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摘要 

正確和有效率的動態起迄矩陣推估對運輸規劃、交通管理及交通策略研擬是

很重要的資訊，近年來隨著智慧型運輸系統之快速發展，動態起迄矩陣之推估及

即時性交通控制之執行如路徑導引及號誌控制等績效均有顯著提昇。過去許多文

獻利用所偵測到的高速公路主線與上、下匝道流量，進行高速公路動態起訖矩陣

之推估，或以增加額外的假設或是外生的資訊，如路徑選擇行為或已知的依時性

交通流量資料等提昇績效，然而，在此課題中，所面臨的挑戰是欲推估之參數數

量遠大於資料所提供之訊息及如何處理旅行時間變異影響之問題。 

基此，本研究提出一個預測型高速公路動態起迄矩陣推估方法，包括一個二

階段交通量預測模式及一個整合型動態起迄矩陣推估演算法，交通量預測模式係

以滾動式自我建構交通模型來預測中、長期交通特性，其中，包含以成長型階層

式自我組織放射圖(GHSOM)將所有交通量樣本分成若干群，並針對每一群以基

因規劃法(GP)建構相對應之非線性交通量預測模式去預測交通特性。而整合型動

態起迄矩陣推估演算法係為了能在不同的交通情況下，有效率且準確的獲取車輛

到達型態，藉由結合格位傳送模式(Cell Transmission Model，CTM)及卡門濾波 

(Extended Kalman Filtering，EKF)，來建構遞迴式動態起迄矩陣推估演算法，由

CTM 模擬車輛運行行為，預測各依時起迄對之到達率，再以 EKF 推估動態起迄

矩陣。 

為驗證此演算法之績效及實用性，本文以所設計之 6 個起迄對之小型路網推

估 90 分鐘的起迄矩陣作為驗證範例。同時為比較本模式於旅行時間預測之績

效，以 Greenshields 巨觀模式假設在進入路網之車輛會於兩時階範圍內到達迄點

之條件下，預測車輛旅行時間。結果顯示本模式推估結果之 RMSE 為 0.069 遠較

Greenshields 之 0.145 為優。在實例應用上，本文先以國道 1 號泰山收費站至楊

梅交流道計 6 個交流道 36 公里長之 3 車道高速公路中型路網進行實驗驗證，結

果顯示格位傳送模式在自由流至擁擠流等不同情境交通狀況下，有效模擬車輛到
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達率，而本模式並以相當低的 RMSE 績效，精確推估動態起迄矩陣。 

最後，本研究再以國道 1 號頭份交流道至北斗交流道計 15 個交流道長 110

公里之 3 車道高速公路大型路網作為實例驗證，結果也證明本文所提二階段交通

量預測模式的績效及整合型動態起迄矩陣推估演算法的實用性。另外，本文亦比

較所提二階段交通量預測模式之績效優於傳統 ARIMA 模式。並進一步針對交通

量樣本長度進行敏感度分析，發現 5 分鐘為一時階之交通量樣本長度在 120 個時

階（10 小時），即能達到相當之預測績效。  

關鍵字：交通量預測、基因規劃法、成長型階層式自我組織放射圖、滾動式自我

建構交通模型、動態起迄矩陣推估、進階卡門濾波、格位傳送模式 
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ABSTRACT 

Accurate and effective dynamic origin-destination (O-D) matrices estimation is 

important for transport planning, traffic management and strategic planning. Recently, 

the rapid development of intelligent transport systems has enhanced accurate dynamic 

O-D information and the implementation of real-time traffic control, such as real-time 

route guidance and signal control. Numerous studies have devoted to developing 

estimation algorithms based on observable mainline and ramp flow rates, with 

constraints dependent on time series traffic flow and extra system equations and using 

recursive or non-recursive system solution techniques to estimate O-D matrices. 

However, this dynamic O-D matrices estimation issue remains challenging in that the 

number of parameters to be estimated is always far greater than the available 

information, and the impact of travel time variability on the time-varying O-D 

matrices.  

In light of this, the study proposes a novel approach to estimate medium-to long- 

term freeway dynamic O-D matrices. The proposed approach includes a two-stage 

prediction model with an integrated algorithm. The traffic prediction model predicts 

medium- to long-term traffic features based on rolling self-structured traffic patterns. 

The rationales include using the growing hierarchical self-organizing map model 

(GHSOM) to partition unlabeled traffic patterns into clusters and then developing an 

associated genetic programming (GP) model to predict the traffic features in each 

cluster. And then, the integration algorithm, which combined cell transmission model 

(CTM) with extended Kalman filtering (EKF) to respectively and iteratively estimate 

the arrival distributions and O-D proportions. 

To demonstrate the performance and applicability of the proposed approach, a 

seminal example with six O-D pairs of 90 minutes estimation is designed. The 
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performance of this mode in terms of travel time prediction is compared to the 

Greenshields macroscopic model prediction. The results showed that the propose 

approach is better than the Greenshields model. In the field study, a medium-scale 

networks and a large-scale network of on-ramp traffic patterns on a freeway are 

examined. The medium-scale network covers a section of Taiwan No.1 Freeway 

(Taishan toll station to Yangmei toll station), a 36 km three-lane freeway section with 

6 interchanges, and the results showed that the CTM can accurately capture the degree 

of traffic dispersion under traffic scenarios ranging from free-flow to congested-flow 

conditions and that the proposed EKF algorithm can accurately estimate the O-D 

proportions with rather low RMSE.  

For the large-scale network, 15 interchanges from Toufen interchange to Beidou 

interchange, a 110-kilometer stretch of Taiwan No.1 Freeway, were tested and the 

results indicated the practical applicability of the proposed algorithm.  In addition, 

the proposed method has performed much better than the conventional ARIMA model. 

The sensitive analysis has also revealed the necessity of acquiring five-minute traffic 

patterns longer than 120 time intervals (10 hours) in order to achieve sufficient high 

prediction accuracy. 

 

KeyWords: Traffic prediction, Genetic programming, Growing hierarchical 

self-organizing map, Rolling self-structured traffic patterns, Dynamic 

origin-destination, Cell transmission model, Extended Kalman filtering 
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CHAPTER 1 INTRODUCTION 

 

1.1 Research Background 

Accurate dynamic origin-destination (O-D) information is required for the 

implementation of real-time traffic control measures, such as real-time route guidance 

and signal control. Numerous studies have devoted to developing estimation 

algorithms for the dynamic O-D matrix based mainly on observable mainline and 

ramp flow rates. The dynamic O-D matrices estimation algorithms can be divided into 

two categories (Ho, 2008): assignment-based (e.g. Ashok and Ben-Akiva, 2000, 2002) 

and non-assignment-based (e.g. Chang and Wu, 1994; Chang and Tao, 1996, 1999; 

Lin and Chang, 2005, 2007). The assignment-based method primarily relies on a 

dynamic traffic assignment algorithm to generate link flows; while the 

non-assignment-based method directly estimates O-D matrices. However, this issue 

remains challenging in that the number of parameters to be estimated is always far 

greater than the available information, thus additional assumption or exogenous 

information, such as route choice behaviors, priori O-D matrix information, sequence 

of observational periods of traffic counts data (e.g. Bell, 1983, 1991; Yang et al., 1992, 

1995; Vardi, 1996; Lo, et al., 1996; Hazelton, 2001), should be further considered. 

One of the most challenging issues remained to be tackled in the context of 

dynamic O-D matrices estimation is the impact of travel time variability on the 

time-varying O-D matrices. Chang and Wu (1994) assumed that the vehicles entering 

the freeway in a time interval are distributed in a small range (within two time 

intervals). However, if O-D pair traffic traverses a sufficiently long distance or 

experiences moderate to heavy congestions, then the travel time variability may be 

rather large, which can result in a serious traffic dispersion phenomenon. As a result, 

the O-D pair traffic entering the freeway in a specific narrow time interval will reach 

their destinations over a wide time interval, which will greatly increase the difficulty 

in accurately estimating the dynamic O-D matrices. In other words, an accurate 

prediction model for the arrival distribution of entering O-D pair traffic under various 

traffic conditions is undoubtedly imperial for dynamic O-D matrices estimation. 

Based on this, Chang and Tao (1995) assumed a macroscopic traffic model to 

efficiently predict the travel time according to concurrent traffic conditions and used 

the predicted travel time to estimate traffic arrival distributions and then to estimate 

the O-D matrices. Lin and Chang (2005, 2007) further assumed the travel time of 

drivers following a certain distribution and then used such a distribution to estimate 

their arrival patterns. However, the studies of Chang and Wu (1994), Chang and Tao 
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(1995) and Lin and Chang (2005, 2007) all made strong assumptions regarding the 

prediction of traffic dispersion, which might not be valid for various conditions from 

free-flow to gridlock. In addition, the state equations in the abovementioned studies 

may involve relatively too many parameters, largely increasing the model complexity 

to be implemented. 

The dynamic O-D matrices estimation algorithms can be divided into two 

categories: assignment-based and non-assignment-based. Differ to the 

assignment-based method primarily relies on a dynamic traffic assignment algorithm 

to generate link flows; the non-assignment-based method directly estimates O-D 

matrices. Taking into account the difficulty of non-assignment method to obtain a 

priori dynamic O-D information, some studies have developed different methods of 

O-D estimation, using available time series traffic flow to reduce the dependence on 

the priori time-dependent O-D and dynamic traffic assignment models. However, 

dynamic O-D estimation model is still limited to small-scale networks. The main 

reason is the relationship of time-dependent O-D and the flow of sections are difficult 

to establish, and travel time is unrealistically assumed as constant in the model. 

To remedy these gaps in dynamic O-D matrices estimation, it is deemed 

necessary and important to develop an integrated simulation-based dynamic O-D 

estimation model by using an efficient traffic prediction and simulation models to 

replicate traffic behaviors as well as a dynamic O-D estimation model to determine 

the O-D pair shares of entering traffic (i.e. on-ramp traffic). 

To do so, an efficient and accurate traffic simulation model should be 

incorporated into the commonly adopted O-D matrices estimation method, extended 

Kalman filtering (EFK) algorithm. The cell transmission model (CTM), proposed by 

Daganzo(1994, 1995) was developed as a discrete approximation to the hydrodynamic 

theory of traffic flow. It is capable of automatically tracking shocks and acceleration 

waves and thus capturing traffic behavior in the process of the formation, propagation, 

and dissipation of queues. In that, the LWR continuum model is discretized into cells. 

The road is represented by a number of small sections (cells). The simulation model 

keeps tracking the number of vehicles in each cell, and in each time-step it calculates 

the number of vehicles that cross the boundaries between adjacent cells. Therefore, 

how to incorporate CTM models into the dynamic O-D estimation model is imperial. 

Additionally, to successfully estimate the dynamic O-D matrices, a sufficiently 

long period of entering traffic has to be accurately predicted so as to be the input of 

the traffic simulation model to simulate the arrival pattern of the entering traffic after 

necessary transverse time between the origin and destination interchanges. Due to the 
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rapid fluctuations of traffic flow and obvious peak and off-peak traffic, a efficient and 

effective medium-to-long term traffic prediction model is also required. 

1.2 Research Objectives 

In view of the importance of arrival distribution prediction in estimating the O-D 

matrices and to efficiently and accurately capture the traffic behaviors along with their 

arrival distributions under various traffic conditions, this study uses CTM to simulate 

the traffic movement behaviors, to predict the arrival distributions of all O-D pair 

traffic in various time intervals, and then to estimate the dynamic O-D matrices. 

Moreover, the conceptual representation of spatial (cell) and temporal (discrete time 

interval) conditions of traffic makes CTM especially suitable for dynamic O-D 

matrices estimation. Our proposed model intends not only to result in a substantial 

increase of system observability with significantly less parameters than those in 

literature, but also to contribute enhancing the quality of dynamic O-D matrices 

estimation. 

However, it would be unrealistic to predict the arrival distribution using CTM by 

assuming that on-ramp traffic flow along a freeway remains unchanged over time. To 

rectify this unrealistic assumption, a medium-to-long term (e.g. next two to four hours) 

prediction model of on-ramp traffic along a freeway is required. 

Most of the existing traffic prediction models use statistical methods or artificial 

intelligent methods to conduct a short-term prediction (e.g. next 5 minutes). Such 

short-term prediction models may experience low performance for medium-to-long 

term traffic prediction since traffic patterns can change dramatically (e.g., from peak 

hours to off-peak and vice versa). According to field observation, daily traffic patterns 

do repeat spatially and temporally over and over again. To enhance the prediction 

performance should the historical traffic data be clustered into appropriate different 

traffic patterns, it would become possible to accurately predict the traffic features in a 

rolling manner for a medium-to-long term traffic. 

This study proposes a novel approach, based on rolling self-structured traffic 

patterns, to make a medium-to-long prediction for the traffic features along a freeway 

corridor, in the prediction process, traffic of historical traffic data are collected and 

used Growing hierarchical self-organizing map (GHSOM) to identify the similar 

cluster of traffic patterns into a cluster without the need to pre-determine the number 

of clusters. The input values of learned Genetic programming (GP) model belonging 

to that cluster are used to perform the traffic prediction in each cluster without the 

need of prior knowledge regarding data distribution or model specification. With the 

predicted medium-to-long on-ramp traffic, CTM is used to simulate the arrival 
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patterns, and then, EKF is employed to estimate the O-D proportions. To validate the 

accuracy and applicability of the proposed approach, an empirical study on a freeway 

is examined. 

Based on abovementioned motivations, and think about the unique properties of 

freeway network, for example: traffic conservation features on and off ramp, 

estimated time dependent flow, and no complicated path selection problem, that 

enable to provide information of value to estimate the dynamic the O-D, the study 

aims to propose a novel approach to estimate dynamic O-D matrices, based on Chang 

and Wu’s (1994) model, taking into consideration the mainline traffic information and 

travel time delays to further amend travel time estimation methods. The approach 

includes a two-stage prediction model with the GHSOM algorithm to extract clusters 

of traffic patterns and GP to predict the traffic for each cluster separately, and then 

proposes an integrated algorithm which combines the CTM with the EKF to 

respectively and iteratively estimate the arrival distributions and O-D proportions. The 

objectives of this study can be stated below: 

1. Propose a two-stage prediction model with GHSOM algorithm and GP to predict a 

medium-to long-term (e.g. next two to four hours) traffic flow of on-ramp traffic 

along a freeway, supporting the CTM to estimate arrival distributions. 

2. Based on the predicted entering traffic over a sufficient long period, the CTM 

model is used to estimate the arrival patterns of entering traffic at every time click. 

3. Based on the predicted entering traffic, arrival patterns, the EKF algorithm is used 

to estimate dynamic O-D ratios. 

4. Demonstrate the performance and applicability of the proposed integrated dynamic 

O-D matrices estimation model, a seminal example designed, a medium-scale 

networks and a large-scale network are studied, respectively. 

1.3 Chapter Organization 

The research framework is depicted in Figure 1. This dissertation is organized as 

follows. Chapter 1 introduces the background and research objectives of the research.  

Chapter 2 briefly summarizes related studies. Chapter 3 proposes the research 

framework of this study, including the introductions to the study freeway corridor, 

and variables/parameters used in the proposed models. Chapter 4 introduces the 

proposed models, including a two-stage traffic prediction model, integrated arrival 

distribution model and EKF-based dynamic O-D matrices estimation. Chapter 5 

presents case studies to demonstrate the performance and applicability of the proposed 

model. Chapter 6 gives the conclusions of this study and suggestions for future 
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studies. 

As shown in Figure 1, this study contains the following parts: 

1. Objective definition 

Clearly identify the research topics and objectives of this study. 

2. Literature review 

To review the following research topics: (1) Static and dynamic O-D matrices 

estimation models. (2) Traffic arrival distribution predict model. (3) Traffic pattern 

clustering model. (4) Traffic pattern prediction model. 

3. Problem statement 

Definitions of the typical freeway corridor, variables and parameters, and 

introducing the process of estimation of O-D estimation matrices. 

4. Model formulation 

The proposed model in this study can be divided into two parts. One is a 

two-stage prediction model based on GHSOM algorithm and GP, the other is 

combined CTM with EKF to respectively and iteratively estimate the arrival 

distributions and O-D proportions. 

5. Seminal example 

A seminal example is designed to demonstrate the performance and applicability 

of the proposed estimation algorithm. 

6. Case study 

Case studies on to two different sized freeway networks, one is a medium, 

another is a large-scale, are conducted to demonstrate the performance and 

applicability of the proposed estimation algorithm. 

7. Concluding remarks 

The major findings and contributions of this study are narrated. The suggestions 

for future studies are also addressed. 
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CHAPTER 2 LITERATURE REVIEW 

 

The chapter consists of four sections. Section 2.1 addresses the O-D matrices 

estimation. Section 2.2 discusses the traffic pattern clustering theory. Section 2.3 

addresses the traffic prediction and section 2.4 discusses the traffic simulation models. 

2.1 O-D Matrices Estimation 

This section reviews various approaches for estimating the static and dynamic 

O-D matrix. 

2.1.1 Static O-D Matrices Estimation  

There are several methods for formulating estimators for an unique matrix.  

2.1.1.1 Maximum entropy model 

In transportation and regional planning, the most popular approach for estimating 

the static O-D matrix is the maximum entropy model. Van Zuylen and Willumsen 

(1980), the assumption of the approach is that all of the combinations of individual 

travel decisions, so called states, are equally likely to occur. The set of O-D flows 

with the highest likelihood of occurring is therefore the set with the maximum number 

of states.  

2.1.1.2 Maximum likelihood and generalized least-squares 

Another method is classical statistical inference techniques. The two main 

estimators are the maximum likelihood and the generalized least-squares. The 

maximum likelihood estimator maximizes the likelihood of observing the 

experimental data condition on the true trip matrix. For this method, distributional 

assumptions need to be made for the sample and traffic counts, Zhang and Maher

（1998） addresses the problem of estimating an O-D matrix with platoon dispersion 

from fully disaggregate data that the passage times of vehicles at the entries and exits 

or the origins and destinations of a network, and shown that the maximum likelihood 

estimation can be formulated more generally as a transportation problem. 

On the other hand, no distributional assumptions need to be made for the 

generalized least squares approach. Wang （2005）developed a GLS method to 

estimate the O-D matrix that extracted from the partial information of the sub O-D 

matrix and the means of population information of traffic counts of roads 

implemented by the sensor of traffic flow and both the location and movement of 
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vehicle recorded by ATIS, and the implementation is demonstrated by a numerical 

example. 

2.1.1.3 Others static O-D matrices estimation 

Others method for estimate O-D matrix is including bayesian inference, gradient 

based solution techniques, simultaneous and column generation algorithm.  

Bayesian inference uses a priori probabilities on the trip demands, by combining 

these probabilities with the conditional probability on the traffic counts; one can 

obtain the posterior probability of the demand conditioned on the traffic count. The 

arguments of this probability can then be maximized by different methods. Codina 

(2004) presents an algorithmic based on a method for nondifferentiable optimization 

due to Wolfe that can be interpreted as a conjugate directions method with better 

convergence properties as shown with a set of computational tests, alternative to the 

O-D matrix adjustment problem from observed link volumes when it is formulated as 

a mathematical programming problem with a bi-level structure, that the upper level 

function is approximating gradients.  

Lo and Chan（2003）proposed a procedure for the simultaneous estimation of an 

O-D matrix and link choice proportions in a network change with traffic conditions 

from traffic counts for congested network, this procedure performs statistical 

estimation and traffic assignment alternately until convergence to obtain the best 

estimators for both the O-D matrix and link choice proportions, which are consistent 

with the traffic counts.  

Ricardo（2008） presented a column generation algorithm for the demand 

adjustment problem iteratively solves a deterministic user equilibrium model for a 

given O–D matrix and a restricted DAP is formulated via a single level optimization 

problem. The convergence on local minimum of the proposed algorithm requires only 

the continuity of the link travel cost functions and the gauges used in the definition of 

the DAP. To analyze the convergence and performance of the proposed algorithm, 

various numerical tests were carried out on small scale problems. 

2.1.2 Dynamic OD Matrices Estimation  

Recently, there has been increased research in the area of dynamic O-D matrix 

estimation. Cremer and Keller (1987) highlighted the causal relationships that exist 

between the time variable sequences of entrance flow volumes and the sequences of 

short-time exit flow counts. They claim that enough information can be obtained from 

the counts at the entrances and the exits to obtain unique and bias-free estimates for 

the unknown O-D flows without further a priori information.  
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2.1.2.1 Bi-level  

Lundgren and Peterson (2008) use a general nonlinear bi-level minimization 

formulation of the problem, where the lower level problem is to assign a given O-D 

matrix onto the network according to the user equilibrium principle. After 

reformulating the problem to a single level problem, the objective function includes 

implicitly given link flow variables, corresponding to the given O-D matrix. They 

propose a descent heuristic to solve the problem, which is an adaptation of the 

well-known projected gradient method. Numerical experiments are presented which 

indicate that the solution approach can be applied in practice to medium to large size 

networks.  

2.1.2.2 Entropy 

Wu（1997）develops an improved O-D algorithm based on the existing 

multiplicative algebraic reconstruction technique with the entropy- maximizing 

approach. The improvement of the algorithm in numerical stability and convergence 

speed s obtained by incorporating a normalization technique and a diagonal searching 

strategy, and demonstrated that the proposed new algorithm hold much promise for 

efficient application in advanced traffic management systems.  

2.1.2.3 Others approach of dynamic O-D matrix estimation 

Others approach of dynamic O-D matrix estimation including recursive 

estimation, column generation approach and Statistical inference. Li and Moor 

（1999） proposed a fast constrained recursive identification (CRI) algorithm to 

estimate intersection O-D matrices dynamically, the basic idea of the CRI algorithm is 

to estimate intersection O-D matrices based on equality-constrained optimization. 

Numerical results show that the accuracy of estimates by the CRI algorithm is fairly 

good the solutions obtained by the CRI are optimal in majority of the cases, compared 

with the ordinary recursive least squares method, the CRI algorithm with its 

reasonable balance between accuracy and computational simplicity is very suitable for 

practical use.  

Sherali and Park（2001） develop a column generation approach that uses a 

sequence of dynamic shortest path sub-problems in order to estimate time-dependent 

path flows, or O-D trip tables, using available data on link traffic volumes for a 

general road network. Hazelton（2008）consider the problem of estimating a sequence 

of O-D matrices from link count data collected on a daily basis, they recommend a 

parsimonious parameterization for the time varying matrices so as to permit 

application of standard statistical estimation theory. A number of examples of suitably 
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parameterized matrices are provided. 

2.1.3 Related EKF Approaches 

The Kalman filtering (KF) algorithms are known as a “prediction-correction” 

technique, which is based on the criterion of least square unbiased estimation of the 

state and measurement vectors.  

In the pioneering study by Cremer and Keller, they applied the idea of dynamic 

OD estimation, where time dependant traffic counts were used in a recursive KF 

based OD estimator. And then, Chang and Wu (1994) applied the KF estimate for 

time-varying freeway O-D matrices, the proposed model employs information from 

mainline traffic counts, ramp flow measurements, and macroscopic traffic 

characteristics to construct a set of dynamic equations, which realistically consider the 

interrelations between O-D distributions and observed flows under congested 

conditions. To improve the operational efficiency necessary for real-time applications, 

a revised model with some approximation have also been developed, Wu and Chang 

(1996) suggested the improved KF based O-D estimator with time series of link and 

screenline flows, with properly selected screenlines and efficient computing 

algorithms, the proposed model also offers the potential for real-time applications. 

Chang and Miaoul (1999) present an integrated method based on KF for 

estimating time-varying O-Ds in urban networks. The proposed method starts with 

their’s previously developed two-stage, non-assignment-based model that can yield a 

time-varying O-Ds without a reliable prior O-D set and a dynamic traffic assignment 

model (DTA). To further improve the estimation accuracy and also account for the 

impact of urban signals, they have developed an intersection O-D estimation model 

that can produce an additional set of system observation constraints based on either 

existing or estimated intersection turning fractions, and the results of simulation 

experiments have clearly indicated that proposed method for integrated estimation of 

time-varying network O-D distributions is quite promising. 

Lin and Chang (2006) present two robust algorithms, one for estimation of an 

initial O-D set and the other for tackling the input measurement errors with an 

extended estimation algorithm. The core concept of the initial O-D estimation 

algorithm is to decompose the target network in a number of sub-networks based on 

proposed rules, and then execute the estimation of the initial O-D set iteratively with 

the observable information at the first time interval. To contend with the inevitable 

detector measurement error, this study proposes an interval-based estimation 

algorithm that converts each model input data as an interval with its boundaries being 

set based on some prior knowledge. The performance of both proposed algorithms has 
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been tested with a simulated system, and the results are quite promising. 

Lin and Chang (2007) presents a KF based approach for estimating the dynamic 

freeway O-D distribution, based on measurable time series of mainline and ramp 

flows, and estimated travel time distributions. The proposed model captures the speed 

discrepancy among drivers, due either to their desired speeds or responses to 

congestion, with an embedded travel time distribution function and the identified 

interrelations between time-varying ramp and mainline flows. With the employed 

mainline information and travel time function, the proposed system equation has 

increased its observability with less parameter. Extensive numerical analyses with 

respect to the sensitivity of both input measurement errors and the selection of initial 

parameters on the estimation results have revealed that the proposed model is 

sufficiently robust for real-world applications.  

Zhou and Mahmassani (2007) present a structural state space model to 

systematically incorporate regular demand pattern information, structural deviations 

and random fluctuations. By considering demand deviations from the a priori estimate 

of the regular pattern as a time-varying process with smooth trend, a polynomial trend 

filter is developed to capture possible structural deviations in real-time demand. Based 

on a KF framework, an optimal adaptive procedure is further proposed to capture 

day-to-day demand evolution, and update the a priori regular demand pattern estimate 

using new real-time estimates and observations obtained every day. These models can 

be naturally integrated into a real-time dynamic traffic assignment system and provide 

an effective and efficient approach to utilize the real-time traffic data continuously in 

operational settings.  

2.2 Traffic Pattern Clustering 

Numerous heuristic algorithms for clustering have been developed, which can 

generally be divided into three categories: statistics clustering, metaheuristics and 

neural network. 

2.2.1 Statistical Methods 

2.2.1.1 K-means algorithm 

K-means algorithm is one of the most popular clustering algorithms for 

discovering clusters in data. Kantabutra et al (2000) offer a parallel solution to the 

K-means problem by taking advantage of a cluster of inexpensive workstations and a 

relatively low price of hard disk. And experiments show that this parallel algorithm 

achieves a much faster speed than the existing algorithms.  
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Frahling (2005) develop an efficient implementation for a k-means clustering 

algorithm, the novel feature of their algorithm is that it uses coresets to speed up the 

algorithm. A coreset is a small weighted set of points that approximates the original 

point set with respect to the considered problem. The main strength of the algorithm is 

that it can quickly determine clustering of the same point set for many values of k. 

This is necessary in many applications, since, typically, one does not know a good 

value for k in advance. They study have clustering for many different values of k and 

can determine a good choice of k using a quality measure of clustering that is 

independent of k, for example the average silhouette coefficient. The average 

silhouette coefficient can be approximated using coresets.  

2.2.1.2 Fuzzy c-means algorithm 

Fuzzy c-means (FCM) algorithm is another popular clustering techniques and 

subject of active research in several real world applications, because it is efficient, 

straightforward, and easy to implement. 

Pal et al (2005) propose a new model called possibilistic-fuzzy c-means (PFCM) 

model. PFCM produces memberships and possibilities simultaneously, along with the 

usual point prototypes or cluster centers for each cluster. PFCM is a hybridization of 

possibilistic c-means (PCM) and FCM that often avoids various problems of PCM, 

FCM and FPCM. PFCM solves the noise sensitivity defect of FCM, overcomes the 

coincident clusters problem of PCM and eliminates the row sum constraints of FPCM. 

And show that PFCM compares favorably to both of the previous models.  

Yu et al (2007) implement the horizontal collaborative clustering with the partial 

supervision clustering approach where the clustering is carried by the guidance of 

some labeled patterns. In this approach, they selected the patterns and interested in to 

provide FCM with collaborative information and control the degree of the influence 

of the selected patterns on the clustering. This new method is called partially 

horizontal collaborative fuzzy c-means (PHC-FCM). After presenting two approaches 

to realizing the selection of the labeled patterns, named cutset based approach and 

entropy based approach, and experiments are carried and show the performance of the 

new method.  

2.2.2 Metaheuristic Methods 

Chiou and Lan (2001) employs genetic algorithms to solve clustering problems 

three models, SICM, STCM, CSPM, are developed according to different 

coding/decoding techniques. The effectiveness and efficiency of these models under 

varying problem sizes are analyzed in comparison to a conventional statistics 
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clustering method. The results for small scale problems indicate that CSPM is the 

most effective but least efficient method, medium to large scale indicate that CSPM is 

still the most effective method. They have applied CSPM to solve an exemplified 

p-Median problem, and demonstrate that CSPM is usefully applicable.  

Yang et al (2005) developed a Genetic k-means-algorithm-based classification of 

direct load-control curves, the aim of reducing the number of variables for 

classification and enhancing the classification effectiveness, autoregression 

moving-averaging (ARMA) modelling techniques are employed to extract the features 

of the DLC curves. Based on the features extracted, the genetic k-means algorithm is 

then adopted for classification owing to its ability to partition given global data 

optimally into a specified number of clusters. Through the proposed approaches, 

categories are derived of the DLC curves complying and noncomplying with the 

control pattern. The results obtained from the comparisons with the 

artificial-neural-network approach show that the clusters divided using the proposed 

approach exhibit very high classification rates for the practical data on Taiwan Power 

Company DLC programmes. 

An ant-based self-organizing map (ABSOM) was proposed on 2008. The 

ABSOM embeds the exploitation and exploration rules of state transition into the 

conventional SOM algorithm to avoid falling into local minima. To examine the 

usefulness of the proposed method, the ABSOM is combined with K-means into a two 

stage clustering method, i.e. ABSOM+K-means. Applied four public data sets, the 

ABSOM has been proved that it performs better than Kohonen’s SOM and it also 

works very well in the two-stage cluster analysis when it is taken as a preprocessing 

technique.  

2.2.3 Artificial Neural Network Methods 

2.2.3.1 Self-organizing map 

The Self-Organizing Map (SOM) s a very popular unsupervised neural network 

model for the analysis of high-dimensional input data as in data mining applications, 

on the one hand, it is very simple to write down and to simulate, its practical 

properties are clear and easy to observe. 

Yang et al (2004) presents an efficient approach to clustering the DLC curves 

through a structure of SOM. Aiming at selecting significant features of DLC curves, 

methods of nonlinear principal component analysis (NLPCA) and periodic analysis 

are proposed for feature extraction. The dual multilayer neural networks (DMNN) 

model is employed in the proposed NLPCA method. In the periodic analysis method, 
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the periodic characteristics of the DLC curves are investigated. Results obtained from 

the comparison of six different approaches show that the clusters obtained from the 

proposed approach exhibit lowest degrees of misclassification for the practical data on 

Taiwan Power Company (TPC) DLC programs. 

The SOM has shown to be a stable neural network model for high-dimensional 

data analysis. However, at least two limitations have to be noted, which are caused, on 

the one hand, by the static architecture of this model, as well as, on the other hand, by 

the limited capabilities for the representation of hierarchical relations of the data. 

2.2.3.2 GHSOM 

The GHSOM, an unsupervised learning neural network, is a powerful data 

mining technique for the clustering and visualization of large and complex data sets, 

which is an improvement over the basic SOM, can adapt its architecture during its 

learning process and expose the hierarchical structure that exists in the original data. 

Pampalk et al (2003) present a novel approach to reveal the inherent hierarchical 

structure of data using multiple SOMs together with heuristics which optimize the 

stability, they evaluate the approach using data from real-world data mining projects 

in the music domain. 

Tangsripairoj and Samadzadeh (2006) demonstrate the potential of the GHSOM 

for the organization and visualization of a collection of reusable components stored in 

a software repository, and compared the results with the ones obtained by using the 

traditional SOM. 

Yang et al (2010) developed the GHSOM to overcome the limitations of SOM, to 

obtain higher detection rate and improve the stability of intrusion detection, some 

improvements on GHSOM algorithm are made: (1) they introduce a new metric that 

includes both numerical and symbolic data as input patterns. (2) using Tension and 

Mapping Ratio (TMR) instead of parameter τ1, the growth of a map is automatically 

controlled. This improved GHSOM is implemented and applied to intrusion detection. 

Their experimental results show that the detection rate has been increased by 

employing the improved GHSOM compared to the original SOM and GHSOM.  

2.2.3.3 Support vector machine 

Asa et al (2001) present a novel clustering method using the approach of support 

vector machines, and present a simple algorithm for identifying these clusters, and 

then demonstrate the performance of our algorithm on several datasets.  

Chen et al (2001) investigates the connection between fuzzy classifiers and 
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kernel machines, establishes a link between fuzzy rules and kernels, and proposes a 

learning algorithm for fuzzy classifiers. The corresponding fuzzy classifier is named 

positive definite fuzzy classifier (PDFC). A PDFC can be built from the given training 

samples based on a support vector learning approach with the IF-part fuzzy rules 

given by the support vectors.  

Yella et al (2007) presents a comparison of several pattern recognition techniques 

combined with various stationary feature extraction techniques for classification of 

impact acoustic emissions. Results from support vector machines in combination with 

linear predictive cepstral coefficients delivered good classification rates. 

2.3 Traffic Prediction 

This section reviews various approaches to predict traffic flow, including 

Statistical Methods, Metaheuristic Method and Artificial Neural Network Methods. 

2.3.1 Statistical Methods 

2.3.1.1 Autoregressive integrated moving average 

Autoregressive integrated moving average (ARIMA) is one of the popular linear 

models in time series forecasting during the past three decades.  

Dervoort et al (1996) introduced A hybrid method of short-term traffic 

forecasting, the KARIMA method. The technique uses a Kohonen self-organizing 

map as an initial classifier, each class has an individually tuned ARIMA model 

associated with it. The explicit separation of the tasks of classification and functional 

approximation greatly improves forecasting performance compared to either a single 

ARIMA model or a backpropagation neural network, and demonstrated by producing 

forecasts of traffic flow, at horizons of half an hour and an hour, for a French 

motorway. 

Smith et al (2002) effort seeks to examine the theoretical foundation of 

nonparametric regression and to answer the question of whether nonparametric 

regression based on heuristically improved forecast generation methods approach the 

single interval traffic flow prediction performance of seasonal ARIMA models.  

Zhang (2003) proposed a hybrid methodology that combines both ARIMA and 

ANN models to take advantage of the unique strength of ARIMA and ANN models in 

linear and nonlinear modeling. Experimental results with real data sets indicate that 

the combined model can be an effective way to improve forecasting accuracy 

achieved by either of the models used separately. 



16 

 

Tseng and Tzeng (2005) proposes a fuzzy seasonal ARIMA (FSARIMA) 

forecasting model, which combines the advantages of the seasonal time series ARIMA 

(SARIMA) model and the fuzzy regression model. It is used to forecast two seasonal 

time series data of the total production value of the Taiwan machinery industry and 

the soft drink time series.  

Stathopoulos and Karlaftis (2003) present a flexible and explicitly multivariate 

time-series state space models using core urban area loop detector data. The results 

clearly suggest that different model specifications are appropriate for different time 

periods of the day. Further, it also appears that the use of multivariate state space 

models improves on the prediction accuracy over univariate time series ones. 

2.3.1.2 Grey forecasting model 

Chang et al (2005) constructed a rolling grey forecasting model (RGM) to 

predict Taiwan’s annual semiconductor production. The univariate grey forecasting 

model (GM) makes forecast of a time series of data without considering possible 

correlation with any leading indicators. It was expected that the annual semiconductor 

production in Taiwan should be closely tied with U.S. demand. 

Vlahogianni et al (2006) offers a set of tools and methods to assess on underlying 

statistical properties of short-term traffic volume data, and results indicate that the 

statistical characteristics of traffic volume can be identified from prevailing traffic 

conditions; for example, volume data exhibit frequent shifts from deterministic to 

stochastic structures as well as transitions between cyclic and strongly nonlinear 

behaviors. These findings could be valuable in the implementation of a variable 

prediction strategy according to the statistical characteristics of the prevailing traffic 

volume states. 

2.3.2 Metaheuristic Method 

Chen (2007) applies a novel neural network technique, support vector regression 

(SVR), to forecast tourism demand forecasting, the approach, and known as genetic 

algorithm (GA)-SVR, which searches for SVR’s optimal parameters using real value 

GAs, and then adopts the optimal parameters to construct the SVR models.  

Dimitriou et al (2008) presents an adaptive hybrid fuzzy rule-based system 

(FRBS) approach for the modeling and short-term forecasting of traffic flow in urban 

arterial networks, and employs univariate and multivariate data structures and uses a 

genetic algorithm for the offline and online tuning of the FRBS membership functions 

according to the prevailing traffic conditions. The results obtained from the online 

application of the proposed model are found to overperform those of the offline 
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application and conventional statistical techniques.  

Brezocnik et al (2004) propose GP to predict surface roughness in end-milling. 

Accuracy of the best model was proved with the testing data. It was established that 

the surface roughness is most influenced by the feed rate, whereas the vibrations 

increase the prediction accuracy. 

Yao and Lin (2007) developed the GP algorithm, that is utilised to search for the 

optimal Volterra filter structure, and several experiments are made to justify the 

effectiveness and efficiency of the proposed modified by the GP algorithm. 

Gaur and Deo (2008) presents an application of a relatively new soft computing 

tool called GP to forecasting the ocean waves on real-time or online basis while 

carrying out any operational activity in the ocean. In order to obtain forecasts that are 

station-specific a time-series based approach like stochastic modeling or artificial 

neural network was attempted by some investigators in the past. 

Afzal and Torkar (2011) performed a systematic review of literature that 

compared genetic programming models with comparative techniques based on 

different independent project variables. The objective is to investigate the evidence for 

symbolic regression using genetic programming being an effective method for 

prediction and estimation in software engineering, when compared with 

regression/machine learning models and other comparison groups (including 

comparisons with different improvements over the standard GP algorithm).  

2.3.3 Artificial Neural Network Methods 

The trend in the literature is to apply artificial intelligence based soft computing 

techniques for complex prediction problems. Artificial neural networks which are a 

member of soft computing techniques were applied to strength prediction of several 

types of domain in the literature with considerable success. 

2.3.3.1 Neural networks 

Ledoux (1997) propose cooperation based neural networks traffic flow model, 

which aims at being integrated into a real time adaptive urban traffic control system. 

Concludes on the potentials of neural networks applied to traffic flow modeling, one 

minute ahead predictions of the queue length and the output flows have been obtained 

with fairly good accuracy. 

Dougherty and Cobbett (1997) developed a technique of stepwise reduction of 

network size by elasticity testing the large neural network, the back-propagation 

neural network to forecast traffic flow, speed have to select the vast number of 
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possible input parameters, and show a way of out-perform naive predictors. 

Kirby et al (1997) has demonstrated that a straightforward application of neural 

networks can be use to forecast traffic flow along a motorway link. Dia (2001) 

discusses an object-oriented neural network model that was developed for predicting 

short-term traffic conditions, the feasibility of the approach is demonstrated through a 

time-lag recurrent network which was developed for predicting speed data up to 15 

minuites into the future, and results obtained indicate that the model is capable of 

predicting speed up and with high degree of accuracy. 

2.3.3.2 Support vector machines 

Pai and Lin (2005) consider the ARIMA model cannot easily capture the 

nonlinear patterns, applied support vector machines (SVMs), a novel neural network 

technique, successfully to solve nonlinear regression estimation problems, the 

proposed hybrid methodology that exploits the unique strength of the ARIMA model 

and the SVMs model in forecasting stock prices problems.  

Huang and Sadek (2009) develops a novel forecasting approach inspired by 

human memory, called the spinning network (SPN), the approach is then used for 

short-term traffic volume forecasting, utilizing a data set compiled from real-world 

traffic volume data. The results of the performance testing conducted demonstrates the 

superior predictive accuracy and drastically lower computational requirements of the 

SPN compared to either the neural network or the nearest neighbor approach. 

Ishak (2003) presents an approach to optimize the short-term traffic prediction 

performance on freeways using multiple artificial neural network topologies under 

different network and traffic condition settings; the study was conducted to encourage 

multi-model techniques that are capable of improving the performance over 

single-model approaches. Using a mix of traditional and modern neural network 

topologies, the short-term speed prediction performance was extensively evaluated 

under different input settings and various prediction horizons (from 5 to 20 minutes). 

2.4 Traffic Simulation Models 

The Section consists of three parts. 2.4.1 Addresses the macroscopic approach of 

traffic flow theory. 2.4.2 discusses the microscopic models and 2.4.3 addresses the 

vehicular traffic of CTM models. 

2.4.1 Macroscopic Models 

The conventional traffic flow models have two different conceptual frameworks, 

macroscopic and microscopic traffic flow models. The macroscopic traffic flow 
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models is view as a compressible fluid and mostly devoted to elucidating the relations 

between speed, density and flow in various traffic conditions and roadway 

environments. The fluid-dynamical description models analogize vehicular flows to 

fluids by assuming the aggregate homogeneous behavior of drivers.  

Lighthill and Whitham (1955) and Richard (1956) treated the flow as function of 

only the local density and developed the most well-known one-order fluid-dynamical 

(LWR) models. The shock wave theory used by LWR model was to explain many 

traffic phenomena such as congested traffic upstream of a freeway bottleneck. Other 

researchers such as Payne (1971), Liu et al (1998) and Zhang (1998) derived 

high-order similar models. Wong and Wong (2002) formulated a multi-class traffic 

flow model as an extension of LWR model with heterogeneous drivers. The main 

concepts are described as follow: When viewing from an aircraft at a freeway, one can 

imagine the vehicular traffic flow is regarded as a stream. Due to this analogy, traffic 

is explained in relationship of flow, density, and speed (Kühne, 1998). 

For traffic prevailed on freeway, since longitudinal movement is the main 

concern, the continuity equation is further simplified into a two-dimensional equation 

with two independent variables—the location at an instant of time. Upon this, 

Lighthill and Whitham (1955) first conjectured that density is the function of the two 

above-mentioned independent variables. After that, they adopted the traditional 

formula for estimating fluid flow rate. 

Obviously LWR model is an over-simplification of traffic phenomena, since it 

assumes a homogeneous and deterministic traffic flow and it implies smooth and 

concave functionso for both speed and density. Therefore in the past three decades, 

many efforts were devoted in improving the LWR model. Most notable studies in this 

regard include the work by Bick and Newell (1960) for two-lane bidirectional road, 

and those by Liu et al (1998) and Zhang (2005) of high-order similar models. In the 

same spirit, some other proposed systems of finite different equations (FPE) to model 

freeway traffic, such as Payne (1971) and Daganzo (1995). Wong and Wong (2002) 

further formulated a multi-class traffic flow model as an extension of LWR model 

with heterogeneous drivers. 

2.4.2 Microscopic Models 

The microscopic traffic flow models, in contrast to the macroscopic traffic flow 

models, describe the interrelationship of individual vehicle movements with other 

vehicles.  

These models of vehicular traffic attention are focused on individual vehicle each 
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of which is represented by a “particle”. Car-following models are the most pertinent 

ones to explicate the one-dimensional movements in a longitudinal lane such that the 

following vehicle adjusts its speed to maintain desirable or safe distance headways 

with the lead vehicle. Stimulus-response model is perhaps the most prominent type 

developed in the 1950s and 1960s by the General Motors (GM) research group, which 

is still being applied or extended.  

The concept of car following on a motorway indicates a driver reacts to the 

altering headway with his predecessor the behavior of a driver. The main idea is that a 

driver will through control of the vehicle deceleration and acceleration to maintain a 

suitable distance and time gap between it and the vehicle that precedes it in the same 

lane. Many studies have devoted to find mathematical formulas to descript the 

following behavior of the individual driver. The starting point of define the equation 

of motion is usually the analogue of the Newton’s equation for each individual vehicle. 

This approach assumes within a range of distance, a stimulus-response relationship 

exist.  

The stimulus function can be composed of many factors: the speed of the vehicle, 

distance headway, relative speed, etc. Each driver can respond to the surrounding 

traffic conditions only by accelerating or decelerating the vehicle. Different forms of 

the equations of motion of the vehicles in the different versions of the car-following 

models arise from the differences in their postulates regarding the nature of the 

stimulus.  

Chandler et al (1958) proposed the first follow-the-leader model, the different in 

the velocities of the following nth and the leading n+1th vehicle was supposed to be 

the stimulus for the nth vehicle. It was assumed that every driver be likely to keep 

with the synchronized velocity as that of the front vehicle.  

Pipes (1953) car-following theory is a linear model that depicts vehicular traffic 

behavior. That with the purpose of avoid crash with the leading vehicle, each driver 

must keep a safe distance from the leading vehicle. If the velocity of the nth vehicle is 

higher, the spacing to its leading vehicle needs to keep larger. 

A series of models have been developed in the 1950s and 1960s by Herman and 

his colleagues at the General Motors Research Laboratories to address microscopic 

approaches that focused on describing the driver car-following behaviors. Five 

generations of the GM car-following models are recognized and they provided an 

essential contribution to realize the traffic flow. Nowadays they are still applied in 

various aspects, including traffic stability and safety studies, level of service and 

capacity analysis, driver’s reaction times, etc.  
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Recently, various cellular automata (CA) models, comprehensive based on the 

aforementioned conventional traffic flow theory, have been developed to describe the 

phenomena of real traffic flows characterized with complex dynamic behaviors. 

Cellular automaton (CA) is a powerful tool to describe the phenomena of real 

traffic flows characterized with complex dynamic behaviors. Nagel and 

Schreckenberg (1992) first proposed the renowned NaSch model to reproduce the 

basic features of real traffic. In their model, the road is divided into squared-cells of 

length 7.5 meters. Each cell can either be empty or occupied by at most one car. The 

space, speed, acceleration and even the time are treated as discrete variables. The state 

of the road at any time-step is derived from one time-step ahead by applying 

acceleration, braking, randomization and driving rules for all cars at the same time. 

Obviously, their coarse description of cells is an extreme simplification of the real 

world conditions. Therefore, a considerable number of modified NaSch CA rules have 

been found in the past decade. Other related works that improved NaSch coarse cells 

with finer cells have also been found. In addition, Wolf (1999) employed a modified 

NaSch model to address the metastable states at the jamming transition in detail. 

Wang et al (2000) introduced NaSch model and Fukui-Ishibashi model to investigate 

the asymptotic self-organization phenomena of one-dimensional traffic flow. 

Pottmeier et al (2002) studied the impact of localized defect in a CA model for traffic 

flow exhibiting metastable states and phase separation. 

NaSch model was proposed by K. Nagel & M. Schreckenber (1992). Capable of 

reproduce important entities of real traffic flow, e.g. density-flow relation. Model 

description, one-lane traffic, divided into cells of length 7.5 m. Each cell can either be 

empty or occupied by at most one car with discrete velocity. 

The NaSch model is a minimal model in the sense that all the four steps are 

necessary to reproduce the basic features of real traffic; however, additional rules need 

to be formulated to capture more complex situations. 

Barlovic et al (1998) based on the original NaSch model, and further proposed 

the velocity dependent randomized (VDR) model which is basically analogous to the 

BJH model and endeavors to establish proper update rule for randomization (Pn) in 

accordance with the velocity variation of vehicles. The VDR model did successfully 

exhibit the metastable states and consequently, the hysteresis effect that was never 

visible in the previous simulations. Therefore the VDR model has been widely 

adopted worldwide since then. 

Knospe et al (2000) based on original VDR model and the following driving 

strategy. At large distances the cars move with their desired velocity vmax. At 
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intermediate distances drivers react to velocity changes of the next vehicle 

downstream, i.e. to ‘brake lights’. At small distances the drivers adjust their velocity 

such that safe driving is possible. The acceleration is delayed for standing vehicles 

and directly after braking events. 

Kerner (2004), a German traffic physician, introduced a three-phase traffic 

theory which consists of free flow, synchronized flow and wide moving jam phases. 

The later two phases exist in congested states where downstream front of the 

synchronized flow phase is often fixed at a bottleneck but the wide moving jam will 

propagate through the spatial locations of the bottleneck. 

To explore the emergence of such traffic patterns, Kerner and partners have 

shown complex spatiotemporal behaviors based on empirical freeway traffic analysis. 

The effect of slow cars in two-lane systems was further studied by Knospe et al (1999) 

who found that even few slow cars could initiate the formation of platoons at low 

densities. 

Moreover, Kerner (2005) also compared the congested pattern control approach 

with the free flow control approach at an on-ramp bottleneck with ramp metering. It 

was found that the congested pattern control approach has higher throughputs on the 

main road downstream of the bottleneck and considerably lower vehicle waiting times 

at the light signal on the on-ramp. The upstream propagation of congestion does not 

occur even if large amplitude perturbations appear in traffic flow. 

2.4.3 Related Cell Transmission Model 

The CTM was developed as a discrete approximation to the hydrodynamic 

theory of traffic flow. It is capable of automatically tracking shocks and acceleration 

waves and thus capturing traffic behavior in the process of the formation, propagation, 

and dissipation of queues. One famous approach in this regard is the CTM model 

proposed by Daganzo (1994, 1995). In that, the LWR continuum model is discretized 

into cells. The road is represented by a number of small sections (cells). The 

simulation model keeps tracking the number of vehicles in each cell, and in each 

time-step it calculates the number of vehicles that cross the boundaries between 

adjacent cells. The flow from one cell to the other depends on how many vehicles can 

be sent by the upstream cell and how many can be received by the downstream cell. 

The amount of vehicles that can be sent is a function of the density in the upstream 

cell whereas the number can be received depends on the density in the receiving cell. 

The lagged CTM (Daganzo, 1999) is a refinement of this scheme, where the amount 

of vehicles a cell can receive (from the adjacent upstream cell) is also affected by the 

density some time earlier in the cell. 
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Lo et al (2001) developed a dynamic traffic-control formulation and transformed 

the CTM to a set of mixed-integer constraints and subsequently cast the dynamic 

signal-control problem to a mixed-integer linear program. This study produced results 

to show the benefit of dynamic timing plans and demonstrated that some of the 

existing practice on signal coordination could be further improved. 

Lo and Szeto (2002) developed a cell-based DTA formulation and through 

defining an appropriate gap function, and transformed a formulation based on the 

nonlinear complementarity problem to an equivalent mathematical program, this 

formulation encapsulates a network version of the CTM, the formulation is able to 

capture dynamic traffic phenomena, such as shock-waves, queue formation, and 

dissipation. Moreover, it is capable of capturing dynamic traffic interactions across 

multiple links. 

Lo and Szeto (2002) developed a cell-based dynamic traffic assignment 

formulation that through a variational inequality approach. This formulation satisfies 

the first-in-first-out (FIFO) conditions through the CTM, and employed an alternating 

direction method developed for co-coercive variational inequality problems. 

Lin and Lo (2003) show that these moving jams are not particularly peculiar but 

can be explained with the hydrodynamic theory of traffic flow, or the 

Lighthill-Whitham-Richards model, and the merge and diverge models in the cell 

transmission model. In fact, and demonstrate that this stationary jam phenomenon can 

be replicated with a simple two-wave velocity (or triangular) flow-density relationship 

in conjunction with the hydrodynamic theory. This finding provides some evidence to 

support that a triangular flow-density relationship is a good approximation of field 

observations. 

Szeto and Lo (2004) develops a cell-based formulation for the simultaneous 

route and departure time choice problem with elastic demands through a variational 

inequality problem (VIP), and prove that the O-D first-in-first-out (FIFO) property is 

only maintained under certain conditions of the travel time and schedule delay costs. 

the theoretical analyses together with the empirical results indicate that O-D FIFO 

should hold in reality. 

Boel and Mihaylova (2006) present a stochastic model that extends the CTM, of 

freeway traffic at a time scale and of a level of detail suitable for on-line estimation, 

routing and ramp metering control. The freeway is considered as a network of 

interconnected components, corresponding to one-way road links consisting of 

consecutively connected short sections (cells). The model is validated over synthetic 

data with abrupt changes in the number of lanes and over real traffic data sets 
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collected from a Belgian freeway. 

Gomes and Horowitz (2006) using a cell transmission-like model called the 

asymmetric cell transmission model (ACTM) to solved onramp metering control 

problem, formulation captures both free flow and congested conditions, and includes 

upper bounds on the metering rates and on the onramp queue lengths. 

2.5 Summary  

Base on the above literature review, this study proposes a novel approach, based 

on rolling self-structured traffic patterns, to make a long prediction for the traffic 

features along a freeway corridor. In the prediction process, a sequence of historical 

traffic data are collected and used to identify the similar cluster of traffic patterns. The 

input values of learned GP model belonging to that cluster are used to predict the 

subsequent many hours. With the predicted medium-to-long on-ramp traffic, CTM is 

used to simulate the arrival patterns. And then, EKF is employed to estimate the O-D 

proportions. 
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CHAPTER 3 PROBLEM DEFINITIONS 

 

This chapter introduces the problem definitions in this research. Section 3.1 

addresses the problem statement including the definitions of typical freeway corridor, 

variables, parameters and the rolling concept; the proposed model framework is 

introduced in Section 3.2. 

3.1 Problem Statement 

3.1.1 Definitions 

3.1.1.1 A typical freeway corridor 

The dynamic O-D estimation model of this research is based on Chang et al. 

(1994, 2006, 2007), consider a typical linear freeway corridor with N segments, 

coding 0 to N-1, as shown in Figure 2. Assume that detectors are installed at all 

on-ramps, off-ramps, and mainline links. The information that is readily available for 

estimation of dynamic O-D distribution is the time series of entering flow, )(kqi , 

exiting flow, )(ky j , and mainline flow, )(kU l . 
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Figure 2 A typical linear freeway corridor 

 

The relationship between the dynamic O-D pattern, resulting link flow, and 

arrival pattern can be expressed by the following equations: 
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Eqs. (1) and (2) express the relationship between entering traffic ( )( mkqi  ), 

mainline traffic volume ( )(kU l - )(kql ), O-D matrices proportion ( )( mkbij  ), and 

arrival pattern ( )(km

ij ).  
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3.1.1.2 Definition of variables and parameters 

Obviously, the system formulation has a large number of state parameters, i.e., 

bij(k) and )(km

ij
 , causing low efficiency in estimation. As such, more information is 

required to ensure the proposed model to be computationally efficient and tractable. 

The variables and parameters of O-D estimation, GHSOM and GP, used in this 

study are defined in Table 1. 

 

Table 1 Definition of variables and parameters 

 

Variables/ 

parameters 
Definition 

)(0 kq  The number of vehicles entering the upstream boundary of the 

freeway section during time interval k. 

)(kqi  The number of vehicles entering freeway from on-ramp i during time 

interval k, i = 1,2,. . . , N - 1. 

)(ky j  The number of vehicles leaving freeway from off-ramp j during time 

interval k, j = 1,2,. . . , N - 1. 

)(kyN  The mainline volume at the downstream end of the freeway section 

during time interval k. 

)(kU l  The number of vehicles crossing the upstream boundary of segment l 

during time interval k, l = 1,2,. . . , N - 1. 

)(kTij  The number of vehicles entering the freeway from on-ramp i during 

time interval k that are destined to off-ramp j, where Nji 0 . 

)(kbij  
The proportion of qi(k) heading toward destination node j during time 

interval k. 

)(km

ij
  The fraction of Tij(k-m) vehicles departing from entry node i during 

time interval k that takes m time intervals to exiting node j. 

)(km

il
  The fraction of Tij(k-m) trips from entry node i during time interval k 

that takes m time intervals to mainline node. 

)(kij

  The fraction of Tij(k-m) trips from entry node i during time interval k 

that takes m (m= )(ktij

 ,  0/)(int)( tkkt ijij  ) time intervals to 

mainline node. 

)(kij

  The fraction of Tij(k-m) trips from entry node i during time interval k 

that takes m (m= )(ktij

 , 1)()(   ktkt ijij ) time intervals to mainline 

node. 

Xk(t+1) A sequence of r-period historical traffic features observed at location 

k starting from time t+1. 

kx̂ (t+r+h) Predicted the flow features h periods ahead. 

τ1  Breadth of GHSOM, a threshold to specify the desired level of detail 

that is to be shown in a particular SOM. 

τ2 Depth of GHSOM, a threshold to specify the desired quality of input 

data representation at the end of the learning process. 

α(l) The learning rate function which controls the amount of weight 
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Variables/ 
parameters 

Definition 

vector adjustment and decreases with the iterations. 

σ(l) Defines the width of the neighborhood function and also decreases 

monotonically. 

wij(k) The white noise of the state variable at time k, and E(wij(k)) = 0, 

Var(wij(k)) = D(k) follow Gaussian distribution. 

e(k) The observation error term of the measurement variable, following 

Gaussian distribution, and E(e(k)) = 0, Var(e (k)) = R(k). 

 

3.1.1.3 The rolling concept 

Let Xk(t+1)=[xk(t+1), xk(t+2), …, xk(t+r)] denote a sequence of r-period historical 

traffic features (e.g., five-minute flow rates in the study) observed at location k 

starting from time t+1. The proposed method aims to predict the flow features h 

periods ahead, denoted as kx̂ (t+r+1), kx̂ (t+r+2),..., kx̂ (t+r+h). For a short-term 

prediction (i.e., h=1 or 2), the predicted results have provided useful information for 

some ITS applications like traffic responsive control. However, if the purpose is to 

develop advanced traveler information systems, we need to predict the above flow 

sequences at different locations (i.e., k>>1) with longer periods ahead (i.e., h>>1). 

This study aims to predict kx̂ (t+r+1), kx̂ (t+r+2),..., kx̂ (t+r+h) with relatively 

long period ahead (h>>1). Undoubtedly, the prediction may be rather inaccurate if 

h>>r. To overcome this difficulty, a rolling-horizon concept is incorporated into the 

proposed prediction method. First, we employ the GHSOM model to classify the 

given traffic patterns into appropriate clusters. Then, used the GP model to prediction 

traffic sequence in each cluster such that a portion of the most updated (r-s) periods of 

traffic sequence, say xk(t+s), xk(t+s+1), …, xk(t+r), are used to predict the traffic at the 

very next time period, )1(ˆ  rtxk . This predicted traffic flow together with the 

previous traffic flows are further used to predict the consecutive periods in a rolling 

manner. Specifically, kx̂ (t+r+1) is predicted based on xk(t+s), xk(t+s+1),…, xk(t+r); 

kx̂ (t+r+2) is predicted based on xk(t+s+1), xk(t+s+2),…, xk(t+r), kx̂ (t+r+1); 

kx̂ (t+r+3) is predicted based on xk(t+s+2), xk(t+s+3),…, kx̂ (t+r+1), kx̂ (t+r+2); and 

so on. The details of traffic pattern clustering and traffic prediction are further 

elaborated next chapter. 

3.1.2 Estimation of an O-D Matrix 

The core logic of the proposed model is how to estimate dynamic OD matrices 

Tij(k) or bij(k) by observing the number of vehicles on ramp qi(k), off ramp yj(k) and 

main line Ul(k) 
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According to the definition, the relation between the dynamic O-D pattern and 

resulting link flow can be expressed by equations (Lin and Chang, 2007): 
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Consider the speed variation among drivers, it is reasonable to assume that the 

travel time of vehicles from node i to node j during time interval k are distributed 

among time intervals k-M,…, k-1, and k where M is the maximum number of intervals 

required for vehicles to traverse the entire freeway section. The traffic volume leaving 

freeway from off-ramp j, )(ky j , can thus be expressed as: 
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where )(km

ij
  shall satisfy the following relations: 
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Thus, taking into consideration the difference of travel time caused by different 

driver speed factors, Chang and Wu (1994) add a variable ( )m

ij k  to reflect the 

effects of estimated results on different travel times, and using the parameters ( )m

ij k  

to predict the vehicle arrival distribution, which is defined as follows: 

( )m

ij k ：The fraction of Tij(k-m) vehicles departing from entry node i during time 

interval k that takes m time intervals to exiting node j. 

Therefore, considering this argument, the number of vehicles on the off ramp at 
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time k can be rewritten as Eq. (11). It represents the dynamic relationship between 

O-D distribution pattern and road traffic. 
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The relationship of the number of vehicles on the main line, must also comply 

with the constraints of flow conservation, and significantly increases the performance 

of the estimation model. 
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Eq. (12) is a traffic equation to express the relationship between entering traffic 

( )( mkqi  ), arrival pattern ( )(km

ij ), O-D matrices proportion ( )( mkbij  ), and 

mainline traffic volume ( )(kU l - )(kql ). Obviously, the system formulation has a large 

number of state parameters, i.e., bij(k) and )(km

ij
 . The number of these unknown 

parameters increases with the necessary M value. As such, some more information is 

required to ensure this proposed model to be computationally efficient and tractable. 

To deal with the large number of unknown parameters, Chang and Wu (1994) 

simplified the formulations by assuming that the speeds of vehicles entering the 

freeway at the same time interval are distributed in a small range. Therefore, eqs. (11) 

and (12) can be rewritten as: 
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As such, the number of unknown parameters reduces from (M + 1)N(N + 1)/2 to 

3N(N+1)/2. However, if the target freeway corridor is sufficiently long and 

experiences moderate congestion, the speeds of vehicles for the same O-D may vary 

in a wide range. Then, eqs. (13) and (14) are not adequate to capture all complex 

interrelations between traffic flows and O-D patterns. To overcome these limitations, 
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Lin and Chang (2005) proposed a new set of generalized formulations by employing a 

distribution to represent the potential variation of travel times among drivers due to 

the impact of congestion and the difference in their desired speeds. They assumed that 

the travel times of drivers departing from node i during time interval k to node j 

follow a specific distribution. Since the travel times for the same O-D pair drivers 

departing during the same time interval follow a distribution, Lin and Chang (2007) 

replaced )(km

ij
  with a cumulative density function for one time interval as follows: 
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By applying the above travel time distribution concept, the relationships between 

ramp volumes and O-D proportions can be rewritten as: 
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Compared to Chang and Wu (1994), the number of unknown parameters for Eqs. 

(16) and (17) has reduced from 3N(N+1)/2 to 2N(N+1)/2. On the other hand, Lin and 

Chang (2005) represented the different speeds of vehicles for the same O-D pair by 

using the distribution of travel time. 

Although the relevant studies (e.g. Chang and Wu, 1994; Chang and Tao, 1995; 

Lin and Chang, 2005, 2007) have shed light on the dynamic O-D matrices estimation, 

most of them made subjectively assumptions regarding arrival distributions, which 

may not be valid for various conditions from free-flow to gridlock. In addition, most 

of these models are too complex, causing low efficiency in estimation. In view of the 

importance of the arrival distribution prediction and the estimation efficiency required 

for real-time implementation, this study aims to develop a model that can accurate 

capture the traffic hydrodynamics under various traffic conditions in an efficient 

manner. 

The macroscopic pattern only calculates the average travel time dependent on 

average link flows on larger scale road networks, while traffic flows increase leading 
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to road network congestion. This method of travel time estimation is too innaccurate 

and cannot reflect actual vehicle trips. In terms of microscopic traffic flow model 

estimates, detailed observation of driver behavior of all vehicles on the road, and a 

complicated calculation and update will result in a lack of efficiency and timeliness. 

Therefore, in view of the mediumscopic traffic model travel time estimation methods, 

not only effectively observe vehicle fleet operator behavior, but also reduce computer 

calculation time and storage space, improving the efficiency and objectivity of 

dynamic O-D matrices estimation. The CTM is a mediumscop traffic mode for 

predicting travel time, developed by Daganzo (1994), based on the basic concepts of 

fluid dynamics to derive a single direction and single entrance road density process, 

not making any additional assumptions for effective and accurate forecasting of 

vehicle operating behavior on networks to reflect the true dissipation under different 

traffic conditions. 

In the past, many scholars validated the effectiveness of the CTM model, for 

instance, the estimation of the traffic density and congestion patterns in difficult to 

measure road sections based on the use of CTM mode conversion state - space model 

(e.g. Sun et al, 2003). According to the hybrid Monte Carlo development of the 

Mixture KF algorithm to solve the discrete approximation of non-observation of the 

transition state of the state-space model. The estimated results show that real-time 

filtering algorithm is feasible and efficient, and the advantages of this model is 

average estimation error under 10%, the estimate fitting in with daily variation of 

traffic information. 

Compared to other assumptions, this study using CTM simulates the behavior of 

real traffic, fitting in with real traffic operating conditions, in order to simulate the 

vehicle's arrival distribution in the road network, and then replacing the assumptions 

of travel time to no more than one time interval. 

Therefore, the research proposes CTM to predict traffic arrive patterns, more 

easily than simulating travel time with different traffic conditions than the 

macroscopic model, but also more quickly than the microscopic solution. 

However, the arrival distribution estimations using CTM are based on an 

unrealistic assumption that the on-ramp traffic along a freeway remains unchanged 

over time. To rectify this unrealistic assumption, a medium-to-long term (e.g. next two 

to four hours) prediction model of on-ramp traffic along a freeway is required. 

According to field observation, daily traffic patterns do repeat spatially and 

temporally over and over again, this research proposes a two-stage prediction model, 

based on rolling self-structured traffic patterns, to make a long prediction for the 

traffic features along a freeway corridor, first employs the GHSOM model to partition 
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unlabeled traffic patterns into appropriate number of clusters and then develops a GP 

model associated with each cluster to predict the traffic features based on rolling 

self-structured traffic patterns. With the predicted medium-to-long on-ramp traffic, 

CTM is used to simulate the arrival patterns. And then, EKF is employed to estimate 

the O-D proportions. 

3.2 The Proposed Model Framework 

Figure 3 presents the detailed process of the proposed approach. Throughout the 

prediction process, the step 1, inputting the rolling on ramp traffic patterns and use 

GHSOM algorithm to cluster traffic patterns, and step 2, taking 240 time interval 

traffic pattern to matching on the similar cluster and use GP to predict 48 time interval 

traffic information. Moreover, CTM is used to simulate the arrival patterns and EKF 

is used to estimate the O-D proportions, the program of the propose method was 

coded in Visual Basic 6.0, and refer to the GHSOM package, developed jointly by the 

University of Aberdeen and Vienna University of Technology. 

To replicate traffic behaviors by CTM, traffic demand of each O-D pair must be 

given by GHSOM and GP to predict traffic on ramp in advance. That is, a set of bij(k) 

is to be determined and used to assign the detected on-ramp traffic to different 

downstream interchanges. Once the arrival distributions of all entering traffic have 

been successfully simulated, )(km

ij
  can be computed and used to calibrate the O-D 

proportions of entering traffic qi(k) by EKF, namely bij’(k). Then, the new O-D 

proportions bij’(k) will be used to replicate a revised arrival distribution )(' km

ij
  in an 

iterative manner. 
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Figure 3 Process of the proposed approach 

 

The core logic of the proposed model is build recursive dynamic OD matrix 

estimation model, using GHSOM and GP to predict traffic on ramp in advance, and 

then supply the CTM to predict arrival patterns by simulated traffic flow on   

freeway time and space, and finally using EKF to estimate OD matrices.  

Among them, the stop condition: 
1 2[ ( ) ( )] 0.05n n

ij ij

i j

b k b k    where n is the 

operation result of n-th recursive, or 500 times the number of recursion. Under the 

recursive conditions program will result in a new bij’(k), otherwise bij’(k) to continue 

to do the operation until the convergence condition is reached.  
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CHAPTER 4 MODEL FORMULATION 

 

This chapter introduces the dynamic freeway O-D matrices estimation algorithm 

in this research. Section 4.1 addresses the self-structured medium-to-long term traffic 

prediction model, the arrival distribution modeling was introduced in Section 4.2, and 

the dynamic OD matrices estimation algorithm was introduced in Section 4.3. 

4.1 Self-Structured Medium-to-long Term Traffic Prediction Model 

4.1.1 Traffic Pattern Clustering: GHSOM 

According to our observation, daily traffic patterns do repeat spatially and 

temporally over and over again, this historical traffic data are collected and used 

GHSOM to identify the similar cluster of traffic patterns into appropriate different 

traffic patterns. 

Pattern clustering is also known as cluster analysis, set partitioning, Q-analysis, 

typology, grouping, clumping, classification, numerical taxonomy, or unsupervised 

pattern recognition. In traffic literature, traffic pattern at a specific location can 

represent a sequence of traffic features such as flow, speed, occupancy, etc. Hence, 

traffic pattern clustering is a classification process wherein a group of unlabeled 

traffic patterns are partitioned into a number of sets—similar patterns in the same 

cluster and dissimilar patterns in different clusters. 

Brucker (1978) and Welch (1983) proved that, for specific objective functions, 

clustering becomes an NP-hard problem when the number of clusters exceeds three, if 

one aims to find the optimal clusters. Numerous heuristic algorithms for clustering 

have been developed, which can generally be divided into five categories: statistics 

clustering, mathematical programming, network programming, neural network and 

metaheuristics (Chiou and Lan, 2001; Chiou and Chou, 2010). Rauber et al. (2002) 

proposed the GHSOM model and proved that it possesses excellent performance in 

pattern clustering; thus, this study will employ GHSOM to conduct traffic pattern 

clustering. 

In fact, GHSOM is an extension of self-organized map (SOM), an artificial 

neural network that performs clustering by means of unsupervised competitive 

learning algorithm, initiated by Kohonen (1982). During the learning process, the 

network performs clustering and the model vectors change to reflect the similarity of 

neighboring clusters. The goal of SOM is to represent the points in the source space 

by corresponding points in a lower dimensional target space, often in a 
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two-dimensional lattice. However, SOM can neither capture the inherent hierarchical 

structure of data, nor determine the size of the preset map ignoring the characteristics 

of data distribution. To overcome these shortcomings, the GHSOM (Rauber et al., 

2002) has a hierarchical structure of multiple layers, where each layer consists of 

several independent growing SOMs. 

The GHSOM architecture starts from a top-level map, which grows in size to 

represent a collection of data at different specific levels. For instance, Layer 1 

contains 22 units and provides a rather rough organization of the main clusters in 

the input data. The four independent maps in Layer 2 give a more detailed data 

information. The three identified units in Layer 2, which have diversified input data 

mapped onto them, are further expanded to form a new independent SOM at the 

subsequent layer (Layer 3), and so on, depicted in Fig. 4. 

 

Layer 0

Layer 1

Layer 2

Layer 3

 
 

Figure 4 An illustration of the GHSOM architecture 

 

To elucidate the training algorithm of GHSOM, the training algorithm of 

conventional SOM is given below. A typical SOM network consists of an input layer 

and an output or competitive layer. The input layer is composed of a set of 

r-dimensional input vectors xk=[xk(t+1), xk(t+2), …, xk(t+r)], where r indicates the 

number of features (i.e. the flow series at consecutive time intervals in this study) 

contained in each input vector. The output layer is an m-dimensional (oftentimes m=2) 

grid, which consists of a set of neurons, each associated with a r-dimensional weight 

vector wi = [wi1, wi2,…, wir] with the same dimension as the input vector. The 

arrangement of the neurons can be rectangular or hexagonal. Conceptually, SOM 

takes a set of inputs mapping them onto the neurons of two-dimensional grid. 

Randomly initializing the weight vectors, the SOM network then performs learning as 
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the following steps. 

Step 1: Randomly initialize the weight vector of each neuron. 

Step 2: Determine the winning neuron. The SOM network determines the winning 

neuron for a given input vector, selected randomly from the set of all input 

vectors. For every neuron on the grid, its weight vector is compared with the 

input vector by using some similarity measures, e.g., Euclidean distance. The 

neuron whose weight vector is closest to the input vector is selected as the 

winning neuron. Eq. (18) shows how to determine the winning neuron b. 

b:  )(min)( lwxlwx ikt
i

bkt                                    (18) 

where l denotes the number of current learning iteration. 

Step 3: Update the weights. After a winning neuron is determined, the weight vectors 

of winning neuron along with its neighboring neurons are updated so as to 

“move” toward the input vectors according to the following equation:  

))()(()()1( lwxlhlwlw iktbiii     (19) 

where hbi(l) is the neighborhood function. A widely used neighborhood 

function is based on the Gaussian function: 

)
)(2

exp()()(
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rr
llh

bi

bi





                                       (20) 

where α(l) is the learning rate function which controls the amount of weight 

vector adjustment and decreases with the iterations; ri and rb are the locations 

of the neuron i and winning neuron b in the lattice; σ(l) defines the width of 

the neighborhood function and also decreases monotonically. 

Step 4: Test the stop condition. Steps 2 and 3 are repeated until all the patterns in the 

training set have been processed. In addition, to achieve a better convergence 

towards the desired mapping, it is usually required to repeat the previous loop 

until some convergence criteria are met. 

Based on the concept of above SOM learning process, the training algorithm of 

GHSOM grows in two dimensions: horizontally (by increasing the size of each SOM) 

and hierarchically (by increasing the number of layers). In the horizontal growth, each 

SOM modifies itself in a systematic way similar to the growing grid so that each 

neuron does not represent too large an input space. In the hierarchical growth, on the 

other hand, the principle is to periodically check whether the lowest layer of SOMs 

have achieved sufficient coverage for the underlying input data. The basic steps of the 
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horizontal growth and the hierarchical growth of the GHSOM are delineated below 

(Tangsripairoj and Samadzadeh, 2006): 

Horizontal growth: 

Step 1: Randomly initialize the weight vector of each neuron. 

Step 2: Perform the conventional SOM learning algorithm for a preset number of 

iterations. 

Step 3: Find the error unit e and its most dissimilar neighbor unit d. The error unit e is 

the neuron with the largest deviation between its weight vector and the input 

vectors it represents. 

Step 4: Insert a new row or a new column between e and d. The weight vectors of 

these new neurons are initialized as the average of their neighbors. 

Step 5: Repeat steps 2-4 until the mean quantization error of the map (MQEm) is less 

than (τ1 mqeu). τ1 is a threshold to specify the desired level of detail that is to 

be shown in a particular SOM. mqeu is the mean quantization error of the 

neuron u in the preceding layer of the hierarchy. Eq. (21) calculates mqeu, 

which is the average distance between the weight vector of neuron u and the 

input vector mapped onto this neuron: 

uC

Cx

uj

C

u Cnwx
n

mqe
u

uju

 


  ,
1

                                 (21) 

where Cu denotes the set of input vectors that are mapped onto unit u; wi 

denotes the weight vector of unit i; uj wx   denotes the distance between 

input vector xj and weight vector wu; uC  denotes the cardinality of the set Cu. 

Furthermore, MQEm, the mean of all neurons’ quantization errors in the map, 

is calculated as follows: 

1
,   m i U

i UU

MQE mqe n U
n 

                                      (22) 

where U denotes the subset of map units. 

Hierarchical growth: 

Step 1: Check each neuron to find out if its mqeu is greater than (τ2mqe0). τ2 is a 

threshold to specify the desired quality of input data representation at the end 

of the learning process; mqe0 is the mean quantization error of the single 

neuron of Layer 0, then assign a new SOM at a subsequent layer of the 
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hierarchy. mqe0 is computed as follows: 

Inmx
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  ,
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00                                    (23) 

where I is the set of all input vectors. mqe0 is regarded as a measurement of the 

overall dissimilarity of input data. 

Step 2: Train the SOM with input vectors mapped to this neuron. 

4.1.2 Traffic Pattern Matching 

Due to the scope of the research exclude nonrecurring congested flow, such as 

random irregular events as accidents, disabled vehicles, and other special situations. 

Base on the concept of rolling and only consider the varying of traffic counts but the 

location of interchange and detect of timing, the study assume all input on ramp traffic 

patterns can identify to an exclusive cluster. 

The pattern matching stage, first employs the average of individual time periods 

(e.g. t=1,t=2,…) of every pattern produced by GHSOM as cluster seed, then calculates 

the squared Euclidean distance of the input sequence and cluster seed pattern of every 

clusters. It then assigns the input objects to specific cluster according to the nearest 

cluster using a squared Euclidean distance measure. For each input pattern Fi, 

compute its membership )( ij FCm  in each cluster jC . The membership 

function )( ij FCm defines the proportion of pattern iF  that belongs to the j
th

 cluster 

jC . The GHSOM algorithm uses the membership  1,0)( ij FCm , if the pattern Fi 

closest to the cluster Cj (minimum squared Euclidean distance), then )( ij FCm =1; 

otherwise )( ij FCm =0.  

The process can be summarized in the following steps, and show as Fig 5: 

Step 0: Input a traffic pattern F of r-periods point set. 

Step 1: The cluster pattern average of every group produced by GHSOM used as 

cluster seed. 

Step 2: Compute the squared Euclidean distance of each input objects such that  

2)(),( ct

t

tctt ffFFMin                                (24) 
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Step 3: Assign the input objects to specific cluster according to minimum squared 

Euclidean distance. 

Step 4: Use the prediction patterns of the specific cluster to predict traffic flow. 
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Figure 5 The process of traffic pattern matching 

 

4.1.3 Traffic Prediction: GP 

After dividing the traffic patterns into several clusters, a GP traffic prediction 

model is then developed for each cluster, which predicts h periods ahead based on 

historical r periods.  

The GP model is a global optimization algorithm based on the mechanism of 

natural selection and offspring generation (Koza, 1992). It starts with a population of 

randomly generated individual trees, each corresponding to a linear combination of 

traffic flows in the previous periods. Every generated tree is evaluated for its fitness 

value, which is further utilized for the selection of generated offspring trees. 

For ease of explanation, assume there are a total of I traffic patterns to be 

assigned to cluster l, each traffic pattern denoted as Xli(1)=[xli(1), xli(2), …, xli(r)], i=1, 

2,…, I. The learning process of GP is described below: 

Step 0: Define function set and terminal set. The function set consists of the arithmetic 

functions of addition, subtraction, multiplication, division, as well as a 

conditional branching operator. The terminal set is set as the latest r periods of 
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traffic flow data. 

Step 1: Initialize random population size. 

Step 2: Evaluate fitness values of the trees. Randomly select trees from the population, 

evaluate them with training traffic patterns belonging to this cluster, and then 

rank them according to their fitness values. A fitness measure is defined as 

follows: 

 

h

tXfrtx

E

I

i

h

t

liqli

lq


 



 1 1

2
))(()1(

                                (25) 

where )(qf  denotes the mathematical expression of tree q predicting the 

traffic flow at next time period based on the input historical data at previous 

time periods, i.e., )1(ˆ))1((  rtxXf liqliq . 

Step 3: Create new individual by applying genetic operations. The genetic operations 

further include reproduction, crossover and mutation as follows. 

Step 3-1: Reproduction. Replace the least-fit two traffic patterns by the best-fit two. 

Step 3-2: Crossover. Create new offspring by randomly combining the chosen parts 

of two selected trees in each parent tree and swapping the sub-tree rooted 

at crossover points, illustrated in Fig. 6(a). 

Step 3-3: Mutation. Randomly select a mutation point in a tree and substitute the 

sub-tree rooted there with a randomly generated sub-tree, illustrated in 

Fig. 6(b). 
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Figure 6 Crossover and mutation operations of GP 

 



41 

 

Step 4: If the fitness tends to zero, then stop the procedure. Otherwise, proceed to the 

next step. 

Step 5: Generate new population by using genetic operations, and return to Step 2. 

Once a new traffic pattern with r periods is collected, it automatically assigns to 

the closest cluster, into which all traffic patterns have been classified by GHSOM. The 

traffic pattern is then fed into the tuned GP model in this cluster to predict the next h 

periods in a rolling manner. 

4.2 Arrival Distribution Modeling: CTM 

With the predicted entering traffic over a sufficient long period, the CTM model 

is used to estimate the arrival patterns of entering traffic at every time click. 

The CTM is developed by Daganzo (1994) that conceptual representation of 

spatial and temporal conditions of traffic fleet formation and relief, assuming 

homogeneous sections, only one enterance, one exit and no other ramps on the road 

for vehicle access. CTM is especially suitable for dynamic O-D matrices estimation. 

The present paper employs CTM to predict the arrival distribution of an O-D pair 

traffic, which will then be used to compute  km

ij . 

4.2.1 Cell-Based Arrival Distribution Modeling 

As shown in Figure 7, a freeway is equally discretized into homogeneous 

sections (cells), numbered consecutively from i = 1 to I starting with the upstream end 

of the road, where the length of each cell is the distance traveled by a vehicle in one 

time interval under free-flow traffic. For instance, if set time interval as 6 seconds and 

free-flow speed as 100 km/hr. The cell length is then determined as 1/6 km. 

 

 

Figure 7 Cell representation of a freeway corridor 

 

In light traffic, all vehicles in a cell can be assumed to advance to the next cell 

with each interval. It is unnecessary to know where within the cell they are located. 

Therefore, the system’s evolution obeys: 

ni+1(t + 1) = ni(t)   for t = 0, 1, 2, …, T  (26)  

Where ni(t) is the number of vehicles in cell i at time t；ni+1(t+1) is the number of 

i=1   ,  2   , …,           j     ,…,           I   

… cell Origin Destination cell cell cell … cell cell 
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vehicles in cell i+1 at time t+1. 

  It is assumed that this equation holds true for all traffic flows unless queuing 

occurs. When speed reduced due to vehicles entering a bottleneck in the road and 

queuing occurring, The following two variables are introduced to incorporate queuing 

in the model, simulating traffic flow variation caused by congestion: (1) Qi, the 

maximum flow from cell i – 1 to i during time interval t (when the clock advances 

from t to t + 1), which also known as “capacity,” and is assumed to be a constant 

under the whole simulation period. (2) Ni(t), the maximum number of vehicles that 

can be present in cell i in time t. Thus, Ni(t) – ni(t) is the amount of empty space in 

cell i at time t.  

With these, we define ci(t) as the number of vehicles that can flow into i for time 

interval t as: 

ci(t) = min{ni-1(t) , Qi , 
v

w
[Ni(t) – ni(t)]}  (27) 

The recursive relationship of the CTM model is generated based on the above 

formula with continuous time-variance, therefore, we can understand the number of 

vehicles of every cell at every time interval through the recursive mode. 

The characteristics of CTM are the number of vehicles on cell at time t is the 

function of the last cell and time, similar to the LWR fluid model of relationship 

density and flow rate. Assumes a simplified version of the fundamental diagram, 

usually based on a Isosceles trapezium form, as shown in Figure 9, and provides 

simple solutions for realistic networks. It is assumed that a free-flow speed v at low 

densities and a backward shockwave speed -v for high densities are constant, the 

relationship is: 

      kk0for        k-kv,qvk,minq jjmax   (28) 

Where v represents free flow speed, jk : saturation density, and 2/max vkq j , 

maximum flow rate. Four kinds of traffic state and its position in Figure 8, 

respectively, as follows: 

(1) Free flow: speed is v, density is between [0~kj/3], flow is between [0 ~ qmax];  

(2) Light Synchronized Flow: speed is between [v/2, v], density is between [kj/3,   

2kj/3], flow is qmax; 

(3) Heavy Synchronized Flow: speed is between [v/5, v/2], density is between [2kj 
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/3, 5 kj /6], flow is between [qmax/2, qmax];  

(4) Synchronized Flow: speed is between [0, v/5], density is between [5kj /6, kj], 

flow is between [0, qmax/2]  

flow，q

density，k

 vkj/2

 qmax

kj/3  kjO

 v
-v

v/2

v/5

qmax/2

Light 

synchronized 

2kj/3

Heavy 

synchronized

Synchronized 

flow

Free flow

 

 

Figure 8 Fundamental diagram of CTM 

 

Based on the above relationship, can finding when queuing occurs; the CTM is 

based on a recursion where the cell occupancy at time t+1 equals its occupancy at 

time t, plus its inflow and minus the outflow: 

ni(t + 1) = ni(t) + ci(t) – ci+1(t)  (29) 

If the remaining storage capacity and flow capacity of next cell is sufficient, all 

vehicles will move forward to the next cell; otherwise, only part of them can move to 

next cell proportionally, the logic is presented as follows: 

 
)1()1()1(

)1(,min)1()1(

1 



 trtctcthen

tnNQtqtcif

iii

iiii  (30) 
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




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



 )1()1(
)1(,min

1)1(

)1(,min)1()1(

1 trtc
tnNQ

tcthen

tnNQtrtcif

ii

ii
i

iiii

 (31) 

4.2.2 Application of vehicle arrival pattern prediction 

In this study, the length of time interval is determined by the length of cell and 

freeway geometric conditions. If time interval is greatly lengthened, it will lead to the 

cell to be too long to analyze traffic operate behavior between 2 interchanges. 

However, if cell is too short, the capacity of the cell is insufficient, and will lead to 
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large error due to estimated traffic flow. Therefore, this study in simulation accuracy 

and time, six seconds is selected as clock tick length, and sensitivity analysis for 

different time interval was not tested. 

The operation concept of the CTM model is to predict vehicle arrival distribution 

is shown as Figure 9 of the relationship of cell storage, equally discretized into 

homogeneous sections (cells), numbered consecutively from i to j starting with the 

upstream end of the road, because each driver and travel time inconsistency resulting 

in off ramp time variables, probably from m, m+1, ..., M time interval, but the number 

of vehicles starting with the upstream end of the road not decided by cell i to j but  

decided by complete road traffic conditions. Therefore, CTM model to predict the 

arrival distribution m

ij  is to calculate and record the proportion of the number of 

vehicles off ramp at every time interval and total number of vehicles. 

The variation relationship of actual computing process and the number of 

vehicles on cell is based on the basic concept of CTM, and then further research into 

expansion demand. This research takes into account aditional factors for on ramp, off 

ramp, and main road, to respond to the real behavior of traffic operations and different 

driver driving behavior leading to different vehicle speed that may cause queuing on 

road network as the basic concept of CTM only consider linear sections. Therefore, 

the concept of CTM of the vehicle on the main line, on ramp, and off ramp is shown 

as Figure 9, with every cell divided into several small cells based on vehicle sources. 

Each small cell records the number of vehicles that come from different sources qi at 

different time intervals. These vehicles operate according to the congestion level of 

roads and the capacity limitations of cells. For instance, under free flow of traffic, the 

travel time of vehicles is only possible during one or two periods. However, when 

queuing occurs on road networks such as synchronized flow, the travel time will vary 

according to the different reactions of the driver, so the arrival time may be distributed 

in the k +1, ..., k + m, time periods. 
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Figure 9 The concept of cell storage of CTM 
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Eq.(32) shows the cell transmission relationship of vehicles extended by 

considering the impact of on ramp and off ramp. The research is based on a recursion 

where the cell occupancy at time t+1 equals its occupancy at time t, plus its inflow 

and minus the outflow, the following relationship: 

1( 1) ( ( ) ( )) ( ) ( )c c c c cn k n k P k Y k y k      (32)
 

     krkykY ccc   (33) 

          








  knkNkQknky ccccc
2

1
,,min 1  (34) 

          








 knkNkQkqkr cccic
2

1
,,min  (35) 

 In the equation, nc(k+1) is the number of vehicles in cell c at time k+1; Pc(k) is 

the number of vehicles off ramp at time k; Yc(k) is the capacity in cell c at time k; yc(k) 

is the number of vehicles of mainline entering cell c at time k; rc(k) is the number of 

vehicles on the on ramp entering cell c at time k. 

The above relationship is the base concept of CTM and the following is a step by 

step calculation for CTM: 

Step 1: Initialization: setting the length of road, free flow, saturation density, 

maximum flow, maximum capacity and other relevant parameters, as well as 

the cell of the on and off ramp, and the flow of the on ramp. 

Step 2: Identify the O-D ratio as bij(k) estimated by EKF. 

Step 3: According to eq. (32)-( 35), calculate the number of vehicles for each cell at 

each time interval. 

Step 4: Calculate arrival ratio )(km

ij at the both same starting and different origins 

according to respective time interval. 

4.3 Dynamic OD Matrices Estimation Algorithm: EKF 

Based on the predicted entering traffic, arrival patterns, and then proposes an 

integrated algorithm which combines the CTM with the EKF to respectively and 

iteratively estimate the arrival distributions and O-D proportions. 

Extended Kalman filtering algorithm (EKF) proposed by Kalman (1960) has 

been widely used in various fields, most commonly in the field of transport to 

estimate O-D matrices, traffic density and ramp metering. EKF algorithm is an 

optimal recursive data processing algorithm, which is used to estimate current values 
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of the variables according to system noise statistics, the uncertainty of measurement 

error, and any available initial conditions of variables. 

The main concept of EKF is to estimate the stated variables based on recursive 

anaysis at given time k periods, the use of the state vector estimate equation to predict 

the state estimation of the next time x
-
(k), and forecast the observation value )(ˆ kz  at 

time k, later updating the state variable x
-
(k) to x

+
(k) base on error term of the 

predictd observing value and actual observing values, and then use x
+
(k) to predict the 

state x
-
(k+1) of next period (k+1), and continue doing the recursive algorithm and 

estimation according to the calculation procedure shown in Figure 10. 

 

x
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+
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+

x
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Figure 10 State variables estimate process of EKF algorithm 

 

EKF algorithm is composed by the state equation and measurement equation. 

State equation is the relationship composed by estimation variables of next time 

interval, and measured equation is the relationship of the traffic flow of actual section 

and state variables. In this mode, state variables are bij(k) in Eq. (36), while the 

observed value is the relation formed by number of vehicles on ramp qi(k), the 

number of vehicles off ramp yj(k) and the number of vehicles of main road Ul(k). 

Therefore, the state variables bij(k) is usually assumed to be random and an 

independent random walk process, while state equation can be expressed in the 

following: 

)()()1( kwkbkb ijijij   (36) 

Where, wij(k) is the white noise of the state variable at time k, and E(wij(k)) = 0, 

Var(wij(k)) = D(k) follow Gaussian distribution. D(k) = diag[Db ,..., Db] is a N (N +1) 
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/ 2 dimensions covariance matrix of wij(k). 

Measurement equation is the relationship formed by the traffic flow of actual 

road and main road yj(k), qi(k), Ul(k) , and expressed as the following formula: 

)()()()(' kekbkHkz   (37) 

In this equation, z '(k) is the measurement variable, e(k) is a 2N-1 dimensional 

observation error term, also following Gaussian distribution, and E(e(k)) = 0, Var(e 

(k)) = R(k). R(k) = diag [r1 ,..., r2N-1], is a 2N-1 dimensions covariance matrix of e(k), 

H(k) is a (2N-1)*(N(N+1)/2) dimensions transformation matrix, and H(k) 

=  
2/)1(*)12( 


NNN

k

rs

k HH , in which,  k

rsH  matrix elements are 0, except the 
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


 (38) 

In the above model formulation, the information of each O-D pair can be 

estimated using the data provided by the surveillance system or historical information, 

and the unknown set of parameters are O-D proportions, )(kbij . 

As used in most existing approaches, the dynamic O-D parameters, )(kbij , are 

assumed to follow the random walk process between successive time intervals: 

Njikwkbkb ijijij  0),()()1(
                       (39) 

)()()1( kWkBkB                                        (40) 

)()()()( kWkBkHkZ                                     (41) 

 TNNN kqkUkqkUkykykykZ )()(),...,()();(),...,(),()( 111121  
   (42) 

Where, wij(k), a random term, is an independent Gaussian white noise sequence 

with zero mean and its covariance, Z(k), is a column vector, H(k) is a matrix with its 

entries given by the corresponding coefficients in eqs. (37) and (41), and e(k) is an 

observation noise vector, which can be defined as a Gaussian white noise with zero 
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mean and its covariance matrix, and R = Var[e(k)] = diag[r1, . . . , r2N-1] is a diagonal 

positive definite matrix. B(k) is a matrix of the O-D proportions of entering flows 

bij(k). W(k) is a matrix of white noise wij(k). 

The proposed estimation algorithm, based on the EKF concept, is presented as 

follows. 

Step 0: Initialization. 

Parameters settings include cell length iL , i = 0,1,. . . , N-1, and time interval, 

t0.    ...,)(var 21 rrdiagke  .  )0()0( bEX  .  )0()0( bVarP  . Besides, 

on-ramp, link and off-ramp flows are given. 

Step 1: Determine )(km

ij  by CTM. 

Step 2: Compute the linearized transformation matrix based on the determinant 

)(km

ij . 

 11   k

rs

K HH
 (43) 
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 TNNN kqkUkqkUkykykykZ )()(),...,()();(),...,(),()( 111121  
   (47) 

Step 3: Initialization of the sequential Kalman filtering method. 

Set )1(0  kbb  

Dpp k  10  where  bb ddD ,...,  is a covariance matrix of W(k) 

Step 4: Sequential Kalman filtering iterations. 

For i = 1, 2, …, 2N-1  

  111   i

T

i

i

i

T

i

ii rhphhpg  (48) 

11   i

i

iii phgpp  (49) 
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)1()(  kbhky ii

i  (50) 

Truncation: 

  10 1

10
 



iii gbMAX 
  (51) 

Set     iiii gbb  1  

Normalization: 

For m=1, 2, …, N-2 

 


N

mj

i

mjm b
1

   (52) 

m

i

mji

mj

b
b


     j=m+1,…, N. (53) 

Step 5: Stop condition test. 

Check the convergence of estimated O-D proportions. If preset stop conditions 

(convergence level or number of iterations) has not been met, then go to Step 1. 

Otherwise, go to Step 6. 

Step 6: Prediction of the states. 

Set 12  N

k pp  and    12)(  Nbkb , k = k + 1, go to Step 1. 
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CHAPTER 5 CASE STUDY 

 

To demonstrate the performance and applicability of the proposed approach, a 

seminal example with six O-D pairs estimation is designed on section 5.1. A 

medium-scale networks and a large-scale network of on-ramp traffic patterns on a 

freeway are examined on section 5.2 and 5.3.  

5.1 Case Study 1: Seminal Example 

5.1.1 Network design and Parameter settings  

To demonstrate the performance and applicability of the proposed estimation 

algorithm, a small closed network is studied. First, a description of the network design 

and second is data simulation, followed by a verified model by small road network; 

and then analysis the performance of estimation results, and sensitive analysis of 

proposed model with different traffic scenarios, to check the accuracy of estimates of 

different traffic flows and interchanges. 

5.1.1.1 Network Design 

The model validated with design network in this study, as shown in Figure 11. 

The total length of section road network is 10,000 m, the main line is 3 lanes and a 

total of eight nodes, three starting points and three ending points, six O-D pairs, 

respectively, b1,7、b1,8、b1,6、b7,8、b7,6、b8,6, with the bi,j representing O-D ratio of flow 

from origin i to destination j and the relationship of road length and cell location 

shown in Figure 11. 
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Figure 11 Small design network 
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5.1.1.2 Parameter settings 

The parameters of CTM are set as follow: time interval=6 seconds, free flow 

speed=100 km/hr, jam density=400 vehicles per kilometre, capacity N =6,000 

vehicles per hour, cell storage capability=67 vehicles, maximum flow rate Q = 10 

(veh / time click) (equivalent to traffic 6,000 pcu / hr or per lane 2,000 pcu/hr), cell 

length=1/6 km and assumed the interval on and off ramp of the same interchange is 

500 m (3 cell). 

5.1.2 Data Simulation 

This study used traffic simulation software to generate time-dependent links and 

flow data, based on this simulation of the initial input data that is required for the 

estimation model constructed in this study, such as time-dependent traffic flow of 

main road, on ramp and off ramp, and simulated by traffic simulation software 

DynaTaiwan, that is a local traffic estimation and prediction system, developed by 

domestic scholar. 

The traffic flow of main roads, on and off ramps is estimated as bij(k), however, 

the dynamic O-D matrix of actual road network is difficult to obtain. To generate 

highly accurate dynamic O-D matrix estimation, transport planning simulation 

software adapted in this study, generates the traffic flow that conforms to real network 

conditions. 

To generate real time-dependent traffic flows, the time series of 90 minutes O-D 

traffic under different traffic conditions are given based on the assumed O-D pair 

flows, DynaTaiwan, traffic simulation software modified from DynaSmart to account 

for the traffic behaviors in Taiwan, to generating real-time on-ramp, link, and 

off-ramp traffic flows at every 6-second time interval. The three simulated real-time 

detected traffic flows are then inputted into the proposed estimation algorithm. 

First, the initial data set uses a assumptions of initial O-D information as a basis 

to co-operate with the attributes of data nodes and line road network on Figure 11, 

simulating 90 minute peak and off-peak features of traffic demand (Figure 12), to 

produce time-dependent sections of traffic data, then using the initial data to enforce 

schema validation.  
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Figure 12 Peak and off-peak features of traffic demand 

 

Both DynaTAIWAN and CTM are mediumscopic traffic models, so the two 

models have 6-second time periods, however, the EKF model is coordinates with 

CTM simulation to estimate 5 minutes of dynamic O-D matrices, to facilitate the 

traffic management personnel to implement appropriate management strategy. 

5.1.3 Performance and Estimation Results 

5.1.3.1 Traffic Dispersion Phenomenon 

In order to verify the performance of CTM model on the fleet dissipate types in 

different traffic conditions. Four scenarios with various traffic conditions are 

simulated, including free-flow, light synchronized flow, heavy synchronized flow and 

congested flow. 

The synchronized flow concept proposed by Kerner and Herrmann (1998), while 

traffic flow increases, the tiny interference of fleet will result in more than the critical 

impact of traffic, meaning that, when the traffic flow was gradually increased, the 

vehicles on the road will be limited to the impact of nearby vehicles, driving not in 

accordance with the desired speed of travel, and thus result in a synchronization 

driving behavior with other vehicles, the distribution of vary traffic condition shown 

in Figure 13. 

All entering traffic is increased step-by-step by a same ratio ranging from 10% to 

100%. The traffic condition of the roadway is determined by its most critical segment 

(i.e. the most congested segment which is usually located at the middle of the 

roadway). Until the traffic flow at the most critical segment reaches its capacity, it is 

under free-flow condition. After oversaturation, traffic conditions are equally divided 

into three traffic phases: light synchronized, heavy synchronized and congested flows. 

For instance, for the traffic leaving from the same origin 1 and heading for various 
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destinations in time interval t=1, their arrival distributions under various traffic 

conditions are graphically depicted in Figure 13. As shown in Figure 13 (a), almost all 

the ranges of arrival times cover only one or two intervals under free-flow condition. 

Once the traffic flow increases, the degree of traffic dispersion will remarkly appear. 

As shown in Figures 13(b)-(d), in light synchronized flow, the remaining storage 

capacity and flow capacity of next cell is sufficient, all vehicles in a cell can be 

assumed to advance to the next cell with each interval, the same entering traffic will 

arrive at destination among a wider range of time intervals ranging from two to three 

time intervals, when the entering traffic increasing to the remaining storage capacity 

and flow capacity of next cell is not sufficient, only part of them can move 

proportionally, four to five time intervals under heavy synchronized flow, and six to 

eight time intervals under congested flow, suggesting the capability of the CTM 

model in replicating traffic dispersion phenomenon. 
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(a) Free-flow 
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(b) Light synchronized flow 
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(c) Heavy synchronized flow 
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(d) Congested flow 

 

Figure 13 Arrival distributions of entering traffic from origin 1 to various destinations 

(7,8,6) 
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5.1.3.2 O-D Estimation 

1. Performance 

The deviation of the estimated O-D proportions of each time interval and each 

O-D pair from given O-D proportions is used as a measure of model performance, this 

research is based on Chang and Wu’s (1994) model, following and to compare the 

accuracy of dynamic OD estimation, the root-mean-square error (RMSE) is used to 

evaluate the performance of the proposed algorithm, which is defined as: 

TNN

kbkb

RMSE

N

i

N

ij

T

k

ijij

)1(

))(ˆ)((
1

1 1 1

2










  
                       (54) 

Where )(ˆ kbij  is the estimated O-D proportions of traffic entering interchange i 

and heading to interchange j. 

In addition, to analyze the significant statistical performance of these estimated 

results, this study used the Chi-Square Test as an alternative measure in the following 

manner.  
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

 (55) 

2. Result analysis 

To investigate the effects of initial value settings of O-D proportions on the 

performance of the proposed algorithm, two initial value setting approaches are 

adopted and compared: randomly generated (RG) approach and equal share (ES) 

approach. Take origin No.1 interchange as an example, the associated O-D 

proportions are denoted as b17(k), b18(k), and b16(k). For the RG approach, three 

random numbers 0.123, 0.341, and 0.782 are generated and then normalized such that 

the sum of three proportions equals 1. Thus, b17(k)=0.099, b18(k)=0.274, and 

b16(k)=0.628. In contrast, for the ES approach, three proportions for the same example 

is simply set as b17(k)=0.333, b18(k)=0.333, and b16(k)=0.334. 

The distributions of real b18 proportions (from No.1 interchange to No.8 

interchange) along with estimated O-D proportions by RG and ES approaches are 

given in Figure 14. Note that the proposed algorithm can predict real O-D proportions 

accurately regardless which initial value setting approaches being adopted. However, 
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the predicted result by RG approach is slightly superior to that by ES approach. Thus, 

the RG approach will be adopted in predicting other O-D proportions. 
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Figure 14 Distributions of real and two predicted b18 proportions by EG and ES 

approaches 

Further with b1,8, for example as Figure 15, when the 256 time interval, the 

convergence process of the iteration, can present the convergence results about 64 

times recursion. Table 2 further lists the estimation results of mean and standard 

deviation of the various origins and destinations in each time interval. Know from the 

table, there is insignificant different between on the mean and standard deviation of 

the estimates of the two setting ways initial value. The estimation performance of 

randomly generated initial values is better than others, and average performance 

indicators RMSE 0.086 and 0.069, respectively. However, according to chi-square test 

results show that the estimation has not significant differences between two different 

initial setting for all the origin and destination with the actual value. This result also 

shows that this study provides models less sensitivity for the initial setting value. 
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Fig 15 The convergence process of the iteration when the 256 time interval 
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Table 2 The estimation results of the various origins and destinations 

 

O-D 

pair 

real ES RG 

mean standard 

deviation 

mean   standard 

deviation 

mean  standard 

deviation 

b1,7 0.225 0.049 0.192 0.037 0.216 0.043 

b1,8 0.324 0.013 0.337 0.084 0.288 0.055 

b1,6 0.451 0.056 0.471 0.064 0.496 0.062 

b7,8 0.426 0.027 0.453 0.103 0.45 0.097 

b7,6 0.574 0.027 0.547 0.103 0.55 0.097 

b8,6 1 0 1 0 1 0 

RMSE ─ 0.086 0.069 

2  ─ 1.89 2.042 

註： 685.232

14,05.0

2*   。 

5.1.4 Travel Time Analysis 

All of driver's driving behavior and speed are not alike, resulting in the travel 

time in the road network is dissimilar with others, in the past literature of 

non-assignment mode dynamic OD estimation, not only continued to improve model 

construction methods , but also to execute the number of surveys and studies for the 

travel time estimation, such as scholars Chang et al from 1994 until 2007 made a 

series of studies, according to the pattern established in 1994 to improve the travel 

time estimation method, gradually increase the accuracy of dynamic OD estimation.  

To consider the impact of travel time on the estimated results, this study based on 

Chang and Wu’s (1994) model, too. However, the model to estimate the travel time is 

using the average traffic flow of two end points to stand for the road sections traffic 

flow, and then obtained average travel time, and assuming the distribution during two 

time period. This way of estimating travel time is too simple to be a true reflection of 

the vehicle actual operation on road network; base on this, this study uses the 

mediumscopic traffic model CTM to predict the vehicle arrival patterns.  

To compare the accuracy of prediction by CTM model and the results exactitude 

of dynamic OD estimation, in addition, this study using Greenshields's speed-density 

model to estimate travel time base on the assumption that the same as Chang and 

Wu’s (1994) arrive distribution within two time interval, where, the speed-density 

models as: 

 )/1( ff kkuu   （56） 
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Based on the the road network and verify situation of above simple example, to 

explore several different methods of estimating the travel time on many time interval, 

first, can be seen from Figure 16, the distribution of different sections of the traffic 

flow, and the flow to inputting the Greenshields's speed-density model to estimate the 

speed and then deduce the road travel time, with estimation results shown in Figure 17, 

using Greenshields model to calculate travel time for the O-D pairs, and distributed 

during two time periods, where the horizontal axis expresses time interval, and the 

vertical axis represents road traffic. 
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Figure 16 Distribution of different sections of the traffic flow 
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Figure 17 Distribution of the O-D pairs calculated by Greenshields model 

 

 To predict vehicles arrival distribution through O-D matrices, b1,8, represented 

by the illustration, in this case, traffic flow is less at the first 20 minutes, so the results 

are more accurately estimated. While the traffic flow gradually increases to show 

congested conditions, it appears more unreasonable that the travel time calculated by 

Greenshields model and the assumption of arrival distribution within two time 

intervals. Therefore, shown as Figure 18, the estimate results will be distorted when 
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the back time interval, leading to an overall average of RMSE up to 0.145, is much 

higher than the estimated of performance (RMSE = 0.069) provided by this study. 
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Figure 18 Distort of the distribution on O-D pairs calculated by Greenshields model 

  

From the above results based on Chang and Wu (1994) assumption that the 

vehicles travel time on the road network not over 2 time intervals, using Greenshields 

to estimate the average travel time in off-peak traffic demand to keep a certain degree 

of accuracy. However, during peak traffic demand, the estimated travel time and 

arrival patterns, allow results to vary greatly with actual traffic behavior, resulting in 

the estimation error of the O-D ratio becoming larger. It can be seen that this study 

predicts vehicle arrival distribution by CTM model, more conforming to vehicle 

operating behavior on real road networks and more accurately estimating dynamic 

O-D matrices. 

5.1.5 Sensitivity Analysis  

In order to understand the performance and limitations of this study, a small 

network was used to execute the model’s sensitivity analysis. First, review whether 

the model is suitable for congestion on actual networks, and base demand varying on 

networks to adjust the network's traffic patterns, to enforce model sensitivity analysis. 

In addition, test the impact that different ratio restrictions on ramp for vehicles arrival 

distribution and check the changes in estimation on CTM models. 

In this section, Figure 11, the small network is used to understand the impact of 

model estimation for different traffic demand on the network. Assuming the main line 

road network has three lanes, the speed is 100KPH, and the on and off ramp speed is 

40KPH, with a simulation time interval of 6-seconds. To estimate the O-D proportion 

during 90-minutes, others parameters are set as above, and then execute sensitivity 

analysis based on different traffic flow, free flow, light synchronized flow, heavy 

synchronization flow and congested flow, with the results shown in Figure 19 
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(represented by b76) 
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Figure 19 O-D estimation under different traffic flow 

 

Table 3 is the comparison table of the actual value with estimate results under 

different traffic flows. On the table, we can observe the standard deviation and 

average are not largely different under two different initial value sets. Performance 

indicators of RMSE are about 0.08, following the traffic flow increase, its estimated 

accuracy will be slightly reduced. In Chi-square test, assuming 95% confidence 

interval, all the O-D pairs with actual values are not significantly different statistically. 

 

Table 3 Estimation comparison table of actual values with different traffic flow 

 

O-D 

pairs 

actual  

values 

Free 

 flow 

light  

synchronized 

 flow 

heavy  

synchronization  

flow 

congested  

flow 

Average 
standard  
deviation 

Average 
standard  
deviation 

Average 
standard  
deviation 

Average 
standard  
deviation 

Average 
standard  
deviation 

b17 0.225 0.049 0.224 0.061 0.19 0.056 0.249 0.031 0.229 0.029 

b18 0.324 0.013 0.353 0.079 0.326 0.085 0.276 0.072 0.283 0.028 

b16 0.451 0.056 0.423 0.06 0.483 0.065 0.475 0.072 0.488 0.051 

b78 0.426 0.027 0.389 0.11 0.431 0.121 0.426 0.114 0.328 0.055 

b76 0.574 0.027 0.611 0.11 0.569 0.121 0.574 0.114 0.672 0.055 

b86 1 0 1 0 1 0 1 0 1 0 

RMSE  0.08 0.082 0.083 0.069 

2
 

 2.811 2.623 2.341 1.709 

ps： * 2 2

0.05,16 26.296   。 
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5.2 Case Study 2: A Medium-scale Network 

5.2.1 The Study Corridor and Parameter settings 

5.2.1.1 The Study Corridor 

This study used a section of Taiwan No.1 Freeway from Taishan toll station to 

Yangmei toll station, to demonstrate the performance and applicability of the 

proposed estimation algorithm. This is a 36 km three-lane freeway section with 6 

interchanges, which in order include, Linkou, Taoyuan, Neili, Jhongli, Youth and 

Yangmei Interchange, with a total of 28 O-D pairs, as shown in Figure 20. 
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Figure 20 The case study of Taiwan No.1 freeway northern section 

 

5.2.1.2 Parameter settings 

To show the capability of CTM in replicating the traffic hydrodynamics and to 

investigate the degree of traffic dispersion under various traffic conditions, a 

simulation on the above-mentioned three-lane freeway section with 6 interchanges is 

conducted. Parameters are set as follows: free flow speed=100 km/hr, jam 

density=400 vehicles per kilometre, capacity=6,000 vehicles per hour, cell storage 

capability=67 vehicles, time interval=6 seconds, and cell length=1/6 km. 

5.2.2 Data Collection and Traffic Simulation 

5.2.2.1 Data Collection  

Peak and off-peak ratio of full day trip demand on actual Taiwan freeway is 

represented, and as much as possible meets the actual road traffic flow. The full day 

trip flow data of freeway is based on the full day trip demand survey and estimate by 

Dui-Ji Chen (2010). 

The survey results of full day traffic information, includes the traffic flow of 

Taoyuan Interchange going south is the largest traffic flow among the six interchanges, 

and the traffic flow of Neili Interchange going south is the lowest. In order to 

understand the proportion of traffic flow for every interchange per hour accounting 

for traffic flow of full day traffic counts. To generate the ratio of traffic counts of 

each-hour accounting for the traffic flow of full-day based on the sub-periods flow 
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conversion by detector data collection shown in Figure 21. The ratio of morning peak 

7-9 accounts for full-time traffic about 0.168; the ratio of flow largest at 15-17 is 

about 0.153. 
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Figure 21 The proportion of traffic per hour as calculated by Dui-Ji Chen (2010). 

 

5.2.2.2 Traffic Simulation 

To generate highly accurate dynamic O-D matrix estimation, transport planning 

simulation software DynaTaiwan, adapted in this study, and generates the traffic flow 

real-time on-ramp, link, and off-ramp traffic flows at every 6-second time interval that 

conforms to real network conditions, the time series of four hours O-D traffic under 

different traffic conditions are given based on the assumed O-D pair flows. The three 

simulated real-time detected traffic flows are then inputted into the proposed 

estimation algorithm. 

As above section, the initial data set uses an assumptions of initial O-D 

information as a basis to co-operate with the attributes of data nodes and line road 

network on Figure 22, simulating 4 hours peak and off-peak features of traffic demand 

(Figure 23), to produce time-dependent sections of traffic data, then using the initial 

data to enforce schema validation.  
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Figure 22 Taishan to Yangmei toll network cell map 
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Figure 23 peak and off-peak features of traffic demand 

 

As the section 5.1, the two models have 6-second time periods, however, the 

EKF model is coordinates with CTM simulation to estimate 5 minutes of dynamic 

O-D matrices, to facilitate the traffic management personnel to implement appropriate 

management strategy. 

5.2.3 Performance and Estimation Results 

5.2.3.1Traffic Dispersion Phenomenon 

As the section 5.1, all entering traffic is increased step-by-step by a same ratio 

ranging from 10% to 100%. The traffic condition of the roadway is determined by its 

most critical segment. Until the traffic flow at the most critical segment reaches its 

capacity, it is under free-flow condition. After oversaturation, divided into three traffic 

phases: light synchronized, heavy synchronized, and congested flows. For example, 

for the traffic leaving from the same origin 0 (Taishan Toll station) and heading for 

various destinations (Linkou interchange to Yangmei Toll station) in time interval t=1, 

their arrival distributions under various traffic conditions are graphically depicted in 
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Figure 24. Figure 24 (a), the ranges of arrival times cover only one or two intervals 

under free-flow condition. As shown in Figures 24(b), in light synchronized flow, the 

same entering traffic will arrive at destination among a wider range of time intervals 

ranging from two to three time intervals. Figures 24(c), four to five time intervals 

under heavy synchronized flow, and Figures 24(d), six to eight time intervals under 

congested flow. 
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 (a) Free-flow 
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(b) Light synchronized flow 
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(c) Heavy synchronized flow 
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(d) Congested flow 

 

Figure 24 Arrival distributions of entering traffic from origin 0 to various destinations 

(1~7) 
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5.2.3.2 O-D Estimation 

1. Performance 

To measure the performance of the model, this study used the deviation of the 

estimated O-D proportions of each time interval and each O-D pair from given O-D 

proportions. The root-mean-square error (RMSE) is used to evaluate the performance 

of the proposed algorithm, which is defined as Eq. 54. 

2. Result analysis 

To compare the effects of initial value settings of O-D proportions on the 

performance of the proposed algorithm, as the section 5.1, two initial value setting 

approaches are adopted and compared: randomly generated (RG) approach and equal 

share (ES) approach. Take origin No.4 interchange as an example, the associated O-D 

proportions are denoted as b45(k), b46(k), and b47(k). For the RG approach, three 

random numbers 0.123, 0.341, and 0.782 are generated and then normalized such that 

the sum of three proportions equals 1. Thus, b45(k)=0.099, b46(k)=0.274, and 

b47(k)=0.628. In contrast, for the ES approach, three proportions for the same example 

is simply set as b45(k)=0.333, b46(k)=0.333, and b47(k)=0.334. 

The distributions of real b15 proportions (from Linkou interchange to Youth 

interchange) along with estimated O-D proportions by RG and ES approaches are 

given in Figure 25, the RG approach will be adopted in predicting other O-D 

proportions. 
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Figure 25 Distributions of real and two predicted b15 proportions by EG and ES 

approaches 

 

Table 4 presents the RMSE values for the 28 O-D proportions. The results show 
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that the overall average RMSE is 0.0443, indicating a good fitness and practical 

applicability of the proposed algorithm. 

 

Table 4 RMSE values for 28 O-D proportions of the proposed integrated algorithm. 

 
    To 

From 
Linkou 

interchange 
Taoyuan 

interchange 
Neili 

interchange 
Jhongli 

interchange 
Youth 

interchange 
Yangmei 

interchange 
Yangmei 

toll 

station 
Taishan 

toll station 
0.032724 0.010306 0.056023 0.038756 0.046837 0.055235 0.006009 

Linkou 

interchange 
- 0.064495 0.010955 0.036353 0.065464 0.013809 0.039796 

Taoyuan 

interchange 
- - 0.055185 0.028696 0.067517 0.031295 0.054170 

Neili 

interchange 
- - - 0.063319 0.033135 0.038757 0.066709 

Jhongli 

interchange 
- - - - 0.048676 0.046625 0.079683 

Youth 

interchange 
- - - - - 0.075176 0.075176 

Yangmei 

interchange 
- - - - - - 0 

 

5.3 Case Study 3: A Large-scale Network 

5.3.1 The Study Corridor and Parameter settings 

5.3.1.1 The Study Corridor 

In order to demonstrate the performance and applicability of the proposed 

estimation algorithm, a section of Taiwan No.1 Freeway from Toufen Interchange to 

Beidou Interchange is studied. This is a 110 km three-lane freeway section with 15 

interchanges, which in order include, Toufen, Miaoli, Sanyi, Houli, Taichung 

systematic, Fengyuan, Daya, Taichung, Nantun, Wangtain, Chunghua systematic, 

Chunghua, Puyian systematic,Yanlin and Beidou Interchange with a total of  136 

O-D pairs, as shown in Figure 26. 
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Figure 26 The case study of Taiwan No.1 freeway northern section 

 

5.3.1.2 Parameter settings 

1. GHSOM 

The two important parameters of GHSOM are set as: τ1 = 0.85 and τ2 = 0.0035. In 

addition, both of the learning rate function α(l) and the neighborhood function σ(l) are 

set as linear, monotonically decreasing over iterations. The parameters setting of 

GHSOM are refering to Rauber et al. (2002), and sensitivity analysis for different 

numbers was not tested. 

2. GP 

Table 5 Parameter settings for GP 

 

Parameter Setting 

Fitness Mean square error 

Terminal set x(t), x(t-1),…, x(t-240) and random number b 

Function set +, -, × 

Population size 50 

Reproduction rate 0.08 

Crossover rate 0.60 

Mutation rate 0.01 

Initial minimum depth 2 

Number of generations 300 

Initialization method Direct method 

 

The parameters of GP model are detailed in Table 5. To avoid producing too 
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complicated traffic prediction function, only three operators (+, - and ×) are 

considered in this study. Terminal set contains the traffic flow data in the previous 240 

time intervals with a randomly generated number b. The parameters setting of GP are 

refer to Yao and Lin (2009), and sensitivity analysis for different numbers was not 

tested. 

3. CTM 

Used a simulation on the above-mentioned three-lane freeway section with 15 

interchanges, show the capability of CTM in replicating the traffic hydrodynamics 

and to investigate the degree of traffic dispersion under various traffic conditions. 

Parameters are set as follows: free flow speed=100 km/hr, jam density=400 vehicles 

per kilometre, capacity=6,000 vehicles per hour, cell storage capability=67 vehicles, 

time interval=6 seconds, and cell length=1/6 km. 

5.3.2 Data Collection 

The five-minute on-ramp traffic flow data at 15 interchanges from Toufen 

interchange to Beidou interchange, a 110-kilometer stretch of Taiwan No.1 Freeway 

(Fig. 26), over a week from May 25
th

 to May 31
st
 (Monday to Sunday) 2009 were 

used for the case study. At each interchange, southbound traffic flows were first 

aggregated from different ramps. The traffic pattern is composed of 288 consecutive 

five-minute traffic flow data (24 hours). There were 2,016 time intervals in a week, 

thus can form 1,729 (=2,016-287) traffic patterns at each interchange. A total of 

25,935 (=1,72915) traffic patterns have been generated for the entire study corridor. 

With five-minute time interval, the proposed method aims to predict the next 48 

time intervals (4 hours) based on previous 240 time intervals (20 hours). In other 

words, the previous 240 traffic flow data are used to determine the closest cluster and 

then to feed into the corresponding tuned GP model to predict the traffic flow at the 

next 48 time intervals in a rolling manner. Looking into an example of traffic patterns 

during the same periods (Monday 00:00am to Tuesday 00:00am) at different 

interchanges, Fig 27 shows that the traffic patterns remarkably differ from each other. 

For instance, Taichung and Taichung system interchanges do exhibit significant peak 

and off-peak traffic patterns, but Wangtian and Fengyuan interchanges do not. 
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(c) Fengyuan Interchange (d) Taichung system Interchange 

 

Figure 27 Traffic patterns at different interchanges (Wednesday 00:00 to Thursday 

00:00) 

 

A more detailed traffic patterns at Taichung interchange during different time 

periods are further illustrated in Fig. 28, which reveals that the traffic patterns at a 

specific location are also remarkly different, but similar patterns may repeat 

themselves over different time periods. 
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(a) Monday 00:00 to Tuesday 00:00 (b) Monday 06:00 to Tuesday 06:00 
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(c) Monday12:00 to Tuesday 12:00 (d) Monday 18:00 to Tuesday 18:00 

 

Figure 28 Traffic patterns at different time periods (Taichung interchange) 
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To train and validate the proposed model, the traffic patterns are randomly 

divided into two sets: training set (18,155 traffic patterns) and validation set (7,780 

traffic patterns) at a ratio of 7:3. The parameter settings and the results of clustering 

and prediction are presented below. 

 

5.3.3 Performance and Estimation Results 

5.3.3.1Traffic patterns clusters 

The illustration of the GHSOM architecture, as Fig 29, a total of 3 layer, layer 1 

contain 6 clusters, layer 2 contain 20 clusters, layer 3 contain 22 clusters, 36 different 

clusters have been identified by GHSOM.  
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Figure 29 The illustration of the GHSOM architecture  
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Note that the number of traffic patterns in each of the 36 clusters ranges from 

143 (Cluster 1) to 2,488 (Cluster 6), detailed in Table 6. Such self-structured traffic 

patterns will be used for prediction in the GP model. 

 

Table 6 Clustering results of traffic patterns 

 

Cluster Number of patterns Cluster Number of patterns 

1 143  19 155  

2 381  20 214  

3 429  21 429  

4 1238  22 607  

5 440  23 1381  

6 2488  24 429  

7 155  25 155  

8 155  26 238  

9 179  27 429  

10 405  28 464  

11 1298  29 381  

12 1238  30 345  

13 155  31 155  

14 167  32 167  

15 464  33 214  

16 417  34 179  

17 1333  35 321  

18 321  36 488  
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To display the similarity of traffic patterns in the same cluster, the traffic patterns 

in Cluster 1 (urban area), Cluster 15 (suburban area) and Cluster 30 (rural area) are 

demonstrated in Fig. 30 through Fig. 32, respectively. To avoid lengthy discussion, we 

only present four randomly selected traffic patterns from each of these three clusters. 

In Fig. 30, Cluster 1 contains traffic patterns starting from 00:00 to 20:00 on 

weekdays in the urban area (e.g. Taichung interchange and Taichung system 

interchange) where maximum five-minute flow rates can exceed 300 pcu. 
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(a) Taichung interchange (Monday 00:30 to 

Monday 20:30) 
(b) Taichung interchange (Tuesday 00:00 to 

Tuesday 20:00) 
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(c) Taichung interchange (Wednesday 00:00 to 

20:00) 
(d) Taichung interchange (Thursday 00:30 to 

20:30) 
 

Figure 30 Four randomly selected traffic patterns from Cluster 1 (urban area) 
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In Fig. 31, Cluster 15 contains traffic patterns starting from 13:00 to 09:00 on 

weekdays in the suburban area (e.g. Chunghua, Fengyuan, Daya, and Nantun) where 

most of five-minute flow rates are below 150 pcu. It is obvious that the peak and 

off-peak phenomena of the traffic patterns in Cluster 15 are not as sharp as those in 

Cluster 1. 
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(a) Chunghua interchange (Monday 13:00 to 

Tuesday 9:00) 
(b) Fengyuan interchange (Tuesday 13:30 to 

Wednesday 9:30) 
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(c) Daya interchange (Wednesday 13:30 to 

Thursday 9:30) 
(d) Nantun interchange (Thursday 13:00 to 

Friday 9:00) 
 

Figure 31 Four randomly selected traffic patterns from Cluster 15 (suburban area) 
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In Fig. 32, Cluster 30 contains traffic patterns starting from 00:00 to 20:00 on 

weekdays or weekends in the rural area (e.g. Toufen, Miaoli, Sanyi, and Wangtian 

Interchanges) where most of five-minute flow rates are lower than 50 pcu. No 

significant peak and off-peak phenomena can be identified. 
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(a) Toufen interchange (Tuesday 01:00 to 21:00) (b) Miaoli interchange (Wednesday 00:30 to 

20:30) 
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(c) Sanyi interchange (Tuesday 00:00 to 20:00) (d) Wangtian interchange (Sunday 01:00 to 

21:00) 
 

Figure 32 Four randomly selected traffic patterns from Cluster 30 (rural area) 

 

Based on the clustering results, the traffic patterns in the same cluster are similar 

and those in different clusters are remarkly dissimilar, suggesting the correctness of 

our clustering model. 

5.3.3.2 Traffic Flow Prediction 

1. GP traffic prediction models 

On the self-structured traffic patterns associated in the 36 clusters, a total of 36 

GP traffic prediction models are further developed—one prediction model for each 

cluster. For brevity, we only demonstrate three clusters (1, 15, and 30). In Cluster 1 

where 143 traffic patterns are contained. We randomly divide these 143 patterns into 

two sets: training set (100 patterns) and validation set (43 patterns). Based on the 

training traffic patterns, the GP model for Cluster 1 is tuned as follows: 

x(t+1)=1.01x(t)+5.41×10
-6

x(t-1)x(t-2)x(t-7)-1.75×10
-6

x(t-1)x(t-4)
2
-2.02×1

0
-8

x(t)
3
x(t-6)+4.05×10

-8
x(t-1)x(t-5)

3
 (57) 

According to Eq.(57), only the traffic flow data at previous seven time intervals 
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are required to predict the traffic flow of next time interval. For instance, to predict 

the traffic flow rate in Fig. 33(a) at time interval (t+1), say, 20:05, we need to input 

seven detected flow rates at x(t-7)=19:25, x(t-6)=19:30, x(t-5)=19:35, x(t-4)=19:40, 

x(t-2)=19:50, x(t-1)=19:55, and x(t)=20:00. The traffic flow rate at 20:05 can therefore 

be calculated as x(t+1) according to Eq.(57). To predict in a rolling manner for the 

next time interval (t+2), the six detected flow data from 19:30 to 20:00 together with 

the above predicted traffic flow at 20:05 are inputted into Eq.(57) to calculate the 

traffic flow x(t+2) at 20:10. This process continues until all of the traffic flow data for 

the next four hours (48 time intervals) have been obtained. 

Following the same vein, the GP models for Cluster 15 and Cluster 30 are tuned 

as below, respectively: 

x(t+1)=1.0483x(t)-0.0942x(t-2)+0.0031x(t-1)x(t-2)-4.897×10
-5

x(t-5)x(t-7)
2
-3.733×10

-7
x(t)

2
x(t-1)x(t-2)+3.165×10

-7
x(t-1)x(t-2)x(t-5)x(t-7)+1.

255×10
-7

x(t-4)x(t-7)
3
+4.97×10

-8
x(t)x(t-2)x(t-7)

2
+1.038×10

-7
x(t-1)

x(t-4)x(t-5)x(t-6)   (58) 

x(t+1)=0.8301x(t)+0.166x(t-2)+0.0195x(t)x(t-1)-0.0181x(t)x(t-2)-1.24×10
-6

x(t-6)x(t-7)
2
-4.53×10

-6
x(t)x(t-1)x(t-2)

2
-3.81×10

-6
x(t-1)

2
x(t-5)x(t-6

)-3.91×10
-6

x(t-1)x(t-5)x(t-6)
2
-3.55×10

-6
x(t)

2
x(t-3)x(t-6)+7.51×10

-6

x(t-2)
2
x(t-5)x(t-6)+4.16×10

-6
x(t)

2
x(t-1)x(t-3)+3.74×10

-6
x(t-1)
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)
2
 (59) 

According to Eqs.(58) and (59), Clusters 15 and 30 require the inputs of traffic 

flow data at previous six and seven time intervals, respectively. Our results show that 

the 36 GP traffic prediction models require the inputs of traffic flow data at most the 

previous twelve time intervals. 

2. Performance 

The mean absolute percentage error (MAPE) is used to evaluate the performance 

of the proposed method: 


 






J

j

T

t j

jj

tx

txtx

JT
MAPE

1 1 )(

)(ˆ)(1
                                    (60) 

Where )(tx j  and )(ˆ tx j  are the real and predicted traffic flow at time interval t 

at interchange j; T is the total prediction time intervals; J is the total number of 

interchanges in the study corridor (T=48 and J=15). 

Our results show that the MAPE values of Clusters 1, 15 and 30 are 5.10%, 

4.85% and 5.03% for training and 10.15%, 7.18% and 8.17% for validation, 

respectively. Of the total 36 clusters, the average training and validation MAPE values 
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are 4.58% and 10.07%, respectively. It suggests a satisfactory prediction accuracy of 

the proposed method. 

5.3.3.3Traffic Dispersion Phenomenon 

As section 5.1, different scenarios with four traffic conditions, including 

free-flow, lightly synchronized flow, heavily synchronized flow, and congested flow, 

are simulated. And entering traffic flows are increased step-by-step by the same ratio 

from 10% to 100%. Under free-flow condition, almost all ranges of arrival times 

cover only one or two intervals. Under lightly synchronized flow condition, the 

remaining storage capacity and flow capacity of the next cell are sufficient; hence all 

vehicles in a cell can advance into the next cell within each interval. As the traffic 

keeps increasing, the degree of traffic dispersion will become significantly. Under 

heavily synchronized flow condition, the entering traffic has increased over the 

remained storage capacity, flow capacity of the next cell is not sufficient; thus, only a 

portion of them can move forward proportionally. Under congested flow, the arrival 

times of traffic dispersion can be as long as six to eight time intervals. 

For instance, for the traffic leaving from the same origin 0 (Toufen) and heading 

for various destinations (Toufen interchange to Beidou interchange) in time interval 

t=1, their arrival distributions under various traffic conditions are graphically depicted 

in Figure 33. As shown in Figure 33 (a), the ranges of arrival times cover only one or 

two intervals under free-flow condition. Once the traffic flow increases, as shown in 

Figures 33(b), in light synchronized flow, the time intervals ranging from two to three 

time intervals. As Figures 33(c), four to five time intervals under heavy synchronized 

flow, and as Figures 33(d) six to eight time intervals under congested flow. 
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(b) Light synchronized flow 
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 (c) Heavy synchronized flow 
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 (d) Congested flow 

 

Figure 33 Arrival distributions of entering traffic from origin 0 to various destinations 

(1~16) 
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5.3.3.4 O-D Estimation 

1. Performance 

To measure the performance of the model, estimated O-D proportions of each 

time interval and each O-D pair from given O-D proportions. The root-mean-square 

error (RMSE) is used to evaluate the performance of the proposed algorithm, which is 

defined as Eq.54. 

2. Result analysis 

The results show that the overall RMSE values for the 136 O-D proportions is 

0.1043, indicating a rather good fitness of the proposed approach. Figure 34 displays 

the process of convergence for the time interval k=986, b1,15 , Toufen Interchange to 

Beidou Interchange. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34 The process of convergence 

 

5.3.4 Sensitivity Analysis  

Our proposed method heavily depends on the real-time fed-in traffic flow data, 

which are used for determining which clusters it belongs to, and furthermore, for 

predicting the traffic flows at the next 48 time intervals. In the previous settings, the 

traffic patterns have been defined as traffic flow data at consecutive 240 time intervals, 

or 20 hours. In the following, a sensitivity analysis with different traffic pattern 

lengths: 48 (4 hours), 72 (6 hours), 96 (8 hours), 120 (10 hours), 144 (12 hours), 192 

(18 hours) and 240 (20 hours) time intervals is further conducted. The MAPE values 

for training and validation are presented in Table 7. We note that shorter lengths (e.g., 

L=48 and 72) have relatively lower prediction accuracy than longer ones, suggesting 

the necessity to input a sufficient long traffic pattern for both pattern recognition and 

prediction. It is also interesting to note that there are no significant changes in 
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prediction accuracy once the length of traffic patterns is longer than 120 time 

intervals. 

 

Table 7 The MAPE values with different traffic pattern lengths 

 

Lengths Training Validation 

48 7.29% 19.72% 

72 7.78% 14.74% 

96 5.32% 12.01% 

120 5.72% 10.34% 

144 5.91% 10.86% 

192 5.63% 10.38% 

240 4.58% 10.07% 

5.3.5 Comparison 

To show the superior performance of the proposed method, a commonly-used 

traffic prediction model—the autoregressive integrated moving average (ARIMA) 

model is further developed for comparison. Following the same data basis as the 

proposed method, the ARIMA model is also developed on the previous 240 time 

intervals and predicts the following 48 time intervals. Taking Cluster 1 as an example, 

its corresponding ARIMA model can be calibrated as follows: 

ttt a
B

B
ZB 






)710.01(

)606.01(
18.1)1(                                   (61) 

Where the three important parameters of ARIMA are set as: p=1, d= 1 and q =1. Zt 

and εt are the actual value and random error at time period t, respectively, B is 

backward difference operator. The MAPE values of training and validation datasets 

are 21.77% and 28.65%, respectively, which are much higher than those of our 

proposed method based on Eq.(60), which are 4.58% and 10.07%, respectively. 

With the self-structured traffic patterns, a simplified prediction model was to be 

naively developed by averaging the traffic flow data at the last 48 time intervals. For 

example, if one traffic pattern is of interest in Cluster 1 where 143 traffic patterns 

have been identified, then the traffic flows at the next 48 time intervals are predicted 

by taking the average traffic flow of 143 traffic patterns. The MAPE values of training 

and validation datasets for all clusters with this simplified model are 25.21% and 

32.73%, respectively, which are much higher than those of our proposed method 
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(4.58% and 10.07%). Again, this comparison further confirms the superiority of the 

proposed method and it suggests the necessity of GP model. 
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CHAPTER 6 CONCLUDING REMARKS 

 

This research proposes a two-stage prediction model with an integrated 

algorithm to estimate dynamic O-D matrices. The contributions and findings were 

concluded in Section 6.1. Recommendations for further research were addressed in 

Section 6.2. 

6.1 Conclusions 

The conclusions in this study are summarized in the following points: 

1. This study has developed an integrated estimation algorithm by combining cell 

transmission model (CTM) and extended Kalman filtering (EKF) to respectively 

and iteratively estimate the arrival distributions and the O-D proportions. Our 

proposed model intends not only to result in a substantial increase of system 

observability with significantly less parameters than those in literature, but also to 

contribute enhancing the quality of dynamic O-D matrices estimation. 

2. According to field observation, daily traffic patterns do repeat spatially and 

temporally over and over again. This research proposes a two-stage prediction 

model, employs the GHSOM model to partition unlabeled traffic patterns into 

appropriate number of clusters and then develops a GP model associated with each 

cluster to predict the traffic features based on rolling self-structured traffic patterns, 

to enhance the prediction performance to accurately predict the traffic features in a 

rolling manner for a medium-to-long term traffic.  

3. A case study is undertaken on a 110-kilometer freeway stretch with 15 interchanges. 

The historical 240 five-minute southbound traffic flows (20 hours) at each 

interchange are used to determine the closest cluster and then fed into the 

corresponding GP model to predict the five-minute traffic flows for the next 48 

time intervals (4 hours). The results show that the proposed method have achieved 

relatively high prediction accuracy in urban area, suburban area and rural area 

interchange (average MAPE= 4.58% in training and 10.07% in validation, 

respectively). In addition, the proposed method has performed much better than the 

conventional ARIMA model. 

4. The results from a case study on Taiwan’s freeway have also shown that the CTM 

can satisfactorily capture the traffic dispersion under various traffic conditions, 

free flow, light synchronized flow, heavy synchronization flow and congested flow 

and the proposed algorithm can accurately estimate the O-D proportions with a 
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rather low RMSE, indicating the practical applicability of the proposed algorithm. 

5. To compare the performance of this mode of travel time prediction to the 

Greenshields macroscopic model to predict vehicle travel time and assume that 

vehicles will enter the road network within the scope of the two time step until the 

point is reached. The results showed that the predicted results in this mode RMSE 

of 6.9% than Greenshields of 14.5%.  

6.2 Recommendations 

Several directions for future research can be identified. 

1. About the field study: 

The proposed algorithm is only valid for the case of linear freeway corridor, the 

applicability and efficiency of the proposed algorithm can be extended to a large 

scale network, and also can be incorporated route choice behaviors to elaborate the 

application to the complicated networks. 

And, to demonstrate the efficiency of the proposed algorithm, four different 

traffic flow, free flow, light synchronized flow, heavy synchronization flow and 

congested flow was used to execute the model’s sensitivity analysis. However, the 

proposed algorithm is only sensitivity analysis based on recurring congestion, the 

future research can be extended to nonrecurring congested flow, for instance 

random irregular events as accidents, disabled vehicles, and other special situations.  

2. About the data source: 

Due to data availability in the case study, the O-D matrices are arbitrarily given 

and then used to generate “real time” detected traffic flows by traffic simulation 

software. With advanced traffic surveillance technologies, however, it is feasible to 

collect real-time traffic information to further examine the applicability of the 

proposed algorithm.  

3. About traffic predict: 

Firstly, the proposed method can be readily applied to predict the traffic flows 

in a larger freeway network with more time intervals ahead. Secondly, it is 

interesting to compare the prediction accuracy made by the proposed method with 

other methods such as genetic clustering model (GCM), artificial neural network 

(ANN), and support vector machine (SVM). Finally yet importantly, incorporating 

our proposed method with dynamic O-D matrices information to predict other 

traffic features (e.g., travel times for various O-D pairs) over a relatively long 
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freeway corridor can be very useful for developing advanced traveler information 

systems, which calls for further exploration. 

4. Additional information: 

Future study can incorporate the innovative technique to automatically record 

and match the license plate numbers of passing vehicles so as to determine the 

partial trails of the vehicles such as License plate recognition (LPR), other logical 

assumptions such as route choice behaviors or user equilibrium, into more complex 

techniques such as generalized least squares or bi-level programming, so as to 

further improve the accuracy of O-D matrix estimation. 

5. Comparison with other algorithms: 

A comparison of the proposed approach can be made with other existent O-D 

estimation algorithms to demonstrate the superiority of different algorithms, and 

further to explore the characteristic features of varying on results and parameter. 

6. The disadvantage of performance indicator: 

To measure the performance of O-D estimation, the root-mean-square error 

(RMSE) is used to evaluate the performance of the proposed algorithm of the 

research. However, the O-D proportions is a minimal value while the number of the 

interchange increasing, will result in the square of the deviation of the estimated 

O-D proportions of each time interval and each O-D pair from given O-D 

proportions to tend to zero, others indicator will be consider to evaluate the 

performance of the O-D estimation on future, for instance mean absolute 

percentage error (MAPE). 
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