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Genetic Fuzzy Logic Signal Control with Mixed-Traffic Cell Transmission
Modeling

Student: Yen-Fei Huang Advisor: Dr. Yu-Chiun Chiou
Institute of Traffic and Transportation
Nation Chiao Tung University

Abstract

On-line traffic signal control typically feeds the real-time traffic data, collected by the
sensors, into a build-in controller to produce the timing plans. Thus, it can provide
signal-timing plans in response to real-time traffic conditions. Because of its flexibility,
applicability and optimality, adaptive signal control tends to be the mainstream of signal
controls nowadays. The well-known adaptive signal controllers employ mathematical
equations or models to determine “crisp” threshold values as the cores of control mechanism;
thus, the control performance could be negatively affected by the uncertainty of traffic
conditions. Since a fuzzy control system has excellent performance in data mapping as well as
in treating ambiguous or vague judgment, many works have employed fuzzy set theory to
develop fuzzy logic controllers (FLC). In FLC systems, both inference engine and
defuzzification have been consistently used in previous literature; however, methods for
formulating the rule base (logic rules) and data base (membership functions) are subjectively
preset, not optimally solved. Employing GAs to construct an FLC system with learning
process from examples, hereafter termed as genetic fuzzy logic controller (GFLC), can not
only avoid the bias caused by subjective settings of logic rules or membership functions but
also greatly enhance the control performance. However, to simultaneously or sequentially
learn of logic rules and membership functions may require a rather lengthy chromosome and
large search space, resulting into poor performance, a long convergence time and
unreasonable learning results (i.e. conflicting or redundant logic rules, irrational shapes of

membership functions).

To avoid abovementioned shortcomings, based on the iterative GFLC (Chiou and Lan,
2005), this study proposes a stepwise genetic fuzzy logic controller (SGFLC) to learn both
logic rules and membership functions. At each learning process, the proposed algorithm
selects one logic rule which can best contribute to the overall performance controlled by
previously selected logic rules combined with this selected rule. Such a selection procedure
will be repeated until no other rule can ever improve the control performance. Therefore, the

incumbent combination of logic rules is the near optimal learning results.

In order to develop a SGFLC-based signal control requires an efficient traffic simulation

model to replicate traffic behaviors and to determine the performance of the control logic.

il



Many studies use microscopic traffic simulation software to simulate the urban signal control
and implement the optimized signal policy. However, such simulation software is rather time
consuming, making it better for evaluating the control performance for a given signal control
model but not suitable for the evolution of genetic generations for model training. For the
learning efficiency of SGFLC and the capability in capturing traffic behaviors of Asian urban
streets where mixed traffic of cars and motorcycles are prevailing, the mixed traffic cell

transmission model (MCTM) is introduced to replicate the traffic behaviors.

This study considers traftic flows and queue lengths of cars and motorcycles as the state
variables and extension of green time as the control variable, towards the minimization of
total vehicle delays. To investigate the control performance of the proposed SGFLC model,
comparisons of two pre-timed timing plans and three adaptive signal timing models are
conducted at an isolated intersection. Results show our proposed SGFLC model performs the
best. Moreover, as traffic flows vary more noticeably, the SGFLC model performs even better

than any other models.

In the case of a 3-intersection arterial under four coordinated signal systems i.e.,
simultaneous, progressive, alternate and independent, both experimental example and field
case study show that the proposed SGFLC model can perform better than any adaptive control
models, suggesting that the proposed SGFLC signal control model is efficient, robust and
applicable.

Moreover, it is well-known that the control performance of signal coordination would be
greatly degraded as the number of coordinated intersections increases. Thus, this study also
combines SGFLC with GAs for optimizing the number of coordinated intersections along a
long corridor. The experimental example shown that the proposed hybrid model can increase

total throughput along the corridor through an optimal coordinated intersections.

KEY WORDS: adaptive signal control, genetic fuzzy logic controller, stepwise learning
algorithm, mixed-traffic cell transmission model.
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Chapterl INTRODUCTION

This chapter consists of three sections. Section 1.1 addresses the research background
and motivation of this study. The research purposes and flowchart are introduced in Sections

1.2 and 1.3, respectively.
1.1 Background and Motivation

Traffic signal control is one of the most important strategies of traffic management in
densely populated and highly motorized areas. Efficient and effective traffic signal control
systems can not only curtail traffic congestion caused by insufficient of road capacity but also

greatly reduce fuel consumption, emissions and even increase traffic safety.

Traffic signal control models can be divided into two major categories: pre-timed signal
control and on-line signal control. Pre-timed signal control models optimize signal timing
plans mainly based on historical traffic data. The pre-timed signal control models frequently
resulted in the inefficient usage of intersection capacity because of their inability to adjust the
timing plans according to the variations of traffic flow. In contrast, on-line signal control
models typically feed the real-time traffic data, collected by the sensors, into a built-in
controller to determine the timing plans in response to real-time traffic conditions. It is well
known that the on-line models can perform better than the pre-timed models, if the on-line

models have been carefully and correctly designed.

Actuated signal control, dynamic signal control, and adaptive signal control are examples
of on-line control. Because of its flexibility, applicability and optimality, adaptive signal
control tends to be the mainstream of signal controls nowadays. The well-known adaptive
signal controllers, such as SCOOT, SCATS, and OPAC, employ mathematical equations or
models to determine “crisp” threshold values as the cores of control mechanism; thus, the

control performance could be negatively affected by the uncertainty of traffic conditions.

Since a fuzzy control system has excellent performance in data mapping as well as in
treating ambiguous or vague judgment (Teodorovic, 1999), many recent works have
employed fuzzy set theory to develop fuzzy logic controllers (FLC), also known as fuzzy
control system, fuzzy inference system, approximate reasoning, or expert system. The
applications of FLC to signal control are to determine the signal phasing and timing plans,
including priority of phases, cycle length and split, by utilizing the real-time traffic data, such
as arrival flow rate, occupancy, queue length and speed, collected by detectors. Learning the
logic rules and tuning the membership functions are the two key components for a FLC
system. Genetic algorithms (GAs) have been proven suitable for solving both combinatory

optimization and parameter optimization problems (i.e., rules selection and parameters



calibration). Employing GAs to construct a FLC system with learning process from examples,
hereafter abbreviated as genetic fuzzy logic controller (GFLC), not only can avoid the bias
caused by subjective settings of logic rules and membership functions but also can greatly

enhance the control performance.

In doing so, Chiou and Lan (2005) proposed a GFLC model to iteratively learn the logic
rules and tune membership functions. The applicability of the model has been proven by a
series of studies, such as Chiou and Lan (2004), Chiou and Wang (2005), Chiou et al. (2003;
2005; 2007). However, the GFLC model proposed by Chiou and Lan’s (2005) tends to select
too many logic rules which are mutually conflicted and redundant, making the interpretation
and post-optimization adjustment impossible. Based on this, this study aims to propose a
modified GFLC model which can overcome these problems and achieve even better

performances in signal control.

In the other hand, how to efficiently evaluate the performance of signal control models
by using a traffic flow model is an important issue. In literature, CORSIM, AIMSUN,
VISSIM, MITSIMLab, INTEGRATION and PARAMICS are commonly used to evaluate the
control performance of signal control models. However, it would be too time-consuming to
use these simulation software packages for the evolution of genetic generations; thus, the
macroscopic traffic simulate model-CTM proposed by Daganzo (1994, 1995) is used in this
study instead. Additionally, since the original CTM model is designed for simulating the pure
traffic, to acknowledge that motorcycles are prevailing in many Asian urban streets, in order
to capture the real traffic behavior under mixed traffic condition, the mixed traffic flow model

should be considered.

Moreover, it is well-known that the control performance of signal coordination would be
greatly degraded as the number of coordinated intersections increases. Thus, numerous studies
(e.g. Wong, 1997; Kosonen 2003; Schmocker et al., 2008) attempted to determine the optimal
number of neighboring intersections to be coordinated. The concept to cluster the coordinated
intersections is especially important for the application of the proposed model to a large-scale
network. How to optimally determine which and how many signalized intersections have to

be coordinated is another topic worthy of studying.
1.2. Research Purposes
Based on the abovementioned motivations, the major research purposes of this study can

be narrated as follows:

1. Based on the GFLC model proposed by Chiou and Lan (2005), to propose a modified
GFLC model, which can more efficiently learn of logic rues and tune the membership

functions.



2. To use of a mixed traffic cell transmission model to facilitate the learning of the

proposed modified GFLC model with considering different state variables.

3. To develop a systematic method to determine the clusters of coordinated intersections for
a long arterial based on the modified GFLC model.

4. To investigate the performance and applicability of the proposed model, exemplified
examples and case study on isolated intersections as well as coordinated arterials are

conducted.

5. To show the performance of the proposed model, comparisons to other pre-timed signal

timing plans and adaptive signal control models are also conducted.
1.3 Research Flowchart

Figure 1.1 presents the research flowchart of this study. As shown in Figure 1.1, each of

research procedures is further elaborated below.
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1. Problem identification

The first step is to identify the purposes and scopes of this study, and to address problems

which need to be explored.
2. Literature review

The second step is to review the traffic signal control models and related research. The
cell transmission model and mixed traffic flow method and related works are conducted. The
FLC relative methods, including GA, and GFLC, used in this study are also reviewed. This
step helps to realize the current state of development of traffic signal control and to facilitate

the theoretical modeling.
3. Traffic signal control logic and model development

A traffic signal control mechanism based on FLC is developed in this procedure.
Afterwards, the model integrating GA into the FLC by a stepwise learning algorithm is
developed In addition, this study also introduces other signal control models including

pre-time and adaptive method, respectively.
4. Computational experiment and validation

To investigate the effectiveness of the proposed SGFLC models, the traffic signal control
with the proposed SGFLC is first applied at an isolated intersection under an exemplified
example and a field case. Sensitivity analyses are also conducted to examine the robustness of
the proposed models. To generalize the implementation environment, the traffic signal control
with SGFLC is then carried out along an arterial with three consecutive intersections.
Similarly, an exemplified example, a field case, and sensitivity analyses of them are also

conducted. In this procedure, the exemplified examples and field cases are simulated.
5. Traffic signal along a long corridor

The proposed models also implement along a long corridor. This study address SGFLC
controller along a arterial with a total of 15 intersections. The binary genetic algorithm was
used to determine clusters of coordinated intersections. To investigate the effectiveness of the
proposed SGFLC models with binary coding GA is compared with other general intersection

clustering methods referred to the textbooks of traffic control.
6. Conclusions and suggestions

The major findings in the processes of model formulation and model validation are
summarized. The strengths and weaknesses of the proposed models will be thoroughly

discussed. At last, some suggestions for future studies are identified.



Chapter 2 LITERATURE REVIEW

This chapter firstly reviews the traffic signal control models and related researches. On
the other hand, genetic fuzzy logic controller and related researches also conducted in second
part. The concepts of the macroscopic traffic flow simulator, cell transmission model (CTM),
adopted in this study briefly elaborated and reviewed as following. Finally, a summary is

followed.
2.1 Traffic Signal Control Models

2.1.1 Signal control methods
1. Classification of signal control methods
(1) Pre-timed control

Traffic signals in use today typically operate based on a pre-set timing schedule. The
most common traffic control system used in the USA is the Urban Traffic Control System
(UTCS), developed by the Federal Highway Administration in the 1970s. UTCS generates
timing schedules off-line using manual or computerized techniques. These predetermined
timing schedules are implemented by the system according to the time of the day. The timing
schedules are typically obtained by either maximizing the bandwidth (which means the width
of the through-band in seconds indicating the period of time available for traffic to flow
within the band) on arterial streets or minimizing a disutility index that is generally a measure
of delay and stops. Computer programs such as MAXBAND (Little et al/, 1981) and
TRANSYT (i.e. Robertson, 1969) are well established means for performing such
optimization. The off-line approach used by UTCS cannot respond adequately to

unpredictable changes in traffic demand.
(2) Traffic-responsive control without optimization

These are the adaptive control schemes where the signals are changed based on the
actuation of stop-line detectors and minimum/maximum green times. This type of control

responds to traffic but attempts no optimization, network-wide or local.

Dynamic Table Look-Up or Dynamic Pattern-Matching Traffic Control is classical
strategy in this classification. The real-time traffic data, collected by the sensors in the time
period, transfer to urban control center. The control center collects and identifies data to
match the appropriate timing plan, according to the incumbents timing plan database. The
interchange controller implements an appropriate timing plan which receives from the control
center. This strategy not only can operate with the traffic control center but also can practice

in isolated intersections, arterials and network-wide with local group controller and vehicle



detectors.

Another control strategy in this classification is Dynamic Timing Computation or
Dynamic Pattern-Computing Traffic. Simulates to Dynamic Table Look-Up, this method also
collected real-time traffic data by detector. The control center not only collects and identifies
data but also predicts the traffic condition in next period. According to the prediction result,
the timing plan analysis software can calculate a new timing plan to fit the traffic flow. The
new timing plan will send to controller in intersection or local group controller. The prediction

capability and data analysis procedure are key components of this strategy.
(3) Traffic-responsive control with optimization

These techniques calculate control parameters according to prevailing traffic conditions.
They typically respond to changing traffic demand by performing incremental optimization.
This control method also improves Dynamic Table Look-Up and Dynamic Timing
Computation in the response of incident, the failure of traffic flow prediction and negative
performance when timing plan changed. The most notable of these Adaptive Traffic Control
models are SCATS, SCOOT and SCATS...etc.

The characteristics, advantage and disadvantage of strategies/models mentioned above

are compared as Table 2.1.



Table 2.1 Comparisons of different traffic signal control strategies.

. Traffic-responsive control without Traffic-responsive control with
Items Pre-timed o o
optimization optimization
Timing plan product
Collect traffic data x Time period Time period
Flow forecast x Time period or % x
implement Off-line On-line On-line
Timing change Time of day Dynamic table of computation adaptive
System capability
Approach intersection N v v
controller
Incident treatment Non-flexible flexible Very- flexible
Accident detector x v v
Response traffic
Cost down oy e
o Response traffic Avoid failure
Advantage Maintain easy
Detect real traffic Detect real traffic
Install fast .
Response incident
Not response traffic High cost High cost
Disadvantage Not response incident Forecast traffic Need to coordinate
Not to change timing plan Response Incident slow




2. Related studies

The most common approach to signalization design is to determine settings for a
fixed-cycle signal timing plan that minimizes the average delay per vehicle by car assuming
constant arrival rates (Miller, 1963; Webster, 1958). For pre-timed signals the most
well-known research was performed by Gazis and Potts (1963) and by Gazis (1964) for a
system of two oversaturated intersections in succession. Later researchers (Burhardt, 1971,
Gartner, 1983) based their work on Gazis' theory and further extended it for more
intersections. Dunne and Potts (1964) developed time-varying control algorithms for an
undersaturated intersection with constant arrivals which guarantee that, for any initial state,
the system eventually reaches a limit cycle for which the equilibrium average delay per car is
a minimum. In all these models, the control policy is not responsive to the dynamics of the
traffic flow process since there is no traffic flow model or real-time traffic flow information
involved. For real-time control, several algorithms have been proposed (Cremer and Schoof,
1990; Gartner et al., 1992; Gordon, 1969; Green, 1968; Lee, Crowley and Pigantaro, 1975;
Michalopoulos and Stephanopolos, 1977; Miller, 1965; Papageorgiou, 1983; Ross, Sandys
and Schlaefll, 1970). For example, Miller (1965) considered an intersection with heavy traftic
and assumed that at time ¢ the signal is green on primary approach. At this time the controller
can make a binary decision, i.e. to change the signals immediately, or after an extension of
one unit of time. However, Miller did not consider the intersection of adjacent intersections,
and thus did not include the downstream delays in determining an optimal extension strategy.
Ross et al. (1970), based their work on a philosophy similar to that of Miller, developed a
computer control scheme for traffic-responsive control of a critical intersection that not only
minimizes the total delay of all users of the intersection, but also minimizes the total delay
accumulated at downstream intersections. Moreover, Longley (1968) proposed a control
scheme for a two-phase congested intersection employing a ‘queue balancing' strategy. This
strategy seeks to hold a particular linear function of the intersection queues to a value of zero

by adjustment of the green time split.

Lee et al. (1975) also considered queues rather than delays as the objective of the control
and developed another semi-empirical strategy called **Queue Actuated Signal Control". This
is a control policy where an approach receives green automatically when the queue on that
approach becomes equal to or greater than some predetermined length, regardless of the
conditions on the conflicting approaches. The policy assumes that no two conflicting

approaches reach the upper bound specified for them simultaneously.

Another approach to critical intersection control has been suggested by Gordon (1969).
Gordon did not attempt to minimize delay at the intersection but rather to maintain a constant
ratio of the queue lengths on opposing approaches. The cycle length is assumed constant and

the splits are changed according to the demand so that the ratio of the actual queues to the



maximum link storage space on both phases is equal.

Finally, Michalopoulos and Stephanopolos (1977) proposed an optimal control policy for
both pre-timed and real-time control. His control policy was to minimize total system delay

subject to queue length constraints.

However, it should be noted that most of the control methods mentioned above suffer
from complex computational requirements described as above, and from the lack of

intersection-to-intersection traffic flow models.
2.1.2 Adaptive traffic signal control

Among online or adaptive approaches, those that collect real-time traffic information
from detectors and use it to calculate up-to-date signal settings for implementation pertain to
responsive control; those that use real-time traffic information to select a preset signal plan
according to the best match with the detected traffic pattern pertain to plan selection. Several
well-known signal calculation packages are reviewed here: their characteristics are

summarized in Table 2.2.

SCOOT (Hunt et al., 1982) and SCATS (Luk, 1984) are basically online variants of
off-line optimization strategies. Manual engineering work is required to update traffic data
and feed them into an off-line optimizer, for example TRANSYT (Vincent et al., 1980), for
the preparation of a library of plans that apply to different periods of a day and days of a week.
The ultimate performance of such systems depends on the accuracy of the database and its
conformity to software requirements. The online capability then enables the selection of the
most appropriate plan from the library according to detected traffic, adjusts offsets between
adjacent intersections to facilitate traffic flow, and makes small adjustments to the signal plan.
SCOOT reduces delay to vehicles by 12% when compared to the plans from TRANSYT.

SCATS produces 23% reduction in travel time in comparison with uncoordinated operations.

DYPIC (Robertson and Bertherton, 1974), OPAC (Gartner, 1983) and PRODYN (Henry
et al.,, 1983) are successive developments in dynamic traffic signal controller. DYPIC is
actually a backward dynamic programming approach that serves only for analytical purpose.
An empirical function of quadratic form is derived from the DYPIC study to form a key
feature of a heuristic solution intended for practical uses. The heuristic solution adopts the
concept of rolling horizon, which implies that: first, a planning horizon is split into a “head”
period with detected traffic information and a  “tail” period with predicted traffic
information. Secondly, an optimal policy is calculated for the entire horizon, but is only
implemented for the “head” period. Finally, when the next time step arrives and new
information becomes available, the process rolls forward and repeats itself. Gartner (1983)
provides a detailed description of rolling horizon approach in his study of OPAC. However,

OPAC does not abide by the principle of optimality adherent to dynamic programming; rather
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it uses optimal sequential constrained search (OSCO) to plan for the entire horizon, and
employs terminal cost to penalize queues remaining in the system after the horizon. OPAC in
both simulation and field tests reduces 5-15% vehicle delay from existing traffic-actuated
methods, with most of the benefits coming from situation of high degree of saturation. The
concerns with OPAC are that the restrictions in OSCO search reduce the flexibility of decision
making, and a long planning horizon (60 s) raises practical questions about optimization far
into the future on the basis of predicted information, when the decisions planned for the

‘tail’  may never the implemented. PRODYN, also adopting rolling horizon approach,
optimizes timings via a forward dynamic programming (FDP). To avoid computing
Bellman' s equation at many grid points that eventually poses the problem of dimensionality,
the FDP is particularly designed so that it aggregates state variables into a few subsets, and
the value of being in a subset is only evaluated when it is actually being arrived at. A value
function presenting the future cost in the FDP is directly adopted from Robertson and
Bretherton’s work. By evaluating all the subsets that can be reached, the FDP calculates the
optimal trajectory of control policy in the planning horizon (75 s). The process then rolls
forward one step in time. Experiments (Henry, 1989) show that PRODYN yields an average

gain in total travel time of 10% with at 99.99% significance.

UPTOPIA (Urban Traffic Optimization by Integrated Automation) (Mauro and Di
Taranto, 1989) is a hybrid control system that combines online dynamic optimization and
off-line optimization. This is achieved by constructing a system hierarchy with an area level
and a local level. The area controller generates reference plan, and local controllers adapt this
reference plan and dynamically coordinate signals in adjacent intersections. The rolling
horizon approach is again used by local controllers to optimize performance, and the planning
horizon is 120 s, with the process being repeated every 3 s. To automate the process of
updating reference plans, which are generated by TRANSYT, an AUT (Automatic Updating
of TRANSYT) module is developed. AUT first collects traffic data continually from the
detectors in the network. The data are processed to calculate traffic flow pictures for different
periods of the day. The model predicts the traffic flow profiles for calculating new reference
plans. Afterwards, AUT prepares the data for TRANSYT calculation and starts TRANSYT
optimization for selected effects. The benefits recorded after the implementation of UTOPIA
show an increase of 15% in average speed for private vehicles and 28% for public transport

with priority.

MOVA (Vincent and Peirce, 1988) is the only one in this review package which’s
purposely designed for isolated intersections. The system generates signal timings
cycle-by-cycle. The timings vary continuously according to the latest traffic condition. Upon
changing signal stage, MOVA uses vehicle gap detected through pairs of upstream detectors
to terminate green extension. The criterion for extension is whether the gap reaches certain

critical values. There are two operational modes specified for uncongested and congested

11



conditions. In the uncongested mode, delay and stop are minimized, while in the congested

mode, capacity is maximized. MOVA evaluates its signal plans every half second.
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Table 2.2 Summary of different design models for adaptive traffic signal control.

Decision on signal Signal Signal Original Objective for Server
Program Traffic data . o o .
settings cycle coordination county optimization mechanism
Online data from Change of current signal ) Through traffic _
OPAC ‘ ‘ Acyclic USA Delay Decentralized
upstream detectors settings Rolling forward profile
Online data from Green start times, _ With offset ‘
UTOPIA . Required o Italy Stops and delay ~ Centralized
upstream detectors durations and offset optimization
Online data from stop line  Pre-calculated signal plan _ With offset ' _ _
SCATS ' Required L Australia Capacity Centralized
(downstream) detector selection optimization
Online data from Adjustment of whole ) With offset stops, delay and ‘
SCOOT ‘ Required o UK ‘ Centralized
upstream detectors signal plan optimization congestion
Online data from pair of ~ Change of current signal ) ) )
PRODYN ' Acyclic Possible France Total delay Decentralized
upstream detectors settings
Online data from a single ‘ ‘ stop, delay and ‘
MOVA Green extension or not N/A Nil UK ' Decentralized
upstream detector capacity
off-line basis and prefect _ . _ ' .
DYPIC complete signal settings ~ Acyclic Nil UK Delay Decentralized

information
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2.2 Genetic Fuzzy Logic Controller

The proposed GFLC comprises two methods: Fuzzy Logic Controller (FLC) and Genetic
Algorithm (GA).

2.2.1 Fuzzy logic controller
1. The concepts of FLC

The underline theory for the FLC system, first proposed by Zadeh (1973), is to use fuzzy
logic rules to form a control mechanism to approximate expert perception or judgment under
given conditions. This system is also termed as fuzzy control system, or fuzzy inference
system, or approximate reasoning, or expert system. The FLC is a rule-based system that uses
fuzzy linguistic variables to model human rule-of-thumb approaches for problem solving, and
thus overcome the limitation that classical expert systems may meet because of their
inflexible representation of human decision making. The major strength of a FLC also lies in
the way a non-linear output mapping of a number of inputs can be specified easily using fuzzy
linguistic variables and fuzzy rules (Chin and Qi, 1998). The framework of FLC is depicted in
Figure 2.1. A typical FLC system composes of four major components including rule base,

data base, inference engine, and defuzzification. They are briefly explained in the following.

4 )
Knowledge Base(KB)
[Data Base(DB)J [Rule Base(RB)]
L J
\ 4 \ 4
Input Fuzzification Inference Defuzzification Outout
p Interface Engine Interface P

Figure 2.1 Framework of FLC

(1) Rule base (RB).

The RB is composed of finite IF-THEN rules, from which an inference mechanism is

formed. A standard form of RB with M fuzzy rules is represented as:
Rule 1 : IF x; = A;; AND x, = A4, AND ... AND xy =4,y THEN y = B,

Rule2 :IF x1 =A21 AND)CZ =A22 AND ... AND XN=A2NTHEN)/=BZ
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RuleMﬁ IF X1 =AM1 AND X2 =AM2 AND ... AND xN=AMN THENyzBM

where x1,..., xy are N state variables and y is a control variable. 4;; ,..., A;y and B; (i=1,...,M)
are respectively the linguistic variables for xj,..., xy and y in the universe of discourse of
Uy,...,U, and V. Taking the driving speed as an example, the linguistic degrees can be very
fast, fast, normal, slow and very slow. The more general form of the fuzzy rules listed above
is: IF premise THEN consequent. The left-hand-side of the rules, the premise or so-called the
antecedent, is associated with the fuzzy controller inputs (or called state variables). The
right-hand-side of the rules, the consequent, is associated with the fuzzy controller outputs (or
called control variables). Each antecedent can be composed of the conjunction of several state

variables; however, each consequent is usually formed by one control variable.
(2) Data base (DB).

The DB is formed by the specific membership functions of linguistic variables A4;; ,...,
A and B; that transform crisp inputs into fuzzy ones. Triangle, trapezoid and bell-shaped

membership functions are commonly used.
(3) Inference engine.

The operators within the fuzzy rules form the inference engine. Generally, fuzzy rules
use AND (taking minimum value) or OR (taking maximum value) as connecting operators
between state variables.

(4) Defuzzification.

For making a decision, defuzzification is the synthesis of inference results of all
activated fuzzy rules into crisp outputs. Mean of maximum method, center of gravity method,
Tsukamoto’s method, and weighted average method are commonly used. The diagrammatic

representations of these defuzzification methods are illustrated in Figure 2.2.
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Figure 2.2 Diagrammatic representations of defuzzification methods
Source: Passino and Yurkovich (1997).

2. The applications of FLC

The applications of FLC to signal control are to determine the signal phasing and timing
plans, including priority of phases, cycle length and split, by utilizing the real-time traffic data,
such as vehicle arrival or arrival rate, occupancy, queue length, and speed, collected by
detectors. Pappis and Mamdani (1977) first applied FLC to signal control by using 25 logic
rules with three states variables: elapsed time, vehicle arrivals, and queue length to determine
the extension of green time. Their results show that the FLC signal control has total vehicle
delays 10 to 21% less than an actuated signal control. Nakatsuyama et al. (1984) further
applied FLC to signal control on the one-way arterial consecutive intersections. Favilla ef al.
(1993) employed 11 logic rules with two state variables, vehicle arrivals in the green phase
and queue length in the red phase, to control the extension of green time. Hoyer and Jumar
(1994) used 72 logic rules with 10 state variables to choose the next phase and to determine
its green time. According to the traffic flows, Kim (1997) proposed 23 logic rules, seven for
high, nine for medium and seven for low traffic volumes, to control the green time extension
in different approaches. Mohamed et al. (1999) established a two-stage FLC model. The first

stage is to evaluate the traffic intensity in the competing directions by 16 logic rules with
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traffic flows or queue lengths as the state variables. The second stage is to decide the
extension or termination of current phase by 16 logic rules with two state variables, traffic
intensities in green and red phases. Their results indicate that FLC model has delays 9.54%
less and stopped vehicles 1.29% less than the actuated signal control. Niittyméki et al. (2001)
also developed a two-stage FLC model. Their first stage is to evaluate the traffic conditions by
three logic rules with two state variables, traffic flow and occupancy. The second stage is to
determine the green time extension by 20 logic rules with two state variables, vehicle arrival
in green phase and queue length in red. The results from both simulation and field test reveal
that FLC model has outperformed over the actuated signal control. Chou and Teng (2002)
presented 9 logic rules with four inputs, queue lengths of each directions of the junction, to
define the extension time of the current green phase. Based on the compared items, the
proposed model possesses some advantage characteristics, including using different
antecedents, applicable to any number of junctions, integrating every junction’s status,
requiring fewer control rules, needing fewer inference time, and taking street’s distances into
account. Kosonen (2003) developed multi-agent fuzzy signal control model. The ideal of the
presented control technique, each signal operates individually, negotiating with other signals
about the control strategy. The agents make decision based on fuzzy inference that allows a
combination of various aspects like fluency, economy, environment and safety. The result of
proposed method compared with detector logic and with mathematical optimization modes
indicate that the performance of average delay better than detector logic control but worse
than the mathematical optimization modes especially with high traffic in the mourning rush
hours in Sweden. Murant and Gedizlioglu (2005) proposed fuzzy logic multi-phased signal
control model to determine both the phase green time and phase sequences. The signal time
controller is to determine the signal timing by 65 logic rules with three state variables, the
longest of the queues in red signal, arrivals to junction during green signal and green time
indicator. Another is to decide phase ordering of current phase by 37 logic rules with three
variables, longest of the queues during red signal, longest vehicle queue in next phase and red
time of the longest queue. The result shows that the proposed model compared with
traffic-actuated control decrease delays of vehicles between 15% and 50% when traffic
volumes are more than 500 vehicles per hour for the three-phased controlling situation.
Results of comparisons for the four-phased control situation and traffic volumes are more than
400 vehicles per hour; the model has some advantages over the traffic-actuated control and

improves the performance values by about 17.6%.

Table 2.3 provides a summary of the application of fuzzy logic-based traffic signal
control. In FLC systems, both inference engine and defuzzification have been consistently
used in previous literature; however, methods for formulating the rule base and data base are

subjectively preset, not optimally solved.
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Table 2.3 Summary of the evolution of fuzzy logic based traffic signal control.

Author(s) Area of contributions
Pappis and Mamdani  They presented the implementation of a fuzzy logic controller in a single intersection of two one-way streets without
(1977) turning traffic
Nakatsuyama et al. They applied fuzzy logic to control two adjacent intersections with one-way movements for determining the extension
(1984) or termination of the green signal for the downstream intersection based on the upstream traffic
Favilla et al. They presented the implementation of a fuzzy logic controller which is composed of a FLC, a State Machine and an
(1993) Adaptive Module for a single junction having multiple lanes
Chou and Teng They presented a fuzzy logic based traffic junction signal controller (FTJSC) which is applicable to multiple junctions
(2002) and multiple lanes
Hoyer and Jumar They used FLC to choose the next phase and to determine its green time.
(1994
Kim According to the traffic flows, proposed logic rules to control the green time extension in different approaches.
(1997
Mohamed et al. They established a two-stage FLC model to evaluate the traffic conditions and to decide the extension or termination of
(1999 current phase.
Niittymaki et al. They also developed a two-stage FLC model to evaluate the traffic conditions to determine the green time extension.
(2001)
Kosonen This search developed multi-agent fuzzy signal control model. The agents make decision based on fuzzy inference that
(2003) allows a combination of various aspects like fluency, economy, environment and safety.
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2.2.2 Genetic fuzzy logic controller

In FLC systems, both inference engine and defuzzification have been consistently used
in previous literature; however, methods for formulating the rule base (logic rules) and data
base (membership functions) are subjectively preset, not optimally solved. Adjusting the
combination of logic rules and membership functions very often requires tremendous efforts,
but there is no guarantee to obtain good control performance. Genetic algorithms (GAs) have
been proven suitable for solving both combinatory optimization problem (e.g., selecting the
logic rules) and parameter optimization problem (e.g., tuning the membership functions).
Employing GAs to construct an FLC system with learning process from examples, hereafter
termed as genetic fuzzy logic controller (GFLC), can not only avoid the bias caused by
subjective settings of logic rules or membership functions but also greatly enhance the control

performance.

The GA, first proposed by Holland (1975), is a searching process based on the
mechanics of natural selections and natural genetics. GA is a global optimization technique
that avoids many shortcomings exhibited in conventional search techniques on a large and
complicated search space. Generally, a simple GA contains three basic operators: selection,
crossover, and mutation. GA starts with a population of randomly generated solutions (also
called chromosomes) determined by genes that are in code term, and advance toward better
solutions by applying genetic operators, modeled on the genetic processes occurring in nature.
During the iterative procedures, a constant size of population of candidate solution is
maintained, and this population undergoes evolution in a form of natural selection (Herrera et
al., 1998).

According to the mention above, a considerable number of works relating to GFLC in
different areas have been found in recent years. Such GFLC related works can be divided into

four categories.
1. Use of GAs to tune membership functions under a given set of logic rules.

Depending on the types of knowledge base, descriptive knowledge base and approximate
fuzzy rule base can further be identified as shown in Figure 2.3 The former assumes that
membership functions of a specific state/control variable are the same in all logic rules; the
latter allows that the membership functions of the same state/control variable can be varied in
different logic rules. Therefore, tuning the membership functions of descriptive knowledge
base implies calibrating the parameters of membership functions with a fixed number of
linguistic degrees for Ajj, . . ., Ai, and B; (e.g. Herrera et al., 1995, Karr, 1991, Karr and
Gentry, 1993, Park et al. 1994). Tuning the membership functions of approximate fuzzy rule
base means calibrating the parameters in membership functions Ajj, . . ., Aj, and B; for each

logic rule (e.g. Glorennec, 1997, Herrera et al., 1998). The major disadvantages of descriptive
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knowledge base are the rapid increase in chromosome length as linguistic degrees increase
and it needs to consider the reasonableness of relative values among parameters. Nonetheless,
this structure has the advantages that the length of chromosome is not related to the number of
logic rules and that the meaning of calibrated logic rules could be implicitly interpreted as an
expert’s judgment and decision. On the contrary, approximate fuzzy rule base has the
disadvantages that the length of chromosome grows rapidly as the number of logic rules
increases and that it is sometimes difficult to interpret the calibrated logic rules as an expert’s
judgment and decision. But there is no need to consider the reasonableness of relative values
among parameters. The most common shapes of membership functions are triangular,
trapezoidal or Gaussian functions. Each shape function has some parameters to be coded and
tuned. For instance, the coordinates of cortex and two anchors of a triangular shape need to be
determined. To work with reasonable distributions between linguistic fuzzy sets, tuning
ranges or more specific shapes, such as fixed width of triangle base, fixed overlapping width
between fuzzy sets, and isosceles triangle, are normally assumed. As an example, Gurocak
(1999) specifies tuning ranges for shifting the peak locations of the fuzzy sets according to a

series of binary genes.

1 2 .

Rule 1: Ifx,=NL and x,=PS Then y=NS Rule 5:Ifx,=PL and x,=NS Then y=NS
Rule 2: Tfx, = NSandx,=NL Then y =PS Rule 6: Ifx, = PSandx,=PL Then y=PL

Rule 3: If x,=NSand x,=PS Then y=NL Rule 7:1fx,=ZF andx,=PL Then y=PS
Rule 4:Ifx, = PSand x, = NL Then y=NL Rule8:Ifx,=PSandx,=ZE Then y=ZE

(a) Descriptive knowledge base;

Rule 1:1f x, = \ and x,= [\ Then y=
Rule2: If x,= [\ and x,= | Then y=
Rule 3: 1f x, = A and x,= AN Then v =
Rule4: If x,= /\ and x,= [\ Then v=

(b) Approximate fuzzy rule base.

AN
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Figure 2.3 Type of knowledge base.

Source : Cordon et al.(2001)

2. Use of GAs to select logic rules with known membership functions.

Three commonly used encoding methods for selecting the logic rules are identified in the
literature. The first method, in Lekova et al. (1998), uses one gene, with a binary value, to
represent inclusion or non-inclusion of a specific logic rule. The chromosome length depends
on the number of potential logic rules. The second method, in Chin and Qi (1998), uses one
gene to represent the first part (premise) of a specific logic rule and the following genes to
represent the latter part (linguistic degrees of control variable) of the same logic rule. The
third method, in Thrift (1991), uses one gene to represent each logic rule and the value of each
gene indicates the linguistic degree of control variable for the corresponding logic rule.
Contrasting to the first method, the second and third methods impose a constraint that a
specific premise cannot map to different linguistic degrees of control variables. The strength
of the first method is that all possible permutations of logic rules can be considered; its
weakness is that the chromosome might be too long. The strength and weakness of the second

and third methods are just contrary to the first method.
3. Use of GAs to learn both logic rules and membership functions simultaneously.

There are two categories of methods to learn logic rules and membership functions
simultaneously. The methods of the first category employ genetic learning algorithm to learn
both logic rules and membership functions. For instance, Homaifar and McCormick (1995)
adopt Thrift (1991) encoding method by using part of a chromosome to represent the
composition of logic rules and using each gene of the remaining part to represent the triangle
base of each membership function. Xiong and Litz (2002) use binary coding of rule premises
and use integer coding of the two anchors of triangular membership functions with the
constraint that the right anchor of a membership function is coincided with the left anchor of
the next adjacent membership function. Herrera et al. (1998) use a chromosome to represent
the membership functions of all variables in a logic rule. It is the structure of approximate
fuzzy rule base, in which the fitness of GAs cannot be evaluated as the control performance;
other criteria must be designed to represent the fitness of chromosome. The articles of
mention above use part of a chromosome to represent the composition of logic rules and use
the remaining part to represent the shapes of membership functions. The methods of the
second category use the hybrid learning algorithms by combining GAs with other algorithms
to learn both logic rules and membership functions. For instance, Wang and Yen (1991) use
GAs to solve the combination of logic rules and employs Kalman filter to tune the shapes of

membership functions. Lin (2004) constructs a genetic algorithm-based neural fuzzy system
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(GA-NFS) by employing GAs to tune the membership functions in the precondition part of

fuzzy rules and using least-squares estimation to tune the parameters in the consequent part.
4. Use of GAs to learn both logic rules and membership functions in sequence.

Both two- and three-stage procedures are found in learning the logic rules and
membership functions sequentially. A two-stage procedure, proposed by Karr (1991), uses
GAs to learn logic rules and then uses another GAs to tune the membership functions. Kinzel
et al. (1994) and Cordon ef al. (1997) establish a three-stage procedure by presetting an initial
pool of logic rules, then using GAs to select logic rules from the pool, and finally using
another GAs to tune the membership functions. Chung et al. (2003) propose another
three-stage hybrid learning algorithm. In the first stage, the fuzzy ART algorithm is used to do
fuzzy clustering in the input/output spaces according to supervised training data. In the second
stage, GA is used to select logic rules by associating input clusters and output clusters. In the
third stage, the backpropagation algorithm is used to tune the membership functions. Chiou
and Lan (2005) proposed a bi-level iterative evolution algorithm in selecting the logic rules
and tuning the membership functions for iterative genetic fuzzy logic controller (IGFLC). The
upper level is to solve the composition of logic rules using the membership functions tuned by
the lower level. The lower level is to determine the shape of membership functions using the

logic rules learned from the upper level.

The IGFLC selects logic rules and tunes membership functions by GA in sequence. The
encoding methods, genetic operators and iterative evolution algorithm for the GFLC model

are briefly described as follows.
(1) Encoding method for logic rules

Each logic rule is represented by one gene and its linguistic degree of control variable is
indicated by the value of the corresponding gene. Taking two state variables and one control
variable as an example, if each variable has five linguistic degrees (NL: negative large, NS:
negative small, ZE: zero, PS: positive small, PL: positive large), then the chromosome length
is 25. Genes take the integers from 0 to 5, where O represents the exclusion of the rules; other
numbers indicate the inclusion of the rules and the linguistic degrees of control variable. This
encoding method is depicted in Figure 2.4. A chromosome with gene sequence of
0002040010000001000030000, for example, will represent five logic rules being selected:

Rule I:1F x; = NL and x,=PS THEN y=NS
Rule 2: IF x; = NSandx,=NL THEN y=PS§
Rule 3: IF x;=NSandx,=PS THEN y=NL
Rule 4:1F x;=PSandx,=NL THEN y=NL
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Rule 5:1F x;=PLand x,=NL THEN y=ZFE

X,

y | ML NS ZE Ps PL
N | /S
NS ?

X, | ZE

T T

PS
ry
g | & &3 T &5

0 — Not included
1—->Y=NL
2—>Y=NS
3->Y=ZE
4 —>Y=PS
5— Y=PL

Figure 2.4 Encoding method for logic rules.
Source: Chiou and Lan (2005).

(2) Encoding method for membership function

Consider a triangle fuzzy number and let parameters ¢, ¢;° and ¢’ respectively represent
the coordinates of right anchor, cortex and left anchor of K" linguistic degree. Then 15
parameters need to be calibrated for a variable with five linguistic degrees. Furthermore, it is
assumed that the first and last degrees of fuzzy numbers are left- and right-skewed triangles,
respectively, and that the others are isosceles triangles as shown in Figure 2.5. Therefore, a

variable with five linguistic degrees has eight parameters to be calibrated and their orders are:

l i I
cs ¢, _¢C
¢ _r r 5 4 3 ! c _ 1 _
Coax =C5 =C52C4 2 |2 "2 " 2C,2¢ =C =Cpyy (2-1)
I
o _(ci+cy)
¢ = v k=2,3,4 (2-2)
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where ¢y, and ¢, are the maximum and minimum values of the variable, respectively. The

I ! . .
orders between c¢s 'and ¢;”, ¢;' and ¢»”, ¢;' and ¢; "are indeterminate. In order to tune these

eight parameters, nine position variables 7, ..., 9 are designed as follows:
cy=c,. +rx60 (2-3)
¢ =cs+1,%x0 (2-4)
cé = cé +rX 0 (2-5)
¢, =max{c],ci}+7r,x0 (2-6)
ci =max{c/,ci}+r,x0 (2-7)
¢} =maxic),cit+7,x60 (2-8)
ci =max{c),ci}+r, x0 (2-9)
c, =max{c3r,c§}+r8><t9 (2-10)

(Cax ~ Cnin)
where 0 :—maxg S

p

i=1

Note: g, = 0~9

Figure 2.5 Encoding method for membership functions.
Source: Chiou and Lan (2005).
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To achieve two significant digits, each position variable is represented by four
real-coding genes also depicted in figure 2.6. The maximum value of the position variables is
99.99 and the minimum value is 0. Thus, in the example of two state variables and one control

variable (each with five linguistic degrees), the chromosome is composed of 108 genes.
(3) Genetic operators

The max-min-arithmetical crossover proposed by Herrera et al. (1995) and the
non-uniform mutation proposed by Michalewicz (1992) are employed. In the
max-min-arithmetical crossover, let G, ={ g/’ ,..., @t ,.... gk’ } and G,/ ={ g./" ..., g’ ...,
g } be two chromosomes selected for crossover, the following four offsprings will be

generated (Herrera et al.,1995):

G/ =aG, + (I-a)G,) (2-11)
G =4aG, + (I-a)G,, (2-12)
Gs"™ with gy =min{g., g’} (2-13)
G4 with gg ' =max{g., gu'} (2-14)

where a is a parameter (0 < a < 1) and ¢ is the number of generations. In the non-uniform
mutation, let G, = { g/',..., g’ ..., g } be a chromosome and the gene g’ be selected for
mutation (the domain of g;’ is [gkl, gi']), the value of g;f” after mutation can be computed as

follows:

gz+1= g +At gl —g.) if b=0
' g —Atg -g) if b=1 (2-15)

where b randomly takes a binary value of 0 or 1. The function A(z,z) returns a value in the

range of [0, z] such that the probability of A(z,z) approaches to 0 as 7 increases:
At,z) = z(1— 17"y (2-16)

where 7 is a random number in the interval [0,1], 7 is the maximum number of generations
and 4 is a given constant. In Eq. (2-16), the value returned by A(r,z) will gradually decrease
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as the evolution progresses.
(4) Evolution algorithm

The iterative evolution algorithm for selecting the logic rules and tuning the membership
functions is similar to a bi-level mathematical programming. The upper level is to solve the
composition of logic rules using the membership functions tuned by the lower level. The
lower level is to determine the shape of membership functions using the logic rules learned
from the upper level. Consider an FLC with » state variables x;, x ,..., x, and one control
variable y, each with d,, d>,, ..., d, and d,+; linguistic degrees. Assume that the membership
functions of all linguistic degrees to be triangle-shaped. The iterative evolution algorithm is

structured as follows:
Step 0: Initialization: s=1.
Step 1: Selecting logic rules.

Step 1-1: Generating an initial population with p chromosomes. Each chromosome has

ﬁdi genes, and each gene randomly takes one integer from [0, d,+;].
i=1

Step 1-2: Calculating the fitness values of all chromosomes based on incumbent shapes of

membership functions.
Step 1-3: Selection.
Step 1-4: Crossover.
Step 1-5: Mutation.

Step 1-6: Testing the stop condition. The stop condition is set based on whether the mature
rate (the proportion of same chromosome in a population) has reached a given

constant . If so, proceed to Step 2; otherwise go to Step 1-3.
Step 2: Tuning membership functions.

Step 2-1: Generating an initial population with p chromosomes. Each chromosome has

36(n+1) genes and each gene randomly takes one integer from [0, 9].

Step 2-2: Calculating the fitness values of all chromosomes based on the incumbent

combination of logic rules.
Step 2-3: Selection.
Step 2-4: Crossover.

Step 2-5: Mutation.
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Step 2-6: Testing the stop condition. Let f; be the largest fitness among the population for the
s™ evolution epoch. The stop condition is set based on whether the mature rate has
reached a given constant #. If so, proceed to Step 3 and let s=s+1/; otherwise go to
Step 2-3.

Step 3: Testing the stop condition. If (f;+; - f;) =e¢, where ¢ is an arbitrary small number, then
stop. Incumbent combination of logic rules and shapes of membership functions are

the optimal learning results. Otherwise, go to Step 1.

In the first two categories, only one of the logic rule and membership function
components is learned and the other component is set subjectively; thus, the applicability of
that GFLC is very likely reduced. In the third category, both components are learned
simultaneously, thus the efficiency and effectiveness of that GFLC could be declined due to a
very long chromosome needed. In the fourth category, if both components are learned
sequence, a time-consuming is for learning algorithm. In order to search optimal solution, the
method should often have a strong assumption of membership functions (e.g. isosceles
triangle). Thus, the outcome of GFLC could be produced the redundant and conflicting rules.
To avoid these drawbacks, this research aim to develop a stepwise learning approach for logic

rules and membership functions by using GAs.
2.3 Traffic Flow Simulator: Cell Transmission Model

In order to efficiently evaluate the performance of proposed traffic signal model in this
research, the method and application of a macroscopic traffic flow theory, Cell Transmission
Model (CTM), are briefly introduced below.

2.3.1 Basic theory of CTM

The CTM proposed by Daganzo (1994) can be used to predict traffic’s evolution over time
and space, including transient phenomena such as the building, propagation and dissipation of

queues.
1. The theory of CTM

The CTM examines the evolution of traffic over a one-way road which has only an
entrance and an exit, by updating current conditions with every tick of a clock. The road is
divided equally into discrete cells, numbered consecutively from 1 = 1 to I starting with the
upstream end of the road, where the length of each cell is the distance travelled by a vehicle in

one clock tick under light traffic.

Under light traffic, all vehicles in a cell can be assumed to advance to the next cell with

each tick. It is unnecessary to know where within the cell they are located. Therefore, under
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light traffic, the system’s evolution obeys:

n,(t+1)=n,(1) fort=0,1,2... (2-17)

where 7n,(f) is the number of vehicles in cell i at time ¢. It is assumed that this equation holds
true for all traffic flows unless queuing occurs. The following 2 variables are introduced to

incorporate queuing in the model:

Oi(t), the maximum flow from cell i — 1 to i during time interval ¢ (when the clock

advances from t to ¢ + 1), also known as “capacity”, and
Ni(t), the maximum number of vehicles that can be present in cell 7 in time ¢.

Thus, Ni(¢) — ni(¢) is the amount of empty space in cell i at time 7. With these, define y«(¢), the

number of vehicles that can flow into 7 for time interval ¢ as

,(t) =min{n,, (1), 0,(t), N,(t) - n,(t)} (2-18)

The CTM is based on a recursion where the cell occupancy at time ¢ + 1 equals its

occupancy at time ¢, plus its inflow and minus the outflow:

n(t+1)=n(e)+ y,(t) - y,,,(t) (2-19)

Boundary conditions are specified for this model by input and output cells. The output
cell, the “sink” for all exiting traffic, has infinite size (Np; = o) and a suitable time-varying
capacity. A pair of cells are required for the input flow: the “source” cell numbered “00” has
an infinite number of vehicles (np9(0) = ) that discharges into the “gate” cell “0” of infinite
size (Ny(t) = ). The latter has a function similar to an entrance ramp of a road, where in the
case of a jam, vehicles will queue up on the ramp, unable to enter the road. The inflow
capacity Qy(t) of the gate cell is set equal to the desired input flow for time interval ¢ + 1.

2. Flow-density relationship of the CTM

The basic CTM assumes a homogenous system, where all cell characteristics are
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independent of i and . It is shown to be a discrete approximation to the LWR model from its
flow-density relationship, which is in the shape of an isosceles trapezoid (Figure 2.6). This

relationship can be expressed as:
g =min{vk,q,,,v(k, k)] for 0<k <k, (2-20)

where the maximum flow is gmax < k/2. Substituting Equation (2-20) into the flow
conservation Equation (% + Z—q =0), the differential equation that would define the evolution
X

of the system under the hydrodynamic model is obtained:

Omin vk (x,1), Q- V(K -k (0| (1) (2-21)
ox - ot

The tick of the clock is defined as df, and we set vdz, the unit of distance. Thus the cell

length and v are 1, then

y=minin,(¢),0,N -n,(1)} (2-22)

which coincides with the definition of y;1; of Equation (2-18), except for the subindex of n,

but as the system is homogenous, the number of cars in each cell is the same.
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flow » q

VK2 o ———

qmax

> .
0) k4 kg ki density > k

Figure 2.6 Flow-density relationship of the basic CTM.

In general, the continuous LWR model of Figure 2.7 can be solved by the Equations
(2-19) and (2-20) when an infinitesimally small clock tick is used.

3. The Cell Transmission Model: General Case

The basic model had assumed that w = v. However, in reality, waves move several times
slower than free flowing traffic, which was mentioned in (1). As w < v, queues persist for a
longer time behind temporary bottlenecks and are dissipated further upstream. Thus, the basic
CTM is modified for the general case to allow for w < v. Equations (2-19) and (2-20) are

modified respectively:

g = minvk,q,,,, wk, -k){  for 0<k <k, (2-23)

where w<vand q,, <

y; (1) = min{n[—l ®), 9, (l),%[N (@) -n, (l‘)]} (2-24)
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The differential equation defining the system evolution under the LWR model on a

homogeneous system, formerly Equation (2-21), becomes:

Omin{Vk(x, 1), q ., Wk, -k (x,0)f _Ok(x,1) (2-25)
ox B ot

Finally, compare the two g-k diagrams in Figure 2.7 and observe that the g-k diagram of
the generalized CTM (left) is similar to the Fundamental Diagram of traffic flow (right)
derived from LWR model.

flow > q

KNI == == =

Amax

>
0] ky ks k; density > k

Figure 2.7 Flow-density diagrams obtained from the CTM and LWR model.

2.3.2 Mixed traffic cell-transmission model (MCTM)

This study aims to develop an adaptive urban traffic signal controller. The traffic
component of urban road includes passenger cars and motorcycles in Asian area. In order to
accurately simulate traffic, this subsection reviews some mixed traffic flow models and mixed

traffic cell-transmission model proposed by Chiou and Hsieh (2011).

To facilitate the learning process of the proposed SGFLC model, an efficient traffic
simulator is imperial to evaluate the performance of selected logic rules and tuned
membership functions in a short period. Based on this, a cell-based traffic simulator, CTM, is
considered. CTM, proposed by Daganzo (1994; 1995) for simulating traffic hydrodynamic
behavior, uses several simple equations to govern traffic movements along the roadway which

is represented by a series of equal-length cells. These equations are expressed as follows:
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n,(t+D)=n)+y,() -y, @) (2-26)
y;(#) =min{n,_,(9),q,, (), BIN, () —n,(D)]} (2-27)
Lifn_ ()<q,, ()

Ka ifn_(t)2q,,(t)
v

p= (2-28)

Based on the pure traffic CTM, Chiou and Hsieh (2011) developed and validated a
mixed traffic CTM (MCTM) for the traffic flow of cars and motorcycles. In Chiou and

Hsieh’s model, the variable n,(¢f) is decomposed into n;(f) and n"(¢) for representing

the numbers of cars and motorcycles in cell i at time ¢, respectively. Thus, Eq. (2-26) can be

revised as:

ni(t+1)=n; () + y; ()= yi,(t)

(2-29)
n(t+1)=n" () +y" ()= y} @)

Both types of vehicles exhibit rather different traffic behaviors in competing roadway
capacity and remaining storage space. Thus, the parameters of the MCTM, including maximal
flow rate, maximal storage capacity, and remaining storage capacity, should be dynamically
adjusted and allocated between cars and motorcycles according to mixture ratio of vehicles

types. Depending upon various traffic conditions, three situations are detailed below:
1. Free flow condition: No competition between cars and motorcycles

The flow and density of cars and motorcycles, in upstream cell, are less than maximal
flow and remaining capacity of downstream cell. This condition refers to the first condition of

Eq.(2-27) which the vehicles can transmit from upstream to downstream without any deter.
2. Maximal flow competition between cars and motorcycles

This situation occurs when numbers of cars and motorcycles in upstream cell exceed
maximal flow (i.e. the second condition of Eq.(2-27)). Thus, cars and motorcycles compete to
transmit from upstream cell to downstream cell. This competition behavior can be elaborated

as follows:
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mey [Rrg (n,(@),n", () xq,, (1]
0" (1) = o (2-30)

07 (1) =[1- Ry (n, (D,n, ()] x4, (1)

where flow competition functions, R® (n"(t),n",(t)), is a function of the numbers of cars and
motorcycles.

According to field observations, the interferences between cars and motorcycles are
rapidly increased as the mixture ratio of cars and motorcycles becomes higher. Thus, Chiou
and Hsieh (2011) introduced the entropy concept to dynamically adjust PCE by defining the

competition relationship as:

O(,¢ m _ nx niril (t) )
R, (n_(1),n (1)) = e @) + 1 (D) (2-31)

where 7 is the adjusted PCE of motorcycles, which is assumed to linearly increase as the

entropy can become higher from a base value of PCE (a):

n=oa+(exH(n_(1)) (2-32)

where H(n, ,(¢))is an entropy function measuring by the proportions of cars (p°) and

motorcycles (p™):

H(n, () =~[p" (n,,(D))log p™ (n,_, () + p*(n,_ (1)) log p* (n,, (1))] (2-33)

The proportions of cars (p°) and motorcycles (p™) in upstream cell can be calculated by
Egs. (2-37) and (2-35), respectively:

Ixnt, (1)
n' (t)+Ixn (1) (2-34)

pi(n_ ()=
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(1)

PO = s et 0) (2-35)

where, /=space of a car /space of a motorcycle.
3. Remaining storage capacity competition between cars and motorcycles

This competition behavior occurs when remaining storage capacity in the downstream

cell can not accommodate all vehicles transmitting from the upstream cell (i.e.
I[xn (t)+n", >2S.,(¢)). In addition, the motorcycles can still “sneak” into the downstream

cell when remaining storage capacity can not accommodate a car. In order to reflect this
phenomenon, a congestion index (J) is introduced to determine how the remaining storage
space (S;(¢)) 1s allocated:

§;(0) =0 x{N (1) =[x n; (1) + n;" (D]} (2-36)

1 ifn, (1)+axn (t)<q,(0)
where o6 =

— ifn, (¢)+axn! (t)>q, ()

%

Consider a space competition function, R (n/(¢),n",(t)) which allocates remaining
storage space between cars and motorcycles moving from upstream to downstream. The
remaining storage capacity is then allocated to cars (S;(#)) and motorcycles (S (¢)) is

expressed as:

87 () =R, (n (8),n", (1)) x S, (t) (2-37)
S"(t) = [1-R,(n], (t)’lni”il (D)]x S, (1) (2-38)

Logghe and Immers (2008) indicated that the higher density of vehicles of class i on road
has advantage to move forward. Thus, the competition functions can be expressed as:
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O]
n" +1xn; (1)

Ry (ni,(D),n", (1)) = (2-39)

In sum, based on the pure traffic CTM proposed by Daganzo in Egs. (2-19) and (2-20),
the mixed traffic CTM with cars and motorcycles proposed by Chiou and Hsieh (2011) can
replicate mixed traffic by Egs. (2-40) and (2-41).

ni(t+1)=n; () + y; ()= yi,(t)
n"(t+1)=n/"(t)+y"(t) =y, (1)
yi () =min{n’,(6),[1- RS (n;,(t),n" ()] % q,, (1),

(R (n, (0,1, (1)) x g, (1)]
(24

(2-40)

(1= R, (n, (1), ", (1)) X 5.0,
! (2-41)

R (- (0,1, (D) x S, (1)}

;' (6) = min{n”, (),

2.3.3 Applications of CTM

The macrocsopic traffic flow theory cell-transmission model (CTM) proposed by
Daganzo (1994) and Lebacque (1996), to the kinematic wave partial differential equation of
Lighthill and Whitham (1955) and Richards (1956).

The popularity of CTM is due to its very low computation requirements compared with
micro-simulation models; the ease with which it can be calibrated using routinely available
point detector data (Lin and Ahanotu, 1995; Munoz et al., 2004); its extensibility to networks
(Waller and Ziliaskopoulos, 2001) and urban roads with signalized intersections (Lo, 2001;
Almasri and Friedrich, 2005); and the flexibility with which it can be used to pose questions
of traffic assignment (Lo and Szeto, 2002; Ziliaskopoulos, 2000) and ramp metering
(Daganzo and Lin, 1993; Zhang et al., 1996; Gomes and Horowitz, 2006). Despite their
simplicity, field data suggested that they fit measurements well. See for example, Lin and
Ahanotu (1995) and Smilowitz and Daganzo (1999). These two studies validated CTM for
freeway and arterial traffic. According to the descriptions above, CTM is a widely used
discrete macroscopic model and can simulate as well as plausible model for signalized urban

streets.
2.4 Summary

On-line traffic signal control can provide signal-timing plans in response to real-time
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traffic conditions. The well-known adaptive signal controllers mentioned above employ
mathematical equations or models to determine “crisp” threshold values as the cores of
control mechanism; thus, the control performance could be negatively affected by the
uncertainty of traffic conditions. Since a fuzzy control system has excellent performance in
data mapping as well as in treating ambiguous or vague judgment. In classical FLC systems
however, methods for formulating the rule base and data base are subjectively preset, not
optimally solved. Employing GAs to construct an FLC system with learning process from
examples can not only avoid the bias caused by subjective settings of logic rules or
membership functions but also greatly enhance the control performance. On the other hand,
how to evaluate the performance of signal control models is an important issue. To facilitate
the learning process of the GFLC, an efficient traffic simulator is necessary to evaluate the
performance of a set of selected logic rules and tuned membership functions in a very short
period. CTM, proposed by Daganzo (1994, 1995) to simulate traffic hydrodynamic behavior
in a macroscopic manner, uses several simple equations to govern traffic movements along
the roadway which is represented by a series of equal-length cells. Based on the pure traffic
CTM, Chiou and Hsieh (2011) developed and validated a mixed traffic CTM (MCTM) for the
traffic flow of cars and motorcycles. Besides, the mixed traffic should be considered when
determined the urban traffic signal control timing plan. The details of these proposed models

or concepts are described in the following chapter.
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Chapter 3 METHODOLOGIES

The model framework is shown in Figure 3.1. This study aims to develop an adaptive
traffic signal controller for isolated intersection, sequential intersections and a long corridor.
Thus, signal control logic both for isolated intersection and sequential intersection, including
arterial approach and competing approaches, should be presented. On the other hand, the
method integrating GA into the FLC with stepwise algorithm are developed. Combination
with GA-based clustering algorithm, the proposed SGFLC model is able to not only conduct

adaptive signal control but also to determine which intersections have to be coordinated with.

Input : Traffic data

Isolated intersection Sequential intersections
signal control logic signal control logic

Stepwise Genetic Fuzzy
Logic Controller

] | ¢

Isolated intersection Sequential intersections
rules base rule base
v v
Isolated intersection Competing approach

Arterial signal controller

signal controller signal controller

Arterial adaptive coordinated
signal controller

‘47 Binary GAs

Corridor adaptive
coordinated signal controller

Figure 3.1 SGFLC model framework.

This chapter first introduced the concept of the FLC-based traffic signal control model
and the design of the FLC. Then the design stepwise evolution algorithm with GA of the FLC
is presented. In the last sections of this chapter, introduce the binary genetic algorithm to

cluster the coordinate intersections along a long corridor.

3.1 Traffic Signal Control Logic
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3.1.1 Fitness value

The performances of signal control for an isolated intersection or sequential intersections
are commonly measured in terms of total number of stopped vehicles, proportion of stopped
vehicles, average vehicle delays, total vehicle delays, maximal green band, etc. This study
sets the total vehicle delays (7VD) as the control performance index and thus defines the

fitness function of GAs as:
f= (3-1)

3.1.2 State and control variables

Following most of the previous literature, for the case of an isolated intersection, we
choose traffic flow in green phase (7F) and queue length in red phase (QL) as two state
variables and extension of green time (EGT) as the control variable. For the case of sequential
intersections, 7F is the summation of traffic flows at all approaches in green phase; while QL
is the summation of queen length at all approaches in red phase. Figure 3.2 shows the
calculation method for both QL and 7VD. Beside, the more traffic flow arrival rate may cause
longer queue length in the same direction. Thus, the relationship between those two state

variables may be positive.

Assume east and west bound is red phase north and south is green phase.
The parameters of CTM : N=13, tick of clock=2sec

Jlﬂlﬂ‘ 0 e

g

. I soo!
The queue length of east-west The queue length of west-east

bound (OL.,) is 36 bound (QL,,.) is 31

(a) Calculation for state variable QL
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Assume east and west bound is red phase north and south is green phase.
The parameters of CTM : N=13, tick of clock=2sec

—

The queue length of east-

west bound (QLu,) is 36 lfhe c(liueue lengﬂ; of west-east

The delay of east-west (})1und gQLWE) is 31 bound=

bound= 36x2=72 The delay of west-east bound=
31x2=62

The TVD of this time period is 62+72=134

(b) Calculation for fitness value 7VD
Figure 3.2 Calculation methods for QL and 7VD.

To reflect the different details of mixed traffic flow, three dimensions with different
considerations of state variables are developed. Dimension 1 considers four state variables:
traffic flow of cars (TFC), traffic flow of motorcycles (7TFM), queue length of cars (OLC) and
queue length of motorcycles (OLM). Dimension 2 considers two state variables by weighted
summing up cars and motorcycle traffic: traffic flow TFP (TFP = TFC + aTFM) and queue
length QLP (QLP = QLC + aQLM), where a is the PCE of motorcycles (0.3 in this study).
Dimension 3 also considers two state variables by simply summing up car and motorcycle
traffic: traffic flow TFV (TFV = TFC + TFM) and queue length QLV (OQLV = QLC + QLM).

3.1.3 Activation points

In consideration of pedestrian safe crossing, a minimum green time (G,;,) in each green
phase is preset both for an isolated intersection or sequential intersections. At the end of G,
the proposed stepwise GFLC model is activated automatically to conclude an EGT. If EGT >
EGT,., (a preset value), current green phase is extended by EGT seconds. If EGT < EGT,n,
current green phase is then terminated. The SGFLC model will not be activated again until the
end of this extension time. If total green time exceeds the preset maximum green time (Gax),
current green phase is forced to terminate. A short all-red (4R) period is designed in each

signal change interval. The activation points for an isolated intersection are also depicted in
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Figure 3.3(a).

This study also uses of the SGFLC model to adaptively control the signals of sequential
intersections along an arterial. To reflect the various traffic conditions of different coordinated
intersections, the green times along the arterial are independently determined by following the
same control mechanism of an isolated intersection. However, to synchronize the signal
timing plans of all coordinated intersections, an integrated signal control mechanism by
considering the summation of traffic flows at all approaches in green phase and summation of
queen length at all approaches in red phase. Therefore, the cycle length of all coordinated
intersections is kept the same. It should be noted that the activation of extended red time of
the arterial (i.e. the extended green time of competing approaches) won’t be started until all
intersections along the arterial have been turned into red phase. Figure 3.3(b) illustrates the

activation points and signal timings for one of the sequential intersections.

| North-south directions |

TF, TF, TF; OL, OL, OL; QL
<—*—*—Eﬂ Time
Goin |EGT1|EGT2| AR R | | | AR

|

| | I I I I I
East-west directi IS .

| ast-west direc 10ns| oL OL» O, aF, AF, 1TF; Tk,

Y R T+ 5
R | | I AR Gnin |EGT1tEGT2|EGT3| AR
| | I | | | |
| | I | | | |
| S
Legend ¥ Activation point [l : Red phase 5= : Green phase B - Allred

(a) Isolated intersection
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Figure 3.3 Activation points for an isolated intersection and sequential intersections.
3.2 Stepwise GFLC Model (SGFLC)

Since the IGFLC has to learn logic rules and membership functions iteratively, making
the learning process rather time-consuming. In order to search near optimal solution, the
method should often have a strong assumption of membership functions (e.g. isosceles
triangle). Thus, the outcome of GFLC could be produced the redundant and conflicting rules.
To avoid these drawbacks, this research develops a stepwise learning approach for logic rules

and membership functions by using GAs.

The proposed SGFLC model has three key parts, including encoding methods, genetic

operators and stepwise evolution algorithm, which are explained in more details bellow.
3.2.1 Encoding logic rules and membership functions

Consider a triangle fuzzy number and let parameters ¢’, ¢ and ¢ respectively represent
the coordinates of right anchor, cortex and left anchor of a linguistic degree as shown in
Figure3.2 Therefore, a variable with a linguistic degree has 3 parameters need to be calibrated

and their orders are:

<< (3-2)
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Thus, if we employ GAs to tune the aforementioned parameters directly, the search
performance will deteriorate significantly as a result of incorporating all the constraints. To
overcome this problem, the encoding method proposed by Chiou and Lan (2005) is employed.
In order to tune these 3 parameters, 3 position variables 7,~r; are designed as follows:

c=n (3-3)
¢ =rn+r (3-4)
¢ =r4r+r (3-5)

To achieve two significant digits, each position variable is represented by four
real-coding genes also depicted in Figure 3.4 The maximum value of the position variables is
99.99 and the minimum value is 0. Thus, in the example of two state variables and one control
variable, the chromosome is composed of 36 genes.

‘gl‘{;zHS; 84|85 || 8 |, 878 & |80,

Note: g = 0~9

Figure 3.4 Encoding method for logic ruses and membership functions.
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3.2.2 Genetic operators

The max-min-arithmetical crossover proposed by Herrera et al. (1995) and the
non-uniform mutation proposed by Michalewicz (1992) are employed. In the
max-min-arithmetical crossover, let G,/ ={ g/’ ,.... k' ..., gwk } and G,' ={ g,/ ..., @i’ ...,
gk } be two chromosomes selected for crossover, the following four offsprings will be

generated (Herrera et al.,1995):

G/ =aG,)+ (1-0)G, (3-6)
G =aG,) + (I-a)G, (3-7)
Gg’” with ggk’” =min {gwk’, gvk’} (3-8)
G4’+1 with g4k’+1=max{gwkt, gvk’} (3-9)

where a 1s a parameter (0 < a < 1) and ¢ is the number of generations. In the non-uniform
mutation, let G, = { g/',..., g’ ,..., g } be a chromosome and the gene g;’ be selected for
mutation (the domain of g’ is [g¢, gi]), the value of g;/™' after mutation can be computed as

follows:

g el TAgl—gl) i =0
k g —Atg —g) if b=1 (3-10)

where b randomly takes a binary value of 0 or 1. The function A(¢,z) returns a value in the

range of [0, z] such that the probability of A(z,z) approaches to 0 as ¢ increases:

At,z) = z(1— D"y (3-11)

where 7 is a random number in the interval [0,1], 7 is the maximum number of generations
and 4 is a given constant. In Equation (3-11), the value returned by A(z,z) will gradually

decrease as the evolution progresses.
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3.2.3 Learning algorithm

The stepwise algorithm for selecting the logic rules with the membership functions is
similar to a stepwise process in data mining. At each stage in process, after a new rule is
added, a test is made to check if one rule can be deleted without appreciably improve the
objective value. The procedure will not terminate until the fitness value improvement falls
below some critical value. Consider an FLC with n state variables x;, x> ,..., x, and one

control variable y. The stepwise learning algorithm is structured as follows:
Step 0: Initialization: s=1.

Step 1: Renew the storage of logic rules.

Step 2: Tuning membership functions.

Step 2-1: Generating an initial population with p chromosomes. Each chromosome has

12(n+1) genes and each gene randomly takes one integer from [0, 9].

Step 2-2: Calculating the fitness values of all chromosomes based on the incumbent

combination with storage of logic rules.
Step 2-3: Selection.
Step 2-4: Crossover.
Step 2-5: Mutation.

Step 2-6: Testing the stop condition. Let f; be the largest fitness among the population for the
s™ evolution epoch. The stop condition is set based on whether the mature rate has
reached a given constant 7. If so, proceed to Step 3 and let s=s+/; otherwise go to
Step 2-3.

Step 3: Testing the stop condition. If (f;+; - f;) =e¢, where ¢ is an arbitrary small number, then
stop and renew the storage of logic rules. Incumbent combination of the storage of
logic rules are the near optimal learning results. Otherwise, go to Step 1. The

evaluation process of SGFLC was shown in Figure 3.5.
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Figure 3.5 The evaluation process of SGFLC.

3.3. Determining the Coordinated Intersections

It is well-known that the control performance of signal coordination would be greatly
degraded as the number of coordinated intersections increases. Therefore, this study
introduces a binary genetic algorithm to determine which intersections to be coordinated and

how many clusters of coordinated intersections would be.
3.3.1 Typical operation of binary GA cluster

In each generation, the selection is a process by which the chromosomes, coded strings,
with larger fitness values can produce accordingly with higher probabilities large number of
their copies in the new generation. The crossover is a process by which the systematic
information exchange between two coded strings is implemented using probabilistic decisions.
In a crossover process, two coded strings are chosen from the matching pool and arranged to
exchange their corresponding positions of binary strings at a randomly selected partitioning
position along them. This process can combine better qualities among the preferred good
strings. And then the mutation is a process by which the chance for the GA to reach the near
optimal point is reinforced through just an occasional alteration of a value at a randomly
selected bit position. The mutation process may quickly generate those strings which might
not be conveniently produced by the previous selection and crossover process to avoid the
trap of local solutions. The GA runs iteratively repeating the above process until it arrives at a
predetermined ending condition. The process of going from the current population to the next
population constitutes one generation in the execution of a GA. A typical GA cycle is depicted
as Figure 3.6.
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Figure 3.6 Typical operation of binary GA.
3.3.2 Coding method

This study adopts binary coding method to represent the intersection is coordinated with
the very next (downstream) intersection or not. Each intersection is represented by one gene.
The neighboring intersections sharing the same gene value are in the same coordination plan.
Taking a corridor with 10 intersections as an example, the chromosome taking values of
0011101000 represents five clusters of signal coordination plans being formed, which
suggests that intersections 1 and 2 are coordinated as Clusterl; intersections 3, 4, 5 are
coordinated as Cluster 2: intersections 6 and 7 are self-clustered and independently operated

denoted as Cluster 3 and Cluster 4, respectively. Intersections 8, 9 and 10 are then coordinated
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as Cluster 5.

3.3.3 Fitness value

The performances of a long corridor are commonly measured in terms of total number of
stopped vehicles, proportion of stopped vehicles, average vehicle delays, total vehicle delays,
maximal green band, etc. This study chooses the total vehicle throughput (777) including
main arterial and competing approaches as the control performance index and thus defines the

fitness function of GAs as:

f=1TvT (3-12)
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Chapter 4 ISOLATED INTERSECTION

To investigate the effectiveness and robustness of the proposed signal control model,
comparisons to two pre-timed models and three adaptive models are conducted at an
experimental isolated intersection. Beside, the validation of MCTM is described at the

beginning of Chapter 4.
4.1 Validation of MCTM

To validate the MCTM in replicating the traffic behaviors at signalized intersections in
Taiwan, field traffic data were collected at one of approaches of a signalized intersection in
Taipei on February 27, 2009. The study approach was divided into six cells depending on free
flow speed and length of time step, as shown in Figure 4.1. The traffic moves from cell 1 to
cell 6 and y; and yo denotes the traffic flows in and out the study approach. The stop line of
the intersection locates at the right bound of cell 6. The performance of the MCTM is shown
in Table 4.1. As noted from Table 4.1, the MAPE values are less than 30% in most of cells in
both green and red time. In addition, the simulation results are more accurate at the cells

closer to the stop line and for motorcycle traffic.

‘nc]. ", ‘ ‘I’lcz_ nmz‘

Figure 4.1 Configuration of the validated approach.

Table 4.1 Validation results of the mixed CTM in different cells and phases.

Vehicle Cell

Phase Performance types 1 > 3 4 5 G va
MAPE car  26.71%42.80%34.46%10.90%16.81%15.79% 8.05%
Green motorcycle23.60%38.95%30.63% 3.38% 8.17%11.75% 3.48%
(120 seconds) RMSE car 17.70 20.75 19.01 10.17 13.17 21.09 5.16
motorcycle 24.85 32.56 26.06 4.50 11.29 25.59 6.05
MAPE car  30.42%11.42%24.60%28.24%27.66% 11.49% -
Red motorcycle 6.21%26.89%27.40%21.19%33.31%16.21% -
(50 seconds) RMSE car 2.03 0.71 3.18 22.06 32.33 31.56 -

motorcycle  1.12 330 3.84 698 13.96 91.87 -

According to the number of vehicles and flow at cell 6 in red time and green time, this
study also validates the queuing behavior in red phase and platoon dispersion in green phase.
The results are shown in Figure 4.2(a) and (b) respectively. The results show that the CTM

can satisfactorily replicate the traffic behaviors at the signalized intersection.
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Figure 4.2 Number of vehicles and flow at cell 6 in red time and green time.

4.2 Parameter Setting and Traffic Data

To validate the effectiveness and robustness of the proposed SGFLC signal control
model, an experimental example for an isolated four-leg intersection (Figure 4.3) is
demonstrated. The percentages of turning flow are setting as: left turning (Prr)=0.2, right
turning (Prr)=0.2. The parameters of the MCTM are set as: free-flow speed=50km/h, time
step=2 seconds, k=130 veh/km/lane. Assume that the intersection has two lanes (Ni(£)=3.6
cars/cell for all i and ¢#) in each approach with saturation flow of 1800 pcu/hr/lane (g,(#)=2.00
veh/time step for all i and ¢). The flow patterns of five-minute flow rates in different
approaches are given in Figure 4.4. A noticeable peak and off-peak traffic patterns are
assumed in east and west directions; while rather flat traffic patterns are assumed in north and
south directions. The parameters of the SGFLC model are set as population size=100,
crossover rate=0.9, a=0.3, h=0.5, 7=80%, ¢=0.05. The center of gravity method is employed
for defuzzification. The parameters of signal control are: G,,,=100 seconds, G,,;,=20 seconds,
all red + lost time =6 seconds, EGT,,,:=20 seconds, and EGT,,;;,=4 seconds.
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Figure 4.3 Configuration of the experimental isolated intersection.
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Figure 4.4 Five-minute flow rates at the experimental isolated intersection.

4.3 Model Training and Performance

generations progressed tends to rapidly grow as the mutation rate increases.

50

The training results of the stepwise GFLC signal control model for various mutation
rates are reported in Table 4.2. As shown in Table 4.2, the SGFLC performs best at the
mutation rate of 0.05 with corresponding 7VD of 58.34. The values of TVD achieved by the

SGFLC model under various mutation rates do not significantly differ, but the number of




Table 4.2 The results of SGFLC with various mutation rates (Pm).

Pm 001 003 005 007 010 020 030 040 0.50
No. of generations 149 111 75 204 125 234 168 676 853
VD 59.40 58.92 58.34 59.69 62.00 62.09 60.65 59.16 58.68

Furthermore, Table 4.3 compares the control performances of three different details of
traffic measurements of SGFLC models. As shown in Table 4.3, Dimension 1 performs best
with lowest TVD of 58.34 vehicle-hour, suggesting the more details in traffic measurement the
better performance can be achieved. In what follows, only the learning results and control

performance of dimension 1 is further elaborated and compared.

Table 4.3 Control performances of the SGFLC models with various state variables.

Dimensions State variables Generations TVD  Number of selected rules
Dimension 1 TFC,TFM,QLC and QLM 75 58.34 5
Dimension 2 TFP and QLP 95 65.03 8
Dimension 3 7FV and OQLV 113 65.19 7

The learning process of the Dimension 1 is depicted in Figure 4.5(a). Note that SGFLC
converges after five stepwise evolutions with a total of 75 generations progressed. The value
of TVD decreases from 83.09 to 58.34 veh-hour. A total of five rules are selected after five
stepwise evolutions. Figure 4.5(b) presents the near optimally selected five logic rules along

with corresponding tuned membership functions.
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(a) Learning process
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Figure 4.5 Learning process and results of the SGFLC model at the isolated intersection.

4.4 Model Validation and Comparisons

To validate the effectiveness, the control performance of the SGFLC model is compared
with two pre-timed models: optimal single (OS) and optimal multiple (OM) and three
adaptive models: iterative genetic fuzzy logic control (IGFLC) model, vanishing queue (VQ)
and maximum queue (MQ). Where the OS timing plan is determined by total enumeration
method to search for an optimal cycle length and green time during the study period. The OM
timing plan comprises seven optimal single timing plans depends on traffic flow pattern as
shown in Figure 4.2 Since the OM model designs the optimal signal timings for each of traffic
flow rates, its control performance is optimal for the given traffic pattern. The IGFLC model
proposed by Chiou and Lan (2005) is to simultaneously and iteratively select all combination
rules and then tune all membership functions of linguistic variables. The VQ model proposed
by Lin and Lo (2008) is an actuated control system by switching traffic signal to serve the
other approach whenever the queue on the current approach vanishes; while the MQ model
switches traffic signal to serve the other approach when the queue length on the that approach
reaches a preset maximum queue. In this study, the maximum queue length is optimized via a

try-and-error manner.

Table 4.4 summarizes the comparison results. Comparing to the OS model, the proposed
SGFLC model can curtail 6.47 vehicle-hours (11.09%) and incur only 0.60 more
vehicle-hours (1.03%) delays than the OM model, suggesting the proposed SGFLC model
almost can achieve the optimal control. Comparing to three adaptive models, the SGFLC
model performs better than the IGFLC, VQ and MQ models by respectively curtailing 0.54,
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3.51 and 7.02 vehicle-hours (0.93%, 6.02% and 12.03%) of total vehicle delays,

demonstrating the effectiveness of our proposed stepwise GFLC model.

Table 4.4 Comparisons of control models at the experimental isolated intersection.

Models VD ATVD compared with SGFLC
(vehicle-hours) (vehicle-hours) (%)
SGFLC 58.34 - -
(ON 64.81 6.47 11.09
oM 57.74 -0.60 -1.03
IGFLC 58.88 0.54 0.93
VQ 61.85 3.51 6.02
MQ 65.36 7.02 12.03

Moreover, according to the learning results of two similar GFLC models, the SGFLC
and IGFLC, as shown in Table 4.5, although both GFLC models exhibit high control
performance, the proposed SGFLC model selects much fewer rules (only five rules) with a
relatively fewer generations than the IGFLC model does (374 rules). Additionally, by
examining the rules selected by the IGFLC model, many of them are redundant or mutually
conflicting. The merit of selecting few rules provides a chance for post-optimization
adjustment and rule interpretation. Thus, the comparison shows that the proposed SGFLC is

more effective, efficient and comprehensible than the IGFLC model.

Table 4.5 Learning results of the SGFLC and IGFLC models.

Models State variables Generations TVD Number of selected rules
SGFLC TFC,TFM,QLC and QLM 75 58.34 5
IGFLC TFC,TFM,QLC and QLM 383 58.88 374

The green splits determined by the SGFLC model are depicted in Figure 4.6 (b), which
are in coincidence with the traffic patterns in Figure 4.6 (a), suggesting that the proposed
SGFLC can control the signal responsively. Figure 4.6(c) further presents the average delays
of cars and motorcycles. As the traffic grows, the average delays of both cars and motorcycles
are significantly increased. It is interesting to note that the average delay of cars grow much
more rapidly than that of motorcycles, because motorcyclists do not follow the lane
disciplines. They may make lateral drifts breaking into two moving cars. Once blocked by the
front vehicles, they even make wide transverse crossings through the gap between two

stationary cars in the same lane, in order to keep moving forward. The behaviors are in
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accordance with our field observations and the cellular automaton model proposed by Lan et
al. (2010).
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Figure 4.6 Traffic flow rates, green splits and average delay of east-west traffic.

To further examine the robustness of the SGFLC model, we randomly vary the traffic
flows by 10% to 50% as shown in Figure 4.7. Assume that timing plans of pre-timed models
(i.e. the OS and OM) remain unchanged and the adaptive models follow the same rules

learned from the original traffic patterns given in Figure 4.4. The results are summarized in
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Table 4.6. Note that the SGFLC model performs best among the pre-timed and adaptive
models. Moreover, the SGFLC model can do much better than any other models as the traffic

flows vary more conspicuously, indicating the robustness of the SGFLC model.
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Figure 4.7 Varied five-minute flow rates at the experimental isolated intersection.

Table 4.6 Comparisons of control performance with randomly varied flow rates.

10% 20% 30% 40% 50%

Models 7D ATvD2% | TvD _ATVD% | TVD ATVD% | TVD ATVD% | TVD ATVD%

SGFLC | 61.41 -1 61.74 - | 66.05 - | 67.88 - | 70.57 -
(0N} 69.82 13.69 | 77.73 25.90 | 84.54 27.99 | 89.40 31.70 | 95.97 35.99
oM 65.55 6.74 | 66.89 8.34 | 72.15 9.24 | 77.10 13.58 | 83.89 18.87
IGFLC | 63.05 2.67 | 65.67 6.37 | 70.43 6.63 | 72.68 7.07 | 76.34 8.18
VQ 63.50 3.40 | 67.70 9.65 | 72.80 10.22 | 75.01 10.50 | 78.13 10.71
MQ 66.11 7.65]67.22 8.88 | 72.35 9.54 | 77.98 14.88 | 84.19 19.30

The sensitivity analysis of different percentages of turning flow is shown in Table 4.7.
The timing plans of all signal control models also remain unchanged. Note that the SGFLC
has outperformed over than other timing plans in each level of turning flow rates except
training case (P;7=0.2, Prr=0.2). Moreover, the SGFLC can do much better than any other
models as the turning flows increase.
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Table 4.7 Comparison of control performance with increased turning flow rates.

Models

Prr (Prr=0.2 Ps=1- Py~ Pgy)

02 0.4 0.6
VD ATVD% TVD ATVD% TVD ATVD%
SGFLC 58.34 - 73.68 - 92.92 -
0S 64.81 11.09 97.49 32.32 125.93 35.53
OM 57.74 -1.03 88.16 19.65 117.54 26.50
IGFLC 58.88 0.93 74.85 1.59 94.98 2.22
VQ 61.85 6.02 89.34 21.25 114.05 22.74
MQ 65.36 12.03 93.14 26.41 122.00 31.30
Prr (P17=0.2 Ps=1- Py~ Pgy)
Models 02 0.4 0.6
VD ATVD% TVD ATVD% TVD ATVD%
SGFLC 58.34 - 72.09 - 86.09 -
0S 64.81 11.09 85.85 19.09 107.60 24.99
OM 57.74 -1.03 72.83 1.03 89.56 4.03
IGFLC 58.88 0.93 72.24 0.21 88.63 2.95
VQ 61.85 6.02 85.93 19.20 102.37 18.91
MQ 65.36 12.03 89.35 23.94 114.99 33.57

4.5 A Field Case

4.5.1. Data

To validate the applicability of proposed stepwise GFLC model, a field study at the

signalized intersection of Jin-Ma Road and Chang-He Road in Changhua City in Taiwan is

conducted. Five-minute flow rates from 7:00 a.m. to 9:00 a.m. are surveyed as shown in

Figure 4.8. The green time of currently operated timing plan during the observed time period

1s 95 seconds in west-east direction and 35 seconds in north-south direction, with all red + lost

time =6 seconds. The information of field case study was shown in table 4.8.
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Traffic flow (veh/ 5 min)
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e
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(a) total car flow rates
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Figure 4.8 Five-minute flow rates at field-study in Changhua.

Table 4.8 Data information of field case study in isolated intersection.

Chang He Road

Configuration

Timine plain Ease-West bound North-South bound
gP 95 sec. 45 sec.
Ease-West bound North-South bound
Number of lanes 5 I

Coordinated strategy -

4.5.2. Results

The comparison of control performance between SGFLC, IGFLC, VQ, MQ and current
timing plan is reported in Table 4.9. Note that the total vehicle delay for SGFLC is 52.38
vehicle hours, which is far less than the current timing plan in operation, IGFLC, VQ and MQ
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by 10.33, 0.76, 3.15 and 6.30 vehicle hours (19.72%, 1.45%, 6.01% and 12.03%),
respectively.

Table 4.9 Comparison of control performance at field-study in Changhua.

o TVD ATVD compared with SGFLC
Timing plan hicle-h
(vehicle-hours) (vehicle-hours) (%)
SGFLC 52.38 - -
IGFLC 53.14 0.76 1.45
VQ 55.53 3.15 6.01
MQ 58.68 6.30 12.03
Current timing plan 62.71 10.33 19.72

4.6 Discussions

According to the learning results of two similar GFLC models (IGFLC and SGFLC),
although both GFLC models exhibit high control performance, the proposed SGFLC model
selects much fewer rules (only five rules) with a relatively fewer generations than the IGFLC
model does (374 rules). This result demonstrates the IGFLC tend to select some redundant or
conflicting rules. On the other hand, the IGFLC model requires a total of 383 generations,
each of which contains 100 populations, for convergence, making a total of 38,300 iterations
have to be conducted. Comparing to the SGFLC model, there are only 75 generations with a
total of 7,500 iterations for convergence. Thus, the SGFLC model is much more efficient than
the IGFLC model. Additionally, by examining the rules selected by the IGFLC model, many
of them are conflicting with each other. Take Rule 273 and Rule 298 selected by the IGFLC

model for example:
Rule 273:TFC=3, QLC=4, TFM=1, QLM=5 then EGT= 3
Rule 299: TFC=3, QLC=4, TFM=2, QLM=5 then EGT= 1

The linguistic degree of motorcycle traffic flow in Rule 273 is lower than that of Rule
299 by holding the linguistic degree of other state variables the same, the linguistic degree of
EGT of Rule 273 should be less than that of Rule 299. However, the selected two rules are

obviously conflicting.

As to the selected rules of SGFLC models, Rule 1 can curtail the total vehicle delays to
the largest amount and the rule considers 7FC from 780~1,700 vehicles/hr, QLC from 7~42
vehicles, TFM from 643~1,323 vehicles/hr, QLM from 6~13 vehicles and EGT from 4~6
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seconds. These values of state variables approximately reflected the highest traffic patterns in

Figure 4.4.

By randomly varying the traffic flows from 10% to 50%, the total vehicle delays only
increase from 0.54% to 14.92%. For sensitivity analysis of different percentages of turning
flow, the total vehicle delays respectively increase 59.27% and 47.57% as Prr and Pgr grow 3
times. Note that the selected rules of the SGFLC model remain unchanged. Those results
shown proposed model can effectively control the traffic signal. Additionally, the increase in

the turning flow ratio also show a negative impact to the intersection delay.
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Chapter 5 SEQUENTIAL INTERSECTIONS

This study further extends the proposed SGFLC model to the signal control of
consecutive intersections. These sequential intersections contain an arterial (east-west
direction) and three competing approaches (north-south direction). To synchronize the signal
control for the sequential intersections, three coordinated signal systems including
simultaneous, alternate, and progressive strategies are considered. The simultaneous strategy
implements exactly the same signal timing plans simultaneously in sequential intersections
without offset (time lag). The progressive strategy implements these plans with offset. The
alternative strategy implements two timing plans with inverse green and red times. In addition,
an independent operation which implements the timing plans at the sequential intersections
without any coordination is also compared. The timing plans of these four signal systems are
determined by the SGFLC, IGFLC, VQ and MQ models, respectively.

5.1 Parameter Settings and Traffic Data

To validate the effectiveness and robustness of the proposed SGFLC signal control
model, an experimental example with three consecutive four-leg intersections (Figure 5.1) is
demonstrated. The percentages of turning flow along an arterial are setting as: left turning
(Pr14)=0.2, right turning (Prz4)=0.2. The percentages of turning flow along with competing
approaches are setting as: left turning (P7¢)=0.1, right turning (Prrc)=0.1. The parameters of
the MCTM are set as: free-flow speed=50km/h, time step=2 seconds, k=130 veh/km/lane.
Assume that the intersection has two lanes (N,(¢)=3.6 cars/cell for all i and #) in each approach
with saturation flow of 1800 pcu/hr/lane (¢,(¢)=2.00 veh/time step for all i and #). The
distance between intersections 1 and intersection 2 is 139 meters (5 cells). The distance
between intersections 2 and intersection 3 is 222 meters (8 cells). The five-minute flow rates
in different approaches are shown in Figure 5.2. Noticeable peak and off-peak traffic patterns
are assumed in east and west directions. The offset of progressive coordinated strategy are 10
seconds and 16 seconds, since the free flow travel speed between intersections is set as 50
km/hr. The parameters of the SGFLC model are set as population size=100, crossover
rate=0.9, mutation rate=0.05, a=0.3, h=0.5, #=80%, £=0.05. The center of gravity method is
employed for defuzzification. The parameters of signal control are: G,,=100 seconds,
G.in=20 seconds, all red + lost time =6 seconds, FGT,,,x=20 seconds, and EGT,,;,=4 seconds.
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Figure 5.2 Five-minute flow rates at the experimental sequential intersections.

5.2 Model Training and Performance

The difference of signal control between an isolated intersection and coordinated
sequential intersections is that the control variable (EGT) of an isolated intersection is
determined based on the state variables considering the traffic condition at the intersection
alone while the EGT of coordinated sequential intersections is determined based on the traffic
conditions of all approaches along the arterial.

An arterial coordinated signal control and training structure are shown in Figure 5.3. To
reflect the various traffic conditions of different coordinated intersections, the green times
along the arterial are independently determined by following the same control mechanism of
an isolated intersection. However, to synchronize the signal timing plans of all coordinated

intersections, an integrated signal control mechanism by considering the summation of traffic
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flows at all approaches in green phase and summation of queen length at all approaches in red

phase. Therefore, the cycle length of all coordinated intersections is kept the same.
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Figure 5.3 Arterial coordinated signal control system structure.
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Take progressive coordinated strategy for example. The signal control rules for arterial
approaches are mentioned in Chapter 4. The learning process of competing approaches is
depicted in Figure 5.4(a). Note that SGFLC converges after five stepwise evolutions with a
total of 162 generations progressed. The value of 7VD decreases from 298.74 to 218.55
veh-hour. A total of five rules are selected after eight stepwise evolutions. Figure 5.4(b)
presents the optimally selected eight logic rules along with corresponding tuned membership

functions.
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Figure 5.4 Learning process and results of the SGFLC model at competing approaches.

5.3 Model Validation and Comparisons

To validate the effectiveness, the control performance of the SGFLC model is compared
with the IGFLC, VQ and MQ models. The control performances of these control models are
reported and compared in Table 5.1. Obviously, the performances under progressive
coordinated strategy are significantly superior to other systems. The progressive SGFLC
model performs best among these four models, follows by the progressive VQ model. The
signal control models under alternate coordinated strategy perform relatively poor. Also notice
that all the SGFLC models under various coordinated strategies perform better than the
IGFLC, VQ and the MQ models. The results show the effectiveness of the proposed SGFLC

model in controlling the signal timings of sequential intersections.

Table 5.1 Comparison of control performance at the experimental intersections.

Signal TVD (vehicle-hours) Rate of ATVD reduced by
coordinated SGFLC
strategy SGFLC | IGFLC VQ MQ IGFLC VQ MQ
Simultaneous 234.16 | 238.64 23998  246.46 1.91% 2.49% 5.25%
Progressive 218.55 | 225.71 22552  231.54 3.28% 3.19% 5.94%
Alternate 282.00 | 284.80  287.55  293.03 0.99% 1.97% 3.91%
Independent 249.23 | 252.01 25277  259.05 1.12% 1.42% 3.94%
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5.4 A Field Case

5.4.1. Data

The proposed SGFLC signal control model is further applied to a real case of three

adjacent signalized intersections in Jin-Ma arterial intersected with Chang-Mei Road,
Chang-Xing Road and Dong-Gu Road of Changhua City in Taiwan. Table 5.2 depicts the
configuration of this arterial and three streets, in which Jin-Ma Road is a two-lane arterial in

west-east direction, Chang-Mei Road, Chang-Xing Road and Dong-Gu Road are all one-lane

streets in north-south direction. Five-minute flow rates during the morning peak hours from

7:00 a.m. to 9:00 a.m. are surveyed as shown in Figure 5.5. The green times of current timing

plans during the observed period are 40 seconds north-south and 75 seconds west-east at

Jin-Ma/Chang-Mei intersection, 50 seconds north-south and 120 seconds west-east at Jin-Ma

/Chang-Xing intersection, 50 seconds north-south and 125 seconds west-east at Jin-Ma

/Dong-Gu intersection. All-reds and change interval are 6 seconds for all intersections.

Currently, there is no signal coordinated control between these three intersections.
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Figure 5.5 Five-minute flow rates at the field-study in Changhua.

Table 5.2 Data information of field case study at 3 sequential intersections.

“"é’ﬁ Chang Mei Road 325m Chang Xing Road 458m Dong Gu Road
S f—— " - »
1l ﬂ‘ i 1o
Configuration | ... ey, \emizmzmzemiin i Roud crzmizmny, \zssazzzzs JinVa Rond emzemizzinn,  \emssamzzems
i ‘ U' ﬂ‘ i 1 ‘ i}
Intersection 1 Intersection 2 Intersection 3
Jin-Ma/Chang-Mei intersection
Ease-West bound North-South bound
75 sec. 40 sec.
Timing plain Jin-Ma /Chang-Xing
120 sec. \ 50 sec.
Jin-Ma /Dong-Gu
125 sec. 50 sec.
Number of Arterial approach Competing approach
lanes 2 1
Coordinated
Independent
strategy

5.4.2. Results

The control performances of SGFLC, IGFLC, VQ, MQ and current timing plan are
reported in Table 5.3. Compared with the current timing plan that is operated independently,
the progressive SGFLC can curtail the total vehicle delays by the largest amount (19.08%),
followed by progressive IGFLC and VQ (16.52% and 15.49%), and with the least reduction
(1.49% and 0.32%) by alternate signal system. Also notice that SGFLC consistently
outperforms over other single models, no matter which signal system is operated.
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Table 5.3 Comparison of control performance at the sequential intersections in Changhua.

TVD (vehicle-hours)

Signal Current
coordinated SGFLC IGFLC VQ MQ timing
strategy plan

Simultancous 318.58(12.13%) | 324.84(10.41%)  328.30(9.45%)  336.50(7.19%) -
Progressive  293.41(19.07%) | 302.66(16.52%) 306.41(15.49%) 316.24(12.78%) -
Alternate 349.76(3.53%) | 353.66(2.46%)  357.17(1.49%)  361.43(0.31%) -
Independent  339.30(6.42%) | 345.87(4.61%) 352.85(2.68%) 356.25(1.74%) 362.57

Note: the percentages in parenthesis represent the rates of 7VD reduction compared with the
current timing plan.

5.5 Discussions

According to the selected rules of the SGFLC model under a progressive coordination
system, Rule 1 can curtail the total vehicle delays to the largest amount and it considers 7FC
from 702~2,613 vehicles/hr, QLC from 8~58 vehicles, TFM from 159~2,011 vehicles/hr,
QLM from 30~65 vehicles and EGT from 4~9 seconds. The linguistic degrees of state

variables and control variable of Rule 1 are shown below:
Rule 1: IF: TFC=6, QLC=3, TFM=2, QLM=5 then EGT=5

Based on the Rule 1, Rule 2 can reduce the TVD from 258 to 252 vehicle-hours and it
considers TFC from 843~1,896 vehicles/hr, QLC from 6~15 vehicles, TFM from 675~1,389
vehicles/hr, OLM from 21~47 vehicles and EGT from 6~12 sec. The linguistic degrees of state

variables and control variable of Rule 2 are shown below:
Rule 2: IF: TFC=5, QLC=1, TFM=4, QLM=4 then EGT=7

The linguistic degrees of state variables and control variable of other rules are also
shown below. Note that Rule 1 to Rule 4 aims to control signal under high traffic flow
conditions while Rule 5 to Rule 8 aims to deal with longer queue length. Additionally, as
investigating into the rules, the linguistic level of control variable, EGT, increases as traffic

flow grows and queue length becomes shorter. The selected rules are logically reasonable.
Rule 3: 1IF: TFC=8, QLC=6, TFM=7, QLM=3 then EGT= 8§
Rule 4: 1IF: TFC=7, QLC=7, TFM=8, QLM=8 then EGT= 6
Rule 5: 1F: TFC=3, QLC=8, TFM=3, QLM=1 then EGT= 4

Rule 6: IF: TFC=1, QLC=5, TFM=6, QLM=6 then EGT=1
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Rule 7: IF: TFC=2, QLC=2, TFM=5, QLM=7 then EGT= 2

Rule 8: IF: TFC=4, QLC=4, TFM=1, QLM=2 then EGT= 3
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Chapter 6 DETERMINING THE COORDINATED INTERSECTIONS

The control performance of signal coordination would be greatly degraded as the number
of coordinated intersections increases. Thus, numerous studies attempted to determine the
optimal number of neighboring intersections to be coordinated. Therefore, this study adopts
GAs to determine which intersections to be coordinated and how many clusters of coordinated

intersections would be.
6.1 Model Structure

A corridor adaptive coordinated signal control is shown in Figure 6.1. The structure
divided into two processes. The learning process of isolated intersection and sequential
intersections were mentioned above. The control process includes 2 kinds of controller. To
reflect the various traffic conditions of different coordinated intersections, the green times
along the arterial are independently determined by following the same control mechanism of
an isolated intersection. However, to synchronize the signal timing plans of all coordinated
intersections, an integrated signal control mechanism by considering the summation of traffic
flows at all approaches in green phase and summation of queen length at all approaches in red
phase. Therefore, the cycle length of all coordinated intersections is kept the same. According
to the analysis above, the performances under progressive coordinated strategy are
significantly superior to other systems. This coordinated strategy was adopted further
elaborated and compared. Note that the mining rules of SGFLC signal control models both for

isolated intersection and sequential intersections also remain unchanged.

Input : Traffic flow

v

Learning
process

Train SGFLC for an
isolated intersection

Train GFLC for 2 sequential
integrate intersections

Train GFLC for 3 sequential
integrate intersections

Train GFLC for j sequential
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L [ Binary GAs
v ry

Corrido adaptive coordinated
signal controller

Figure 6.1 The structure of a corridor adaptive coordinated signal control model.
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6.2 Parameter Setting and Traffic Data

This study introduces three sizes of arterial to combine proposed SGFLC model. The
small size arterial consists of three intersections (Figure 6.2 (a)). An experimental example
with seven and fifteen consecutive four-leg intersections (Figure 6.2 (b) and Figure 6.2 (c)) is
demonstrated as medium-sized and large-sized arterials, respectively. The traffic flow rates in
different approaches with three sizes of arterial are shown in Figure 6.3 (a) to Figure 6.3 (c),
respectively. Note that two types of traffic flow pattern are adopted in this experimental case
and assumes each approaches being one-way direction. The percentages of turning flow are
setting as: arterial approaches=0.1 and competing approaches=0.5. Each of types is divided
into peak and off-peak hour. Also note that the competing approaches traffic are assumed as
flat in type I and as different in type II. As shown in Figure 6.3, intersections 2, 4 and 8 may
be the critical intersections along the arterial. To simplify the analysis, this study neglects the

turning traffic and coordinates intersections by the progressive signal system only.

278m 111 m 139 m 222 m

— 750m ——]

(a) three sequential intersections

278m 111m 139 222m__ 83m 83 m

o

| 1,138 m |

T

(c) Fifteen sequential intersections
Figure 6.2 Configuration of the corridor intersections.
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Figure 6.3 Traffic flow rates at the corridor intersections.

6.3 Method Validation and Comparison

To validate the effectiveness, the control performance of SGFLC model and GAs clusters
(SGFLC+GAs) is compared with coordinated guidance: SGFLC hybrid guidance
(SGFLC+G). The guidance can be referred to any textbook in traffic control (e.g. Manual on
Uniform Traffic Control Devices, FHA, 2009 ). The MUTCD provides the guidance that
traffic signals within 800 meters (0.5 miles) of each other along a corridor should be
coordinated unless operating on different cycle lengths. An independent operation with
SGFLC (SGFLCHI) which implements the timing plans at the corridor intersections without
any coordination is also compared. On the other hand, appropriate coordinated intersections
alone a corridor not only can enhance progressive probability but also can curtail traffic delay.

Thus, Total vehicle throughput (7V7) including corridor and competing approaches is chosen

71



as coordinated performance in this study. Besides, the control rules of SGFLC which under

minimal total vehicle delay (77D) remain unchanged.

Table 6.1 summarizes the comparison results. An independent operation which
implements the timing plans at the sequential intersections without any coordination is also
compared. For type I traffic pattern, the proposed SGFLC+GAs method performs the same as
SGFLC+ G method in small size corridor and performs better than the SGFLC+ G and
SGFLC+ I methods by respectively extending 20% and 47% total vehicle throughput for
off-peak traffic and 17% and 23% for peak traffic in medium and large sizes corridors. In the
case of type II traffic pattern, the experimental example has also shown that SGFLC+GAs
method performs best, no matter which traffic conditions are studied. The results validate the
effectiveness of our proposed SGFLC signal control model hybridizing with GA-based

clustering method.

Table 6.1 Comparisons of coordinated clusters at the corridor intersections.

ATVT
) Coordinated  No. of Chromosome vTr compared

Size Traffic method clusters  (coordinated intersections) (vehicle) with
SGFLC+GAs

(%)

Type I
small  Off-peak SGFLC+GAs 1 111 1,507 -
SGFLC+G 1 1+2+3 1,507 0.00%
SGFLC+1 3 1-2-3 1,003 33.44%
peak SGFLC+GAs 1 111 1,837 -
SGFLC+G 1 14243 1,837 0.00%
SGFLC+1 3 1-2-3 1,408 23.35%
medium Off-peak SGFLC+GAs 1 0000000 2,516 -
SGFLC+G 2 1+...+6-7 1,995 20.71%
SGFLC+1 7 1-2-3-4-5-6-7 1,327 47.26%
peak SGFLC+GAs 1 0000000 2,846 -
SGFLC+G 2 1+...+6-7 2,351 17.39%
SGFLC+1 7 1-2-3-4-5-6-7 2,181 23.37%
large  Off-peak SGFLC+GAs 3 111111000001111 4,340 -
SGFLC+G 3 1+...+6-7+...+12-13+.. .+15 3,412 21.38%
SGFLC+1 15 1-2...-15 2,889 33.43%
peak SGFLC+GAs 4 111000011110000 4,670 -
SGFLC+G 3 1+...46-7+...+12-13+.. +15 3,857 17.41%
SGFLC+1 15 1-2...-15 3,579 23.36%
Type I

small  Off-peak SGFLC+GAs 1 111 2,482 -
SGFLC+G 1 1+2+3 2,482 0.00%
SGFLC+1 3 1-2-3 1,966 20.79%
peak SGFLC+GAs 1 111 2,812 -
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SGFLC+G 1 1+2+3 2,812 0.00%

SGFLC+1 3 1-2-3 2,223 20.95%

medium Off-peak SGFLC+GAs 2 0001111 4,241 -
SGFLC+G 2 I+...+6-7 3,558 16.10%

SGFLC+1 7 1-2-3-4-5-6-7 2,817 33.58%

peak  SGFLC+GAs 1 0001111 4,571 -
SGFLC+G 2 1+...+6-7 3,839 16.01%

SGFLC+1 15 1-2-3-4-5-6-7 3,612 20.98%

large  Off-peak SGFLC+GAs 4 111111101110000 5,765 -
SGFLC+G 3 1+...46-7+...+12-13+...+15 4,836 16.11%

SGFLC+1 7 1-2...-15 4,566 20.80%

peak  SGFLC+GAs 6 111000010001110 6,095 -
SGFLC+G 3 1+...+6-7+.. +12-13+...+15 5,119 16.01%

SGFLC+1 15 1-2...-15 4,817 20.97%

Note: 1. GFLC+GAs means the combination of SGFLC signal control model with GAs coordinated

method.

2. GFLC+G means the combination of SGFLC signal control model with coordinated guidance

provide by MUTCD.

3. GFLCH+I means the combination of SGFLC signal control model with independent

coordinated operated.

6.4 Discussions

As noted from the analytical results, signalized intersections can increase total vehicle

throughput through a proper coordination. For the small-sized corridors, the proposed hybrid
model tends to coordinate all intersections, no matter which traffic pattern conditions are. For
the medium-sized corridors, the traffic patterns at the competing approaches could affect the
intersection coordination result. For the large-sized corridors with 15 intersections, both
traffic patterns of competing approaches and of the arterial approach determine the
coordination result. Additionally, the distance between intersections may also show its effect
to for the intersection clustering result. Moreover, it is interesting to note that the number of
coordinated intersections will not exceed 7 intersections. This finding is in accordance with

the conclusions proposed by Zong and Thomas (2007).
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Chapter 7 CONCLUDING REMARKS

The summary of the academic and practical contributions and major findings of this

study is given in Section 7.1. Limitations of this research are arranged in Section 7.2.

Suggestions for further research are then drawn in Section 7.3.

7.1 Conclusions

This study develops a self-learning traffic signal control model for both isolated and

sequential intersections based on the MCTM traffic simulator. The contributions and findings

related to this research are summarized in the following points:

1.

Following most of the previous literatures, for the case of an isolated intersection, we
choose traffic flow in green phase (7F) and queue length in red phase (QL) as two state
variables and extension of green time (EGT) as the control variable and total vehicle
delays (7VD) as performance measurement. For the case of sequential intersections of
competing approaches, TF is the summation of traffic flows at all approaches in green

phase; while QL is the summation of queen length at all approaches in red phase.

This study establishes an arterial coordinated signal control with a self-training capacity.
To reflect the various traffic conditions of different coordinated intersections, the green
times along the arterial are independently determined by following the same control
mechanism of an isolated intersection. However, to synchronize the signal timing plans
of all coordinated intersections, an integrated signal control mechanism by considering
the summation of traffic flows at all approaches in green phase and summation of queen
length at all approaches in red phase. Therefore, the cycle length of all coordinated

intersections is kept the same.

Based on the iterative GFLC model proposed by Chiou and Lan (2005), this research
further develops stepwise GFLC signal control model. For the case of isolated
intersection, the experimental example had shown that the control performance of
SGFLC is almost the same as the optimal multiple timing plan and superior to the
optimal single, IGFLC model, vanishing queue and maximum queue. Moreover, the
SGFLC model can do much better than any other models as the traffic flows vary more
conspicuously, indicating the robustness of the SGFLC model. The field case study also
shows that SGFLC consistently outperforms over other single models and current timing
plain. In the case of sequential intersections, both experimental example and field study
have also shown that SGFLC performs better than other adaptive signal control models,

no matter which coordinated signal system is operated. Those results present evidence
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that GFLC is effective, robust and applicable to signal control for the intersections.

4. The validation results of the MCTM demonstrate its capability in replicating the mixed
traffic behaviors at the signalized intersection. It is interesting to note that although both
average delays of cars and motorcycles would be deteriorated as traffic demand grows,
the average delay of cars grow much more rapidly than that of motorcycles, suggesting
that the MCTM model can simulate the behaviors of motorcycles which do not follow
the lane disciplines and may make lateral drifts breaking into two moving cars in order to
keep moving forward.

5. According to the learning results of two similar GFLC models (IGFLC and SGFLC),
although both GFLC models exhibit high control performance, the proposed SGFLC
model selects much fewer rules (only five rules) with a relatively fewer generations than
the IGFLC model does (374 rules). Additionally, by examining the rules selected by the
IGFLC model, many of them are redundant or mutually conflicting. The merit of
selecting few rules provides a chance for post-optimization adjustment and rule
interpretation. Thus, the comparison shows that the proposed SGFLC is more effective,
efficient and comprehensible than the IGFLC model.

6. The proposed SGFLC model mainly relies on the traffic information including traffic
flow and queue length of cars and motorcycles to adaptively control the signal. Through
a proper installation of two sets of sensors near the intersections, both traffic flow and
queue length can be obtained (e.g. Sun et al., 2011). However, for the intersections with
only one set of sensors, queue length can still be estimated based on traffic flow theories,

e.g. shockwave method proposed by Liu et al. (2009).

7. In order to avoid the control performance of signal coordination degraded as the number
of coordinated intersections increases. This study combines SGFLC traffic signal control
rules with GAs for optimally determining which intersections have to be coordinated
along a corridor. To validate the proposed hybrid models, the coordinated guidance
suggested by MUTD and independent operation are compared. The experimental
example has also shown that proposed model can increase 27% and 50% total vehicle
throughput for off-peak traffic and 21% and 30% for peak traffic in medium- and
large-sized corridors, respectively under type I traffic pattern. In the case of type II traffic
pattern, the experimental example has also shown that hybrid model performs best, no

matter which traffic conditions are studied.
7.2 Limitations

1. This study chooses total vehicle delay as performance indicator. Thus, other performance
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indices such as stopping probability, minimum fuel consuming and maximum

throughput...etc. haven’t been examined.

2. This near-optimal signal control performance and validation results are mainly based on
the MCTM simulation. The set of selected rules may not work well under other
simulators. Additionally, the geometric design, such as parking space, bus stop and

pedestrian facility... etc, has not been considered in this study.

3. The offset of progressive strategy was setting according to free flow speed and distance
between intersections for simplification. The average vehicle speed under various traffic

conditions should be further considered instead.

4. For sequential coordinated intersections, the mixed-traffic behaviors are assumed the
same along the corridor and validated by the real traffic data near intersections.
However, the relationship between cars and motorcycles traveling at the mid-block of

sections may not be the same as those behaviors near intersections.

7.3 Suggestions

Although this study has developed an effective, robust and applicable signal control
models for the isolated and sequential intersections, some limitations should be mentioned

and some findings are worth further studies.

1. The proposed stepwise algorithm is to select rules sequentially. However, an early
selected rule may not be necessary to be the one of rules in the optimal rule combination.
A post-optimization adjustment mechanism can be developed to further fine tuned the

selected rules and membership functions.

2. More effective and efficient encoding methods in selecting the logic rules or tuning the

membership functions or both deserve to be explored.

3. For sequential coordinated intersections, the control performance is measured by 7VD in
this paper. Other performance indices, such as maximum green band, minimum stopping

rate, and maximum throughput, deserve to be adopted and examined.

4. In this study, only simple two phase signal control plan is considered. Multi-phase signal
control plans with consideration of turning flows at intersections deserves to be

developed.

5.  The control performances of the trained SGFLC model can be further examined by
commonly-adopted traffic simulation software packages, such as AIMSUN, VISSIM,
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PARAMICS, and CORSIM through build-in API interfaces, prior to field installation to

judge effectiveness of the proposed model.

The mixed-traffic condition including lumps cars and heavy vehicles all together and
scaled up to the network level should be considered in the traffic simulation model so as

to further enhance the applicability and comprehensiveness of the proposed model.

The inaccuracy of traffic information detected on urban streets is pretty common. How to
conduct an optimal control based on such inaccurate and unreliable vehicle detectors is

also an interesting topic deserves a further attempt.
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