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雷達車輛偵測及衝擊波技術應用於緊鄰路口號誌控制

之研究 
 

學生：曾明德 指導教授：卓訓榮 

國立交通大學運輸科技與管理學系 博士班 

摘  要 

在尖峰時刻，市區或高速公路匝道附近，常常會有數個緊鄰路口

的交通擁塞問題，其中號誌控制不當也常是擁堵主因。而在作智慧型

的號誌控制中，車輛偵測器的車流偵測能力更是關鍵因子。因此本研

究從車輛偵測器開始研究，除了偵測傳統流量、速度之外，並偵測十

字路口衝擊波，並應用該衝擊波技術作緊鄰路口的號誌控制。 

本研究首先針對雷達車輛偵測器，提出車種、車速的演算法。該

演算法以最佳辨識演算法為基礎，結合影像處理來學習，使用支持向

量機 (Support Vector Machine)來辨識車種、支持向量迴歸 (Support 

Vector Regression)來估計車長及分辨車種。以市區道路蒐集到的真實

資料驗證，並比較 K-mean 及線性判別分析法 (Linear Discriminant 

Analysis)後，証實支持向量機及支持向量迴歸可成功精確地辨識機車、

小車、大車及超大車等多種車長及推估其速度。 

接著，本研究利用前述雷達偵測器的偵測結果，提出新的三個交

通參數:空車、有車及停車，並利用此三參數結合車流理論導出路口衝

擊波的偵測方法，而且也在模擬環境成功驗證其可行性及精確程度。 

最後本研究，提出一個以傳統觸動控制為基礎的臨界路徑控制方

法，該方法以關鍵行車路徑來設計時相、依車流回堵情形動態調整路

徑時相最大綠燈時間並在萬一車流在綠燈停止不動時，切換時相以避

免路口容量損失。該方法中，並以衝擊波理論為基礎推估各臨界路徑

上需求綠燈時間，進而提出最佳化模式，求解各路徑最佳均衡綠燈時

間。另外，也在一個實際的緊鄰路口組成的群組路口，模擬運作情形，

比起傳統觸動模式有顯著改善。 
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ABSTRACT 

A complementary metal-oxide semiconductor based radar with 

sensitivity time control antenna is successfully implemented for advanced 

traffic signal processing. The collected signals from the radar system are 

processed with developed optimization algorithms for vehicle-type 

classification and speed determination. In course of optimization, a video 

recognition module is further adopted as a supervisor of support vector 

machine and support vector regression.  In the meanwhile, skew training 

data set and numerous classification scenarios are used to test the classifiers. 

Finally, the results are analyzed and compared. 

Beside, this investigation provides two traffic flow detection methods 

for oversaturated signalized intersection. The first method detects 

intersection shockwaves by innovative traffic parameters involving stopped 

duration, moving duration, and empty duration. The second method 

provides upstream arrival rate and speed by shockwaves, signal timing, and 

traffic flow model.  This research has a contribution to the detection of 

shockwaves and upstream traffic parameters under over-saturated condition 

which traditional detectors cannot provide. 

Finally, a novel actuated critical path control model for designing 

signal timings on closely spaced intersections is presented in this study. 

Shockwaves are utilized to dynamically adjust maximal green time for each 

critical path with unstable traffic demands. Combined with path-based 

progression, this methodology suggests a novel way to deal with closely 

spaced intersections. A real network had been exemplified with 

micro-simulation to illustrate the effectiveness of the proposed method. The 

numerical example demonstrates a satisfying result compare to ordinary 

full-actuated scheme. 
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I. Introduction 

1.1 Background 

Accurate methods of collecting traffic information are essential in an intelligent 

transportation system (ITS). Traffic data has been gathered primarily via inductive loop 

detectors, pneumatic road tubes, and temporary manual counts. However, traffic 

detectors developed recently use video, sonic, ultrasonic, radar or infrared energy. These 

detectors are non-intrusive and mounted either overhead or to the side of traffic lanes. 

Considering the cost, radar and video sensors both have multi-lanes capability. A single 

detector of either of these types can detect up to eight or ten lanes. However, poor 

weather conditions, such as snow and heavy rain, can seriously impact video sensors. In 

contrast, radar sensors still function effectively in poor weather. Therefore, radar sensors 

are a good choice in ITS applications owing to their multi-lane coverage and resistance 

to weather impacts. 

Numerous classifiers have been developed and tested for data cluster or pattern 

recognition, and these classifiers are categorized into two types: supervised and 

unsupervised. In supervised learning, the aim is to learn a mapping from the input to an 

output whose correct vehicle classes are provided by a supervisor. In unsupervised 

learning, there is no such supervisor and we only have input of data. K-mean cluster is a 

famous unsupervised classifier that has been used for numerous applications. 

Furthermore, support vector machine (SVM) and linear discriminated analysis (LDA) 

are two supervised classifiers. LDA was originally developed in 1936 by R.A. Fisher. 

SVMs have been used for isolated handwritten digit recognition, object recognition, 

speaker identification and face detection in images. To find the optimal classifier, this 

study tests these three classifiers under two constraints. Vehicle speed is estimated using 
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a virtual loop concept that requires vehicle and virtual loop length to make an estimate. 

Support vector regression (SVR) is used to predict vehicle length, while a video 

calibrating system is used to measure virtual loop length. A skew training data set and 

numerous classification scenarios are used to test the classifiers.  

According to the Doppler Effect, the frequency of the radio wave will become 

higher than the original frequency when the object approaches the radar device, and the 

frequency of the radio wave will become lower than the original frequency when the 

object moves away from the radar device. Therefore, the frequency variations of the 

reflective signal is analyzed to acquire vehicle‟s speed; in other word, when a vehicle 

moves at a high enough speed to generate the Doppler Effect, the reflective radio wave 

from the vehicle will generate the Doppler shift. The Doppler frequency versus time 

variations of the reflective radio wave is recorded and the relative speed of the vehicle 

and the radar can be computed. 

Real-time upstream traffic information is important because adaptive models must 

have them to predict future traffic flow and compute the signal timing. Under 

non-oversaturated situation, vehicle detectors can provide such real-time upstream 

information. However, vehicle detectors are not capable to provide upstream flow 

accurately under oversaturated traffic condition; vehicles often have a full stop at 

detection zone and the detected flow is not “arrival” but “departure”. Hence, this 

research utilizes another robust oversaturated traffic parameter, shockwave.  The 

shockwave detection methodology is also proposed to show its effectiveness. 

To estimate shockwaves under oversaturated traffic situation, this research utilizes 

innovative traffic parameters, including stopped duration, moving duration, and empty 

duration; which depend only on the presence of vehicle and remain accurate even under 

oversaturated condition.  
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Closely spaced intersections are characterized as having short link distance 

between intersections; the physical spacing between the intersections is small. These 

intersections often become traffic bottleneck during peak hours due to its physical 

configuration. With inappropriate signal design and short links, traffic queues are likely 

to spill-back and cause an inefficient signal operation. The jammed traffic is generally 

derived from poor progression or unstable demands. Poor coordination of the signals 

leads to queue spill-back from one intersection that can seriously disrupt operation of 

the adjacent intersection. Furthermore, although several methods have been used to 

mitigate the congestion of closely spaced intersection, they seldom focused on the 

crooked traffics of the adjacent minor approaches. As the traffic demand on minor 

approaches grows, progression on those approaches should also be introduced. Despite 

the contribution of those researches, most of such models have not addressed such 

progression issue. Traffics in closely spaced intersections are treated as paths in this 

study. These paths would unfold hiding conflict points which would not easily be seen 

while considering flows on different approaches only. These conflict points often cause 

safety and efficiency issues, especially during oversaturated periods. Therefore, 

progressions in these closely spaced intersections have a multi-path nature rather than 

two-way progression on arterials. 

 1.2 Problem definition 

The mixing of motorcycles and other traffic is hazardous in Asia. Currently, most 

radar detection algorithms classify vehicles into three or five categories, but generally 

exclude motorcycles from the classification system. How to detect motorcycles by radar 

sensor should be focused. Beside, speed estimation is not accurate for single transceiver 

Radar sensor, an accurate estimation method for vehicle speed needs to be developed. 
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Vehicle detectors are not capable to provide upstream flow accurately under 

oversaturated traffic condition; vehicles often have a full stop at detection zone and the 

detected flow is not “arrival” but “departure”. The shockwave is a robust detectable 

parameter under oversaturated traffic condition and has been applied to traffic control 

for a long time. An accurate estimation method for shockwave needs to be developed. 

Closely spaced intersections often become traffic bottleneck during peak hours due 

to its physical configuration. The jammed traffic is generally derived from poor 

progression or unstable demands. Therefore, phasing sequence design and dynamic 

green time adjustment need to be solved analytically. 

 

1.3 Research objectives 

The main objectives of this research effort can be summarized as follows: 

To find a high recognition rate optimization algorithm for the vehicle-type 

classification and speed determination of radar detector. 

To provide two upstream flow estimation methods for oversaturated signalized 

intersections; both methods are based on shockwaves of a signalized intersection. The 

first method calculates shockwaves by combining the new traffic parameters and traffic 

flow model. The second method makes use of the shockwaves derived from method one 

and provides upstream flow estimation. 

To find a signal control method to mitigate the oversaturated traffic condition in 

closely spaced intersections. 

1.4 Research contributions 

This study illustrates a radar sensor classification scheme that classifies vehicles 

into four categories: motorcycles, small, medium and large vehicles. This research has 



 

 
5 

successfully combine two supervised learning algorithms to do vehicle classification 

and speed estimation: support vector machine and support vector regression. 

The shockwave estimation method contributes 1) providing a general estimation 

method for five shockwaves in an intersection, 2) the model formulation takes dynamic 

signal timing into consideration, 3) the capability of predicting required green time to 

discharge traffic queue, and 4) introducing an upstream flow estimation method that 

capable to provide information beyond the detection zone of vehicle detectors. 

The proposed signal control method which can: (1) improve signal operation by 

path-based progression instead of two-way progression, (2) introduce a novel phase 

change concept for full-actuated control to prevent capacity loss, and (3) modify 

existing full-actuated control to suit the closely spaced intersections and to dynamically 

adjust maximal green time according to unstable traffic demands. 

1.5 Research layout 

This dissertation is organized as follows. First, the introduction chapter gives an 

overview of the background, problem definition, research objectives, contributions and 

overview of this dissertation. Second, chapter 2 presents a literature review of related 

researches in the relevant areas. The literature review chapter concerns about topics, 

including: i) radar vehicle detection algorithms, ii) Shockwave detection and iii) signal 

control methods.  

Radar vehicle detection algorithm, shockwaves detection model and optimal signal 

control algorithm for closely spaced intersections are proposed in chapter 3. In chapter 4, 

numerical examples with real data for radar vehicle detector are discussed; shockwaves 

and closely spaced intersections are simulated. The last chapter presents the conclusions 

and perspectives of this study.   
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II Literature Review 

This chapter provides literature reviews relevant to the formulation and solution 

algorithm of radar vehicle detection, shockwave estimation and closely spaced signal 

control problem. The following sections are organized as (i) radar detection algorithms, 

(ii) shockwave detection algorithms, (iii) signal control methods  

 

2.1 Radar vehicle detection  

 

 

Figure 2.1 Side-fired Radar detector. 

 

Figure 2.2 Radar signal power over road surface. 
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Microwave radar was developed for detecting objects. The word radar was derived 

from the function that it performs: Radio Detection and Ranging. The term microwave 

refers to the wavelength of the transmitted energy of 1GHz to 30 GHz. Microwave 

sensors designed for traffic data collection are limited to intervals near 10.525 or 24.0 

GHz. Sensors with 10.525GHz have lower range resolution , bigger size and lower cost 

than sensors with 24Ghz. 

 Microwave sensors are generally mounted as side-fire configuration (as Figure 

2.1). Side-fire mode is mounted on a roadside pole with its footprint aimed at right 

angle to the traffic lanes.  Side-fire mode can monitor up to 10 lanes for each sensor.   

The sensor receives the reflected signals from all surfaces within its beam – pavement, 

barriers, vehicles and trees. It maintains a background signal level from fixed objects in 

each range slices. Vehicles are detected when their reflected signal exceeds the 

background level of their range slice by a certain amount called threshold (see Figure 

2.2).  

 The main types of microwave radar sensors are used in roadside are Frequency 

Modulated Continuous Wave (FMCW) radar [1, 2] in which the transmitted frequency 

is constantly changing with respect to time, as illustrated in Figure 2.3. The FMCW 

radar operates as a presence detector and can detect motionless vehicles. 

The carrier frequency increases linearly with time. The ramp slope is given byΔf/Δt. 

The echo is received after the round trip time Tr = 2R/c where R is the distance to the 

target. The echo is mixed with a portion of the transmitted signal to produce an output 

beat frequency,  

    
 

  
                                                       (2.1) 

where    
 

   
 is range resolution. 
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A moving vehicle will superimpose a Doppler frequency shift on the beat 

frequency fd. One portion of the beat frequency will be increased and the other portion 

will be decreased. For a target approaching the radar, the received signal frequency is 

increased (shifted up in the diagram) decreasing the up-sweep beat frequency and 

increasing the down-sweep beat frequency (see Figure 2.4) 

fb(up) = fb - fd,                                                 (2.2) 

fb(dn) = fb + fd. 

If we look at the Doppler frequency when a vehicle passes through the radar 

antenna beam, the Doppler shift of a reflected signal is proportional to the velocity of 

the vehicle and to the angle at which the signal is reflected. This relationship is 

described by the equation:    
      

 
                  

For small angle Sinθ=θ, hence 

   
      

 
 

    

  
                                               (2.3) 

Therefore, the Doppler shift changes linearly and pass through zero as the vehicle 

pass through the sensor‟s field of view [3](As Figure 2.5). The slope of this linear 

change is a function of the velocity of the target and the distance of the target‟s path 

from the sensor. The Doppler shift of reflected angle is measured multiple times as the 

vehicle passes through the field of view of side fire sensor. A linear fit is applied to the 

Doppler shift measurements and results in a slope m. The slop m is converted to a speed 

by 

           
.                                               (2.4) 

Another vehicle speed estimating method is to use the virtual loop concept [4, 5, 6], 

which a detection zone of a radar is realized as an inductive loop on the ground. 
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Figure 2.3 FMCW Radar concept. 

 

Figure 2.4 Doppler frequency for a moving vehicle in FMCW Radar. 
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Figure 2.5 Time-frequency distribution of a moving vehicle in FMCW Radar. 

 

The speed of vehicle is calculated as  

  
    

  
 ,                                                    (2.5) 

where L is the length of detection zone, Lv is the average effective length of 

vehicles and Δt is the detector on time. The virtual loop speed can be a good result for 

average speed. But it is not accurate in general. 

Radar and inductive loop detectors have historically performed vehicle 

classification by providing estimates of vehicle length based on vehicle speed ,v , and 

the detector on time. The equation for vehicle length, Lv, is given by  

Lv=v*on time-effect length of detection zone. 



 

 
11 

H. Roe and G. S. Hobson (1992) [7] have described a forward-looking FMCW 

Radar which can separate traffic into five classes. This single lane detector uses the  

profile of vehicle to do vehicle classification. The profile is formed by the vehicle 

height and length. The vehicle speed is calculated from Doppler effect. Park et al. (2003) 

[8] have developed a FMCW side-looking vehicle detection radar. The velocity is 

estimated by using the appearance duration of the reflected signal and the length of 

detection zone and Doppler shift. The classification of a vehicle, as large, medium or 

small size, is possible by processing received power and spectrum pattern 

Numerous statistic learning methods have been developed and tested for data 

cluster or pattern recognition, and these classifiers are categorized into two types: 

supervised and unsupervised. In supervised learning, the aim is to learn a mapping from 

the input to an output whose correct vehicle classes are provided by a supervisor. In 

unsupervised learning, there is no such supervisor and we only have input of data. 

K-mean cluster is a famous unsupervised classifier that has been used for numerous 

applications. Furthermore, support vector machine (SVM)[9, 10] and linear 

discriminated analysis (LDA) [11, 12] are two supervised classifiers. LDA was 

originally developed in 1936 by R.A. Fisher [13]. SVMs have been used for isolated 

handwritten digit recognition, object recognition, speaker identification and face 

detection in images. 

K-means is one of the best known data clustering methods. The goal of k-means is 

to find k points of a dataset that best represent the dataset in a certain mathematical 

sense. These k points are also known as cluster centers. After obtaining these cluster 

centers, they can be used for data classification. 

LDA is a supervisory classifier. LDA obtains a linear transformation ("discriminant 

function") of the two predictors, X and Y, which yields a new set of transformed values 
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that provides more accurate discrimination than either predictor alone. A transformation 

function is found that maximizes the ratio of between-class to within-class variance. 

The transformation seeks to rotate the axes so as to maximize the differences between 

the groups when the categories are project on the new axes. In the ideal case, a 

projection can be found that completely separates the categories. However, in most 

cases no transformation exists that provides full separation, so the objective is to obtain 

the transformation that minimizes the overlap among the transformed distributions. The 

LDA can be derived as a plug-in Bayes classifier. LDA projects the nine feature 

dimension space considered in this study into a three dimension linear discriminant (LD) 

space.  The plug-in classifier finds the average group centers for each vehicle category 

and saves it. When predicting a test sample vehicle, the classifier measures the 

Mahalanobis distance between the group center and the LD project point of the vehicle 

features. The plug-in classifier then estimates the posterior probability of each group 

using Mahalanobis distance, the prior probability which is the group probability of 

training set, and the covariance matrix.  The testing vehicle belongs to the group with 

the highest posterior.  

SVM is also a supervisory classifier. SVMs attempt to identify a set of support 

vectors, two support hyperplanes, and an optimal hyperplane for separating two groups.  

SVM is a binary classifier. Two strategies can be developed to support multiple 

classifications: one-against-one and one-against-rest. The one-against-rest strategy 

constructs k SVMs to separate k groups. The m-th SVM separates the m-th group from 

the others. For k groups, the one-against-one strategy constructs k(k-1)/2 SVMs to 

separate each pair of groups.  
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2.2 Shockwave estimation 

The theory of shockwaves had first developed by Lighthill and Whitham[14] . 

Such shocks are generated at the discharge rates fall due to congestion or the 

termination of a phase.  The shockwave appears due to vehicle speed change, and this 

configuration is very comprehensive to analyze traffic behaviors.  As Figure 2.6 [15], 

the trajectories of shockwaves were derived by assuming an average arrival rate at the 

queue tail. It is noted that y1(0), y1(c) represent the initial and final queue length and the 

line A1,C1,M1,D1,E1 the trajectory of the queue tail at which a shockwave is formed, l1 

and l2 are the lost time during phase transitions and g1 is effective green time. By the 

shockwave concepts at a signalized intersection, the required green time, queue length 

and the end time of shockwave are listed as following equations. 

 

The minimal green time for under-saturated approach is  

 

            
 
                  

 
 1)                        (2.6) 

 

The end time of shockwave A1,C1 is  

 

        
     

  
             )                                  (2.7) 

 

The final queue length for E1 is  

 

                
     

  
 

      

        
    

               )           (2.8) 
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Figure 2.6 Shockwaves at an intersection [15]. 

A.D. May [16] have analysis the shockwave at signalized intersection as Figure 2.7. 

A flow-density curve and approaching traffic flow states A, B, C and D are specified. A 

distance-time diagram is shown in Figure 2.8 so that the slopes WAB, WBC, WAC and 

WAD in two diagrams represent shockwave speeds. Then, the required green time to 

discharge the traffic is  

      
      

       
 
   

   
                                         (2.9) 

The maximal queue length is  

   
 

    
 
          

       
                                             (2.10) 

Although some green time and queue length had been explored in the article, the 

shockwave speeds are calculated by the flow and density difference between flow 

states. 
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Figure 2.7 Shockwave in flow-density curve[16]. 
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Figure 2.8 Shockwave in time-distance diagram[16]. 

Instead of counting arrival traffic flow in the current signal cycle, Xinkai et al. 

(2009)[17] solve the problem of measuring intersection queue length by exploiting the 

queue discharge process in the immediate past cycle. As Figure 2.9 , the authors find the 

break points for A, B and C by detector occupancy time, and applying Lighthill–

Whitham–Richards (LWR) shockwave theory, the authors are able to identify the 

change of traffic queue length.  
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Figure 2.9   Shockwaves and queue length detection in an intersection [17]. 

 

Shockwave analysis has long been applied to traffic flows [18, 19]. Shockwaves 

are defined as boundaries in the time-space domain that indicate a discontinuity in 

flow-density conditions [16], or the motion of a change in concentration and flow [20]. 

A typical time-space diagram at a signalized intersection is illustrated in Figure 2.10, 

where the trajectories of individual vehicles are shown as thin black lines. Three types 

of shockwaves are represented as thick black line segments: EG , a backward forming 

shockwave; BG , a backward recovery shockwave; and GD , a forward recovery 

shockwave [16]. Shockwave analysis can effectively analyze flow and queuing 

problems [21, 22]; queue can be describe as BF  and CG in Figure 2.10. Researchers 

have applied shockwaves to compute delay (area AEGB in Figure 2.10) and green phase 

time ( BD  in Figure 2.10) for traffic signals control [23, 24, 25]Numerous schemes have 

also been proposed for plotting shockwaves and forecasting traffic system performance 

[18, 21]. 

Most previous shockwave analyses and applications determine shockwave values 
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by traditional traffic parameters including volume, speed, and density [22, 26, 23, 25, 27, 

28]. While others calculate shockwave by combining gap time, headway and speed [21], 

or make use of high-resolution vehicle actuation data and signal information [29, 17, 

30]. Skabardonis estimates upstream flow with flow, occupancy and phase timing while 

traffic queue beyond vehicle detector[31] . 

  

Figure 2.10 Shockwaves in the time-space domain for a signalized intersection. 

 

2.3 Signal control methods  

Pre-time signal control 

The pre-timed control, which has fixed cycle lengths and preset phase times, 

operates according to a predetermined time schedule. The pre-timed controllers are best 

suited for locations with stable volumes and traffic patterns such as downtown areas. 

Timing plans are usually selected on a time-of-day/ day-of-week basis. Although 

pre-timed controllers have a degree of flexibility for daily traffic, they can cause 

excessive delay when the traffic signal controller uses timing plans determined from 

historical demands.  The Webster method can be used to determine the optimum cycle 

lengths for minimal delay. 

 Webster (1958) [32] has shown that minimum intersection delay is obtained when 
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the cycle length is obtained by the equation 

                                                 (2.11) 

where: 

C = optimal cycle length (second); 

L = total lost time per cycle (second); 

yi = the critical lane group volume (i th phase, vph) / saturation flow (vph); 

n = number of phases. 

The total lost time is the time not used by any phase for discharging vehicles. Total 

lost time is given as 

                                                   (2.12) 

where: 

li = lost time for phase i, which is usually 4 seconds; 

R = the total all-red time during the cycle. 

The total effective green time, available per cycle, is given by 

                                                    (2.13) 

To obtain minimum delay, the total effective green time should be distributed 

among the different phases in proportion to their y values to get the effective green time 

for each phase, 

                                           (2.14) 

The actual green time for each phase (not including yellow time) is obtained by 

                                                 (2.15) 

Where  is yellow time for phase i. 
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Actuated signal control 

An actuated signal [33] operates with variable vehicular timing and phasing 

intervals that depend on traffic volumes. The signals are actuated by vehicular detectors 

placed in the roadways. The cycle lengths and green times of actuated control may vary 

from cycle to cycle in response to demands. Actuated controllers include semi-actuated, 

fully actuated, and density controllers. 

In semi-actuated operation, the main street has a “green” indication at all times 

until a vehicle or vehicles have arrived on one or both of the minor approaches. The 

signal then provides a “green” phase for the side street that is retained until vehicles are 

served, or until a preset maximum side-street green is reached. Non-actuated phases 

may be coordinated with nearby signals on the same route, or they may function as an 

isolated control. Non-actuated phases usually operate with fixed minimum green times 

and may be extended by using green time that is not used by actuated phases with low 

demand. That is, the green duration will be extended beyond the minimum green time 

until a vehicle actuates the detector on the side street. At a semi-actuated controlled 

intersection, detectors installed on the side street collect information for timing the 

signal. 

 In fully actuated operations, all signal phases are controlled by detector actuations. 

In general, each phase has a minimum green duration, but it also is shorter than the 

maximum green time. A phase in the cycle may be skipped entirely if no demand exits 

for that phase. The right of way does not return automatically to a specific phase under 

the fully actuated mode unless recalled by a special setting in the controller. That is, the 

controller shows green indication in the phase last served until conflicting demand 

appears. 

In density operations, the controllers keep track of the number of arrivals and 



 

 
20 

reduce the allowable gap according to several rules as vehicles show up or as time 

progresses. The specifications allow gap reduction based only upon time waiting on the 

red. This type of controller also has a variable initial interval, thus allows a variable 

minimum green. Detectors are normally place farther back of the intersection stop line, 

particularly on high-speed approaches to the intersection of major streets. 

The timing characteristics of actuated signal operation are introduced here. In an 

actuated phase, there are three timing parameters: the minimum green interval, the unit 

extension, and the maximum green interval. These intervals are a function of the type 

and configuration of the detectors installed at the intersection. These three intervals are 

shown in Figure 2.11. This figure shows a case that the phase terminates before it 

reaches the maximum green period because there is no vehicular actuation in the last 

unit extension period. 

The unit extension is time by which a green phase could be increased during the 

extendable portion after an actuation on that phase. It depends on the average speed of 

the approaching vehicles and the distance between the detectors and the stop line.  

Initial interval is the first portion of the green phase that is adequate to allow 

vehicles waiting between the stop line and the detector during the red phase to clear the 

intersection. This time depends on the number of vehicles waiting, the average headway, 

and the starting delay. 

The minimum green interval is the shortest time that should be provide for a green 

interval during any traffic phase. In basic design of actuated phase intervals, the 

minimum green interval equals the sum of the initial interval and the unit extension.  



 

 
21 

 

Figure 2.11 Actuated phase intervals 

 

The maximum green interval is the limit that a phase can hold green in the 

presence of conflicting demand. Normal range of maximum green is between 30 and 60 

seconds depending on traffic volumes. Webster‟s model for pre-timed controllers can be 

used to compute the maximum green interval. The computed green intervals are 

multiplied by a factor ranging between 1.25 and 1.50 to obtain the maximum green. 

Traffic-actuated controllers automatically determine cycle lengths and phase 

durations based on detection of traffic on the various approaches. The cycle lengths and 

green times are random variables, which depend on the real-time traffic demand. 

Therefore, the capacities of approaches to an intersection are random variables.  
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Synchro software  

Synchro [34] is a macroscopic and deterministic signal timing tool. Synchro has 

the following features: it is able to simultaneously optimize lead-lag phase ordering in 

addition to cycle lengths, phase lengths, and coordinated offsets, Percentile Delay 

estimation method, data input and comprehensive output options, capability of 

modeling RTOR, U-turns and six-legged intersections, capability of modeling 

signalized and signalized intersections and roundabouts and it allows exporting its files 

to CORSIM and HCS.    

Synchro implements the HCM 2000 procedures for signalized intersections 

capacity and delay calculation. Also, it possesses percentile delay calculation method 

and intersection capacity utilization (ICU) 2003 methods. The basic premise of the 

percentile delay method is that traffic arrivals follow a Poisson distribution. The 

percentile delay method calculates vehicle delays for five different scenarios (i.e., 10th, 

30th, 50th, 70th and 90th percentiles) and takes a volume weighted average of delays 

predicted for each scenario. The ICU method sums the amount of time required to serve 

all movements at saturation for a given cycle length. It is similar to taking sum of 

critical volume to saturation flow ratios (v/s), yet allows minimum timing to be 

considered. The ICU can tell how much reserve capacity is available or how much the 

intersection is overcapacity.  

 

Synchro does not use the Genetic Algorithm for optimization of signal timings.  

The optimization objective function available is minimizing the percentile delay. It 

optimizes the four signal timing parameters by evaluating a series of cycle lengths, 

applying a heuristic method for green splits, conducting an exhaustive search for 

left-turn phase position and a quasi-exhaustive search for offsets. 
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The best cycle length is found by calculating a performance index (PI). 

The PI is calculated as follows. 

   
              

    
                                         (2.16)  

where 

PI = Performance Index; 

D = Percentile Signal Delay (s); 

QP = Queue Penalty (vehicles affected); 

ST = Vehicle Stops (vph); 

D= 
                        

                                  
; 

          
   

   
   

 
      

 
  

 
      VD10 = 10th percentile Vehicle-Delay per 

hour; 

v10 = 10th percentile volume rate (vph). 

 

TRANSYT 7F 

TRAffic Network StudY Tool (TRANSYT) is one of the most widely used signal 

timing programs. The original version of TRANSYT was developed by Dennis 

Robertson at the Transportation and Road Research Laboratory in UK in 1967.  Though 

TRANSYT is most commonly used as an offline optimization tool, it may also be used 

in an online fashion to compute signal settings every few minutes and download these 

settings to the field.  TRANSYT is a macroscopic, deterministic simulation and 

optimization model.  The model requires the link flows and link turning proportions as 

inputs and assumes them to be constant for the entire simulation period.  The program 

optimizes splits and offsets given a set cycle length and carries out a series of iterations 

between its traffic simulation module and the signal setting optimization 
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module. TRANSYT-7F (Traffic Network Study Tool, version 7, Federal) [35] was 

“Americanized” for the Federal Highway Administration (FHWA) in 1981 by the 

University of Florida Transportation Research Center. TRANSYT-7F Release 10.1 

introduced in January 2004 included the ability to optimize cycle length, phase 

sequence, green splits and offsets using a genetic algorithm (GA) and a traditional 

hill-climb technique. Recent versions of TRANSYT-7F introduced the CORSIM 

simulator in its optimization of cycle length, green splits and offset only. The 

direct-CORSIM optimization in T7F consists of the CORSIM simulator and the GA 

optimizer. It uses the CORSIM input file (*.trf) as an input so that T7F can directly 

import all information related to the network and signal timing plan from the CORSIM 

input file.   

TRANSYT-7f includes detailed simulation of platoon dispersion, queue spillback, 

queue spillover, traffic-actuated control, and the flexibility to perform lane-by-lane 

analysis. Beside link wise simulation, TRANSYT-7F provides stepwise simulation 

which updates all links one time step at a time. With stepwise simulation, 

TRANSYT-7F can explicitly model queue spillback condition. TRANSYT-7F provides 

left-hand drive right-hand drive option and it can only simulate two-way stop-controlled 

(TWSC) intersections. HCS files can be loaded directly into T7F and timing plans can 

be exported from T7F to HCS. Many traffic principles embedded in TRANSYT-7F such 

as arrival type, delay calculation, level of service, capacity calculation and saturated 

flow calculation are based on HCM 2000 procedures. TRANSYT-7F includes measures 

of effectiveness (Throughput) for use in optimization of congested networks. 

TRANSYT-7F has twelve distinct criteria. These criteria include functions designed to 

minimize delay, minimize a combination of delay and stops (the Disutility Index-DI), 

maximize progression opportunities (PROS) and maximize throughput among others.  
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The performance index (PI) may be defined as follow: 

PI=

 
 
 
 
 

 
 
 
 

       
         
         
       

    
                               

                         

               
               
             

                                (2.17) 

 

MAXBAND 

In 1966, John D. C. Little and his research colleagues at MIT defined the new state 

of the art, called MAXBAND[36, 37, 38], ending with a set of algorithms to 

synchronize fixed-timed traffic lights for streets with two-way traffic. It is one of the 

representatives of the Fixed-Time Coordinated Control Strategies. By their nature, 

fixed-time strategies are only applicable to under-saturated traffic conditions.  

MXBAND considers a two-way arterial with n signals from S1 to Sn (intersections) 

and specifies the corresponding offsets in order to maximize the number of vehicles 

traveling at given range of speed without stopping at any signal (green wave). 

MAXBAND considers splits as given (in accordance with the secondary street 

demands); hence the problem consists in placing the known red durations of the 

arterial‟s signals to maximize the inbound and outbound bandwidths In_B and Out_B, 

respectively (See Figure 2.12). In order to make MAXBAND work for a network of 

arterials, Little (1966) extended the basic MAXBAND method by incorporation of 

some cycle constraints. MAXBAND used into several networks into North America and 

other countries. 
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Figure 2.12 A maximum band along an arterial [36]. 

 

The underlying optimization model in MAXBAND is a Mixed Integer Linear 

Programming (MILP) model. MAXBAND include its freedom to provide a range for 

the cycle time and speed and it can operate a traffic signal effectively through the 

interlocking control of neighboring intersections. Its disadvantages are the lack of 

incorporated bus flows, limited field tests and because it is based on off-line analysis, it 

is impossible for it to cope actively with irregularities in the traffic environment. 

MAXBAND optimizes the signal by maximizing arterial progression bandwidth. 

The output of the program includes cycle time, offsets, speeds and order of left turn 

phases to maximize the weighted combination of bandwidths. The program can 

automatically choose cycle time from a given range, allow the design speed to vary 

within given tolerances, select the best lead or lag pattern for left turn phases from a 

specified set, allow a queue clearance time for secondary flow accumulated during red, 

accept user-specified weights for the green bands in each direction and handle a simple 
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network in the form of a three artery triangular loop. 

The limitation of Maximization existing bandwidth is that the progression bands do 

not correspond to the actual traffic flows on the arterial links. Therefore, bandwidth 

maximization will not always lead to optimal system performance in terms of stops, 

delay, and fuel consumption. 

Near researches 

The jammed traffic of closely spaced intersections is generally derived from poor 

progression, unstable demands and inefficient signal operation. Poor regression of the 

signals leads to queue spill-back from one intersection to upstream intersections. To 

solve the aforementioned problems, researches focused on oversaturated demand, 

closely spaced intersections, and traffic flow theories should be considered together. 

Abu-Lebdeh and Benekohal [23] had developed a traffic control method and queue 

management procedures for oversaturated arterials. Chang and Sun [39] had optimized 

an oversaturated network by utilizing a bang-bang like model for the oversaturated 

intersections and TRANSYT-7F for the undersaturated intersections. Michalopoulos and 

Stephanopoulos brought the concept of shockwave theory to traffic signal control [29]. 

Tian, Urbanik and Gibby [40] had an application of diamond interchange control 

strategies on a site of six closely spaced intersections. Messer [41] had studied the 

traffic operations at oversaturated, closely spaced signalized intersection by NETSIM 

simulations. Liu and Chang [42] had an arterial signal optimization model to do with 

queue spill-back and lane blockage. Existing researches usually paid attention to 

through traffics of the arterial; however, they seldom focused on the crooked traffics of 

the adjacent minor approaches. As the traffic demand on minor approaches grows, 

progression on those approaches should also be introduced. Despite the contribution of 

those researches, most of such models have not addressed such progression issue.  
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Existing full-actuated signal scheme can only be applied to arterials; not much it 

can do while facing a path-based progression situation. Zheng and Chu [43] and 

Skabardonis [31] suggest methods to dynamically adjust maximal green for 

full-actuated control under oversaturated traffic. With adjustable maximal green, 

full-actuated control scheme have the potential to adaptive to oversaturated demands. 

However, full-actuated schemes are focused on approach or arterial; they never focused 

on path-based progression. Therefore, they should be modified to suit the specific 

path-based situation.  
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III. Research methodology 

In this chapter, some essential concepts of the critical path signal control of closely 

spaced intersections are discussed. Begin with the introduction to Radar vehicle 

detection algorithm, the brief introduction to three new traffic parameters is addressed 

in section 3.2. Section 3.3 shows the shockwave detection at intersection. The 

estimation for upstream flow and speed by shockwave concept is illustrated in section 

3.4.  A critical path signal control algorithm is introduced, in section 3.5. 

 

3.1 Radar vehicle detection algorithm 

The radar cross section (RCS) of a vehicle is the key information used in vehicle 

classification and speed estimation. Figure 3.1 shows a sample RCS signal of a car 

received from the installation of Figure 3.1(a). The closed area indicated by a dashed 

line is the detection area of the radar detector. The profile of a vehicle signal resembles 

a mountain, and different vehicles create different shaped mountains. The vehicle 

classifier extracts features from the profiles and classifies vehicles accordingly.  

 The speed estimator also identifies features from the profiles and calculates the 

vehicle speed. Vehicle RCS is influenced by radar height and angle, radar distance from 

the first lane, vehicle speed, vehicle shape and vehicle distance to radar. Most of these 

factors are only fixed on the completion of radar sensor installation. Restated, the 

vehicle profiles were completely changed when the environmental installation was 

adjusted. This is a constraint for the supervised classifier, which needs to be retrained 

for each new environmental installation. Generally, traffic managers hope that sensor 

setup minimally impacts traffic condition. It means that the sensor setup time must be 

minimized. The setup time influences the learning time and learning data of a classifier. 
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If a training classifier is provided, the learning data is gathered during setup. Short setup 

time results in a skewed distribution of vehicle types. The number of cars may be large 

while the number of trucks is few. This forms the second constraint: short training time 

and skewed training data.  

 

Figure 3.1 (a) A picture of a vehicle passing through the detection area of a radar 

detector.   (b) The spectrogram of the vehicle shown in Figure (a). 

 

Figure 3.2 presents a flowchart of an algorithm for these two constraints. The 

algorithm includes four phases, namely signal processing, calibration, learning and 

„classification and speed estimation‟. The rectangles which are enclosed by a dashed 

line comprise four major phases: signal processing, calibration, learning and 

„classification and speed estimation‟. After retrieving the radar signal, a high pass filter 

is applied to filter background clutter signals.  Fast Fourier transformation is to get the 

range profiles of vehicles on lanes. Then, a constant false alarm rate (CFAR) thresholds 

are used to detect the presence of vehicles. If the calibrating work is needed, the video 

calibrating system will be used to calibrate the virtual loop lengths. When the 

calibrating job is finished, the vehicle profiles will be complemented by the range of 

vehicle. The aim is to let vehicles have the same signal gains in different lanes. The next 



 

 
31 

step is to extract nine features from the complemented vehicle profile. While the 

training job has never been done before, these features will be saved in vehicle training 

database. The category and length of vehicle, which is the output of video recognition 

system, will be saved into training database, too. If the number of vehicles is bigger 

than a threshold, SVM and SVR will finish the learning step. When the learning job is 

done, SVM will use vehicle features to classify vehicle‟s category. Finally, SVR will 

predict the length of vehicle and output the vehicle speed. The details of the algorithm 

will be presented in following subsections. The pseudocode of algorithm is shown as 

following. 

 

Figure 3.2 The flowchart of the vehicle detection algorithm. 
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Void Vehicle_classifier_and_speed_estimation_algorithm() 

begin 

while true 

             Signal_processing(); 

             if need calibrating 

                Calibrating(); 

             endif 

            if vehicle<n  

Feature_extracting(); 

          endif 

          if need training 

                    Learning() 

          endif 

         if training done 

    Vehicle_classification_and_speed_estimation(); 

endif 

      endwhile 

End 

 

void Signal_processing() 

begin 

retrieve signal from system; 

          apply high pass filter; 

          do fast Fourier transform; 

          find threshold  by clutter-map CFAR; 
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          find vehicle profile; 

end 

 

void  Calibrating() 

begin 

 for each lane of street 

        check vehicle in/out by vehicle profile and  clutter-map CFAR threshold 

if vehicle-in 

                      capture vehicle-in image from video 

                 endif 

                 if vehicle-out  

                     capture vehicle-out image from video 

                    compute virtual loop length by vehicle-in-out images 

                    classify vehicle category by images 

                    compute vehicle length by images 

                    compute speed  

                    save above results into training database 

                endif 

              endfor 

end  

 

void Feature_extrating() 

begin 

if  vehicle-out  

compute  energy  of  vehicle profile 
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compute square energy 

compute sum,maximal, mean and mean square error of vehicle 

magnitude profile 

compute vibration of vehicle profile 

compute square vibration 

save all features into database 

endif 

end 

 

void  Learning() 

 begin 

retrieve vehicle features from database 

    retrieve vehicle length, speed, type, and loop length from database 

    do SVM training 

 do SVR regression 

end 

 

void vehicle_classification_and_speed_estimation() 

begin 

     do vehicle classification by SVM 

     do  vehicle length prediction by SVR 

     estimate vehicle speed  

end 
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Signal processing 

Most of the signal processing is performed during this phase.  A discrete signal 

frame xt[n] is retrieved from the time domain during a pulse interval t. Each discrete 

signal frame has 128 points (n=1..128), and there are a total of 1500 signal frames per 

second (pulse repeating frequency =1500). Since noise and background clutter disturb 

normal vehicle echo signals, a simple high pass filter H(z)=1-z
-1

 is used to cancel the 

background clutter. The filtered signal yt[n] is shown in Eq. (3.1). 

 

yt[n]=xt[n]-xt-1[n]                                              (3.1)  

 

Furthermore, the high pass filter can also emphasize the moving of vehicles. Since 

a high magnitude of some frequencies means that some vehicles present on some lanes, 

fast Fourier transform (FFT) is performed on yt[n] to get the frequency domain data 

Yt[n].  That is to say, when a vehicle is presented at distance 3*n meters at time t , 

|Yt[n]| is great than some threshold. To avoid false alarms of vehicle presence, the 

clutter-map constant false alarm rate (CFAR) [44] technique is adopted. The basic 

characteristic of clutter-map CFAR is that the false alarm probability remains 

approximately constant in clutter by a dynamic threshold. Vehicles with an echo power 

exceeding the threshold thus can still be detected.  Eq. (3.2) shows the clutter-map 

CFAR threshold for the range n during pulse t.  

 

)][)1(][(][ 21 nYnYnT ttt                                    (3.2)  

  where α=2 and γ=0.9. 
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The final step in signal processing is to collect the vehicle profile Vt[m] presented 

at m-th range bin Yt [m] during the time interval in which vehicle is presented on 

detection area. All classification methods are based on the vehicle profile from which 

features are extracted.  Eq. (3.3) defines the profile of the vehicle signal. Each 

magnitude of m-th range bin |Yt [m]| is multiplied by power k of range frequency fm to 

compensate for the decay of received power.  

 

         Vt[m]= |Yt[m]|×fm
k                                                   

(3.3) 

 

( 

where T1<t<T2 and T1 and T2 are the first and last detection times of a vehicle 

which passes through the radar detection area. 

 

Feature Extraction 

Nine features need to be extracted from the vehicle profile, most of which are 

based on the physical characteristics of the vehicle.  First, the energy of the vehicle 

profile is shown in Eq. (3.4). A large vehicle implies large RCS, which in turn means 

high energy. Square energy is used to emphasize this characteristic. Other features are 

obtained from the statistical parameters associated with the vehicle magnitude profile. 

These features include the maximal, mean and mean square error for elements of Vt[m]. 


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Another physical phenomenon of vehicles is the vibration of the vehicle profile. 

Small vehicles have low vibration while large vehicles have high vibration. Eq. (3.5) 

calculates vehicle vibration. To increase the weighting of these characteristics, the 

square of vibration is used. The vibration is just like to do mathematical differentiation 
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and the energy is the same concept as doing mathematical integration.  These features 

of each vehicle profile form a point in the feature space. 
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                                      (3.5)  

Learning and Classification 

This section aims to identify a classifier for effectively classifying vehicles into 

one of four categories: motorcycles, small, medium and large.  

First, this study tries the K-means clustering (denoted as K-means). Here K-means 

is used as a method of partitional clustering in which the numbers of clusters and 

random centers are specified before starting the clustering process. The number of 

clusters is set to four. An objective function is then defined as the sum of the square 

distances between a point in a feature space and the nearest cluster centers. The standard 

K-means procedure is then followed to minimize the objective function iteratively by 

finding a new set of cluster centers. These cluster centers can reduce the value of the 

objective function at each iteration. Here the maximal iteration is set to 10.  

The next classifier is LDA, which is a supervisory classifier. LDA measures the 

Mahalanobis distance between the group center and the LD project point of nine vehicle 

features. The LDA then estimates the posterior probability of each group using 

Mahalanobis distance, the testing vehicle belongs to the group with the highest 

posterior. 

The last classifier is SVM, which is also a supervisory classifier. SVM is a binary 

classifier. The one-against-one strategy is developed to support multiple classifications 

For k groups, the one-against-one strategy constructs k(k-1)/2 SVMs to separate each 

pair of groups. This study tests SVM using the one-against-one approach, in which six 

SVMs are constructed, each of which trains data from two different vehicle groups. 
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Prediction is performed by voting, where each classifier makes a prediction and the 

most frequently predicted class wins (“Max Wins”). In cases where two groups receive 

an identical number of votes, this study simply selects the one with the smallest index.  

For supervisory classifiers LDA and SVM, the environmental installation problem 

leads to retraining of the classifier for each installation of radar sensors. To resolve the 

problem, this study proposes a learning method based on a video training system, as 

shown in Figure 3.3. The system receives vehicle-in and vehicle-out triggers when a 

vehicle is either inside or outside the detection area. After receiving the triggers, the 

system captures two video frames. The image processing unit then outputs virtual loop 

length, vehicle category and vehicle length. Using clutter-map CFAR, the radar system 

can know the in and out time of a vehicle. When the radar system sends vehicle-in or 

vehicle-out triggers to the video system, the video system immediately captures a video 

frame. These two video frames can then be used to perform image processing to obtain 

the vehicle type. The vehicle type and its features are saved in a training database which 

can be used to train a supervisory classifier. 

 

Figure 3.3. Video training and calibrating system. 
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Calibration and speed estimation 

In general, the radar speed detecting method is based on the Doppler principle. 

When a radio wave bumps onto a tracked object, the radio wave is reflected, the 

frequency and the amplitude of the reflective wave are influenced by the moving state 

of the tracked object. If the tracked object is stable in its position, the frequency of the 

reflective radio wave will not be changed and the Doppler effect will not be generated. 

If the tracked object moves forward in the transmitted direction of the radio wave, the 

frequency of the reflective radio wave will be increased; on the other hand, if the object 

moves oppositely to the propagated direction of the radio wave, the frequency will be 

decreased. As a result, the effects of the Doppler Shift are produced. However, the 

Doppler effect is not obviously and stable for roadside fired Radar. It is almost zero 

when vehicle pass through the detection zones. The RCS of vehicle is so complicated 

such that equations 2.2-2.4 are not possible to be applied. 

Hence, the vehicle speed is estimated using Eq. (3.6).  The detection zone of each 

lane forms a virtual loop. The key to correctly estimating the speed is to more precisely 

calculate the three parameters of Eq. (3.6). 

ΔT

LL
Speed zv  ,                                             (3.6) 

( 

where vL  denotes the length of the vehicle, zL  represents the length of the 

virtual loop and  ΔT  is the time of vehicle occupation. 

It is easy to obtain the vehicle occupation time ΔT from clutter-map CFAR. The 

length of the virtual loop zL must be carefully calibrated. The length of the virtual loop 

is also an environmental installation problem. The length differs between environmental 

installations. Theoretically, the virtual loop length can be obtained from radar equations, 

antenna patterns, and the height and angle of the radar sensor.  However, these 
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methods are imprecise and inconvenient. A more accurate method is to take 

measurements in the field. Figure 3.3 presents a video calibrating system for measuring 

the virtual loop length via image processing.  Based on clutter-map CFAR, the times at 

which the vehicle is either in or outside of the virtual loop can be derived. The video 

calibrating system can obtain video frames at both in and out time. Image processing 

can be performed to obtain the distance of vehicle movement between the two frames. 

The moving distance exactly equals the virtual loop length. SVR is used to estimate the 

vehicle length vL . SVR is almost the same as SVM, with one difference being that the 

optimal hyperplane is used to predict values in SVR, while in SVM it is used to separate 

classes.  Since SVR is still a supervised regression method, the video system is still 

required to measure the vehicle lengths and save them in the training database. 

 

3.2 Three new traffic parameters 

This subsection introduces the definition of traffic parameters including stopped 

duration, moving duration, and empty duration. A typical time-space diagram of 

signalized intersection is shown in Figure 3.4, with the vehicle trajectory is indicated as 

black lines. The traffic parameter, stopped duration, is defined as the vehicle presence at 

detection zone for an extensive period (for example, 3 seconds for cars and 10 seconds 

for trucks) of time; while moving duration is defined as the vehicle presence less than 

that period. The parameter, empty duration, represents no vehicle presence at that period. 

To improve accuracy, multiple detectors can be used to check whether a vehicle is 

stopped or not. The stopped duration can also be obtained when the speed equals zero.   
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Figure 3.4 Moving duration, empty duration and stopped duration. 

3.3 Shockwave detection 

This subsection introduces the estimation of shockwave from vehicle detector data. 

The shockwaves for a signalized intersection is shown in Figure 3.5. Gray lines 

represent the trajectories of individual vehicles, while black lines or black dash lines 

indicate shockwaves. This study defines four dedicated flow states. First, flow state 0 

(○0  in Figure 3.5) represents a traffic state with maximal density and the speed equals 

zero. Second, the flow state 1 (○1  in Figure 3.5) represents the maximum flow state 

(defined as flow equals saturated flow rate). Third, flow state 2 (○2  in Figure 3.5) is 

defined as the ideal traffic flow, which means vehicles arrive within a cycle equals the 

saturation flow of green phase. Fourth, flow state 3 (○3  in Figure 3.5 ) is defined as the 

uniformly distributed flow over a cycle, which might be different from cycle to cycle. 

There are three shockwaves among states 0, 1, and 2; W20 is defined as ideal 

backward forming shockwave, W21 is defined as ideal forward recovery shockwave, and 

W01 represents a backward recovery shockwave. Figure 3.5(b) demonstrates a similar 

situation as Figure 3.5(a) but with higher arrival rate (as state 3). Among state 0, 1, and 

3, we have shockwaves of 1) W30, a backward forming shockwave, 2) W31, forward 

recovery shockwave, and 3) W01, a backward recovery shockwave. Moreover, it can be 
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observed in Figure 3.5(b), where state 3 has a higher arrival rate than state 2, the 

propagation speed of shockwaves W30 would be greater than W20 and the speed of 

W31would be slower than W21. Figure 3.5(c) and 3.5(d) show the relationships among 

five shockwaves on the fundamental diagram and the time-space diagram.  

  

 

Figure 3.5. (a) Ideal shockwaves for a specified green and red time.  (b) Comparison 

between the ideal shockwaves and general shockwaves. (c) Five shockwave relations in 

the proposed model. (d) Five shockwaves relations in time-space diagram. 

 

Relationships among shockwaves, speeds and flows 

This subsection gives a preliminary understanding of relationships among 

shockwaves, speeds and densities, and the notations would be used throughout this 

article. Since the backward moving shockwaves are much slower than the forward 
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moving shockwaves, this study utilizes an asymmetric fundamental diagram that 

comprise a parabolic non-congested part and a linear congested part.  The proposed 

stream flow diagram is demonstrated in Figure 3.6. Let flow, density, and speed under 

flow state x (○x  in Figure 3.6) be denoted as  Qx, Kx, and Ux, respectively. The flow 

state 0 ( ○0  in Figure 3.6) is defined as the state of jam density Kj; while the flow state 

1 (○1  in Figure 3.6) is defined as the state which has the maximal flow rate Qm and 

density Km. The maximal flow rate Qm  also represents the saturation flow rate of green 

phase at a signalized intersection. With proposed flow model, we have Q0 =0 and Kj 

=aKm, where a is a constant needs to be calibrated. If the real traffic flow can be 

represented as the Greenshields‟ model, which is symmetric on both non-congested and 

congested part, the constant a equals 2. Since backward moving shockwaves are much 

slower than forward moving shockwaves, the constant a should be greater than 2. For 

example, with the asymmetric Greenberg‟s model, the constant a is equal to nature base 

of logarithms e (2.718).  

 

Figure 3.6 The relation between shockwaves 

 

With a flow state x, the speed of shockwaves among different states can be 

graphically seen in Figure 3.6; while W01 denotes the shockwave between state 1 and 0, 

Wx1 is the shockwave between state x and 1, and Wx0 is the shockwave between state x 

and 0. Throughout this article, W represents the shockwave speed. 
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The W01 can be calculated as  
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The Wx0 and Wx1 can be calculated as some ratio of the W01 by using the following 

equations. 
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where r is the flow ratio between Qx and Qm,  Qx = rQm.  

 

With the above equations, we have the relationship among Wx0, Wx1and W01 , which 

follows 
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By using a Taylor series expansion, Wx1 can be approximated as 
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Back ward recovery shockwaves detection  

When the signal changes to green, a backward recovery shockwave W01 is formed 

between stopped vehicles and the vehicles start to move forward. If the vehicle stopped 
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on the detection zone of vehicle detector starts to move after time; Let T be the time 

difference between the time that green phase begins and the time that state of vehicle 

detector changes from stopped duration to moving duration (see Figure 3.7.). Following 

the concept proposed by May [16], the backward recovery shockwave can be calculated 

by,  

T
W




D
01                         (3.12) 

Where D is the distance from stop line to the location of detector. 

 

Figure 3.7 Backward recovery shockwave detection 

 

Ideal forward recovery and backward forming shockwaves calculation 

To calculate the shockwaves in an intersection, this study introduces two ideal 

shockwaves; one is the ideal forward recovery shockwave, the other is the ideal 

backward shockwave. The ideal forward recovery shockwave is formed at where the 

ideal arrival traffic flow that catches the forward moving saturation flow; the shockwave 

can be graphically shown as the boundary between state 2 and 1 in Figure 3.5.   

 

The ideal flow rate, Q2, can be calculated through green split of a signal cycle (g/c) 

and saturation flow rate (Qm).  
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The flow ratio r between Q2 and Qm is equal to g/c. To replace x with 2 in Eq. (3.8), 

the ideal forward recovery shockwave can be calculated as, 

 

0121 1)1( Wc/gaW  .           (3.14) 

 

Similarly, to replace x with 2 in Eq. (3.9), the ideal backward forming shockwave 

can be calculated as,  
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The equations above show that the ideal shockwaves, W21 and W20, can be 

simplified to a ratio of the backward recovery shockwave W01. Therefore, with 

backward recovery shockwave W01, green split and calibrated constant a, the ideal 

shockwaves can be calculated by Eq. (3.14) and (3.15). 

 

Backward forming shockwaves detection  

This subsection discusses the calculation of a backward forming shockwave. The 

calculation method can be categorized into two types: 1) the method which utilizes 

moving and empty duration, and 2) the calculation method which utilizes stopped 

duration. Parameters of moving duration and empty duration are generated from the 

detector while there are no stopped vehicles within the detection area; otherwise, the 

parameter of stopped duration is outputted.  
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Using moving duration and empty duration for general backward forming 

shockwave detection 

Before the traffic queue reaches the detector, the sensor would output moving 

duration and empty duration. The relation among backward forming shockwave, 

moving duration and empty duration is illustrated in Figure 3.8.  

As a vehicle i with speed V and length Li passes a detecting zone with length Lz, 

this will result a moving duration mi equal to (Li + Lz)/V. As no vehicle within the 

detecting zone, it will result an empty duration ei. Let E be the summation of all empty 

durations ei and M be the summation of all moving duration mi during a time interval ΔT. 

Assume the length of detecting zone be approximately the same as the gap between two 

stopped vehicles, then the summation of moving duration M can be calculated as the 

following equation,  
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where Lq denotes the queue length resulting from the vehicles during time interval 

ΔT, and Δt is the time interval shown in Figure 3.8. According the geometry relationship 

in Figure 3.8, the summation of all empty duration E can be calculated as  

 

tTMTE  .         (3.17) 

 

Moreover, the geometry relationship also leads to the following backward forming 

shockwave equation. 
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The backward forming shockwave can be calculated using Eq. (3.18) with the 

parameters of vehicle speed (V), moving duration (M), and empty duration (E).  

 

Fig. 3.8.  Relation among backward forming shockwave, moving duration and empty 

duration. 

 

Using stopped duration for backward forming shockwave detection 

After the queue reaches the detector during red phase, stopped duration would be 

used for shockwave calculation. Figure 3.9 and 3.10 illustrate the changes in the 

stopped duration for two consecutive signal cycles which have same red phase duration. 

Figure 3.9 demonstrates the case which the propagation speed of backward forming 

shockwave is greater than the ideal backward forming shockwave. It should be noted 

that since the propagation direction of backward forming shockwave is opposite to 

vehicle trajectory, the term greater actually means the absolute value of W30 is greater 

than the absolute value of W20. In this case, the stopped duration is increasing for two 

consecutive cycles.  

On the contrary, Figure 3.10 shows the case which the propagation speed of 
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backward forming shockwave is less than the ideal backward forming shockwave. The 

stopped duration in this case is decreasing for two consecutive cycles. Since the two 

cases resemble each other, the following analyses and equations can be applied to both 

cases. 

 

Figure 3.9.  Backward forming shockwave for |W30 |> |W20 | (a) Shockwaves in 

flow-density diagram. (b) Shockwave and incremental stopped duration. (c)Incremental 

stopped duration in red phase. (d) Incremental stopped duration in green phase. 

The stopped duration of the first cycle is 
11AO , while that of the second cycle is 

22CO . 
11 AO  is almost equal to 

22 AO if the traffic flow changes smoothly. Hence, the 

stopped duration difference for these two consecutive cycles is 
22CA , or ΔSC. Since the 

dashed lines have the same slope as the shockwave W30, AC  is equal to
22CA . AC  is the 

sum of AB  and BC .  AB  has the same length as ΔSR  and BC  has the same length as 

ΔSG. BC , or ΔSG, is derived from the flow difference between shockwaves W21 and 

W31during the green phase G . AB , or ΔSR, can be calculated from the flow difference 

between shockwaves W20 and W30 during the red phase R . 
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Figure 3.10. Case for backward forming shockwave |W30 |< |W20 | (a) Shockwaves in 

flow-density diagram. (b) Shockwave and reductive stopped duration. (c) Reductive 

stopped duration in red phase. (d) Reductive stopped duration in green phase. 

 

Therefore, 

 

RGC SSS            (3.19) 

 

To calculate ΔSR, we should consider Figure 3.9(b) and Figure 3.9(c). Let a 

Euclidean space represents the time-space diagram of Figure 3.9(c) and set point A to be 

(0, 0). In this case, the shockwave propagation speed, W, is acted as slope. By using 

linear algebra, point E can be obtained from lines AE and DE, 
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Furthermore, point B can be derived from lines AB and BE, 
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Hence 
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Similarly, ΔSG can be calculated from the flow difference between shockwave W21 

and W31 during the green phase G . To calculate ΔSG, we should consider Figure 3.9(b) 

and Figure 3.9(d). Let a Euclidean space represents the time-space diagram of Figure 

3.9(d) and set point I to be (0, 0). The point E can then be obtained from lines IE and JE 

using linear algebra 
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Also point F can be derived from lines IF and JF, 
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And point H can be calculated from lines FH and EH, 



 

 
52 

 












)(

)(

30 EE

F

HH

XXWYY:EH

YY:FH
:Y,XH         (3.25) 

 

Therefore 
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Replace x by 3 in equation (3.11), we would have the following equation,  
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Substitute W21 and W31 in equation (3.26) by equation (3.14) and (3.27), 
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Therefore, ΔSC  can be calculated by 
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The calculation of shockwaves with parameter of stopped duration, the following 

procedure can be applied. We have the red phase duration R and green phase duration G 
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given by traffic controller; and the backward recovery shockwave W01 calculated by Eq. 

(3.12). When there is no spillover, the speed of shockwave W01 is nearly constant. The 

ideal shockwaves, W20 and W21, can be calculated from Eq. (3.14) and (3.15) with given 

R and G. Therefore, the stopped duration differences, ΔSC, can immediately be 

calculated after detecting a stopped vehicle. After deriving stopped duration difference, 

from vehicle detection, the backward forming shockwave W30 can be calculated by Eq. 

(3.29).The calculating procedure can be applied to Figure 3.10 and having the same 

result. 

If the red phase duration (R) is not fixed for two consecutive cycles, then Eq. (3.29) 

must be modified as,  
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where ΔR is the red phase duration difference of two consecutive cycles. 

Backward forming shockwave detection under heavy congestion 

If the queue has the length more than the vehicle detector installation location plus 

the length of queue that can be discharged during green phase, it would cause the 

detector to output the traffic parameter of stopped duration be the same as red phase 

duration, as Figure 3.11. In this case, Eq. (3.29) and (3.30) cannot be used to calculate 

the backward forming shockwave. Additional vehicle detectors can be added to solve 

this problem; the Eq. (3.29) and (3.30) can be applied to new detectors.  If the 

installation of new detector is not possible, the moving average, as Eq. (3.31), can be 

used to predict the backward forming shockwave. 
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where W30(n) is current shockwave value, W30(n-i) is the i-th previous shockwave 

value. 

 

Figure 3.11 A vehicle‟s stopped duration is equal to the red phase time. 

Forward recovery shockwave detection 

The forward recovery shockwave can easily be calculated using Eq. (3.27). The 

backward recovery shockwave W01 is calculated first, followed by the backward 

forming shockwave W30. The forward recovery shockwave, W31, is the last shockwave 

to be calculated. The sequence of shockwave estimation determines the model‟s 

prediction capability. Liu and Wu [29, 17, 30] could not provide any predictions because 

their models had computed the forward recovery shockwave before the backward 

forming shockwave.  In this study, three shockwaves can be derived right after the 

detection of stopped vehicle and much traffic information can be predicted.  Compare 

to existing researches, which the shockwaves can only be derived after the beginning of 

green time; the proposed method can predict shockwaves earlier and supports an 

adaptive traffic control model more efficiency.  

Shockwaves detection algorithm 

This subsection proposes an algorithm to calculate shockwaves that being 
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discussed in the previous subsections. The proposed algorithm is demonstrated as figure 

3.12(a). First, gather presence data from vehicle detector; second, calculate traffic 

parameters including empty duration, moving duration, and stopped duration. Third, the 

calculation of backward recovery shockwave and followed by fourth, the calculation of 

ideal shockwaves. Fifth, backward forming shockwave is calculated. Last, forward 

recovery shockwave is obtained. The estimation method of backward forming 

shockwave is detailed in Figure 3.12(b). This figure demonstrates the usage of multiple 

detectors to predict backward forming shockwave; although the figure illustrates the 

procedure by two detectors, it can be easily extended to multiple detectors. The first step 

is setting a vehicle detector near the stop line and the other at the upstream. The spacing 

between detectors should be more than the length of queue that can be discharged 

during maximal green time. If the first detector do not gives a stopped duration, then the 

moving duration and empty duration of first detector is utilized in the calculation of 

backward forming shockwave. Otherwise, stopped duration is taken into consideration. 

Moreover, if the stopped duration is larger than red time, the next detector should be 

considered; the above procedure should be repeated again for the next detector. The 

whole procedure ends at the last detector. If all detectors have the stopped durations as 

red time, estimation method of Eq. (3.31) should be used. 

3.4 Upstream speed and flow detection 

This sub-section focuses on the estimation of upstream speed and flow. The 

upstream means the state which is not affected by the queue; state 3 is a common 

representative.  

After deriving Wx0, Wx1and W01 (Eq. 3.7-3.11), the flow ratio r between Qx and Qm 

can be calculated as 
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Figure 3.12 (a) The flowchart for five shockwaves detection. (b) The flowchart for 

backward forming shockwave detection. 

 

Therefore, the corresponding space mean speed Ux and flow rate Qx can be 

calculated as 
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If all shockwaves of state 3 are derived, the arrival flow rate can be calculated by 

Eq. (3.34). Replace x with 3 in Eq. (3.32), the arrival flow ratio r is  
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The flow is calculated as the following equation, 
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where Qm is the saturation flow rate, which can be investigated in advance. The 

speed of state 3 can be derived from Eq. (3.33),  

013
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             (3.37) 

where U3 represents the space mean speed of state 3. 

 

3.5 Signal control algorithm 

This section comprises three parts: 1) the critical paths of closely spaced 

intersections, 2) the design of phase sequence for path-based progression, and 3) the 

improvement of full-actuated control by which prevents capacity loss.  

Critical paths of closely spaced intersections 

 A critical path of closely spaced intersections is defined as a major demand path 
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of origin-destination flows. With the intersections being closely spaced, the 

origin-destination can be easily observed at the field side. Figure 3.13 gives an example 

of closely spaced intersections with four critical paths.  

Stop line is essential in the computation of shockwaves. To evaluate the 

progression of a path, shockwaves of a path is introduced instead of shockwaves of an 

approach. Therefore, an important concept is introduced here, the stop line of a critical 

path. The stop line of a critical path is defined as the first stop line that one would 

encounter along with the critical path. In Figure 3.13, the stop line of each path is 

denoted as a thick black bar. 

 

Phase sequences for critical paths 

Most closely spaced intersections can benefit from signal progression, which 

avoids unnecessary stops and delays. The design of one- or two-way progression 

usually relays on a time-space diagram, which graphically illustrates how traffic 

propagates through intersections. The bandwidth of a time-space diagram is the portion 

of cycle which allows vehicle to go through all intersections in a group without stopping. 

Figure 3.14(a) demonstrates a typical time-space diagram which contains a one-way 

bandwidth; the bandwidth allows vehicles to traverse through 3 intersections without 

stopping. However, designing phase sequences for closely spaced intersections may 

depend on path-based progression that cannot be analyzed easily by traditional 

time-space diagram. 

From a signal timing perspective, phase sequence determines the quality of 

progression at signalized closely spaced intersections. Therefore, if one desires to 

conduct a multi-path progression, phase sequence must be designed carefully for 

vehicles along each critical path.  We propose a new path-based progression method 
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that use path-intersection diagram to design phase sequence. Figure 3.14(b) shows the 

designed phase sequences for each critical path corresponding to Figure 3.13. By the 

path-intersection diagram, one can easily arrange the phase sequences along each 

critical path.  

 

 

Figure 3.13 Four critical paths in three closely spaced intersections 

 

Path-based progressions are guaranteed by providing dedicate phases for each 

critical path. After designing phases for critical paths, phases on minor paths are 

arranged correspondingly in a manner that avoids conflict points on critical paths. The 

path-intersection diagram provides actuated control capabilities through their ability to 

respond to cycle-by-cycle variation in traffic demand while still being able to provide 
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progression for critical path movement.   

          

Figure 3.14 (a)A one-way progression in time-space diagram.  (b) A four-way 

progression in path-intersection diagram. The phase sequences are corresponding to 

Figure 3.13. 

 

Enhanced actuated control 

A full-actuated traffic control uses both detector information and a set of control 

parameters to operate the intersection in an efficient way. The full-actuated controller 

allocates green times for each approach corresponding to traffic demands. Little traffic 

demand on an approach would results a shorter green time which provides fast 

turnovers to serve other approaches. 

As shown in Figure 3.15(a), the minimum green time is allocated to a phase once a 

detector associated with that phase is actuated by a vehicle. If vehicles continue to 

actuate the detector while the phase is green, an additional green time equal to the 

vehicle extension time is added to the phase. The green can be extended until it reaches 

the maximum green at which time the phase terminates in a condition called a “Max 

Out.” However, if no detector is actuated within a vehicle extension period (gap 

threshold), the phase is terminated in a condition called a “Gap Out.” 
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A defect of full-actuated control can be observed in Figure 3.15(b). If a vehicle 

stops on detection zone, the vehicle will continue to actuate the detector until “Max out”. 

However, under stop-and-go condition, vehicles often stop on the detector until “Max 

out”. Although green time is allocated for the congested approach, no vehicles can be 

served. This prohibits the opportunity for traffics on different approaches to make use of 

the reserved capacity on intersection, and results a capacity loss.  

 

(a)                                             (b) 

Figure 3.15 Full-actuated control with (a) gap out. (b)max out when a vehicle stops on 

detection zone. 

 

To improve the defect, this research utilizes three new parameters to provide an 

enhanced actuated control operation (see Figure 3.16).  The empty duration has a same 

physical meaning as gap duration, the axis “Gap duration” can be replaced by “Empty 

duration” in full-actuated control. A new parameter, Stopped duration, is introduced to 

overcome the problem of inefficient “Max out” problem. As a vehicle stops on the 

detection zone for an extensive time, a termination of current phase will be conducted as 

“Stopped out.” This provides the opportunity for traffics on other approaches to be 

served. The concept of “Stopped out” is illustrated by new axis “Stopped duration” in 

Figure 3.16(b).  
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(a)                                               (b) 

Figure 3.16 (a) Three traffic parameters: empty, moving and stopped durations. (b) 

Enhanced actuated control with a “stopped out” condition. 

 

Dynamic green time model 

With the above enhanced actuated control, we can construct the following model to 

optimize green times for closely spaced intersections. The key concepts include 

detecting the path shockwaves, dynamic green time formulation and optimize the path 

green time. 

This subsection combines the vehicle stopped duration and shockwave theory to 

estimate the required green time of each critical path.  The required green time will be 

dynamic adjusted according the critical path traffic demands. As shown in Figure 3.17, 

let point O be the origin of a Euclidean space, S be the duration that a vehicle stops on 

the detection zone, d be the distance from path stop line to detection zone and  t1 be the 

begin time of a vehicle which stops on the detection zone. Using the "point-slope" form 

for straight-line equations, the line AC, line BC and point C can be calculated as 
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Similarly, if traffic follows the Greenshields model, the line CE, line OE and point 

E can be calculated as 
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Hence, the required green time g (line segment OE) is calculated as: 
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That is to say, required green time can be known after shockwaves and stopped 

durations have been detected. 

 

 

Figure 3.17 The relation between required green time and shockwaves. 

Green time optimization model 

With the above dynamic green time formulation, we can construct the following 

model to optimize green timings along all critical paths.  

Under unstable condition, unbalanced green time may lead to a longer congestion 
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time than balanced green time. With different demand on paths, the overall congestion 

time can be minimal if the green time for each path is proportion to its corresponding 

traffic demand. If the green times of different paths were not proportion to its demand, 

some demands would have a longer congestion time compare to others. Therefore, the 

objective of green time optimization model becomes determine the optimal green time 

for each path. The optimal green time can be derived by balancing out the traffic 

demands on all paths. Balanced path green times also ensures less total delay time and 

short travel time [19].  The optimized green times are modeled as following equations. 

 

Min
g

g

G

G
...

g

g

G

GgG nn  2211

gG
        (3.41) 

 

Such that 

g = g1+g2+g3+…+gn             (3.42) 

G = G1+G2+G3+…+Gn            (3.43) 

G = max(G min, min(g, G max))           (3.44) 

Gi,min≦Gi≦Gi,max ，1≦i≦n           (3.45) 

 

where gi is the required green time for path i to discharge its traffic demand (which 

is calculated by Eq. 3.40); Gi is optimized green time for path i; G max and G min are the 

maximal and minimal value for the summation of optimized green times, respectively; 

Gi,min and Gi,max are the lower and upper bound of green time for each critical path i, 

respectively. Eqs. (3.43)-(3.44) restrict the summation of optimized green time between 

maximal and minimal value. Eq. (3.45) requires that the green time for each path should 

satisfy its lower bound, but not exceed its upper bound. 
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Figure 3.18  Flowchart of actuated critical path control algorithm. 

 

Control algorithm 

The flowchart of the proposed algorithm is illustrated in Figure 3.18, there are six 

steps to form the critical path control method. The first 3 steps are focused on planning 

side; while the last 3 steps execute in the traffic signal controller. The first step finds the 

critical paths for closely spaced intersections. At the field side, one can collect traffic 

flow data to figure out the major origin-destination paths. The second step focused on 

designing phase sequences for multiple path-based progressions. The phase sequence is 

designed by the path-intersection diagram. Each path has a dedicated phase to progress 

the path movement. After phasing, the enhanced actuated control should be employed to 

prevent capacity loss.  During the operation of actuated control, step four detects path 

shockwaves, including backward forming shockwave and backward recovery 
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shockwave. Step five predicts the required green time for each path by Eq. (3.40). The 

begin time and duration for a vehicle stopped on detection zone should be collected at 

this step.  During the last step, required green times are optimized for all paths. The 

enhanced actuated control utilizes the optimized green time as the maximal green time 

for each critical path.  
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IV. Results and Discussion 

In this chapter, the proposed models are tested with real networks to discuss their 

performance. These models include i) radar vehicle detection method in section 4.1 

ii)three new traffic parameters in section 4.2 iii)shockwaves detection in section 4.3 

iv)upstream flow and speed detection in section 4.4 and v) traffic signal control 

algorithm in section 4.5. 

 

4.1  Radar vehicle detector 

In this section, the radar system is first introduced and the requirements of radar 

sensor are also presented. The algorithm of vehicle classification and speed estimation 

will be shown in following subsections. 

 

Table 4.1  The specifications of radar sensor. 

Height 4 - 7 m 

Central frequency 10.5 G  Hz 

Band width 50  M Hz 

Pulse repeat frequency 1500 Hz 

Down range resolution 3 m 

Max Range 60 m 

Max range shift frequency 30 K Hz 

Elevation angle/Azimuth angle 50 ° / 20 ° 

ADC 200 K Hz 

FFT 128 points 
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Radar system 

To support multi-lane capabilities, the FMCW radar detector is designed for 

roadside installation, as illustrated in Figure 4.1(a). The sensor is installed at a height of 

5.2 meters above the ground and at a distance of 14 meters from the first lane. The 

maximal distance is 32 meters of the sensor from the most distant lane. The echo power 

of each lane is near-constant from the distance 14 to 32 meters. The dashed line is a 

curve that fits the echo power distribution of the vehicle on the road surface.  The 

central frequency is 10.5 GHz. The vehicle width leads the radar with 50 M Hz band 

width and 3 meters down range resolution. The radar is designed to cover a maximum 

of eight lanes, and can be positioned a maximum of 60 meters from the roadside. The 

total frames per second, or the pulse repeat frequency, are 1500 Hz. Therefore, the max 

range shift frequency is 30 K Hz. The corresponding radar signal processing speed for 

ADC is 200 K Hz. Furthermore, the elevation and azimuth angles of the planar antenna 

are 50° and 20°. The specifications of the radar system are summarized in Table 4.1.    

 

Figure 4.1 (a) Installation of radar sensor. There are four lanes. (b)The echo powers 

distribution for each lane of road. 
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Figure 4.2. Block diagram of the proposed X-band FMCW sensor system. 

 

The building blocks of the X-Band FMCW of the radar are shown in Figure 4.2.  

The sensor comprise two external antenna arrays, a single-chip CMOS transceiver 

(enclosed by the dashed line) and an external digital signal processing unit along with 

the necessary electronics. A power amplifier is added to increase output power level. 

Dual planar antenna array are located at the transmitter output and the receiver input. 

The planar antennas have an equivalent STC function. As shown inside the dashed lines, 

the radio frequency transceiver is a chip based on a standard 0.18 μm CMOS 

technology [45, 46]. The CMOS transceiver performs most of the required RF signal 

processing. A power amplifier is added to increase output power. Furthermore, a 

baseband digital signal processing unit is used for instantaneous and simultaneous 

assessment of range measurements. Figure 4.1(b) illustrates the beat frequency power 

distribution of the antenna corresponding to the installation in Figure 4.1(a).  There are 

four echo power curves for four lanes. Generally, the echo power of most antennas 

decays at a rate 41 R . For this specially designed planar antenna, the shorter range 

power decay can be cancelled by the near field interference. The dashed line, shown in 



 

 
70 

Figure 4.1(b), is the road surface curve. Restated, the echo power of the vehicle signal 

will stay on the four inter-points of the road surface curve. The empirical results, 

illustrated later in this section, show that complementing the magnitude of the vehicles 

with the second power of the frequency can obtain an accurate vehicle classification 

rate. 

            

Vehicle classifier and speed estimation 

Table 4.2 lists a data set to train two classifiers : SVM and LDA. The data had been 

collected on the Hsin-Lon road of the Chu-Pei city. Generally, users require installing 

the radar sensor as soon as possible. During the short setup time, the numbers of vehicle 

in four categories is skew. A good classifier requires an acceptable classification rate, 

after applying its learning algorithm to skew data constraints. The training data satisfies 

the short setup time and skew data constraints.  

 

Table 4.2  Set of vehicles used to test the classifiers. 

 Motorcycle Small Medium Large 

Total 30 145 12 4 

 

After applying the K-means, LDA and SVM to the training data in Table 4.2, the 

classification rate is 42%, 93% and 94%, respectively. In Table 4.3, the rate results in 

K-means not being a good classifier in situations involving constraints. The LDA and 

SVM have a near identical leave-one-out recognition rate, and moreover this rate is 

acceptable. Both methods are good classifiers, and can resolve any associated 

environmental installation problems. The following paragraphs analyze and compares 

these two classifiers more details. 
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Table 4.3  The classification rate of classifiers. 

  

 

 

Table 4.4 Vehicles obtained from a field. 

Category Motorcycle Small Medium Large 

Type ID 1 2 3 4 5 

Type motorcycle Car van Bus Truck 

Subtotal 30 79 66 12 4 

Total 191 

 

Table 4.4 lists another testing data set that meets the short setup time and skew data 

constraints. The test data were obtained from a field site on a road in Chu-Pei city, 

Taiwan. The radar is installed as illustrated in Figure 3.1. The same traffic volume can 

be collected on a normal urban road within a 10-15 minutes period. The five vehicle 

types from the table can be classified into four categories. All vehicles from different 

lanes are merged into a single training data set. According to the radar equation, in Eq. 

(4.1), the receiver power of the vehicle is decayed by 1/ 4R . As shown in Figure. 4.1(b), 

the planar antenna is specially designed to perform an SPC function which compensates 

for the decay in each lane. The receiver power of the road surface, indicated by the 

dashed line curve, resembles a curve with some power of the range. Therefore some 

software STC functions are tested, as shown in Eq. (3.3), to compensate for the decay of 

the road surface.  Before extracting the features from the vehicle profile, amplitude of 

K-means LDA SVM 

42% 93% 94% 
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the profile is multiplied by some power of the frequency. Although the classifier is 

designed to classify vehicles into four categories, recognition rates remain an area of 

interest for numerous combinations of different vehicle types. 

 
43
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 ,                                               (4.1) 

 

where rP  denotes receiver power, tP  represents transmitter power,   is wave 

length, G  denotes antenna gains,   represents RCS, and R is vehicle range. 

 

Table 4.5.  Leave-one-out recognition rate for different classifiers and categories. 

Category LDA( mf ) SVM( mf ) LDA(
2

mf ) SVM(
2

mf ) LDA(
4

mf ) SVM(
4

mf ) 

1 vs. 2 vs. 3 vs. 4 vs. 5 73%(140/191) 76%(145/191) 76%(146/191) 82%(156/191) 78%(149/191) 71%(136/191) 

1 vs. 2345 95%(182/191) 98%(187/191) 96%(183/191) 99%(189/191) 94%(180/191) 97%(186/191) 

1 vs. 23 vs. 4 vs. 5 93%(177/191) 94%(180/191) 95%(181/191) 98%(186/191) 93%(178/191) 93%(177/191) 

23 vs.45 96%(155/161) 97%(156/161) 97%(156/161) 99%(159/161) 96%(154/16) 96%(155/161) 

23 vs. 4 vs. 5 96%(155/161) 96%(155/161) 98%(158/161) 98%(158/161) 96%(154/161) 95%(153/161) 

2 vs. 3 vs. 4 vs. 5 72%(116/161) 75%(121/161) 75%(121/161) 80%(128/161) 76%(123/161) 71%(115/161) 

2 vs. 3 76%(110/145) 75%(109/145) 77%(112/145) 79%(114/145) 78%(113/145) 74%(108/145) 

4 vs. 5 88%(14/16) 94%(15/16) 88%(14/16) 94%(15/16) 94%(15/16) 100%(16/16) 

 

Table 4.5 lists the test results for different powers of frequency for SVM and LDA. 

The highlighted cells represent the highest leave-one-all recognition rates for different 

categories. SVM wins almost all scenarios in fm
2
cases. Table 4.6 lists the error matrix 

for a SVM( fm
2
) case. Therefore, by compensating the received radar signal with power 

two of the frequency, SVM can obtain the best recognition rate. The first row ,” 1 vs. 2 

vs. 3 vs. 4 vs. 5” , indicates a low recognition rate for each classifier. This low rate 

means that creating excessively narrow categories will result in a low recognition rate. 

Comparing the third and fifth rows, “1 vs. 23 vs. 4 vs. 5” and “23 vs. 4 vs. 5”, reveals 

that the recognition rates are almost equal in the same classifier. Motorcycles can 
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generally be separated from other vehicle types. The second row, “1 vs. 2345”, confirms 

this. Examining the last two rows, “2 vs. 3” and “4 vs. 5”, reveals that car and van are 

difficult to separate, while bus and truck can generally be separated.  

Table 4.6.  Leave-one-out error matrix for SVM( fm
2
) . 

 Actual vehicle class 

Detect vehicle class Motorcycle Small Medium Large 

Motorcycle(1) 29 1 0 0 

Small(2,3) 1 143 1 0 

Medium(4) 0 1 11 1 

Large(5) 0 0 0 3 

Total 30 145 12 4 

error (%) 3% 1% 8% 25

% Recognition rate (%) 98% 

 

Table 4.7 shows the calibrated virtual loop length which is outputted from the 

video calibrating system. The far lane is slightly longer than the near lane. The planar 

antenna design is responsible for this effect. Figure 4.3 shows the vehicle length 

outputted by SVR. The estimated truck lengths are shorter than the visually measured 

lengths obtained from the video system, and the estimated motorcycle lengths are longer 

than the visually measured ones (see Figure 4.3 (b)).  The reason is that total number 

of vans and cars is 75%. The training data is skew, leading SVR make length 

predictions for all vehicles that are close to those of cars. Figure 4.4 describes the 

vehicle speed. Since the estimates of motorcycle length are high, the motorcycle speed 

always exceeds that of visual measurements obtained using the video system (see 

Figure 4.4(b)). The situation for trucks is the reverse of the above, with estimates of 

length and speed being lower than the visual measurements.   
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Figure 4.3. Vehicle output lengths from SVR. The open triangles with dashed lines 

denote the lengths measured from the video calibrating system. Meanwhile, the 

rectangles with black lines represent the estimated lengths obtained using the proposed 

algorithm. (a) The vehicle lengths were outputted from SVR.  (b) The motorcycle 

lengths outputted from SVR.   

 

Figure 4.4. Estimated vehicle speeds. The open triangles with dashed line are the speeds 

measured from the video system. The rectangles with black line are the speeds 

estimated using the proposed algorithm. (a) Estimated speeds for all vehicle categories.  

(b)Estimated speeds for motorcycles. 

 

Table 4.7.  Virtual loop length for each lane. 

 Lane1 Lane2 Lane3 Lane4 

Virtual loop length 7.9 m 8. 1m 9.2 m 9.9 m 
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4.2 Three new traffic parameters 

The test example in Table 4.8 involves two adjacent intersections with a 700 foot 

link at a fixed-timed traffic signal operating with 60-s cycle length and 23-s effective 

green interval. To determine the features of the three parameters and the effects of 

environmental change, eight scenarios were prepared and listed in Table 4.8: traffic flow 

changing from 48 vph to 2880 vph, different detector zone size (20, 50 feet), different 

vehicle detector distances to the stop bar (0, 30, 60,90,120,240 feet), and next 

intersection spill back. Figure 4.5 shows the results of one scenario involving changing 

flows and vehicle detector distances from the stop bar. Each point of each sub-graph is 

the average of 30 continued cycles which share the same traffic flow. Sub-graphs (a), (c) 

and (e) show the normal flow. Sub-graphs (b), (d) and (f) show the spill-back flow. 

Notably, Moving time is directly proportional to traffic flow before the occurrence of 

traffic jams.   Additionally, the Stopped time changes slowly when the vehicle 

detector is not far from the stop bar. Interestingly, the near vehicle detector has a smooth 

trend for each traffic parameter and the traffic parameters of the far vehicle always jump 

to some value. If the next intersection is spill-back, the Stopped time is greater than the 

red phase time and the Moving time is less than the green phase time.  Table 4.8 lists 

the summarized relationships between three traffic parameters and the environment. The 

arrows in Table 4.8 denote the trend of traffic parameters. 

 

The other test example for arrival shockwave involves two adjacent intersections 

with a 997 foot link at a fixed-timed traffic signal operating with a 60-s cycle length and 

a 30-s effective green interval.  Two electronic vehicle detectors are located 300 and 

570 feet from the stop bar. The change sequence for the traffic flow is 650, 550, 600, 
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500, 700, 550, 400, 600 and 1000vph every 900 seconds. Since the capacity is 600 vph, 

the v/c values vibrate around 1 and traffic queues are formed. The sub-graph (a) and (b) 

of Figure 4.6 display three traffic parameters in two electronic vehicle detectors.  

Notably, the Stopped time of VD2 is always zero, indicating no traffic queue over VD2.  

Furthermore, the Stopped time of VD1 occasionally approaches the effective red time 

(30). Restated, VD1 shows some traffic queues. The sub-graph (a) and (b) of Figure 4.6 

illustrate △Stopped time and Moving/(Moving+Empty) of VD1 and VD2. 

 

Table 4.8.  Summarized relationships between three traffic parameters and the 

environment. 
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(a)                                 (b)  

 

   (c)       (d) 

 

(e)                                  (f) 

Figure. 4.5. Relationships between the three traffic parameters and VD distance from 

the stop bar (a) Average Moving time for normal traffic flow.   (b) Average Moving 

time for spill-back. (c) Average Stopped time for normal traffic flow. (d) Average 

Stopped time for spill-back. (e) Average Empty time for normal traffic flow. (f) Average 

Empty time for spill-back. 
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   (a)       (b) 

 

(c )                                   (d) 

Figure 4.6. (a)Stopped, Moving and Empty durations in VD1. (b) Stopped, Moving and 

Empty durations in VD2. (c) △Stopped duration in VD1 and VD2. (d) 

Moving/(Moving+Empty) in VD1 and VD2 

 

4.3 Shockwave detection 

A CORSIM simulation environment has been established to evaluate the traffic 

parameters and the proposed shockwave detection methods. An independent 

intersection with four approaches is created in the CORSIM environment. Two vehicle 

sensors are located 300 and 730 feet from the stop line on an approach from off-ramp, 

as Figure 4.7 shows. Figure 4.8 illustrates the phase time and input traffic flow of that 

approach.  To demonstrate the capability of the proposed method, the traffic signal 
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timing in this simulation is designed to be dynamically changed. The change of phase 

time may be resulting from some adaptive control methods; as the traffic flow increases, 

the green time also increases.   

 

Sensor 1 Sensor 2

300 feet 730 feet

From  off-ramp

 

Fig. 4.7.  The intersection of simulation: a link and two sensors‟ locations 

 

 

   (a)              (b) 

Figure 4.8 (a) the phase times of the intersection. (b) The input flow of the link. 

Figure 4.9 shows the traffic parameters derived from both vehicle detectors during 

the simulation period. Due to changes in phase duration, some cycle length is shorter or 

longer than others are. With low traffic flow demands, both detectors output empty 

duration and moving duration. The stopped duration is only presented when traffic 

queue reaches the detecting zone. Figure 4.10 compares the red phase duration and the 

stopped duration of both detectors. Notably, the stopped duration of both detectors 

approaches the red time, indicating that queue length of un-discharged vehicles reaches 

beyond the second detector. Moreover, since the first detector is installed closer to stop 

line than the second one, the first detector would always have more cycles that reports 

stopped duration.  
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   (a)               (b) 

Figure 4.9 (a) The stopped duration, moving duration and empty duration of detector 1.  

(b) The stopped duration, moving duration and empty duration of detector 2. 

 

Figure 4.10  Relation between the stopped duration and red phase time. 

 

Results of shockwaves 

According to previous discussed shockwave concept, each method of the backward 

forming shockwave is valid only for a specific circumstance. For example, Eq. (3.18) 

should be used when no stopped duration occurs, otherwise Eq. (3.29) and (3.30) should 

be used instead. If the stopped duration be equal to red phase duration, Eq. (3.31) can be 

taken into consideration. The constant a in those equations is calibrated as 2.1. The 

algorithm proposed in section 3.3 indicates the proper usage of each equation. Figure 

4.11 demonstrates the backward forming shockwave calculation of each method and the 

final result of the proposed algorithm. In figure 4.11, △Si represents the  tenth of  
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the stopped duration difference of detector i for  two consecutive cycles ; while S-i, 

M/E-i, and Mavg denote the shockwave calculated from stopped duration, 

moving/empty duration, and moving average, respectively. The calculated backward 

forming shockwave from the proposed algorithm is denoted as W30. It can be observed 

in Figure 4.11 that the speed of backward forming shockwave is negatively related to 

the stopped duration difference. As the stopped duration difference decrease, the 

backward forming shockwave speed increase, vice versa. The condition should holds 

theoretically. However, with stochastic driving behavior, some non-ordinary driving 

behavior occurs near the vehicle detector on the 17
th

 cycle of simulation. Therefore, the 

statement would be violated on the 17
th

 cycle.  

 

 

Figure 4.11 Results of the backward forming shockwave detection algorithm.   

  

Figure 4.12 compares the shockwave calculating result derived from detector with 

the one that directly measured from CORSIM. In Figure 4.12, the ideal forward 
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recovery / backward forming shockwave is denoted as W21 / W20; while W31 / W30 

denotes the calculated forward recovery/ backward forming shockwave. The directly 

measured ones are denoted as  W
*

31 and W
*

30, respectively. In Figure 4.12, the 

calculated shockwaves are similar to the directly measured ones, which represent a 

significant result. In the simulation, the intersection has a fixed saturation flow rate, 

without the disturbance from downstream spillover; therefore, W01 would maintain a 

stable value (-21 ft/sec herein).  

 

Figure 4.12 Comparison of calculated / directly-measured shockwaves of the approach. 

 

The mean absolute percentage error (MAPE) of W30 is 12.4% and the mean 

absolute error (MAE) is 0.42 ft/sec. While the MAPE and MAE of W31 is 4% and 0.69 

ft/sec respectively. The bias mainly comes from the vehicle arrival pattern; as the 

vehicle comes uniformly as Figure 4.13(a), the detected stopped duration and 

corresponding shockwave detection would be unbiased. If vehicles arrive as platoons as 

shown in Figure 4.13 (b) or (c), the inaccurate stopped duration would result biased W30. 

Figure 4.13(b) demonstrates that, as the queue results from the first platoon does not 
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reach detector and there exists a major gap between the first and the second platoon, the 

stopped duration would be underestimated. The underestimated stopped duration would 

result in a slower shockwave speed (indicated as dash line). Figure 4.13(c) gives the 

counter example of overestimated stopped duration and the corresponding faster 

shockwave speed. During the simulation, it is observed that with more congested traffic; 

the less probability of major gap would happen.  

 

Figure 4.13.  The comparison of different arrival pattern and its corresponding bias in 

shockwave estimation. (a) Uniform arrival pattern and its corresponding shockwave, (b) 

arrival pattern that gives an underestimated shockwave speed, and (c) arrival pattern 

that gives an overestimated shockwave speed.  

 

4.4  Upstream flow and speed detection 

In Figure 4.14, the estimated upstream flow is compared with the simulation input. 

To give a better understanding, these flow rates have been transformed into flow ratio 

(r). The flow ratio (r) is then compared with the flow ratio derived from simulation (r*). 

The comparison of estimated upstream speed (U) and detected speed (U*) is illustrated 

in Figure 4.15. The estimated upstream speed (U) is space mean speed but the detected 

speed is time mean speed; therefore, the detected speed is transformed to space mean 
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speed with the method proposed by Drake, Schofer, and May [47]. The MAPE and 

MAE of flow ration are 18% and 0.03 respectively. While those of space mean speed 

are 4% and 1.79ft/sec respectively. These results demonstrate that the proposed 

algorithm is capable of estimating flow and speed at upstream area.  

 

Figure 4.14.The predicted traffic flow of state 3 

 

 

Figure 4.15 The predicted traffic speed of state 3 

4.5  Traffic signal control algorithm 

To investigate the performance, the proposed model will adjust the maximal green 

time dynamically according to flow demands. The enhanced actuated control will be 

compared with traditional full-actuated control which‟s maximal green time is fixed 

generally.  

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

cycle

fl
ow

 (
ra

tio
 o

f 
Q

m
)

r r*

0

10

20

30

40

50

60

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

cycle

fe
et

/s
ec

U U*



 

 
85 

This study employs a closely spaced intersections consisting of three intersections. 

Basic layouts and phase configurations are given in Figure 3.16 and Figure 3.17(b). The 

spacing between intersections is set to be 200 feet. The numerical test includes 10 

demand entries (A-J) and two volume levels (stable and unstable) designed to test the 

performance of proposed control model. Table 4.9 summarizes all experimental 

scenarios. The stable demand entries in all critical paths have the same volume. The 

unstable demand scenario has different peak periods for four critical paths. 

 

Table 4.9. Experimental scenarios for model evaluation 

Demand scenario Path Demand entries (in vph) 

  A B C D E F G H I J 

Stable 1 700 700 700 700 700 700 700 700 700 700 

 2 700 700 700 700 700 700 700 700 700 700 

 3 700 700 700 700 700 700 700 700 700 700 

 4 700 700 700 700 700 700 700 700 700 700 

Unstable 1 700 800 900 900 800 700 600 600 600 600 

 2 600 600 600 600 600 600 700 800 900 900 

 3 600 600 600 600 700 800 900 900 800 700 

 4 900 900 800 700 600 600 600 600 600 600 

 

The proposed model was coded in C++ and tested under the runtime extension of 

CORSIM. The CORSIM is used as an evaluator. To overcome the stochastic nature of a 

microscopic simulation system, an average of 10 simulation runs has been used. For the 

measure of effectiveness (MOE) comparison, since CORSIM calculates total delays or 

average delays only for departed vehicles, it is not computationally convenient to use 

delay as the MOE for over-saturated conditions. Hence, in this study we use total queue 

time, maximal queue, queue delay and speed as the MOE.  
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The overall results of proposed model and full-actuated method under different 

traffic demands (as indicated in Table 4.9) are compared in Table 4.10. Compared to 

ordinary full-actuated scheme, this proposed methodology would improve the total 

queue time of 13.8% under stable demand situation; while under unstable demand, this 

value would increase to 31%. Other performance indexes are laid out in Table 4.10. It is 

clear that compare to ordinary full-actuated scheme, the proposed model works even 

better in the unstable-demand scenario. This improvement can be creditable to the 

path-based progression and the dynamic maximal green times among critical paths.  

 

Table 4.10 Comparison of CORSIM simulation results.   
Scenarios MOEs  Simulation results from CORSIM (4h) 

   Proposed Full-act

uated 

Improvementa(%

) 
Stable–demand Total queue 

time(veh-min) 

8476.7  9829.4  13.8  

 Maximal queue(veh) 12.6  13.4  6.0  

 Queue delay(sec/veh) 45.4  52.7  13.8  

 Speed(MPH)  6.5  5.8  12.0  

Unstable-demand Total queue 

time(veh-min) 

9257.6  13407.8  31.0  

 Maximal queue(veh) 19.9  33.8  41.1  

 Queue delay(sec/veh) 49.4  71.2  30.6  

 Speed(MPH)  9.3  7.3  27.6  

a Improvement is calculated by (MOEproposed-MOEactuacted)/MOEactuated 

 

Figure 4.16 demonstrates the dynamic change of maximal green time according to 

its corresponding demand on different critical paths. To evaluate the performance of the 

proposed method, this study compares indexes on critical paths i.e., the queue time, 

queue delay and speed for each path under different demand scenarios. The comparison 

of indexes is demonstrated in Figure 4.17 through Figure 4.19. The proposed model 

outperforms the ordinary full-actuated control scheme among all paths. Under both 

stable and unstable demand scenarios (see Figure 4.17 and 4.18), the proposed model 

can deliver a more efficient control strategy than ordinary full-actuated control scheme. 
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With the proposed model, all paths have improved queue time, maximal queue, queue 

delay, and speed compared to ordinary full-actuated method.  

 

Figure 4.16  Relation between the maximal green time and traffic flow for proposed 

model. 

 
(a)                                          (b) 

Figure 4.17 Queue times of paths under (a) stable demand (b) unstable demand. 

 
(a)                                             (b) 

Figure 4.18 Queue delay of paths under (a) stable demand (b) unstable demand. 
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(a)                                           (b) 

Figure 4.19 Speed of paths under (a) stable demand (b) unstable demand. 
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V. Conclusions 

In this study, a CMOS based transceiver with STC antenna has been successfully 

implemented for advanced traffic signal processing. The collected radar signals from the 

CMOS radar system have been processed with developed optimization algorithms for 

vehicle-type classification and speed determination. The high recognition rate 

optimization algorithms are mainly based upon the information of short setup time and 

different environmental installation of each sensor. The algorithm includes four phases, 

namely signal processing, calibration, learning and „classification and speed estimation‟. 

In the calibration and learning phases, a video recognition module has been further 

adopted as a supervisor of SVM and SVR. SVM has successfully classified vehicles 

into four categories: motorcycles, small, medium and large vehicle in the classification 

phase. SVR has estimated vehicle lengths and determined their speeds accurately in the 

speed estimation phase. Specially, the proposed algorithm can detect motorcycles and 

estimate their speeds precisely. Compared with conventional circuit-based detector 

systems, the developed CMOS radar integrates submicron semiconductor devices and 

thus not only possesses low stand-by power but also is ready for production. In the 

meanwhile, the algorithm has successfully provided a high recognition rate in a grey 

area which traditional unsupervised classifiers have low recognition rates and 

supervised classifiers are hard to prepare training data. Furthermore, the developed 

algorithm of this study simultaneously optimizes the vehicle-type classification and 

speed determination in a computationally cost-effective manner, which benefits 

real-time intelligent transportation system. In the future, the enhanced vehicle length 

and speed accuracy can be obtained by applying SVR to each category of vehicles. 
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Another direction for future research could be to apply the SVM model to vehicle 

signals of each lane.  

In this study, we also proposed an innovative approach to estimate the upstream 

traffic information at intersection under oversaturated situation using shockwave 

analysis. A key methodological contribution of the approach is that it estimates 

shockwaves by combining traffic parameters, dynamic traffic signal timing and traffic 

flow models. By utilizing parameters of stopped duration, moving duration, and empty 

duration, that are estimated form the presence of the radar detector, we are able to 

calculate shockwaves including 1) forward recovery, 2) ideal backward forming, 3) 

ideal forward recovery, 4) backward forming, and 5) forward recovery shockwave.  

To the best of authors‟ knowledge, this is the first study that utilizes real time 

shockwave by stopped duration to estimate upstream traffic flow and speed far beyond 

detection zones of vehicle detectors. With the shockwaves, upstream traffic flow and 

speed information can be estimated accordingly. These models are evaluated by traffic 

simulation and demonstrate a significant result. The proposed model has some 

pre-conditions for traffic flow state. These assumptions can be solved by combining 

linear regression and the information derived from multi-zone sensors to capture the 

variation of shockwaves.   

Traditional full-actuated control scheme would work well only on an intersection 

or arterials. In closely spaced intersections, it might suffer from capacity loss, poor 

coordination and long congestion time due to considering only gap-out criterion, 

non-path-based progression and fixed maximal green time, respectively. With the above, 

a novel actuated critical path control model for designing traffic signal timings in 

closely spaced intersections had been presented.  

A network had been exemplified with micro-simulation to illustrate the 
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effectiveness of the proposed method. The numerical example demonstrates a satisfying 

result compare to ordinary full-actuated scheme. Compared to ordinary full-actuated 

scheme, under stable demand this novel methodology would improve the total queue 

time, maximal queue, queue delay, and speed of 13.8%, 6%, 13.8%, and 12%, 

respectively; while under unstable  demand, these values would increase to 31%, 

41.1%, 30.6%, and 27.6%. 

This study has several key contributions, including 1) developing a radar vehicle 

detection algorithm to simultaneously optimize the vehicle-type classification and speed 

determination, 2) using the presence of radar sensor to compute the stopped, moving 

and empty durations; and combining them to estimate the shockwaves, 3) introducing 

shockwave detection theory to dynamically adjust maximal green time for critical path 

with unstable traffic demands, 4) designing a path-based progression scheme that 

suitable for closely spaced intersections, 5) providing a traffic signal control method 

which can use fewer detectors than traditional traffic signal control scheme.  
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