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ABSTRACT

Accurate and effective dynamic origin-destination (O-D) matrices estimation is
important for transport planning, traffic management and strategic planning. Recently,
the rapid development of intelligent transport systems has enhanced accurate dynamic
O-D information.and the implementation of real-time traffic contrel, such as real-time
route guidance and signal control. Numerous studies have devoted to developing
estimation algorithms based on observable mainline and ramp flow rates, with
constraints dependent on time series traffic flow and extra system equations and using
recursive or non-recursive system solution techniques to estimate O-D matrices.
However, this dynamic O-D matrices estimation issue remains challenging in that the
number of parameters to be ‘estimated is always far greater than the available
information, and the impact of travel time variability on the time-varying O-D
matrices.

In light of this, the study proposes a novel approach to estimate medium-to long-
term freeway dynamic O-D matrices. The proposed approach includes a two-stage
prediction model with an integrated algorithm. The traffic prediction model predicts
medium- to long-term traffic features based on rolling self-structured traffic patterns.
The rationales include using the growing hierarchical self-organizing map model
(GHSOM) to partition unlabeled traffic patterns into clusters and then developing an
associated genetic programming (GP) model to predict the traffic features in each
cluster. And then, the integration algorithm, which combined cell transmission model
(CTM) with extended Kalman filtering (EKF) to respectively and iteratively estimate
the arrival distributions and O-D proportions.

To demonstrate the performance and applicability of the proposed approach, a
seminal example with six O-D pairs of 90 minutes estimation is designed. The



performance of this mode in terms of travel time prediction is compared to the
Greenshields macroscopic model prediction. The results showed that the propose
approach is better than the Greenshields model. In the field study, a medium-scale
networks and a large-scale network of on-ramp traffic patterns on a freeway are
examined. The medium-scale network covers a section of Taiwan No.1 Freeway
(Taishan toll station to Yangmei toll station), a 36 km three-lane freeway section with
6 interchanges, and the results showed that the CTM can accurately capture the degree
of traffic dispersion under traffic scenarios ranging from free-flow to congested-flow
conditions and that the proposed EKF algorithm can accurately estimate the O-D
proportions with rather low RMSE.

For the large-scale network, 15 interchanges from Toufen interchange to Beidou
interchange, a 110-kilometer stretch of Taiwan No.1 Freeway, were tested and the
results indicated the practical applicability of the proposed algorithm. In addition,
the proposed method has performed much better than the conventional ARIMA model.
The sensitive analysis has also revealed the necessity of acquiring five-minute traffic
patterns longer than 120 time-intervals (10 hours) in order to achieve sufficient high
prediction accuracy.

KeyWords: Traffic prediction, Genetic programming, Growing hierarchical
self-organizing map, Rolling self-structured traffic patterns, Dynamic
origin-destination, Cell transmission model, Extended Kalman filtering
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CHAPTER 1 INTRODUCTION

1.1 Research Background

Accurate dynamic origin-destination (O-D) information is required for the
implementation of real-time traffic control measures, such as real-time route guidance
and signal control. Numerous studies have devoted to developing estimation
algorithms for the dynamic O-D matrix based mainly on observable mainline and
ramp flow rates. The dynamic O-D matrices estimation algorithms can be divided into
two categories (Ho, 2008): assignment-based (e.g. Ashok and Ben-Akiva, 2000, 2002)
and non-assignment-based (e.g. Chang and Wu, 1994; Chang and Tao, 1996, 1999;
Lin and Chang, 2005, 2007). The assignment-based method primarily relies on a
dynamic traffic assignment’ algorithm - to generate link flows; while the
non-assignment-based method directly estimates O-D-matrices. However, this issue
remains challenging.in that the number of parameters to be estimated is always far
greater than the available information, thus additional assumption or exogenous
information, such-as route choice behaviors, priori O-D matrix information, sequence
of observational periods of traffic counts data (e.g. Bell, 1983, 1991; Yang et al., 1992,
1995; Vardi, 1996; Lo, et al., 1996; Hazelton, 2001), should be further considered.

One of the-most challenging issues remained to be tackled in the context of
dynamic O-D matrices estimation is the impact of travel time variability on the
time-varying O-D matrices. Chang and Wu (1994) assumed that the vehicles entering
the freeway in a time interval are distributed in a_small range (within two time
intervals). However, if O-D pair- traffic traverses a sufficiently long distance or
experiences moderate to heavy congestions, then the travel time variability may be
rather large, which can result in a serious traffic dispersion phenomenon. As a result,
the O-D pair traffic entering the freeway in a specific narrow time interval will reach
their destinations over a wide time interval, which will greatly increase the difficulty
in accurately estimating the dynamic O-D matrices. In other words, an accurate
prediction model for the arrival distribution of entering O-D pair traffic under various
traffic conditions is undoubtedly imperial for dynamic O-D matrices estimation.

Based on this, Chang and Tao (1995) assumed a macroscopic traffic model to
efficiently predict the travel time according to concurrent traffic conditions and used
the predicted travel time to estimate traffic arrival distributions and then to estimate
the O-D matrices. Lin and Chang (2005, 2007) further assumed the travel time of
drivers following a certain distribution and then used such a distribution to estimate
their arrival patterns. However, the studies of Chang and Wu (1994), Chang and Tao
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(1995) and Lin and Chang (2005, 2007) all made strong assumptions regarding the
prediction of traffic dispersion, which might not be valid for various conditions from
free-flow to gridlock. In addition, the state equations in the abovementioned studies
may involve relatively too many parameters, largely increasing the model complexity
to be implemented.

The dynamic O-D matrices estimation algorithms can be divided into two
categories: assignment-based and non-assignment-based. Differ to the
assignment-based method primarily relies on a dynamic traffic assignment algorithm
to generate link flows; the non-assignment-based method directly estimates O-D
matrices. Taking into account the difficulty of non-assignment method to obtain a
priori dynamic O-D information, some studies have developed different methods of
O-D estimation, using available time series traffic flow to reduce the dependence on
the priori time-dependent O-D and dynamic traffic .assignment models. However,
dynamic O-D estimation. model is still limited to. small-scale networks. The main
reason is the relationship of time-dependent O-D and the flow of sections are difficult
to establish, and travel time is-unrealistically assumed as constant in the model.

To remedy.these gaps-in-dynamic O-D matrices estimation, it is deemed
necessary and important to develop an integrated simulation-based dynamic O-D
estimation model by using an efficient traffic prediction and simulation models to
replicate traffic behaviors as well as a dynamic O-D estimation model to determine
the O-D pair shares.of entering traffic (i.e. on-ramp traffic).

To do so, an efficient “and accurate traffic simulation model should be
incorporated into the commonly adopted O-D matrices estimation method, extended
Kalman filtering (EFK) algorithm. The cell transmission model (CTM), proposed by
Daganzo(1994, 1995) was developed as a discrete approximation to the hydrodynamic
theory of traffic flow. It is capable of automatically tracking shocks and acceleration
waves and thus capturing traffic behavior in the process of the formation, propagation,
and dissipation of queues. In that, the LWR continuum model is discretized into cells.
The road is represented by a number of small sections (cells). The simulation model
keeps tracking the number of vehicles in each cell, and in each time-step it calculates
the number of vehicles that cross the boundaries between adjacent cells. Therefore,
how to incorporate CTM models into the dynamic O-D estimation model is imperial.

Additionally, to successfully estimate the dynamic O-D matrices, a sufficiently
long period of entering traffic has to be accurately predicted so as to be the input of
the traffic simulation model to simulate the arrival pattern of the entering traffic after
necessary transverse time between the origin and destination interchanges. Due to the
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rapid fluctuations of traffic flow and obvious peak and off-peak traffic, a efficient and
effective medium-to-long term traffic prediction model is also required.

1.2 Research Objectives

In view of the importance of arrival distribution prediction in estimating the O-D
matrices and to efficiently and accurately capture the traffic behaviors along with their
arrival distributions under various traffic conditions, this study uses CTM to simulate
the traffic movement behaviors, to predict the arrival distributions of all O-D pair
traffic in various time intervals, and then to estimate the dynamic O-D matrices.
Moreover, the conceptual representation of spatial (cell) and temporal (discrete time
interval) conditions of traffic makes CTM especially suitable for dynamic O-D
matrices estimation. Our proposed model intends not only to result in a substantial
increase of system observability-with significantly less parameters than those in
literature, but also to contribute” enhancing the quality of dynamic O-D matrices
estimation.

However, it would be unrealistic to predict the arrival distribution using CTM by
assuming that on=ramp traffic flow along a freeway remains unchanged over time. To
rectify this unrealistic assumption, a medium-to-long term (e.g. next two to four hours)
prediction model of on-ramp traffic along a freeway is required.

Most of the existing traffic prediction models use statistical methods or artificial
intelligent methods to conduct a short-term prediction (e.g. next 5 minutes). Such
short-term prediction models may experience low performance for medium-to-long
term traffic prediction since traffic patterns can change dramatically (e.g., from peak
hours to off-peak and vice versa). According to field observation, daily traffic patterns
do repeat spatially and temporally over and over again. To enhance the prediction
performance should the historical traffic data be clustered into appropriate different
traffic patterns, it would become possible to accurately predict the traffic features in a
rolling manner for a medium-to-long term traffic.

This study proposes a novel approach, based on rolling self-structured traffic
patterns, to make a medium-to-long prediction for the traffic features along a freeway
corridor, in the prediction process, traffic of historical traffic data are collected and
used Growing hierarchical self-organizing map (GHSOM) to identify the similar
cluster of traffic patterns into a cluster without the need to pre-determine the number
of clusters. The input values of learned Genetic programming (GP) model belonging
to that cluster are used to perform the traffic prediction in each cluster without the
need of prior knowledge regarding data distribution or model specification. With the
predicted medium-to-long on-ramp trafficc, CTM is used to simulate the arrival
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patterns, and then, EKF is employed to estimate the O-D proportions. To validate the
accuracy and applicability of the proposed approach, an empirical study on a freeway
IS examined.

Based on abovementioned motivations, and think about the unique properties of
freeway network, for example: traffic conservation features on and off ramp,
estimated time dependent flow, and no complicated path selection problem, that
enable to provide information of value to estimate the dynamic the O-D, the study
aims to propose a novel approach to estimate dynamic O-D matrices, based on Chang
and Wu’s (1994) model, taking into consideration the mainline traffic information and
travel time delays to further amend travel time estimation methods. The approach
includes a two-stage prediction model with the GHSOM algorithm to extract clusters
of traffic patterns and GP to predict the traffic for each cluster separately, and then
proposes an integrated algorithm which- combines. the CTM with the EKF to
respectively and iteratively estimate the arrival distributions and O-D proportions. The
objectives of this study can be stated below:

1. Propose a two-stage prediction-model'with-GHSOM algorithm and GP to predict a
medium-to long-term (e.g.-next-two to four hours) traffic flow of on-ramp traffic
along a freeway, supporting the CTM to estimate arrival distributions.

2. Based on the predicted entering traffic over a sufficient long period, the CTM
model is used to estimate the arrival patterns of entering traffic at every time click.

3. Based on the predicted entering traffic, arrival patterns, the EKF algorithm is used
to estimate dynamic O-D ratios.

4. Demonstrate the performance and. applicability of the proposed integrated dynamic
O-D matrices estimation model, a seminal example designed, a medium-scale
networks and a large-scale network are studied, respectively.

1.3 Chapter Organization

The research framework is depicted in Figure 1. This dissertation is organized as
follows. Chapter 1 introduces the background and research objectives of the research.
Chapter 2 briefly summarizes related studies. Chapter 3 proposes the research
framework of this study, including the introductions to the study freeway corridor,
and variables/parameters used in the proposed models. Chapter 4 introduces the
proposed models, including a two-stage traffic prediction model, integrated arrival
distribution model and EKF-based dynamic O-D matrices estimation. Chapter 5
presents case studies to demonstrate the performance and applicability of the proposed
model. Chapter 6 gives the conclusions of this study and suggestions for future
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studies.

As shown in Figure 1, this study contains the following parts:
1. Objective definition

Clearly identify the research topics and objectives of this study.
2. Literature review

To review the following research topics: (1) Static and dynamic O-D matrices
estimation models. (2) Traffic arrival distribution predict model. (3) Traffic pattern
clustering model. (4) Traffic pattern prediction model.

3. Problem statement

Definitions of the typical freeway -corridor, variables and parameters, and
introducing the process of estimation of O-D estimation matrices.

4. Model formulation

The proposed. model in this study can be divided into two parts. One is a
two-stage prediction model based on GHSOM algorithm ‘and GP, the other is
combined CTM with EKF to respectively and iteratively estimate the arrival
distributions and O-D proportions.

5. Seminal example

A seminal example is designed to demonstrate the performance and applicability
of the proposed estimation algorithm.

6. Case study

Case studies on to two different sized freeway networks, one is a medium,
another is a large-scale, are conducted to demonstrate the performance and
applicability of the proposed estimation algorithm.

7. Concluding remarks

The major findings and contributions of this study are narrated. The suggestions
for future studies are also addressed.
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CHAPTER 2 LITERATURE REVIEW

The chapter consists of four sections. Section 2.1 addresses the O-D matrices
estimation. Section 2.2 discusses the traffic pattern clustering theory. Section 2.3
addresses the traffic prediction and section 2.4 discusses the traffic simulation models.

2.1 O-D Matrices Estimation

This section reviews various approaches for estimating the static and dynamic
O-D matrix.

2.1.1 Static O-D Matrices Estimation
There are several methods for formulating estimators for an unique matrix.
2.1.1.1 Maximum entropy model

In transportation.and regional planning, the most popular approach for estimating
the static O-D matrix Is the maximum .entropy maodel. Van Zuylen and Willumsen
(1980), the assumption of the approach is that all of the combinations of individual
travel decisions, so called states, are equally likely to occur. The set of O-D flows
with the highest likelihood of occurring is therefore the set with the maximum number
of states.

2.1.1.2 Maximum likelihood and generalized least-squares

Another method is classical statistical inference techniques. The two main
estimators are the maximum likelihoodand the generalized least-squares. The
maximum likelihood estimator maximizes the likelihood of observing the
experimental data condition on the true trip matrix. For this method, distributional
assumptions need to be made for the sample and traffic counts, Zhang and Maher

(1998) addresses the problem of estimating an O-D matrix with platoon dispersion
from fully disaggregate data that the passage times of vehicles at the entries and exits
or the origins and destinations of a network, and shown that the maximum likelihood
estimation can be formulated more generally as a transportation problem.

On the other hand, no distributional assumptions need to be made for the
generalized least squares approach. Wang (2005) developed a GLS method to
estimate the O-D matrix that extracted from the partial information of the sub O-D
matrix and the means of population information of traffic counts of roads
implemented by the sensor of traffic flow and both the location and movement of
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vehicle recorded by ATIS, and the implementation is demonstrated by a numerical
example.

2.1.1.3 Others static O-D matrices estimation

Others method for estimate O-D matrix is including bayesian inference, gradient
based solution techniques, simultaneous and column generation algorithm.

Bayesian inference uses a priori probabilities on the trip demands, by combining
these probabilities with the conditional probability on the traffic counts; one can
obtain the posterior probability of the demand conditioned on the traffic count. The
arguments of this probability can then be maximized by different methods. Codina
(2004) presents an algorithmic based on a method for nondifferentiable optimization
due to Wolfe that can be interpreted as a conjugate directions method with better
convergence properties as shown with a set of computational tests, alternative to the
O-D matrix adjustment problem from observed link-volumes when it is formulated as
a mathematical programming problem with a bi-level structure, that the upper level
function is approximating gradients.

Lo and Chan (2003 ) proposed a procedure for the simultaneous estimation of an
O-D matrix and link choice proportions in a network change with traffic conditions
from traffic counts for congested network, this procedure performs statistical
estimation and traffic assignment alternately until convergence to obtain the best
estimators for both the O-D matrix and link choice proportions, which are consistent
with the traffic counts.

Ricardo (2008 ) presented a column generation algorithm for the demand
adjustment problem iteratively solves a deterministic user equilibrium model for a
given O-D matrix and a restricted DAP is formulated via a single level optimization
problem. The convergence on local minimum of the proposed algorithm requires only
the continuity of the link travel cost functions and the gauges used in the definition of
the DAP. To analyze the convergence and performance of the proposed algorithm,
various numerical tests were carried out on small scale problems.

2.1.2 Dynamic OD Matrices Estimation

Recently, there has been increased research in the area of dynamic O-D matrix
estimation. Cremer and Keller (1987) highlighted the causal relationships that exist
between the time variable sequences of entrance flow volumes and the sequences of
short-time exit flow counts. They claim that enough information can be obtained from
the counts at the entrances and the exits to obtain unique and bias-free estimates for
the unknown O-D flows without further a priori information.
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2.1.2.1 Bi-level

Lundgren and Peterson (2008) use a general nonlinear bi-level minimization
formulation of the problem, where the lower level problem is to assign a given O-D
matrix onto the network according to the user equilibrium principle. After
reformulating the problem to a single level problem, the objective function includes
implicitly given link flow variables, corresponding to the given O-D matrix. They
propose a descent heuristic to solve the problem, which is an adaptation of the
well-known projected gradient method. Numerical experiments are presented which
indicate that the solution approach can be applied in practice to medium to large size
networks.

2.1.2.2 Entropy

Wu (1997 ) develops.an improved O-D algorithm based on the existing
multiplicative algebraic  reconstruction technique. with the entropy- maximizing
approach. The improvement of the algorithm.in numerical stability and convergence
speed s obtained by incorporating a normalization technique and a diagonal searching
strategy, and demonstrated that the proposed new algorithm hold much promise for
efficient application in advanced traffic management systems.

2.1.2.3 Others approach of dynamic O-D matrix estimation

Others approach of dynamic "O-D matrix estimation including recursive
estimation, column generation approach and Statistical inference. Li and Moor
(1999) proposed.-a fast constrained recursive identification (CRI) algorithm to
estimate intersection O-D matrices dynamically, the basic idea of the CRI algorithm is
to estimate intersection O-D matrices based on equality-constrained optimization.
Numerical results show that the accuracy of estimates by the CRI algorithm is fairly
good the solutions obtained by the CRI are optimal in majority of the cases, compared
with the ordinary recursive least squares method, the CRI algorithm with its
reasonable balance between accuracy and computational simplicity is very suitable for
practical use.

Sherali and Park (2001) develop a column generation approach that uses a
sequence of dynamic shortest path sub-problems in order to estimate time-dependent
path flows, or O-D trip tables, using available data on link traffic volumes for a
general road network. Hazelton ( 2008 ) consider the problem of estimating a sequence
of O-D matrices from link count data collected on a daily basis, they recommend a
parsimonious parameterization for the time varying matrices so as to permit
application of standard statistical estimation theory. A number of examples of suitably
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parameterized matrices are provided.
2.1.3 Related EKF Approaches

The Kalman filtering (KF) algorithms are known as a “prediction-correction”
technique, which is based on the criterion of least square unbiased estimation of the
state and measurement vectors.

In the pioneering study by Cremer and Keller, they applied the idea of dynamic
OD estimation, where time dependant traffic counts were used in a recursive KF
based OD estimator. And then, Chang and Wu (1994) applied the KF estimate for
time-varying freeway O-D matrices, the proposed model employs information from
mainline traffic counts, ramp flow measurements, and macroscopic traffic
characteristics to construct a set of dynamic equations, which realistically consider the
interrelations between O-D. distributions and observed flows under congested
conditions. To improve the operational efficiency necessary for real-time applications,
a revised model with.some approximation have also been developed, Wu and Chang
(1996) suggested the improved KF based O-D estimator with time series of link and
screenline flows, with properly selected  screenlines and efficient computing
algorithms, the proposed model also offers the potential for real-time applications.

Chang and Miaoul (1999) present an integrated method based on KF for
estimating time-varying O-Ds in urban networks. The proposed method starts with
their’s previously developed two-stage, non-assignment-based model that can yield a
time-varying O-Ds:without a reliable prior O-D set and a dynamic traffic assignment
model (DTA). To further improve the estimation accuracy and also account for the
impact of urban signals, they have developed an intersection O-D estimation model
that can produce an additional set of system observation constraints based on either
existing or estimated intersection turning fractions, and the results of simulation
experiments have clearly indicated that proposed method for integrated estimation of
time-varying network O-D distributions is quite promising.

Lin and Chang (2006) present two robust algorithms, one for estimation of an
initial O-D set and the other for tackling the input measurement errors with an
extended estimation algorithm. The core concept of the initial O-D estimation
algorithm is to decompose the target network in a number of sub-networks based on
proposed rules, and then execute the estimation of the initial O-D set iteratively with
the observable information at the first time interval. To contend with the inevitable
detector measurement error, this study proposes an interval-based estimation
algorithm that converts each model input data as an interval with its boundaries being
set based on some prior knowledge. The performance of both proposed algorithms has

10



been tested with a simulated system, and the results are quite promising.

Lin and Chang (2007) presents a KF based approach for estimating the dynamic
freeway O-D distribution, based on measurable time series of mainline and ramp
flows, and estimated travel time distributions. The proposed model captures the speed
discrepancy among drivers, due either to their desired speeds or responses to
congestion, with an embedded travel time distribution function and the identified
interrelations between time-varying ramp and mainline flows. With the employed
mainline information and travel time function, the proposed system equation has
increased its observability with less parameter. Extensive numerical analyses with
respect to the sensitivity of both input measurement errors and the selection of initial
parameters on the estimation results have revealed that the proposed model is
sufficiently robust for real-world applications.

Zhou and Mahmassani (2007) present a structural state space model to
systematically incorporate regular demand pattern information, structural deviations
and random fluctuations. By considering demand deviations from the a priori estimate
of the regular pattern as a time-varying process with smooth trend, a polynomial trend
filter is developed to capture possible structural deviations in real-time demand. Based
on a KF framework, an optimal adaptive procedure is further proposed to capture
day-to-day demand evolution, and update the a priori regular demand pattern estimate
using new real-time estimates and observations obtained every day. These models can
be naturally integrated into a real-time dynamic traffic assignment system and provide
an effective and efficient approach to utilize the real-time traffic data continuously in
operational settings.

2.2 Traffic Pattern Clustering

Numerous heuristic algorithms for clustering have been developed, which can
generally be divided into three categories: statistics clustering, metaheuristics and
neural network.

2.2.1 Statistical Methods
2.2.1.1 K-means algorithm

K-means algorithm is one of the most popular clustering algorithms for
discovering clusters in data. Kantabutra et al (2000) offer a parallel solution to the
K-means problem by taking advantage of a cluster of inexpensive workstations and a
relatively low price of hard disk. And experiments show that this parallel algorithm
achieves a much faster speed than the existing algorithms.
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Frahling (2005) develop an efficient implementation for a k-means clustering
algorithm, the novel feature of their algorithm is that it uses coresets to speed up the
algorithm. A coreset is a small weighted set of points that approximates the original
point set with respect to the considered problem. The main strength of the algorithm is
that it can quickly determine clustering of the same point set for many values of k.
This is necessary in many applications, since, typically, one does not know a good
value for k in advance. They study have clustering for many different values of k and
can determine a good choice of k using a quality measure of clustering that is
independent of k, for example the average silhouette coefficient. The average
silhouette coefficient can be approximated using coresets.

2.2.1.2 Fuzzy c-means algorithm

Fuzzy c-means (FCM) algorithm is another popular clustering techniques and
subject of active research.in several real"world applications, because it is efficient,
straightforward, and easy to implement.

Pal et al (2005) propose a new model called possibilistic-fuzzy c-means (PFCM)
model. PFCM produces memberships and possibilities simultaneously, along with the
usual point prototypes or cluster centers for each cluster. PFCM is a hybridization of
possibilistic c-means (PCM) and FCM that often avoids various problems of PCM,
FCM and FPCM. PFCM solves the noise sensitivity defect of FCM, overcomes the
coincident clusters problem of PCM and eliminates the row sum constraints of FPCM.
And show that PFCM compares favorably to both of the previous models.

Yu et al (2007) implement the horizontal collaborative clustering with the partial
supervision clustering approach where the clustering is carried by the guidance of
some labeled patterns. In this approach, they selected the patterns and interested in to
provide FCM with collaborative information and control the degree of the influence
of the selected patterns on the clustering. This new method is called partially
horizontal collaborative fuzzy c-means (PHC-FCM). After presenting two approaches
to realizing the selection of the labeled patterns, named cutset based approach and
entropy based approach, and experiments are carried and show the performance of the
new method.

2.2.2 Metaheuristic Methods

Chiou and Lan (2001) employs genetic algorithms to solve clustering problems
three models, SICM, STCM, CSPM, are developed according to different
coding/decoding techniques. The effectiveness and efficiency of these models under
varying problem sizes are analyzed in comparison to a conventional statistics
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clustering method. The results for small scale problems indicate that CSPM is the
most effective but least efficient method, medium to large scale indicate that CSPM is
still the most effective method. They have applied CSPM to solve an exemplified
p-Median problem, and demonstrate that CSPM is usefully applicable.

Yang et al (2005) developed a Genetic k-means-algorithm-based classification of
direct load-control curves, the aim of reducing the number of variables for
classification and enhancing the classification effectiveness, autoregression
moving-averaging (ARMA) modelling techniques are employed to extract the features
of the DLC curves. Based on the features extracted, the genetic k-means algorithm is
then adopted for classification owing to its ability to partition given global data
optimally into a specified number of clusters. Through the proposed approaches,
categories are derived of the DLC curves_complying and noncomplying with the
control pattern. The results = obtained - from the comparisons with the
artificial-neural-network approach show that the clusters divided using the proposed
approach exhibit very high classification rates for the practical data on Taiwan Power
Company DLC programmes.

An ant-based self-organizing map (ABSOM) was proposed on 2008. The
ABSOM embeds the exploitation and exploration rules of state transition into the
conventional SOM algorithm to avoid falling into local' minima. To examine the
usefulness of the proposed method, the ABSOM is combined with K-means into a two
stage clustering method, i.e. ABSOM+K-means. Applied four public data sets, the
ABSOM has been proved that it performs better than Kohonen’s SOM and it also
works very well in the two-stage cluster analysis when it is taken as a preprocessing
technique.

2.2.3 Artificial Neural Network Methods
2.2.3.1 Self-organizing map

The Self-Organizing Map (SOM) s a very popular unsupervised neural network
model for the analysis of high-dimensional input data as in data mining applications,
on the one hand, it is very simple to write down and to simulate, its practical
properties are clear and easy to observe.

Yang et al (2004) presents an efficient approach to clustering the DLC curves
through a structure of SOM. Aiming at selecting significant features of DLC curves,
methods of nonlinear principal component analysis (NLPCA) and periodic analysis
are proposed for feature extraction. The dual multilayer neural networks (DMNN)
model is employed in the proposed NLPCA method. In the periodic analysis method,
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the periodic characteristics of the DLC curves are investigated. Results obtained from
the comparison of six different approaches show that the clusters obtained from the
proposed approach exhibit lowest degrees of misclassification for the practical data on
Taiwan Power Company (TPC) DLC programs.

The SOM has shown to be a stable neural network model for high-dimensional
data analysis. However, at least two limitations have to be noted, which are caused, on
the one hand, by the static architecture of this model, as well as, on the other hand, by
the limited capabilities for the representation of hierarchical relations of the data.

2.2.3.2 GHSOM

The GHSOM, an unsupervised learning neural network, is a powerful data
mining technique for the clustering and visualization of large and complex data sets,
which is an improvement over the basic SOM, can adapt its architecture during its
learning process and expose the hierarchical structure that exists in the original data.

Pampalk et al (2003) present a novel approach to reveal the inherent hierarchical
structure of data using multiple"SOMs ‘together with heuristics which optimize the
stability, they evaluate the approach using data from real-world data mining projects
in the music domain.

Tangsripairoj and Samadzadeh (2006) demonstrate the potential of the GHSOM
for the organization and visualization of a collection of reusable components stored in
a software repository, and compared the results with the ones obtained by using the
traditional SOM.

Yang et al (2010) developed the GHSOM to-overcome the limitations of SOM, to
obtain higher detection rate and improve the stability of intrusion detection, some
improvements on GHSOM algorithm are made: (1) they introduce a new metric that
includes both numerical and symbolic data as input patterns. (2) using Tension and
Mapping Ratio (TMR) instead of parameter t1, the growth of a map is automatically
controlled. This improved GHSOM is implemented and applied to intrusion detection.
Their experimental results show that the detection rate has been increased by
employing the improved GHSOM compared to the original SOM and GHSOM.

2.2.3.3 Support vector machine

Asa et al (2001) present a novel clustering method using the approach of support
vector machines, and present a simple algorithm for identifying these clusters, and
then demonstrate the performance of our algorithm on several datasets.

Chen et al (2001) investigates the connection between fuzzy classifiers and
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kernel machines, establishes a link between fuzzy rules and kernels, and proposes a
learning algorithm for fuzzy classifiers. The corresponding fuzzy classifier is named
positive definite fuzzy classifier (PDFC). A PDFC can be built from the given training
samples based on a support vector learning approach with the IF-part fuzzy rules
given by the support vectors.

Yella et al (2007) presents a comparison of several pattern recognition techniques
combined with various stationary feature extraction techniques for classification of
impact acoustic emissions. Results from support vector machines in combination with
linear predictive cepstral coefficients delivered good classification rates.

2.3 Traffic Prediction

This section reviews various approaches to predict traffic flow, including
Statistical Methods, Metaheuristic Method and Artificial Neural Network Methods.

2.3.1 Statistical Methods
2.3.1.1 Autoregressive integrated moving average

Autoregressive integrated-moving average (ARIMA) is one of the popular linear
models in time series forecasting during the past three decades.

Dervoort et al (1996) introduced A hybrid method of short-term traffic
forecasting, the KARIMA method. The technique uses a Kohonen self-organizing
map as an initial classifier, each class has an individually tuned ARIMA model
associated with it. The explicit 'separation of the tasks of classification and functional
approximation greatly improves forecasting performance compared to either a single
ARIMA model or a backpropagation neural network, and demonstrated by producing
forecasts of traffic flow, at horizons of half an hour and an hour, for a French
motorway.

Smith et al (2002) effort seeks to examine the theoretical foundation of
nonparametric regression and to answer the question of whether nonparametric
regression based on heuristically improved forecast generation methods approach the
single interval traffic flow prediction performance of seasonal ARIMA models.

Zhang (2003) proposed a hybrid methodology that combines both ARIMA and
ANN models to take advantage of the unique strength of ARIMA and ANN models in
linear and nonlinear modeling. Experimental results with real data sets indicate that
the combined model can be an effective way to improve forecasting accuracy
achieved by either of the models used separately.
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Tseng and Tzeng (2005) proposes a fuzzy seasonal ARIMA (FSARIMA)
forecasting model, which combines the advantages of the seasonal time series ARIMA
(SARIMA) model and the fuzzy regression model. It is used to forecast two seasonal
time series data of the total production value of the Taiwan machinery industry and
the soft drink time series.

Stathopoulos and Karlaftis (2003) present a flexible and explicitly multivariate
time-series state space models using core urban area loop detector data. The results
clearly suggest that different model specifications are appropriate for different time
periods of the day. Further, it also appears that the use of multivariate state space
models improves on the prediction accuracy over univariate time series ones.

2.3.1.2 Grey forecasting model

Chang et al (2005) constructed- a rolling grey. forecasting model (RGM) to
predict Taiwan’s annual semiconductor production. The univariate grey forecasting
model (GM) makes forecast of a time series of data without considering possible
correlation with any leading indicators. It was expected that the annual semiconductor
production in Taiwan should be closely tied with U.S. demand.

Vlahogianni et al (2006) offers a set of tools and methods to assess on underlying
statistical properties of short-term traffic volume data, and results indicate that the
statistical characteristics of traffic volume can be identified from: prevailing traffic
conditions; for example, volume data exhibit frequent shifts from deterministic to
stochastic structures as well as transitions between cyclic and strongly nonlinear
behaviors. These findings could be valuable in the implementation of a variable
prediction strategy according to the statistical characteristics of the prevailing traffic
volume states.

2.3.2 Metaheuristic Method

Chen (2007) applies a novel neural network technique, support vector regression
(SVR), to forecast tourism demand forecasting, the approach, and known as genetic
algorithm (GA)-SVR, which searches for SVR’s optimal parameters using real value
GAs, and then adopts the optimal parameters to construct the SVR models.

Dimitriou et al (2008) presents an adaptive hybrid fuzzy rule-based system
(FRBS) approach for the modeling and short-term forecasting of traffic flow in urban
arterial networks, and employs univariate and multivariate data structures and uses a
genetic algorithm for the offline and online tuning of the FRBS membership functions
according to the prevailing traffic conditions. The results obtained from the online
application of the proposed model are found to overperform those of the offline
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application and conventional statistical techniques.

Brezocnik et al (2004) propose GP to predict surface roughness in end-milling.
Accuracy of the best model was proved with the testing data. It was established that
the surface roughness is most influenced by the feed rate, whereas the vibrations
increase the prediction accuracy.

Yao and Lin (2007) developed the GP algorithm, that is utilised to search for the
optimal \olterra filter structure, and several experiments are made to justify the
effectiveness and efficiency of the proposed modified by the GP algorithm.

Gaur and Deo (2008) presents an application of a relatively new soft computing
tool called GP to forecasting the ocean waves on real-time or online basis while
carrying out any operational activity in the ocean. In order to obtain forecasts that are
station-specific a time-series based approach like stochastic modeling or artificial
neural network was attempted by some investigators.in the past.

Afzal and Torkar (2011) performed a systematic review of literature that
compared genetic programming -models with comparative techniques based on
different independent project variables. The objective is to investigate the evidence for
symbolic regression using genetic programming being an effective method for
prediction and _estimation in software - engineering, when _compared with
regression/machine learning models -and other comparison groups (including
comparisons with different improvements over the standard GP.algorithm).

2.3.3 Artificial Neural Network Methods

The trend in the literature is to.apply artificial intelligence based soft computing
techniques for complex prediction problems. Artificial neural networks which are a
member of soft computing techniques were applied to strength prediction of several
types of domain in the literature with considerable success.

2.3.3.1 Neural networks

Ledoux (1997) propose cooperation based neural networks traffic flow model,
which aims at being integrated into a real time adaptive urban traffic control system.
Concludes on the potentials of neural networks applied to traffic flow modeling, one
minute ahead predictions of the queue length and the output flows have been obtained
with fairly good accuracy.

Dougherty and Cobbett (1997) developed a technique of stepwise reduction of
network size by elasticity testing the large neural network, the back-propagation
neural network to forecast traffic flow, speed have to select the vast number of
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possible input parameters, and show a way of out-perform naive predictors.

Kirby et al (1997) has demonstrated that a straightforward application of neural
networks can be use to forecast traffic flow along a motorway link. Dia (2001)
discusses an object-oriented neural network model that was developed for predicting
short-term traffic conditions, the feasibility of the approach is demonstrated through a
time-lag recurrent network which was developed for predicting speed data up to 15
minuites into the future, and results obtained indicate that the model is capable of
predicting speed up and with high degree of accuracy.

2.3.3.2 Support vector machines

Pai and Lin (2005) consider the ARIMA model cannot easily capture the
nonlinear patterns, applied support vector machines (SVMs), a novel neural network
technique, successfully to _solve nonlinear regression estimation problems, the
proposed hybrid methodology that exploits the unique strength of the ARIMA model
and the SVMs model.in forecasting stock prices problems.

Huang and Sadek (2009) develops a novel forecasting approach inspired by
human memory, called the spinning network (SPN), the approach is then used for
short-term traffic volume forecasting, utilizing a data set compiled from real-world
traffic volume data. The results of the performance testing conducted demonstrates the
superior predictive accuracy and drastically lower computational requirements of the
SPN compared to either the neural network or the nearest neighbor approach.

Ishak (2003) presents an approach to optimize the short-term traffic prediction
performance on freeways using multiple artificial neural network topologies under
different network and traffic.condition settings; the study was conducted to encourage
multi-model techniques that are “capable of improving the performance over
single-model approaches. Using a mix of traditional and modern neural network
topologies, the short-term speed prediction performance was extensively evaluated
under different input settings and various prediction horizons (from 5 to 20 minutes).

2.4 Traffic Simulation Models

The Section consists of three parts. 2.4.1 Addresses the macroscopic approach of
traffic flow theory. 2.4.2 discusses the microscopic models and 2.4.3 addresses the
vehicular traffic of CTM models.

2.4.1 Macroscopic Models

The conventional traffic flow models have two different conceptual frameworks,
macroscopic and microscopic traffic flow models. The macroscopic traffic flow
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models is view as a compressible fluid and mostly devoted to elucidating the relations
between speed, density and flow in various traffic conditions and roadway
environments. The fluid-dynamical description models analogize vehicular flows to
fluids by assuming the aggregate homogeneous behavior of drivers.

Lighthill and Whitham (1955) and Richard (1956) treated the flow as function of
only the local density and developed the most well-known one-order fluid-dynamical
(LWR) models. The shock wave theory used by LWR model was to explain many
traffic phenomena such as congested traffic upstream of a freeway bottleneck. Other
researchers such as Payne (1971), Liu et al (1998) and Zhang (1998) derived
high-order similar models. Wong and Wong (2002) formulated a multi-class traffic
flow model as an extension of LWR model with heterogeneous drivers. The main
concepts are described as follow: When viewing from an aircraft at a freeway, one can
imagine the vehicular traffic_ flow Is regarded as a stream. Due to this analogy, traffic
is explained in relationship of flow, density, and speed (Kuhne, 1998).

For traffic prevailed on_freeway, since longitudinal movement is the main
concern, the continuity equation-is-further simplified into a two-dimensional equation
with two independent variables—the location at an instant of.time. Upon this,
Lighthill and Whitham (1955) first conjectured that density is the function of the two
above-mentioned independent variables. After that, they adopted the traditional
formula for estimating fluid flow rate.

Obviously LWR model is an over-simplification of traffic phenomena, since it
assumes a homogeneous and deterministic traffic flow and it implies smooth and
concave functionso for both speed and density. Therefore in the past three decades,
many efforts were devoted in improving the LWR model. Most notable studies in this
regard include the work by Bick and Newell (1960) for two-lane bidirectional road,
and those by Liu et al (1998) and Zhang (2005) of high-order similar models. In the
same spirit, some other proposed systems of finite different equations (FPE) to model
freeway traffic, such as Payne (1971) and Daganzo (1995). Wong and Wong (2002)
further formulated a multi-class traffic flow model as an extension of LWR model
with heterogeneous drivers.

2.4.2 Microscopic Models

The microscopic traffic flow models, in contrast to the macroscopic traffic flow
models, describe the interrelationship of individual vehicle movements with other
vehicles.

These models of vehicular traffic attention are focused on individual vehicle each

19



of which is represented by a “particle”. Car-following models are the most pertinent
ones to explicate the one-dimensional movements in a longitudinal lane such that the
following vehicle adjusts its speed to maintain desirable or safe distance headways
with the lead vehicle. Stimulus-response model is perhaps the most prominent type
developed in the 1950s and 1960s by the General Motors (GM) research group, which
is still being applied or extended.

The concept of car following on a motorway indicates a driver reacts to the
altering headway with his predecessor the behavior of a driver. The main idea is that a
driver will through control of the vehicle deceleration and acceleration to maintain a
suitable distance and time gap between it and the vehicle that precedes it in the same
lane. Many studies have devoted to find mathematical formulas to descript the
following behavior of the individual driver. The starting point of define the equation
of motion is usually the analogue of the Newton’s equation for each individual vehicle.
This approach assumes- within a range of distance, a stimulus-response relationship
exist.

The stimulus function can-be-.composed of many factors: the speed of the vehicle,
distance headway, relative speed,-etc. Each-driver can respond to the surrounding
traffic conditions only by accelerating or decelerating the vehicle. Different forms of
the equations of motion of the vehicles in the different versions of the car-following
models arise from the differences in their postulates regarding the nature of the
stimulus.

Chandler et al (1958) proposed the first follow-the-leader model, the different in
the velocities of the following nth and the leading n+1th vehicle was supposed to be
the stimulus for the nth vehicle. It was assumed that every driver be likely to keep
with the synchronized velocity as that of the front vehicle.

Pipes (1953) car-following theory is a linear model that depicts vehicular traffic
behavior. That with the purpose of avoid crash with the leading vehicle, each driver
must keep a safe distance from the leading vehicle. If the velocity of the nth vehicle is
higher, the spacing to its leading vehicle needs to keep larger.

A series of models have been developed in the 1950s and 1960s by Herman and
his colleagues at the General Motors Research Laboratories to address microscopic
approaches that focused on describing the driver car-following behaviors. Five
generations of the GM car-following models are recognized and they provided an
essential contribution to realize the traffic flow. Nowadays they are still applied in
various aspects, including traffic stability and safety studies, level of service and
capacity analysis, driver’s reaction times, etc.
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Recently, various cellular automata (CA) models, comprehensive based on the
aforementioned conventional traffic flow theory, have been developed to describe the
phenomena of real traffic flows characterized with complex dynamic behaviors.

Cellular automaton (CA) is a powerful tool to describe the phenomena of real
traffic flows characterized with complex dynamic behaviors. Nagel and
Schreckenberg (1992) first proposed the renowned NaSch model to reproduce the
basic features of real traffic. In their model, the road is divided into squared-cells of
length 7.5 meters. Each cell can either be empty or occupied by at most one car. The
space, speed, acceleration and even the time are treated as discrete variables. The state
of the road at any time-step is derived from one time-step ahead by applying
acceleration, braking, randomization and driving rules for all cars at the same time.
Obviously, their coarse description of_cells is an extreme simplification of the real
world conditions. Therefore, a considerable-number of modified NaSch CA rules have
been found in the past decade. Other related works that improved NaSch coarse cells
with finer cells have also been found. In addition, Wolf (1999) employed a modified
NaSch model to address the metastable states at the jamming transition in detail.
Wang et al (2000)-introduced NaSch model and Fukui-Ishibashi-model to investigate
the asymptotic  self-organization phenomena of - one-dimensional traffic flow.
Pottmeier et al (2002) studied the impact of localized defect in a CA model for traffic
flow exhibiting metastable states and phase separation.

NaSch model was proposed by K. Nagel & M. Schreckenber (1992). Capable of
reproduce important entities of real traffic flow, e.g. density-flow relation. Model
description, one-lane traffic, divided into cells of length 7.5 m. Each cell can either be
empty or occupied by at most one car with discrete velocity.

The NaSch model is a minimal madel in the sense that all the four steps are
necessary to reproduce the basic features of real traffic; however, additional rules need
to be formulated to capture more complex situations.

Barlovic et al (1998) based on the original NaSch model, and further proposed
the velocity dependent randomized (VDR) model which is basically analogous to the
BJH model and endeavors to establish proper update rule for randomization (Pn) in
accordance with the velocity variation of vehicles. The VDR model did successfully
exhibit the metastable states and consequently, the hysteresis effect that was never
visible in the previous simulations. Therefore the VDR model has been widely
adopted worldwide since then.

Knospe et al (2000) based on original VDR model and the following driving
strategy. At large distances the cars move with their desired velocity vmax. At
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intermediate distances drivers react to velocity changes of the next vehicle
downstream, i.e. to ‘brake lights’. At small distances the drivers adjust their velocity
such that safe driving is possible. The acceleration is delayed for standing vehicles
and directly after braking events.

Kerner (2004), a German traffic physician, introduced a three-phase traffic
theory which consists of free flow, synchronized flow and wide moving jam phases.
The later two phases exist in congested states where downstream front of the
synchronized flow phase is often fixed at a bottleneck but the wide moving jam will
propagate through the spatial locations of the bottleneck.

To explore the emergence of such traffic patterns, Kerner and partners have
shown complex spatiotemporal behaviors based on empirical freeway traffic analysis.
The effect of slow cars in two-lane systems was further studied by Knospe et al (1999)
who found that even few.slow cars could initiate the formation of platoons at low
densities.

Moreover, Kerner (2005) also compared the congested pattern control approach
with the free flow control approach at an on-ramp bottleneck with ramp metering. It
was found that the congested pattern control approach has higher throughputs on the
main road downstream of the bottleneck and considerably lower vehicle waiting times
at the light signal on the on-ramp. The upstream propagation of congestion does not
occur even if large amplitude perturbations appear in traffic flow.

2.4.3 Related CellTransmission Model

The CTM was developed as a discrete approximation to the hydrodynamic
theory of traffic flow. It is capable of automatically tracking shocks and acceleration
waves and thus capturing traffic behavior in the process of the formation, propagation,
and dissipation of queues. One famous approach in this regard is the CTM model
proposed by Daganzo (1994, 1995). In that, the LWR continuum model is discretized
into cells. The road is represented by a number of small sections (cells). The
simulation model keeps tracking the number of vehicles in each cell, and in each
time-step it calculates the number of vehicles that cross the boundaries between
adjacent cells. The flow from one cell to the other depends on how many vehicles can
be sent by the upstream cell and how many can be received by the downstream cell.
The amount of vehicles that can be sent is a function of the density in the upstream
cell whereas the number can be received depends on the density in the receiving cell.
The lagged CTM (Daganzo, 1999) is a refinement of this scheme, where the amount
of vehicles a cell can receive (from the adjacent upstream cell) is also affected by the
density some time earlier in the cell.
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Lo et al (2001) developed a dynamic traffic-control formulation and transformed
the CTM to a set of mixed-integer constraints and subsequently cast the dynamic
signal-control problem to a mixed-integer linear program. This study produced results
to show the benefit of dynamic timing plans and demonstrated that some of the
existing practice on signal coordination could be further improved.

Lo and Szeto (2002) developed a cell-based DTA formulation and through
defining an appropriate gap function, and transformed a formulation based on the
nonlinear complementarity problem to an equivalent mathematical program, this
formulation encapsulates a network version of the CTM, the formulation is able to
capture dynamic traffic phenomena, such as shock-waves, queue formation, and
dissipation. Moreover, it is capable of capturing dynamic traffic interactions across
multiple links.

Lo and Szeto (2002) developed a cell-based dynamic traffic assignment
formulation that through a variational inequality appreach. This formulation satisfies
the first-in-first-out (FIFO) conditions through the CTM, and employed an alternating
direction method developed for-co-coercive variational inequality problems.

Lin and Lo (2003) show that these moving jams are not-particularly peculiar but
can be explained with  the hydrodynamic theory of traffic flow, or the
Lighthill-Whitham-Richards model, and the merge and diverge models in the cell
transmission model. In fact, and demonstrate that this stationary jam phenomenon can
be replicated with'a simple two-wave velocity (or triangular) flow-density relationship
in conjunction with the hydrodynamic theory. This finding provides some evidence to
support that a triangular flow-density relationship_is a good approximation of field
observations.

Szeto and Lo (2004) develops a cell-based formulation for the simultaneous
route and departure time choice problem with elastic demands through a variational
inequality problem (VIP), and prove that the O-D first-in-first-out (FIFO) property is
only maintained under certain conditions of the travel time and schedule delay costs.
the theoretical analyses together with the empirical results indicate that O-D FIFO
should hold in reality.

Boel and Mihaylova (2006) present a stochastic model that extends the CTM, of
freeway traffic at a time scale and of a level of detail suitable for on-line estimation,
routing and ramp metering control. The freeway is considered as a network of
interconnected components, corresponding to one-way road links consisting of
consecutively connected short sections (cells). The model is validated over synthetic
data with abrupt changes in the number of lanes and over real traffic data sets
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collected from a Belgian freeway.

Gomes and Horowitz (2006) using a cell transmission-like model called the
asymmetric cell transmission model (ACTM) to solved onramp metering control
problem, formulation captures both free flow and congested conditions, and includes
upper bounds on the metering rates and on the onramp queue lengths.

2.5 Summary

Base on the above literature review, this study proposes a novel approach, based
on rolling self-structured traffic patterns, to make a long prediction for the traffic
features along a freeway corridor. In the prediction process, a sequence of historical
traffic data are collected and used to identify the similar cluster of traffic patterns. The
input values of learned GP model belonging to that cluster are used to predict the
subsequent many hours. With the predicted medium-to-long on-ramp traffic, CTM is
used to simulate the arrival patterns. And then, EKF is.employed to estimate the O-D
proportions.
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CHAPTER 3 PROBLEM DEFINITIONS

This chapter introduces the problem definitions in this research. Section 3.1
addresses the problem statement including the definitions of typical freeway corridor,
variables, parameters and the rolling concept; the proposed model framework is
introduced in Section 3.2.

3.1 Problem Statement
3.1.1 Definitions
3.1.1.1 A typical freeway corridor

The dynamic O-D estimation madel of this research is based on Chang et al.
(1994, 2006, 2007), consider a typical“linear freeway corridor with N segments,
coding 0 to N-1, as shown in Figure 2. Assume that detectors are installed at all
on-ramps, off-ramps, and mainline links. The information that is readily available for
estimation of dynamic O-D distribution-is the time series of entering flow, g, (k),

exiting flow, (k) , and mainline flow, U, (k).

Uo—> Up— Uy—> Ug—> .o Uni—> W
yll\Y/ { 0 yz]\Y/ [ 02 yﬂ\Tf { Js YNW\Y/ On-1
Figure 2 Aitypical linear freeway corridor

The relationship between the dynamic O-D pattern, resulting link flow, and
arrival pattern can be expressed by the following equations:
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Egs. (1) and (2) express the relationship between entering traffic (q,(k —m)),

mainline traffic volume (U, (k)-q,(k)), O-D matrices proportion (b;(k —m)), and
arrival pattern ( pf' (k)).
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3.1.1.2 Definition of variables and parameters
Obviously, the system formulation has a large number of state parameters, i.e.,
bij(k) and p;“(k), causing low efficiency in estimation. As such, more information is
required to ensure the proposed model to be computationally efficient and tractable.
The variables and parameters of O-D estimation, GHSOM and GP, used in this

study are defined in Table 1.

Table 1 Definition of variables and parameters

Variables/
parameters

0, (k) The number of- vehicles entering the upstream boundary of the
freeway section during time interval k.

q; (k) The number of vehicles entering freeway from on-ramp i during time
interval k, 1=1,2,..., N-1L

y; (k) The‘number of vehicles leaving freeway from off-ramp j during time
interval k, j =1,2,..., N -1

yy (K) The mainline volume at the downstream end of the freeway section
during time interval k.

U, (k) The number of vehicles crossing the upstream boundary of segment |
during time interval k, 1 =1,2,.. ., N - 1.

T, (k) The number of vehicles entering the freeway from-on-ramp i during
time interval k that are destined to off-ramp j, where: 0<i< j<N.

b, (k) The proportion of gi(k) heading toward destination node j during time
interval k.

2" (K) The fraction of Tj(k-m) vehicles departing from entry node i during

' time interval k that takes m time intervals to exiting node j.
" (k) The fraction of Tj;(k-m) trips from entry node i during time interval k
" that takes m time intervals to mainline node.
Py (K) The fraction of T;(k-m) trips from entry node i during time interval k

that takes m (m=t; (k) , t; (k) = int[g, (k) /t,]) time intervals to
mainline node.

2 (k) The fraction of Tj(k-m) trips from entry node i during time interval k
that takes m (m=t; (k) ,tj (k) =t; (k) +1) time intervals to mainline
node.

Xk(t+1) A sequence of r-period historical traffic features observed at location

k starting from time t+1.
%, (t+r+h) Predicted the flow features h periods ahead.

Definition

71 Breadth of GHSOM, a threshold to specify the desired level of detail
that is to be shown in a particular SOM.
7 Depth of GHSOM, a threshold to specify the desired quality of input
data representation at the end of the learning process.
a(l) The learning rate function which controls the amount of weight
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Variables/

parameters Definition

vector adjustment and decreases with the iterations.
o(l) Defines the width of the neighborhood function and also decreases
monotonically.
wij(K) The white noise of the state variable at time k, and E(w;j(k)) = 0,
Var(wij(k)) = D(k) follow Gaussian distribution.
e(k) The observation error term of the measurement variable, following
Gaussian distribution, and E(e(k)) = 0, Var(e (k)) = R(k).

3.1.1.3 The rolling concept

Let X(t+1)=[xk(t+1), xk(t+2), ..., Xk(t+r)] denote a sequence of r-period historical
traffic features (e.g., five-minute flow rates in the study) observed at location k
starting from time t+1. The proposed method aims to predict the flow features h
periods ahead, denoted.as X, (t+r+1), X, (t+r+2),.., X (t+r+h). For a short-term
prediction (i.e., h=1 or 2), the predicted results have provided useful information for
some ITS applications like traffic-responsive control. However, if the purpose is to
develop advanced. traveler information systems, we need to predict the above flow
sequences at different locations (i.e., k>>1) with longer periods ahead (i.e., h>>1).

This study aims to predict X, (t+r+1), X, (t+r+2),..., X, (t+r+h) with relatively
long period ahead (h>>1). Undoubtedly, the prediction may be rather inaccurate if
h>>r. To overcome this difficulty, a rolling-horizon concept is incorporated into the
proposed prediction method. First, we employ the GHSOM model to classify the
given traffic patterns into appropriate clusters. Then, used the GP model to prediction
traffic sequence in each cluster such that a portion-of the most updated (r-s) periods of
traffic sequence, say xk(t+s), X (t+s+1), ..., Xk(t+r), are used to predict the traffic at the
very next time period, X (t+r+1). This predicted traffic flow together with the
previous traffic flows are further used to predict the consecutive periods in a rolling
manner. Specifically, X, (t+r+1) is predicted based on Xxy(t+s), Xk(t+s+1),..., Xk(t+r);
X, (t+r+2) is predicted based on xg(t+s+1), x(t+s+2),..., X(t+r), X, (t+r+1);
X, (t+r+3) is predicted based on Xy(t+s+2), xi(t+s+3),..., X, (t+r+1), X, (t+r+2); and
so on. The details of traffic pattern clustering and traffic prediction are further
elaborated next chapter.

3.1.2 Estimation of an O-D Matrix

The core logic of the proposed model is how to estimate dynamic OD matrices
Tij(k) or bij(k) by observing the number of vehicles on ramp g;(k), off ramp y;(k) and
main line U(k)
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According to the definition, the relation between the dynamic O-D pattern and
resulting link flow can be expressed by equations (Lin and Chang, 2007):

g (k) = iTij(k), i=01..,N-1 ©)

j=i+l

T,(0=0,(K)-by(k), 0<i<j<N (4)

The above two equations are subjected to the following natural constraints:

0<b,(k)<1 0<i<j<N (5)

S, () =1 i=012,..N-1 (6)

j=i+l
Consider the speed variation among drivers, it is reasonable to assume that the
travel time of vehicles from node i to node j during time interval k are distributed
among time intervals k-M,..., k=1, and k where M.is the maximum number of intervals
required for vehicles to traverse the entire freeway section. The traffic volume leaving

freeway from off-ramp j, y, (k) can thus be expressed as:

Y00 = >3 Tyk-m) () )
U0=33 o (k)[ 37, (k- m)} 4,00 ®)

where p;“(k) shall satisfy the following relations:

0<pl(k)<1, 0<i<j<N, m=01..,M ©)
M
D pi(k+m)=1 0<i<j<N (10)
m=0

Thus, taking into consideration the difference of travel time caused by different

driver speed factors, Chang and Wu (1994) add a variable &]'(k) to reflect the

effects of estimated results on different travel times, and using the parameters p;' (k)
to predict the vehicle arrival distribution, which is defined as follows:
p; (k) : The fraction of Tjj(k-m) vehicles departing from entry node i during time

interval k that takes m time intervals to exiting node j.

Therefore, considering this argument, the number of vehicles on the off ramp at
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time k can be rewritten as Eq. (11). It represents the dynamic relationship between
O-D distribution pattern and road traffic.

0= 33Ty (k=m)- 47 ()

(11)

|
AN

j-1
J

Qi(k_m)'bij(k—m)'piT(k) , 1=12,..,N

0
m=0 i=0

The relationship of the number of vehicles on the main line, must also comply
with the constraints of flow conservation, and significantly increases the performance
of the estimation model.

U, (k) = ilzlpn (k){ 2 Tk - m)} +0, (k)

m=0i= j=I+1 (12)
U, (k) —au(k) = Z‘BZ;, Z.? (ki= m)b; (k =m) oi(k), . 1 =1.2,...,N -1

Eq. (12) is a traffic equation to express the relationship between entering traffic
(g(k—m)), arrival pattern (p;'(k) ), O-D matrices proportion (b;(k—-m)), and
mainline traffic volume (U, (k) - g, (k) ). Obviously, the system formulation has a large

number of state parameters, i.e., bj(k) and p;“(k). The number of these unknown

parameters increases with the necessary M value.-/As-such, some more information is
required to ensure this proposed model to be computationally efficient and tractable.

To deal with the large number of unknown parameters, Chang and Wu (1994)
simplified the formulations by assuming. that the speeds of vehicles entering the
freeway at the same time interval-are distributed in a small range. Therefore, egs. (11)
and (12) can be rewritten as:

-1 j-1

y5(K) =3[ (k =t () Jo: (k)by (k —t; (K))) +

i=0

lo (k =t (KD Jo; ()b (k —t; (K)))

i=0

| (13)
—q (k) = zz[q (k—t; (KD (Kb (k - t.,(k)))+2[q (k~t; (KDo; (Kb (k — t; (K)))
(14)

As such, the number of unknown parameters reduces from (M + 1)N(N + 1)/2 to
3N(N+1)/2. However, if the target freeway corridor is sufficiently long and
experiences moderate congestion, the speeds of vehicles for the same O-D may vary
in a wide range. Then, egs. (13) and (14) are not adequate to capture all complex
interrelations between traffic flows and O-D patterns. To overcome these limitations,
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Lin and Chang (2005) proposed a new set of generalized formulations by employing a
distribution to represent the potential variation of travel times among drivers due to
the impact of congestion and the difference in their desired speeds. They assumed that
the travel times of drivers departing from node i during time interval k to node j
follow a specific distribution. Since the travel times for the same O-D pair drivers
departing during the same time interval follow a distribution, Lin and Chang (2007)

replaced p;“(k) with a cumulative density function for one time interval as follows:

(m+1)ty
pr (k) = ;" (x)dx
i J.m-to I (15)
By applying the above travel time distribution concept, the relationships between
ramp volumes and O-D proportions can be rewritten as:

y,—(k)=§_‘6: q,(k<m)- p(k)-b, (k—m)
-> ay(k~my=Ff 6 0 ob (k —m) (16)
U, (K) -0, (k) = zzz[q (k—m)p" (k) )b (k - m)
=ZZ 2 a te-mfJ"™ 620K p (- m) ar)

Compared to Chang and Wu (1994), the number of unknown parameters for Egs.
(16) and (17) has reduced from 3N(N+1)/2 to 2N(N+1)/2. On the other hand, Lin and
Chang (2005) represented the different speeds of vehicles for the same O-D pair by
using the distribution of travel time.

Although the relevant studies (e.g. Chang and Wu, 1994; Chang and Tao, 1995;
Lin and Chang, 2005, 2007) have shed light on the dynamic O-D matrices estimation,
most of them made subjectively assumptions regarding arrival distributions, which
may not be valid for various conditions from free-flow to gridlock. In addition, most
of these models are too complex, causing low efficiency in estimation. In view of the
importance of the arrival distribution prediction and the estimation efficiency required
for real-time implementation, this study aims to develop a model that can accurate
capture the traffic hydrodynamics under various traffic conditions in an efficient
manner.

The macroscopic pattern only calculates the average travel time dependent on
average link flows on larger scale road networks, while traffic flows increase leading
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to road network congestion. This method of travel time estimation is too innaccurate
and cannot reflect actual vehicle trips. In terms of microscopic traffic flow model
estimates, detailed observation of driver behavior of all vehicles on the road, and a
complicated calculation and update will result in a lack of efficiency and timeliness.
Therefore, in view of the mediumscopic traffic model travel time estimation methods,
not only effectively observe vehicle fleet operator behavior, but also reduce computer
calculation time and storage space, improving the efficiency and objectivity of
dynamic O-D matrices estimation. The CTM is a mediumscop traffic mode for
predicting travel time, developed by Daganzo (1994), based on the basic concepts of
fluid dynamics to derive a single direction and single entrance road density process,
not making any additional assumptions for effective and accurate forecasting of
vehicle operating behavior on networks to reflect the true dissipation under different
traffic conditions.

In the past, many scholars validated the effectiveness of the CTM model, for
instance, the estimation of the traffic density and congestion patterns in difficult to
measure road sections based on-the use of CTM mode conversion state - space model
(e.g. Sun et al, 2003). According to the hybrid Monte Carlo development of the
Mixture KF algorithm to solve the discrete approximation of non-observation of the
transition state of the state-space model. The estimated results show that real-time
filtering algorithm is feasible and efficient, and the advantages of this model is
average estimation error under 10%, the estimate fitting in with. daily variation of
traffic information.

Compared to other assumptions, this study using CTM simulates the behavior of
real traffic, fitting in with real traffic_operating-conditions, in order to simulate the
vehicle's arrival distribution in'the road network, and then replacing the assumptions
of travel time to no more than one time interval.

Therefore, the research proposes CTM to predict traffic arrive patterns, more
easily than simulating travel time with different traffic conditions than the
macroscopic model, but also more quickly than the microscopic solution.

However, the arrival distribution estimations using CTM are based on an
unrealistic assumption that the on-ramp traffic along a freeway remains unchanged
over time. To rectify this unrealistic assumption, a medium-to-long term (e.g. next two
to four hours) prediction model of on-ramp traffic along a freeway is required.

According to field observation, daily traffic patterns do repeat spatially and
temporally over and over again, this research proposes a two-stage prediction model,
based on rolling self-structured traffic patterns, to make a long prediction for the

traffic features along a freeway corridor, first employs the GHSOM model to partition
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unlabeled traffic patterns into appropriate number of clusters and then develops a GP
model associated with each cluster to predict the traffic features based on rolling
self-structured traffic patterns. With the predicted medium-to-long on-ramp traffic,
CTM is used to simulate the arrival patterns. And then, EKF is employed to estimate
the O-D proportions.

3.2 The Proposed Model Framework

Figure 3 presents the detailed process of the proposed approach. Throughout the
prediction process, the step 1, inputting the rolling on ramp traffic patterns and use
GHSOM algorithm to cluster traffic patterns, and step 2, taking 240 time interval
traffic pattern to matching on the similar cluster and use GP to predict 48 time interval
traffic information. Moreover, CTM is used to simulate the arrival patterns and EKF
is used to estimate the O-D proportions, the program of the propose method was
coded in Visual Basic 6.0,.and refer to thee GHSOM package, developed jointly by the
University of Aberdeen and Vienna University of Technology.

To replicate traffic behaviors by CTM, traffic demand of each O-D pair must be
given by GHSOM and GP to predict traffic on ramp in advance. That is, a set of bj(k)
is to be determined and used to assign the detected on-ramp traffic to different
downstream interchanges. Once the arrival distributions of all entering traffic have

been successfully simulated, p;"(k) can be computed and used to calibrate the O-D

proportions of entering traffic gi(k) by EKF, namely b;’(k). Then, the new O-D

proportions bj;'(k) will be used to replicate a revised arrival distribution p;“'(k) in an

iterative manner.
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Figure 3-Process of.the proposed approach

The core logic of the proposed model is build recursive dynamic OD matrix
estimation model, using GHSOM and GP to predict traffic on ramp in advance, and
then supply the CTM to predict arrival patterns by simulated traffic flow on
freeway time and space, and finally using EKF to estimate OD matrices.

Among them, the stop_condition: > [bj™"(k)—b{(K)]* <0.05 where n is the
i

operation result of n-th recursive, or 500 times the number of recursion. Under the
recursive conditions program will result in a new bj’(k), otherwise bj;’(k) to continue
to do the operation until the convergence condition is reached.
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CHAPTER 4 MODEL FORMULATION

This chapter introduces the dynamic freeway O-D matrices estimation algorithm
in this research. Section 4.1 addresses the self-structured medium-to-long term traffic
prediction model, the arrival distribution modeling was introduced in Section 4.2, and
the dynamic OD matrices estimation algorithm was introduced in Section 4.3.

4.1 Self-Structured Medium-to-long Term Traffic Prediction Model
4.1.1 Traffic Pattern Clustering: GHSOM

According to our observation, daily traffic patterns do repeat spatially and
temporally over and over again, this_historical traffic data are collected and used
GHSOM to identify the similar cluster of traffic patterns into appropriate different
traffic patterns.

Pattern clustering is also_known as cluster analysis, set partitioning, Q-analysis,
typology, grouping, clumping, classification; -numerical taxonemy, or unsupervised
pattern recognition. In traffic literature, traffic pattern at a specific location can
represent a sequence of traffic features such as flow, speed, occupancy, etc. Hence,
traffic pattern clustering is a classification process wherein a group of unlabeled
traffic patterns are partitioned into @ number of sets—similar patterns in the same
cluster and dissimilar patterns in different clusters.

Brucker (1978).and Welch (1983) proved that, for specific objective functions,
clustering becomes an NP-hard problem when the number of clusters exceeds three, if
one aims to find the optimal clusters. Numerous heuristic algorithms for clustering
have been developed, which can generally be divided into five categories: statistics
clustering, mathematical programming, network programming, neural network and
metaheuristics (Chiou and Lan, 2001; Chiou and Chou, 2010). Rauber et al. (2002)
proposed the GHSOM model and proved that it possesses excellent performance in
pattern clustering; thus, this study will employ GHSOM to conduct traffic pattern
clustering.

In fact, GHSOM is an extension of self-organized map (SOM), an artificial
neural network that performs clustering by means of unsupervised competitive
learning algorithm, initiated by Kohonen (1982). During the learning process, the
network performs clustering and the model vectors change to reflect the similarity of
neighboring clusters. The goal of SOM is to represent the points in the source space
by corresponding points in a lower dimensional target space, often in a
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two-dimensional lattice. However, SOM can neither capture the inherent hierarchical
structure of data, nor determine the size of the preset map ignoring the characteristics
of data distribution. To overcome these shortcomings, the GHSOM (Rauber et al.,
2002) has a hierarchical structure of multiple layers, where each layer consists of
several independent growing SOMs.

The GHSOM architecture starts from a top-level map, which grows in size to
represent a collection of data at different specific levels. For instance, Layer 1
contains 22 units and provides a rather rough organization of the main clusters in
the input data. The four independent maps in Layer 2 give a more detailed data
information. The three identified units in Layer 2, which have diversified input data
mapped onto them, are further expanded to form a new independent SOM at the
subsequent layer (Layer 3), and so on, depicted in Fig. 4.

Layer O

Layer 1

Layer 2

Layer 3

Figure 4 An illustration.of the GHSOM architecture

To elucidate the training algorithm of GHSOM, the training algorithm of
conventional SOM is given below. A typical SOM network consists of an input layer
and an output or competitive layer. The input layer is composed of a set of
r-dimensional input vectors X =[Xk(t+1), xk(t+2), ..., Xk(t+r)], where r indicates the
number of features (i.e. the flow series at consecutive time intervals in this study)
contained in each input vector. The output layer is an m-dimensional (oftentimes m=2)
grid, which consists of a set of neurons, each associated with a r-dimensional weight
vector wi = [Wi1, Wiy ..., wir] with the same dimension as the input vector. The
arrangement of the neurons can be rectangular or hexagonal. Conceptually, SOM
takes a set of inputs mapping them onto the neurons of two-dimensional grid.
Randomly initializing the weight vectors, the SOM network then performs learning as
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the following steps.

Step 1:

Step 2

Step 3:

Step 4:

Randomly initialize the weight vector of each neuron.

: Determine the winning neuron. The SOM network determines the winning
neuron for a given input vector, selected randomly from the set of all input
vectors. For every neuron on the grid, its weight vector is compared with the
input vector by using some similarity measures, e.g., Euclidean distance. The
neuron whose weight vector is closest to the input vector is selected as the

winning neuron. Eg. (18) shows how to determine the winning neuron b.
b [, —wp, (1] = min fx,, —w, ()]} (18)

where | denotes the number of current learning iteration.
Update the weights. After a winning neuron-is determined, the weight vectors
of winning neuron along with its neighboring neurons are updated so as to
“move” toward the input vectors-according to the following equation:
W, (1+1) = w (1) +hy; (D0 =W (1) (19)
where hpi(l) is the neighborhood ‘function. A widely used neighborhood
function'is based on the Gaussian function:
Ir 5[

() =aen(-, 25

) (20)

where a(l) is the learning rate function which controls the amount of weight
vector adjustment and decreases with the iterations; rjand ry, are the locations
of the neuron i and winning neuron.b-inthe lattice; o(l) defines the width of
the neighborhood functionand also decreases monotonically.

Test the stop condition. Steps 2 and 3 are repeated until all the patterns in the
training set have been processed. In addition, to achieve a better convergence
towards the desired mapping, it is usually required to repeat the previous loop
until some convergence criteria are met.

Based on the concept of above SOM learning process, the training algorithm of
GHSOM grows in two dimensions: horizontally (by increasing the size of each SOM)
and hierarchically (by increasing the number of layers). In the horizontal growth, each
SOM modifies itself in a systematic way similar to the growing grid so that each

neuron

does not represent too large an input space. In the hierarchical growth, on the

other hand, the principle is to periodically check whether the lowest layer of SOMs
have achieved sufficient coverage for the underlying input data. The basic steps of the
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horizontal growth and the hierarchical growth of the GHSOM are delineated below
(Tangsripairoj and Samadzadeh, 2006):

Horizontal growth:

Step 1: Randomly initialize the weight vector of each neuron.

Step 2: Perform the conventional SOM learning algorithm for a preset number of
iterations.

Step 3: Find the error unit e and its most dissimilar neighbor unit d. The error unit e is
the neuron with the largest deviation between its weight vector and the input
vectors it represents.

Step 4: Insert a new row or a new column between e and d. The weight vectors of
these new neurons are initialized as the average of their neighbors.

Step 5: Repeat steps 2-4 until the mean quantization error of the map (MQE,) is less
than (z1- mgey). 71 is a threshold to specify the desired level of detail that is to
be shown in a particular-SOM. mqge, IS the mean quantization error of the
neuron u.in the preceding layer of the hierarchy. Eg. (21) calculates mge,,
which is‘the average distance between the weight vector of neuron u and the
input vector mapped onto this neuron:

1
mae, _n_ Z

C, xjeCu

b

j Wy

, N =|Cy (21)

where C, denotes the set of input vectors that are mapped onto unit u; w;

denotes the weight vector of unit i; ij —Ww,|l denotes the distance between

input vector x; and weight vector w,; |Cu| denotes the cardinality of the set C,.

Furthermore, MQE,,, the mean of all neurons’ quantization errors in the map,
is calculated as follows:
1
MQE, =—> mae, n, =[U| (22)
nU ieU

where U denotes the subset of map units.

Hierarchical growth:

Step 1: Check each neuron to find out if its mqe, is greater than (z;'mqeo). 7 is a
threshold to specify the desired quality of input data representation at the end
of the learning process; mqgeo is the mean quantization error of the single
neuron of Layer O, then assign a new SOM at a subsequent layer of the
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hierarchy. mge, is computed as follows:

mae, :nizluxj —mOH, n, =|I| (23)

I Xje

where I is the set of all input vectors. mqey is regarded as a measurement of the
overall dissimilarity of input data.
Step 2: Train the SOM with input vectors mapped to this neuron.

4.1.2 Traffic Pattern Matching

Due to the scope of the research exclude nonrecurring congested flow, such as
random irregular events as accidents, disabled vehicles, and other special situations.
Base on the concept of rolling and only consider the varying of traffic counts but the
location of interchange and detect.of timing, the study assume all input on ramp traffic
patterns can identify to an exclusive cluster.

The pattern matching stage, first employs.the average of individual time periods
(e.g. t=1,t=2,...) of every pattern-produced by GHSOM as cluster seed, then calculates
the squared Euclidean distance of the input sequence and cluster seed pattern of every
clusters. It then assigns the input objects to specific cluster according to the nearest
cluster using a squared Euclidean distance measure. For each.input pattern F;,

compute its membership m(Cj‘Fi) in each cluster C; ...The membership
function m(Cj‘Fi) defines the proportion of pattern F, that belongs to the i™ cluster
C,. The GHSOM algorithm uses.the membership m(Cj‘Fi) € {01}, if the pattern F;
closest to the cluster C; (minimum squared Euclidean distance), then m(Cj‘Fi):l;
otherwise m(Cj‘Fi):O.

The process can be summarized in the following steps, and show as Fig 5:
Step O: Input a traffic pattern F of r-periods point set.

Step 1: The cluster pattern average of every group produced by GHSOM used as
cluster seed.

Step 2: Compute the squared Euclidean distance of each input objects such that
Min(F, F,) => (f - f,)’ (24)
t
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Step 3: Assign the input objects to specific cluster according to minimum squared
Euclidean distance.

Step 4: Use the prediction patterns of the specific cluster to predict traffic flow.

) Clusters Distance Member
Input seed measure ship
|l T
‘ I . > 1(min)
| RN
> t el ‘ > —fa—> o0
|

Figure 5 The process of traffic pattern matching

4.1.3 Traffic Prediction: GP

After dividing the traffic ‘patterns into several clusters, a GP traffic prediction
model is then developed for each cluster, which predicts h periods ahead based on
historical r periods.

The GP model is a global optimization algorithm based on the mechanism of
natural selection and offspring generation (Koza, 1992). It starts with a population of
randomly generated individual trees, each corresponding to a linear combination of
traffic flows in the previous periods. Every generated tree is evaluated for its fitness
value, which is further utilized for the selection of generated offspring trees.

For ease of explanation, assume there are a total of | traffic patterns to be
assigned to cluster I, each traffic pattern denoted as X;i(1)=[x;i(1), xii(2), ..., xi(n], i=1,
2,..., . The learning process of GP is described below:

Step 0: Define function set and terminal set. The function set consists of the arithmetic
functions of addition, subtraction, multiplication, division, as well as a

conditional branching operator. The terminal set is set as the latest r periods of
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traffic flow data.

Step 1: Initialize random population size.

Step 2: Evaluate fitness values of the trees. Randomly select trees from the population,
evaluate them with training traffic patterns belonging to this cluster, and then

rank them according to their fitness values. A fitness measure is defined as

follows:
zl‘,z(x,i (t+r+1)—f (X, @®)f
Elq — i=1 t=1 h (25)

where f () denotes the mathematical expression of tree g predicting the

traffic flow at next time period based on the input historical data at previous
time periods, i.e., f,(X(1) =X, (t+r+1).

Step 3: Create new individual by applying genetic operations. The genetic operations
further include reproduction, crossover and mutation as follows.

Step 3-1: Reproduction. Replace the least-fit-two traffic patterns by the best-fit two.

Step 3-2: Crossover. Create new offspring by randomly combining the chosen parts
of two selected trees in each parent tree and swapping the sub-tree rooted
at crossover points, illustrated in Fig. 6(a).

Step 3-3: Mutation. Randomly select a mutation.point in a tree and substitute the
sub-tree rooted there with a randomly generated sub-tree, illustrated in
Fig. 6(b).

X X/>85 ' /\ X y =i

. . Xiy X X Ly X
AN/
X oy X x 029 x/>85

(@) Crossover of GP (b) Mutation of GP

Figure 6 Crossover and mutation operations of GP
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Step 4: If the fitness tends to zero, then stop the procedure. Otherwise, proceed to the
next step.

Step 5: Generate new population by using genetic operations, and return to Step 2.

Once a new traffic pattern with r periods is collected, it automatically assigns to
the closest cluster, into which all traffic patterns have been classified by GHSOM. The
traffic pattern is then fed into the tuned GP model in this cluster to predict the next h
periods in a rolling manner.

4.2 Arrival Distribution Modeling: CTM

With the predicted entering traffic over a sufficient long period, the CTM model
is used to estimate the arrival patterns of entering traffic at every time click.

The CTM is developed by Daganzo-(1994) that conceptual representation of
spatial and temporal conditions of traffic fleet formation and relief, assuming
homogeneous sections, only one enterance, one exit and no other ramps on the road
for vehicle access. CTM is especially suitable for dynamic O-D matrices estimation.
The present paper.employs CTM-to predict.the arrival distribution of an O-D pair

traffic, which will-then be used to compute p" (k).

4.2.1 Cell-Based Arrival Distribution Modeling

As shown in Figure 7, a freeway is equally discretized into homogeneous
sections (cells), numbered consecutively from i =1 to | starting with the upstream end
of the road, where the length of each cell is the distance traveled by a vehicle in one
time interval under free-flow traffic. For instance; if set time interval as 6 seconds and
free-flow speed as 100 km/hr. The cell length is then determined as 1/6 km.

Origin cell | cell | cell | ... cell | cell | cell | pestination

=1, 2 .. i |

Figure 7 Cell representation of a freeway corridor

In light traffic, all vehicles in a cell can be assumed to advance to the next cell
with each interval. It is unnecessary to know where within the cell they are located.

Therefore, the system’s evolution obeys:
Nis(t+1)=ni(t) fort=0,1,2,...,T (26)

Where nj(t) is the number of vehicles in cell i at time t; nj.+1(t+1) is the number of
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vehicles in cell i+1 at time t+1.

It is assumed that this equation holds true for all traffic flows unless queuing
occurs. When speed reduced due to vehicles entering a bottleneck in the road and
queuing occurring, The following two variables are introduced to incorporate queuing
in the model, simulating traffic flow variation caused by congestion: (1) Q;, the
maximum flow from cell i — 1 to i during time interval t (when the clock advances
from t to t + 1), which also known as “capacity,” and is assumed to be a constant
under the whole simulation period. (2) Nj(t), the maximum number of vehicles that
can be present in cell i in time t. Thus, N;(t) — n;(t) is the amount of empty space in
cell i at time t.

With these, we define c;(t) as the number of vehicles that can flow into i for time
interval t as:

ci(t) = mingnia()’, Qi %[Nia)—ni(t)]} 27)

The recursive relationship-of the CTM model is generated based on the above
formula with continuous time-variance, therefore, we can understand the number of
vehicles of every cell at every time interval through the recursive mode.

The characteristics of CTM are the number of vehicles on cell at time t is the
function of the 'last cell and time, similar to the LWR fluid model of relationship
density and flow.rate. Assumes-a simplified version of the fundamental diagram,
usually based on a Isosceles trapezium form, as shown in Figure 9, and provides
simple solutions for realistic networks. It is assumed.that a free-flow speed v at low
densities and a backward shockwave speed-=v for high densities are constant, the
relationship is:

g =min{vk, Qoo VK, - k)] foro<k <k, (28)

Where v represents free flow speed, k;: saturation density, and g, <k;v/2,

maximum flow rate. Four kinds of traffic state and its position in Figure 8,
respectively, as follows:

(1) Free flow: speed is v, density is between [0~k;/3], flow is between [0 ~ qmax];

(2) Light Synchronized Flow: speed is between [v/2, v], density is between [k;/3,
2k;/3], flow is Omax;

(3) Heavy Synchronized Flow: speed is between [v/5, v/2], density is between [2K;
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13, 5 k; /6], flow is between [Qmax/2, Qmax];

(4) Synchronized Flow: speed is between [0, v/5], density is between [5k; /6, ki],

flow is between [0, qmax/2]

flow > g
2
Light
yﬂchw
Qmax 7 Heavy
synchronized
/2 -V
qmax Synchronized
flow

L
K; density > k

Figure 8 Fundamental diagram of CTM

Based on the above relationship, can finding when queuing occurs; the CTM is
based on a recursion where the cell occupancy at time t+1 equals its occupancy at
time t, plus its inflow and minus the outflow:

ni(t +1) = nji(t) + ci(t) — ci+a(t) (29)

If the remaining storage capacity-and flow capacity of next cell is sufficient, all
vehicles will move forward to the next cell; otherwise, only part of them can move to
next cell proportionally, the logic is presented as follows:

if ¢, (t+1)+q;(t+1) <min[Q,N —n,(t+1)]

(30)
then C,(t+D) =c(t+D)+r(t+1)
if ¢, (t+1)+r(t+1) > min[Q,N —n,(t +1)]
N —n, (t+1) (31)

then  c.,(t+1) =1—[mm[ ) c, (t+1)+n(t+1)}

4.2.2 Application of vehicle arrival pattern prediction

In this study, the length of time interval is determined by the length of cell and
freeway geometric conditions. If time interval is greatly lengthened, it will lead to the
cell to be too long to analyze traffic operate behavior between 2 interchanges.

However, if cell is too short, the capacity of the cell is insufficient, and will lead to
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large error due to estimated traffic flow. Therefore, this study in simulation accuracy
and time, six seconds is selected as clock tick length, and sensitivity analysis for
different time interval was not tested.

The operation concept of the CTM model is to predict vehicle arrival distribution
is shown as Figure 9 of the relationship of cell storage, equally discretized into
homogeneous sections (cells), numbered consecutively from i to j starting with the
upstream end of the road, because each driver and travel time inconsistency resulting
in off ramp time variables, probably from m, m+1, ..., M time interval, but the number
of vehicles starting with the upstream end of the road not decided by cell i to j but
decided by complete road traffic conditions. Therefore, CTM model to predict the

arrival distribution oy is to calculate and record the proportion of the number of

vehicles off ramp at every time interval and total number of vehicles.

The variation relationship of actual computing process and the number of
vehicles on cell is based on the basic concept of CTM, and then further research into
expansion demand. This research-takes into account aditional factors for on ramp, off
ramp, and main road, to respond-to-the real behavior of traffic operations and different
driver driving behavior leading to different vehicle speed that may cause queuing on
road network as the basic concept of CTM only consider linear sections. Therefore,
the concept of CTM of the vehicle on the main line, on ramp, and off ramp is shown
as Figure 9, with every cell divided into several small cells based on vehicle sources.
Each small cell records the number of vehicles that come from different sources q; at
different time intervals. These vehicles operate according to the congestion level of
roads and the capacity limitations of cells. For instance, under free flow of traffic, the
travel time of vehicles is only possible during one or two periods. However, when
queuing occurs on road networks such as synchronized flow, the travel time will vary
according to the different reactions of the driver, so the arrival time may be distributed
inthe k +1, ..., k + m, time periods.

m=1 o o e m=1
a Yo
celli cell i+1 L O e L C cell
ot [o[1 ol d e Q2|
Yo / / \
Qo 92 Y1

Figure 9 The concept of cell storage of CTM
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Eq.(32) shows the cell transmission relationship of vehicles extended by
considering the impact of on ramp and off ramp. The research is based on a recursion
where the cell occupancy at time t+1 equals its occupancy at time t, plus its inflow
and minus the outflow, the following relationship:

N (k+1) = (n, (k) =R (k) + Yo (K) = Ye.a (K) (32)

Yo (k) =y, (k)+r (k) (33)

5o0)=minf 0.0, () SN . )] )

()= min{ 0,00, () 5 [N.0)n. ()] @)

In the equation, n.(k+1) is the number of vehicles in cell ¢ at time k+1; Pc(k) is
the number of vehicles off ramp at time k; Y.(k) is.the capacity in cell ¢ at time k; y.(k)
is the number of vehicles of mainline entering cell ¢ at time k; r.(k) is the number of
vehicles on the on ramp entering cell ¢ at time k.

The above relationship isthe-base concept of CTM and the following is a step by
step calculation for CTM:

Step 1: Initialization: setting the length of road, free flow, saturation density,
maximum flow, maximum capacity and other relevant parameters, as well as
the cell of the on and off ramp, and the flow.of the on ramp.

Step 2: Identify the O-D ratio as bjj(k) estimated by EKF.

Step 3: According to eq. (32)-(35), calculate the number of vehicles for each cell at

each time interval.
Step 4: Calculate arrival ratio pj (K)at the both same starting and different origins

according to respective time interval.

4.3 Dynamic OD Matrices Estimation Algorithm: EKF

Based on the predicted entering traffic, arrival patterns, and then proposes an
integrated algorithm which combines the CTM with the EKF to respectively and
iteratively estimate the arrival distributions and O-D proportions.

Extended Kalman filtering algorithm (EKF) proposed by Kalman (1960) has
been widely used in various fields, most commonly in the field of transport to
estimate O-D matrices, traffic density and ramp metering. EKF algorithm is an
optimal recursive data processing algorithm, which is used to estimate current values
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of the variables according to system noise statistics, the uncertainty of measurement
error, and any available initial conditions of variables.

The main concept of EKF is to estimate the stated variables based on recursive
anaysis at given time k periods, the use of the state vector estimate equation to predict
the state estimation of the next time x’(k), and forecast the observation value Z(k) at
time k, later updating the state variable x'(k) to x'(k) base on error term of the
predictd observing value and actual observing values, and then use x"(k) to predict the
state x'(k+1) of next period (k+1), and continue doing the recursive algorithm and
estimation according to the calculation procedure shown in Figure 10.

w(k-1) e(k)

+ l+
X" (k-1) H(i)—> x (k) ﬂiQ—> 2(k) g

4

x* (k) 4—?47 G(k) +—— Az(k)
+

x(k)

Figure 10 State variables estimate process of EKF algorithm

EKF algorithm is composed by the state equation and measurement equation.
State equation is the relationship composed by estimation variables of next time
interval, and measured equation is the relationship of the traffic flow of actual section
and state variables. In this mode, state variables are bj(k) in Eq. (36), while the
observed value is the relation formed by number of vehicles on ramp qgi(k), the
number of vehicles off ramp y;(k) and the number of vehicles of main road U,(k).
Therefore, the state variables bj(k) is usually assumed to be random and an
independent random walk process, while state equation can be expressed in the
following:

b (k +12) =b; (K) +w; (K) (36)

Where, wij(k) is the white noise of the state variable at time k, and E(w;;(k)) = 0,
Var(w;j(k)) = D(k) follow Gaussian distribution. D(k) = diag[Dy ,..., Dp] isa N (N +1)
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/ 2 dimensions covariance matrix of wi;;(k).

Measurement equation is the relationship formed by the traffic flow of actual
road and main road y;(k), gi(k), Ui(k) , and expressed as the following formula:

2'(k) = H(K)b(k) + e(K) (37)

In this equation, z '(k) is the measurement variable, e(k) is a 2N-1 dimensional
observation error term, also following Gaussian distribution, and E(e(k)) = 0, Var(e
(k)) = R(k). R(k) = diag [r1 ,..., ran-1], 1s @ 2N-1 dimensions covariance matrix of e(k),
H(k) is a (2N-1)*(N(N+1)/2) dimensions transformation matrix, and H(k)

in - which, [Hk] matrix elements are 0, except the

rs

- Hk:[Hk

rs ](2N—1)*N(N+1)/2 '

following matrix elements.

M
H;(,Ni+j—i(i+1)/2 = ZQi(k _m)piT (k) for O<i<j<N
m=0

[H.]= (38)

M
Hli\(l+I,Ni+j—i(i+1)/2 = ZQi (k=m)p;'(k) for 0<i<l<j<N
m=0

In the above model formulation, the information of each O-D pair can be
estimated using the data provided by the surveillance system or historical information,

and the unknown set of parameters are O-D proportions, b; (k).

As used in most existing approaches, the dynamic O-D parameters, b; (k) , are

assumed to follow the random walk process between successive time intervals:

b;(k+1) =b;(k) +w;(k), O0<i<j<N

(39)
B(k +1) = B(k) +W(K) (40)
Z(k) = H (k) - B(k) +W (k) 41)

Z(K) =[ya(k), Y2 (K)seoes Yo (K);U (K) = 0y (K)o, Uy (K) = Gy (K)T (42)

Where, wij(k), a random term, is an independent Gaussian white noise sequence
with zero mean and its covariance, Z(k), is a column vector, H(k) is a matrix with its
entries given by the corresponding coefficients in egs. (37) and (41), and e(k) is an
observation noise vector, which can be defined as a Gaussian white noise with zero
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mean and its covariance matrix, and R = Var[e(k)] = diag[r, . . ., ran-1] IS @ diagonal
positive definite matrix. B(k) is a matrix of the O-D proportions of entering flows
bij(k). W(k) is a matrix of white noise w;;(k).

The proposed estimation algorithm, based on the EKF concept, is presented as
follows.
Step 0: Initialization.

Parameters settings include cell length L, ,i=0,1,..., N-1, and time interval,

to. varle(k)]=diag]r,r,...] . X(0)=E[b(0)]. P(0)=Var[b(0)]. Besides,
on-ramp, link and off-ramp flows are given.
Step 1: Determine p; (K) by CTM.

Step 2: Compute the linearized transformation matrix. based on the determinant

P (0.
K1 gkt
o -
k - 2'F
HY iy = 2,0 (k=m)-pfi(k) for 0<i<j<N
m=0 (44)
k S /7
H N i sy = ZQi S m)'pirjn(k) for 0<i<j<N
m=0 (45)
[H Kil]:[hl’hZ""’hZN—l]T (46)

Z'(k) = [y, (K), Y2 (K),-wes Yy (K);U, (K) = Gy (K)o Uy s (K) = Gy, (K)T (47)

Step 3: Initialization of the sequential Kalman filtering method.
Set b, =b(k +1)
Py = Pry + D where D=[d,,...,d,] isa covariance matrix of W(k)

Step 4: Sequential Kalman filtering iterations.
Fori=1,2,...,2N-1

g'=ph' [ p"h +r ] (48)

p'=p"—g'hp"” (49)
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&' = y,(k) —hb(k 1) (50)
Truncation:

o' = MAX |of0 < b ]+ as'g' <1

0<a<l (51)
Set [o']=[o"*]+ as'g
Normalization:
Form=1, 2, ..., N-2
P =2 D (52)
p!, =P j=m+1,.., N 53
W= " j=m+1,..., N. (53)

Step 5: Stop condition test.
Check the convergence-of estimated O-D proportions. If preset stop conditions
(convergence level or number of iterations) has not been met, then go to Step 1.

Otherwise, go to Step 6.

Step 6: Prediction of the states.
Set p, = p*"* and [b(k)]:[ 2'“], k=k+1,gotoStep.1.
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CHAPTER 5 CASE STUDY

To demonstrate the performance and applicability of the proposed approach, a
seminal example with six O-D pairs estimation is designed on section 5.1. A
medium-scale networks and a large-scale network of on-ramp traffic patterns on a
freeway are examined on section 5.2 and 5.3.

5.1 Case Study 1: Seminal Example
5.1.1 Network design and Parameter settings

To demonstrate the performance and applicability of the proposed estimation
algorithm, a small closed network is studied. First, a description of the network design
and second is data simulation, followed by a verified-model by small road network;
and then analysis the performance of estimation results, and sensitive analysis of
proposed model with different traffic scenarios, to check the accuracy of estimates of
different traffic flows and interchanges.

5.1.1.1 Network Design

The model validated with design network in this study, as shown in Figure 11.
The total length of section road network is 10,000 m, the main line is 3 lanes and a
total of eight nodes, three starting points and three ending points, six O-D pairs,
respectively, by 7 *b1g “b16 »b7g ~b76 *bge, With the bijrepresenting O-D ratio of flow
from origin i to destination j and the relationship of road length and cell location
shown in Figure 11.

@Q&@@

Section length
3000m | 500m | 3000m | 500m | 3000m

Number of ‘
cell 18

3 ‘ 18 ‘ 3 ‘ 18 60 cell

On ramp 1 22 43
gicell l ‘ ‘

Off ramp ‘
yj cell 19 40 61

Figure 11 Small design network
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5.1.1.2 Parameter settings

The parameters of CTM are set as follow: time interval=6 seconds, free flow
speed=100 km/hr, jam density=400 vehicles per kilometre, capacity N =6,000
vehicles per hour, cell storage capability=67 vehicles, maximum flow rate Q = 10
(veh / time click) (equivalent to traffic 6,000 pcu / hr or per lane 2,000 pcu/hr), cell
length=1/6 km and assumed the interval on and off ramp of the same interchange is
500 m (3 cell).

5.1.2 Data Simulation

This study used traffic simulation software to generate time-dependent links and
flow data, based on this simulation of the initial input data that is required for the
estimation model constructed in this study, such as time-dependent traffic flow of
main road, on ramp and off ‘ramp, -and simulated by traffic simulation software
DynaTaiwan, that is a local traffic estimation and prediction system, developed by
domestic scholar.

The traffic flow of main-roads, on and off ramps is estimated as b;;(k), however,
the dynamic O-D matrix of actual road network is difficult to obtain. To generate
highly accurate dynamic O-D matrix estimation, transport planning simulation
software adapted in this study, generates the traffic flow that conforms to real network
conditions.

To generate real time-dependent traffic flows, the time series of 90 minutes O-D
traffic under different traffic conditions are given based on the assumed O-D pair
flows, DynaTaiwan, traffic simulation software modified from DynaSmart to account
for the traffic behaviors in Taiwan, to generating real-time on-ramp, link, and
off-ramp traffic flows at every 6-second time interval. The three simulated real-time
detected traffic flows are then inputted into the proposed estimation algorithm.

First, the initial data set uses a assumptions of initial O-D information as a basis
to co-operate with the attributes of data nodes and line road network on Figure 11,
simulating 90 minute peak and off-peak features of traffic demand (Figure 12), to
produce time-dependent sections of traffic data, then using the initial data to enforce
schema validation.
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Figure 12 Peak and off-peak features of traffic demand

Both DynaTAIWAN and CTM are-mediumscopic traffic models, so the two
models have 6-second time: periods, however, the EKF model is coordinates with
CTM simulation to estimate 5 minutes of dynamic O-D matrices, to facilitate the
traffic management personnel to implement appropriate management strategy.

5.1.3 Performance and Estimation Results
5.1.3.1 Traffic Dispersion Phenomenon

In order to.verify the performance of CTM model on the fleet dissipate types in
different traffic conditions.. Four scenarios with  various  traffic conditions are
simulated, including free-flow, light synchronized flow, heavy synchronized flow and
congested flow.

The synchronized flow concept proposed by Kerner and Herrmann (1998), while
traffic flow increases, the tiny interference of fleet will result in more than the critical
impact of traffic, meaning that, when the traffic flow was gradually increased, the
vehicles on the road will be limited to the impact of nearby vehicles, driving not in
accordance with the desired speed of travel, and thus result in a synchronization
driving behavior with other vehicles, the distribution of vary traffic condition shown
in Figure 13.

All entering traffic is increased step-by-step by a same ratio ranging from 10% to
100%. The traffic condition of the roadway is determined by its most critical segment
(i.e. the most congested segment which is usually located at the middle of the
roadway). Until the traffic flow at the most critical segment reaches its capacity, it is
under free-flow condition. After oversaturation, traffic conditions are equally divided
into three traffic phases: light synchronized, heavy synchronized and congested flows.
For instance, for the traffic leaving from the same origin 1 and heading for various
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destinations in time interval t=1, their arrival distributions under various traffic
conditions are graphically depicted in Figure 13. As shown in Figure 13 (a), almost all
the ranges of arrival times cover only one or two intervals under free-flow condition.
Once the traffic flow increases, the degree of traffic dispersion will remarkly appear.
As shown in Figures 13(b)-(d), in light synchronized flow, the remaining storage
capacity and flow capacity of next cell is sufficient, all vehicles in a cell can be
assumed to advance to the next cell with each interval, the same entering traffic will
arrive at destination among a wider range of time intervals ranging from two to three
time intervals, when the entering traffic increasing to the remaining storage capacity
and flow capacity of next cell is not sufficient, only part of them can move
proportionally, four to five time intervals under heavy synchronized flow, and six to
eight time intervals under congested flow, suggesting the capability of the CTM
model in replicating traffic dispersion phenomenon.
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Figure 13 Arrival distributions of entering traffic from origin 1 to various destinations
(7,8,6)
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5.1.3.2 O-D Estimation
1. Performance

The deviation of the estimated O-D proportions of each time interval and each
O-D pair from given O-D proportions is used as a measure of model performance, this
research is based on Chang and Wu’s (1994) model, following and to compare the
accuracy of dynamic OD estimation, the root-mean-square error (RMSE) is used to
evaluate the performance of the proposed algorithm, which is defined as:

N T

S 3 b, () - B (K)?
RMSE — i=1 j:i+l k=1 (54)
N(N=DT

Where Bij(k) is the estimated O-D proportions of traffic entering interchange i
and heading to interchange j.

In addition, to analyze the significant statistical performance of these estimated
results, this study used the Chi-Square Test as an alternative measure in the following
manner.

Ly i (55)
2. Result analysis

To investigate the effects of initial value settings of O-D proportions on the
performance of the proposed algorithm, two initial value setting approaches are
adopted and compared: randomly generated (RG) approach and equal share (ES)
approach. Take origin No.l interchange as an example, the associated O-D
proportions are denoted as biz(k), big(k), and big(k). For the RG approach, three
random numbers 0.123, 0.341, and 0.782 are generated and then normalized such that
the sum of three proportions equals 1. Thus, b;7(k)=0.099, big(k)=0.274, and
b16(k)=0.628. In contrast, for the ES approach, three proportions for the same example
is simply set as b;7(k)=0.333, b15(k)=0.333, and by6(k)=0.334.

The distributions of real bjg proportions (from No.1l interchange to No.8
interchange) along with estimated O-D proportions by RG and ES approaches are
given in Figure 14. Note that the proposed algorithm can predict real O-D proportions
accurately regardless which initial value setting approaches being adopted. However,
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the predicted result by RG approach is slightly superior to that by ES approach
the RG approach will be adopted in predicting other O-D proportions.

. Thus,
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Figure 14 Distributions of real and two predicted bsg proportions by EG and ES

approaches

Further with by g, for example as Figure 15, when the 256 time interval, the
convergence process of the iteration, can present the convergence results about 64
times recursion. Table 2 further-lists the estimation results of mean and standard
deviation of the various origins and destinations in each time interval. Know from the
table, there is insignificant different between on the mean and standard deviation of
the estimates of the two setting ways initial value. The estimation performance of
randomly generated initial ‘values is better than others, and average performance
indicators RMSE 0.086 and 0.069, respectively. However, according to chi-square test
results show that the estimation has not significant differences between two different
initial setting for all the origin and destination with the actual value. This result also
shows that this study provides models-less sensitivity for the initial setting value.

OD ratio
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Fig 15 The convergence process of the iteration when the 256 time interval
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Table 2 The estimation results of the various origins and destinations

real ES RG
O-D
pair mean | standard | mean | standard | mean | standard
deviation deviation deviation
bi7 | 0.225 0.049| 0.192 0.037| 0.216 0.043
big | 0.324 0.013| 0.337 0.084| 0.288 0.055
bis | 0.451 0.056| 0.471 0.064| 0.496 0.062
bzs | 0.426 0.027| 0.453 0.103| 0.45 0.097
b76 | 0574 0.027| 0.547 0.103| 0.55 0.097
b3'6 1 0 1 0 1 0
RMSE — 0.086 0.069
7’ — 1.89 2.042

TR >Z§.05,14 =23.685 °
5.1.4 Travel Time Analysis

All of driver's. driving behavior and speed are not alike, resulting in the travel
time in the road network “is—dissimilar with others, in' the past literature of
non-assignment.mode dynamic OD estimation, not only continued to improve model
construction methods , but also to execute the number of surveys and studies for the
travel time estimation, such as scholars Chang et al from 1994 until 2007 made a
series of studies, according to the pattern established in 1994 to improve the travel
time estimation method, gradually increase the accuracy of dynamic OD estimation.

To consider the impact of travel time on the estimated results, this study based on
Chang and Wu’s (1994) model, too. However, the model to estimate the travel time is
using the average traffic flow of two end points to stand for the road sections traffic
flow, and then obtained average travel time, and assuming the distribution during two
time period. This way of estimating travel time is too simple to be a true reflection of
the vehicle actual operation on road network; base on this, this study uses the
mediumscopic traffic model CTM to predict the vehicle arrival patterns.

To compare the accuracy of prediction by CTM model and the results exactitude
of dynamic OD estimation, in addition, this study using Greenshields's speed-density
model to estimate travel time base on the assumption that the same as Chang and
Wu’s (1994) arrive distribution within two time interval, where, the speed-density
models as:

u=u,(@-k/k;) (56)
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Based on the the road network and verify situation of above simple example, to
explore several different methods of estimating the travel time on many time interval,
first, can be seen from Figure 16, the distribution of different sections of the traffic
flow, and the flow to inputting the Greenshields's speed-density model to estimate the
speed and then deduce the road travel time, with estimation results shown in Figure 17,
using Greenshields model to calculate travel time for the O-D pairs, and distributed
during two time periods, where the horizontal axis expresses time interval, and the
vertical axis represents road traffic.

flow —link1 —1link2 — link 3
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Figure 16 Distribution of different sections of the traffic flow
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Figure 17 Distribution of the O-D pairs calculated by Greenshields model

To predict vehicles arrival distribution through O-D matrices, b, g, represented
by the illustration, in this case, traffic flow is less at the first 20 minutes, so the results
are more accurately estimated. While the traffic flow gradually increases to show
congested conditions, it appears more unreasonable that the travel time calculated by
Greenshields model and the assumption of arrival distribution within two time
intervals. Therefore, shown as Figure 18, the estimate results will be distorted when

58



the back time interval, leading to an overall average of RMSE up to 0.145, is much
higher than the estimated of performance (RMSE = 0.069) provided by this study.
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Figure 18 Distort of the distribution on O-D pairs calculated by Greenshields model

From the above results based on Chang and Wu (1994) assumption that the
vehicles travel time on the road network not over 2 time intervals, using Greenshields
to estimate the average travel time-in off-peak traffic demand to keep a certain degree
of accuracy. However, during peak traffic demand, the estimated travel time and
arrival patterns, ‘allow results to vary greatly with actual traffic behavior, resulting in
the estimation error of the O-D ratio becoming larger. It can be seen that this study
predicts vehicle arrival distribution by CTM model, more conforming to vehicle
operating behavior on real road networks and more accurately estimating dynamic
O-D matrices.

5.1.5 Sensitivity Analysis

In order to understand the performance and limitations of this study, a small
network was used to execute the model’s sensitivity analysis. First, review whether
the model is suitable for congestion on actual networks, and base demand varying on
networks to adjust the network’s traffic patterns, to enforce model sensitivity analysis.
In addition, test the impact that different ratio restrictions on ramp for vehicles arrival
distribution and check the changes in estimation on CTM models.

In this section, Figure 11, the small network is used to understand the impact of
model estimation for different traffic demand on the network. Assuming the main line
road network has three lanes, the speed is 100KPH, and the on and off ramp speed is
40KPH, with a simulation time interval of 6-seconds. To estimate the O-D proportion
during 90-minutes, others parameters are set as above, and then execute sensitivity
analysis based on different traffic flow, free flow, light synchronized flow, heavy
synchronization flow and congested flow, with the results shown in Figure 19

59



(represented by b7g)

OD ratio

| —free — LS ——HS —— congested |

0.7

0.6

0.5

A
AN

0.4

/\
INa VAN N
ISR

/
LN
T N

0.3

N NN
N/

AT ~\
=

0.2

0.1

O 1

5 10

15 20 25 30 35 40 45 50 55 60 65 70._.75 80
Time(min)

Figure 19 O-D estimation under different traffic flow

Table 3 is the comparison table of the actual value with estimate results under
different traffic flows. On the table, we can observe the standard deviation and
average are not largely different under two different initial value sets. Performance
indicators of RMSE are about 0.08, following the traffic flow increase, its estimated
accuracy will be slightly reduced. In Chi-square test, assuming. 95% confidence
interval, all the O-D pairs with actual values are not significantly different statistically.

Table 3 Estimation comparison table of actual values with different traffic flow

light heavy
0-D 3;}3:'5 ';Irg\?v synct}lrgcvized synchlffl(:)ruzation cor;lgoe\;ted
pairs A standard A standard A standard A standard A standard
VErage | jeviation VErage | deviation VErage | deviation VETage | jeviation VErage | jeviation
by7 0.225 0.049| 0.224 0.061 0.19 0.056 0.249 0.031 0.229 0.029
big 0.324 0.013| 0.353 0.079 0.326 0.085 0.276 0.072 0.283 0.028
big 0.451 0.056| 0.423 0.06 0.483 0.065 0.475 0.072 0.488 0.051
b.g 0.426 0.027| 0.389 0.11 0.431 0.121 0.426 0.114 0.328 0.055
be 0.574 0.027| 0.611 0.11 0.569 0.121 0.574 0.114 0.672 0.055
bge 1 0 1 0 1 0 1 0 1 0
RMSE 0.08 0.082 0.083 0.069
;(2 2.811 2.623 2.341 1.709
ps - *)(2 > )(20.05,16 =26.296 °
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5.2 Case Study 2: A Medium-scale Network
5.2.1 The Study Corridor and Parameter settings
5.2.1.1 The Study Corridor

This study used a section of Taiwan No.1 Freeway from Taishan toll station to
Yangmei toll station, to demonstrate the performance and applicability of the
proposed estimation algorithm. This is a 36 km three-lane freeway section with 6
interchanges, which in order include, Linkou, Taoyuan, Neili, Jhongli, Youth and
Yangmei Interchange, with a total of 28 O-D pairs, as shown in Figure 20.
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Taishan Linkou Taoyuan Neili hongli Yangmei Yangmei
Toll Station  Interchange Interchange Interchange Interchange Interchange Interchange  Toll Station

Figure 20 The case study of Taiwan No.1 freeway northern section

5.2.1.2 Parameter settings

To show the capability of CTM in replicating the traffic hydrodynamics and to
investigate the degree of traffic dispersion under various traffic conditions, a
simulation on the-above-mentioned three-lane freeway section with 6 interchanges is
conducted. Parameters are set as follows: free  flow speed=100 km/hr, jam
density=400 vehicles per kilometre, capacity=6,000 vehicles per hour, cell storage
capability=67 vehicles, time interval=6 seconds, and cell length=1/6 km.

5.2.2 Data Collection and Traffic Simulation
5.2.2.1 Data Collection

Peak and off-peak ratio of full day trip demand on actual Taiwan freeway is
represented, and as much as possible meets the actual road traffic flow. The full day
trip flow data of freeway is based on the full day trip demand survey and estimate by
Dui-Ji Chen (2010).

The survey results of full day traffic information, includes the traffic flow of
Taoyuan Interchange going south is the largest traffic flow among the six interchanges,
and the traffic flow of Neili Interchange going south is the lowest. In order to
understand the proportion of traffic flow for every interchange per hour accounting
for traffic flow of full day traffic counts. To generate the ratio of traffic counts of

each-hour accounting for the traffic flow of full-day based on the sub-periods flow
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conversion by detector data collection shown in Figure 21. The ratio of morning peak
7-9 accounts for full-time traffic about 0.168; the ratio of flow largest at 15-17 is
about 0.153.
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Figure 21 The proportion of traffic per hour as calculated by Dui-Ji Chen (2010).

5.2.2.2 Traffic Simulation

To generate highly accurate dynamic O-D matrix estimation, transport planning
simulation software DynaTaiwan, adapted in this study, and generates the traffic flow
real-time on-ramp;, link, and off-ramp traffic flows at every 6-second time interval that
conforms to real network conditions, the time series of four hours O-D traffic under
different traffic conditions are given based on the assumed O-D pair flows. The three
simulated real-time detected traffic flows are then inputted into the proposed
estimation algorithm.

As above section, the initial data set uses an assumptions of initial O-D
information as a basis to co-operate with the attributes of data nodes and line road
network on Figure 22, simulating 4 hours peak and off-peak features of traffic demand
(Figure 23), to produce time-dependent sections of traffic data, then using the initial
data to enforce schema validation.
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Figure 22 Taishan to Yangmei toll network cell map
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Figure 23 peak and off-peak features of traffic demand

As the section 5.1, the two models have 6-second time periods, however, the
EKF model is coordinates with. CTM. simulation to estimate 5 minutes of dynamic
O-D matrices, to facilitate the traffic management personnel to implement appropriate
management strategy.

5.2.3 Performance and Estimation Results
5.2.3.1Traffic Dispersion Phenomenon

As the section 5.1, all entering traffic is increased step-by-step by a same ratio
ranging from 10% to 100%. The traffic condition of the roadway is determined by its
most critical segment. Until the traffic flow at the most critical segment reaches its
capacity, it is under free-flow condition. After oversaturation, divided into three traffic
phases: light synchronized, heavy synchronized, and congested flows. For example,
for the traffic leaving from the same origin O (Taishan Toll station) and heading for
various destinations (Linkou interchange to Yangmei Toll station) in time interval t=1,

their arrival distributions under various traffic conditions are graphically depicted in
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Figure 24. Figure 24 (a), the ranges of arrival times cover only one or two intervals
under free-flow condition. As shown in Figures 24(b), in light synchronized flow, the
same entering traffic will arrive at destination among a wider range of time intervals
ranging from two to three time intervals. Figures 24(c), four to five time intervals
under heavy synchronized flow, and Figures 24(d), six to eight time intervals under
congested flow.
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Figure 24 Arrival distributions of entering traffic from origin 0 to various destinations
(1~7)
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5.2.3.2 O-D Estimation
1. Performance

To measure the performance of the model, this study used the deviation of the
estimated O-D proportions of each time interval and each O-D pair from given O-D
proportions. The root-mean-square error (RMSE) is used to evaluate the performance
of the proposed algorithm, which is defined as Eq. 54.

2. Result analysis

To compare the effects of initial value settings of O-D proportions on the
performance of the proposed algorithm, as the section 5.1, two initial value setting
approaches are adopted and compared: randomly generated (RG) approach and equal
share (ES) approach. Take origin No.4 interchange as an example, the associated O-D
proportions are denoted as bys(k), bas(k), and bsz(k). For the RG approach, three
random numbers 0.123; 0.341, and 0.782 are generated and then normalized such that
the sum of three. proportions equals 1. Thus, bss(k)=0.099, bse(k)=0.274, and
b47(k)=0.628. In contrast, for the ES approach; three proportions for the same example
is simply set as b4s5(k)=0.333, bse(k)=0.333, and b,,(k)=0.334.

The distributions of real bys proportions (from Linkou interchange to Youth
interchange) along with estimated O-D proportions by RG and ES approaches are
given in Figure 25, the RG approach will be adopted in predicting other O-D
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Time click

Figure 25 Distributions of real and two predicted bys proportions by EG and ES
approaches

Table 4 presents the RMSE values for the 28 O-D proportions. The results show
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that the overall average RMSE is 0.0443, indicating a good fitness and practical
applicability of the proposed algorithm.

Table 4 RMSE values for 28 O-D proportions of the proposed integrated algorithm.

To | Linkou Taoyuan Neili Jhongli Youth Yangmei Yangmei
From interchange | interchange | interchange | interchange | interchange | interchange | toll
station

Taishan 0.032724 | 0.010306 | 0.056023 | 0.038756 | 0.046837 | 0.055235 | 0.006009

toll station

Linkou - 0.064495 | 0.010955 | 0.036353 | 0.065464 | 0.013809 | 0.039796

interchange

Taoyuan - - 0.055185 | 0.028696 | 0.067517 | 0.031295 | 0.054170

interchange

Neili - - - 0.063319 | 0.033135 | 0.038757 | 0.066709

interchange

Jhongli - - - - 0.048676 | 0.046625 | 0.079683

interchange

Youth - - - - - 0.075176 | 0.075176

interchange

Yangmei - - - - - - 0

interchange

5.3 Case Study 3: A Large-scale Network

5.3.1 The Study Corridor and Parameter settings

5.3.1.1 The Study Corridor

In order to demonstrate .the performance and applicability of the proposed
estimation algorithm, a section of Taiwan No.1 Freeway from Toufen Interchange to
Beidou Interchange is studied. This is-a-110-km three-lane freeway section with 15
interchanges, which in order include, Toufen, Miaoli, Sanyi, Houli, Taichung
systematic, Fengyuan, Daya, Taichung, Nantun, Wangtain, Chunghua systematic,
Chunghua, Puyian systematic,Yanlin and Beidou Interchange with a total of 136

O-D pairs, as shown in Figure 26.
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Figure 26 The case study of Taiwan No.1 freeway northern section

5.3.1.2 Parameter settings
1. GHSOM

The two important parameters of GHSOM are set as: ;= 0.85 and 7, = 0.0035. In
addition, both of the learning rate function «(l) and the neighborhooed function o(l) are
set as linear, monotonically decreasing over iterations. The parameters setting of
GHSOM are refering to Rauber et al. (2002), and sensitivity analysis for different
numbers was not tested.

2.GP
Table 5 Parameter settings for GP
Parameter Setting
Fitness Mean square error
Terminal set X(t), X(t-1),..., X(t-240) and random number b
Function set +, -, X
Population size 50
Reproduction rate 0.08
Crossover rate 0.60
Mutation rate 0.01

Initial minimum depth 2
Number of generations 300
Initialization method Direct method

The parameters of GP model are detailed in Table 5. To avoid producing too
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complicated traffic prediction function, only three operators (+, - and x) are
considered in this study. Terminal set contains the traffic flow data in the previous 240
time intervals with a randomly generated number b. The parameters setting of GP are
refer to Yao and Lin (2009), and sensitivity analysis for different numbers was not
tested.

3.CTM

Used a simulation on the above-mentioned three-lane freeway section with 15
interchanges, show the capability of CTM in replicating the traffic hydrodynamics
and to investigate the degree of traffic dispersion under various traffic conditions.
Parameters are set as follows: free flow speed=100 km/hr, jam density=400 vehicles
per kilometre, capacity=6,000 vehicles per hour, cell storage capability=67 vehicles,
time interval=6 seconds, and cell length=1/6 km.

5.3.2 Data Collection

The five-minute on-ramp._traffic flow data at 15 interchanges from Toufen
interchange to Beidou interchange, a 110-kilometer stretch of Taiwan No.1 Freeway
(Fig. 26), over a week from May 25" to May 31 (Monday to Sunday) 2009 were
used for the case study. At each interchange, southbound traffic flows were first
aggregated from different ramps. The traffic pattern is composed of 288 consecutive
five-minute traffic flow data (24 hours). There were 2,016 time intervals in a week,
thus can form 1,729 (=2,016-287) traffic patterns at each interchange. A total of
25,935 (=1,729 X 15) traffic patterns have been generated for the entire study corridor.

With five-minute time interval, the proposed method aims to predict the next 48
time intervals (4 hours) based on previous 240 time intervals (20 hours). In other
words, the previous 240 traffic flow data are used to determine the closest cluster and
then to feed into the corresponding tuned GP model to predict the traffic flow at the
next 48 time intervals in a rolling manner. Looking into an example of traffic patterns
during the same periods (Monday 00:00am to Tuesday 00:00am) at different
interchanges, Fig 27 shows that the traffic patterns remarkably differ from each other.
For instance, Taichung and Taichung system interchanges do exhibit significant peak
and off-peak traffic patterns, but Wangtian and Fengyuan interchanges do not.
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Figure 27 Traffic patterns at different interchanges (Wednesday 00:00 to Thursday

A more detailed traffic patterns at Taichung interchange during different time
periods are further illustrated in Fig. 28, which reveals that the traffic patterns at a
specific location are also remarkly different, but similar patterns may repeat

themselves over different time periods.
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Figure 28 Traffic patterns at different time periods (Taichung interchange)



To train and validate the proposed model, the traffic patterns are randomly
divided into two sets: training set (18,155 traffic patterns) and validation set (7,780
traffic patterns) at a ratio of 7:3. The parameter settings and the results of clustering
and prediction are presented below.

5.3.3 Performance and Estimation Results
5.3.3.1Traffic patterns clusters

The illustration of the GHSOM architecture, as Fig 29, a total of 3 layer, layer 1
contain 6 clusters, layer 2 contain 20 clusters, layer 3 contain 22 clusters, 36 different
clusters have been identified by GHSOM.
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Figure 29 The illustration of the GHSOM architecture
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Note that the number of traffic patterns in each of the 36 clusters ranges from
143 (Cluster 1) to 2,488 (Cluster 6), detailed in Table 6. Such self-structured traffic
patterns will be used for prediction in the GP model.

Table 6 Clustering results of traffic patterns

Cluster Number of patterns Cluster ~ Number of patterns

1 143 19 155
2 381 20 214
3 429 21 429
4 1238 22 607
5 440 23 1381
6 2488 24 429
7 155 25 155
8 155 26 238
9 179 27 429
10 405 28 464
11 1298 29 381
12 1238 30 345
13 155 31 155
14 167 32 167
15 464 33 214
16 417 34 179
17 1333 35 321
18 321 36 488
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To display the similarity of traffic patterns in the same cluster, the traffic patterns
in Cluster 1 (urban area), Cluster 15 (suburban area) and Cluster 30 (rural area) are
demonstrated in Fig. 30 through Fig. 32, respectively. To avoid lengthy discussion, we
only present four randomly selected traffic patterns from each of these three clusters.
In Fig. 30, Cluster 1 contains traffic patterns starting from 00:00 to 20:00 on
weekdays in the urban area (e.g. Taichung interchange and Taichung system
interchange) where maximum five-minute flow rates can exceed 300 pcu.
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Figure 30 Four randomly selected traffic patterns from Cluster 1 (urban area)
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In Fig. 31, Cluster 15 contains traffic patterns starting from 13:00 to 09:00 on
weekdays in the suburban area (e.g. Chunghua, Fengyuan, Daya, and Nantun) where
most of five-minute flow rates are below 150 pcu. It is obvious that the peak and
off-peak phenomena of the traffic patterns in Cluster 15 are not as sharp as those in

Cluster 1.
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Figure 31 Four randomly selected traffic patterns from Cluster 15 (suburban area)

74



In Fig. 32, Cluster 30 contains traffic patterns starting from 00:00 to 20:00 on
weekdays or weekends in the rural area (e.g. Toufen, Miaoli, Sanyi, and Wangtian
Interchanges) where most of five-minute flow rates are lower than 50 pcu. No
significant peak and off-peak phenomena can be identified.

350 350

300 300
250 250
5
T 200
£ 10
£

100 100

oooooooooooooooooooooooooooooooooooooooooooooooo
g 883838838 8gs8838838s888s8838388 | | 88833888838888838888888888S8
A5 FB RN ESSHEHEHGRSSS O S R AP R i R R R R E R

Time (Tuesday 01:00 to 21:00) Time (Wednesday 00:30 to 20:30)

(a) Toufen interchange (Tuesday 01:00 to 21:00) (b) Miaoli interchange (Wednesday 00:30 to
20:30)

350

300
250

H
2 200

Traffic Flow

£ 150

100 100

oooooooooooooooooooooooo
oooooooooooooooooooooooooooooooooooooooooooooooo
£588388588559835885888J88 R EEEREEEEEEE R R R R
TN G T hErESS HINRIBOREESS NGO

Time (Thursday 00:00t020:000 (.~~~ TaddadddaaaadaA

Time (Sunday 01:00 to 21:00)

(c) Sanyi interchange (Tuesday 00:00 to 20:00) (d) Wangtian interchange (Sunday 01:00 to
21:00)

Figure 32 Four randomly selected traffic patterns from Cluster 30 (rural area)

Based on the clustering results, the traffic patterns in the same cluster are similar
and those in different clusters.are remarkly dissimilar, suggesting the correctness of
our clustering model.

5.3.3.2 Traffic Flow Prediction
1. GP traffic prediction models

On the self-structured traffic patterns associated in the 36 clusters, a total of 36
GP traffic prediction models are further developed—one prediction model for each
cluster. For brevity, we only demonstrate three clusters (1, 15, and 30). In Cluster 1
where 143 traffic patterns are contained. We randomly divide these 143 patterns into
two sets: training set (100 patterns) and validation set (43 patterns). Based on the
training traffic patterns, the GP model for Cluster 1 is tuned as follows:

X(t+1)=1.01x(t)+5.41x 10 (t-1)x(t-2)x(t-7)-1.75x 10X (t-1)x(t-4)*-2.02x 1
078 (t)*x(t-6)+4.05x 108 (t-1)x(t-5)° (57)

According to Eq.(57), only the traffic flow data at previous seven time intervals
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are required to predict the traffic flow of next time interval. For instance, to predict
the traffic flow rate in Fig. 33(a) at time interval (t+1), say, 20:05, we need to input
seven detected flow rates at x(t-7)=19:25, x(t-6)=19:30, x(t-5)=19:35, x(t-4)=19:40,
X(t-2)=19:50, x(t-1)=19:55, and x(t)=20:00. The traffic flow rate at 20:05 can therefore
be calculated as x(t+1) according to Eq.(57). To predict in a rolling manner for the
next time interval (t+2), the six detected flow data from 19:30 to 20:00 together with
the above predicted traffic flow at 20:05 are inputted into Eq.(57) to calculate the
traffic flow x(t+2) at 20:10. This process continues until all of the traffic flow data for
the next four hours (48 time intervals) have been obtained.

Following the same vein, the GP models for Cluster 15 and Cluster 30 are tuned
as below, respectively:
X(t+1)=1.0483x(t)-0.0942x(t-2)+0:0031x(t- L)X (t-2)-4.897x 10X (t-5)X(t-7)
2.3.733x 107"X(t) X(t-1)x(t-2)+3.165% 10X (t-1)X(t-2)X(t-5)x(t-7) +1.
255x 107 "X (t-4)x(t-7)>+4.97x 10 X ()X (t-2)X(t-7)°+1.038x 10 'x(t-1)
X(t-4)x(t-5)x(t-6) (58)
X(t+1)=0.8301x(t)+0.166x(t-2)+0.0195x (t)x(t-1)-0.0181x(t)x(t-2)-1.24x 10
O (t-6)X(t-7)%-4.53% 102 x ()X (t-1)x(t-2)*-3.81x 10 °x(t-1)*X (t-5)x(t-6
)-3.91x 10 °x(t-1)X(t-5)X(t-6)?-3.55x10 °x (£)*X(t-3)x(t-6)+7.51x 10°°
X(t-2)°X(t-5)x(t-6)+4.16x 10"°x (t) X (t-1)x(t-3)+3.74% 10X (t-1) X (t-6
)’ (59)
According to Egs.(58) and (59), Clusters 15 and 30 require the inputs of traffic
flow data at previous six and seven time intervals, respectively. Our results show that
the 36 GP traffic prediction models require the inputs of traffic flow data at most the
previous twelve time intervals.

2. Performance

The mean absolute percentage error (MAPE) is used to evaluate the performance
of the proposed method:

1 SL[xm-%0)
MAPE_TXJ;;‘ e ‘ (60)

Where Xx;(t) and X,(t) are the real and predicted traffic flow at time interval t

at interchange j; T is the total prediction time intervals; J is the total number of
interchanges in the study corridor (T=48 and J=15).

Our results show that the MAPE values of Clusters 1, 15 and 30 are 5.10%,
4.85% and 5.03% for training and 10.15%, 7.18% and 8.17% for validation,

respectively. Of the total 36 clusters, the average training and validation MAPE values
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are 4.58% and 10.07%, respectively. It suggests a satisfactory prediction accuracy of
the proposed method.

5.3.3.3Traffic Dispersion Phenomenon

As section 5.1, different scenarios with four traffic conditions, including
free-flow, lightly synchronized flow, heavily synchronized flow, and congested flow,
are simulated. And entering traffic flows are increased step-by-step by the same ratio
from 10% to 100%. Under free-flow condition, almost all ranges of arrival times
cover only one or two intervals. Under lightly synchronized flow condition, the
remaining storage capacity and flow capacity of the next cell are sufficient; hence all
vehicles in a cell can advance into the next cell within each interval. As the traffic
keeps increasing, the degree of traffic dispersion will become significantly. Under
heavily synchronized flow condition, the entering traffic has increased over the
remained storage capacity, flow capacity of the next cell is not sufficient; thus, only a
portion of them can move forward proportionally. Under congested flow, the arrival
times of traffic dispersion can be as long as six to eight time intervals.

For instance; for the traffic leaving from the same origin O (Toufen) and heading
for various destinations (Toufen interchange to Beidou interchange) in time interval
t=1, their arrival distributions under various traffic conditions are graphically depicted
in Figure 33. As shown in Figure 33 (a), the ranges of arrival times cover only one or
two intervals under free-flow condition. Once the traffic flow increases, as shown in
Figures 33(b), in light synchronized flow, the time intervals ranging from two to three
time intervals. As Figures 33(c), four to five time intervals under heavy synchronized
flow, and as Figures 33(d) six to eight time intervals.under congested flow.
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Figure 33 Arrival distributions of entering traffic from origin O to various destinations
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5.3.3.4 O-D Estimation
1. Performance

To measure the performance of the model, estimated O-D proportions of each
time interval and each O-D pair from given O-D proportions. The root-mean-square
error (RMSE) is used to evaluate the performance of the proposed algorithm, which is
defined as Eq.54.

2. Result analysis

The results show that the overall RMSE values for the 136 O-D proportions is
0.1043, indicating a rather good fitness of the proposed approach. Figure 34 displays
the process of convergence for the time interval k=986, b; 15, Toufen Interchange to
Beidou Interchange.

Ratio k=986, b1,15 Toufen to Beidou
0.068

0.064 N

R4V e

0.056 |-

0.052

501 521 541 561 581 601 621 641 661
Iteration

Figure 34 The process of convergence

5.3.4 Sensitivity Analysis

Our proposed method heavily depends on the real-time fed-in traffic flow data,
which are used for determining which clusters it belongs to, and furthermore, for
predicting the traffic flows at the next 48 time intervals. In the previous settings, the
traffic patterns have been defined as traffic flow data at consecutive 240 time intervals,
or 20 hours. In the following, a sensitivity analysis with different traffic pattern
lengths: 48 (4 hours), 72 (6 hours), 96 (8 hours), 120 (10 hours), 144 (12 hours), 192
(18 hours) and 240 (20 hours) time intervals is further conducted. The MAPE values
for training and validation are presented in Table 7. We note that shorter lengths (e.g.,
L=48 and 72) have relatively lower prediction accuracy than longer ones, suggesting
the necessity to input a sufficient long traffic pattern for both pattern recognition and

prediction. It is also interesting to note that there are no significant changes in
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prediction accuracy once the length of traffic patterns is longer than 120 time
intervals.

Table 7 The MAPE values with different traffic pattern lengths

Lengths Training Validation
48 7.29% 19.72%
72 7.78% 14.74%
96 5.32% 12.01%
120 5.72% 10.34%
144 5.91% 10.86%
192 5.63% 10.38%
240 4.58% 10.07%

5.3.5 Comparison

To show the superior performance of the proposed method, a commonly-used
traffic prediction model—the autoregressive integrated moving average (ARIMA)
model is further developed for comparison. Following the same data basis as the
proposed method, the ARIMA model is also developed on the previous 240 time
intervals and predicts the following 48 time intervals. Taking Cluster 1 as an example,
its corresponding ARIMA model can be calibrated as follows:

(1+0.606B)
e .1,

(1+0.710B)-". " (61)

(1-B)Z, =118+

Where the three important parameters of ARIMA are set as: p=1, d=1 and q =1. Z;

and & are the actual value and random error at time period t, respectively, B is

backward difference operator. The MAPE values of training and validation datasets

are 21.77% and 28.65%, respectively, which are much higher than those of our
proposed method based on Eq.(60), which are 4.58% and 10.07%, respectively.

With the self-structured traffic patterns, a simplified prediction model was to be
naively developed by averaging the traffic flow data at the last 48 time intervals. For
example, if one traffic pattern is of interest in Cluster 1 where 143 traffic patterns
have been identified, then the traffic flows at the next 48 time intervals are predicted
by taking the average traffic flow of 143 traffic patterns. The MAPE values of training
and validation datasets for all clusters with this simplified model are 25.21% and
32.73%, respectively, which are much higher than those of our proposed method
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(4.58% and 10.07%). Again, this comparison further confirms the superiority of the
proposed method and it suggests the necessity of GP model.
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CHAPTER 6 CONCLUDING REMARKS

This research proposes a two-stage prediction model with an integrated
algorithm to estimate dynamic O-D matrices. The contributions and findings were
concluded in Section 6.1. Recommendations for further research were addressed in
Section 6.2.

6.1 Conclusions
The conclusions in this study are summarized in the following points:

1. This study has developed an integrated estimation algorithm by combining cell
transmission model (CTM) and extended Kalman filtering (EKF) to respectively
and iteratively estimate the arrival distributions and the O-D proportions. Our
proposed model intends not only to result in a substantial increase of system
observability with significantly less parameters than those in literature, but also to
contribute enhaneing the quality of dynamic O-D matrices estimation.

2. According to field observation, daily traffic patterns do repeat spatially and
temporally over and over again. This research proposes a two-stage prediction
model, employs the GHSOM model to partition unlabeled traffic patterns into
appropriate number of clusters and then develops a GP model associated with each
cluster to predict the traffic features based on rolling self-structured traffic patterns,
to enhance the prediction performance to accurately predict the traffic features in a
rolling manner for a medium-to-long term traffic.

3. A case study is undertaken on a 110-kilometer freeway stretch with 15 interchanges.
The historical 240 five-minute southbound traffic flows (20 hours) at each
interchange are used to determine the closest cluster and then fed into the
corresponding GP model to predict the five-minute traffic flows for the next 48
time intervals (4 hours). The results show that the proposed method have achieved
relatively high prediction accuracy in urban area, suburban area and rural area
interchange (average MAPE= 4.58% in training and 10.07% in validation,
respectively). In addition, the proposed method has performed much better than the
conventional ARIMA model.

4. The results from a case study on Taiwan’s freeway have also shown that the CTM
can satisfactorily capture the traffic dispersion under various traffic conditions,
free flow, light synchronized flow, heavy synchronization flow and congested flow
and the proposed algorithm can accurately estimate the O-D proportions with a
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rather low RMSE, indicating the practical applicability of the proposed algorithm.

5. To compare the performance of this mode of travel time prediction to the
Greenshields macroscopic model to predict vehicle travel time and assume that
vehicles will enter the road network within the scope of the two time step until the
point is reached. The results showed that the predicted results in this mode RMSE
of 6.9% than Greenshields of 14.5%.

6.2 Recommendations
Several directions for future research can be identified.
1. About the field study:

The proposed algorithm is only valid for the case of linear freeway corridor, the
applicability and efficiency of the proposed algorithm can be extended to a large
scale network, and also can be incorporated route choice behaviors to elaborate the
application to the complicated networks.

And, to demonstrate the efficiency of the proposed algorithm, four different
traffic flow, free flow, light-synchronized-flow, heavy synchronization flow and
congested flow was used to execute the model’s sensitivity analysis. However, the
proposed algorithm is only sensitivity analysis based on recurring congestion, the
future research' can be extended to nonrecurring congested flow, for instance
random irregular events as accidents, disabled vehicles, and other special situations.

2. About the data source:

Due to data availability in the.case study, the O-D matrices are arbitrarily given
and then used to generate “real time” detected traffic flows by traffic simulation
software. With advanced traffic surveillance technologies, however, it is feasible to
collect real-time traffic information to further examine the applicability of the
proposed algorithm.

3. About traffic predict:

Firstly, the proposed method can be readily applied to predict the traffic flows
in a larger freeway network with more time intervals ahead. Secondly, it is
interesting to compare the prediction accuracy made by the proposed method with
other methods such as genetic clustering model (GCM), artificial neural network
(ANN), and support vector machine (SVM). Finally yet importantly, incorporating
our proposed method with dynamic O-D matrices information to predict other
traffic features (e.g., travel times for various O-D pairs) over a relatively long
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freeway corridor can be very useful for developing advanced traveler information
systems, which calls for further exploration.

4. Additional information:

Future study can incorporate the innovative technique to automatically record
and match the license plate numbers of passing vehicles so as to determine the
partial trails of the vehicles such as License plate recognition (LPR), other logical
assumptions such as route choice behaviors or user equilibrium, into more complex
techniques such as generalized least squares or bi-level programming, so as to
further improve the accuracy of O-D matrix estimation.

5. Comparison with other algorithms:

A comparison of the proposed approach can be made with other existent O-D
estimation algorithms to demonstrate the superiority of different algorithms, and
further to explore the characteristic features of varying on results and parameter.

6. The disadvantage of performance indicator:

To measure the performance of O-D-estimation, the root-mean-square error
(RMSE) is used to evaluate the performance of the proposed algorithm of the
research. However, the O-D proportions is-a minimal value while the number of the
interchange increasing, will result in the square of the deviation of the estimated
O-D proportions of each time interval and each O-D pair from given O-D
proportions to tend to zero, others indicator will be consider to evaluate the
performance of the O-D estimation on future, -for instance mean absolute
percentage error (MAPE).
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