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ABSTRACT

Crowdsource delivery is reported to contribute a significant role for last-mile delivery (LMD).
Lower operational cost and capital investment, as well as delivery flexibility, are the main
advantages of crowdsource delivery when compared to the conventional LMD. Positive results
of integrating crowdsource delivery into the LMD have been reported in terms of delivery cost,
service level, and environmental impact. This study investigates the delivery plan of LMD in
a collaboration with the crowdsources as one of the delivery options. The crowdsources provide
delivery assistance from transfer points to the customer locations. This collaboration requires
parcel relay between main delivery trucks and crowdsources at transfer points. In the real
situation, this parcel relay activity might be subjected to several kinds of uncertainties (e.g.

congestion, weather condition, etc.) that can create disturbance to the process.

In this study, the decision problem is tackled from two aspects, the deterministic and stochastic
points of view. In the deterministic point of view, the benefits of crowdsources delivery
collaboration are investigated given the perfect situation (with no uncertainty) by formulating
a problem as a mixed integer linear program (MILP). Upon the uncertainty considered in the
stochastic point of view, this study models the parcel transfer or relay event as an uncertain
event, which involves the success or failure of the crowdsources’ show-up. A two-stage
stochastic MILP model is formulated to as the optimization model considering the associated
uncertainty. The heuristics algorithms based on Tabu Search (TS) are designed to handle the
large-scale problems for both the deterministic and stochastic versions of the mathematical

programming models.



In summary, the crowdsource delivery collaboration improves the LMD plan by properly
outsourcing some delivery orders to reduce the overall delivery costs. The balance between the
delivery fleet utilization and the usage of crowdsourcing service must be carefully achieved to
provide the maximum benefit of crowdsources delivery collaboration. These benefits can still
be preserved even after the consideration of uncertainty. Based on the numerical experiment,

the heuristics algorithm is able to provide the high quality solution with fast computation time.

Keyword: Crowdsource delivery, Last-mile delivery, two-echelon routing problem, stochastic

routing problem.
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CHAPTER 1 INTRODUCTION

1.1. Background and motivation

As one of the emerging trends, e-commerce changes the consumer behavior of purchasing
consumer goods. It changes the majority of last-mile delivery (LMD) from conventional LMD
to the final home-delivery which is characterized as rapid, relatively small size (in volume or
weight), and scattered. As a result, LMD can consume up to 75% of the total supply chain costs
(Gevaers et al., 2009). This number is predicted to increase due to the growth of e-retailing
giants (e.g. Amazon, eBay, Taobao. etc.) and online e-commerce stores (Mckinnon, 2016). In
addition to the cost increase, new challenges have been discovered, such as failed delivery
issues (ping-pong effect), reverse logistics problem, local policy implementation, etc. In urban
city environment, an increase of congestion and pollution have been reported due to the
increasing number of deliveries (Allen, et al., 2000).

Several concepts have been proposed to overcome and reduce the LMD issues, such as
collaboration between several logistics companies to maximize their resources utilization (Park
et al., 2016; Liakos & Delis, 2015; de Souze et al., 2014; Petrovic et al., 2013), collaboration
with the convenience store as a drop off point, and the concept of shared reception box as a
drop off point (Wang et al., 2016; DellAmico & Hadjidimitriou, 2012; Punakivi et al., 2001).
The latest concept to improve LMD problem is to introduce the crowdsourcing concept to LMD
in which the crowdsources perform certain logistical tasks in return of a reward (Arslan et al.,
2019; Pitchka et al., 2018; Kafle et al., 2017; Devari et al., 2017; Wang et al., 2016; Rouges &
Montreuil, 2016).

The evolution of sharing economy and the advancement of communication technology had led
the crowdsourcing concept to be evolved drastically. Wikipedia, Kickstarter, Uber, etc. are
some real examples of the crowdsourcing business today. Crowdsources participation enables
the new opportunities for doing any tasks with cost-efficient, flexible, and relatively high speed
manner. In the logistics business, crowdsourcing the logistics tasks has been around for years,
especially the crowd-delivery (Rouges & Montreuil, 2014). More than fifty start-up companies
which can be classified as crowdsource delivery service providers were established to perform
LMD tasks (Carbone et al., 2017). Crowdsourcing the logistics task can be considered as an
innovative idea due to characteristics of e-commerce goods which are relatively small in size

and can be transferable to the crowdsources (Schenk and Guittard, 2011). In addition, the
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crowdsources are also faster in the congested area, use more environmental friendly mode, and
flexible to match the delivery schedule. In terms of cost, crowdsource delivery offers a lower
delivery costs due to the usage of unused resources in terms of time, assets and capacity to
perform the delivery task.

Positive results of integrating crowdsource delivery into the LMD have been reported in terms
of delivery cost, service level, and environmental impact. The collaboration with crowdsources
can increase the logistics company’s fleet utilization in terms of distance with approximately
57% mileage reduction can be made based on the simulation (Devari et al., 2017). Delivery
cost reduction for about 10-20% can also be made by integrating crowdsources in to the LMD
(Kafle et al., 2017; Huang & Ardiansyah, 2019). In terms of service level, crowdsources
delivery also can reduce LMD failure and increase the service level (Akeb et al., 2018). As for
the society gains, crowdsource delivery can reduce the environmental negative impact, such as
polution and traffic congestion. Based on the case study, a potential reduction on carbon

footprint is reported to be equivalent to 1.6 km in average (Paloheimo et al., 2016).

In practice, several crowdsource delivery implementations are found and have been
implemented by several logistics and retailer companies. A concept of parcel pick-up and
delivery on the way to the crowd commuter’s destination has been proposed by DHL and Wal-
Mart (Barr and Wohl, 2013). AmazonFlex implements a different concept of crowdsourced
delivery as it requires the crowdsources to pick up the packages from the headquarter, retailer,
or store and deliver it to the consumer location (Reilly, 2015). Grocery delivery or typical meal
delivery services by GrubHub, UberEats, Panda, GO-FOOD, etc. are several popular

implementations of crowdsouce delivery today (Sampaio et al., 2019).

In general, crowdsource delivery can be categorized into two categories based on the
crowdsources participation over the delivery task, namely full-coverage crowdsource delivery
and partial-coverage crowdsource delivery (Kafle et al., 2017 & Huang & Ardiansyah, 2019).
In full-coverage crowdsource delivery, the crowdsources cover the whole distance of the
delivery order. The crowdsources pick up the customer order from the location of the shipper
(e.g. warehouse, DC, store, retailer etc.) and deliver it directly to the customer locations
(Archetti et al., 2016; Palheimo et al., 2016; Arslan et al., 2019). In partial-coverage or relayed
crowdsource delivery, the customer order is relayed by the main delivery truck to the
crowdsources at the transfer location, then the crowdsources will continue deliver customer
order to the customer location (Kafle et al., 2017; Pichka et al., 2018; Huang & Ardiansyah.,

2019). The partial-coverage crowdsource delivery offers several potential benefits over the
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full-crowdsource delivery service, such as ease of finding crowdsources, more environmental
friendly, and more flexible to match the recipient available time (Chen et al., 2017). The

illustration of partial-coverage crowdsource delivery is provided in Figure 1.

@ Depot
- Customer

O Transfer Point

Crowdsources
» g
3 Vehicle Routes

== p Crowdsource
Assignment

Figure 1. lllustration of crowd-delivery in an urban area (Source: Kafle et al., 2017)

Although partial-coverage crowdsource delivery offers many benefits, it also has limitations,
such as unstandard services, possibility of crimes and violations, and possibility of
crowdsources late arrival and task cancelation. This study will focus to consider the last
limitation which is the possibility of late arrival and task cancelation. Any delay or
crowdsources task cancelation will disrupt the transfer or relay process and make the whole
crowdsource delivery plan fail (referred as the crowdsource transfer failure). The customer
order which is relayed by the delivery truck to the crowdsources at the transfer location will
become unsend customer order when the crowdsources and delivery truck fail to initiate the
relay process. The delivery truck may have no time to send the unsend customer order due to

the next delivery plan. An illustration for crowdsource transfer failure is provided in Figure 2.
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Figure 2. Illustration of crowdsource transfer failure and unsend customer order

The crowdsources who usually use small and user-friendly mode (e.g. pedestrians, cyclist, or
scooter-rider) are prone to the weather changes, as sudden rain might delay or cancel their
transfer arrangement. In addition, the probability of late arrival may depend on the traffic
congestion, especially in the urban area. Since the crowdsources are strangers to the logistics
company, they can easily cancel the transfer process when the situation become difficult. In
fact, the big hitchhiker companies such as Uber and Grab allow their drivers or crowdsourcing
partners to cancel their service up until 5 — 20% before they get evaluated (ABS-CBN News,
2018; Siddiqui, 2016).

This study investigates the concept of partial-coverage crowdsource delivery collaboration to
improve the LMD. The uncertainty in terms of the possibility to have successful crowdsource
transfer is considered to represent the real crowdsourcing situation. The problem will be
formulated as the optimization model in order to get efficient, effective, and robust delivery
plan integrating the conventional LMD and the crowdsource delivery. The results of this study
can help the decision maker (e.g. logistics operator, retailer) to decide several important
delivery and crowdsource decisions, such as the selection of customers that need to be
crowdsourced, the number of crowdsource partners, the location of the parcel transfer, and the

schedule of crowdsource transfer.



1.2.  Research objective

This main objective of this research is to generate the delivery plan of LMD with the
crowdsource delivery integration. The problem is approached as two different models based
on the uncertainty consideration, namely deterministic model for no uncertainty consideration
and stochastic model with the uncertainty consideration. For deterministic model, the main
objective is to generate an efficient and effective delivery plan by including the crowdsources
as one of the delivery options. In the stochastic model, the crowdsource transfer event is
considered as the uncertain event to represent the actual situations and generate robust delivery
plan. In addition to the optimization models, this study also designs the heuristic algorithms for
both deterministic and stochastic models to handle large-scale problems in a fast computation

time.

1.3. Research framework

In order to develop a comprehensive study, the problem is approached with two different
models. The first model is to study the problem in the deterministic environment assuming
every aspect is deterministic to give a baseline of how much this collaboration benefits the
LMD. An optimization model is designed to represent the problem and generate the final
delivery plan. In the second model, this study considers a crucial aspect in the partial-coverage
crowdsource delivery which is the crowdsource transfer process as an uncertain event. This
consideration shifts the deterministic problem into a stochastic problem. Stochastic
optimization model is proposed based on the uncertainty realization of the problem. By
considering the uncertain environment, the results of this study become more robust and ready

to be implemented in the real LMD.

Based on the deterministic and stochastic models, the heuristic solution algorithms are
proposed to generate a good solution quality with relatively fast computation time. The
heuristic solution algorithm consists of two sub-algorithms, namely construction algorithm to
generate the good initial solution and improvement algorithm to improve the initial solution.
Numerical experiments will be performed based on the artificial instances and classical routing
problem benchmark instances to show how much improvement can be made. Senstivity
analysis to identify the important parameters are performed as part of the numerical
experiment. In the end, the discussion related to the important findings will be presented, as
well as the conclusion of this study. The research framework of this study is presented in the

Figure 3.
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CHAPTER 2 LITERATURE REVIEW

In this chapter, a comprehensive literature review is presented by reviewing three different
research areas related to the study. The crowdsource delivery literature will be the first research
area to be reviewed due to the topic of this study. The second review is based on the two-
echelon routing problem as most of partial-crowdsource delivery problem researches are
categorized as the two-echelon routing problem. In the last literature review, the stochastic
routing problem will be presented to get the latest and related routing problem literatures

involving the uncertainty.

2.1.  Crowdsource delivery

The concept of crowdsourcing in the delivery is not new. Rouges & Montreuil (2014) published
a specific article about crowdsourcing delivery which might be the frontier study in this area.
Some great reviews of crowds-logistics can be found in Carbone et al. (2017) and Rouges &
Montreuil (2014). In general, the crowdsource delivery researches are classified in two
categories based on the crowdsources participation in performing delivery tasks, namely full-

coverage crowdsource delivery and partial-coverage crowdsource delivery.

In the full-coverage crowdsource delivery, crowdsources perform the delivery task from the
point of origin (e.g. warehouse, DC, store, retailer, etc.) to the customer locations. In this
category, the crowdsources usually are the travelers which have fully or partially similar trip
as the delivery order trip, or occasional couriers. The delivery and return task of library service
in Finland was reported by Paloheimo et al. (2016). The delivery task was posted on the
smartphone apps to deliver or pick up a book which was borrowed from the library. This
approach was able to reduce the average car driven and some CO2 emissions. Arslan et al.
(2019) investigated dynamic pickup and delivery problem for which ad-hoc driver is utilized
as the crowdsourcing partner. This study proposed the viability condition to incorporate
crowdsources to perform on-demand delivery. A significant improvement was reported when
comparing non-crowdsourced delivery and crowdsourced delivery. Punel and Stathopoulos
(2017) reported a choice model to identify the most significant factor of the crowdsource
delivery preferences and acceptance in the perspective of the customer. The issues about trusts
on delivering a parcel by crowdsources were discussed by Devari et al. (2017). This study
proposed a friendship modeling to determine who can be considered as trustworthy
crowdsourcing partner. Almost 72% of respondents as a shipper agree to entrust their parcel to
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their friends. Based on a simulation, crowdsourced delivery is beneficial compared to the

traditional delivery.

In the partial-coverage crowdsource delivery, the delivery truck initiates the process by
delivering customer order to the transfer location and relaying it to the crowdsources. This
concept shares some similarities with the shared-reception box (SRB) concept. However, there
is time limitation to meet at the transfer point which significantly differs this concept from the
SRB concept. Wang et al. (2016) proposed a crowdsourcing concept which assigns the parcels
to the SRB so the crowdsources can collect a parcel from SRB and deliver it to the customer
location. By this mechanism, the unattended delivery problem will be reduced because they
can synchronize the available time between parcel receiver and the crowdsources. Chen and
Pan (2016) reported a concept of a crowd-taxi LMD. The integration between transporting
passenger and delivering goods was proposed to perform LMD. Kafle et al. (2017) designed
the relay LMD system which incorporates crowdsources as last-leg delivery. Determination of
which relay point and which crowdsources to be selected is one of many interesting aspects in
their formulation. Akeb et al. (2018) designed a solution to solve the unattended parcel delivery
problem in the urban delivery system by using crowdsource delivery. The nearest available
crowdsources can be utilized to temporarily store the customer parcel if the receiver is not
home. The problem was formulized as packing problem to cover the distribution area of the
neighborhood relays. Pichka et al. (2018) proposed a model to allows independent contractors,
professional and occasional drivers, or crowd-worker to help delivery the customer order in
urban area delivery. In this study, the problem was formulized as a two-echelon open routing

model.

The research by Kafle et al. (2017) is the closest study to our deterministic model. In Kafle et
al. (2017), the crowd-outsourced customer order is determined by the availability of
crowdsourcing bids with no consideration of the crowdsources routing simultaneously. The
crowdsources availability in terms of bidding may only be focused on the easy tasks preferred
by crowdsources. It can limit the cost reduction by the crowdsource delivery integration. Our
model determines the crowdsourcing decision based on the balance between the main delivery
trucks and the crowdsources assuming they are all always available. Thus, making our model
is suitable for the early decision to answer which customer should be outsourced and use the

solution to design the bid invitations, accordingly.

The comparison between our study and the latest related research in the area of crowd-delivery
is provided in the Table 1.



Problem Phenomena

Problem
Characteristics

Modeling Technique

Decision Variables

Heuristics Approach

Wang et al. (2016)

Deterministic

Crowdsource delivery
by shared reception
box (pop station)

Minimum cost flow
problem

e Parcel assignment

Several pruning
techniques

Table 1. Crowdsource delivery research

Kafle et al. (2017)

Deterministic

Two-echelon delivery
and pickup with
crowdsource
integration

Mixed integer non-
linear (MINLP) model

Winner determination
problem (WDP)

¢ Main fleet route

e Crowdsource
selection

e Transfer point
selection

Tabu search

Akeb et al. (2018)

Deterministic

Relay-based delivery
for unattended parcel
delivery

e Neighborhood relay

This study
(Deterministic)

Deterministic

Two-echelon delivery
problem with
crowdsource delivery
option

MILP model

Main fleet route

e Crowdsource
decision

e Transfer point

selection

Tabu search

This study
(Stochastic)

Stochastic

Two-echelon delivery
problem with
crowdsource delivery
option and
crowdsource transfer
uncertainty

Two-stage stochastic
mixed integer linear
model

e Main fleet route

e Crowdsource
decision

e Transfer point
selection

e Recourse action
route

Tabu search.



2.2.  Two echelon routing problem

Partial-coverage crowdsource delivery forms a two echelon delivery system in which the main
delivery truck covers the first echelon route and the crowdsources perform the second echelon
delivery orders. Additional transfer facilities called satellites are located between customer
location and depot. A comprehensive review about two-echelon routing problem can be found
in Cuda et al. (2015).

Basically, the two-echelon routing problem is categorized into three categories. The two-
echelon location routing problem (2E-LRP) which presents the basic form of the two-echelon
routing problem with fixed customer location is the first category. The depot and satellites are
determined based on the model. The second category is two-echelon vehicle routing problem
(2E-VRP). This problem is a special case of 2E-LRP where the locations of satellites and depot
are given in advance. The decision problem is to find a good visiting sequence or route. The
last category is truck and trailer routing problem (TTRP). This class is also special case of 2E-
VRP in which the trucks (from second-echelon operation) are attached to trailers in the first-
echelon operations. Figure 4 shows the illustration of three problem types in two-echelon

routing problem.
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(i) 2E-LRP (ii) 2E-VRP
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(iii)) TTRP

Figure 4. Illustration of variants problem in two-echelon routing problem (Cuda et al., 2015)

10



In this study, parcel relay or transfer point can be considered as satellite which will be selected
to perform the crowdsource transfer if at least one crowdsources is assigned to transfer in that
particular transfer point. The selection of the satellite in two echelon routing problem belong
to the 2E-LRP. In 2E-LRP, there is a clear separation between the first echelon and second
echelon inferring the first echelon fleet can only deliver the cargo to the satellite and the end
customer delivery will be performed by the second echelon fleet. Our study allows the first
echelon fleet to deliver the cargo to the transfer point and/or deliver the customer order directly
to the customer location. TTRP has no clear separation between first echelon and second
echelon delivery as the first stage fleet can deliver the cargo directly to customer location. In
TTRP, the customer node can be used as a satellite which is different from our study transfer
point definition. In this study, the transfer points are public places that can be used as temporary
transfer facility. Based on the definition between 2E-LRP and TTRP, our study combines two

different two-echelon categories to match our problem definition.

Rothenbacher et al. (2018) designed a novel brach-and-price-and-cut algorithm to solve TTRP
with time windows in a multi period planning horizon. A combination of column generation
and dynamic programming labeling algorithm were utilized to generate linear relaxation to the
formulation. Pichka et al. (2018) proposed two-echelon open location routing problem (2E-
OLRP) allowing the main vehicle fleet to not come back to the depot as well as the second
echelon fleet to represent the individual contractor, logistics providers, and crowds. They
proposed several MILP models based on the index of their decision variables and hybrid
heuristics algorithm. Belgin et al. (2018) designed an optimization model to solve 2E-VRP
with simultaneous pickup and delivery with three valid inequalities based on the literatures. A
hybrid heuristics combining local search and variable neighborhood descend (VND) was
proposed to generate a fast and good solution. Zhou et al. (2018) proposed multi-depot 2E-
VRP with multi delivery options for the end customer, such as direct delivery by second
echelon vehicle fleet and self pick up at intermedieate pick up facilities. A multi-population
genetic algorithm was proposed as an efficient approach to generate good solution in a fast
computation time. The comparison between our study and the latest related research in the area
of two-echelon routing problem is provided in the Table 2.
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Problem
Phenomena

Problem
Characteristics

Modeling
Technique

Decision Variables

Heuristics
Approach

Pichka et al. (2018)

Deterministic

Two-echelon open
location routing
problem

MILP Model

Main fleet route

e Second-echelon
route

Decision to open
facility

Hybrid Simulated
Annealing

Table 2. Two-echelon routing problem

Belgin et al. (2018)

Deterministic

Two-echelon problem
with simultaneous
pickup and delivery

MILP Model

Main fleet route
Decision to assign
delivery or pickup
to the second
echelon
e Second-echelon
route
Variable
Neighborhood
Descend and Local
Search

Zhou et al. (2018)

Deterministic

Two-echelon multi-
depot routing problem

e Main fleet route
e Second-echelon
route

Hybrid Multi-
Population Genetic
Algorithm
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This study
(Deterministic)

Deterministic

Two-echelon delivery
problem with
crowdsource delivery
option

MILP model

Main fleet route
Crowdsource
decision

e Transfer point
selection

Tabu search

This study
(Stochastic)

Stochastic

Two-echelon delivery
problem with
crowdsource delivery
option and crowdsource
transfer uncertainty

Two-stage stochastic
MILP model

e Main fleet route

e Crowdsource decision

e Transfer point
selection

e Recourse action route

Tabu search.



2.3.  Stochastic routing problem

As mentioned in the introduction, this research considers the uncertainty of crowdsource
transfer in the transfer location. Therefore, any uncertainty consideration will transform the
delivery problem into the stochastic vehicle routing problem (SVRP). Several related studies
in the area of SVRP will be reviewed in this section. Two comprehensive SVRP’s literature
reviews can be found in Gendreau et al. (1996) and Gendreau et al. (2016). A survey that
differentiate SVRP with Dynamic VRP (DVRP) can also be found in Ritzinger et al. (2016).

Basically, there are three categories in SVRP based on the source of the uncertainty. The first
category is SVRP with uncertain demand (VRPSD). The VRPSD is the most studied of all
SVRPs. In this problem, the focus of the uncertainty is the customer demands treated as the
random variables. The distinction between various studies in VRPSD lies in the choice of the
recourse policies and solution methodologies. The classical recourse policy in VRPSD is the
vehicle returns to the depot to replenish its capacity, then continue to deliver its planned route
from the point of failure if delivery failure occurs. The second category is vehicle routing
problem with stochastic travel time (VRPSTT). This problem is motivated to capture the nature
of congestion, weather condition, different modes travel time, link-dependent travel time, etc.
One of the important aspect of the VRPSTT is the customer time windows. In a soft time
window, the deviations from time windows are usually penalized. In a such problem, the
probability distributions to compute the expected penalty of route need to be formulated. This

method can be implemented in the hard time windows.

The third category is SVRP with uncertain customer (VRPSC). The presentation of customers
is uncertain or follow certain probability distribution, however, their demand is deterministic.
Using the a priori paradigm, the routes are decided in the first stage, and are executed in the
second stage while skipping the absent customer. The VRPSC can assume that the presence of
customers is revealed prior to the arrival of the vehicle. There are few researches have been
done on the VRPSC (Gendreau et al., 2016). The VRPSC also can be extended to have
stochastic demand (VRPSCD). In this problem, routes are designed in the first stage, the
presence of customers is revealed prior to the execution of the routes. Upon the arrival of the
vehicle, the information of customer demands will be discovered. In the second stage, the
routes are executed with the skipping absent customer and classical recourse policty will be

implemented when vehicle capacity is violated.
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The closest category of SVRP to this study problem is the SVRP with uncertain customer.
Although the concept of stochastic customer is different from the stochastic crowdsources, the
crowdsources can be treated as one type of customers. Still, the differences will create the
different recourse action and recourse costs, as the absent customer in SVRP can be treated as
the saving opportunity due to the travel time elimination. In our study, the absent crowdsources
will generate more travel times since the delivery truck will need to deliver the shipment by
themselves to the customer location or impose a penalty. In addition, the additional travel time

also may cause the delivery failure or late delivery.

Sungur et al. (2010) considered the courier delivery problem (CDP) with uncertain customer
presence and service time. They proposed a model that maximize the coverage of customers
and the similarity of the routes by generating the master plan and daily schedules. An insertion-
based solution heuristics based on the tabu search heuristics was developed to solve big-size of
problem. Heilporn et al. (2011) studied the dial-a-ride problem with stochastic customer and
customer delay. In this problem, the customer pickup can have a possibility to be delayed due
to the uncertainty. If a customer request is unable to be performed due to the delay, the request
will be fulfilled by an alternative service. Ulmer et al. (2015) proposed a MIP model to solve
the VRP with stochastic customer. This problem was motivated by the courier service in their
operations to deal with additional uncertain requests from more customers during the service.
A rollout algorithm (RA) to solve the same problem was proposed one year after (Ulmer et al.,
2016). The problems are modeled as markov decision process (MDP) to anticipate the future
events in the current decision making process. An integer L-shaped algorithm was proposed to
solve the problem. Saint-Guillain et al. (2017) introduced a static-and-stochastic vehicle
routing problem (SS-VRP) in which the customer reveal times are stochastic in addition to the
stochastic customer data. The problem was motivated by the application of the elderly and
disabled people on-demand health care service. A local search algorithm combined by

simulated annealing was designed to solve the problem with fast computation time.

To our best knowledge, the most related literature to our study is the study that was proposed
by Gdowska et al. (2018). In their study, they extended the deterministic full-coverage
crowdsource delivery proposed by Archetti et al. (2016) as a base problem. They proposed a
heuristics algorithm which considers the crowdsources probability for accepting the delivery
task in a single echelon stochastic routing problem. In our study, we deal with the two-echelon

stochastic routing problem with the uncertainty focusing on the realization of crowdsource
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transfer at the transfer point, after the acceptance of the crowdsources for the task. This problem
is formulated as a novel two-stage stochastic MILP model.

Finally, the comparison among our study and the latest related research in the area of stochastic
routing problem is presented in the Table 3.
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Problem
Characteristics

Problem Modeling

Decision Variables

Probabilistic
Parameters

Heuristics Approach

Table 3. Vehicle routing problem with stochastic customer review

Heilporn et al.
(2011)
General dial-a-ride
problem to pick up
customer

Two-stage stochastic
binary model

e Main fleet route
e Main fleet arrival
time at each node

Random arrival time
of customer

Random service time
of customer

Integer L-shaped
method

Ulmer et al.
(2015 & 2016)

General delivery
problem

Mixed integer model

e Vehicle fleet route

Customer request

Rollout algorithm and
Markov decision
process

Saint-Guillain et al.
(2017)
On demand health care
service for elderly and
disabled people

Two-stage stochastic
model

e Visiting location
e Visiting time
e Waiting time

Location of customer
and reveal time of the
data

Local search based on
Simulated Annealing
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Gdowska et al.
(2018)
Delivery problem
with crowdsource
delivery options

e Main fleet route
e Crowdsource
decision

Crowdsources
accepting the task

Bi-level stochastic
algorithm

This study

(Stochastic)
Two-echelon delivery
problem with
crowdsource delivery
option

Two-stage stochastic
MILP model

¢ Main fleet route

e Crowdsource
decision

e Transfer point
selection

e Recourse action
route

Crowdsource and main

delivery fleet parcel
transfer
Tabu Search



CHAPTER 3 PROBLEM FORMULATION

This chapter presents how this study formulates the problem into optimization or mathematical
model. The model will be solved by the blackbox solver to get the optimal solution. In the first
section, the problem is formulated into a deterministic model which assumes every aspects of
the problem are deterministic and given in the beginning. The stochastic problem formulation
is presented as the second section in which one of the aspects or paramters is assumed to be

uncertain to account for the realistic condition.

3.1.  Deterministic problem formulation

3.1.1. Problem definition

In the deterministic model, the delivery operations are performed by the logistics operator
which manages the customer delivery orders (e.g., e-commerce parcels) and operates the
delivery fleets. The delivery operation starts from the single depot (e.g. DC, warehouse,
retailer, etc.) to all of the customer location. To deliver the customer order, the decision maker
has two options. First, the delivery by in-house delivery truck and/or the delivery by utilizing

crowd service as the second option.

Crowdsources are assumed as a people who lives or have a daily commuter trip nearby the
customer locations. Crowdsources cannot obtain the customer parcel directly from the depot.
Instead, the main delivery fleet need to relay the customer parcel to the crowdsources at a
transfer location. The transfers location is referred as transfer point, a public available places,
such as parking areas, convenience stores, etc. After relaying the parcel, the crowdsources
deliver the rest of the distances to the customer location while delivery trucks continue to

deliver the customer orders according to the original plan.

Customers are classified into two groups based on the availability of crowd-delivery service.
The first group is the customers who are located nearby (e.g. less than two km) the possible
transfer point(s). Therefore, the first group has two delivery options. In the second group, all
customers are located far from the possible transfer point making the crowds-delivery service
unavailable for them. The characteristics of the customer order (e.g. weight, volume,
commodity type, etc.) can make the first group customers as the second group customers due

to the limitation of crowdsource carrying capacity.
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The assignment of crowdsources are one-to-many as one crowd-worker may handle more than
one delivery tasks. However, the number of delivery tasks for one crowdsources is limited due
to the capacity and/or time limitation. This crowdsources are not required to come back to the
transfer point after they finish the delivery tasks making the crowdsource assignment as an
open vehicle routing problem (VRP). As for the compensation of their service, the
crowdsources will be paid based on the two components, such as a fixed cost per each

crowdsources and time-based cost. The illustration of the problem is presented in the Figure 5.

@ Depot
. Customer

O Transfer Point
» Vehicle Routes

ss p Crowdsource
Assignment

C11

Figure 5. Hllustration of crowdsource delivery

3.1.2. Problem formulation

The problem is formulated as MILP with the main decision variables are the selection of
outsourced customer, the selection of the transfer locations, the schedule of crowdsource
transfer, and the number of required crowd-workers. In addition to the outsourcing decisions,

the delivery truck routes for the second group customer and the transfer points are determined.

The objective function is to minimize the total delivery cost containing the delivery fleet cost
and the crowdsources cost in (1). For the delivery truck costs, the gasoline cost as a variable of
distance or time is considered. The crowdsource cost consisting of the fixed cost and the
operational variable cost are also considered. IThe MILP formulation is described in the next

following paragrahps.
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Sets

N Set of customer nodes.
M Set of transfer points.
N, Set of customer nodes reachable from transfer point [, € M.

N4 Set of customer nodes, transfer points, and depot, N4 = N u M U {0}.
NB Set of customer nodes and transfer points, N2 = N u M.
N¢ Set of customer nodes and depot, N¢ = N U {0}.

M4 Set of transfer points and depot, M4 = M U {0}.

%4 Set of vehicles.
B Set of crowd-workers or crowdsources.
Parameter

T/ Travel time from node i to node j by vehicles , i, j € N4 .
T Travel time from node i to node j by crowdsources, i,j € NB .

Tk Travel time from node i to the artificial node R (T;; = 0), by crowdsources.

G; Demand of node i,i € N.

Qv Vehicle maximum capacity.

Q¢ Crowdsources Maximum capacity.

c" Variable cost of vehicle usage.

c Crowdsources fixed cost.

chb Crowdsources variable cost.

L Maximum hours of service.

U Sufficient large number.

Variables

Xi; Binary variable taking value 1 if vehicle v travels from node i to j, where v € V and

i,j € N4, and 0 otherwise
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a; Accumulated travel time of vehicle v at node i, where v € V,i € N4
g7 Accumulated load of vehicle v at node i, where v € V,i € N4

yh Binary variable taking value 1 if crowd-worker b relays at transfer point [ and serves
customer i which is in the coverage of meeting point [, where b € B, l € M,i € N,

and 0 otherwise

=N
oS

Binary variable taking value 1 if crowd-worker b travels from node i to j, where b €

Bandi,j € N8, and 0 otherwise

wp Binary variable taking value 1 if crowd-worker b relays at transfer point [, where b €
B,l € M, 0 otherwise

h? Accumulated travel time of crowd-worker b at node i, where b € B,i € N8

min Z Z Z CTTxl + Z Z Crwp + Z Z Z CPTSX], (1)

ieEN4 jeNA veV lEM bEB ieENB jEN beB
subject to:
b _
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jENA vEV leEM beB
b
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Constraint (2) enforces every customer node to be visited by a crowd-worker or a delivery
truck. Constraint (3) ensures the customer order is relayed by the delivery truck at the transfer
point if there is at least one customer order transfer related to the transfer point. The delivery
truck flow conservation is defined in constraint (4). Constraint (5) prevents the delivery truck
to only be used once. Constraint (6) defines the accumulation of travel time at each node. The
regulation of hours of service is defined in constraint (7). The constraints related to the truck
capacity are managed in constraints (8) — (10). Constraint (8) defines the load accumulation at
each customer node. Constraint (9) determines the load information at each transfer point. The

truck load capacity limitation is enforced in the constraint (10).

Constraint (11) ensures the limitation of crowdsources to only be assigned in only one transfer
location. Constraint (12) determines that the crowdource service to deliver customer order must
begin with crowdsources transfer at the related transfer point. The links between customer and
crowd-worker visits are defined in the constraint (13). Constraint (14) enforces the crowd-
worker to leave the transfer point after transfer process by taking one of the outbound links at
the transfer point. Constraint (15) defines the flow conservation of crowdsources route.
Crowdsources are not required to come back to the transfer point, therefore, artificial node
which have zero travel distance and travel time is defined at the end of the crowdsources route
in constraint (15). Subtour elimination is defined in (14) - (16). Constraint (16) ensures that the

crowdsource service must be started only if the delivery truck visit the transfer location.

Constraint (17) - (18) manage the accumulation time at customer nodes and transfer location.
Constraint (19) imposes the regulation of hours of service for the crowdsource delivery.
Constraint (20) defines the crowdsources maximum load capacity. Binary and non-negativity

constraints of the variables are defined in constraints (21) - (26).

3.2.  Stochastic problem formulation

The crowdsource parcel transfer between delivery truck and crowdsources is a crucial point in
the partial-coverage crowdsource delivery. So far many studies regard this event as a 100%
certain event. In reality, this event is subjected to several uncertainties, such as weather
condition, traffic condition, customer reliability, etc. Any weather changes or upredicted traffic
congestion might delay and/or cancel the transfer event due to limited waiting time of the
crowdsource transfer event. As the crowdsource transfer fail, the delivery plan will be

distrupted and the benefit of incorporating crowdsources into the delivery plan will be
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destroyed. Therefore, the uncertainty of crowdsource parcel transfer need to be considered in

order to preserve the benefits of crowdsource delivery collaboration.

3.2.1. Problem definition

The stochastic model is an extension of the previous deterministic model. Both of the models
share some basic characteristics, such as the definition of customers and crowdsources, the
transfer operations at transfer points, and the delivery truck operations. The following
paragraphs describe additional problem descriptions which are different from the problem

descriptions in deterministic model due to the uncertainty consideration.

As this study considers the uncertainty of crowdsource transfer, the mechanism of crowdsource
transfer is modified. Instead of assuming all crowdsource transfers always success, this study
only considers two possibilities in the crowdsource transfer event (e.g. success and failure
outcome). By this definition, this study disregards any reason of why the event fail or success.
In the first outcome when crowdsources transfer success, the crowdsources are able to transfer
the parcel in time. Transfer failure will be defined as the second outcome when the
crowdsources are not able to complete the parcel transfer in time. In this study, the probability
of the crowdsources and main carrier delivery parcel transfer failure is called the crowdsources

transfer failure rate.

The crowdsources transfer uncertainty is modeled as success or failure outcome of the transfer
process. Let’s define P; as the crowdsource transfer failure rate for any crowdsources delivery
task at the transfer point [ and 1 — P, as the transfer success rate at transfer point [. The
probability of P; is assumed to be independent among all of transfer point [, € M. Then, the
possible event, w is denoted as the possible combination of outcomes in all available transfer
points with the total events follow 2!™! where M is the set of available transfer points. The
terms of event and realization (denoted by w) are used interchangeably to represent the success
and failure outcome combinations of available transfer points. As an example, the total events

or realizations with the probability of each realizations is illustrated in Table 4.
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Table 4. Example of realization and its probability with two available transfer points

Realization = Crowdsrouces transfer outcome Probability of realization
() 1%t transfer point | 2" transfer point P(w)
1 Success Success Plw={S,sHh=(1-P,)(1-P,)
2 Success Failure P(w={S,F)=(1-P,)P,
3 Failure Success P(w={F,s) =P (1-P,)
2121 = 4 Failure Failure P(w ={F,F}) = P P,

Where F is crowdsources transfer failure outcome and S is crowdsources transfer success

outcome.

In terms of the uncertainty revelation time, the information of crowdsource transfer failure or
success are revealed on the spot when the delivery truck arrives at the transfer point or at the
time between the delivery truck depart from depot to the arrival of delivery truck at the transfer
point. The dynamic re-planning or online re-planning features are assumed to be unavailable
due to limited time and resources. As a consequence, the backup plan needs to be defined to
mitigate both all possible realizations in the beginning of the planning. The term of recourse

strategy is used to describe back up plan strategy in this study.

This study proposes two recourse strategies, namely penalty-only recourse and detour-
combined recourse strategies as the backup plan to respond for the failure crowdsource transfer
outcome. In the first recourse strategy, the logistics operator is assumed to not taking any
further action when crowdsource failure transfer occurs. The un-send customer parcels will be
re-delivered on the next day. It is a common practice for logistics operator to re-deliver the
parcel on the next day when there is no recipient available. Penalty cost need to be incurred as
a cost to re-deliver the parcel on the next day. The penalty cost will be imposed everytime a

failure transfer outcome occur.

The second recourse action strategy requires the delivery truck to perform additional trip
(detour) to deliver the customer order as the replacement delivery due to the transfer failure
between delivery truck and crowdsources. The delivery truck which carry the customer’s parcel
makes additional trips, starting from the transfer point to every customer location. After making
a detour the truck needs to come back to the original delivery after the detour trip finish. One
or multiple customer orders in the detour trip can be skipped and penalty will be imposed if
there is no time left to avoid the violation driver hour of service. The illustration about detour-
combined trvoutdr strategy is provided in Figure 6. As the delivery truck initiates detour plan,

some distances will be added and some distances will be removed from the original delivery
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plan. The distance from the transfer point to the next node can be skipped because the detour
trip takes different path. The term skipped distance is used to represent the reduced distance
from the original plan as the impact of truck detour. As an example in Figure 6, the distance
between transfer point to customer 3 or C3 is omitted when failure transfer occurs and truck

detour is initiated.

N
“EmCs
Original delivery plan Detour-combined recourse
@ Depot —3 Vehicle route
. Customer ==<» Truck detour route

O Transfer Point

- Crowdsources

Figure 6. lllustration of detour-combined recourse strategy

The stochastic model assumes the crowdsources transfer failure rate depend on the transfer
point making any crowdsources transfer at the same transfer point will have the same
probability. The crowdsource transfer probabilitiy is assumed to be independent across all
transfer points. The stochastic model also treats the crowdsources delivery task as the

assignment problem instead of routing problem to avoid model complexity.

3.2.2. Problem formulation

The problem is formulated as the two-stage stochastic model. In the first stage, the decision of
delivery route, number of delivery trucks, crowdsource assignments, and the crowdsource

transfer place and schedule are made. In the second stage, the recourse action will be
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formulated as the consequence of crowdsource transfer failure. The illustration of decision

timeline is presented in Figure 7.

Previous Day | Execution Day
Delivery Crowdsources Crowdsources
List Availability Transfer Realizations Depot
| | e Lo
' 't
1%t Stage Decision 274 Stage Decision

Figure 7. lllustration of decision timeline

As this study proposes two recourse strategies, the model formulation also divided into two
parts based on the recourse strategy. In general, the objective function is to minimize the
delivery costs consisting of operational vehicle costs considered in the first stage objective
function and the expected recourse costs in the second stage model. In the second stage model,
the objective function contains the expected cost of crowdsources payment, detour cost, and
penalty costs for omitting customer. The crowdsources payment consists of distance-based cost

and usage-based cost.

Since the stochastic models are the extension of deterministic model, some of the set and
parameter definitions from the deterministic model are re-used. New variable sets are defined
to accommodate new problem features. The new sets, parameters, and variables of the

stochastic model are defined as follows.

Sets

Q Set of realizations.

Parameters

a Penalty cost for omitting a customer.
P, Probability of realization w, w € Q.

Uncertain Parameters
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Rl(u

Variables

First Stage

v
xij

Yii

Second Stage

4

Zijw

Binary parameter to indicate crowdsource transfer failure at transfer point [ for

any given realization w, where l € M, w € Q.

Binary variable taking value 1 if vehicle v travels from node i to j, where v €

Vandi,j € N4, 0 othersiwse

Binary variable taking value 1 if crowd-delivery transfer at transfer point [ and
serves customer i which is in coverage of meeting point [,/ € M,i € N;. And 0

otherwise
Travel time accumulation of vehicle v at node i, where v € V,i € N4

Customer demand accumulation of vehicle v at node i, where v € V,i € N4

Binary variable taking value 1 if vehicle v travels from node i to j as a
replacement of failed transfer for any given realization w, where i € N&,j €

N4 v eV, w € Q,and 0 otherwise

Binary variable taking value 1 if there is a failure transfer at transfer point [ for

any given realization of w, where [ € M, w € Q, and 0 otherwise

Distance reduction of vehicle v due to replacement tour at transfer point [ for

any given realization of w, wherev e V,l € M,w € Q.

Accumulated travel time of vehicle v at node i in the replacement tour for any

given realization w, where i € N,v € V,w € Q.

Binary variable taking value 1 if customer i is omitted in the second stage for

any given realization w, where i € N, w € Q, and 0 otherwise

3.2.2.1.Penalty-only recourse model

In the penalty-only recourse model, the penalty cost will be imposed everytime failure transfer

occurs. The problem is formulated as a MILP in which the penalty cost is a part of the decision
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of outsourcing customer order. The extensive form of the penalty-only recourse model is

presented as:

Obijective Function
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g; <@ ViENA4vEV (38)

x;; € {0,1} Vi,jENYLvEV (39)
yii € {0,1} VieN,leM (40)
a;, g¢ VieNBveM (41)

The objective function in Constraint (27) consists of the distance-based cost and the expectation
of recourse costs, which are crowdsources reward and penalty cost. Constraint (28) enforces
every customer node to be visited by a crowd-worker or the delivery truck. Constraints (29) -
(30) ensure the customer order is relayed by the delivery truck at the transfer point if there is
at least one customer order transfer related to the transfer point. The delivery truck flow
conservation is defined in constraint (31). Constraint (32) prevents the delivery truck to only
be used once. Constraint (33) defines the accumulation of travel time at each node. The
regulation of hours of service is defined in constraint (34). Constraint (35) defines the arrival
time of the crowdsources must be before the end-of-day limitation. Constraint (36) defines the
delivery truck load information at each customer node, whereas the transfer point load
accumulation is defined in constraint (37). Constraint (38) enforces delivery truck load capacity
limitation. Binary and Non-negativity constraints of the variables are defined in constraints
(39) - (42).

3.2.2.2 Detour-combined recourse model

In the next recourse strategy, a detour-combined recourse by initiating additional truck detour
trip to replace failure transfer is defined. This model is an extension of the penalty-only
recourse strategy model adding cost components related to the truck detour in the objective
function, such as distance-based cost and skipped distance cost in (42), as well as several
additional second-stage constraints in (43) - (60). A penalty for deliberately skip the customer
during the detour trip is defined to account for unfeasibility because of hours of service

limitation. The extensive form of the detour-combined recourse model is presented as follow.

Objective Function
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(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)
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Constraint (43) ensures the delivery truck visits all customers which are involve in the
crowdsources failed transfer, otherwise the penalty will be incurred. Constraint (44) defines
the variable ¢, to represent the failed crowdsource transfer at transfer point [ event w.
Constraint (45) makes sure the truck detour trip starts from the related transfer point. Constraint
(46) forces the truck detour trip to end at the next customer based on the original plan.
Constraint (47) manages the route flow conservation of truck detour. Constraint (48) ensures
the delivery truck that carries the parcel and the truck perform the detour are the same truck.
Constraint (49) limits all truck detours to only have one trip. The constraints about distance
skipping are defined by the constraints (50) - (52). Constraint (50) defines the amount of
distance to skip. Constraint (51) limits the distance skipped to only have positive value when
there is a crowdsource transfer failure. Constraint (52) nullifies the value of distance skipped
if the truck detour is canceled due to the decision to omit the customer. Constraints (53) - (55)
deal with the time-related regulations in the truck detour. Constraint (53) determines the
accumulated travel time in the truck detour trip. The accumulated travel time must start from
the time delivery truck arrives at the transfer point in constraint (54). Constraint (55) ensures
the arrival time of truck detour in customer node must be less than the hours of service
limitation. Biniary and non-negativity constraints of the variables are defined in constraints
(56) - (60).
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CHAPTER 4 SOLUTION ALGORITHM

In this chapter, the heuristic algorithms are presented to generate good solution quality with
fast computation time. The proposed algorithms are classified into solution algorithm for
deterministic problem and algorithm for stochastic problem. For each heuristic algorithm in the
deterministic and stochastic problem, it consists of construction algorithm to generate initial
solution and improvement algorithm to improve initial solution are proposed. Some of the

definition and mechanism in both algorithms can be used interchangeably.

The improvement heuristics development was inspired by the TS algorithm. It has been showed
as a good and efficient heuristics approach to solve several classifications of routing problem.
TS was introduced by Glover (1986) to solve the classical routing problem. It has been reported
to achieve the best results for various benchmarking instances in routing problem
(Barbarosoglu and Ozgur, 1999). A combination between serveral meta-heursitics algorithms
(e.g. genetic algorithm, simulated annealing) (Kafle et al., 2017) were reported to improve the
efficiency and effectiveness of TS, including the integration of several local search operators
(e.g. 2-opt and 3-opt) (Wang et al., 2017). In two-echelon routing problem, several variants of
2E-VRP, 2E-LRP, and TTRP have been reported to successfully implement TS-based
algorithm (Chao, 2002; Scheuerer, 2006; Nguyen et al., 2012; Kafle et al., 2018). One of the
advantages of TS algorithm is the ease to modify based on the problem characteristics. In this
study, the solution candidates or neighborhood solution search are associated to the randomly

selected nodes. The following sub-sections describe the detail of solution procedure.

4.1.  Heuristic algorithm for deterministic problem

4.1.1. Solution representation and evaluation

In the heuristics algorithm development, our study defines the solution representation
consisting of a solution for vehicle routes, X and a solution for crowdsources route, Y. For
each vehicle v, a visiting sequence of nodes is determined, starting from depot, s§ as the first

node, ending at the last visiting node sg_(e.g. customer or a transfer point) with the final node

as a depot, (sg,+1). Fy is defined as the number of nodes in route v excluding the depot. Vy is
also defined as selected vehicles in vehicle route set, X, Vy € V. As for representing
crowdsource routes, vector Y is defined containing crowdsourcing assignment Y, (b € Bg).

Each Y, starts from the transfer point related to crowdsource b, (s&), goes to all customers
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defined in the current sequence and ends at the last assignment s,?b, as Fy, is the number of
crowdsources assignment for crowdsource b and By is the set of selected crowdsources used

in the solution Y, By < B. The solution representations are presented as follow.

Y — . — v U VoLV — oV
x - (xl,xZ, ---,xv, ..-,‘X]Vf|), xv - (So,sl, ""SF,,'SFU-I-I - So)

y = (yl' yz, ---be' -"'y|Vf|); yb = (S(l))rsf' ""Sl?b)

The objective function F (X, YY) to evaluate the solution is defined in (61). The component of
the objective function is similar to the objective function in (1) adding the penalty terms as a
representation of the constraints violation, such as vehicle load capacity and hour of services
constraint. For the feasible solution, the penalty terms are set to zero. Penalty parameter S is
defined as a non-negative parameter to balance the penalty value, starting from initial value of

1 and adjusted dynamically based on the progress of the solution throughout the iteration.

F, Fp—1
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[/ F) 17 [ /Fp-1 +
L=
beBy \| \i=1 ] [\ i=0

(61)

4.1.2. Construction algorithm

The objective of construction algorithm is to generate an initial feasible solution with fast
computation time. Later, it will be used as an input for the improvement heuristics to get the
best solution. The focus is to balance the usage of crowdsourcing service and the usage of
delivery fleets by carefully select the promising customers for crowdsourcing. This study
defines two classification of customer orders, the customer orders which are delivered by
crowdsources service and the customer orders which are delivered by delivery fleets. The

combination of the nearest neighbor procedure and the sweep algorithm are designed to
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construct with the vehicle routes and the modified saving algorithm is used to manage the route

for crowdsourced customer.

The main idea of construction heuristics is to outsource the customers which located far away
from its closest neighbor and depot, assuming at least one available transfer point near them.
Thus, the remote and low-density deliveries by the delivery trucks can be reduced to save the
costs, assuming the crowdsource costs are lower than the operational costs of delivery trucks.
Based on this idea, the customer location ratings in terms of how distant the customers from its
neighbor and depot are calculated in (62), consisting of the n nearest neighbors’s average
distance and the distance from the depot. Where f;(j) is defined as the jt* element of the
ascending-ordered set based on distance for node i’s neighbors, i € NZ. Based on the initial
tuning, parameter = is set to be 3. The construction heuristics procedures are presented as

follows.

VE, (62)
W, = ( J 1/nl,fl(1)> n T(;;i

Step 1:  Node Evaluation for Classification. Based on the customer location rating in (62),
select the first A customers to be outsourced as the set of R¢. Set the value of 4 to
1. The set of R™ is defined as the set of transfer points related to the selected
outsourced customers in R¢. The nearest transfer point is selected if there are

multiple transfer points available for one customer.

Step 2:  Main Truck Route Generation. Based on the set of R¢, the customer order which
are delivered by delivery fleets as vehicle routes customer are defined, (N\R¢) U
R™. Execute the combination of the sweep procedure (Huang et al., 2018) and the
nearest neighbor procedure (Hurkens et al., 2004) in Appendix 1 to construct the
main vehicle routes with the respect of truckload capacity and hours of services
constraints. The transfer point load is accumulated by the total customer demand

which are assigned to relay in the transfer point,

Step 3:  Crowdsource Routing. Define the set Rf,Rf € R€ as the set of crowdsourced
customers in transfer point [. Generate the crowdsource assignment based on the

combination of modified saving method from Ghiani et al. (2004) in Appendix 2.
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Step 4:  Intensification. Obtain and save the objective function in (61). Re-do the Steps 1-
3 and add the value of 4, 4 := 1 + 1 if A < A; Otherwise go to Step 5.

Step 5:  Termination. The initial solution ()¢, )’ is the initial solution as the best solution

among A different solutions based on Step 1-4.

In the construction heuristic procedure, the parameter value A is defined as the number of
outsourced customers. The different solutions of different outsourced customer orders can be
examined by increasing the value of A from 1 to A. The maximum value of A is determined as

min(|N|, 2|M|) by the initial experiment to balance the solution quality and computation time.

4.1.3. Improvement algorithm

4.1.3.1.Neighborhood definition

In the neighborhood structure, the solution candidate as a neighborhood solution are searched.
Based on the current solution, X, Y, three nodes are selected randomly. The selected nodes is
categorized in the the node category to defines the possible movements in Table 5. In general,
three node categories are defined, such as category V containing the customer node in the
vehicle route, category C containing the customer nodes in the crowdsource route, and category
T containing the transfer point node in the vehicle route. A random selection of movement is
implemented if multiple movements are possible for one node category. The execution of

movements is determined by the sequence of random selection based on Table 5.

This study classifies the movements (or later referred to as search operator) into four categories
based on the node movements, namely the inter-route movements, intra-route movements, the
crowd-only search movements, the vehicle-crowdsource movements. The inter-route and intra-
route movements deal with the optimization of vehicle routes. The optimization of crowdsource
route is managed by the crowd-only search movements. The node assignment transfers between
vehicle route and crowdsource route are defined to advance the outsourcing decision in the
vehicle-crowdsource movements. The movements or search operators are described in the

following paragraphs.
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Table 5. Possible search operator by various combination of node categories

No Node Category Possible Search Operators
15t | ond 3rd

1. VIT VIT C Intra-route operator: Exchange, Insertion V'V, 2-opt
Inter-route operator: Shift(1,0), Shift(2,0), SwapVV(1,1)

2. 'VIT  VIT VI/T | Intra-route operator: Exchange, Insertion VV, 2-opt
Inter-route operator: Shift(1,0), Shift(2,0), SwapVV(1,1),
SwapVV(2,1),

3.V C VICI/T | Vehicle-crowdsource operator: Insertion VC and Swap VC

4. | C C/T | VICIT Crowd-only operator: Break, Change Transfer Point, Re-
insertion
Vehicle-crowdsource operator: Insertion CV

5 C \Y VICIT | Crowd-only operator: Break, Change Transfer Point, Insertion
CcVv
Vehicle-crowdsource operator: Insertion CV and Swap CV

6. | T C VIC/T | Vehicle-crowdsource operator: Destroy

Intra-route search operators use the first two randomly selected nodes to optimize the inner

route of the vehicle route as illustrated in Figure 8.

Insertion VV: This search operator reinserts the first selected node to the best but different

position from the current position in the same vehicle route. (Figure 8-A).

Exchange: This search operator exchanges the position of the first two nodes in the same

vehicle route (Figure 8-B).

2-Opt: This search operator utilizes the first two nodes which are non-adjacent nodes in the

same vehicle route. Two non-adjacent arcs (from the selected nodes) are removed and replaced

with the new and reversed (path) arcs (Figure 8-C).
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Figure 8. Illustration of the intra-route search operators

Inter-route search operators use three selected nodes. When a transfer point (Category T) is
relocated from one vehicle route to another vehicle route, the associated crowdsources
assignment will also be relocated together with the transfer point and the crowdsource route

remains unchanged. The illustrations of these search operators are provided in Figure 9 .

Swap VV(1,1): This search operator utilizes the first two nodes covered in two different
vehicle routes. Each of these nodes is deleted from their current routes and re-inserted at the
best position of the other route (Figure 9-A).

Swap VV(2,1): This search operator utilizes three nodes in two different vehicle routes (one
route may contain two selected nodes). Each of these nodes is deleted from their current routes.

and re-inserted at the best position of the other route (Figure 9-B).

Shift(1,0): This search operator utilizes one node in a vehicle route. The node is deleted and it
is re-inserted to the best location in the nearest vehicle route. (Figure 9-C).

37



Shift(2,0): This search operator utilizes two nodes in a vehicle route. Two nodes are deleted
from the same vehicle route and it is re-inserted to its best location in its nearest vehicle route
(See Figure 9-D).

Swap V\’(Z,li“n\

Swap VV(1,1)" .
on C1,C6 & C7 N

CurrentRoute ™. onCl & C6

Shift(1,0) ™. Shift(2,0)
on C1 Tl o on C6 & C7

Figure 9. lllustration of the inter-route search operators

The crowd-only search operators utilize the first selected node to improve the crowdsource

assignment. The illustrations of these search operators are presented in Figure 10.

Re-insertion: This search operator utilizes the first node in its current crowdsource route. The
selected node is removed and re-inserted at its best position in the same crowdsources route or
different crowdsource route containing the same transfer point associated with the node (Figure
10-A).

Break: This search operator utilizes the first node in its current crowdsource route. The
selected node is removed from its current crowdsource route. The new created crowdsourced

is generated with the same transfer point containing only the selected node (Figure 10-B).

38



Transfer Point Change: This search operator utilizes the first node in its current crowdsource
route. The selected node is moved from one transfer point to another transfer point related to
the selected node (Figure 10-C).

Break on C9 Change Transfer Point on C5

Figure 10. Illustration of crowd-only search operators

The vehicle-crowdsource transfer search operators are defined to manage the search involving
both the nodes in the crowdsource route and vehicle route. The direction of node transfers
between vehicle route from/to crowdsource route are abbreviated as “VC” and “CV”. The

illustrations of these search operators are provided in Figure 11.

Insertion VVC: This search operator utilizes the first two selected nodes in which the first node
is located in the vehicle route and the second node is located in the crowdsource route. The
first node is removed from the vehicle route and inserted to the nearest related crowdsource

route if possible. The transfer point related to the selected node have to be available in any
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vehicle route; otherwise an insertion of transfer point to the closest feasible vehicle route at the

best location must be initiated (Figure 11-A).

Insertion CV: This search operator utilizes the first two selected nodes in which the first node
is located in the crowdsource route and the second node is located the vehicle route. The first
node is removed from the crowdsource route and inserted to the closest vehicle route at its best
position. The transfer point related will be removed if there is no assignment in it (Figure 11-
B).

Swap VC: This search operator utilizes the first two selected nodes in which the first node is
located in the vehicle route and the second node is located in the crowdsource route. Two
sequential operations are executed, first is the Insertion VVC to the first selected node and second

is Insertion CV to the second selected node.

Swap CV: This search operator utilizes the first two selected nodes in which the first node is
located in the crowdsource route and the second node is located the vehicle route. Two
sequential operations are executed, first is the Insertion CV to the first selected node and second

is Insertion VC to the second selected node.

Destroy: This search operator utilizes one selected node which is a transfer point. The transfer
point is removed from its current vehicle route and the crowdsource assignments related it are
released. All customer nodes related to the released crowdsource assignments are re-inserted
to its closest feasible vehicle route at its best position (Figure 11-C).
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Insertion CV on C3 Destroy on M1

Figure 11. lllustration of the vehicle-crowdsource transfer search operators

4.1.3.2.Tabu status and aspiration criterion

In general, TS algorithm prevents the cycle of the similar local search by initiating the tabu list.
Tabu list records the movements in the previous iterations to be banned for the next several
determined iterations. In tabu list, each movement recorded is defined by the node i, (i € N?)
and the routes before and after the movement, for which both can be a vehicle route X, € X
or a crowdsource route Y, € Y . As a prevention mechanism, any similar move for 8
iterations ahead will be excluded. An exception called aspiration criterion is defined to allow
the cycle movement if it improves the current solution. Based on the initial experiments,

parameter 6 is set to 8.

4.1.3.3.The tabu-search procedure

In general, the improvement heuristics is controlled by the parameter u as the level of

intensification. The overall procedures are presented as follows.
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Step 0:

Step 1:

Step 2:

Step 3:

Initialization.

Set the iteration counters o; (main iteration counter), o, (consecutive non-
improvement iterations counter), and o5 (infeasible iterations counter) to 1. Set the
output of the construction heuristic algorithm as the initial solution and the best
known solution (X, Y)* := (X,Y)’ and the current solution at iteration o ,
(¢, Y)%: = (X,Y)*. Set the intensification level, u: = 2 and penalty value in (61),
p:=1.

Neighborhood Search.

Randomly generate three ordered nodes as the node sets for u times based on
(X, Y)°:. Perform the search operators described in the neighborhood definition,
started from the first node sets to search a new neighborhood solution. Use the new
solution as the starting point to search another new neighbor solution. This process
are repeated for u times until all node sets have been selected. Evaluate the neighbor
solution based on (61) and select the best and non-tabu solution as the best solution

in this current iteration. Go to Step 2.
Solution, Tabu, and Parameter Update.

Set (X, Y)*:= (X, Y)71*1, re-set the second counter o, := 1, and re-set u := 2 if
(¢, Y)ort1 is feasible and F((C, Y)o ) < F((XC,Y)*); otherwise, o, == o, +
1. Set g; = o3 if the solution is infeasible; otherwise set o5: = 1. Set 8 based on
o5 to adjust the penalty level. Set o, := o, + 1 for the main interation count. As for
updating tabu list, increment the length of stay in tabu list for each stored record by
1 and remove any record with the length of stay morethan 8. Set u == u + 1 if o, >
n min(|N| + |M|,15). Go to Step 3.

Intensification or termination.

Go to Step 1 if u < 5; otherwise, stop the procedure and best known solution

(X, Y)* is the final solution of the terminated procedure.

In the construction algorithm, the solution candidates in each iteration are evaluated after u

sequential movements. Local seach of neighbor solution can be represented by small value of

u, while larger value of u (due to non-improvement solution) tries to jump to a less-constrained

solution to avoid local optima trap. A new improved solution will reset the value of u to its
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initial value of 2 to start new local search for the new improved solution. The value of u starts

from 2 and raised to 5 in Step 3 to balance between computation time and solution quality.

The overall improvement heuristics procedure is also controlled by the maximum number of
non-improvement solution in each iteration before u gets evaluated, n. A larger number of n
might improve the solution quality in return of the computation time increase. Based on the
initial experiments, the value of 7 is tuned to 20 balancing the solution quality and computation

time trade off.

The value of B to represent the penalty is updated dynamically referred to the infeasible
iterations counter, a;. The frequency of 8 update is controlled by parameter £. The penalty

value is set to double, g := 2 after & consecutive no feasible iterations. In contrast, the
penalty value is halved, g = G) B after & consecutive feasible iterations. The value of ¢ is set

to be 6 by initial experiments.

4.2.  Heuristic algorithm for stochastic problem

The heuristics algorithm for the stochastic problem is an extension of the heuristics algorithm
in the deterministic problem. Additional features to address the uncertainty, such as new
customer location rating to generate construction heuristics, new approximate cost evaluation

of neighbor solution, etc. are provided in this sub-subsection.

4.2.1. Solution representation and evaluation

As a solution representation, this study defines three different vectors to represent vehicle
routes, crowdsource assignments, and skipped customer visit in the detour route. The vehicle
routes vector defines the sequence of each vehicle fleet visits, whereas the crowdsource
assignments vector denote the assignment of each crowd-worker along with its transfer point
location. The skipped customer visit represents the intentionally skipped customer detour in

each of realization.

In the heuristics algorithm development, our study defines the solution representation
consisting of a solution for vehicle routes, X and a solution for crowdsources route, Y. For
each vehicle v, a visiting sequence of nodes is determined, starting from depot, s§ as the first
node, ending at the last visiting node sg,_(e.g. customer or a transfer point) and the final node

as a depot, (sg +1). Fy is defined as the number of nodes in route v excluding the depot. Vy is

also defined as selected vehicles in vehicle route set, X, Vx €V . The crowdsource
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assignments are represented by a vector Y. The list of crowdsource assignments at transfer
point L is denoted by Y, ,! € My contains all customers which are selected to be outsourced
and it must be covered in transfer point [, with the last one being denoted by s}gl, where F; is
the number of crowdsource assignments at transfer point [ and My is the set of selected transfer
points used in the solution Y, My < M. A node y; is defined to denote the next node

destination after visiting transfer point l,y; € Vx € V.

A vector Z is determined to represent the customers who are intentionally omitted during the
detour trip in each of the realization w, w € Q. These customers are skipped because of higher
detour cost compared to the penalty cost or time unfeasibility in a certain realization. In each
realization, w, one or more omitted customers are denoted in Z,, consisting of the first node

sg’, until the last node sg , where F,, is the number of omitted customers which are skipped in

the realization w, s € Y,\M, foreach [ € M, and w € Q. A new vector of T is defined as the

original vector Y in which its elements Y, are not in each Z,,, for all w € Q.

X = (xl,xz, vy X, ...,X|Vf|); X, = (sg, S1» s SE,SE 41 = sg)

y = (leyZ, ---;‘yll ""y|Mg|); yl = (Sé,s{, ""Sll‘"l)

Z=(2122 1 Zuw o Z101); B = (58,52, o s2)

U= (00T GirrsUpy )i T = U\Za
(63)

The objective function 7-‘()?,((],2_) to evaluate the solution in (63) is defined consisting of
delivery costs, crowdsource costs, and penalty terms in (64). The expected detour cost is
calculated based on the set of realizations, Q. A parameter R,,, is used to define the outcome
of crowdsources transfers at transfer point [ in realization w. The crowdsources cost or
payment will be paid if there is any crowdsources transfer success. The truck detour cost will
be imposed to replace the failed transfer, unless some customers are deliberately omitted in
vector Z. The truck detour cost consists of the travelling cost from the transfer point to each of
the crowdsourced customer in ‘G plus the trip from the end of detour trip to the next destination
according to the original plan. A skipped distance is deducted from the entire cost due to

skipped distance. Finally, there is a penalty cost for intentionally skipping customers.
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Where y; is the next node destination after visiting transfer point [ according to the original
route. P(w) is the probability of transfer failure in the event w. The paramter p consists of the
positive deviation of vehicle maximum capacity minus total load of each vehicle, and positive
deviation between the ending driver service time and total travel time of each vehicle. For the
feasible solution, the penalty terms are set to zero. Penalty parameter f is defined as a non-
negative parameter to balance the penalty value, starting from initial value of 1 and adjusted
dynamically based on the progress of the solution throughout the iteration.

One of the disadvantages when considering uncertainty in the optimization model is the
difficulty to handle enormous realizations in the objective function. In our case, the number of
realizations to be evaluated spikes up when more transfer points are considered. As mentioned
earlier, the relationship between the number of transfer point and the number of realizations is
2™l Therefore, our study proposed an efficient cost evaluation approximation to evaluate the

objective function without any need to evaluate every single realization w.

4.2.1.1.Movement cost as an approximation of objective function

Instead of evaluating every single solution in each realization w, w € Q, this study proposes an
approximate evaluation for every neighborhood search in each iterations. Each neighborhood
search consists of moving one or more nodes from its original position to another position
which is not prevented by tabu mechanism. The cost approximation calculates the impact of a
node movement and sum up the impact as a cost to the true cost evaluation. The true cost
evaluation is the objective evaluation based on the equation (64). The term movement cost is
used to represent the calculated cost as the impact of a node movement. Several movement

costs will be calculated as more than one nodes are moved in one iteration. Overall, the
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approximate cost evaluation of multiple node movement in a neighborhood search can be

illustrated in Figure 12.

Current
Solution

True cost + Movement
evaluation

Node
movement

Neighborhood
Solution 1

Node
movement

Neighborhood
Solution 2

- Approximate Movement | mm Approximate
cost 1 - cost 1 + cost 2 - cost 1

Figure 12. Approximate cost evaluation scheme

This study also performs a complexity analysis to compare the computations efficiency
between true cost evaluation and approximate cost evaluation. The complexity of true cost
evaluation in (64) is exponentialy increase depend on the number of available transfer points
2M1 or can be represented as 0(2"). In the other hand, the approximate cost evaluation is not
dependent on the number of available transfer points, instead, it depends on the number of node

movements or can be represented as O (N).

The calculation of movement cost consists of two type calculations. The first calculation type
is related to the first-stage objective function which does not involve any probability. In the
second calculation type, any movement related to second-stage objective function will be
calculated as well as the probability of the movement. As an example, the current solution after

some iterations, the movement of the node, and the neighborhood solution are defined as

follows.

Current solution: Xy =1{D,(C;,Cy, M, C3,Cy, D}, Y, = {Cs, Cs}

Movement: Move C; from vehicle route X; to crowdsource assignment
Yum, - C3 is in aradius of transfer point M;.

Neighborhood solution: X; =1{D,Cy,C3,M;,Cy, D}, Yy, = {Cs,Co, C3}

The neighborhood solution cost is calculated by summing up the current solution cost (true
cost) based on (64) with the neighborhood solution’s movement cost. Evaluation of the

movement cost is provided in Table 6.
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Table 6. The calculation of the movement cost

Movement 1%t stage objective function 2"d stage objective function
evaluation evaluation
Removing €3 from Dc,c, + Dy,c, — Duyc, (De,c, = Deye, )P, CT
X Reason: Reason:
Vehicle route changes Changes in Vehicle detour sequence
from: from: M, — C; — Cs — C5

D=C=C-M ~C-C=D  to: My—Cs—Cs—C,4
to:
D-C—-C,—M,—C,—D
Inserting C5 inY,, None _(DM1,C3Cb +Cc)(1- le)
Reason:

Crowdsource cost for success
crowdsource transfer

(Dc3,c4 + Dcé,cg i1 DC6,C4)PM1 cT
Reason:
Changes in vehicle detour sequence
From: M, - ¢, - C, - C,

tO:Ml—CS—C6—C3—C4

The movement described in Table 6 is categorized as the movement of customer node from
vehicle route to crowdsource assignment route which also described in (68). Several
movements cost calculations are also possible due to the combination of the search operators.

All movement cost calculations are described as follows.

a. Movement cost of customer node from vehicle route to another vehicle route

The simplest movement is the movement from customer node in the vehicle route to another
vehicle route. It is defined as the removing the selected node from vehicle route of the current
solution and inserting the selected node into the new vehicle route of the neighborhood

solution. This type movement cost does not affect the second stage objective function because
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no crowdsource assignment movement involved. The cost movement calculation is defined as
F1(i,X) in (65).

Fi(i,X) = [(Di,i+ + Di-i — Di_,i+)x —(Dy+ + D — Di—,i+)x] cT (65)

Where

i Selected customer node
i~,i* Preceding node and following node of i, respectively
()*  Current solution

O* Neighborhood solution

Additional cost related to the second stage objective function need to be incurred if the
preceding node of i in the current solution and/or the preceding node of i in the neighborhood
solution are transfer point. The following node after transfer point is the detour trip comeback
node. Therefore, the changes of the following node after transfer point will change the detour
trip cost. In addition, the cost of distance skipped will be changed due to this movement. The
additional cost is defined as F, (i|i~ € M), in (66).

Fy(ili™ € M) = [(De-yi — Deyit) — (D= — Dy i+ )|P- C7 (66)

Where t(i™) is the last visiting sequence of detour trip defined in the crowdsource assignment

related to the transfer pointi=, i~ € M.

b. Movement cost of transfer point from vehicle route to another vehicle route

The transfer point in the vehicle route may also be moved during the construction of
neighborhood solution. The movement of transfer point will affect all the crowdsource
assignments related. In the first stage objective function, the removal of transfer point from the
current solution and the insertion of transfer point to the neighbor solution are calculated. In
the second stage objective function, the comeback detour trip and skipped distance will be re-
calculated because the changes of preceding and following node prior to the movement. The

movement cost is defined as F;(m) in (67).
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Fa(m) = [(Dm'm+ + Dpm — Dm_.m+)x - (Dm.m’r + Dip=m — Dm—,m+)x] ¢ (©7)

+[Gutmm® = Do) = Py = Do) | €7

Additional cost defined in (66) related to the second stage objective function need to be
incurred if the preceding node of m in the current solution and/or the preceding node of m in

the neighborhood solution are transfer point.

c. Movement cost of customer node from vehicle route to crowdsource assignment

The customer orders have the option of crowdsource delivery if the location is close to the
transfer point. This type of movements involves the movement of customer node from the
vehicle route in the current solution to the crowdsource assignment in the neighborhood
solution. This movement will affect the first and second stage objective function. In the first
stage objective function, the removal of the customer node from the vehicle route in the current
solution will be evaluated. Then, the insertion cost in terms of crowdsource cost (for success
outcome) and detour trip cost (for failure outcome) will be incurred as the second stage
objective function. The cost function is defined as F,, (i, m;), in (68) assuming that transfer

point m; related to selected customer node i is available in crowdsource assignment.

Faa(i,m)) = (Dy+ + Di-j — Dy~ '+)xCT = (i GG TR ) () (68)

,L

ymi
~ (Dyg+ + Di-j = D=+ ) P, CT

Additional cost is needed when the position of new customer node in the crowdsource
assignment (in neighborhood solution) is the last sequence. The comeback detour trip will be
altered due to the detour trip sequence change. The new cost function is defined as F,,, (i, m,),
in (69).

Fip(i;m') = (Dy+ + Dimy = Dim i) €7 = (DyyiC? + C2) (1 = Py, (69)

—[(Dy+ + Dy = D )™ = (Dymgr + Dy ) | P €7
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Where
m; Transfer point related to customer node i

m;*  Following node after transfer point m; in the vehicle route of neighrbohood solution

()g’"i Crowdsource assignment related to transfer point m; in neighborhood solution.

Different cost function will be defined if the related transfer point m; is not available through
all of vehicle route in the current solution. Transfer point will need to be inserted to the vehicle
route in the neighborhood solution. As the consequence, the transfer point insertion cost need
to be added in the first stage objective function. In the second stage objective function, the
crowdsource cost, detour trip cost, and skipped distance will also be calculated. The movement

cost function is defined as F,.(i, m;), in (70).

. x x 70
Ficli,m)) = (Dy+ + Di-; — Di- )" C” — (Dmi_mi+ + Diny=m; — Dmi_,m;) cr (70)

— (DpmyiC® + C*)(1 - By,)

[ 1) # o) P

The movement cost defined in (66) need to be incurred if the preceding node of i in the current

solution and/or the preceding node of m; in the neighborhood solution are transfer point.

d. Movement cost of customer node from crowdsource assignment to vehicle route

In contrast with part c, the customer order can also be transferred from crowdsource assignment
in the current solution to the vehicle route in the neighborhood solution. The cost evaluation
structure is similar to F,,(i,m;), however it is reversed in the opposite direction to form
function F<, (i,m;), in (71).

Fio(ym) = (Dy+ + Dy = D= ) ™ C Py + (D iCP + €)1 = By) (1D

~ (Dyy+ + Dy — Di—,i’f)xcr
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Following the same formulation in F,,, (i, m;) with different order, the cost function Fz,, (i, m;)
in (72) is formulated if the position of customer node i in the crowdsource assignment of

current solution is the last position.

Fip(i,mg) = [(Dys+ + Dy = Dimt) ™ + (Dimt + Dimmgt)” | 7Py (72)

+ (D iC? + €2)(1 = Bp,) — (Dyy+ + Dy — Di_’ﬁ)xcr

A more comprehensive cost evaluation is developed when the selected node i, is the only node
in the crowdsource assignment related to transfer point m‘ of the current solution. The transfer
point m* will be removed from the vehicle route and the crowdsource assignment related to m*
will be destroyed due to no more assignment. New cost function is defined as Fz.(i, m;) in
(74).

Fieliom) = [(Oma + Dimg) ™ ~ (Ot | B € 7

+ (D iC° + C4) (1 — P,)
+ (Dot + D=y = Donmmgt) €™

B (Di,i+ + Di—’i u Di_'i+)fCT

The movement cost defined in (66) need to be incurred if the preceding node of i in the

neigborhod solution and/or the preceding node of m; in the current solution are transfer point.

4.2.2. Construction algorithm

In the construction algorithm, the customers which are possible to be outsourced to
crowdsources will be selected based on the location rating. When a customer order is
outsourced, the delivery fleet reduces its travel cost. However, there will be the expectation of
crowdsources cost and the truck detour cost (or penalty cost). Therefore, the rank of customer
orders to be outsourced is defined by averaging the distance of » nearest neighbors and

distance to depot, as well as the expectation of crowdsource transfer outcome in (74).
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St 1 Ty (74)
— =117 ¢
Wi = {(jTl'fl(])> + T(;JL} Cr — P”(i) (Ti,n(i) + ]Tl'fl(])> cT

- (1 - Pn(i))(Ca + CbTiTn(i))

where f;(j) is the j** element of the ascending-ordered set based on distance for node i’s
neighbors, i € NB. (i) is the closest and relevant transfer location to customer i, i € N. Based
on the initial tuning, parameter n is set to be 3 The construction heuristics procedures are

presented as follows.

Step 1:  Node Evaluation for Classification. Based on the customer location rating in (74),
select the first A customers to be outsourced as the set of R¢. Set the value of 4 to
1. The set of R™ is defined as the set of transfer points related to the selected
outsourced customers in R¢. The nearest transfer point is selected if there are

multiple transfer points available for one customer.

Step 2:  Main Truck Route Generation. Based on the set of R¢, the customer order which
are delivered by delivery fleets as vehicle routes customer are defined, (N\R¢) U
R™. Execute the combination of the sweep procedure (Huang et al., 2018) and the
nearest neighbor procedure (Hurkens et al., 2004) in Appendix 1 to construct the
main vehicle routes with the respect of truckload capacity and hours of services
constraints. The transfer point load is accumulated by the total customer demand
which are assigned to relay in the transfer point,

Step 3:  Crowdsource Assignment Generation. Define the set Rf, Rf S R€ as the set of
crowdsourced customers in transfer point [. Generate the crowdsource assignment
based on the combination of modified saving method from Ghiani et al. (2004) in
Appendix 2.

Step 4:  Skipped detour. Perform omitted customer procedure to determine the omitted

customers (See Appendix 3).

Step 5:  Intensification. Obtain and save the objective function in (64). Re-do the Steps 1-
3 and add the value of 4, 4 := 42+ 1 if 1 < A; Otherwise go to Step 5.
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Step 6:  Termination. The initial solution ()¢, )’ is the initial solution as the best solution

among A different solutions based on Step 1-4.

The algorithm emphasizes the appropriate balance between delivery truck utilization and the
crowdsources task. The parameter A denoting the number of outsourced customers is increased
from 1 to A to obtain the balance. The maximum value of A is determined as min(|N|, 2|M|)
by the initial experiment to balance the solution quality and computation time. The initial
solution will be improved by the tabu search algorithm as the improvement algorithm in the

next section.

4.2.3. Improvement algorithm

4.2.3.1.Neighborhood definition, tabu status, and aspiration criterion

The neighborhood definition, tabu status, and aspiration criterion in of the stochastic problem
are defined as the same as the definition in the deterministic problem due to the similar problem

characteristics of two-echelon routing system.

4.2.3.2. The tabu-search procedure

In general, the improvement heuristics is controlled by the parameter u as the level of

intensification. The overall procedures are presented as follows.
Step 0: Initialization.

Set the iteration counters o; (main iteration counter), o, (consecutive non-
improvement iterations counter), and o5 (infeasible iterations counter) to 1. Set the
output of the construction heuristic algorithm as the initial solution and the best
known solution (X, Y)* == (X,Y)’ and the current solution at iteration o ,
(¢, Y)°r: = (X, Y)*. Set the intensification level, u: = 2 and penalty value in (64),
B:=1.

Step1l:  Current Solution Evaluation.

Let (XC,Y,2)* = (X,Y,2)" be the best known solution, and set (X, Y, Z)%: =

(X, Y, 2)* as the current solution at iteration o, . Evaluate the current solution using
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Step 2:

Step 3:

Step 4:

Step 5:

F(X,7,Z) to obtain the true value of objective function, F*(X, Y, Z). Go to step
2.

Neighborhood Search.

Randomly generate three ordered nodes as the node sets for u times based on
(X, Y)°. Perform the search described in the neighborhood definition, started from
the first node sets. Use the new neighborhood solution as the starting point to search
another new neighbor solution. This process are repeated for u times until all node
sets have been selected. Evaluate the neighbor solution using the movement cost
defined in (65) - (73) and obtain the approximated objective function by subtracting
the previous approximated objective function with the movement cost. Exclude the
neighborhood solutions which are listed in tabu list. Select the best neighborhood
solution by the best approximate objective function. Go to Step 3.

Skipped detour.

Perform omitted customer procedure to determine the omitted customers, Z (See
Appendix 3). Go to Step 4.

Solution, Tabu, and Parameter Update.

Set (X,Y,2)*:= (X,Y,Z)°, re-set the second counter o, := 1, and re-set y := 2
if (X,VY,2)° is feasible and F* (X, Y, 2) < F*(X,VY, 2Z); otherwise, o, == o, +
1. Set g3 := o if the solution is infeasible; otherwise set a5: = 1. Set 8 based on
o5 to adjust the penalty level. Set o, := o, + 1 for the main interation count. As for
updating tabu list, increment the length of stay in tabu list for each stored record by
1 and remove any record with the length of stay more than 6. Set y :== u + 1 if o, >
n min(|N| + |M|,15). Go to Step 5.

Intensification or termination. Go to Step 1 if u <5; otherwise, stop the
procedure and best known solution (J¢, Y)* is the final solution of the terminated

procedure.

In the construction algorithm, the solution candidates in each iteration are evaluated after u

sequential movements. Local search of neighbor solution can be represented by small value of

u, while larger value of u (due to non-improvement solution) tries to jump to a less-constrained

solution to avoid local optima trap. A new improved neighborhood solution will reset the value
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of u to its initial value of 2 to start new local search for the new improved neighborhood
solution. The value of u starts from 2 and incremented by 1 to 5 in Step 3 to balance between

computation time and solution quality.

The overall improvement heuristics procedure is also controlled by the maximum number of
non-improvement solution, n in each iteration. A larger number of n might improve the
solution quality in return of the computation time increase. Based on the initial experiments,

the value of 7 is tuned to 20 to balance the solution quality and computation time trade off.

The value of f to represent the penalty is updated dynamically based on the infeasible
iterations counter, a;. The frequency of B update is controlled by parameter {. The penalty
value is set to double, g := 2 after & consecutive no feasible iterations. In contrast, the
penalty value is halved, g := (1/2)p after ¢ consecutive feasible iterations. The value of £ is

set to be 6 by initial experiments.
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CHAPTER 5 NUMERICAL EXPERIMENT

5.1. Test problem design

In this study, the problem tests are categorized into two groups. The first group is labeled “H”
for hypothetical instances consisting of 15 customer nodes and 5 transfer points. These problem
tests are generated by a two-phase process. Five problem instances labeled by A-E are
generated in the first phase with random depot and customer locations. Uniform distribution is
utilized to generate the random coordinates of customer and depot nodes in —x and —y. A cluster
analysis of customer locations was performed to assign the location of transfer point in the
center of each generated cluster. In the second phase, for each problem sets in phase one, the
new sub-problem sets are generated by perturbing the customer locations and fixing the
location of depot and transfer points. The perturbation of customer location follow a normal
random distribution, N (u, o) with mean, u is the coordinate in -x or -y of the node and the
standard deviation, o = 2. Based on the two-phase probem set generation process, five
configurations or distribution systems with five sub test instances for each of the distribution

system can be generated to represent the day to day customer order patterns.

In the second category, two classical VRP problem benchmarks from Augerat et al. (1995) and
Christofides et al. (1979) are used and modified to match this study problem definition. The
problems from Augerat et al. (1995) are labeled by “P,” and Christofides et al. (1979) are
labeled by “CMT1”, “CMT2”, and “CMT3”. This study adds the transfer points to the original
problem instances randomly as the modification to match the problem definition. In general,
the problem test labels consist of three indexes to represent the number of customers (n), the
number of transfer points (m), as well as the series of the instances (e.g. A1, A2, B1, etc.). The
generated  benchmark problem can be downloaded at Mendeley Data

(https://data.mendeley.com/datasets/rxm98px352/2).

The parameter sets in this study are presented in Table 7. Mainly, the cost parameters are
adopted from Kafle et al. (2017) and Huang and Ardiansyah (2019). The fixed crowdsources
cost is based on the Uber base fare in the US (Dough, 2018).
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Table 7. Parameter sets

Parameter Value
Vehicle capacity, Q" 25 unit capacities
Crowdsouces carrying capacity, Q¢ 3 unit capacities
Vehicle variable cost, C" US$ 68.9/hour
Crowdsources fixed cost, C* US$ 5/crowdsource
Crowdsource variable cost, C? US$ 10/hour
Maximum hours of service, L 8 hours
Vehicle speed 20 unit distance /hour
Crowdsources speed 10 unit distance /hour

5.2.  Experiment of deterministic problem

5.2.1. Crowdsource delivery contribution

In this part, the test problem “H” is utilized and the optimal solution of the test problems are
generated by the GUROBI solver for the small-size problem instances. The results will be used
as an elaboration upon the decision problem nature and characteristics. The crowdsource
delivery integration represented by the model in (1) - (26) will be compared with the all
outsourcing strategy and no outsourcing strategy to illustrate the cost saving from the
crowdsource delivery integration. The all outsourcing and no outsourcing solutions are
generated by fixing the associated crowdsourcing decisions variables in (1) - (26). The
comparison of each problem set (labeled by A - E) solutions (i.e. objective function and number

of crowdsourced customers) are presented in Table 7.

Based on the results in Table 7, the crowdsource delivery as the representation of the original
model provides 4.98% cost reductions when compared with the no crowdsourcing strategy and
generate 5.19% cost improvements when compared with the case of all crowdsourcing
strategy, in which the decision outsource all possible customers (reachable from transfer
points). As presented in the number of customers outsourced, crowdsourcing does not always
lead to cost reduction. A carefull decision to balance the truck operational cost and the
crowdsourcing cost need to be examined. In addition, the non-crowdsouring strategy can
provide better results in several problem tests compared to full crowdsource strategy,
emphasizing the crowdsource delivery collaboration need to be planned carefully in order to

bring the best cost reductions.
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Table 8. Cost levels for different crowdsourcing strategies

No Problem Crowdsource Delivery All Crowdsourcing | No Crowdsourcing

Objective | The number = Objective | %GAP | Objective = %GAP
Value of customers Value Value
crowdsourced

1 | H-n15m5-Al 821.8 1 873.0  6.23% 827.2 | 0.66%
2 | H-n15m5-A2 938.4 3 995.4  6.08% 966.8 = 3.03%
3 | H-n15m5-A3 1062.7 2 1119.9  5.38% 1065.6 | 0.27%
4 | H-n15m5-A4 893.5 4 910.8  1.94% 997.5 | 11.64%
5 | H-n15m5-A5 1344.7 0 1398.7 | 4.02% 1344.7 | 0.00%
6 | H-n15m5-B1 788.7 4 852.8 8.12% 905.6 | 14.81%
7 | H-n15m5-B2 676.2 4 729.6 = 7.90% 6945  2.70%
8 | H-n15m5-B3 816.4 - 884.0 8.28% 820.4 | 0.49%
9 | H-n15m5-B4 928.1 4 959.1  3.34% 1011.1 | 8.94%
10 = H-n15m5-B5 926.1 0 962.4  3.93% 926.1 = 0.00%
11 | H-n15m5-Cl 1205.1 4 12205 1.28% 1273.2 | 5.65%
12 ' H-n15m5-C2 925.7 3 962.9 4.01% 970.2  4.81%
13 | H-n15m5-C3 902.9 4 952.1 5.44% 1017.9 | 12.73%
14 ' H-n15m5-C4 837.8 1 948.1  13.16% 864.7 | 3.20%
15 ' H-n15m5-C5 1191.9 2 1226.9  2.94% 1212.1 | 1.68%
16 | H-n15m5-D1 1081.1 4 1131.7 4.68% 1201.7 | 11.16%
17 | H-n15m5-D2 815.5 12 815.5 0.00% 915.8 | 12.30%
18 | H-n15m5-D3 902.5 6 942.1 4.39% 1031.5 | 14.30%
19 | H-n15m5-D4 940.1 5 963.1  2.44% 1011.1 | 7.55%
20 | H-n15m5-D5 1072.8 0 1129.8 5.31% 1072.8 | 0.00%
21 | H-n15m5-E1 939.6 0 996.8 6.09% 939.6 = 0.00%
22 | H-n15m5-E2 1164.3 0 1228.9  5.55% 1164.3 | 0.00%
23 | H-n15m5-E3 885.5 1 901.3  1.78% 926.1  4.57%
24 | H-n15m5-E4 1087.4 2 1167.2 | 7.34% 11779 | 8.33%
25 | H-n15m5-E5 889.9 1 933.9  4.95% 898.7 | 0.99%
Average Gap 4.98% 5.19%

The illustration of the delivery plan to highlight the model behavior and the decision problem
nature is provided for one test instance (H-n15m5-B4) with different crowdsouring cost level
in Figure 13. all of the feasible crowdsource service will be maximized for a low crowdsourcing

cost (crowdsourcing cost is zero). In contrast, lower crowdsource delivery collaboration is

generated for the double crowdsource service.
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Zero crowdsource cost Default crowdsource cost Doubled crowdsource cost

Figure 13. Illustration of route decisions for different crowdsourcing cost

5.2.2. Performance of heuristic algorithm

In this part, the test problems in the second category are utilized (problem test P and CMT).
The solutions are evaluated from two aspects (i.e. solution quality and computation time). The
evaluation of solution quality is available only for the small problem tests (with 15 customers
and 5 transfer points) because of the limitation on the mathematical solver computing
resources. The results are presented in Table 9. The heuristics algorithm is able to generate a
nearly optimal solution with fast computation time (less than 3 seconds) for small instances
with the differences between optimal solutions from the mathematical solver and heuristics
solution are less than 0.1% (available as gap in the last column of Table 9). The lower bounds
are provided for the larger problem size of 20 to 30 customers by the GUROBI solver with four
hours limited computation times. The negative percentage gap shows the heuristics algorithm
can provide better feasible solution with faster computation time compared to the lower bound

in some instances.

The evaluation of larger instances is performed based on the significant improvements made
by the improvement algorithm (available in the second last column of Table 9) due to the
unavailable optimal solution or lower bound by the mathematical solver. As observed, the
substantial and stable improvements can be generated by the heuristics algorithm indicating
independent and insensitive relationship between the proposed improvement heuristics
algorithm and the initial solution. The computation time increases depend on the problem size.
However, acceptable computation time can still be achieved even for the biggest problem
instances (with 99 customers and 12 transfer points) with total computation is less than four

minutes. The growth of the heuristics algorithm runtime depends on the problem size (e.g. the
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number of customer and the number of available transfer point). In average, it can be best
approximated by runtime = 0.013n? + 0.011m? + 0.352. where n is the number of

customers and m is the number of available transfer points.
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Problem

H-n15m5-Al1*
H-n15m5-B1*
H-n15m5-C1*
H-n15m5-D1*
H-n15m5-E1*
P-n15m5*
P-n30m10
P-n50m12
P-n75-m12
P-n100-m12
CMT1-n20m7
CMT1-n30m10
CMT1-n49m12
CMT2-n20m7
CMT2-n30m10
CMT2-n50m12
CMT2-n74m12
CMT3-n20m7
CMT3-n30m10
CMT3-n50m12
CMT3-n75m12

Table 9. Heuristics algorithm results

CMT3-n99m12-A
CMT3-n99m12-B
CMT3-n99m12-C
CMT3-n99m12-D
CMT3-n99m12-E
CMT3-n99m12-F
CMT3-n99m12-G
CMT3-n99m12-H
CMT3-n99m12-1

CMT3-n99m12-J

MIP Solver Construction Algorithm Improvement Algorithm
Objective Bound | Obj. Function | Elapsed Time @ Obj. Function | Elapsed Time
821.9 1183.7 0.1 821.9 1.8
788.8 941.5 0.1 788.8 1.4
925.8 1211.7 0.1 925.8 1.5
1081.2 1146.2 0.2 1082.0 1.3
939.6 1330.4 0.1 939.6 1.8
496.6 1053.2 0.1 496.6 3.0
1166.4 1654.7 0.8 1197.5 18.9
2510.7 1.8 1782.3 27.9
3453.1 4.1 2355.7 57.9
3651.9 8.7 2816.3 108.5
950.8 1151.9 0.3 950.8 6.6
1077.3 1593.2 0.7 1095.7 19.0
2045.7 2.2 1673.0 38.2
972.1 1541.4 0.3 972.0 6.2
1346.4 1905.7 0.7 1173.6 12.3
2313.0 2.0 1570.2 325
4794.9 3.9 2436.5 70.4
1044.4 1250.2 0.3 1136.5 8.7
1323.6 1801.4 0.7 1299.0 16.9
3057.4 1.7 1831.9 47.4
3808.4 4.1 24447 88.4
4537.0 7.7 3026.0 180.5
3938.6 7.7 2821.2 134.7
4459.6 7.8 2930.2 184.7
4719.5 7.4 2968.0 134.4
4166.2 7.7 2831.2 133.6
3520.6 8.0 2733.9 124.9
4696.0 7.6 2899.6 118.1
4085.2 7.7 2642.9 148.3
3863.0 7.2 2842.5 118.9
3573.3 8.1 2841.4 150.6
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Percentage
Improvement

17.68%
11.64%
17.48%
18.31%
30.00%
20.93%
37.81%
40.17%
41.21%
27.07%
21.15%
33.68%
22.43%
58.41%
52.69%
38.44%
83.60%
10.01%
38.67%
52.74%
40.45%
46.31%
39.61%
52.19%
59.01%
47.15%
28.78%
61.95%
54.57%
35.90%
46.31%

Percentage Gap

0.00%
0.00%
0.00%
0.07%
0.00%
0.00%
2.67%

0.00%
1.71%

0.10%
-11.56%

-0.71%
-1.86%



5.2.3. Sensitivity analysis

In this section, the model parameters are examined to derive the managerial insights. Thus,
several sensitivity analyses are presented in terms of the transfer points availability, the
crowdsources cost levels, and the hours of service. Two categories of results (i.e. optimal
results and heuristics results) are presented in two different representations, namely objective
function and the number of outsourced customers order. The first category of results consists
of small-size problems, H-n15m5 (B1-B5 and C1-C5) with 15 customers and 5 transfer points.
In the second category, large-size instances (problem sets P and CMT) are used. In addition,
ten test instances are generated by the two-phase process for the test problem CMT3-n99m12,
with 99 customers and 12 transfer points to get CMT3-n99m12A — J. The small-size problems
are solved by GUROBI solver to optimality and large-size problems are solved by TS algorithm
for an approximate solution. All parameters are preserved in Table 7, except the one focused
in each sub-subsection. As a baseline, all results in both problem scales are compared with the
pure truck delivery (no outsourcing) strategy, in which the related decision variables in the

model are fixed, or the TS algorithm is modified accordingly.

5.2.3.1.Availability of transfer points

In this part, the number of available transfer points are exercised in a form of sensitivity
analysis. As the base instance, initial value of transfer point is set to five for the small problems
and twelve for the large problems while keeping other parameters values in Table 7.

Figure 14 and Figure 15 present the overall cost and the number of crowdsourced customer
orders to emphasize the relationship of transfer points availability to the cost saving by the

crowdsource delivery.
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Figure 14. Total delivery cost and number of outsourced customer orders for various

available transfer points (small instances with optimal results)
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Figure 15. Total delivery cost and number of outsourced customer orders for various
available transfer points (large instances with heuristic results)

The results show the importance of the transfer points as it can provide a significant cost
savings from the crowdsource delivery integration. The number of available transfer points are
reduced from the base case to as few as one to examine the impact. Similar trends are observed
for the small and large problem sizes. Based on the results, less available transfer points may
increase the overall costs substantially, together with the number of crowdsourced customer
reduction. However, the crowdsource delivery are still better than non-outsourcing strategy,
even at the lowest number of available transfer points. As an average, reducing one transfer

point may increase the overall cost for about 2.3% (or $65) based on the large test problem.

As an insight, the number of available transfer points and its locations can be considered as
operational or tactical decision in the crowdsource delivery problem. The potential of transfer
points impact can be maximized and adjusted to cope with the dynamic day-to-day situation
since many public spaces are available for free. However, this decision may become even more
crucial for achieving the benefit of integrating the crowdsources if some amounts of costs (e.g.,
a renting or parking cost) are required to use the transfer points.

5.2.3.2.Crowdsourcing costs

In this sub-subsection, the sensitivity analysis is performed with respect of different
crowdsourcing costs given the base cases with the crowdsource fixed cost of $5/crowdsource
and the crowdsource variable cost of $10/ hour. Figure 16 and Figure 17 present the results in
terms of the overall cost and the number of crowdsourced customer orders to emphasize the
relationship between the level of crowdsourcing cost to the overall cost and the outsourcing

decision.
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Figure 17. Total delivery cost and number of outsourced customer orders for various

crowdsourcing cost level (large instances with heuristic results)

As indicated in the introduction and the design of heuristic algorithm, the balance between the
crowdsources service and delivery truck utilization is the focus of this study. The crowdsouring
costs in the bases cases are increased and decreased by 30% in order to illustrate the model
relationship to the different level of crowdsource costs. Similar trends have been observed in
both problem sizes. The percentage difference in crowdsource cost is substantially bigger than
the overall costs (about 30% vs. 4% for the large test problems). Based on the large problem
instances, cost savings for about 14.5% (or $405) can still be preserved even with the 30%
crowdsource cost increase. As expected from the higher crowdsourcing cost, the interest of
integrating crowdsources to the delivery plan is reduced.

The results of this analysis can be usefull as a reference to adjust the crowdsource cost. The

crowdsource cost can be adjusted to attract more crowd-worker in the low available
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crowdsources areas or low crowdsource availability time, as one of the crowdsource delivery

problem is demand-supply matching (Rouges & Montreuil, 2014).

5.2.3.3.Impact of hours of service

In this sub-subsection, the hours of service representing the driver operation time is exercised.
For the base cases, the hours of service are set to be eight and it will be extended or shortened
by 10% to 20% to form the sensitivity analysis. The results are provided in Figure 18 and

Figure 19.
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Figure 18. Total delivery cost and number of required trucks for various hours of service

(small instances with optimal results)

$3,400 9
= $3.300 L33
§ $3,200 § 8
= $3,100 =75
D e
£ $3.000 c 7
& $2.900 £65
= $2,800 Z 6
=l
& $2,700 Base Case 55 Base Case

$2,600 ‘ 5

6.4 7.2 8 8.8 9.6 6.4 7.2 8 8.8 9.6
Hours of Service (Hour) Hours of Service (Hour)
Crowdsource Delivery Pure Truck Delivery Crowdsource Delivery Pure Truck Delivery

Figure 19. Total delivery cost and number of required trucks for various hours of service

(large instances with heuristic results)

Based on the results, hours of service can be a crucial aspect in the crowdsource delivery

integration, as extending the hours of service can lead to a cost reduction due to fewer fleets

65



are required. A consistent cost difference between the crowdsource delivery and the pure truck
delivery is observed, indicating the crowdsource delivery is able to make cost savings by
utilizing the crowdsources to perform the difficult tasks under different level of hours of
service. The crowdsource delivery reduces the cost to 12% (or $336) with 25% fewer trucks in

average based on the large size problems.

This analysis can provide a good simulation of the relationship between the additional hours of
service and the total delivery costs in terms of crowdsource delivery integration strategy. The
options of overtime can be a good solution (in respect of safety regulations) to maximize the
benefit of crowdsource delivery as long as the associated cost does not surpass the estimated

cost saving.

5.3.  Experiment of stochastic problem

5.3.1. Results based on optimal solution

In this sub-section, all results in terms of graphs and tables are based on the optimal solutions
by solving the extensive form of the model using GUROBI solver for the small problem size.

The main objectives are to show the nature and behavior of the problem decision.

5.3.1.1.1llustration of crowdsources transfer uncertainty behavior

In this part, the results of considering crowdsourcing uncertainty are inspected and compared
with the non-stochastic results to show the impact of the crowdsource transfer uncertainty.
Problem instance “P” with 15 customers and 3 transfer points are used as an example to
illustrate the final delivery plan with the parameters are preserved in Table 7. The consideration
of uncertainty affects the decision to include crowdsources as highlighted in Figure 20. When
considering uncertainty, the failure outcome of crowdsources transfer can be considered as an
additional cost for the decision maker. When the risk is higher than the benefit to outsource
customer order, then there is no advantage to use crowdsource service. As illustrated in the
Figure 20, one crowdsource assignment is eliminated due to the uncertainty consideration. This
result is further elaborated when the crowdsources transfer failure rate is high. It can even
remove the benefit of crowdsource delivery entirely as illustrated in the last figure in Figure
20.
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Deterministic Solution

Stochastic Solution
Failure rate 0.1

Stochastic Solution

Failure rate 0.3

Figure 20. Illustration of deterministic and stochastic solution

Although considering uncertainty may appear reducing the benefit of the crowdsources

collaboration, it actually prevents additional loses when the crowdsource transfer failure

occurs. Based on the comparison between expected deterministic solution in the uncertain

environment and the stochastic solution, the advantages of considering uncertainty are

beneficial. Based on Table 10, the possible loses are reduced up to 11.1% when the

uncertainties are considered. This result indicates the importance of considering the

uncertainties to reduce the impact of the uncertainty.

Table 10. Comparison of stochastic solution and deterministic solution in the uncertain

Instances

I I T U © T

CMT1
CMT1
CMT1
CMT2
CMT2
CMT?2

Failure Rate

0.1
0.2
0.3
0.1
0.2
0.3
0.1
0.2
0.3
0.1
0.2
0.3

Stochastic
Solution

516.7
520.2
523.7
678.2
687.2
696.2
837.5
837.5
837.5
847.3
851.1
855.0

environment

Crowdsource Transfer Realization
1 = Failure, 0 = Success

Transfer Success
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513.2
513.2
513.2
669.2
669.2
669.2
837.5
837.5
837.5
843.3
843.3
843.3

Transfer Failure

690.2
690.2
690.2
669.2
669.2
669.2
837.5
837.5
837.5
843.3
843.3
843.3

Expected
Objective
Function

530.9
548.6
566.3
703.9
738.6
773.3
837.5
837.5
837.5
855.0
866.7
878.4

GAP

2.8%
5.5%
8.1%
3.8%
7.5%
11.1%
0.0%
0.0%
0.0%
0.9%
1.8%
2.7%




In the detour-combined strategy, the delivery truck which carry the customer’s order will make
additional detour from the transfer point to the customer location, otherwise a penalty will be
imposed to represent the next-day delivery. The penalty as a valuation of customer order can
affect the decision of initiating truck detour. Fast delivery or one-day delivery service creates
high valuation of customer order or penalty. In this condition, imposing penalty can have higher
cost than initiaing a truck detour. In the other hand, low penalty value can make the detour trip
useless, as skipping a customer order and pay penalty can be cheaper than initiating a detour
trip. The illustration of the difference between low and high penalty are highlighted in Figure
21.

c15 . 12 o i, CIGRIEF 4812

Detour-combined recourse Detour-combined recourse
with high penalty with low penalty

Figure 21. Illustration of detour-combined recourse under different customer order
valuation

The detour-combined model in (42) - (60) generates the delivery truck final route and the truck
detour route for all realizations. Each realization ‘s detour truck can be regarded as a backup
plan when the transfer failure occurs, as it contains every single combination of transfer
failures. Therefore, in practical situation, this detour route can be useful for the delivery truck

driver as their basis when crowdsources transfers fail.

5.3.1.2.Comparison of deterministic model results and stochastic model results

This part of the experiment emphasizes the comparison of optimal results in small problem
instances between two different recourse strategies over different transfer failure probability.
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As a baseline, the deterministic results are included. All of the problem instances used have the

same problem size which is 15 customers and 3 transfer points.

Table 11. Comparison of different recourse strategies

Problem | Penalty Deterministic Penalty-only Detour-combined Recourse | GAP
Instance Recourse

Obj. #Crowds | Obj. | #Crowds | Obj. | #Crowds | Fulfilm

Func. Func. Func. ent %
H $100 | 669.21 4| 703.91 4 | 678.21 4 100 5.19
P $100 | 513.25 2 | 523.06 1| 516.74 2 100 1.91
CMT1 $100 | 837.51 0 | 837.51 0| 837.51 0 100 0.00
CMT2 $100 | 843.27 3| 847.31 2 | 847.31 2 100 0.48
CMT3 $100 | 917.19 1| 925.69 1| 921.48 1 100 0.93
H $50 | 669.21 4 | 683.91 4| 678.11 4 75 2.20
P $50 | 513.25 2 | 518.06 1| 516.74 2 100 0.94
CMT1 $50 | 837.51 0| 837.51 0| 837.51 0 100 0.00
CMT2 $50 | 843.27 3| 847.31 2 | 847.31 2 100 0.48
CMT3 $50 | 917.19 1| 920.69 1| 920.69 1 0 0.38
H $20 | 669.21 4| 671.91 4 | 671.62 4 25 0.40
P $20 | 513.25 2 | 514.95 2 | 513.97 2 50 0.33
CMT1 $20 | 837.51 0 | 837.51 0 | 837.51 0 100 0.00
CMT2 $20 | 843.27 3 | 845.33 3 | 845.33 3 33.33 0.24
CMT3 $20 | 917.19 1| 917.69 1| 917.69 1 0 0.05

Deterministic model results generally have lower objective function and more crowdsouring
service compared to the stochastic model results. Additional risks cost for the uncertainty will
increase the cost and reduce the crowdsourcing decision. However, as it is observed in the
Table 10, the deterministic model results provide worse solution win the stochastic
environment. The stochastic model which considers the uncertainty will reduce the impact of

uncertain crowdsource transfer and provide better results in the uncertain environment.

Detour-combined recourse strategy generates better results compared to the penalty-only
recourse strategy, in Table 11. The detour-combined recourse strategy has the flexibility to
choose between initiating detour route or give up the detour and pay penalty when the detour
cost surpasses the penalty. Thus, detour-combined strategy will have an advantage on the
penalty-only recourse. When the penalty valuation is low, both of recourse strategies generated

the same solution.
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5.3.2. Results based on heuristics algorithm solution

5.3.2.1.Heuristic algorithm solution quality

The experiments of heuristics algorithm to generate a near-optimal solution are presented in
this part. Based on Table 12, small-instances with 10 customers and 3 transfer points are
exercised and compared with the baseline of optimal solution generated by the model with

detour-combined recourse.

Table 12. Comparison of heuristics algorithm results and the optimal results

Instance = Penalty OPTIMAL SOLUTIONS HEURISTICS
Obj. #Crowds | Fulfilment | Best | time @ #Crowds | Fulfilment | GAP
Function % Solution %

H 20.00 671.62 4 25.00  671.62 | 2.82 4 25.00 | 0.00%
H 50.00 678.11 4 75.00  678.11 | 2.05 4 75.00 | 0.00%
H 100.00 678.21 4 100.00 = 678.21 | 2.34 4 100.00 | 0.00%
P 20.00 513.97 2 50.00 = 514.95 | 3.90 2 0.00 | 0.19%
P 50.00 516.74 2 100.00 | 516.74 | 3.34 2 100.00 | 0.00%
P 100.00 516.74 2 100.00 | 516.74 | 2.86 2 100.00 | 0.00%
CMT1 20.00 837.51 0 100.00 | 837.51 | 1.32 0 100.00 | 0.00%
CMT1 50.00 837.51 0 100.00 | 837.51 1.54 0 100.00 | 0.00%
CMT1 100.00 837.51 0 100.00 | 837.51 | 1.63 0 100.00 | 0.00%
CMT2 20.00 845.33 3 33.33 | 845.53 | 2.85 3 33.33 | 0.02%
CMT2 50.00 847.31 2 100.00 | 847.31 | 3.04 2 100.00 | 0.00%
CMT2 100.00 847.31 2 100.00 | 847.31 | 2.93 2 100.00 | 0.00%
CMT3 20.00 917.69 1 0.00  917.69 | 3.22 1 0.00 | 0.00%
CMT3 50.00 920.69 1 0.00 | 92250 | 3.07 1 100.00 | 0.20%
CMT3 100.00 921.48 1 100.00 | 92250 | 2.76 1 100.00 | 0.11%

In terms of solution quality, the heuristics algorithm generates a near-optimal solution with
average gap between optimal solution and heuristics algorithm solution is less than 0.1% for
the small problem size. Generaly, the differences are caused by the detour route fulfillment

percentage as some of the customer order are deliberately omitted due to low penalty cost.

5.3.2.2.Performance of heuristic algorithm of medium to large size problem

This part of the experiment has been performed mainly for investigating the performance of

heuristics algorithm in the medium to large size problem. The various problem instances (P
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and CMT) with different problem scale denoted by number of customer, N and number of

transfer point available, M are utilized in this experiment. All parameters used are provided in

Table 7.
Table 13. Performance of heuristics algorithm in medium-large size problem
Instance N | M Initial Comp. Best Comp. | #Crowd | Fulfilment | %Improve
Solution | Time | solution | Time S % ment

P 20 | 7| 114464 0.22 939.95 7.78 5 100.00 21.78%
P 30 | 10 | 1665.59 1.03 | 1166.48 | 1851 9 100.00 42.79%
P 50 | 12 | 2513.83 8.71 | 1828.47 | 5853 10 80.00 37.48%
P 74 | 12 | 3406.57 7.15 | 2359.02 @ 106.51 11 81.82 44.41%
P 100 | 12 | 3616.37 8.48 | 2802.48 | 166.56 15 80.00 29.04%
CMT1 20| 7| 1156.09 0.19 956.74 6.52 3 66.67 20.84%
CMT1 30 | 10 | 1600.63 1.09 | 1109.47 | 16.09 8 87.50 44.27%
CMT1 49 | 12 | 2103.18 8.63 | 1675.35 | 51.69 10 90.00 25.54%
CMT2 20 7 | 154558 0.18 980.47 6.41 4 75.00 57.64%
CMT?2 30 10 = 1910.20 1.10 | 1237.04 | 15.49 10 60.00 54.42%
CMT?2 50 12 | 2328.62 7.35 | 1630.20 | 51.07 5 80.00 42.84%
CMT?2 74 12 | 3997.74 461 | 2349.26 | 90.74 14 78.57 70.17%
CMT3 20 7| 124914 0.13 | 1040.66 5.40 2 100.00 20.03%
CMT3 30 10 | 1802.71 1.08 | 1318.62 | 19.56 4 100.00 36.71%
CMT3 50 12 | 3137.62 6.44 | 1849.17 | 57.63 13 76.92 69.68%
CMT3 75 12 | 3809.56 551 | 243428 | 92.28 14 100.00 56.50%
CMT3 99 12 3854.18 6.17 | 2852.67 | 155.25 15 66.67 35.11%
CMT3-A 99 12 | 4250.33 6.37 | 2819.37 | 188.93 15 53.33 50.75%
CMT3-B 99 12 399121 9.75 2821.56 | 185.95 18 77.78 41.45%
CMT3-C 99 | 12 43345 5.42 | 2993.45 | 187.06 10 90 44.80%
CMT3-D 99 | 12 | 427329 8.68 2754 | 190.99 6 66.67 55.17%
CMT3-E 99 | 12 | 3991.02 10.56 | 2855.61 | 224.65 5 100 39.76%
CMT3-F 99 | 12 | 411098  11.26 | 2808.82 | 233.83 10 60 46.36%
CMT3-G 99 | 12 | 4121.68 6.13 | 2878.89 | 170.78 7 100 43.17%
CMT3-H 99 | 12 | 3982.15 9.43 | 2692.48 | 187.21 8 75 47.90%
CMT3-1 99 | 12 | 444701 8.69 | 2862.08 | 177.89 8 87.5 55.38%
CMT3-J 99 | 12 | 3990.96 8.89 | 2914.69 | 186.43 8 100 36.93%

As there is no optimal solution available for the baseline to evaluate the optimality, the quality
of solutions is evaluated by the improvement of the final solution compared to the initial
solution generated by initial solution algorithm (indicated in the last column of the table). Based
on Table 13, substantial of improvements are reported indicating a good heuristics solution are

produced with the average improvement is 43.37% compared to the initial solution. In
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particular, the large improvement shows that the proposed heuristics algorithm is not dependent

on the initial solution.

In terms of computation time, the biggest problem instance with 99 customers and 12 available
transfer points can be solved in 189 seconds or less than 4 minutes in average. The growth of
the heuristics algorithm runtime depends on the problem size (e.g. the number of customer and
the number of available transfer point). In average, it can be best approximated by runtime =
0.017n% + 1.82m, where n is the number of customers and m is the number of available

transfer points.

5.3.3. Analysis of stochastic crowdsource delivery

In this part, this study investigates the impact of parameters to the decision output and
managerial implications. There are two experiments in the form of sensitivity analysis which
are performed, namely the crowdsource transfer failure rate and failure transfer penalty. The
results are presented in the graphs which contain of objective function and the number of
outsourced customer order with all parameters preserved in Table 7, except one parameter
which is being inspected in each section. All results are generated based on the average of 10

problem instances (CMT3A-J) with 99 customers and 12 transfer points.

5.3.3.1.Impact of failure rates

In this analysis, the crowdsources transfer failure rates are exercised from 10% to 50%. The
results are derived under the detour-combined strategy and presented in the form of the overall
cost and the number of outsourced customer in Figure 22. For the base case, the failure rates
are set to be 10%.

2940 12
2920
2900
2880 9

2860

Objective Function

2840

Outsourced Customer Order

2820 6
0.1 02 03 04 0.5 0.1 0.2 03 04 0.5
Failure Probability Failure Probability

Figure 22. Impact of crowdsource transfer failure rates
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As expected, the higher failure rates increase the overall cost due to higher expected penalty
costs. In average, each 10% increase of crowdsource transfer failure rate will increase the cost
around 0.6% ($16). The cost increases are also subjected based on the solution change in terms
of the outsourced customer order. A negative trend is found in the outsourced customer order
when the failure probability increases. Based on the large test problems, an increase of 10%
failure probability will reduce one outsourced customer orders in average. The crowdsources
assignment becomes unattractive when the valuation of risk in terms of detour cost or penalty
is higher than the benefit of assigning customer order to crowdsources although the

crowdsources delivery is beneficial in the deterministic environment.

Based on these experiments, determining the failure probability is important since it directly
affect the final decision of this problem. The environment factor such as weather prediction,
traffic condition report, etc. can be a good factor to consider in determining the failure
probability, as well as internal factor such as the crowdsources track record or even driver

record.

5.3.3.2.Comparison of different penalty values on the failure recourse strategies

In this sub-subsection, the impact of penalty value is investigated to analyze the impact of
penalty value to the selection of recourse strategies. This experiment is performed with respect
to the penalty value across different probability. The results are presented in terms of overall

cost in Figure 23.

Based on the Figure 23, small difference in terms of overall cost can be found between penalty-
only strategy and detour-combined strategy given the low valuation of penalty. However, when
high penalty cost is imposed, higher gaps are observed between those two recourse strategies
indicating that a substantial amount of money can be saved by using the recourse strategy. The

cost gaps are also different across different crowdsource failure rate.

Detour-combined recourse strategy can be very complicated for logistics operator compared to
the penalty-only recourse strategy as a representation of skipping the crowdsource transfer
failure and resend the customer order next day. However, detour-combined recourse strategy
can be very beneficial to the logistics operator as it can keep a good customer service level or
to maintain the special delivery service (e.g. one-day rush delivery service) while still having

efficient delivery cost in the uncertain environment.
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Figure 23. Impact of crowdsources transfer failure penalty rates
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CHAPTER 6 CONCLUSION AND DISCUSSION

6.1. Conclusion

This study focuses on generating delivery plan for LMD with the crowdsource delivery as one
of the delivery options. In this study, the logistics operator as the decision maker has two
options to deliver the customer order, one being to rely on an in-house delivery truck and the
other use the crowd-delivery service. The crowd-delivery must be performed through the relays
at the transfer point in which crowdsources and delivery truck transfer the customer order.
Overall, the results may answer several crowdsourcing decisions, such as the selection of
customers to be outsourced, the selection of outsourcing partner, and the time and location to
relay the customer orders. The problem is formulated as two different approaches based on the

uncertainty consideration, namely deterministic model and stochastic model.

6.1.1. Deterministic model

In the deterministic model, every aspect of the problem is assumed to be deterministic. The
objectives are to observe the maximum benefits of crowdsource delivery collaborations and
the factors that significantly affect the decision. The deterministic problem is formulated into
MILP model. As mathematical model possesses a limitation to solve large problem instances
with fast computation time, the heuristics algorithm is proposed. The heuristics algorithm
consists of the construction algorithm to generate initial solution and the improvement
algorithm to improve the initial solution. The heuristic algorithm is designed based on the well-
known TS algorithm with different types of search operators based on the unique problem

features.

In general, the crowdsources delivery collaboration is able to provide cost reduction compared
to the traditional last-mile delivery (pure delivery truck). Maximum benefit of crowdsource
delivery can be achieved by carefully balancing the usage of crowdsourcing service and
delivery fleet. These results support the past literatures findings confirming the benefits of
crowdsource delivery collaboration (Kafle et al., 2017; Devari et al.,, 2017; Huang &
Ardiansyah, 2019). Several aspects that significantly affect the decision in the deterministic
model are the number of available transfer point and its location, the cost of crowdsources, and

the driver hours of service.
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6.1.2. Stochastic model

In the stochastic model, the main objective is to maximize the benefit of crowdsource delivery
while considering the risk of uncertain crowdsource transfer. The stochastic model is an
extension of the deterministic model as one of the crucial aspect, crowdsource transfer, is
treated as the stochastic event. The crowdsource transfer event has two possible outcomes,
namely crowdsource transfer success and crowdsource transfer failure. Recourse action
strategies are defined as the back up plan to respond for the failure crowdsource transfer. Two
recourse action strategies are proposed, namely penalty-only recourse strategy to represent the
next-day delivery for the unsend customer order, and detour-combined recourse strategy. In
this strategy the delivery truck will make additional trip to deliver the customer order which is
involved in the crowdsource transfer failure. The problem and recourse strategies are
formulated into two-stage stochastic MILP model. An extension of deterministic heuristic
algorithm is designed to handle the stochastic model with medium to large stochastic problems

with fast computation time.

The consideration of crowdsource transfer uncertainty is important to reduce the impact of
crowdsource transfer failure. Prior to the uncertainty consideration, the crowdsource delivery
collaboration can still provide cost reduction compared to the traditional last-mile delivery
(pure truck delivery). The crowdsource failure rate, the penalty rate of omitting customer order
during detour trip, and the recourse strategy are the variables which can significantly affect the
results. Detour-combined recourse strategy can provide better cost reduction compared to the
penalty-only recourse strategy, especially when the penalty or customer order valuation is high

(e.g. rush delivery, one-day delivery).

6.2. Discussion

This study assumes several realistic issues that limit the implementation of the model in the
real LMD. It is assumed that crowdsources are always available in the selection process.
However, the crowdsources availability may affect the results significantly. The crowdsourcing
availability can be affected by many factors including the time of the day, the location of
delivery, the crowdsources payment or fee, etc. The result of this study is suitable for preparing
the crowdsource bidding process, as the output of the model suggests which customers order
need to be outsourced, by which crowdsouces at which transfer location. Therefore, to
materialize the final decision, the same model with a fixed number of crowdsources in a transfer

point after the bidding process or another model from Kafle et al. (2017) can be implemented.
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In addition, this model is also flexible to be implemented to the case without any crowd-bidding

process.

The consideration of vehicle fix cost in the model is important for the strategic decision. It can
further increase the benefit of crowdsources delivery because of the possibility to reduce the
vehicle fleet. In this study, the problem is assumed to be the operational or tactical level
decision. Generaly in operational or tactical level, only vehicle operational cost based on the
travel time is considered. The cost related to the vehicle and driver fix costs are shared based
on the hourly basis. The vehicle fleet fix cost can be accomodated as one of the objective

function component if necessary.

In this study, the time window constraint associated with each customer order is not imposed
due to the nature of home delivery, which is delivery time window is generaly not very
restrictive for many places. Instead, the total service hour constraint is included to address the
possible considerations from the operator for cost and regulation compliance. However, the

model can be easily modified to adapt with the time window constraints whenever needed.

The transfer point or relay location is assumed to be the public space which is free and available
(e.g. parking lot, park, etc). No cost or fee are needed to use this place. In many place, free and
available public space might not be available. A substantial amount of costs might be needed
to make the public place available (e.g. park fee, renting fee, etc). Additional transfer point
usage cost may change the final decision. In this study, the additional transfer point usage cost
can be easily added by utilizing the current available variable which indicate the transfer point

usage.

The stochastic model can be considered as an extension of the deterministic model without the
consideration of crowdsources assignment routing. The crowdsources delivery assignment in
the stochastic model is simplified as an assignment problem due to the complexity of the model
after the consideration of crowdsources transfer uncertainty. This assumption can be relaxed

whanever needed with the tradeoff of the computational resources.

The stochastic model assumes the crowdsource transfer failure rate are independent among all
transfer points. In reality, several transfer point can be related to each other due to the weather
condition, traffic condition, or disaster event. The extension of this research can be directed to

accomodate the independent assumtion of the crowdsource failure rate at transfer point.

Customer service level is important to keep the customer satisfaction for the logistic company.

Due to the uncertainty, the customer service level can be affected, as some of the deliveries can
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be failed due to failed crowdsource transfer and skipped delivery in the detour trip. In this
study, the main focus is to maximizing the benefit of crowdsources delivery by minimizing the
total delivery cost. Customer service level can be accommodated in the model whenever
needed by applying the service level constraints or additional objective function component to

maintain the service level.

Additional trip to fix the crowdsource transfer failure (detour trip) adds travel times to the
initial delivery plan. The additional travel time accumulates everytime the detour trip is
initiated. The accumulation of travel time creates a chain effect which affect the crowdsources
willingness to wait for the delivery truck and perform the parcel transfer or relay process. The
extension of this study can be directed to consider the accumulated detour trip waiting time for

crowdsources, as it can reshape the outcome of the crowdsources relay and transfer process.

As for the heuristic solution algorithm, the design of the heuristics algorithms can further be
improved by implementing another metaheuristics or hybrid-based heuristics. Another good
heuristics approach to solve stochastic model is the L-shape algorithm which based on the
decomposition technique. It can generate optimal solution in acceptable amount of time for
medium to large size problem instance. The optimal results for medium size problem can be
used as a baseline solution to verify the solution improvement of any heuristic solution

algorithm.
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APPENDIX 1. Vehicle route generation procedure

Step 0:

Step 1:

Step 2:

Step 3:
Step 4:

Let RV be the set of initial vehicle routes consisting of »; = {0,i,0},i €
(N\R¢) U R™ U {0}.

The definition of (N\R¢) U R™ U {0} is provided in Step 2 of construction
algorithm.

Let A be the set of angle in two dimensional with depot as the coordinate zero

(0,0). For each node i € (N\R) UR™ U {0}, a; = tan™! (yi—yo)_

Xi—%o
Set the base angle, B equals to 0 and sort the angle list A in an increasing order
starts from B.

Extract an angle a; from A.

Merge node i with any possible route containing the nearest node to node i in
R? and remove 7 from RV if merging node i with another route in R is
feasible.

Continue to Step 4, if all elements in A = @. Otherwise go back to step 2.
Continue to increase the base angle, B = B + 5°. STOP if B > 360.
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APPENDIX 2. Crowdsource route generation procedure

Step 0:

Step 1:

Step 2:

Step 3:

Let R€ be the set of initial crowdsource routes, containing the route {l, i}, from
the transfer point [ to each customer node i,i € R;. Thus, |R¢| = |R{| .

The definition of Ry is provided in Step 3 of construction algorithm (Page 12).
For each pair of elements in Ry, calculate the saving cost, which is defined by
Sij =Ty + T — Tj;,i,j € R[. Sort the saving costs, §;; in an decreasing order
from the biggest to the smallest.

Select a pair of node i, j based on the sorted saving cost, S;;.

Merge the two crowdsource routes containing i and j to create a new route
{1,1,7} which always starts from transfer point [ for replacing the original two
routes in R€ if the combined route is feasible.

Skip the merging if a pair of node i and j belong to the same route in R€.

Re-do the Step 2 until all pair of nodes i, j from saving cost, §;; are selected.

Otherwise, STOP.
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APPENDIX 3. Omitted customer procedure

Step 0:

Step 1:
Step 2:

Step 3:

Step 4:

Let X and Y be the current solution consisting of vehicle routes and
crowdsources assignment, respectively, as defined in the subchapter 4.1.

Let £ be the omitted customer detour list with empty set as the initial value, £ =
1)

Let O, be the omitted customer detour list in realization or event w with empty
set as the initial value 0, = @, w € Q.

Let D; be detour cost which delivery truck will take when failed outcome occurs
in transfer point [ following the sequence of Y,;, [ € M.

Select one assignment route Y, from Y.

Select one customer node i; from Y, and calculate the detour cost D} after i is
removed from UY;. Include i; into the omitted customer detour list, £, if D; —
D> a.

Repeat Step 2, until all customer nodes in Y; have been selected. Otherwise, go
to Step 3.

Repeat Step 1, until all crowdsource assignment in Y have been selected.
Otherwise go to Step 4.

Assign the customer node i; in omitted customer detour, £ to the 0, if Ry, =

1, w € Q. Repeat step 4 until all elements in £ have been assigned.
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