any column, wide or narrow, must have

one and only one contribution from all levels (rows). Due to the tree-like process the

computational works are dramatically increased.

Figure 2.22 (WP forms) depicts the wave forms of two wavelet packets based upon

ON22A and associated with the same location point 100 at different scale levels 2 and

5. It demonstrates the typical bundled shape of distribution of wavelet packets as com-

pared to wavelet.

For this category we have two criteria for selecting our best basis. One is still called

the “best basis”; another “best level basis”. Take for example, for a 1024-point signal, the

finest level occurs at j = log2 1024 = 10 and there are 210 different choices of bases.

And within these 210 choices the one which yields the minimum entropy is called the

“best basis”. And if we enforce the restriction that all wavelet packets be at the same level

j , then we have 10 levels (0 to 9) to choose from; the level that yields minimum entropy is

called best level basis. The indexes of a wavelet packet coefficient, i.e., the subscript and

superscript of U labeled in the figure determine the time of occurrence of that coefficient

and also indicate the associated support length and frequency resolution, i.e., the shape
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and location of the coefficient’s time-frequency window within the phase plane. Concepts

regarding the wavelet packet transform can be seen in figure 1.1 (TFW–WP BB). Again we

also see the effects of non-symmetrical filtering. One specific feature is that the areas of

all individual windows are all equal.

2.8 Wavelet nature

Wavelets are fractal in nature, that is to say, no matter how detail we zoom into the wavelet

curve its blowups all show similar characterization, and this is related to the wavelet

differentiability, regularity, support length, and decaying property.

The Asyst program is written to be able to blow any wavelet constructions, such as

mother and father wavelets, wavelet bases and wavelet packet bases at any point on any

level. A few examples are shown in figures 2.23 (BU–BO2yO) to 2.30 (BU–BO35O).

Her we note that wavelets with fancy analytical properties are often of bizarre wave

forms and not of our choice for studying water wave related physics — either judging

from they entropy values to be given in the next chapter or form their stability conditions.

Moreover, this blowup exercise hints the behaviors of several numerical and theo-

retical aspects of wavelet analysis, such as the edge effects, the possible differences of

function curves due to finite resolution, and the convergent or error propagation property.

Figures 2.29 (BU–BO31O) and 2.30 (BU–BO35O) show the blow-ups of bi-orthogonal wavelet

BO31O and BO35O, respectively. Relevant data for BO31O is: Origin of wavelet curve:

level 2, position 12 (i.e., element U 12
2 in figure 2.21 (WP Tree)); Blow-up point: 150; data

length: 512. Each sub-figure shows successive blow-up scale of 26. Here the blow-

ups diverge rapidly, i.e., the wavelet fails to identify itself numerically in the refinement

cascade. Relevant data for BO35O is: Origin of wavelet curve: level 2, position 12 (i.e.,

element U 12
2 in figure 2.21(WP Tree)); Blow-up point: 225; data length: 512. Each sub-figure

shows successive blow-up scale of 26. Here the blow-ups converge but go with peculiar

inclinations. Figure 2.28 (BU–WP-ON) also exhibits the grouping or bundling tendency, as
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well as the fractal behavior, of wavelet packets. A few more specific or intrinsic properties

and their implications might be noted in the legends of individual figures.

2.9 Summary

The purpose of this chapter is to give an idea of the comprehensiveness of the wavelet

categories covered here and to provide the basic understanding of wavelet intrinsic prop-

erties as well as their possible implications in applications for water waves. It is hoped

that these numerous figures suffice the robustness of the study. v
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Fig 2.7 (MW–ONxxA) Any discrete wavelet transform is inherently associated with the pairing of
a mother wavelet and a father wavelet (conventionally denoted as ψ and φ
respectively). Such a pairing also links to the union of the constructs of
“detail information” and “smooth information”. Here the mother wavelets of
the most asymmetric orthonormal group ONxxA are shown. These curves
are the inverse transforms of a unit value located at point 12 for a 1024-point
data. They are the constructs of the “detail information”. It is noted that the
“detail information” for these sub-figures is associated with a level greater
than 3. That is to say the separation point between “smooth information”
and “detail information” is located at point 8.
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Fig 2.8 (FW–ONxxA) Here the father wavelets of the most asymmetric orthonormal group ONxxA
are shown. They are the constructs of the “smooth information” correspond-
ing to the “detail information” shown in the previous figure. These curves
are the inverse transforms of a unit value located at point 6 for a 1024-point
data. It is noted that the “smooth information” for these sub-figures is associ-
ated with a level less than or equal to 3. Again, the separation point between
“smooth information” and “detail information” is located at point 8.
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Fig 2.9 (MW–ONxxS) The mother wavelets of the most symmetric orthonormal wavelet group
ONxxS are shown here. Each curve is the inverse transform of a unit value
located at point 12 (at a scale level greater than 3) for a 1024-point data.
Again, the separation point between “smooth information” and “detail infor-
mation” is chosen at point 8.
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Fig 2.10 (FW–ONxxS) The father wavelets of the most symmetric orthonormal wavelet group
ONxxS are shown here. Each curve is the inverse transform of a unit value
located at point 6 (at a scale level less than or equal to 3) for a 1024-point
data. Again, the separation point between “smooth information” and “detail
information” is chosen at point 8.
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Fig 2.11 (MW–ONxxC) The mother wavelets of the orthonormal Coiflet wavelet group ONxxC are
shown here. Each curve is the inverse transform of a unit value located at
point 12 (at a scale level greater than 3) for a 1024-point data. The same
separation point between “smooth information” and “detail information” is
chosen at point 8.
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Fig 2.12 (FW–ONxxC) The father wavelets of the Coiflet wavelet group ONxxC are shown here.
Each curve is the inverse transform of a unit value located at point 6 (at a
scale level less than or equal to 3) for a 1024-point data. Again, the separa-
tion point between “smooth information” and “detail information” is chosen
at point 8.
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Fig 2.13 (MFW–Meyer) The mother (top) and farther (bottom) wavelets of the Meyer wavelet
corresponding to the point location at 12 and 6, respectively, based upon the
separation boundary point of 8 on level 3. It is noted that this figure is to be
compared to the next one.
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Fig 2.14 (MFW–B&L) The mother (top) and farther (bottom) wavelets of the Battle and
Lemarié wavelet corresponding to the point location at 12 and 6, respec-
tively, based upon the separation boundary point of 8 on level 3. Comparing
the wavelet functions shown here with those shown in the preceding figure
(figure 2.13 (MFW–Meyer)), we note the following interests. Firstly, these two
different wavelets have quite similar looks, but they are associated with quite
distinctive theoretical constructions and analytic properties, such as regu-
larity, differentiability, rate of decay, support length, etc. Secondly, many
intricate and complicate aspects among the discrete Riesz wavelet bases may
have difficulty in their realization of practical usages, that is to say, math-
ematical complexity generally does not reflect our concerns about physical
applications. Thirdly, water wave analysis concerns about physics, but a
pure data analysis concerns only about mathematics. The important question
is what is to be chosen to yield the most appropriated physics.
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Fig 2.15 (MFW–SO0) The mother (top) and farther (bottom) wavelets of the semi-orthogonal
wavelet designed by Chui (SO0) [6, 7]. The curves correspond to the same
location points of 12 and 6. It will be shown that this wavelet possesses very
important properties pertaining to the optimal modeling of water waves.
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Fig 2.16 (MFW–SOD) The mother (top) and farther (bottom) wavelets of the dual of Chui’s
semi-orthogonal wavelet (i.e., SOD, the dual wavelet of the wavelet SO0
used in the preceding figure). Again, the curves correspond to the same
location points of 12 and 6.
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Fig 2.17 (MW–BOxy0) The mother wavelets of the bi-orthonormal wavelet group BOxyO are
shown here. Again, the separation point between “smooth information”
and “detail information” is chosen at point 8. And the inverse transforms
are associated with location point 12. The fractal complexity of the curves
depends on the configuration of the numbers of x and y.
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Fig 2.18 (FW–BOxy0) The farther wavelets of the same bi-orthonormal wavelet group BOxyO. The
same separation point between “smooth information” and “detail informa-
tion” is chosen at point 8. And the inverse transforms are associated with
location point 6. Again, the fractal complexity of the curves depends on the
configuration of the numbers of x and y.
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Fig 2.19 (MW–BOxyD) The mother wavelets of the dual bi-orthonormal wavelet group BOxyD.
These curves are originating from the same point at 12. The fractal com-
plexity of these dual wavelets shows much less extreme.
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Fig 2.20 (FW–BOxyD) The farther wavelets of the dual bi-orthonormal wavelet group BOxyD orig-
inating from the same point at 12. The fractal complexity of both the mother
and the father wavelets of these dual are much less extreme.
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Fig 2.21 (WP Tree) The wavelet packet transform can be represented by this schematic represen-
tation of the tree-like structure of decomposition associated with orthonormal
wavelets. Different branch compositions yield different transforms. Besides,
a sub-root branch can be associated with either the same or different wavelet.
The constructs are basically unlimited. Here the schematic notations S (or V
in the text) and D stand for smooth and detail information, respectively. The U
with superscript larger than 1 stands for further decomposition of D by wavelet
packets. And all subscripts of U and D mean scale levels. Besides, the su-
perscript of U means relative location of a specific frequency band within its
compatible subscript (or scale level).
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Fig 2.22 (WP forms) This figure depicts the wave forms of two wavelet packets based upon ON22A
and associated with the same location point 100 at different scale levels 2 and
5, with boundary point at 8 and 64, respectively. It demonstrates the typical
bundled shape of distribution of wavelet packets as compared to wavelet.
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Fig 2.23 (BU–BO2yO) Wavelet’s fractal nature across scales is demonstrated in various previous
figures, but here the property is more appropriately shown by blowing up
the wavelet at any fixed point. The curves shown here are the blowups of
wavelets related to the bi-orthogonal group BO2yO. The scale interval be-
tween adjacent blowups is 23. The location of the blowup point is labeled
in individual sub-figure (such as point 256 or 257). The scale level (which
defines the boundary point between smooth and detail information) and the
unit value originating point for individual wavelet to be exploded are also
indicated in the sub-figures (such as L4 and Ori12).
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Fig 2.24 (BU–BO3yO) The blowups of wavelets related to the bi-orthogonal group BO3yO. The
scale interval between adjacent blowups is 23. The location of the blowup
point is labeled in individual sub-figure (such as point 150, 450, 252 and
208). The scale level and the unit value originating point for individual
wavelet are indicated in the sub-figures (such as L2, L4 and Ori12, Ori14,
Ori48, Ori12).
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Fig 2.25 (BU–BO2yD) The blowups of wavelets related to the dual bi-orthogonal group BO2yD.
The scale interval between adjacent blowups is 23. The location of the
blowup point is labeled in individual sub-figure (such as point 256 or 128).
The scale level and the unit value originating point for individual wavelet are
indicated in the sub-figures (such as L2, L4 and Ori12, Ori40). In reference
to the next figure, it is noted that the number of convolution weights play a
part in the modeling entropy. And a too brief number of convolution weights
generally yields quite unrealistic wave form.
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Fig 2.26 (BU–BO3yD) The blowups of wavelets related to the dual bi-orthogonal group BO3yD.
The scale interval between adjacent blowups is 23. The location of the
blowup point is labeled in individual sub-figure (such as point 100, 248,
125). The scale level and the unit value originating point for individual
wavelet indicated in the sub-figures (such as L2, L4 and Ori12, Ori40). It
is hinted here: comparing with the curve distributions of their counterpart
group BO3yO, it is not hard to realized that the dual wavelet yields better
modeling entropy as will be shown in later chapter.
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Fig 2.27 (BU–ONxAS) The blowups of wavelets related to the most asymmetric and the most sym-
metric orthogonal groups ONxxA and ONxxS. The scale interval between
adjacent blowups is 23. The location of the blowup point is labeled in indi-
vidual sub-figure (such as point 384, 86, 379). The scale level and the unit
value originating point for individual wavelet indicated in the sub-figures
(such as L4 and Ori56, Ori300). Again, it is noted that a too brief number of
convolution weights yields quite unrealistic wave form.
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Fig 2.28 (BU–WP-ON) This figure shows the wavelet packet blowups related to the most asymmet-
ric and the most symmetric orthogonal groups ONxxA and ONxxS. In ref-
erence to the preceding figure, it is easily comprehended that wavelet packet
transform is even more unrealistic for modeling water waves. This is one,
and an intuitive and visceral one, of the reasons why in the later chapter we
don’t bother calculating the entropy of any wavelet packet. Again, the scale
interval between adjacent blowups is 23. The location of the blowup point is
labeled in individual sub-figure (such as point 240, 400, 300, 56). The scale
level and the unit value originating point for individual wavelet indicated in
the sub-figures (such as L4 and Ori56, Ori300).
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Fig 2.29 (BU–BO31O) The successive blowups of the bi-orthogonal BO31O wavelet at point 150 for
scale level L2 and unit value originating point Ori12. Here the scale interval
between adjacent sub-figures is 26. Note the vast difference in the ordinate
axis. The phenomenon is related to the numerical demand of precision that
is associated with a too brief number of convolution weights, as well as with
its wavelet category.
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Fig 2.30 (BU–BO35O) The successive blowups of the bi-orthogonal BO35O wavelet at point 225
for scale level L2 and unit value originating point Ori12. Here the scale
interval between adjacent sub-figures is 26. Note the completely opposite
inclination of the distribution curve between adjacent sub-figures. Again,
the phenomenon is related to a brief number of convolution weights, as well
as the wavelet category. Overall, here it is hinted that there are many fancy
wavelets but, for water wave physics, fancy sometimes is only an illusion.
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Chapter 3
The Entropies and the Best Discrete
Wavelet Basis

3.1 Entropy’s physical pertinence

In studying the physics of certain phenomena using wavelets one of the most intriguing

questions is how to choose the analyzing wavelet(s). The concern here is quite in contrast

to those studies where they are mainly numerically or analytically oriented. For example,

in coding of images or acoustic signals the goals are straightforward: the maximum com-

pression with minimum handling, the highest effectiveness with lowest distortion, and the

most distinctiveness with lest aberration; under such circumstances mathematical rele-

vance between signal and wavelet can be materialized much more explicitly than physical

pertinence needs to be unfolded for our applications.

By and large from this point of view, for our interests in characterizing the physics

of water-wave related phenomena, it seems, at first, that the aspiration is not on ‘effi-

ciency” or “compactness”. However, with the understanding that, on the one hand, the

compactness of a transform result means the closeness between signal components and

analyzing basis functions, and that, on the other hand, the conception that basis function

forms which do not look like our signals (or signal components) are obscured from intu-

itive perceptions of physics; it is naturally justified to seek the wavelet that provides the

most efficient or most economical representations for our signals. Still, at the end we are



bringing back to the concept of entropy — the most efficient representation — different

disciplines but with the same objective.

The exploits in this chapter are mainly numerical experiments on measuring the “dis-

tances” between our signals and various Riesz wavelet bases given in several wavelet

treatises [6, 12, 29, 31]. No attempt to make new constructions of bases or to extend the

existing constructions is made. Nevertheless, we have tried to include various categories

of Riesz wavelets with a comprehensive coverage of analytical properties. And we will

come to realize that there is really no need to extend the existing constructions if the asso-

ciated two-scale scaling function or father wavelet is not changed, that any other individ-

ual wavelet in literature falls within our characterizations, and that a few fractal-oriented

sparse wavelets [28, 26] are just as impractical as they may be in our applications.

The wavelets tested are dyadic wavelets with “mathematical sampling rate” 1 (no

unit). They possess the most practical interest and easiness in applications for discretely

sampled signals. Furthermore, we restrict our scope to laboratory water waves. Various

criteria are used for the entropy statistics of discrete transform coefficients, including

Fourier coefficients.

3.2 The entropy criteria

Entropy is a terminology in the statistical field, thus it gives indication without absolute

assurance. And the entropy can be viewed as a measure of the “distance” between the

original signal and its reconstructed signal using partially truncated transform coefficients.

To avoid the somewhat mystified notions as one might get from some of the available

readings, it may be better to give straightforward descriptions by going through the actual

numerical process first and returning to its statistical implication later.

Let suppose that we have a 1024-point sampled data, then there is a set of 1024 wavelet

coefficients (C={ci }). Take the absolute or squared value of these coefficients, sort them,

and then divide the sequence into M (say, 100 or 200 or 300) divisions which are equally
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spaced from 0 to the maximum value of the coefficients. Then we have the statistics

of occurrence for each division, and the distribution of these normalized occurrences is

the probability density distribution or probability density function (denoted by pdf), say

{p1, p2, · · · , pM−1, pM}. The entropy is

H(p) = −

∑
i

pi log pi . (3.1)

Where, when pi = 0, it is assumed that 0 log 0 = 0, since in reality one can assumed that

there exists an almost zero probability in that interval without affecting the total sum of

probability, after all it is only a statistics and the modification virtually has no influence

on the norm value. If absolute values of ci are taken, H(p) is the L1-norm entropy; if

squared values are taken, it is squared L2-norm entropy. Of course another power can be

used, but the squared L2-norm, being the energy, is physically the most significant. The

practical aspect of this definition of entropy is: let suppose two probability distribution

functions sorted in a decreasing order are p and q , if p decreases faster than q , then

H(p) ≤ H(q) [34]. The above inequality of entropy is only one-way correct and the

reverse is not always true, but smaller entropy implies that more energy is concentrated

within a smaller number of wavelet coefficients. Therefore, if only a fixed percentage of

coefficients is kept, the truncated error, i.e., the distance from the total sum, is likely to be

smaller for set of coefficients with smaller entropy

There is another notion, sometimes referred as the geometric notion [34], for calculat-

ing the entropy. Again, the procedures is given first and the simple physical interpretation

next. By setting the number of divisions to be the same as the number of coefficients

and by defining probability density to be the normalized (with respect to the total power)

value of the squared wavelet coefficient, that is to say, the total energy is ‖C‖
2

=
∑

i |ci |
2

and the probability density is pi = |ci |
2/‖C‖

2, we get the alternative form of entropy by
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substituting Pi into Equation 3.1:

H(p) = log ‖C‖
2
−

∑
i |ci |

2 log |ci |
2

‖C‖2 . (3.2)

The notion here is simple: if one just put more weight on coefficients of small energy and

less weight on coefficients of large energy (all coefficients being normalized), then the

weighted energy is an indication of entropy. And since taking the log of a value is sort of

a weighting operation and since the total energy is finite, small entropy therefore means

that the number of significant coefficients is small, or stated otherwise, more energy is

concentrated in fewer coefficients.

One equivalent indicator of entropy of a pdf is the theoretical dimension D(p) and is

defined as [34]

D(p) = eH(p)
=

∏
i

(
p−pi

i

)
. (3.3)

As was stated, entropy does not tell how conclusive the result is. But our numerical

results yield little ambiguity regarding the judgement that we can make.

3.3 The ultimate best discrete basis

To increase the definiteness of the comparisons, we calculate entropy based on several

setups: direct coefficient entropy related to L2-norm based on Equation 3.3 (column 1 in

Tables 3.1 (H–F+ON+SO) and 3.2 (H–BO0+D)), pdf entropy related to L2-norm with 300 (col-

umn 2) and 200 (column 4) divisions, and pdf entropy related to L1-norm based on Equa-

tion 3.1 (column 3). Theoretical dimension for one of the setups is also given (column 5).

The tables show the results using a wind-wave signal from a wave tank experiment. It is

noted that if the peak frequency (or the primary scale) of other signal is significantly dif-

ferent, then, to be consistent in comparison, the analyzed signal lengths and the sampling

rates should be properly adjusted according to its peak frequency. This is because in the

discrete wavelet transform we need to keep track of the actual physical size of translation
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so as to have physical perception of the wave forms. Table 3.1 (H–F+ON+SO) give results

from all orthonormal wavelets (including B&L, Meyer, ONxxA, ONxxS, and ONxxC),

semi-orthogonal wavelets (Cubic B-spline, SO3O and SO3D), as well as from Fourier

spectrum. Table 3.2 (H–BO0+D) give results from bi-orthogonal wavelets. Many distinctive

features can be derived from the tables.

• The dual wavelet always gives much smaller entropy than as given by their coun-

terpart wavelet. This certainly verifies that, for our water-wave signals, using

f (t) =

∑
j,k

〈 f, ψ̃ j,k〉ψ j,k (3.4)

provides a much better efficiency in decomposition and reconstruction than using

f (t) =

∑
j,k

〈 f, ψ j,k〉ψ̃ j,k . (3.5)

This also points out that dual wavelets rather than their counterpart wavelets should

always be used as the decomposing basis for either better physical implications

or improved computational efficiency. It may also worth noting that the practical

shapes of all the listed bi-orthogonal wavelets, especially those with small x and

y values, are visually quite unrealistical (such as those shown in figures 2.29 (BU–

BO31O) and 2.30 (BU–BO35O)). Furthermore, for these bi-orthogonal wavelets, it can be

concluded that there is going to be very little improvement by further extending the

support width related to y without extending the support width related to x ; since

increasing the width (y) from some point on gives no effect on the shape of dual

wavelets (such as y = 7 or 9 for x = 3) and since it is the dual, rather than the

counterpart, wavelet that matters for better approximation.

• Entropy values of all orthonormal subgroups do not fall to the level of non-orthogonal

ones. Besides, difference in entropy values of long and short supports can barely be

differentiated, even though there seems to be a very slight indication that entropy
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values related to longer support are somewhat smaller. Here the property reflects

the role of linear phase filtering as mentioned earlier.

• Among all the orthonormal wavelets none distinguishes itself from the others. And

we see no clear tendency within any subgroup. However, from the analytical point

of view, the Meyer wavelet is infinitely differentiable or smooth, the B&L is second

order differentiable, and the others have various degrees of differentiability or reg-

ularity [12]. It is therefore understandable that at the present stage many analytical

properties of orthonormal wavelets are of little practical interests for our signals.

• The most striking result is that the dual Cubic B-spline wavelet yields a far smaller

entropy value, even lower than that of the spectral coefficients. Figure 3.1(p–W+WP+F)

shows the comparisons of the cumulative probability distribution curves for several

wavelet bases as well as for Fourier basis. This striking feature is reflected by

the extreme flatness of the SO3D curve, nearly horizontal up until 90 percent of

energy ratio. At about 96 percent of the energy ratio there is a crossing between

spectral curve and the SO3D curve. These features practically imply that semi-

orthogonal wavelet coefficients are better than Fourier coefficients in describing the

details of the signals. Figure 3.3 (ReC–Signal) shows the reconstructions of a section

of a signal from its spectral and SO3D wavelet coefficients of which 35 percent

are kept. It is seen that the wavelet basis yields truer details than does Fourier

basis. Again, the reasons for the SO3D’s strong performance can be attributed

to the following characters: total positivity of the scaling function and complete

oscillation of the wavelet. That is to say, the scaling function has no oscillation

or zero-crossing; the corresponding wavelet has no unnecessary oscillation, or no

oscillation that is without zero-crossing. Physically, the two characteristics hint that

our laboratory water waves are far less transient when compared with orthonormal

or bi-orthogonal wavelets, and also imply that the description of waves based on

suitable support length or life span is more likely to adhere to the physics.
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• For the wavelet packet category we have the best basis and best level criteria. It

may not be difficult to gain a prior idea that the chance is slim for getting better

results using either of the bases. The obvious reason is due to the inherent lim-

itation of wavelet packet transform — wavelet packet transforms are associated

only with orthonormal bases. Since the primitive analyzing functions are ortho-

normal and since orthonormal wavelets perform poorly as just given above, it is

therefore hard to anticipate the same strong performance as that of semi-orthogonal

wavelets. Nevertheless, both wavelet packet criteria do show improvements when

compared with the original orthonormal basis, and the performance of the best ba-

sis is certainly better than that of the best level. Figure 3.1 (p–W+WP+F)–(b) gives

the wavelet packet best bases and best level curves for B&L and Meyer’s wavelets;

they do show improvements when compared with the corresponding curves in Fig-

ure 3.1 (p–W+WP+F)–(a) using regular wavelet transforms. It is quite certain that the

improvement is not to the degree of semi-orthogonal wavelet or that of the Fourier

spectrum.

• Figure 3.2 (p–WP BB+BL) shows cumulative distribution curves of the best level, best

basis, and a few different levels bases wavelet packet coefficients, as well as the

curve for the corresponding regular wavelet transform coefficients; here, all the

curves are associated with ON77S. The curve for the best level comes close to

that for the best basis. Again, wavelet packet best basis and best level yield lower

entropy values than other relevant wavelet bases, but still their curves are far away

from that of SO3D.

• Among orthonormal wavelets, we do not see clear differences arising from different

degrees of symmetry (least asymmetric ONxxS or most asymmetric ONxxA); how-

ever, semi-orthogonal and bi-orthogonal wavelets are symmetric or antisymmetric,

and their entropy values (concerning dual wavelets) are comparatively lower. It

therefore indicates that the linear phase filtering is desired since symmetry or an-
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tisymmetry implies linear phase of the two-scale sequence [6, 12]. Without the

linear phase filtering visual impairment may occur. The non-symmetric distribu-

tion of time-frequency windows shown in figures 1.1 (TFW–WP BB) illustrates such a

significant impact. Though symmetry is desired, it is hard to describe its influence

since there are other factors that need to be considered (such as the support length

and regularity, e.g., Meyer and B&L wavelets are also symmetric but their entropy

values are not comparable to that of the ideal one).

3.4 Summary

Using various criteria of entropy statistics of transform coefficients we have identified

among a vast array of Riesz wavelet bases the best basis for our water wave signals. It

is found that the most prominent player is the semi-orthogonal cardinal spline wavelet

with clear superiority over the Fourier basis in all criteria. And no other wavelets can

ever reach the level of approximation given by Fourier spectra. Still, the results entail that

many of the properties of the wavelets studied here are more of analytical interests and

hard to be physically significant.

The solid performance of the semi-orthogonal wavelet indicates the usefulness of the

modulated Gaussian wavelet or the Morlet wavelet in the continuous transform domain for

our applications. Coupling with a few additional features that are specific to continuous

wavelet transforms – such as its nature of redundancy, the flexibility in time-frequency

resolutions, and the conciliatory choices of data segment of interest; there is something to

be anticipated. v
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Tab 3.1 (H–F+ON+SO) Entropy statistics of transform coefficients under various criteria for the or-
thonormal and the semi-orthogonal wavelet groups, as well as the orthonor-
mal Fourier basis. The orthonormal groups cover the most symmetric and
the most asymmetric group, as well as the most narrowly-banded (referring
to frequency) Meyer wavelet and the most narrowly-distributed (referring
to time) Battle and Lemarié wavelet. And the semi-orthogonal wavelet is
devised by Chui [6, 7]. Note that the results in all categories for the dual
semi-orthogonal wavelet are not only clearly better than the spectral ones
but also far superior to any other wavelet groups.

Wavelet L**2 coefficient
entropy

L**2 probability
entropy

L**1 probability
entropy

L**2 probability
entropy

Theotetical
dimension

(0 division) (300 divisions) (300 divisions) (200 divisions) (L**2 300 divisions)

B&L 4.691 1.330 3.417 1.179 3.782
Meyer 4.647 1.294 3.365 1.132 3.646
SO3O 4.833 1.669 3.756 1.488 5.307
SO3D 1.823 0.219 1.306 0.172 1.245

Spectrum 2.809 0.270 3.044 0.244 1.310

ON22A 4.993 1.761 3.891 1.516 5.815
ON33A 4.773 1.384 3.499 1.225 3.975
ON44A 4.790 1.517 3.596 1.363 4.559
ON55A 4.819 1.553 3.631 1.367 4.727
ON66A 4.790 1.373 3.456 1.203 3.946
ON77A 4.675 1.355 3.461 1.203 3.877
ON88A 4.645 1.229 3.283 1.082 3.418
ON99A 4.719 1.412 3.501 1.252 4.106
ON00A 4.787 1.423 3.511 1.244 4.149

ON44S 4.835 1.461 3.557 1.281 4.311
ON55S 4.758 1.492 3.576 1.298 4.426
ON66S 4.754 1.402 3.501 1.225 4.065
ON77S 4.751 1.336 3.331 1.188 3.804
ON88S 4.714 1.366 3.481 1.224 3.918
ON99S 4.755 1.469 3.570 1.288 4.345
ON00S 4.635 1.278 3.378 1.134 3.591

ON11C 4.938 1.696 3.832 1.457 5.452
ON22C 4.827 1.468 3.520 1.284 4.342
ON33C 4.756 1.488 3.573 1.333 4.427
ON44C 4.690 1.297 3.337 1.157 3.658
ON55C 4.644 1.309 3.405 1.154 3.703
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Tab 3.2 (H–BO0+D) Entropy statistics of transform coefficients under various criteria for the bi-
orthogonal wavelet groups. Again, none of the results here is comparable
to those of the dual semi-orthogonal wavelet. And it is noted that a shorter
distribution of convolution weights yields extreme and inferior value. Thus,
the efficiency of computation is not pertaining to the intimacy of physics.

Wavelet L**2 coefficient
entropy

L**2 probability
entropy

L**1 probability
entropy

L**2 probability
entropy

Theoretical
dimension

(0 division) (300 divisions) (300 divisions) (200 divisions) (L**2 300 divisions)

BO11O 5.395 2.623 4.502 2.299 13.777
BO11D 5.395 2.623 4.502 2.299 13.777
BO13O 4.943 1.806 3.883 1.627 6.084
BO13D 5.266 2.371 4.373 2.053 10.708
BO15O 4.866 1.678 3.755 1.495 5.357
BO15D 5.227 2.291 4.327 1.987 9.882

BO22O 5.282 2.362 4.363 2.083 10.609
BO22D 4.434 1.181 3.284 1.034 3.257
BO24O 4.963 1.862 3.985 1.634 6.438
BO24D 4.359 1.090 3.220 0.962 2.975
BO26O 4.881 1.703 3.835 1.492 5.490
BO26D 4.332 1.064 3.174 0.940 2.899
BO28O 4.857 1.624 3.782 1.452 5.073
BO28D 4.318 1.069 3.157 0.941 2.914

BO31O 5.824 3.174 4.741 2.835 23.894
BO31D 4.377 1.058 2.655 0.936 2.880
BO33O 5.084 2.001 4.062 1.756 7.393
BO33D 4.205 1.102 2.827 0.965 3.011
BO35O 4.850 1.697 3.847 1.506 5.457
BO35D 4.125 1.026 2.776 0.908 2.789
BO37O 4.790 1.658 3.821 1.442 5.247
BO37D 4.106 0.986 2.737 0.873 2.679
BO39O 4.776 1.660 3.835 1.432 5.258
BO39D 4.098 0.967 2.713 0.866 2.629

66



−

Energy ratio

0.0 0.2 0.4 0.6 0.8 1.0

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty
 d

is
tri

bu
tio

n

0.0

0.1

0.2

0.3

0.4

Battle and Lemarie
Meyer
Cubic B-spline
Dual cubic B-spline
Spectrum

Energy ratio

0.0 0.2 0.4 0.6 0.8 1.0

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty
 d

is
tri

bu
tio

n

0.0

0.1

0.2

0.3

0.4

Battle and Lemarie
Meyer

(b)

(a)

Fig 3.1 (p–W+WP+F) The cumulative probability distribution curves of the transform coefficients
associated with three different transform categories. The coefficient PDFs
intimately reflect L2-norm energy relevance. Here the various bases include:
(1) Wavelets: Meyer, Battle and Lemarié, semi-orthogonal cubic B-spline,
dual semi-orthogonal cubic B-spline (top);
(2) Wavelet packets: those of the best packet bases based on Meyer wavelet
and Battle and Lemarié wavelet (bottom);
(3) Spectrum: Fourier spectral basis (top).
Note the outstanding performance of the dual semi-orthogonal cubic B-
spline wavelet (SOD). And its distribution clearly outperforms that of the
Fourier spectrum for nearly all the energy ratio.

67



−

Energy ratio
0.0 0.2 0.4 0.6 0.8 1.0

C
u

m
u

la
ti

v
e
 p

ro
b
a
b
il

it
y
 d

is
tr

ib
u
ti

o
n

0.00

0.25

0.50

0.75

1.00

Original data (level 10)
Level 9 (Wavelet packets)
Level 8
Level 7
Level 2 (wavelet packet best level)
Wavelet basis
Wavelet packet best basis

Fig 3.2 (p–WP BB+BL) The cumulative probability distribution curves of the Wavelet packet trans-
form coefficients for the various bases derived from the seeding orthonor-
mal mother wavelet ON77S. The PDFs are of L2-norm energy content. The
function bases include:
(1) Wavelet packet of the lowest levels (normal instance: wavelet basis);
(2) Wavelet packet of a specific level (9, 8, 7);
(3) Wavelet packet of the best level (2);
(4) Wavelet packet of the best basis (combined levels: dotted line).
Note that the best situation is the one for the best basis; but none of these
curves is comparable to that of the dual semi-orthogonal wavelet (SOD)
shown in the preceding figure.
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Fig 3.3 (ReC–Signal) Comparison of reconstructed signals associated with the best wavelet basis
(i.e., the dual semi-orthogonal wavelet) and the Fourier basis. The semi-
orthogonal wavelet is seen to better portrait the original signal, in particular,
small scale transient features.
Here 35% of the transform coefficients are kept. The sub-figures show:
(1) a section of the original signal (top)
(2) reconstructed signal using the spectral coefficients (middle);
(3) reconstructed signal using the best wavelet basis (bottom).
The figure reflects the L1-norm entropy relevance.
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Chapter 4
The Characteristic Phase Distributions

4.1 The wavelet characteristic function m0

In the last chapter, the entropy of transform coefficients is used as a performance mea-

sure for wave simulation. The entropy approach is completely statistical and provides no

mathematical insight of the basis property that leads to the usefulness of a basis in its

modeling of water waves. Herein, we furnish the analytical essence that is connected to

the modeling utility of a wavelet function basis. Moreover, practical implications of math-

ematical analyticity are stated. Herein the essence is concerning the phase distribution of

a wavelet characteristic function for any individual basis. More specifically, the charac-

teristic function is related to the filtering effect or convolution result associated with liner

or non-linear phase filtering.

Following the convention used by Daubechies [12], the wavelet characterizing func-

tion is termed as the m0(ξ) function, which is the kernel of individual wavelet and has the

following mathematical content:

A multiresolution analysis consists of a sequence of the closed subspaces V j of the

nested ladder,

· · · V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ · · · , (4.1)



and satisfies the requirement

f ∈ V j ⇐⇒ f (2 j
·) ∈ V0. (4.2)

The invariance of V0 under integer translations states that

f ∈ V0 H⇒ f (· − n) ∈ V0 for all n ∈ Z. (4.3)

Now comes the main statement that there exists φ ∈ V0 so that

{φ0,n; n ∈ Z} is an orthonormal basis or a relaxed Riesz basis in V0, (4.4)

where, for all j, n ∈ Z, φ j,n(x) =
√

2− jφ(2− j x − n), and the relaxation refers to the

orthonormality. Quite often the φ here is formally called the scaling function of the mul-

tiresolution analysis. Furthermore, for the {φ j,n; j, n ∈ Z} there exists its counterpart

wavelet basis {ψ j,k; j, k ∈ Z}, ψ j,k(x) =
√

2− jψ(2− j x − k), such that

Pj−1 f = Pj f +

∑
k∈Z

〈 f, ψ j,k〉ψ j,k, (4.5)

where Pj f is the projection onto V j .

Since φ ∈ V0 ⊂ V−1 and φ−1,n are basis in V−1, we have

φ =

∑
n

hnφ−1,n, (4.6)

with

hn = 〈φ, φ−1,n〉. (4.7)

We therefore have

φ(x) =
√

2
∑

n

hnφ(2x − n) (4.8)
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or

φ̂(ξ) =
1

√
2

∑
n

hne−inξ/2φ̂(ξ/2). (4.9)

In an alternative form

φ̂(ξ) = m0(ξ/2)φ̂(ξ/2), (4.10)

where

m0(ξ) =
1

√
2

∑
n

hne−inξ . (4.11)

Suffice it to say that the m0(ξ) function is intrinsic to the transcendental formulations

of the mother wavelet and the two-scale equation. And it is comprised of the summation

of convolution coefficients of wavelet construction (or filter coefficients corresponding

to the support length of the wavelet) multiplied by the complex exponential functions of

their individual scales.

4.2 Phase distributions and implications

Figures 4.1 (m0(ξ)–MELE) to 4.7 (m0(ξ)–BOD) show the phase distributions of m0(ξ) for all the

wavelet categories listed in this study. Notable points are summarized below.

• Wavelets with similar visual appearance may possess extremal difference in the

characterizing phase distributions, such as those shown in figures 4.1 (m0(ξ)–MELE).

Note that, regarding to the symmetrical wavelets, the Meyer wavelet is the most

compactly supported wavelet in frequency domain while the Battle and Lemarié

wavelet is the most compactly supported wavelet in time domain. For these two

categories of wavelet, both their mother and father wavelets have quite similar dis-

tributions with respect to each other, as shown in 2.15 (MFW–SO0) and 2.14 (MFW–B&L).

But the behavioral difference between their phase curves suggests that there ex-

ists theoretical complexity both in mathematics and numerics of the two wavelet

constructions; moreover, it hints that physical applicabilities might not sensitive to

theoretical differences.
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• Combing the entropy results yielded in the preceding chapter with the phase dis-

tributions of all the wavelet categories shown here, we see that a linear phase dis-

tribution is unable to guarantee the best performance for modeling signals of water

waves. What should be emphasized is that the most outstanding feature leading to

the modeling usefulness of the semi-orthogonal wavelet lies in the characteristic of

a peculiarly constant phase distribution for either the wavelet or its dual, as shown

in figure 4.2 (m0(ξ)–SO). Besides, the intuitive byproduct is that there is the strong

implication that most wavelets are too exotic, as well as too alienating, to water

waves.

• The more asymmetric the shape of a wavelet is the more complex of its phase

distribution comes along. The distributions of the least asymmetric orthonormal

group ONxxS are shown in figure 4.3 (m0(ξ)–ONS) and those of the most asymmetric

are shown in figure 4.4 (m0(ξ)–ONA). These distributions, together with those of the

previous figures, denote the relation between wavelet symmetry and water wave

physics and also imply the poor performance in modeling for compactly supported

wavelets (i.e., with limited number of filtering wights).

• The lengthening of the support length of a wavelet group may still yield even more

irregular phase distributions as are shown in figure 4.4 (m0(ξ)–ONA). And this disproves

any possible benefit that may arise from further expansion of the construction con-

cerning the support length of these orthonormal wavelets.

• The Coiflets are symmetry and have vanishing moments for both the mother and

father wavelets but their phase distributions are not much different from those of

the least asymmetric wavelets, as are shown in figure 4.5 (m0(ξ)–ONC). It is therefore

expected that their modeling capability can be of little refinement from the ONxxA

group.

• The phase distribution curves for the bi-orthogonal wavelets and their duals are the

same not only for all the support lengthes within their subgroups but also for the
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respective crossovers, as are shown in figures 4.6 (m0(ξ)–BO0) and 4.7 (m0(ξ)–BOD).

Again, this shows that lengthening the support length of these wavelets provides no

benefit.

• Judging from all those mentioned above and that extremal mathematical properties

of wavelet categories have been covered in this study, we therefore don’t see any

possibility that there exists other orthonormal or compactly supported wavelets that

might provide suitable or better characterization for water wave physics.

4.3 Summary

Simply put, the most important and practical entailment of this chapter is to furnish

the idea that water waves in their shapes or forms are intrinsically extremely “regular”

when compared to those of almost all of the discrete wavelets (except the cardinal spline

wavelet). And, in a simple and blunt way, those mathematical complexity of wavelet for-

mulations do not reverberate our real world anticipations for physics and may be overkill.

v
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Fig 4.1 (m0(ξ)–MELE) The phase distribution of the wavelet characteristic function m0(ξ) for two
categories of wavelets: the Meyer wavelet (Top) and the Battle and Lemarié
wavelet (Bottom). For the two categories of wavelets, both their mother
and father wavelets, respectively, have quite similar distributions, as are
shown in 2.15 (MFW–SO0) and 2.14 (MFW–B&L). Whereas, on the one hand,
the Meyer wavelet is the most compactly supported wavelet in the frequency
domain; on the other hand, the Battle and Lemarié wavelet is the most com-
pactly supported in the time domain. Here the difference between the two
distributions implies the possible ramification both in mathematics and nu-
merics of the two wavelet constructions. Besides, it hints the intricate con-
cerns among theoretical complexity and physical applicabilities.
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Fig 4.2 (m0(ξ)–SO) The phase distributions of the wavelet characteristic function m0(ξ) of the
semi-orthogonal cardinal spline wavelet (Top) and its dual (Bottom). Here
the most outstanding feature, which leads to the usefulness in its modeling of
water waves, lies in the peculiar distribution of a constant characteristic phase.
Besides, there is an important implication that most of the wavelets are too
exotic, as well as estranging, to water waves.
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Fig 4.3 (m0(ξ)–ONS) The phase distributions of the wavelet characteristic function m0(ξ) for the
least asymmetric orthonormal group ONxxS. Comparing the curves here
with those of the next figure we see that the more asymmetric the wavelet
is the more the complication of its phase distribution comes along. This phe-
nomenon implies the worsening modeling performance for the asymmetri-
cal group and hints the relation between wavelet symmetry and water wave
physics.
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Fig 4.4 (m0(ξ)–ONA) The phase distributions of the wavelet characteristic function m0(ξ) of the
most asymmetric group ONxxA. Note that the lengthening of support length
of the wavelet yields even more irregularity in distribution. Again, this dis-
proves any possible benefit that may arise from any further expansion of the
construction of these orthonormal wavelets.
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Fig 4.5 (m0(ξ)–ONC) The phase distributions of the wavelet characteristic function m0(ξ) of the
Coiflets. The Coiflets are symmetry and have vanishing moments for both
their mother and father wavelets; but their phase distributions are not much
different than the least asymmetric compactly supported group ONxxA. It is
therefore expected that their modeling performance is of little betterment.
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Fig 4.6 (m0(ξ)–BO0) The phase distributions of the wavelet characteristic function m0(ξ) of the
bi-orthogonal wavelets BOxy0. Their distributions are almost identical to
those of their dual wavelets as to be shown in the next figure; nevertheless,
the entropy values of these wavelets are clearly inferior to those of their dual
wavelets. Again, the phenomenon implies the possible ramification both in
mathematics and numerics of the wavelet constructions and hints the intricate
concerns among theoretical complexity and physical applicabilities.
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Fig 4.7 (m0(ξ)–BOD) The phase distributions of the wavelet characteristic function m0(ξ) of the
dual bi-orthogonal wavelets BOxyD. These phase distribution curves and
those of their duals are the same not only for all the support lengthes within
their subgroups but also for the respective crossovers, as shown in the last one
(figures 4.6 (m0(ξ)–BO0)). Moreover, here it also indicates that the mathemat-
ical complexity of wavelet formulation does not reverberate our real world
anticipations and may be overkill.
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Chapter 5
The Best Wavelet in the Continuous
Domain

5.1 Introduction

In the previous chapter on entropy the semi-orthogonal cardinal spline wavelet was iden-

tified as the most suitable Riesz wavelet basis for our signals. However, this discrete

wavelet and its associated analyzing scheme is not what will be directly adopted in the

verification of the optimality through the comparisons of coherent behaviors, as to be

given later. The most fundamental concerns are in three aspects. First, the previous

chapter concerns the discrete wavelet transform where each translation step is an integer

multiple of the dilation scale which is in the logarithmic measure with base 2; therefore,

both the translation and the dilation vary in logarithmic measure. Whereas in the study of

coherences the scheme used concerns the continuous wavelet transform where the trans-

lation step can be as small as the sampling interval for all scales which can basically be

specified arbitrarily. Second, the wavelets in the previous chapter handle bases with frame

bounds that are either tight or relatively tight. Whereas the wavelet employed here does

not involve frame bounds and might not have frame bounds at all when it is analyzed in

the sense of discrete wavelet transform, i.e., not even related to a Riesz wavelet. Third, all

the discrete wavelets listed here are real wavelets; therefore, they are only related to the

term of “scale” and how can the phase come by so as to render a more practical term of



real physics.

Herein we will make further clarifications for these two points and try to illustrate

their respective advantages and disadvantages since they are keys to the usefulness of the

analyzing basis and the associated scheme for our applications.

5.2 The counterpart best continuous wavelet

Let the Gaussian function be

gα(t) =
1

2
√
πα

e−
t2
4α , (5.1)

where α is a representative value of the second moment of the Gaussian function and the

constants is for the purpose of normalization, the modulated Gaussian is

Gα
b,ω(t) = eiωt gα(t − b). (5.2)

And the Gabor transform of a function f is

(
Gαb f

)
(ω) = 〈 f,Gα

b,ω〉 =

∫
∞

−∞

f (t)e−iωt gα(t − b)dt. (5.3)

As is stated by Daubechies ([12]) that the Morlet wavelet is almost identical to a

modulated Gaussian, and as is given by Chui ([6]) a modulated Gaussian matches almost

exactly with cardinal B-spline wavelet of order greater than or equal to three, i.e., for

m ≥ 3, the even order ψm’s (such as the cubic spline wavelet ψ4) match almost exactly

with

ReGα
b,ω(t) = (cosωt)gα(t − b) (5.4)

and the odd order ones with

ImGα
b,ω(t) = (sinωt)gα(t − b) (5.5)
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for a certain set of values α, b, ω.

In accord with these observances we therefore have an extremely natural transition

from the best discrete basis to the following continuous wavelet, i.e., the Morlet wavelet,

ψ(t) = π−1/4(e−iω0t
− e−ω2

0/2)e−t2/2. (5.6)

Most importantly, such a correspondence introduces two terms in physics, i.e., the phase

and carrier frequency, and thus make possible the enhancements of physical modeling of

water wave signals, as to be provided in the following chapter.

5.3 Discrete versus continuous transforms

In the introductory chapter we listed a few properties related to different time-frequency

analysis methodologies, such as Fourier transform, short time Fourier transform (STFT),

Hilbert transform and the analytical signal procedure, the discrete wavelet transform

(DWT), as well as the continuous wavelet transform (CWT). In fact, one of the main

themes for all those discussions centered on the aspiration regarding the minimization of

uncertainty effects ([17]). And this is the most outstanding feature that the continuous

transform comes into play. And why there is a need of the counterpart continuous wavelet

with regard to the best discrete wavelet.

In this chapter, inheriting the identified discrete optimum basis, we mainly focus on

the different usages of DWT and CWT concerning their practical applications to water

waves related signals. That is to say, what is the counterpart wavelet in the continuous

wavelet transform to the semi-orthogonal cardinal spline wavelet and why there is the

need of a continuous one.

Herein we emphasize that DWT and CWT should be treated as two different entities

— since, unlike the discrete and continuous Fourier transforms where they are dealing

with the same basis as well as deploying basically the same formulations, DWT and CWT
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generally refer to two quite different methodologies which focus on their individual func-

tion bases as well as different data treatment schemes. Most profoundly we press on the

concerns of the following points:

• In general, the dilation lattice is in logarithmic measure for discrete wavelet trans-

form (e.g., the a0
j in the stability condition to be mentioned) and in linear measure

for discrete short time Fourier transform (e.g., the e−i2πmt in the above mentioned

Gabor type frame). Continuous transforms do not involve lattice. The concept of

lattice is associated with the concept of time-frequency density, which is defined

as the inverse of the product of dilation and translation steps [12]. For short time

Fourier transform frames, due to Shannon sampling theorem, the time-frequency

density must not go beyond the value of generalized Nyquist density, (2π)−1. For

wavelet transform, however, there is no such a clear-cut limit of time-frequency den-

sity. Moreover, Balian-Low theorem depicts that there is no good time-frequency

localization for a short time Fourier transform frame if constructed under a strict

time-frequency lattice; on the contrary, numerous wavelet bases with good time-

frequency localization have been given [6, 12, 29]. These physically imply that

wavelet transform may provide better zoom-in.

• The existence of a lattice structure can be either practical or impractical. For water

waves, if we don’t anticipate any significant gaps in the scale contents, that is to

say, the physical process involves time and spatial scales that are “changing” or

“evolving” in a relatively continuous sense, we generally do not appreciate the use

of frames. Here a continuous transform may provide better chance of success.

• Both continuous and discrete wavelet transforms implement a process of integral

wavelet transform over the real line R in a continuous sense but they analytically

emphasize the use of different integration symbols:
∑

and
∫

. Digitally sampled

signals are certainly discrete, but this is irrelevant to the methodology of contin-

uous wavelet transform or discrete wavelet transform. The main difference, from
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the application point of view, is that there is no practical interest of reconstruction

(or inverse transform) for continuous wavelet transform due to the redundant or

non-orthogonal nature of its wavelet coefficients. Both methods are capable of de-

composing either functions defined over the real line or signals sampled discretely.

In reality, applying continuous wavelet transform to sampled data is implemented

in a discrete manner; vis-à-vis, doing discrete wavelet transform for an unlimited

ladder, such as that of the standard multiresolution analysis of [25], can describe

any function in infinite detail, i.e., over the whole real line. The concept of unlim-

ited ladder of discrete wavelet transform is illustrated by two examples shown in

figures 2.23 (BU–BO2yO) through 2.30 (BU–BO35O) where the blow-ups of individual

segments of wavelet curves are shown. The figure also illustrates possible bizarre

behaviors of certain wavelets and indicates that mother wavelets with short support

lengths might not be of ideal choices. In addition, a few discrete wavelet transform

formulas when generalized in the limit sense are quite helpful in explaining a few

continuous wavelet transform characters.

• All of the Riesz wavelets studied in the previous chapter handle bases with frame

bounds that are either tight or relatively tight; whereas the continuous wavelet does

not involve frame bounds and might not have frame bounds at all when it is analyzed

in the sense of discrete wavelet transform, i.e., not even qualified as a Riesz wavelet.

However, we will see that there is a very natural transition from the discrete wavelet

to its continuous counterpart.

• Apart form the specific features listed in the above items, there is a practical interest

in what can be done to improve the physical relevance between the basis functions

and the wave constituents of our signals. For example: does the decaying features

of basis functions akin to the physics of component waves? And this is the topic to

be discussed in the next chapter.

87



5.4 The physical perspective of Morlet wavelet

The combination of “Wave” and “let” hints the core concept of wavelet analysis. And the

concept implies that the distribution properties of the basis functions both in time or fre-

quency domains are at the heart of all sorts of function bases. More specifically, different

intricate analytical properties of wavelets are just manifestations to these distribution fea-

tures. However, since two decay properties that are analytically or mathematically quite

differentiable may only have very minor visual differences in their wave forms (such as

those shown in figures 2.13 (MFW–Meyer) and 2.14 (MFW–B&L)), one generally bears the feeling

that wavelets’ physical implications is not proportional to their analytic interests. Nev-

ertheless, we still can benefit from the wavelet approach due to its flexibility in devising

the analyzing wavelets as well as its adaptability in forging the algorithms. But versatil-

ity does not come without the price of ambiguity. For example, the power spectra of a

function are shift-invariant; whereas, wavelet spectra are highly shift-variant [27]. Fig-

ure 5.1 (Pha–Eff-1) and 5.2 (Pha–Eff-2) shows such a property and it gives us the idea of how

significant the phase effects may be. And this figure should be regarded as the counterpart

figure in the wavelet analysis to those in the Fourier analysis given in a previous study on

the analytic signal approach by the author [23]. Note that all these figures indicate the

possible usefulness associated with the uses of non-orthonormal or redundant function

bases, as well as the drawbacks of bases with tight frame bounds.

5.5 Wavelet frame bounds and redundancy

If a function ψ(t) is to be qualified as a wavelet of CWT, then the only requirement is that

ψ(t) meets the “admissability condition,”

2π
∫

∞

−∞

|ψ̂(ω)|2

|ω|
dω = Cψ , (5.7)
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Fig 5.1 (Pha–Eff-1) The concerns related to the shift non-invariant property of wavelet transforms
are shown in this figure. This property has important implications in the prac-
tical usefulness in physical applications of wavelets between discrete and con-
tinuous bases.
The top sub-figure in each column shows original signal individually.
The middle one shows its wavelet transform distribution.
The bottom one shows the transform result for its individually shifted signal.
For the signal in the left column it is shifted 3 points to the left and the wavelet
used is ON33A. For the signal in the right column it is shifted 20 points to the
left and the wavelet used is BO22D.
The property shown in this figure is linked to the vast difficulty arising from
phase noise and its poor performance in coherent studies.
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Fig 5.2 (Pha–Eff-2) This figure shows the same concern as that of the preceding figure, but with
different method of rendition. More precisely, the effects of ambiguity and
phase noise arising from local transient features of a signal are illustrated using
a signal comprised of two separated wavelets.
The top sub-figure shows the signal comprised of two Lemarié wavelets located
at two neighboring scales (the least two scales within a 1024-point series). And
the pulse at left corresponds to the inverse wavelet transform for unit wavelet
coefficient at point 600, i.e., e600; the right corresponds to e470.
The Fourier power spectrum is shown in the bottom sub-figure. The distracting
consequence arising from extreme variation should be comprehendible.
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where Cψ is a constant specific to individual ψ , and ψ̂(ω) is the Fourier transform of

ψ(t). Here, among several definitions of the Fourier transform forward and inverse pair,

the adopted one is:

ψ̂(ω) =
1

√
2π

∫
∞

−∞

ψ(t)e−iωtdt (5.8)

and

ψ(t) =
1

√
2π

∫
∞

−∞

ψ̂(ω)eiωtdω. (5.9)

The admissability condition is the integration of power spectrum weighted by the

inverse of the absolute value of frequency; therefore, it implies that the wavelet should

have little power at low frequency and is total nil at zero frequency, i.e., the area between

the wavelet curve and the abscissa integrates to zero. This feature of reasonable decay

and finite support length is the outright instinct of wavelet. The dilated and translated

versions of this wavelet are ψa,b(t) =
1

√
aψ(

t−b
a ), where a > 0 and a ∈ R and b ∈ R are

the dilation and translation parameters, respectively; and 1
√

a is the normalization factor

for L2-norm. The ψa,b satisfies admissability condition too.

The admissability condition is a very loose constrain; it does not provide a clear con-

cept of redundancy concerning applying CWT to discretely sampled signals. To illustrate

this redundancy, let us use the discrete wavelet frame (since the frame wavelet certainly

qualifies as a wavelet for CWT): ψa0,b0; j,k(t) = a0
− j/2ψ(a− j

0 t − kb0), where a belongs

to the set of discrete dilations a j
0 and b to the set of discrete translations a j

0 kb0; j, k ∈ Z;

and a0 6= 1 and b0 > 0 are fixed positive constants. For such a discrete wavelet frame we

need to impose a more restrictive condition on ψ(t) for its admittance, i.e., the stability

condition,

b0 A ≤ 2π
∑
j∈Z

|ψ̂(a0
jω)|

2
≤ b0 B, (5.10)

where A and B are positive constants and 0 < A ≤ B < ∞. The fixed constants b0 and

2π are intentionally kept since they are related to normalized wavelet basis and since the

magnitudes of A and B are related to the redundancy of the basis.
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The stability condition may look abstract, but we give its physical implication as: to

be able to let a function be reconstructed from its wavelet coefficients, i.e., the opera-

tion is reversible, we need a process which is convergent when summing all its scales

or frequency components. It is therefore necessary that the sum of the power of all the

constituent elements can neither be nil or infinity. If the sum is zero, then the elements

are all of zero measure — nothing exists. If the sum is infinity, then the elements are

significantly overlapping in time and frequency — there is either too much dependence

or too much ambiguity and tangling (just like two vectors paralleling to each other do not

constitute a good vector basis for two dimensional vector space).

Speaking of the reconstruction of a function from its wavelet coefficients one always

involves a dual wavelet except for orthonormal basis where the wavelet itself is its own

dual — self-dual. And since the roles of a wavelet and its dual can always be inter-

changed in both decomposition and reconstruction, the above statements apply equally

well for dual wavelet; but their frame bounds will generally be different since the sets of

convolution coefficients are different as hinted by the different entropy values given in the

previous chapter.

If the basis functions are normalized and the inequality of the stability condition are

optimized for both the greatest lower bound and the lowest upper bound, i.e., when A and

B are defined as

A = inf

2π
b0

∑
j∈Z

|ψ̂(a0
jω)|

2

 , (5.11)

B = sup

2π
b0

∑
j∈Z

|ψ̂(a0
jω)|

2

 , (5.12)

then an indication of the redundancy is the average value of A and B, A+B
2 , supposed that

A and B are close to each other (almost tight). We elucidate the possible extreme redun-

dancy of CWT as follows. If the dilated and translated versions of a function originating
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from a certain set of discrete steps (a0, b0) constitute a frame with frame bounds A and B,

then the frame bounds of a basis using the same function but with finer discrete steps, say

a0/2 and b0/2, will contain the bounds of coarser discrete steps; therefore, the new lower

and upper bounds both grow together. This nested relation can be extended infinitely and

in the limit sense it is included in the algorithm of CWT. This is the reason why there is

no practical value of numerical reconstruction in CWT, although CWT is reversible ana-

lytically. Another intuitive explanation is even easier to comprehend: when apply CWT

to discretely sampled signal, since for each scale the number of wavelet coefficients is the

same as the number of data points and since we can specify scales in whatever resolution

we like, we virtually have an unlimited number of wavelet coefficients. The sum of the

powers of these coefficients can be unimaginatively huge, or even unbounded; On the

other hand, the sum of signal energy is fixed. If we generalize the redundancy concept

of DWT, i.e., the ratio between the two sums indicates the degree of redundancy, then

for discretely sampled signal a continuous wavelet transform can possibly yield immense

redundancy.

Even though extreme redundancy may exist for the continuous wavelet transforms,

the content of information or its usefulness may behave like a cumulative pdf curve of a

Gauss function which will saturate at a later stage. Our numerical results from studies of

coherent behaviors among wind, wave and current related signals vindicated undoubtedly

such a situation [20].

5.6 Beneficial scenarios due to redundancy

Redundancy may be a nuisance in certain applications such as those that focus on the per-

fect reconstruction of signal or on the efficiency of coding and decoding; however it has

also shown its promising aspects in several applications. Three prominent points are the

results of established cases: (1) Redundancy does not mean that a whole bunch of coeffi-

cients are needed to give a good replicate of the original signal, that is to say, significant
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signal contents can still be retrieved from only a comparatively small amount of coeffi-

cients with respect to that of tight or almost tight wavelet frames. (2) Redundancy means

that effects of noise either embedding in the sampled signal or arising from the nature of

numerical processes (such as frequency leakage) can be reduced by taking advantage of

the vast sample space of transform coefficients. (3) If additional features, such as “total

positivity” and “ complete oscillation” of wavelet are incorporated, the effects on noise

reduction or ambiguity removal may be greatly enhanced; together with the redundancy

effects they facilitate the design of a very beneficial analyzing scheme. An example of

the first point is Mallat and Zhong’s [27] (see also Froment and Mallat [13]) signal recon-

struction from local maxima using a quadratic spline wavelet. In fact, the mother wavelet

they used is basically a loose wavelet (i.e., a wavelet with analytical aspects not being

well defined and therefore not really to be qualified as a wavelet), but they were able to

recover images quite well using only local peak values of wavelet coefficients that are

associated with only dyadic scales. For the second and third points, our studies on the

coherent features in the wind, wave, and rain coupling system serve as an example [20].

One last point to note is to compare the admissability condition of CWT with the sta-

bility condition of DWT. Here one can easily perceive the great difference in flexibility

between the two. In addition, the stability condition is a necessary condition, and not all

choices for ψ , a0, and b0 lead to wavelet frames. Moreover, stability may not guarantee

a good numerical behavior. Figures 6.1 (W Quirks-1) and 6.2 (W Quirks-2) show the results of

a few numerical experiments in which the problems of numerical convergence are illus-

trated using the blow-ups of wavelet curves. In the figures two bi-orthogonal wavelets

are blown up around their individual points using refinement cascade, and the blow-up

curves show the possible intrinsic absurdity arising from peculiar analytical properties

associated with these wavelets. Here, the two bi-orthogonal wavelets are, respectively,

with four and twenty filter weights and both are constructed from quadratic spline scal-

ing function [12]. The top sub-figure indicates a case where the DWT fails numerically

to characterize the mother wavelet (not converging) even though the associated wavelet
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frame qualifies theoretically as a Riesz basis. The bottom sub-figure shows strange alter-

nating inclinations of wavelet curves with a poor convergence. The figure also illustrates

the point that, for studying water-wave related signals and their physics, most of the fancy

wavelets with bizarre wave forms are not of our choice, as are also indicated by their high

entropy values given in the previous chapter.

5.7 Summary

In this chapter we point out the counterpart continuous wavelet to the best discrete wavelet.

It will be observed that the three main additional ingredients, i.e, the phase, the carrier fre-

quency and the redundancy, thus introduced make possible the physical optimization and

lead to the outstanding results of wavelet coherences. v
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Chapter 6
The Optimization for Physics

6.1 The demand for better physics

In addition to the various concerns about the peculiar properties specific to discrete and

continuous wavelet transforms as are stated in the previous chapter, herein we focus on

the practical interest in what can be done to improve the physical relevance between the

basis functions and the wave constituents of our signals. For example: does the decaying

features of basis functions akin to the physics of component waves? In fact, this simple

question outlines another fundamental theme of this chapter: if time-frequency windows

of fixed shape and size (the case of STFT) is less suitable than time-frequency windows

of fixed size but with flexible shape (the cases of DWT and CWT) in characterizing multi-

scale transient signals, then time-frequency windows which are flexible in both shape and

size should provide even better adaptations. The theme is intuitive right, the background

is not without commitments.

Based on this perception, further concerns evolving from the previous chapter can be

put forward quite simply: (1) Can we utilize this redundancy to improve the relationship

between wavelet’s analytical form and its physical interpretability? (2) If redundancy

leads to adaptation, does the adaptation still preserve the complete information content

of the signal studied? (3) Is the scheme of adaptation efficient and easy to implement?

Question one is related to the distribution or the degrees of freedom of time-frequency



windows in the phase plane and will be dealt with in the next chapter. Question two will

be answered through the verification for the existence of a condition of “resolution of

identity” using a special case of Morlet wavelet, as is also to be given in the next chapter;

for now, a short explanation is that, if one just applies the adaptation to finite range(s) of

scale, then what is lost or unaccounted for in the adaptation process can still be recov-

ered from some dilated and translated versions of some finer scale wavelets originating

from the same ψ(t) in the CWT. The success of Mallat and Zhong’s case also indicates

such a possibility. Question three depends on the adaptation scheme. But, based on the

somewhat intuitive adaptation used here, it is stated that nothing complicate is introduced.

One practical aspect for all the three points is: when analyzing signal we are almost

always interested in only finite scale range(s), so what is really needed is to implement the

adaptation locally. Hence it may be beneficial not to stick with stubborn time-frequency

windows and to adopt a scheme that is numerically with the same easiness and physically

more sound.

6.2 Degrees of freedom and the uncertainty relation

The flexibility of constructing wavelet function basis, i.e., the possibility of the adapta-

tion, is associated with the number of degrees of freedom of the time-frequency windows

within a phase plane. The number of degrees of freedom for an orthogonal basis is gener-

ally defined as the total area of the phase plane divided by the area of the time-frequency

window corresponding to that determined by the mother wavelet. For any time-frequency

kernel the maximum number of degrees of freedom is determined by the Heisenberg un-

certainty relation or Heisenberg’s inequality [5]. It is illustrated here that, even though

it is impossible to increase the limiting degrees of freedom, there is no further limitation

imposed upon the present adaptation. Besides, this section also serves two purposes: (1)

illustrate the basic functionality of the modulation mechanism for STFT, which in turn is

conceptually the same as the dilation mechanism for WT; (2) outline the relation between
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redundancy and the Heisenberg uncertainty using possible distribution of time-frequency

windows within a phase plane.

The uncertainty relation states that the product of bandwidth 1ω and duration 1t of a

signal cannot be less than a minimum value of 1
2 when the 1t and 1ω are defined as the

standard deviations of packet energy | f (t)|2 and power spectrum | f̂ (ω)|2 with respect to

their centroids, respectively:

1t
2

=

∫
∞

−∞
(t − t)2| f (t)|2dt

‖ f (t)‖2 , (6.1)

1ω
2

=

∫
∞

−∞
(ω − ω)2| f̂ (ω)|2dω

‖ f̂ (ω)‖2
, (6.2)

where t =
∫

∞

−∞
t | f (t)|2dt/‖ f (t)‖ and ω =

∫
∞

−∞
ω| f̂ (ω)|2dω/‖ f̂ (ω)‖. As is also il-

lustrated in Chui’s treatise textbook [6], the time-frequency window, 1t1̇ω, of the semi-

orthogonal wavelet is nearly equal to the minimum value of the Heisenberg uncertainly

principal, and this very optimistically provides the opportunity for applying the adapta-

tions. That is to say, there is an easy to way get round of the uncertainty relation by going

through a modulation process (i.e., multiplying a basis function with a complex exponen-

tial). Since in Fourier analysis a modulation in one domain corresponds to a shift in the

other domain, such a process causes the new variance 1ω to increase dramatically. Fig-

ure 6.3 (Heisenberg) shows such a mechanism. It is seen that the new 1t1ω is significantly

larger than 1t Dω, i.e., even larger than the limiting value for Heisenberg uncertainty re-

lation; therefore, there is quite a lot of flexibility to devise the time-frequency windows.

In view of the similarity between the modulation mechanism for STFT and the dilation

mechanism for WT, especially for the case of Morlet wavelet, we anticipate that there is

an ample space for adapting the time-frequency windows. Furthermore, as pointed out

by Bracewell [5], there exists no theorem depicting the lower limit of 1t Dω, i.e., no new

restriction for Dω; therefore no further limitation on the number of the degrees of freedom

is induced. Overall, it is quite flexible to draw time-frequency windows which generally
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do not violate the uncertainty relation when we express a signal in its two dimensional

phase plane.

6.3 Time-frequency windows and the physics

The algorithm and the physics associated with the adaptation of time-frequency windows

can be illustrated easily by going through practical examples. Though the adaptation

does not need to be confined to any specific type of wavelet, the Morlet wavelet readily

serves for such a purpose. As was stated in the previous chapter that the Morlet wavelet

is almost identical to a modulated Gaussian, and a modulated Gaussian matches almost

exactly with cardinal B-spline wavelet of order greater than or equal to three, which is

exactly the identified best basis wavelet. Overall we therefore, on the one hand, benefit

from an extremely natural transition from DWT to CWT, on the other hand, gain the

practical merit of the adaptation.

Before we go into the adaptation, let us recount more explicitly two very important

features that distinguish the identified optimum basis from the other bases and that defi-

nitely contribute to the causes of the optimum basis’ successful applications: (1) The best

basis’ cardinal spline scaling function and its associated wavelets possess, respectively,

the nice properties of “total positivity” and “complete oscillation”. We note that these

two properties physically imply that its wave form is relatively smooth and without ad

hoc variations when compared with some fancy wavelets with finite support lengths. (2)

The cardinal B-spline wavelet is either symmetric or anti-symmetric. Therefore, it bene-

fits from the linear-phase filtering. The physical implication of this is: slight differences

in wavelet coefficients will not cause significant differences in their reconstructed wave

forms, or alternatively, the modulations of the wave forms are comparatively less abrupt.

With more natural transitions for both forward and inverse transforms under various cir-

cumstances, the impacts to our perception or visualization of an interaction process due

to varying input conditions are leaning toward relatively evolutionary tendencies rather
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Fig 6.1 (W Quirks-1) Wavelets with fancy analytical properties are often of peculiar wave forms and
are not of proper candidate for studying water-wave related physics — either
judging from their entropy values given in the previous chapter or form their
stability conditions shown in this figure.
The peculiarity and the sensitivity of these types of wavelet constructions
are somewhat illustrated by the phenomena appear in the blow-ups of bi-
orthogonal wavelets BO31O. In this case the blow-ups diverge rapidly and
fail to identify itself numerically in the refinement cascade. The blowup de-
tails are as follows.
Scale interval between blow-ups: 26 between subsequent sub-figures (a), (b),
and (c);
Unit value originating point (the point used to obtain the curve in sub-figure
(d)): level 2, position 12, i.e., element U 12

2 in the notation of figure 2.21 (WP

Tree);
Blow-up point: point 150 indicated by a vertical dotted line in the sub-figure
(d).
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Fig 6.2 (W Quirks-2) Again, another instance of peculiarity and sensitivity arising from fancy
wavelet construction is illustrated by the phenomena appear in the blow-ups
of the bi-orthogonal wavelets BO35O.
The blow-ups here converge poorly and incline with opposite slopes.
The blowup details are as follows.
Scale interval between blow-ups: 26 between subsequent sub-figures (a), (b),
and (c);
Unit value originating point (the point used to obtain the curve in sub-figure
(d)): level 2, position 12, i.e., element U 12

2 in the notation of figure 2.21 (WP

Tree);
Blow-up point: point 256 indicated by the intersection point of various curves
in the sub-figure (d).
It is noted that these peculiarities indicate the poor entropy values, as well as
the consistently pathetic usages in water wave simulations. It is the author’s
belief that fancy constructions of wavelets do not adhere to the physics of wa-
ter waves.
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Fig 6.3 (Heisenberg) The Heisenberg uncertainty relation and the modulation versus shift prop-
erty (adapted from Bracewell 1986). A modulation process renders 1t1ω �

1t Dω. Where 1t ,1ω and Dω are the root-mean-square departures from the
centroids, respectively. The property helps significantly in possible adapta-
tions of wavelets for the purpose of modeling water wave physics. That is to
say, an adaptation generally will not violate the restriction of the minimum
requirement of the product between the two moments of time and frequency
distributions.
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than drastic turnovers. Still, one additional implication of practical significance is: dis-

tortions are far less severe when noise and uncertainty are poignant. The phase plane in

figure 6.4 (Adap–Simu) and the various blow-up curves in figures 6.1 (W Quirks-1) and 6.2 (W

Quirks-2), 2.29 (BU–BO31O) and 2.30 (BU–BO35O), as well as figure 5.1 (Pha–Eff-1) manifest the

problems and possible difficulties associated with wavelet bases that do not posses these

properties.

Up to this point we have illustrated many specific properties, associated either with

DWT or with CWT, that bestow upon our desires when analyzing our water wave related

signals; even though their outstanding effects might only be appreciated when we get to

the reality of analyzing experimental data. But here let us embark the further work on an

improvement — enhancing wavelet’s physical implication based on the affinity between

the identified best basis and the Morlet wavelet.

The Morlet wavelet is the following complex function:

ψ(t) = π−1/4(e−iω0t
− e−ω2

0/2)e−t2/2, (6.3)

in which ω0 is a constant related to the carrier frequency and the term e−ω2
0/2 justifies the

admissability condition. Its Fourier transform is almost a shifted Gaussian and is given

by

ψ̂(ω) = π−1/4[e−(ω−ω0)
2/2

− e−ω2/2e−ω2
0/2]. (6.4)

In addition to the general meaning of the modulation frequency, the ω0 has the physical

implication of the amplitude ratio r — the ratio between the second highest peak and the

first highest peak of ψ(t) — i.e.,

r = ψ(t2)/ψ(0), (6.5)

in which t2 is the abscissa of the second highest peak. The exact value of t2 can be obtained

by solving numerically the transcendental equation derived from the derivative of the ψ
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function, but a fairly good estimate is obtained by simply dropping the second term of the

above complex function since the second term is generally five order of magnitude less

than the maximum value of the first term, i.e.,

ω0 ≈
2π
t2

≈ π

(
−

2
ln r

)1/2

. (6.6)

The higher the ω0 is, the smaller the ratio r becomes. If ω0 is constant, then the ratio r

for different wavelet dilations or scales keeps constant too. Here comes the core question:

whether constituent wave components of different scales and time spans all possess this

fixed decay feature? To show that this is not true, let us examine the composite water

wave system that is with viscous damping.

For deep water waves with a clean surface the energy losses due to viscous dissipation

arise almost entirely from the straining of the irrotational motion in the water column,

and the part of contribution from viscous stresses in the surface layer is negligible. It was

shown [15, 30] that the time rate of change of the energy density is

Ė = −2µσ 2aw2k, (6.7)

where µ, σ , aw, and k are the dynamic viscosity of the water, the wave frequency, wave

amplitude, and wave number, respectively. Since in deep water E = (2k)−1ρσ 2aw2,

where ρ is the water density, the attenuation coefficient

γν = −
Ė

2E
= 2νk2, (6.8)

where ν is the kinematic viscosity of the water. Therefore the energy density of the wave

evolves as

E = C1e−2γν t , (6.9)
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where C1 is a constant, and the amplitude decreases with time in accordance with

aw =

√
C12k
ρσ 2 e−γν t

= C2e−2νk2t , (6.10)

where C2 is a constant if σ does not vary. Comparing the decay of wave amplitude of

Morlet wavelet with the decay of the physical model, one sees both similarity and dis-

similarity. The similarity is that the attenuation coefficients in both models have inverse

square dependence on scales — the former in (1/a)2 and the latter in k2. The dissimilar-

ity is in the time dependence of the exponent in the exponential — in Morlet wavelet it

is in t2 dependence, while in the physical model it is in linear dependence. It is therefore

anticipated that Morlet wavelets based on a fixed modulation shape are not good represen-

tations of water waves of different scales. Or stated otherwise, basis functions originating

form a single mother Morlet wavelet do not form a good basis.

Now the situation is clear: the constant ω0 either overestimates the viscous decay

of water waves at the low-frequency end or, otherwise, under-estimates those at the high-

frequency end. Form a practical judgement of the modulation curves, it is quite reasonable

to argue that the deviation is probably more significant for waves with a longer life span

when a standard r value of Morlet wavelet, i.e., r = 0.5, is assumed. The perceptions

here provide the footing for the present adaptation — with different values of amplitude

ratio r for different wave scales we are really attemptimg to simulate the evolution process

with a more realistic condition. The expansion or contraction of wavelet support length

for a specific scale just reflects the devising of flexible constructions of time-frequency

windows, and adjusting r is in turn using a variable ω0. The general guideline is to use

a comparatively larger ω0 (associated with a narrower frequency band) for waves of a

longer time support; and vice versa, a comparatively smaller ω0 (a wider frequency band)

for a shorter life span. Here it naturally comes to assume the ω0 to be a function of scale,

i.e., ω0 = ω0(a). And the varying shapes and sizes of the time-frequency windows are
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now determined by

ψa

(
t − b

a

)
= π−1/4

[
e−i ω0(a)

a (t−b)
− e−ω0(a)2/2

]
e−

(t−b)2

2a2 . (6.11)

6.4 The carrier frequency and the adaptation

Earlier we have stated a few nice features of the identified best basis. There is one addi-

tional feature that is practically significant because of its relevance to the Morlet wavelet

— the physical perception of the sizes and shapes of “scales”. Without such a property

everything will look obscure. In fact, we have seen a lot of ambiguities or abstractions in

many studies where they only involve presentations using non-dimensional scales rather

than using the more appropriate physical quantities of carrier frequency even though they

are working on modulated Gaussian or Morlet wavelets. We note that the wavelet coeffi-

cient generally refers to “scale” not to “frequency”. Scale has no dimension, but carrier

frequency has a physical unit and is associated with a Gaussian bell modulator. Fur-

thermore, scale generally corresponds to complicate combination of several frequency

bands such as what implied by the compactly supported orthogonal wavelets shown in

figure 6.4 (Adap–Simu). Therefore, in order to have a clear picture of a “scale” one needs

to consider: What does the basic wavelet look like? What is the actual support length?

And, what is the physical sampling interval? All these severely tangle our thought, and

we get lost easily. Take as an example: the numerical processes for both discrete Fourier

transform and DWT care nothing about the physical units and only the index is impor-

tant; however, there is an easy conversion from index to frequency for Fourier coefficient,

but not for wavelet transforms except the ones associated with the Morlet wavelet. It is

totally impossible to visualize the corresponding object just from the index of a wavelet

coefficient. For the best basis and the related adaptation the difficulty is avoided, since

the precise and physical “carrier frequency” is easily seen to be ω = ω0(a)/a, supposed

that ω0(a) is large enough, say above 5. Again, the point to caution is: illustrations using
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scale parameter a can be confusing and misleading since the same a may correspond to

different actual scales or frequencies when different adaptations or different wavelets are

used.

As was stated in the previous section that the present adaptation can always be ap-

plied to finite scale range(s) and that the transform only needs to be implemented for scale

range(s) that we are interested in. Still, we give an additional description of the flexibility

concerning this. Since one can always regard that the set of sampled data points is derived

from a certain specific function, but there are basically infinitely many functions which

can pass all these sampling points. And since the functions passing through these points

may be either band-limited or -unlimited but the sampled signal is always band-limited

(since numerical analysis is always associated with finite scale range); therefore, the sit-

uation indicates that there exists freedom to make adaptation for ω0 and also implies the

possible redundancy when CWT is applied to the sampled signals. The remaining prob-

lem is how to define a suitable decay parameter ω0. Nevertheless, based on the above

mentioned practical concern of wave decay and the somewhat intuitive adjustment, we

show the possible improvements in time-frequency resolutions when the adaptation is

applied to experimental data. But let us first give a numerical simulation.

For the simulated data we use a parabolic chirp where the frequency range of interest

covers the whole band width of the signal, i.e., from almost zero frequency to that cor-

responding to Nyquist sampling rate. And a linear variation of ω0(a) from 10 (for large

scale end) to 7 (for small scale end), as opposed to the commonly adopted fixed value

of 5.3 (corresponding to r ≈ 0.5), is assumed. As is seen from figure 6.4 (Adap–Simu),

the adapted one gives better frequency localization for almost all frequencies except the

lowest two carrier frequencies (in fact the adaptation can be further adjusted for this part,

and to have better resolutions for these two carrier frequencies the values of their ω0(a)

should be less than 5.3, but the concern here is mainly on the serious edge effects). A

phase map for the complex wavelet coefficients derived from a refined ridge extraction

scheme is also shown as the top right sub-figure. Here it provides a much better identi-
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fication of scales of main power contents than what can be provided by Morlet wavelet.

F:TFM-WindWave

For the experimental data water waves measured in the wind blowing oval tank are

used, in which reasonable frequencies should lie between 1.5 and 10 Hz. Earlier we men-

tioned that the Morlet wavelet is likely to overestimate the decay of longer waves in the

long run; therefore, relative to higher frequency waves, we should reduce the decay para-

meter ω0 for low frequency ones. Based on this understanding we heuristically assume

Erfc
[

4
10

(ω0

a
+ 2.5

)
− 2

]
3 + 5 = aω (6.12)

where Erfc is the complimentary error function and ω is the carrier frequency. This equa-

tion may be modified according to the type of signal studied or according to the frequency

range of one’s interest. Figure 6.5 (Adap–Erfc) shows the curve of the function. The logic for

the choice of its constants is self explained in the attached program piece. Figure 6.6 (Adap–

Wave) shows results without and with the adaptation. Here, the varying ω0(a) is from 9.16

(for the large scale end) to 5.26 (for the small scale end), as opposed to the fixed value of

5.3. Again there are less smearing effects at the lower portion of the time-frequency plane

since we mainly adjust decay parameters for the low-frequency end.

A few additional points are: (1) The dominant carrier frequency is about 2.4 Hz in

this case; (2) Waves of all frequencies keep constantly evolving, since light and dark

regions constantly interlace; (3) There are grouping effects. Waves with significant energy

contents are more enduring and the durations of darker bands are much longer than those

of higher frequencies. This indicates that our adjustment for decay parameters is based

on a reasonable ground; (4) There is an obvious bifurcation among scales, especially for

the intermediate frequency range of about 3 to 4.5 Hz; it suggests that the phenomenon of

energy cascade from where energy concentrates to neighboring areas. Judging from these

characters it seems that the energy phenomenon in a multi-scale wave field is somewhat

similar to that in a turbulent flow field (see Tennekes and Lumley [32]).
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[Morlet CWT, chirp-n2.dat (5.30,5.30)] (1996/10/11-23:4:41)
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[Adapted CWT, chirp-n2.dat (10.0,7.00)] (1996/10/12-0:37:16)
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[Variant CWT--chirp-n2.dat (10.0,7.00)] (1996/10/12-1:30:1)

2Pi 0Radian   [CWT  Phase]
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Fig 6.4 (Adap–Simu) The time-frequency distributions of a parabolic chirp (bottom right)
with (top left) and without (bottom left) adaption of the carrier
frequency parameter ω0. In generally the adaptation yields a more concise
distribution and a better coverage of frequency range.
An additional time-frequency map is shown in the top right. In which the
transformation is associated with a wavelet variant devised by the author (Lee
and Wu [21]). The wavelet variant has refined capability in ridge extraction
and shows less ambiguity.
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   obeg=11.;  oend=5.;  
   fcenter=2.5;  fdilation=10/4;   fshift=2. ;

   perfc=Plot[ Erfc[(1/fdilation)* (freq +fcenter)-fshift]* 
                            (obeg-oend)/2+ oend, {freq, -2.5, 8.5} ]   
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Fig 6.5 (Adap–Erfc) The ω0 is a representative character of the wavelet time-frequency window
kernel and intrinsically is the carrier frequency parameter. It has the physical
indication of wave decay tendency. A constant ω0 does not adhere to water
waves of a board range of scale.
Here an adaptation of ω0 in accordance with the carrier frequency is assumed
and hinted by the program piece. The window kernel parameter as a function
of carrier frequency is presumed to be the complementary Gauss error function
Erfc.
And the curve can be adjusted according to several parameters of wave fea-
ture as indicated in the attached program piece: approximate peak frequency;
significant range of frequency; range of decay parameter; as well as a shift
adjustment parameter.
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[Adapted CWT, b0w6020.4 (9.16,5.26)] (1996/10/12-1:26:50)
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[Variant CWT--b0w6020.4 (5.30,5.30)] (1996/10/12-1:15:2)

2Pi 0Radian   [CWT  Phase]
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Fig 6.6 (Adap–Wave) The time-frequency distributions of a wind-generated water wave signal
(bottom right) in a laboratory tank with (top left) and without
(bottom left) adaption of the carrier frequency parameter. The assumed
adaptation mainly adjusts the decay coefficients toward a mild decline for low-
frequency part. Here we see less smearing for the main frequency band.
Note that due to the narrow-banded nature of the laboratory wind wave the
adaptation may show more prominent effects for signals of a broad range of
scales.
Besides, the time-frequency plot (top right) using the same wavelet vari-
ant as mentioned in figure 6.4 (Adap–Simu) provides an easy identification of the
main power ridges as is generally infeasible using the Morlet wavelet.

112



6.5 Existence of the admissability condition

Earlier we gave a somewhat physical description on how the present adaptation manages

to provide an almost “lossless” operation. Lossless means that the full information of a

function is preserved during the transform and that we can recover the function from its

wavelet coefficients, i.e., there exists a reverse operation. In the following we provide a

more formal description through validating the existence of the identity resolution, which

is basically just to show the existence of an admissability condition.

In an earlier illustration of the adaptation, a modified basis of wavelets was formed by

adjusting the support length of dilated versions of ψ(t) using different values of ω0 which

is further assumed to be a function of a. Furthermore, as explained in the previous section,

a simple adaptation is the modification of carrier frequency according to ω = ω0/a, i.e.,

ω0 = aω, we therefore further assume that ω0 is a generalized function of aω and the

wavelet is

ψω0(t) = ψ(t ;ω0(aω)). (6.13)

Its dilated and translated versions are given by

ψa,b;ω0(t) =
1

√
|a|
ψ

(
t − b

a
;ω0(aω)

)
. (6.14)

And the wavelet coefficients of a function f (t) are given by

W fω0(a, b) = 〈 f, ψa,b;ω0〉

=

∫
∞

−∞

1
√

|a|
f (t)ψω0

(
t − b

a

)
dt

=

∫
∞

−∞

√
|a| f̂ (ω)ψ̂ω0(aω)e

−ibωdω, (6.15)

in which ψ̂ω0(ω) = ψ̂(ω;ω0(aω)). We follow the formalism to check that the inner
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product of two functions f and g, 〈 f, g〉, can be recovered from the integration of the

projection of W f (a, b;ω0) into Wg(a, b;ω0) along both real lines of dilation and trans-

lation variables. That is, whether the following equation exists:

∫
∞

−∞

∫
∞

−∞

1
a2 W f (a, b;ω0(aω))Wg(a, b;ω0(aω))dadb = Cψω0

〈 f, g〉, (6.16)

where Cψω0
is a constant. If it exists, then when g is taken as the Gaussian function

with its variance approaching zero (i.e., g is practically the delta function δ(t)), the inner

product 〈 f (t ′), g(t ′ − t)〉 = 〈 f (t ′), δ(t ′ − t)〉 will recover f (t) and the condition of the

identity resolution is guaranteed.

The right hand side of the above equation equals to

∫
∞

−∞

∫
∞

−∞

1
a2

[∫
∞

−∞

√
|a| f̂ (ω)e−ibωψ̂(aω;ω0(aω))dω

]
×

[∫
∞

−∞

√
|a| ĝ(ω′)eibω′

ψ̂(aω′
;ω0(aω′))dω′

]
dadb. (6.17)

With the following two identity equations

F̂a(t, ω0(aω))

=
1

√
2π

∫
∞

−∞

e−i tω
√

|a| f̂ (ω)ψ̂(aω;ω0(aω))dω

=
1

√
2π

∫
∞

−∞

e−i tωFa(ω;ω0(aω))dω, (6.18)

Ĝa(t, ω0(aω))

=
1

√
2π

∫
∞

−∞

ei tω
√

|a| ĝ(ω)ψ̂(aω;ω0(aω))dω
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=
1

√
2π

∫
∞

−∞

ei tωGa(ω;ω0(aω))dω, (6.19)

one has

∫
∞

−∞

∫
∞

−∞

2π
a2 F̂a(t;ω0(aω))Ĝa(t;ω0(aω))dadt

=

∫
∞

−∞

∫
∞

−∞

2π
a2 Fa(ω;ω0(aω))Ga(ω;ω0(aω))dadω

=

∫
∞

−∞

∫
∞

−∞

2π
|a|

f̂ (ω)ĝ(ω)|ψ̂(aω;ω0(aω))|2dadω

= 2π
∫

∞

−∞

f (t)g(t)dt
∫

∞

∞

|ψ̂(aω;ω0(aω))|2

|a|
da

= 2π〈 f, g〉Cψω0
. (6.20)

Now the resolution of identity is fulfilled if the following admissability condition is satis-

fied, ∫
∞

−∞

|ψ̂(aω;ω0(aω))|2

|a|
da = Cψω0

. (6.21)

This condition is more restrictive than Equation 5.7 in that ψ̂(0, ω0(u)) = 0 for all u ∈ R.

Otherwise, there is no other restriction since what is changed in the integration is limited

to finite range and is anticipated to be finite. The case using Morlet wavelet complies with

such a validation and therefore satisfies this condition.

6.6 Summary

The unrealistic aspect of the best wavelet in the simulation of water waves is pointed out

and the importance of the existence of a physical quantity of carrier frequency is stressed.

And a somewhat intuitive adaptation based on the adjustment of the time-frequency win-
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dow parameter is proposed. The adaptation mainly focuses on better modeling of wave

energy phenomena or energy dissipation for different wave lengthes. Such an optimiza-

tion shall be more significant for board band signals. v
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Chapter 7
Wavelet Coherences against Fourier
Coherences

7.1 Introduction

Coherence connotes mutual relationship or inter-dependency; it manifests from an inti-

macy of complete cloning to an alienage of total irrelevance. In a multi-scale, multi-factor

coupling system the levels of coherence between different target quantities symbolize the

phenomena of reciprocal interactions among various playing elements. By studying vari-

ations of coherences under different experimental setups or different input parameters it

is possible to show evolutions of different scales and to isolate key influential factors, as

well as to identify issues thus consorted.

In this chapter solid evidences will be provided regarding the the proof of “the ultimate

last word” on best wavelet concerning water wave applications and physics. What will

be furnished is the absolute superiority of the wavelet coherences associated with the

ultimate best wavelet over the spectral coherences associated with Fourier basis. By the

way, be that as it may, the author likes to emphasize that by no means it is equivalent to

saying that Fourier basis is inferior to such wavelet basis in every aspect of water wave

studies. In facts, it is still vastly important in many prospects, in particular, for those

that are generally stationary or without significant local transient variations and for those

related to water wave instability (such as side-band instability).



In two individual studies related to the methodologies of time-frequency analysis by

the author ([19] [22]), the viewpoints based upon Hilbert transform and the analytic sig-

nal procedure ([14], [9]) were used to elaborate the influences of non-stationary effects

and local transient variations, as well as some of the intrinsic mathematics and their con-

nection with the uncertainties related to Fourier spectra. Herein, we will come to realize

the same drawbacks imposing upon the Fourier basis due to these effects when compar-

ing performances of spectral coherences with those of wavelet coherences. Moreover, let

state a few basic differences between the two approaches.

Apart from the most instinctive and fundamental deviation between Fourier and wavelet’s

viewpoints concerning the appropriateness of depicting waves as finitely supported mod-

ulating signals, i.e., waves with a life span, there are two other major differences.

First, from the viewpoint of their origins from mathematics, the formulation of wavelet

coherence is a more intimate replica of its analytical form than is the Fourier spectral

coherence. Specifically, the wavelet coherence is a direct and natural extension of the

wavelet “resolution of identity”, and therefore involves less artificial intervention.

Second, the wavelet coherence presented here is derived from a set of coefficients with

an extreme redundancy associated with no orthonormality whatsoever; while spectral co-

herence is derived from a set of coefficients associated with orthonormal basis functions.

Such a redundancy is capable of providing not only a fine scale resolution but also a huge

population space needed for outstanding coherent statistics; since it reduces impacts re-

lated to histogram processing, noises, and a few additional uncertainty factors, etc ([31],

[35]). Most importantly, being based upon the basis with minimum entropy that clearly

outperforms the Fourier basis, the wavelet transform coefficients possess utmost informa-

tion contents and lead to clear and superior tendencies in coherent features.

Overall, what presented in this chapter will come to the conclusion: for water waves,

the ultimate best wavelet in the discrete domain is the semi-orthogonal cardinal spline

wavelet; and in the continuous domain it is the Morlet wavelet.
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7.2 The Fourier spectral coherence

The cross correlation function of two functions g(t) and h(t) is the following inner prod-

uct c(t)

c(t) = 〈g(t + τ), h(τ )〉, (7.1)

where τ is a dummy variable with respect to t . The correlation coefficient function of c(t)

is rs(t),

rs(t) =
c(t)

‖g(t)‖‖h(t)‖
. (7.2)

For real g(t) and h(t), its Fourier transform is

ĉ(t)
‖g(t)‖‖h(t)‖

=
G(ω)H(ω)

‖G(ω)‖‖H(ω)‖
. (7.3)

The Fourier spectral coherence is the following induced form,

R2
s (ω) =

|E[G(ω)H(ω)]|2(
E[|G(ω)|2]E[|H(ω)|2]

)1/2 , (7.4)

where the symbol E stands for taking expected value. Comparing the two equations

above, the artifacts introduced into the spectral coherence are associated with the form of

expected values and the introduction of normalization.

This equation is in fact identically unity for all component frequencies if no additional

man made manipulation is adopted. Since expected values take no action without intro-

ducing one more dimension. As such, the introduction of an additional dimension is the

manipulation of data segmentation, that is to say, the whole data sequence is segmented,

and each segment is individually transformed and arranged in a matrix thus creating the

one additional dimension. The process of this segmentation is completely identical to that

commonly implemented in calculating Fourier power spectra, and it aims to reduce the

uncertainty or standard deviation of the spectral estimation. There is no doubt that vari-

ous inherent properties of the discrete Fourier analysis inflict their symptoms and impose
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similar limitations to the conclusiveness of spectral coherences.

7.3 The wavelet coherence

It was a stumbling when the subject of both wavelet and spectral coherences caught the

author’s attention. Reading a paper by Liu [24], the author was dissatisfied with the

paper’s definition of wavelet coherence and the ambiguity and lack of information thus

yielded. And it turns out that the derivation of wavelet coherence is even much simpler

mathematically and more intuitive theoretically, along with fewer artifacts.

The wavelet’s “resolution of identity” of two functions (g and h) is

〈g, h〉 =
1

cψ

∫
∞

0

1
a2

∫
∞

−∞

〈g, ψa,b〉〈h, ψa,b〉dbda, (7.5)

in which cψ is a constant and ψa,b is a wavelet with scale a and translation step b. For a

component scale a

〈ga, ha〉 =
1

cψ

1
a2

∫
∞

−∞

〈g, ψa,b〉〈h, ψa,b〉db. (7.6)

Here the integration with respect to the translation parameter b is physically, as well

as intuitively, similar to the operation of taking an expected value by summing up the

elements in the population space. It is therefore quite straightforward to define the wavelet

coherence as the natural extension of the normalized equation of resolution of identity:

R2
w(a) =

|Eb[〈g, ψa,b〉〈h, ψa,b〉]|2(
Eb[|〈g, ψa,b〉|2]Eb[|〈h, ψa,b〉|2]

)1/2 , (7.7)

where Eb stands for sampling average with respect to the translation parameter, the sub-

script b.

It is clear that the wavelet coherence has a more direct linkage to its analytical coun-

terpart than does the spectral coherence.
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Unlike the spectral coherence, there is no need to segment the data. The expected

values can be obtained in a sense of summing up all the results of wavelet transforms at

all locations. And each elemental transforms can be obtained through simple convolution,

i.e., an operation of time reversal and time shift if the data is a time sequence. Therefore,

the population size of the sample space of wavelet coefficients for any given scale (or car-

rier frequency as adopted here) is generally two or three orders of magnitude larger than

that for spectral coherence. That is to say, the amount of available sampling coefficients

is generally not a concern for the wavelet scheme.

In fact the fundamental difference between the present definition based on equa-

tion 7.7 and the one adopted by Liu [24]) is the state of subsistence of the expected

values. Without the statistics of an expectation the results seemed scanty and the depic-

tions sounded skimpy.

Although the equation of the wavelet coherence (eq. 7.7) applies equally well to a

discrete or a continuous basis, there is one significant and practical advantage that facili-

tates the use of the continuous one. Since we can focus only on the portion of scale range

that is meaningful and substantial to us. Nevertheless, for the spectral coherence, in the

handling we have no control at all over the frequency range of interest. As such, a great

portion of the spectral result might be entirely irrelevant to our concerns.

Judging from the fact that we generally only want to, and are just able to, focus on a

finite scale range or some frequency bands in practically any real world situation. Even

though computation efficiency is not our concern, We know that the spectral approach

wastes its effort and resource in the unwanted while the wavelet coherence does just the

most appropriate.

7.4 The experiments

The data involved here is related to a subset of experiments aimed at the study of the

energy cascade and the interaction scales in the wind, wave and rain coupling system.
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7.4.1 The oval tank

The experiments were carried out in an circulating oval tank equipped with wind blow-

ing facilities and a mountable mechanical wave generator. Figure 7.1 (Oval Tank) shows

the layout. The tank is 31 cm wide and 45 cm high and has a 5-meter observational

straight section. The water depth was kept at 24 cm in all experiments. A fan of continu-

ously variable rotation speed was located at the opposite side of the observational section.

Horizontal guiding vanes were installed in front of the fan to regulate the airflows. And

vertical guiding vanes were installed at the two semi-circle sections to reduce secondary

flows in both air and water. The mechanical waves were generated by the plunger type

motion of a wedge shape piston controlled by a variable-speed rotor. And the mechanical

setup could be placed along the observational section.

7.4.2 The laser Doppler velocimeter

Aqueous flows at several depths in two sections along the tank were measured with a laser

Doppler velocimeter (LDV) [1]. The LDV system is a TSI four-beam, two-component

system with two-color, dual-beam backscattering, and counter type signal processor con-

figuration. A few auxiliary instruments and accessories were also used in fine-tuning the

whole system and in achieving optimum control of data quality. The main system compo-

nents and the auxiliary instruments are: (1) Fiberoptic transmitting and receiving probes

(TSI Model 9115, 9182, and 9140); (2) Photodetector and photomultiplier system (Model

9160); (3) Frequency shifter with acousto-optic modulator and electronic down-mix mod-

ule (Model 9180A); (4) Signal input conditioner (Model 1994C); (5) Fringe timer (Model

1995B); (6) Frequency to analog conversion module (Model 1988). (7) Digital readout

module; (Model 1992); (8) Intermittent burst data recording interface; (Model 1998); (9)

Light-power meter; (10) TI Dual channel oscilloscope for high-end fast and sensitive real

time monitoring.
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Fig 7.1 (Oval Tank) Schematic layout of experiment
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7.4.3 The waves

Both wind and Stokes waves were generated. Major wind speed was 6.0 sec−1. And the

wind speed was measured with a Pitot tube located 50 cm upwind of the rain section and

11 cm above the still water surface. Stokes waves with different wave steepness were me-

chanically generated. Water surface displacements were measured with the capacitance

type tantalum wire probes self-designed by the lab.

7.4.4 The real time system

A highly automated and specially optimized PC-based real time system for both data ac-

quisition and data analysis was developed by the author using the Asyst programming

language. Details can be found in the previous section on ”Program and workbench de-

velopments”. Its functions included: calibrations, noise detections either environmentally

and instrumentally related, real time signal monitoring, on-site data processing and analy-

ses, on-site generation of various curves and tables and figures either in terminal or in

paper. Such a system ensures maximum controls and peak data quality, most importantly,

the trouble-free and satisfactory results.

7.5 Comparisons and implications

The performance comparisons of the two approaches provided here concern the coher-

ences between the surface wave and aqueous flow fields for both wind wave cases and

Stokes wave cases.

These comparisons fully warrant the entropy results and vindicate the ultimate best

wavelet for water waves. There must be reasons and implications.

• The absolute superiority of the wavelet coherences — The wavelet coherences using

three different analyzing data lengthes of 1024, 2048, and 4096 points are shown in

figure 7.2 (WC–210,11,12). The individual curve in each sub-figure indicate individual
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measurement depth for aqueous flow at 2, 3, 4, 5, and 9 cm, respectively, below the

still water surface. It is seen that all the corresponding curves for the three different

analyzing data lengthes are extremely consistent. In contrast, figure 7.3 (FC–210,11,12)

shows the Fourier spectrum coherences for the same data sets. The difference in

performance of the two methods is quite obvious and can be grasped without ex-

planation. Additionally, figure 7.4 (FC–213plus ) shows the spectral coherences using

a lengthy 9126-point with individual FFT segmentation length of 256- and 1024-

point. It is noted that, when extremely lengthy data is used, the Fourier coherent

curves may possibly come close to those of wavelet coherence but the trend is surely

slow and costly, yet with certain defections still.

• The fitness of the nature of a life span — For short wind waves (such as the tank

data here) the description of a life span fits the physics better. Component waves

are inherently evolving and mutual interaction among them is a norm. And this

is the basics that the wavelet depiction comes into play. Moreover, life spans of

component waves are shorter than any analyzing data length used. That is to say,

even the shortest data length of 1024-point sufficiently cover the support lengthes

of all wave components in the experiments.

• Wind waves in the tank soon lose their identities — Figure 7.7 (Auto-corr) shows the

auto-correlation coefficient distributions of two wind-wave signals in the oval tank

measured at upstream and downstream location, respectively, and it provides the

evidence of the life span argument. Here the correlation level is low and diminishes

rapidly. A sensible feeling is that these waves lose their identities extremely fast

when viewed from Fourier spectral perspective. Put differently, the behavior indi-

cates the trouble related to the level of uncertainty of the Fourier decomposition.

• Spectral repeatability — Even with the acquaintance of the above explanations one

might not grasp to what extent the problem of Fourier spectral repeatability may af-

fect the conclusiveness in data interpretations, as well as the coherent performances
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shown here. Measurements of the signals in the wind blowing oval tank provide fur-

ther explanations. But let first present the data in a fundamental perspective based

on zero-upcrossing statistics; compared with the spectral point of view, it helps il-

luminate different specific features that are associated with individual perspectives.

Table 7.1 (Zeroup–Sta) shows the statistics from such a conventional method for three

sets of measurements. These three measurement sets were made under the same

wind velocity and the signals were sampled at a rate of 40 samples per second for

a duration of 240 seconds. Channel 1 is for aqueous flows measured with LDV

at a depth of 3, 4, and 5 cm, respectively, from the still water surface. Channel

2 is for water-surface displacements measured at nearly the same transverse cross

section of the tank as that of the LDV measurement point (with a separation of

0.6 cm). Therefore, statistics for channel 2 can therefore be regarded as the results

from repeated measurements. As are seen from the table, of all individual runs

various statistical values for channel 2 are extremely consistent; hence, from the

point of view of zero-upcrossing statistics, the wave field under the experimental

setup is quite stationary. In contrast, figures 7.8 (FS–RP–L-1) and 7.9 (FS–RP–L-2) show

that the idea of stationarity is hardly substantiated when viewed from the spectral

perspective. In the two figures, the spectra are for the same data sets but with differ-

ent values of one of the FFT parameters, i.e., two different segmentation lengthes.

The top sub-figures are the power spectra for the repeated measurements of water-

surface displacements. The bottom sub-figures are the LDV aqueous flows at each

depth. Choices of parameters for these standard spectral numerics are labeled in

the figure. For all cases the total length of data is multi-segmented with 50% over-

lapping, and the Blackman window is applied to each segment. A segment length

of 512 points (with an approximate degrees of freedom of 36) is used for the left

figures and 1024 points for right figures (with an approximate degrees of freedom

of 17). As are shown in the top sub-figures, the repeatability of spectra is rather

poor, not to mention the discrepancy arising from different length of segmentation.
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The spectral resolution for those on the left is insubstantial, while the variations of

spectra on the right is much more defective. In fact, the illustrated problem is the

manifestation of the symptom associated with the deconvolution mechanism of a

spectral blackbox operation [17].

• Phase effects — If we compare corresponding curves (surface wave and aqueous

flow signals) in the top and the bottom sub-figures it is seen that the shapes of the

two are generally in agreement. This provides a lucid illustration of the phase ef-

fects. Since the two signals are acquired at the same time and at almost the same

cross section, there is little phase effect between the two spectra. On the contrary,

we just do not have any control over the phases of component waves for differ-

ent runs under the same experimental setups. An extreme illustration and further

explanation for those effects can be found in figure 5.2 (Pha–Eff-2).

• Stationarity prerequisite — The truly remarkable point for the wavelet coherences

is that the 1024-point data length has almost fulfilled the statistics of stationarity.

There is little difference among the three analyzing lengthes. Such a behavior is

even more proficient than that of the zero-upcrossing statistics (Table 7.1 (Zeroup–

Sta)).

• The role of the redundancy — The Fourier basis is orthonormal and the discrete

wavelet bases are either orthonormal (self-dual) or orthogonal to their duals (dual

mother wavelet and dual farther wavelet). There is no redundancy for orthonormal

transforms and little redundancy for those discrete transforms based on nonorthog-

onal bases. However the continuous wavelet transform is an extremely redundant

operation. Without the redundancy a small change in signal causes enormous vari-

ation in scale information or transform distribution. The redundancy is able to yield

purified coherences by minimizing effects from unrelated scales while provide a

fine scale resolution. Redundancy is therefore a much desirable property for studies

of coherent behaviors.

127



• Length requirements — There is no need to acquire lengthy data when wavelet ap-

proach is adopted, whereas for the spectral approach the need for more data sees

no ending. In this regard, for the wavelet coherences, the lengthening of data pro-

vides not much additional information and the information content of redundancy

saturates quickly.

• Water waves are inherently “regular” from wavelets’ perspective — And again, it

is emphasized that this statement is based upon the wavelets’ point of view. Since,

we have the facts:

– that most of the wavelet basis functions other than one identified here look

quite odd when compared to the Fourier sine and cosine functions;

– that the various properties outlined in the previous chapter on phase distrib-

utions indicate the simplicity requirement of the wave forms and bespeak no

ambiguity;

– that the optimal continuous wavelet here is quite like a modulated Gaussian;

– that, in the end, the fourier spectral coherences and the wavelet coherences

somewhat approach similar distributions.

7.6 Summary

The absolute superiority of the wavelet coherence fully vindicates the present study. In

short, the outstanding performances lie upon the two main factors: they have the truly

best both from the optimal discrete basis and from the most upright continuous basis.

That is to say, first, it is based on a clear-cut minimum entropy associated with the best

discrete wavelet (the semi-orthogonal cardinal spline wavelet) for water waves; second,

it further employs the beneficial property of the redundance and engages the existence of

a meaningful physical quantity of the carrier frequency associated with the counterpart

continuous wavelet (the Morlet wavelet). v
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Fig 7.2 (WC–210,11,12) The wavelet coherences between the wave and aqueous flow using three
different data lengthes: 1024 (top), 2048 (middle), and 4096-point
(bottom). Each individual curve represents a different measuring depth
of aqueous flow at 2, 3, 4, 5, or 9 cm, respectively, below still water surface
as labeled in the sub-figures. Note the well consistency and behavior among
curves.
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Fig 7.3 (FC–210,11,12) The Fourier spectral coherences between the wave and aqueous flow for the
same set of data as that of the wavelet coherences (figure 7.2 (WC–210,11,12)).
Note the extreme variation for all the curves.
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Fig 7.4 (FC–213plus ) The Fourier coherences using a data length of 9126-point for two different
lengthes of spectral segmentation, 256 (top) and 1024 (bottom) points.
It is seen that extremely lengthy data may possibly yield a somewhat similar
distribution curve as that of the wavelet coherence (top), but note the effects
of degrees of freedom of the spectrum (bottom).
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Fig 7.5 (WC–Stokes) The wavelet wave-current coherences at several depthes for two Stokes waves
with wave steepness of 0.06 (top) and 0.30 (bottom) for a data length of
1024 points — Some prominent physics here may involve:
(1) the band distribution and degree of separation;
(2) the coherent level for individual band at individual depth;
(3) the tendency or the phenomena attributed to the side-band instability or
nonlinear effect of water waves.
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Fig 7.6 (FC–Stokes) The Fourier spectral coherences for the same data as in the last figure (7.5 (WC–

Stokes)) (FFT parameters are labeled in the figure) — Can we infer anything?!
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Fig 7.7 (Auto-corr) Wind waves in the tank soon lose their identities — the auto-correlation coef-
ficients of two wind-wave signals measured at upstream and downstream loca-
tions in the oval tank. Here the correlation level is low and diminishes rapidly
and a sensible feeling is that these waves lose their identities extremely fast
when viewed from the Fourier spectral perspective. Alternatively speaking, the
phenomenon manifests the trouble related to the level of uncertainty or (degrees
of freedom) of the Fourier decomposition.
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Tab 7.1 (Zeroup–Sta) The zero up-crossing statistics for three different sets of measurement under
the same wind condition. Channel 1 is for LDV aqueous flows measured at
different depths from the still water surface. Channel 2 is for surface displace-
ments measured at the same location. Statistics for channel 2 can basically be
regarded as results from repeated measurements. Comparisons of data related
to channel 2 indicate that the wave statistics is in good stationary condition.
Whereas, this is certainly not true when viewed from the Fourier spectral per-
spective, as shown in subsequent figures.

Case : f0w6030.dat ( f1 p3 c1 s9 )

Date : 01/05/96

Time : 02:19:05.48 Sampling frequency : 40 Hz

Specifics : Sampling time length : 240 Sec

Ch #_W H.1 H.2 H.3 H1/10 H1/3 H1/2 H.ave H.rms T1/10 T1/3 T1/2 T.ave T.rms

1. 554 26.74 23.67 23.04 20.20 17.38 15.92 12.03 12.93 .44 .44 .44 .43 .44

2. 572 2.90 2.69 2.61 2.33 2.04 1.89 1.44 1.54 .44 .44 .43 .42 .42

Case : f0w6040.dat ( f1 p3 c1 s9 )

Date : 01/05/96

Time : 02:14:05.76 Sampling frequency : 40 Hz

Specifics : Sampling time length : 240 Sec

Ch #_W H.1 H.2 H.3 H1/10 H1/3 H1/2 H.ave H.rms T1/10 T1/3 T1/2 T.ave T.rms

1. 546 22.81 20.65 20.52 17.04 14.48 13.32 10.35 11.01 .45 .44 .44 .44 .45

2. 563 2.98 2.88 2.72 2.35 2.04 1.89 1.46 1.55 .44 .43 .43 .43 .43

Case : f0w6050.dat ( f1 p3 c1 s9 )

Date : 01/05/96

Time : 02:00:30.72 Sampling frequency : 40 Hz

Specifics : Sampling time length : 240 Sec

Ch #_W H.1 H.2 H.3 H1/10 H1/3 H1/2 H.ave H.rms T1/10 T1/3 T1/2 T.ave T.rms

1. 546 17.62 16.49 16.30 14.02 11.94 10.97 8.22 8.88 .45 .44 .44 .44 .45

2. 562 2.83 2.74 2.72 2.36 2.06 1.91 1.45 1.55 .44 .44 .44 .43 .43

----------------------------------------------------------------------------------------------------

Units:: Aqueous flow (Ch1:H): cm/s

Surface wave (Ch2:H): cm

Period (T): s
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Fig 7.8 (FS–RP–L-1) Spectra of the surface displacement and aqueous flow for the same three sets
of measurements as shown in table 7.1 (Zeroup–Sta). The top sub-figure shows
power spectra of the repeated measurements of surface displacement. The
bottom sub-figure shows power spectra of the LDV aqueous flow measure-
ments at different depths. It is seen that the repeatability of power spectra is
rather poor even though the zero up-crossing statistics has indicated the exis-
tence of a good stationary condition. This has profound entailment of the poor
performances of spectral coherence, as well as the sure unfruitfulness of the
blackbox deconvolution mechanism for two signals under any circumstance
[16].
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Fig 7.9 (FS–RP–L-2) Spectra for the same data sets as in the previous figure but with different FFT
parameters. Here a longer 1024-point segmentation is used and the degrees of
freedom is approximately halved. Whilst the resolution is increased the stan-
dard deviation intensifies. Again the figure shows the profound implication of
the problems of Fourier spectral repeatability and the poor performances of
spectral coherence.
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Chapter 8
Conclusions

8.1 Introduction

The subject matter here can be divided into three main parts. The first part is the identifica-

tion of a best wavelet basis for water waves. The second part is the practical optimization

of the best basis for better modeling of physics. The third part is the validation of the

aforenamed two parts through the performance comparisons on coherences between the

wavelet approach and the Fourier spectral approach.

When the author embarked these wavelet studies for utilization on water waves each

individual study was initiated completely independently and the downright interconnect-

edness was not foreseen. But, in the end, they sufficed to uphold the present conclusion

on the ultimate best wavelet for water waves.

8.2 Summary

For the interest of water wave related applications, comprehensive categories of discrete

wavelet bases, as well as the continuous wavelet, were studied. Extensive sets of Asyst

programs were developed from the ground up and a comprehensive workbench was de-

vised. The programs are able to illustrate various intrinsic properties of wavelets and their

relevant characterizations, as well as their possible implications in water wave physics.



Employing the jurisdiction of entropy statistics and the probability distributions of

transform coefficients the best wavelet basis in the discrete domain is identified. Further-

more, through the incorporation of the physics of the carrier frequency the corresponding

best wavelet in the continuous domain is discerned. The best wavelet in the discrete do-

main is the dual semi-orthogonal cardinal spline wavelet devised by Chui [6, 7, 8] and the

corresponding counterpart in the continuous domain is the Morlet wavelet.

In addition to the identification of the best wavelet we further discuss the best wavelet’s

deficiency in physical modeling and provide an intuitive and practical optimization cater-

ing wave decay phenomenon.

As a final vindication of the aforementioned realizations, the wavelet coherences as-

sociated with the best basis are compared to the Fourier spectral coherences for data of

wave and current fields measured in a wind-wave tank. It is the author belief that the best,

as well as the ultimate, wavelet for water wave modeling has thusly been named.

Below is a list of some of the main contents:

• The comprehensive discrete wavelet categories included:

– orthonormal;

– bi-orthogonal;

– semi-orthogonal;

– wavelet packet, both the best level bases and best branching bases;

– from the most symmetrical till the least symmetrical orthonormal;

– from the most compactly supported in the time domain till the most compactly

supported in the frequency domain.

• The depictions of wavelet natures and their possible pragmatic implications:

– mother and farther wavelets;

– the concepts of wavelet translation and dilation;
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– time-frequency window and the difference between scale and frequency, as

well as the Heisenberg uncertainty;

– the zoom-in or blowup of any individual wavelet and the fractal nature of

wavelets;

– the phase distributions of wavelet characteristic functions — the concept of

linear phase filtering versus the practical behaviors of wavelets, as well as

relevant advantages or disadvantages in water wave applications.

• The identification and the inclusion of Fourier bases — the entropy statistics, the

cumulative probability distributions:

– based on broad and inclusive criteria of entropy statistics — from energy point

of view, or from displacement point of view, etc;

– wind wave signals from a small laboratory water tank are used for the juris-

dictions — thusly, for water wave signals in the nature there cannot be any

wavelet that is more suitable than the optimal wavelet identified here, since

the present jurisdiction is made upon the highly transient short water waves

generated by wind;

– the relevance between the phase distribution of the wavelet characteristic func-

tion and the entropy;

– the solely and distinctly identifiable value in every entropy category points

to the same best discrete wavelet basis — the dual semi-orthogonal cardinal

spline wavelet;

– entropy values for orthonormal wavelets are inferior to those of nonorthogonal

ones;

– in all criteria the best wavelet’s result is undoubtedly superior to the Fourier’s.

• The role of the phase distribution of wavelet characteristic function for basis con-

struction:
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– the phase distributions of the characteristic functions for all wavelet categories

are provided;

– the distribution feature of phase hints a wavelet’s practical usefulness in water

wave physics;

– the entropy results are of statistics and they provide no analytical clues con-

cerning the usefulness of a basis — the property of the constant phase filtering

gives rise to the best performance concerning water wave simulations;

– an indication of the level of regularity of the shapes of water waves.

• The counterpart in the continuous domain to the best discrete wavelet:

– the Morlet wavelet and the carrier frequency;

– the manipulation of wavelet redundancy or non-orthogonality for the purpose

of minimizing uncertainty or ambiguity of wave analysis;

– the additional and specific advantages associated with the continuous domain

that lead to the usefulness in practical applications;

– the relevances among the redundancy, orthogonality, and phase distribution;

– the implications of the wavelet properties of “complete oscillation” and “total

positivity”;

– the limited practicality of instituting multi-voice or multi-wavelet algorithms

[12];

– the savvying of flexible constructions of wavelets time-frequency windows.

• The further optimization for water wave physics:

– the decaying properties of water waves of different scales and the adaptation

of wavelet time-frequency window;
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– the constant decay parameter of the continuous wavelet — unrealistic descrip-

tion, as well as an over-estimation of decay for longer waves and an under-

estimation for shorter waves;

– scales verse frequencies — mathematics versus physics — the importance of

the association of a wavelet and a carrier frequency parameter;

– the adaptation of wavelet time-frequency window and the carrier frequency;

– an intuitively proposed complementary error function and the modeling of

wave decay phenomenon;

– better ridge extractions for all scale range — numerical simulation using chirp

signals and real data from laboratory wave tank;

– a more suitable approach for discerning micro phenomena, such as possibly

feeble features evolving under multi-agent interactions.

• The comparisons of the wavelet coherences and the Fourier spectral coherences

– when compared to the Fourier coherence formulation, from mathematics to

statistics, the wavelet coherence formulation is a natural extension with less

artificial intervention;

– the poor performance of spectral coherences is reflected by the rapid variation

of the coherent curves as well as the extremely slow improvement when the

data lengths are increased;

– the wavelet coherent curves are consistently far superior to the Fourier coher-

ent ones.

• The symptoms related to the Fourier coherence can be attributed to:

– the unsatisfactory deconvolution mechanism of a blackbox operation;

– the serious phase noise and ambiguity effects;

– the uncertainties associated with Fourier numerics;
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– the rapid diminishing of autocorrelation functions;

– critical variations due to slight changes of signal – a symptom that is associ-

ated with an orthonormal bases.

• The superior performance of wavelet coherences can be attributed to:

– the basis functions being associated with the minimum entropy basis;

– the set of continuous transform coefficients being extremely redundant;

– with intimate analytical origin;

– less interventions and fewer side effects in numerics;

– with respect to their shapes of wave form, almost all the discrete basis func-

tions, except those of the best basis here, are too odd to serve the practical

simulation of water waves;

– the physical significance of the present adaptation of time-frequency windows

to the mimicking of wave decay or evolution;

– probably, the most fundamental, as well as the most primal, factor is that

component waves are intrinsically modulating in nature .

Lastly, a point to note again: Here we put up an optimal, as well as the ultimate,

wavelet basis that is both mathematically and physically right for water waves. And the

author firmly believes that the best basis identified is the last word in wavelets concerning

their applications to water waves. v
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Three main parts, Six theses, One backbone
The Best Wavelet, The Optimization, The Coherences

1. Comprehensive wavelet categories and characterizations ò

2. The best discrete basis, inclusive entropy criteria, probability
density distribution ò

3. The phase distribution of wavelet characteristic function ò

4. The counterpart best continuous wavelet ò

5. The optimization for physics ò

6. Wavelet coherences against Fourier coherences ò

Backbone — The writing of codes, The workbench
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Tested wavelet bases
• Orthonormal ò

∗ Daubechies most compactly supported wavelets (ONxxA) ò

∗ Daubechies least asymmetric wavelets (ONxxS) ò

∗ Coiflets (ONxxC) ò

∗ Meyer wavelet (Meyer) ò

∗ Battle and Lemarié wavelet (B&L) ò

• Semi-orthogonal ò

• Bi-orthogonal ò

• Wavelet packet ò

• Wavelet packet best basis ò

• Wavelet packet best level ò

• Fourier basis included ò
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Conclusions
The last word in the best wavelet
· · · · · · · · · concerning water wave applications

• Discrete domain:
The dual semi-orthogonal cardinal spline wavelet

• Continuous domain:
The Morlet wavelet

• The adaptation for better modeling of water wave physics:
Energy dissipation due to irrotational straining

• The absolute superiority of wavelet approach on coherences:
Based on the best wavelet for water waves
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