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Abstract

The ring network of regular degree-2 nodes is generally utilized for links fault
tolerance as well as providing a mechanism supporting orderly inspection and maintenance,
and spare may be arranged to support nodes fault tolerance. However, spares are
inefficiently used in normal conditions and may have difficulties to support real-time
processing. Therefore, in this dissertation, HReT (honeycomb rectangular torus) and GHT
(generalized honeycomb torus) networks of degree-3 dual-nodes are studied for promoting
the capability of the SCADA (Supervisory Control And DataAcquisition) network in
tunnels. The following HReT network features are mathematically proved: HReT (m,n) is
1-edge hamiltonian, and HReT(m,n) is1_p-hamiltonian if and only if eithern>60rm=2
and n > 4, HReT(m,n)-F can keep hamiltonian when F={ a,b} withainAand b in B, A and
B are bipartite nodes’ groups. The following GHT network features are mathematically
proved: HReT network and HT (honeycomb torus) can be isomorphic to GHT network, and
HT can be a specific single-tube shaped GHT which can keep hamiltonian when one edge
is broken and have both links' and nodes’ fault tolerance as well as a mechanism supporting
orderly inspection and maintenance.
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Chapter 1

Introduction

1.1 Research Background

Instead of the list-shaped network with degree-1 end nodes, the ring-shaped net-
work of regular degree—2 nodes is generally considered for links’ fault tolerance as
well as providing a mechanism supporting orderly inspection and maintenance of
the network. However, the ring configuration has difficulties to support nodes’ fault
tolerance; therefore, arranging spare facilities for fault management is considered in

some networks.

However, spare nodes can have difficulties in supporting real-time processes in
very urgent conditions and they are inefficiently used in normal working conditions.
Therefore, in this dissertation, the networks of dual-nodes, which are similar to the
human’s two eyes, are intended to study for promoting the capability of information—

acquisition as well as the fault tolerance of both nodes and links.



Therefore, degree-3 networks of dual-nodes are established for possible appli-
cations in tunnles’” SCADA (Supervisory Control And Data Acquisition) networks;
their features regarding fault tolerance of both nodes and links and the hamiltonian
property to support orderly inspection and maintenance are intentionally studied

through mathematical proofs to offer the foundation of safety / quality assurance.

1.2 Research Motives

Serious tunnel accidents are not scarce from the global viewpoint. In Taiwan, for
example, its new subway system of Taipei metropolis has at least got two serious
damages. One is in 1999; a new building construction cleaved the adjacent tunnel
structure (Chang, 2001). The other is in 2001; the flood due to a typhoon ruined

its main control center.

We believe careful management and design can well protect most tunnel acci-
dents. However, from the following case, considering unexpected faults and effi-
cient maintenance seems to be worthwhile for at least disaster sensitive tunnels.
In November 11, 2000, about 170 peoples lost their lives in a fire disaster of a
cable-driven-car tunnel in Kaprun, Salzburg, Austria. It happened 6 months after

the Tauern Tunnel disaster close to the portal of Salzburg (Leitner, 2001), and 8



months after the disaster of Mont Blanc Tunnel between France and Italy. The gov-
ernor of Salzburg said, "It is completely incomprehensible because no faults have
ever been found; the last check was just a few weeks ago.” (Washington Post, 2000,

Nov., 11)

Since a 12.9-km-long road tunnel, the Snow-Mountain tunnel, is being con-
structed in Taiwan now, and its disaster—sensitivity cannot be overlooked, this dis-
sertation also hopes to strengthen safety assurance for our country fellows in time.
It should be noted that when such a master—piece project is getting prepared for
traveling, people will begin to more concern about tunnel’s security system whether
it can assure users’ safety in its rather close and narrow environment for taking at

least about 10 minutes’ passing time.

1.3 Research Objectives

Based on the mentioned research motives, three objectives are aimed for this disser-

tation research.

(1). Proving model networks being able to have both links’ and nodes’ fault toler-
ance, as well as have a mechanism of sequential order for inspection and maintenance.

In another words, proposing model networks of dual nodes, whose node degrees are



3; then proving those model networks at least can keep hamiltonian when a link is

broken or two adjacent nodes fail.

(2). Providing alternative network patterns to fit various tunnel types and adapt-

ability for individual needs, such as zoning, of a tunnel design.

(3). Promoting safety or quality assurance for the coming Snow—Mountain tunnel

in time.

1.4 Research Scopes

In the following, the scopes of research are outlined for clarifying our research in-

tentions, expected objectives or features for potential application.

It is intended to integrate intelligent networks within tunnels for assuring safety
and quality; offer the control center of a tunnel an information processing and en-
vironmental control network having systematical fault tolerance as well as a mech-
anism for efficient inspection or maintenance, which are much concerned for those
having disaster sensitivity, such as lengthy tunnels. Hence, providing mathemati-
cal proofs of those network schemes to solve those issues are chief interests of this

dissertation.



This dissertation is a research of searching the network models which can nat-
urally have attributes for network security on the level of system architecture, and
can not only be potentially well applied for large—scale tunnel developments but also

can be adapted for general various tunnel types.

In this network research, the node or vertex represents the information unit,
whose supervisory control items, distributive densities or patterns can be adapted
based on individual physical concerns; the degrees of the link or edge may be in-

creased based on zoning requirements or other demands.

1.5 Research Processes

There are six processes can be summarized as follows, and conceptually presented

as Figure 1.1.

1.5.1 Background and affiliated knowledge understanding

The following knowledge should be prepared as basic foundations for this research.

(1). To learn related knowledge of network topology.

(2). To study the interrelationships between information processing efficiency and

network architectures.
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Figure 1.1: Conceptual Flowchart of Research Process




(3). To understand the demand of fault tolerance and some related researches.

1.5.2 Literature review as the second process

Literature review will contain the following directions:

(1). To search and understand potential network configurations which can have fault

tolerance.

(2). To study the index of fault tolerance or what extent can be called having fault
tolerant capability; their persuasive contexts or related methods for proving fault

tolerance should be reviewed.

(3). To understand the seriousness, chief protection methods, potential reasons or
causal relationships of tunnel disasters.

1.5.3 Problem formation and proposal configuration for re-
search

Main considerations in this area are summarized as follows:

(1). Since once the capability of tunnel disaster prevention can be assured by math-
ematical proof or scientifically evidence, related transportation management or poli-
cies could be rather easier promoted. Therefore, establishing network architectures

based on mathematical proofs are identified for the main direction of this disserta-



tion.

(2). Since long tunnels generally have rather higher disaster sensitivity, therefore,
the factor of large—scale should be identified as the important point for developing
a prototype network model for securing tunnels; however, it does not mean the

individual adaptability can be overlooked.

(3). Since the objective of this research will essentially consider both nodes’ and
links’ fault tolerance, as well as a sequential order of inspection and maintenance
for tunnels’ security networks; therefore, other disaster sensitive tunnels, such as:

under-water tunnels, or high—speed-rail tunnels can potentially be applied.

(4). Since parallel two tunnels, they and independent single tunnels are considered
two main kinds of tunnels, need be coordinated for urgent conditions; they can be
looked like a run—track shape from 2-D view or an extended but narrowed torus
from 3-D view, if their ends are network connected; therefore, HReT (honeycomb
rectangular torus, see Chapter 2) network is proposed as the prototype for parallel

two tunnels.

(5). Since HReT can be rotated 90 degrees, HReT network can also be proposed

as the prototype for independent single tunnels, such as high—speed-rail tunnels



which should well coordinate information acquisition and supervisory control of both
upper and lower monitored points; moreover, GHT (generalized honeycomb torus,
see Chapter 3 and 5), which is derived from the isomorphism of the honeycomb
torus, can probably be proposed as the prototype for independent single tunnels

with fault tolerance demand.

(6). Multiple tunnels basically can be composed by the above patterns mentioned

in (4) and (5).

(7). Since building disaster sensitive tunnels with highly assured quality should be
an important work or a cornerstone for developing ITS (intelligent transportation
systems), the network model in the tunnel can be coordinated with main supervisory
control and data acquisition tools of ITS. Especially CCTV, as a featured example,
can provide clear information and can be digitally processed or quickly analyzed
by state of the art. Moreover, since CCTV still may need rather larger memory
and CPU time, therefore; one CCTV camera can be connected to one terminal
as one node of the network, and can establish up a SCADA network based on the
regular degree-3—node prototype pattern mentioned in (4) and (5) and can naturally

have distributed intelligence based on network’s cooperative or parallel processing
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functions (Bickel, 1996, p.490-495).

1.5.4 HReT features with mathematical proofs

The main contents are as follows:

(1). It is assumed that the network has positive even numbers of nodes in both
column and row directions. The defined row direction needs at least 4 arrays of

nodes; however, this requirement can be neglected for real tunnel application.

(2). We prove that any HReT can keep hamiltonian when an edge is broken.

(3). If the defined row direction has more than 6 arrays or the defined column
direction has only 2 arrays, it is proved that any pair of bipartite nodes fail, the
HReT network can keep hamiltonian.

1.5.5 GHT features with mathematical proofs

The main contents are as follows:

(1). To prove that the honeycomb torus is isomorphic to a kind of GHT network,
which is a bipartite and degree-3 network. The honeycomb torus has already been
proved: (a). It is hamiltonian (Megson, Yang and Liu, 1999). (b). Even two

adjacent nodes fail or one edge is broken, it can keep hamiltonian (Megson, Liu and



11

Yang, 1999).

(2). To prove that the HReT network can be considered as a special type of GHT

network.

(3). To prove that the certain shaped GHT networks, can keep hamiltonian when
an edge is broken or two adjacent nodes fail.

1.5.6 Conclusions and suggestions

The last process of this dissertation is to summarize or briefly discuss the results of

previous processes or make conclusions and suggestions.

1.6 Epilogue of this Chapter

In the next chapter, we will review literatures on related network topology and tun-
nel issues. In Chapter 3, we will prove that the HReT network can keep hamiltonian
“when one link is broken” or “when two nodes of mathematically different corre-
sponding parties are broken”. In Chapter 4, we will prove that the certain shaped
GHT networks can keep hamiltonian when an edge is broken or even two adjacent
nodes fail, and the HReT network and the honeycomb torus can be isomorphic
to the GHT network. In Chapter 5, we will discuss tunnel issues, then establish

torus—based networks by graphs and propose them for tunnels. The HReT network
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is proposed for critical single or parallel running tunnels. The adapted GHT net-

work is proposed for service or other tunnels. Finally, in Chapter 6, we will make

conclusions and suggestions.



Chapter 2

Literature Review on Network
Topology

2.1 Foundation idea of topology and this Disser-
tation

The network configuration needs to coordinate with its circumscribed physical envi-

ronment; therefore, the shape of tunnel spaces as well as their funtionally required

networks should be analyzed together. Hence, the study concerning network shapes,

such as so—called network modeling, graph theory or topology is considered first for

this research. These titles of the above studies are different; however, their contexts

related to the scope of this research is basically same or closely related.

Topology is the branch of mathematics that deals with patterns involving po-
sition and relative position. Geometry also deals with position, but the geometer

or classical geometry is concerned with measurable quantities such as angles, dis-

13
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Source : Encyclopedia Americana

\. /

Figure 2.1: Illustration of Konigsberg Bridge Problem

tances, and areas, whereas topology is concerned with properties of continuity and

relative position that are independent of such magnitudes, and hence, topology is

some-times known as the geometry of position.

Since topology studies properties of spaces that remain unchanged, no matter

how the spaces are bent, stretched, shrunk, or twisted, hence, such transformations

of ideally elastic objects are subject only to the condition that nearby points in one

space correspond to nearby points in the transformed version of that space. The

essence of the above concept is important for sketching the scope of this research.

Since most tunnels can be considered as a tube or a pair of parallel tubes, which

can have different dimensions or may be curved or with some other varieties.

Moreover, the scope of this research is also aimed at offering the control center of
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Figure 2.2: Network Presentation of Konigsberg Bridge Problem

a tunnel an information processing and environmental control network having fault
tolerance as well as a mechanism for systematical efficient inspection or maintenance,
which are much concerned for those having disaster sensitivity, such as long tunnels.
The related analysis on features or rules of various network prototypes has been
studied in the papers related to network topology and will be discussed in the
following subsection. Some other concepts of related foundation idea of topology
and this dissertation are shown below; similar contents can be found in many books,

including Bondy and Murty, 1980.

The first topology article is the Konigsberg (now Kaliningrad of Russia) Bridge

Problem published in 1736 by Swiss mathematician Leonhard Euler (1707-1783),
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REGULAR POLYHEDRONS
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Source :Encyclopedia Americana
\. J/

Figure 2.3: Dodecahedron and Other Polyhedrons

which is entitled “The Solution of a Problem Pertaining to the Geometria Situs”.

The problem, shown as Figure 2.1, 2.2, is “At Konigsberg, the river Pregel sur-

rounding an island is divided into two branches. Over the branches of this river

lead seven bridges. Is it possible to cross each bridge once and not more than once

in a continuous walk?” Euler presented this problem by using a node to represent

a land and a link to represent a bridge. Euler proved that solving this problem is

impossible.

The concept of this problem has inherently importance to this dissertation. The
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The hamiltonian cycle shown as the bold line

Dodecahedron (3D View) (Extended 2D View)

Figure 2.4: Dodecahedron’s Hamiltonian Cycle of All Nodes

number of edges incident with a node is called the degree of the node. To solve

Konigsberg bridge problem, the degree of each node should be even, or the number

of in—degree should be the same as the number of out-degree. However, the degree

of each node of Konigsberg bridge problem is odd; therefore, this problem cannot

be solved without recrossing any bridge. In graph theory, a tour containing all the

links of a graph exactly once is called eulerian.

A contrasted concept is also worthwhile for this dissertation. A cyclic tour

containing every node of the graph exactly once is called a hamiltonian cycle. This

property can also be called hamiltonian, and the problem need not pass all the

links. This property is widely applied in information processing and management,
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and is derived from a game designed by an Irish mathematician, Sir William Rowan
Hamilton (1805-1865) in 1856. Hamiltonian labeled each node of a dodecahedron
with the name of a well-known city. The objective of the game was for the player to
travel “Around the World” by arranging a round trip which included all the cities
exactly once through the edges of the dodecahedron. This problem can be solved, or
its hamiltonian cycle exists, see Figure 2.3, 2.4. However, for a large—scale network,
the hamiltonian cycle may not exist and such problem belongs to an NP—complete

problem (Dolan and Aldous, 1993, p.459).

The “Token Ring”, topologically a broadcast ring, is considered as a featured
application of the hamiltonian property, which devises a cyclically communication
order to process information; therefore, it can keep a high processing rate and avoid
the slowdown due to occasional overloads which may happen in the previous Ether-
net, a bus broadcast system. For the scope of network configuration, its hamiltonian
property means all the nodes (as functionally distributed information processing or
controlling units) can be connected cyclically, so that the data can be sequentially
transferred or processed, and this property also can significantly benefit for orga-
nized inspection or maintenance work. If we want to search for the most efficient

hamiltonian cycle, then this problem will be the so—called traveling salesman prob-
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lem. However, this research basically concern the network issues of information
processing or communication, the length of a link can have very limited effects.
Hence, the search for the most efficient hamiltonian cycle is rather not important

for this research.

2.2 Review on distributive network topology

The network for information processing has become increasingly important, because
it makes individual processors much more useful. In this dissertation, the network for
information processing or communication is physically distributed in rather narrow
but lengthy spaces. In the following, some typical network topologies, which can
help parallel processing or systematically coordinating of whole processing units
will be reviewed. Moreover, some concepts of adaptation for physical spaces will be

illustrated.

Many interconnection topologies have been proposed in the literature for the
purpose of connecting a large—scale processing elements (Leighton, 1992). Network
topology is always represented by a graph where nodes represent processors and
edges represent links between processors. Omne of the most popular architectures

are the mesh—connected computers (Leighton, 1992). Each processor is placed in a
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Figure 2.5: Square Mesh Network

square or rectangular grid and is connected by a communication link to its neighbors

up to four directions.

It is well known that there are three possible tessellations of a plane with reg-
ular polygons of the same kind: square, triangular, and hexagonal, corresponding
to dividing a plane into regular squares, triangles, and hexagons, respectively (see
Figure 2.5, 2.6, 2.7). Based on this observation, some computer and communication
networks have been built. The square tessellation is the basis for mesh—connected
computers. The triangle tessellation is the basis to define hexagonal mesh multipro-

cessors (Chen et al, 1990, Youn and Lee, 1996). The hexagonal tessellation is the
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&

Adaptation Type I Adaptation Type Il

Figure 2.6: Hexagonal Mesh Network

A circle or a hexagon can be circunscribed

Figure 2.7: Honeycomb Mesh Network



CHAPTER 2. LITERATURE REVIEW ON NETWORK TOPOLOGY 22

% N
A TORUS, which resembles an inflated inner tube, is
generated by rotating o circle about o distant axis

Axis of rotation, x =3
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Source :Encyclopedia Americana

\_ 4

Figure 2.8: Torus Geometry

basis to define the honeycomb meshes (Carle et al, 1999, Stojmenovic, 1997).

Tori are meshes with wraparound connections to achieve vertex and edge symme-
try. Meshes and tori are among the most frequent multiprocessor networks available
on the market. The torus was historically first studied more than two thousand
years ago. In mathematics a torus is formed in three-dimensional space by rotating

a circle about a line that is in the same plane as the circle but does not cut or
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Figure 2.10: Honeycomb Rhombic Torus
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Table 2.1: Degree of Common Networks

Network Degree
mesh -connected computer 4
hexagonal mesh 6
honeycomb mesh 3
honeycomb rhombic mesh 3
honeycomb square mesh 3
torus 4
hexagonal torus 6
honeycomb torus 3
honeycomb rhombic torus 3
honeycomb square torus 3
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Figure 2.11: Honeycomb Rectangular Torus

touch it. The shape of torus likes the inflated inner tube of a tire or like a doughnut

(Figure 2.8). However, in modern topology some deformations of it are considered.

The degree of a square mesh is generally four; however, the degree will be three
or even two on its boundary. In other words, we may have difficulties to use regular
algorithms to process information on all nodes; therefore, that network may be not
economical or inefficient in some situation. Leighton, 1992, transformed the mesh
into the torus with regular degree of four by adding wraparound links. In other words
for visual thinking, first we can connect the upper and the lower edges of the square

mesh to form a cylinder, then connect the left and the right ends of the cylinder
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to form a doughnut shaped torus network. This topology for computer network is
considered as the basic tori shape, or we can simply call it “torus”. Stojmenovic
(Stojmenovic, 1997) also introduced the honeycomb tori by adding wraparound
edges on honeycomb meshes, i.e. the honeycomb mesh and its adaptations (Figure

2.9, 2.10, 2.11, Table 2.1).

Recently, the honeycomb torus has been recognized as an attractive alternative
to existing torus interconnection networks in parallel and distributed applications.
Thus, there are a lot of studies on topological properties of honeycomb torus (Meg-
son, Yang and Liu, 1999, Megson, Liu and Yang, 1999, Stojmenovic, 1997). The
hamiltonian properties is one of the major requirements in designing the topology of
networks. For example, the “Token Passing” approach is used in some distributed
systems. Interconnection network requires the presence of hamiltonian cycle in the
structure to meet the “token ring” requirement. Fault tolerance is also desired in
massive parallel systems that have a relative high probability of failure. The hamil-
tonian properties of the honeycomb tori were studied by Megson, Liu and Yang. It is
proved that all the honeycomb tori are hamiltonian (Megson, Yang and Liu, 1999).
Moreover, there exists a hamiltonian cycle in any honeycomb torus with adjacent

two faulty nodes (Megson, Liu and Yang, 1999).
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The physical world is three-dimensional and the 3D view of Figure 2.11 can
be like the geometry shape of a torus. However, similar to what we present all
above 3D figures in the 2D paper, we can devise the aggregation of information
processing in a plan and really produce them in a plane shape (Pahami and Kwai,
2001). However, the network topology will affect the physical shape of the whole
aggregation (Stojmenovic, 1997, p.1037), the appearance of their products, and

related costs or values.

Different goals or backgrounds will affect the results of system evaluation, this
concept can also be applied for evaluating different network topologies. Generally,
we can use the cost and the bisection width of the network architecture as the indices
for evaluating network topology; the cost of the network architecture is the product
of the network degree and the diameter, i.e., the longest steps of the shortest path
to sequentially connect other nodes; the bisection width is the estimated cut links
bisecting the network architecture. The cost is hoped to be less for economy, and

the bisection is hoped to be more for network protection.

The network topology is generally adaptable. Stojmenovic, 1997, for example,

hoped to coordinate both hexagonal mesh and honeycomb mesh and to form a kind
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of torus by wraparound after his comparison analysis. The hexagonal mesh can also
be deemed as a rectangular mesh added with diagonal links, and its node analysis
can be established on a general two—way rectilinear coordinate system. However, the
hexagon based honeycomb mesh can intuitively have three directions. Stojmenovic,
1997, designed a three—direction but zigzag coordinate system (Z coordinates), and
proved some interest properties. The nodes of honeycomb shaped networks can be
divided into two parts. One, considered as white, is with the sum of three coordinates
of 1; the other, considered as black, is with the sum of three coordinates of 2. The
black and the white are interwoven. Therefore, the nodes have bipartite property
(see Figure 2.12).

Bipartite is an offen—discussed topic in the field of graph theory; its application
in network is considered in developing. For example, the Honda company of Japan
has designed some dual devices for its featured products. Using a pair of devices
instead of one can prevent totally out—of-order in some serious situations, and can
strengthen product quality or its feature promotion. In Figure 2.13, a car proficient
for driving in snow—covered field with its dual pump system is shown (honda.co.jp).
Other similar applications can easily be found in many areas (such as: Chrest et al,

1996, p.127).
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@ :xty+z=2

Figure 2.12: Honeycomb Torus and Its Z Coordinates
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Figure 2.13: A Honda Car for Cold Area and Its Dual Pump System

The above dual-nodes concept is considered for nodes’ fault tolerance. In net-
work topology, generally links’ fault tolerance is considered only. Stojmenovic, 1997
used bisection width as the index to evaluate it, and Megson, Liu and Yang eval-
uate it with whether exists a hamiltonian cycle in a network with a faulty link (or
essentially adjacent two faulty nodes). In this dissertation, the latter is referred as

the basic criteria for links’ fault tolerance.

If the torus, or the honeycomb rectangular torus is straightened and enlarged, it is
inherently the configuration of a pair of parallel tunnels connected by communication
lines at both ends. In the mean time, since the honeycomb rectangular torus is

derived from the honeycomb torus with similar attributes of network architecture,
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such as: closeness, expandability and regularity, it is considered worthwhile to study
the honeycomb torus also. It can be found that the honeycomb torus can be an
isomorphism of a tube shaped network; the isomorphism means that two graphs
have one-to-one mapping relationship, then two nodes are adjacent in one graph, if
and only if the mapping nodes of the other graph are adjacent. Both the honeycomb
rectangular torus and honeycomb torus will be analyzed on hamitonian property and
fault tolerance for our research purpose to develop intelligent SCADA (Supervisory

Control And Data Acquisition, Bickel et al, 1996, p.495) networks for tunnels.

sectionSummary of this section In this literature review on network topology,
the followings have been discussed:
(1). The origin and the definition of topology has been explained. The conceptual
relationships between topology and the physical space or installed network of the
tunnel is discussed.
(2). We have talked about what is degree and its meaning for a circuit containing
all links or eulerian property.
(3). We have talked about what are the hamiltonian property and its possible
efficiency benefits due to its sequential order without redundant procedures.

(4). We have introduced common computer network types and what is torus, and
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we have explained the concept of degree regularity and that it is the reason for
developing torus networks.

(5). We have introduced the indices for evaluating the network topology, and ex-
plained that the honeycomb torus has potential competency and some directions for
application consideration, including its bipartite property for dual-nodes network,
degree regularity, potential economy or efficiency in processing, and fault tolerance.
(6). We have shown a simple but real example of dual-nodes network.

(7). We have introduced what is the isomorphism and it is a topic in the field of
graph theory.

(8). We have talked about that both honeycomb torus and its derived honeycomb
rectangular torus inherently have tube-shaped configuration, which naturally can
coordinate the functionally required network with its physical space.

(9). We have introduced what is fault tolerance, and we can use the criteria of the

accepted literature as criteria for our further research.



Chapter 3

Hamiltonian Properties of HReT
Network

In this chapter, m and n are assumed positive even integers with n > 4. After basic
definitions in Section 3.1, we present a recursive property of the ring embeddings in
HReT(m,n) in Section 3.2. In Section 3.3, we discuss the ring embedding properties
of HReT(2,n). With the recursive property presented in Section 3.2, we can prove
that any HReT(m,n) remains hamiltonian when any edge is faulty. In Section 3.4,
we discuss the ring embedding property of HReT(4,n) — F for any F' = {a, b} with
a € A and b € B. In the final section, we discuss the ring embedding properties of

any HReT(m,n) — F where F = {a,b} with a € A and b € B.

3.1 Definitions

Stojmenovic (Stojmenovic, 1997) introduced the honeycomb tori by adding wraparound

edges on honeycomb meshes, the honeycomb rectangular torus is a specific kind

34
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of the honeycomb tori. The honeycomb torus has been recognized as an attrac-
tive torus, and its hamiltonian properties is a major requirements in designing the

topology of networks. (Megson, Yang & Liu, 1999; Megson, Liu & Yang, 1999)

In this dissertation, a network is an undirected graph. For the graph definition
and notation we follow (Bondy, 1980). G = (V, E) is a graph if V is a finite set and E
is a subset of {(a, b) | (a, b) is an unordered pair of V'}. We say that V is the node set
and E is the edge set of G. Two nodes a and b are adjacent if (a,b) € E. A path is a
sequence of nodes such that two consecutive nodes are adjacent. A path is delimited
by < o, 1, %2, ..., Tn_1 >. We use P! to denote the path < z,_1,..., %2, T1, 20 >
if P is the path < zg,x1,29,...,Z,_1 >. A path is called a hamiltonian path if its
nodes are distinct and span V. A cycle is a path of at least three nodes such that
the first node is the same as the last node. A cycle is called a hamiltonian cycle if
its nodes are distinct except for the first node and the last node and if they span V.
A graph is called hamiltonian if it has a hamiltonian cycle. A graph G = (V, E) is
1—edge hamiltonian if G — e is hamiltonian for any e € E. A hamiltonian bipartite
graph G is 1,-hamiltonian if G — F remains hamiltonian for any F' = {a, b} with

a € A and b € B where A and B are the bipartition of G.
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For any two positive integers r and s, we use [r]s to denote r (mod s). We
use the brick drawing, proposed in (Stojmenovic, 1997), to define the honeycomb
rectangular torus. The honeycomb rectangular torus HReT(m, n) is the graph with
the vertex set {(¢,7) | 0 < i< m,0 < j < n} such that (i,7) and (k,[) are adjacent

if they satisfy one of the following conditions:

1. i=kand j = [l & 1],

2. j=land k=i — 1], if i + j is even; and

3. j=land k= [i+ 1], if i+ j is odd.

For example, the graph HReT (6, 8) is shown in Figure 3.1. From the illustration,
it is easy to see that HReT(m,n) is a subgraph of the torus T'(m,n) (Leighton,
1992). Obviously, any honeycomb rectangular torus is a 3-regular bipartite graph.
We set A as {(i,7) | (i,7) € V(HReT(m,n)), and i + j is even} and set B as
{(4,7) | (i,4) € V(HReT(m,n)), and ¢ + j is odd}. Moreover, any honeycomb
rectangular torus is vertex transitive. The recursive structure of HReT(m,n) can

easily be observed by inserting pair of rows and/or pair of columns.

Since the honeycomb rectangular torus is a bipartite graph, any spanning cycle

of it contains the same number of vertices in each part. We will prove that any
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(0,0) (5,0)

Figure 3.1: The graph HReT (6, 8)

37
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HReT(m, n) is 1-edge hamiltonian. Moreover, HReT(m, n) is 1,-hamiltonian if and

only if n > 4 or m = 2.

To discuss the 1,-hamiltonian property of HReT(m, n), let F' = {a,b} witha € A
and b € B. We may assume that (0,0) € F because HReT (m, n) is vertex transitive.
For this reason, we use F(m,n) to denote {F | F = {(0,0), (z,y)} | (z,y) € B}. We
use (z,y) to denote the unique element in F'— {(0,0)}. By the assumption, z + y is
odd. We use P(i, j, k) to denote the path ((4, ), (¢, [ + 1]»)), (4, [F + 2]n)), - - -, (4, k))

and use Q(i, k, j) to denote the path P~1(3, 5, k).

We will prove that the honeycomb rectangular torus HReT (m, n) is hamiltonian.
Moreover, any HReT(m,n) remains hamiltonian when any edge is faulty. The hon-
eycomb rectangular torus we proposed is a bipartite graph with bipartition A and
B. Thus, any cycle of it contains the same number of vertices in each part. For this
observation, we will prove that any HReT(m,n) — F', with n > 4 or m = 2, remains

hamiltonian for any F' = {a,b} with a € A and b € B.

3.2 A Recursive Property

In this section, we use F” to denote a subset of V/(HReT(m, n))UE(HReT(m,n)). We

will present a recursive algorithm to obtain hamiltonian cycle of HReT(m,n) — F".
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Assume that 0 < i < m. We define a function from the vertex set of HReT(m, n)
into the vertex set of HReT(m + 2,n) by assigning f;((k,)) = (k,{) if £ < i and

fi((k, 1)) = (k + 2,1) if otherwise. We define f;(F") to be the set

{fi(k,1) | (k,1) € V(HReT (m,n))NF'}
U {(fz(k’ l), fi(kl’ ll)) | ((k’ l)’ (kla ll)) € E(HReT(m’ n)) n F with {ka kl} 7£ {7;’ [7’ + 1]m}}

U (G, 1), G+ 1,0) | (G, 1), (i + Lm, 1)) € E(HReT(m,n)) N F'}.

Let H be a hamiltonian cycle of HReT(m, n) — F” such that there are some edges
of H joining vertices of column i to vertices of column [i + 1],,; i.e., ((4,7), ([ +
1;m,j) € E(H) for some j. Now, we construct a hamiltonian cycle f;(H) of
HReT(m + 2,n) — f;(F') as follows:

Let 0 < ko < ky < ... < ki—1 < n—1 be the indices such that ((¢, k), ([i-+1]m, k;))
is an edge of H. Let H; be the image of H — {(4,7), ([i + 1], 7)) | 0 < j < n} under
fi- For 0 < j < t, we set (); as the path

(G k), (i U k) T (o W, g, = 1),

. Q([i+2]m 2,[k' *l]nak') . .
(£ + 22, [k, — 1n) P [+ 2mns k), ([ 4 B, )

Obviously, @; is a path joining (7, k;) and ([i + 3]0, k;) for 0 < j < . It is easy to

see that edges of H; together with edges of Q;, with 0 < j < ¢, form a hamiltonian
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(0,7) (5,7)
& ]
(0,0) (5,0)
(a) (b) (c)

Figure 3.2: (a) a hamiltonian cycle H in HReT(6,8) — {(0,0),(5,0)}, (b) f5(H),
and (c) fi(H)

cycle of HReT(m + 2,n) — f;(F"). We denote this cycle as f;(H). For example, a
hamiltonian cycle H of HReT(6,8) — {(0,0), (5,0)} is shown in Figure 3.2(a). The
corresponding f5(H) and fi(H) are shown in Figures 3.2(b) and 3.2(c). We have

following lemmas.

Lemma 1 Assume that 0 < i < m. Let H be a hamiltonian cycle of HReT(m,n) —
F'" such that there are some edges of H joining vertices of column i to vertices of
column [i + 1),,. Then, fi(H) is a hamiltonian cycle of HReT(m + 2,n) — fi(F").
Moreover, f;(H) contains some edges joining column t to column [t + 1],12 for any

tin {Z, [Z + 1]m—|—2a [7, + 2]m+2}'
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Lemma 2 (1) Suppose that H is a hamiltonian cycle of HReT(2,n) — F' such that
H contains some edges in {((0,7),(1,7)) | j is odd}. Then fo(H) is a hamiltonian
cycle of HReT(4,n) — fo(F"). Moreover, fo(H) contains some edges joining column
t to column t + 1 for any t in {0,1,2}. (2) Suppose that H is a hamiltonian cycle
of HReT(2,n) — F' such that H contains some edges in {((0,7),(1,7)) | j is even}.
Then fi1(H) is a hamiltonian cycle of HReT(4,n)— fi(F"). Moreover, fi(H) contains

some edges joining column t to column t + 1 for any t in {1,2,3}.

We say a hamiltonian cycle of HReT(2,n)—F" is regularif H contains some edges
in {((0,4),(1,7)) | j is odd} and some edges in {((0,7),(1,7)) | j is even}. Assume
that m > 4. A hamiltonian cycle H of HReT(m,n) — F' is regular if H contains
some edges joining column 7 to column [i + 1], for 0 < i < m. The following lemma

is derived from the above two lemmas.

Lemma 3 Suppose that H is a reqular hamiltonian cycle for HReT(m,n) — F'.
Then f;(H) is a regular hamiltonian cycle of HReT(m + 2,n) — f;(F"') for every

0<7<m.
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3.3 Hamiltonian Properties of HReT(2,n)

Obviously, ((0,0), (1,0),(1,1),(0,1),(0,2),...,(0,n—2),(1,n—2),(1,n—1),(0,n—
1),(0,0)) and {(0,0) PO (0,n —1),(1,n —1) QLn=L0) (1,0),(0,0)) are regu-
lar hamiltonian cycles of HReT(2,n). With these two hamiltonian cycles and the
symmetric property of HReT(2,n), HReT(2,n) is 1-edge hamiltonian.

Now, we discuss the 1,-hamiltonian property of HReT(2,n). Assume that F' €
F(2,n) and (z,y) be the unique element in F' — {(0,0)}.

Suppose that x = 0. Then
((0,1),(0,2),(1,2),(1,3),...,(0,y — 1), (L,y — 1), (1,y),(L,y+ 1), (0,y + 1),...,
(0,n—3),(1,n—3),(1,n—2),(0,n—2),(0,n—1),(1,n—1),(1,0),(1,1),(0,1))

forms a hamiltonian cycle of HReT(2,n) — F.

Suppose that x = 1. Then

{(0,1),(0,2),(1,2),(1,3),...,(L,y —1),(0,y — 1), (0,%), (0, y+ 1), (1, y + 1),...,

(0,n—3),(1,n—3),(1,n—2),(0,n—2),(0,n—1),(1,n—1),(1,0),(1,1),(0,1))
forms a hamiltonian cycle of HReT(2,n) — F.

Lemma 4 HReT(2,n) is 1-edge hamiltonian and 1,-hamiltonian. Moreover, there

exists a regular hamiltonian cycle in HReT(2,n) — e for any e € E(HReT(2,n)).
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Furthermore, there exists a regular hamiltonian cycle in HReT(2,n) — F for any

F € F(2,n) with F # {(0,0),(1,0)}.

3.3.1 1l,-hamiltonian property of HReT(4,n)

We first consider the case HReT(4,4). Suppose that F = {(0,0), (1,0)}. Obviously,
degg-r(v) = 2 if v € {(0,1),(0,3),(1,1),(1,3)}. For this reason, any hamiltonian

cycle of HReT(4,4) — F must include the following edge set:

{((0,1),(0,2)),((0,2), (0,3)), ((0,3), (1,3)), ((1,3), (1,2)), (1, 2), (1,1)), (1, 1), (0, 1)) }.

However, this edge set induces a cycle of length 6. Thus, HReT(4,4) — F is not
hamiltonian.

In the following, we will prove that every HReT (4, n) with n > 6 is 1,-hamiltonian.
Assume ? is an integer with 0 < ¢ < (7 —1). For 0 <14 < 2t, let D; denote the path
((3,20), (3,2i +1), (2,20 +1), (2,20 +2), (1,2i +2), (1, 2i +3), (0,2 + 3), (0, 2i + 4)).

We set R; as the path
((3,0) =5 (0,4), (3,4) = (0,8),(3,8) ... =
and set S; as the path

Dat—1

((3,2) 2% (0,6), (3,6) =2 (0,10), (3,10) ... 25" (0, 4t + 2)).
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Let F € F(4,n) and (z,y) be the unique element in F' — {(0,0)}.

Case 1: z = 0. By Lemma 4, there exists a hamiltonian cycle H of HReT(2,n)—
F. By Lemma 2, fo(H) is a regular hamiltonian cycle of HReT(4,n) — F.

Case 2: z = 1. Assume that (z,y) # (1,0). By Lemma 4, there exists a
regular hamiltonian cycle H of HReT(2,n) — F. By Lemma 2, f1(H) is a regular
hamiltonian cycle of HReT(4,n)— F. Suppose that (z,y) = (1,0). It can be checked

that

)

(0,1),(0,2), (0,3), (1,3) "2 (1,0 — 1), (0,n — 1) 25 (0, 9),

3,4,3

(3,4) "5 (3 3, (2, 3)

P

@3¢) (2,2), (1,2), (1,1), (0, 1))

forms a regular hamiltonian cycle of HReT(4,n) — F. See Figure 3.3(a) for illustra-
tion.

Case 3: 2 = 2. By the symmetric property of HReT(4,n), we may assume that
1 <y < 3. Since z +y is odd, y is odd.

Subcase 3.1: y = 1. It can be checked that

(0,1),(0,2), (3,2) ?% (3,3), (2,3), (2,2), (1,2), (1,3), (0,3) "% (0,n — 1),

2,4.0

(1,n—1) “M259 (1,4), (2,4) 24 (2,0), (1,0), (1,1), (0, 1))

forms a regular hamiltonian cycle of HReT(4,n) — F. See Figure 3.3(b) for illustra-
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tion.

Subcase 3.2: y = 4t + 1 for some positive integer ¢. Then the path

-1

((3,0) &5 (0,4¢), (3,4t)(3, 4t + 1), (3, 4t + 2), (0, 4¢ + 2) 2 (3,2), (0,2),

P(1,4t+4,n—1)
—3

0,1), (1,1), (1,0), (2,0) “®25 (2, 4¢ + 4), (1, 4t + 4) (1,n—1),

(0,n— 1) TS (0, 4¢ + 3), (1,4t + 3), (1,4t + 2), (2, 4¢ + 2),

P(3 4t43,0)

(2,4t +3), (3, 4t + 3) (3,0))

forms a hamiltonian cycle of HReT(4,n) — F. See Figure 3.3(c) for illustration.
Subcase 3.3: y = 4t + 3 for some nonnegative integer ¢t. Then the path

P(0,4t+4,n—1

((3,0) 2 (0, 48) 224 (0, 4¢ + 4) 0,n— 1),

1,n—1,4t+4 P 24t+40

(I,n—1) (1,4t +4), (2,4t + 4) 2,0),(1,0),(1,1),

(3 4442,0) (

(0,1),(0,2), (3,2) 25 (0,4t +2), (3,4t + 2) 3,0))

forms a hamiltonian cycle of HReT(4,n) — F. See Figure 3.3(d) for illustration.

Case 4: z = 3. Assume that (z,y) # (3,0). By Lemma 4, there exists a
hamiltonian cycle H of HReT(2,n)—{(0,0), (1,y)}. By Lemma 2, fy(H) is a regular
hamiltonian cycle of HReT(4,n) — F. Assume that (z,y) = (3,0). Suppose that
n > 8. It can be checked that

n—2)

((0,1),(0,2), (0,3), (1,3), (1,2), (2,2), (2,3), (2, 4), (1,4) "5 (1,0 — 2),



CHAPTER 3. HAMILTONIAN PROPERTIES OF HRET NETWORK 46

(0,19) (3,19) 0,19) (3,19) (0,19) (3.19) (0.19) (3,19 0,19) (3,19)

(0,0) 3,00 (0,0) 3.0 (0,0) (3,0) (0,0) (3.0)

Figure 3.3: (a) a hamiltonian cycle H in HReT(4,20) — {(0,0),(1,0)}, (b) a
hamiltonian cycle H in HReT(4,20) — {(0,0), (2,1)}, (c) a hamiltonian cycle H
in HReT(4,20) — {(0,0),(2,9)}, (d) a hamiltonian cycle H in HReT(4,20) —
{(0,0),(2,7)}, and (e) a hamiltonian cycle H in HReT(4,20) — {(0,0), (3,0)}.

(2a n-— 2) Q(z,n—_>2,5) (25 5)7 (Sa 5) P(3ﬂ>—1) (3a n-— 1)a (27 n-— 1)7 (2a O)a (25 1)7

3,1) "4 (3,4, (0,4) POV (0,0 — 1), (1,1 — 1), (1,0), (1,1)(0, 1))

forms a regular hamiltonian cycle of HReT(4,n) — F. See Figure 3.3(e) for illustra-

tion.

Hence, we have the following lemma.

Lemma 5 (1) HReT(4,n) is 1,-hamiltonian if and only if n > 6.

(2) Suppose that n > 6. There ezists a regular hamiltonian cycle in HReT(m,n)— F
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for any F € F(4,n) except the case that F' = {(0,0),(3,0)} and n = 6.

3.4 Hamiltonian Properties of HReT(m,n)

Theorem 1 (1) Any rectangular honeycomb torus HReT(m,n) is 1-edge hamilto-
nian.

(2) HReT(m,n) is 1y-hamiltonian if and only if either n > 6 orm = 2.

(8) Assume that m > 4, n > 6. There erists a regular hamiltonian cycle in
HReT(m,n) — F for any F' € F(m,n) except the case that F' = {(0,0), (m — 1,0)}

and n = 6.

Proof. With Lemma 4, there exists a regular hamiltonian cycle in HReT(2,n)—
e for any e € E(HReT(2,n)). Recursively applying Lemma 3, any rectangular
honeycomb torus HReT(m, n) is 1-edge hamiltonian.

Now, we discuss the 1,-hamiltonian property of HReT(m,n). Let F' € F(m,n)
and (z,y) be the unique element in F' — {(0,0)}. By Lemma 4, HReT(2,n) is
1,-hamiltonian.

Now, we consider the case n = 4. Suppose that F' = {(0,0), (1,0)}. Obviously,

degg-r(v) = 2 if v € {(0,1),(0,3),(1,1),(1,3)}. Therefore, any hamiltonian cycle
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of HReT(m, n) — F must include the following edge set:

{((0,1),(0,2)),((0,2), (0,3)), ((0,3), (1,3)), ((1, 3), (1, 2)), (1,2), (1, 1)), ((1, 1), (0, 1)) }-

However, this edge set induces a cycle of length 6. Thus, HReT(m,n) — F is not
hamiltonian. Hence, HReT(m,n) is not 1,-hamiltonian if m > 4 and n = 4.

Now, we prove that HReT(m,n) is 1,-hamiltonian if n > 6. We prove the
statement by induction on m. With Lemma, 5, our theorem holds for m = 4. Hence,
we assume that the theorem holds for HReT(m', n) when m' is any even integer with
4 < m' < m. Now, we consider the case that m > 6.

We first consider the case that n > 8. Suppose that x < m — 2. By induction,
there exists a regular hamiltonian cycle H of HReT(m — 2,n) — F. By Lemma
2, fm-1(H) is a regular hamiltonian cycle of HReT(m,n) — F. Suppose that z >
m — 2. By induction, there exists a regular hamiltonian cycle H of HReT(m —
2,n) — {(0,0),(z — 2,y)}. By Lemma 2, fo(H) is a regular hamiltonian cycle of
HReT(m,n) — F. Hence, the theorem holds for n > 8.

Now, we consider the case that n = 6. Suppose that (z,y) is neither (m —
3,0) nor (m — 1,0). By induction, there exists a regular hamiltonian cycle H of
HReT(m — 2,n) — F. By Lemma 2, f,, 1(H) is a regular hamiltonian cycle of

HReT(m,n) — F. Suppose that (z,y) = (m — 3,0). By induction, there exists a
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regular hamiltonian cycle H of HReT(m — 2,n) — {(0,0), (m — 5,0)}. By Lemma
2, fo(H) is a regular hamiltonian cycle of HReT(m,n) — F. Suppose that (z,y) =
(m —1,0). By induction, there exists a hamiltonian cycle H of HReT(m — 2,n) —
{(0,0), (m—3,0)}. The hamiltonian cycle must contain some edges joining column %
to column i+ 1 for some ¢ with 0 < i < m —2. By Lemma 2, f;(H) is a hamiltonian
cycle of HReT(m,n) — F.

The theorem is proved. O



Chapter 4

Hamiltonian Properties of GHT
Network

After basic definitions in Section 4.1, we will prove that HReT network and honey-
comb torus torus can be isomorphic to the GHT network in Section 4.2. In Section
4.3, we will prove if m and k are positive integers and (m — k) is an even number,
then GHT(m, 2k, k) is hamiltonian (this network configuration is basically proposed

for service or secondary tunnels).

4.1 Definitions

The denitions related to HReT(m,n) are shown in Section 4.1. Now, assume that
m and n are positive integers where n is even. The honeycomb rhombic torus
HRoT(m,n) is the graph with the node set {(i,7) | 0 < i < m,0 < j—i < n}
such that (,7) and (k,[) are adjacent if they satisfy one of the following conditions:

l.i=kand j=1+1 (mod n);

a0
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2. j=land k=1—1if 1 + j is even; and
3.1=0,k=m—1,and [ = j+m if j is even.

Assume that n is a positive integer. The honeycomb heragonal mesh HM (n)
is the graph with the node set {(zi,2z2,23) | —n + 1 < 21,290,253 < n and 1 <
71 + 29 + 23 < 2}. Two nodes (z7, x5, z3) and (22,22, 23) are adjacent if and only
|zt — 23| + |23 — 22| + |z — 23| = 1. The honeycomb hezagonal torus HT (n) is the
graph with the same node set as HM (n). The edge set is the union of E(HM (n))

and the wraparound edge set
{((i,n—i+1,1—n),i—n,1—4,n))|1<i<n}
U {(1—n,i,n—i+1),(n,i—n,1—1))|1<i<n}
u {(G1l=-nn—i+1),i—n,n1—1))|1<i<n}
Assume that m and n are positive integers where n is even. Let d be any integer
such that (m — d) is an even number. The generalized honeycomb rectangular torus

GHT(m,n,d) is the graph with the node set {(7,5) | 0 < i < m,0 < j < n} such

that (i,7) and (k,l) are adjacent if they satisfy one of the following conditions:
l.i=kand j=1+1 (mod n);

2. j=land k=1—1if i+ j is even; and
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3.i=0,k=m—1,and | = j + d (mod n) if j is even.

See Figure 4.1 for various honeycomb tori. Obviously, any GHT(m,n,d) is a
3-regular bipartite graph. We can label those nodes (7, j) white when i + j is even

or black if otherwise.

4.2 Isomorphisms

If two graphs have a one-to-one mapping,this relationship is called isomorphism. We
can easily find that HReT(m, n) is isomorphic to GHT(m,n,0) and HRoT(m, n) is
isomorphic to GHT (m, n, m (mod n)). With the following theorem, the honeycomb
hexagonal torus (or simply: honeycomb torus (Stojmenovic, 1997; Megson, Yang &

Liu, 1999, Megson, Liu & Yang, 1999) HT(n) is isomorphic to GHT(n, 6n, 3n).
Theorem 2 HT(n) is isomorphic to GHT(n,6n,3n).

Proof.  Let h be the function from the node set of HT(n) into the node set
of GHT(n,6n,3n) by setting h(xi,z2,23) = (23,21 — 22 + 2n) if 0 < 23 < n,
h(z1, e, 23) = (0,21 — 22+ 5n (mod 6n)) if z3 = n, and h(z1, xe, 23) = (x3+n, 21 —

Zo + 5n (mod 6n)) if otherwise.

For any 1 —n < ¢ < n, we use X, to denote the set of those nodes (x1, 25, x3) in

HT(n) with 23 = c. We use Y, to denote the set of nodes (i, j) in GHT(n, 6n, 3n)
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where (1) i=c+nand je{k|dn—c—-3<k<bn}fU{k|0<k<n+c}if
c<0,(2)i=0andje{l<j<4n}ifc=0,(3)i=cand {j|c<j<4n—c}if
0<ec<n,and (4)i=0and j € {k|4n < k < 6n}U{0} if c = n. Let h, denote
the function of A induced by X,. It is easy to check that A, is a one-to-one function

from X, onto Y.. Thus, h is one-to-one and onto.

To prove h is an isomorphism, we need to check that h preserves the adjacency.
Suppose that e = ((x1, 22, 23), (2}, x4, 24)) be an edge of HT(n). Without loss of

generality, we assume that x, + x5 + 23 = 2 and 2 + 2}, + 24 = 1.

Suppose that e is an edge of HM(n). Then either x5 = x} or x5 — 2% = £1.

Case 1: z3 = z%. Obviously, either (2, z}, x%) = (x1 — 1,29, x3) or (a},xh, x%) =

(x1,22 — 1, 23) holds.

Suppose that 0 < z3 < n. Then h(z1,x9,23) = (23,21 — 22 + 2n). Moreover,
h(x', zh, x4) = (23,21 — 29— 142n) if (2, 2, 2}) = (1 —1, 29, x3) and h(z!, 2, z}) =
(x3,21 — 22 + 1 + 2n) if (2, 2}, 25) = (21,22 — 1,23). Suppose that 3 = n. Then
h(z1,x9,23) = (0,27 — x2 + 5n (mod6n)). Moreover, h(z),zh, z5) = (z3,21 —
xg — 1+ 5n (mod 6n)) if (z, xh, x%) = (x1 — 1, 9, x3) and h(z), xh, x%) = (23,21 —

Ty + 1+ 5n (mod6n)) if (2, xh,x2%) = (x1,72 — 1,23). Suppose that z3 < 0.
1) L, T3
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Then h(x1,x2,23) = (23 + n,21 — 22 + 5n (mod 6n)). Moreover, h(z!,z), z4) =
(3,21 — 29 — 1 + 5n (mod 6n)) if (2}, 2}, 25) = (1 — 1,29, 23) and h(x),zh, ) =
(3,21 — xo + 14 5n (mod 6n)) if (2, 25, 25) = (21,29 — 1, x3). Hence, h(xy, z2, x3)

and h(z!, z}, 2%) are adjacent.

Case 2: z3 — 25 = £1. Since 1 +x2 + 23 = 2 and o} + af, + 2% = 1, (2, o), z}) =

(.Tl, To,T3 — 1)

Suppose that 1 < z3 < n. Then h(z1, 22, 23) = (3, 21 —x2+2n) and h(x), b, %) =
(x3 — 1,21 — 29 + 2n). Suppose that x3 = 0. Then h(xy, 29, x3) = (0,21 — 22 + 2n)
and h(z},zh,25) = (n — 1,21 — 29 + 5n (mod 6n)). Suppose that z3 = n. Then
h(z1, 22, 23) = (0,21 — 29 + 5n (mod 6n)) and h(z}, 2y, 25) = (n — 1,21 — 2 + 2n).
Suppose that 2—n < x5 < —1. Then h(zy, 29, x3) = (x3+n, 21 — 22+ 5n (mod 6n))
and h(z),zh,24) = (z3 +n — 1,21 — 22 + 5n (mod 6n)). Hence, h(z1, 2, 23) and

h(z', 4, «%) are adjacent.

Suppose that e is an wraparound edge of HM(n). Then, we have the following

three cases.

Case 3: ec {((i,n—i+1,1—n),(i—n,1—14,n)) | 1 <i<n}. Then (z1,x2,23) =

(i,n —i+ 1,1 —n) and (2}, 2}, 24) = (i —n,1 —i,n). Obviously, h(zi,z,s3)
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is (1,4n + 2i — 1) and h(z',z}, %) is (0,4n + 27 — 1)). Hence, h(x1,x2,x3) and

h(x}, x}, %) are adjacent.

Case 4: ec {((1—n,i,n—i+1),(n,i—n,1—1)) | 1 <i < n}. Hence (z1,z9,13) =
(1—n,i,n—i+1) and (z}, 24, 2) = (n,i—n,1—1). Obviously, h(z1,xe, z3) is (0,4n)
ifi=1land (n—i+1,n—i+1)if 1 <i <mn. Similarly, h(z}, 25, 25) is (0,4n — 1))
ifi=1and (n—i+1,n—1)if 1 < i <n. Thus, h(z1, s, x3) and h(z},xh, x%) are

adjacent.

Case 5: e€ {((;,1—n,n—i+1),(i—n,n,1—14)) | 1 <i<n}. Thus (z1, 29, 73) =
(1,1 =n,n—i+1) and (2}, 2}, z4) = (i —n,n,1 —1i). Obviously, h(zy, z2, x3) is (0, 0)
ifi=1and (n—i+1,3n+4—1) if 1 < i < n. Similarly, h(z}, 25, z3) is (0,1)) if
i=1land (n—i+1,3n+1)if 1 < i <n. Again, h(z1, 29, z3) and h(z}, z}, x}) are

adjacent.

Thus, the theorem is proved. o

For example, the honeycomb torus shown in Figure 4.1(c) is actually isomorphic

to the generalized honeycomb torus shown in Figure 4.1(d).
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4.3 Hamiltonian Properties of Some Generalized
Honeycomb Tori

It is easy to prove that any honeycomb rectangular torus and any honeycomb rhom-
bic torus are hamiltonian. In (Megson, Yang & Liu, 1999), it is proved that any
honeycomb hexagonal torus is hamiltonian. We reprove this result with the following

theorem.
Theorem 3 Any generalized honeycomb torus GHT(m, 2k, k) is hamiltonian.

Proof. In GHT(m,2k,k), let P(i,7, s) denote the path {(,7), (4,7 + 1 (mod 2k)),

(4,7 + 2 (mod 2k)), ..., (3,s)) and Q(4, s, j) denote the path P~'(i, j, 5).

Assume that m is even. By the definition of GHT(m, 2k, k), k is even. Thus

k = 2r for some positive integer r.
Let R denote the path from (0,0) to (m — 1,0) defined by:

(0,0) 722D (0, 2r — 1), (1, 2r — 1) 25 (1,0, ...,

P(m—2,0,2r—1)

(m—3,2r —1) 22 (1~ 3,0), (m — 2,0) T2 (4 — 2,90 — 1),
(m—1,2r — 1) Q220 (1 0)).
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Let S denote the path from (0,2r) to (m — 1,2r) defined by:

P(0,2r,4r—1 Q(1,4r—1,2r
( ) ( )

{(0,2r) (0,4r — 1), (1,4r — 1) (1,2r),...,

Q(m—3,4r—1,2r) P(m—2,2r,4r—1)
) — ) =

(m—3,4r—1 m—3,2r),(m—2,2r m — 2,4r — 1),

m—1,4r—1,2r
Q( )

(m—1,4r—1) (m —1,2r)).

Obviously, ((0,0) =% (m —1,0), (0,2r) -5 (m — 1,2r)), (0,0)) forms a hamil-

tonian cycle for GHT (m, 2k, k). See Figure 4.2(a) for illustration.

Assume that m is odd. By the definition of GHT(m, 2k, k), k is odd. Suppose

P(O 0,2k—1)

that m = 1. Obviously, ((0,0), (O 2k—1),(0,0)) forms a hamiltonian cycle

for GHT(m, 2k, k) Thus, we assume that m > 1 and k£ = 2r+1 for some nonnegative

integer 7.

Let X denote the path from (m — 1,2r + 1) to (1,2r + 1) defined by:

P(m—2,02r+1

— )(m—2,2r+1),...

Q(m—1,2r+1,0)
) —

(m—-1,2r+1 m —1,0), (m — 2,0)

Q(3,0 2r+1) ( Q(2 2r+1,0) (

(3,0) 3,2r+1),(2,2r+1) 2,0),

P(1,0 2r+1)
) (

(1,0 1,2r +1)).

Let Y denote the path from (0,2r + 2) to (m — 1,4r + 1) defined by:

P(0,2r4+2,4r+1 Q(1,4r+1,2r+2)

(0,2r +2) "OPEETD (0 4p 4 1), (1,40 + 1) OO (1 90 1 9),
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Figure 4.2: Illustrations for Theorem 3.



CHAPTER 4. HAMILTONIAN PROPERTIES OF GHT NETWORK 60

(m — 3,27 +2) TR (3 4 4 1),
(m — 2,4 + 1) @RI (9 9p 4 9),
(m—1,2r +2) T 1 4 1)),

Obviously,

((0,0), (m—1,2r + 1) =5 (1,2r + 1), (0,2r + 1),

0,27 +2) 55 (m — 1,47 + 1)), (0, 2r) T2 (0,0))
forms a hamiltonian cycle for GHT (m, 2k, k). See Figure 4.2(b) for illustration.
The theorem is proved. O

By Theorems 2 and 3, any honeycomb torus HT(n) is hamiltonian. Moreover,
GHT(m,2k,k) can be 1-edge hamiltonian, since nodes can be transistive and the

broken edge can be located not on the hamiltonian cycle shown in Figure 4.2.



Chapter 5

Establishing Network
Configurations for Tunnels

5.1 Physical Surveillance and Control Concerns
for Tunnels

5.1.1 Review the development and hazard prevention of the
modern tunnel

Tunnel is an underground or underwater passageway. With the rise of commerce
and industry many canal and railway tunnels were built through mountains and
under rivers, shortening the travel time for freight and passengers. As the urban
population grew, a need for subway tunnels arose. One major consideration in the
expanding use of tunnels is that they do not disturb the web of plant, animal, and hu-
man life on the surface of the earth (Encyclopedia Americana Online, March 2003).
Quality or environment protection is becoming an important concern for deciding

whether a tunnel is built; similar quality related environment considerations should

61
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Table 5.1: Longest Rail Tunnels in the World

Name Location Length Completion Remarks
(km) Date
Sei-kan Tsugaru Strait 53.85 1988
Channel English Channel 50.45 1994 34 people trapped in a fire accident,
Nov. 18, 1996. Diamantidis et al,
2000, www.apt -p.com /aptdiaster.htm
Daishimizu Japan 2222 1982
Simplon -- II Switzerland -- Ttaly 19.82 1922
Simplon -- I Switzerland -- Italy 19.80 1906
Vereina Switzerland 19.06 1999
Shinkanmon Japan 18.71 1975
Appennino Italy 18.51 1934
Qunling I&II China 18.46 2001
Rokko Japan 16.22 1972
Furka Base Switzerland 15.44 1982
Haruna Japan 15.30 1982
Severomuyskiy Russia 15.30 2001
Gorigamine Japan 15.18 1997
Monte Santomacro Italy 15.04 1987
St Gotthard Switzerland 15.00 1882
Source: Encyclopedia Americana Online, March, 2003

be well designed, maintained and continuously controlled in the tunnel, especially

for lengthy tunnels. (Vuilleumier et al, 2002, p.155-156)

The 53.9-km-long Seikan Tunnel is the longest rail tunnel as well as the longest

tunnel in the world. It was completed in 1988, and links the northern island of

Hokkaido with Honshu. Rivaling it in length is the 50.5-km-long Channel Tun-
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Table 5.2: Longest Land Road Tunnels in the World

Name

Laerdal

St. Gotthard

Arlberg
Frejus

Mont-- Blanc

Gudvanga

Folgefonn
Kan—etsu(Southbound)
Kan—etsu(Notthbound )

Gran Sasso d’ Italia (east
direction)

Gran Sasso d’ Italia (west
direction)

Source: Encyclopedia Americana Online, March, 2003

Location

Norway

Switzerland

Austria
France -- Italy

France --Italy

Norway
Norway
Japan
Japan

Italy

Italy

Length
(km)

24.51

16.92

13.97
12.90

11.61

11.43
11.13
11.06
10.93

10.18

10.17

Completion

Date

2000

1980

1978

1980

1965

1991

2001

1991

1985

1984

1995

Remarks

Truck crash killed 8+ people,
Oct. 24,2001, Vuilleumier et
al, 2002; www .structurae .de

Truck carrying flour and
margarine caught fire and
killed 35+ people, Mar. 24 —
26, 1999, Vuilleumier et al,
2002; www .structurae .de

nel, which was bored under the English Channel between Folkestone, England, and

Sangatte, France. It was completed in 1994, see Table 5.1. The subway tunnel is

also a type of the rail tunnel. Due to the need of urbanization, it started from the

beginning of the London Underground system in the 1860s.

Notable long land road tunnels were generally built in the Alps region; include
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Table 5.3: Longest Underwater Road Tunnels in the World

Name Location Length Completion Remarks
(km) Date

Tokyo Aqua Tokyo Bay, Japan 9.58 1997
Bomlafjord Norway 7.92 2000
Hvalfjardargong Iceland 5.717 1998
Hitra Norway 5.65 1994
Vagatunnilin Faeroes 4.94 2002
Drogden Denmark 3.52 2000
Kanmon Kanmon Strait, Japan 3.46 1958
Burnley Australia 3.40 2000
Mersey Queensway England 3.23 1934
Musko Sweden 3.00 1964
Source: Encyclopedia Americana Online, March, 2003
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three historically longest road tunnels: the 11.6-km— long Mont Blanc Tunnel, com-
pleted in 1965 between France and Italy; the 14.0-km—long Arlberg Tunnel, com-
pleted in 1978 in Austria, and the 16.9-km-long St. Gotthard Tunnel, completed
in 1980 in Switzerland. In November 27, 2000, the 24.5-km- long Laerdal Tunnel,
connecting Laerdal and Aurland in Norway, became the longest land road tunnel
(Encyclopedia Americana Online, March 2003), see Table 5.2. Other notable im-
mersed road tunnels constructed in the 20th century include the 3.4-km-long Kan-
mon Tunnel, completed in 1958, which was driven under the Kanmon Straits and
connects Honshu and Kyushu islands in Japan; and the 9.7-km-long Tokyo Aqua

Tunnel, constructed under Tokyo Bay and completed in 1997, see Table 5.3.

Tunneling has been very hazardous for maintaining an adequate supply of fresh
air for thousands of years. With the mechanization of ventilation equipment, it
became possible to eliminate the dangers that accompanied bad ventilation. There-
fore, except for the reasons of urbanization, quality aimed environment protection
become an important concern for planning a tunnel project (Encyclopedia Ameri-
cana Online, March 2003). Besides, tunnel projects can probably be built very fast
by contemporary technologies; for example, the Laerdal Tunnel took only around

five years for construction after it got the permission in 1995 (Marec, 1996), and the
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Tokyo Aqua tunnel took about eight and half years (Yamada and Ota, 1999).

From Table 5.1 — 5.3, tunnels could be built longer and longer up to now. How-
ever, tunnel disasters have already seriously happened in those above notable tun-
nels, another point needs be concerned. People may feel tunnels are more dangerous,
or have already found out that tunnel accidents are becoming more and more fre-
quent now. For example, in the Alps region, doubling the size of tunnels, building a
second tube to separate traffic in the two directions and constructing a third escape
tube have been seriously considered as important ideas for improving tunnel safety
(Egresi and Lineback, 2001). Hence, in another words, tunnels’ system configuration
and management for well ventilation, fire protection or disaster response cannot be
overlooked, although tunnels can be constructed very fast, long and even under wa-
ter, the importance of ventilation and related disaster prevention measures cannot

be negligible.

Tunnel patterns have close relationship to safety and network configuration, we
need briefly discuss different tunnel configuration types, refer to Figure 5.1. For most
highways, the tunnel pattern generally is two parallel running tunnels. However, for

most railway tunnels, their general pattern is a single running tunnel, because the
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diameter of a single tunnel can easily accommodate double tracks. But for the
railway tunnel with a length greater than 5km, the pattern of two parallel tunnels
of single-track is recommended instead of a single running tunnel (Diamantidis et al,
2000, p.139). Sometimes, the service tunnel is required for long tunnels. In addition,
in the long railway tunnel, three parallel running tunnels may be considered instead

of two parallel running tunnels plus a service tunnel (Diamantidis et al, 2000, p.137).

In order to build up secure network configurations for tunnels, we can summarize
three basic tunnel prototypes as the potential targets: a single running tunnel, a pair
of running tunnels, and a single service or secondary tunnel. Other tunnel patterns
can possibly be composed by these three prototypes. Moreover, ventilation ducts
or emergency escape passages connecting individual tunnels may be considered as

service tunnels from the shape and the function.

In the next subsection, the surveillance and control issues of tunnels are reviewed.

5.1.2 General supervisory control concerns for tunnels

The material of this subsection is primary referred from: Atkinson, 1997, p.513—
516, Bickel et al, 1996, and then substantial data or information including journal

contexts will be cited in the brackets for more clearly illustrating the scope of this
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Configuration Types of Long Tunnels

@ Single Running Tunnel
L (Generally for Railway)
1 Q@ Two Running Tunnels
Q Single Running Tunnel and One Service
e ,,@ Tunnel (Generally for Railway)

@ @ Two Running Tunnels and One Servivce
V. f,Qf, Tunnel
V. @@Q Three Running Tunnels

VI. OTHERS Multiple Running Tunnels, ...

Representing cross passages connecting two
-— - tunnels at intervals. Ref: Diamantidis et al. 2000

Figure 5.1: Tunnel Configuration Types
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subsection.

(1). Communication

The continuous form of radio link has been stressed in long tunnels. This can be

provided by the installation of a leaky feeder system throughout.

Emergency telephone points, designed to be vandal resistant by dispensing with
handsets, need to be provided at frequent intervals in positions that are accessible
but safe for standard drivers. Closed circuit television may also be an advantage, in
relaying information on traffic to a central control room with continuous monitoring.
Routine maintenance of the above facilities requires regular inspection, testing and

the employment of specialist contractors to ensure dependability.

In the renovated Mont-Blanc road tunnel, emergency recesses have been placed
alternately at intervals of approximately 100 meters. They are equipped with emer-
gency telephone, fire extinguishers, etc; the sensor can check the existence of fire ex-
tinguishers. Fire-fighting facilities, CCTV, telephones and fire trucks are computer-
terminal networked (Vuilleumier et al, 2002). In Japan, CCTV is generally required
to link with other information equipment such as telephones, push-button type infor-

mation equipment, and fire detectors in order to turn the camera toward an accident
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or a fire in a road tunnel (Mashimo, 2002),

(2). Ventilation

Ventilation may rely on the ram effect of traffic, or may also require a controlled
fan-assisted system, depending on the length of the tunnel. In addition to periodic
maintenance of the machinery, inspection and cleansing of all ducts are necessary.
Most systems have automatic smoke and carbon monoxide level monitoring, which
needs to be regularly checked. Major tunnels are likely to be provided with computer
controlled fans, which, in a fire emergency, can be automatically adjusted for both

speed and direction of flow to give maximum control over generated smoke.

High air quality in the tunnel is achieved in two ways, by ventilation and pu-
rification. The Laerdal Tunnel is the first in the world to be equipped with an air
treatment plant, the air is drawn through a large carbon filter, which removes the
nitrogen dioxide. The air quality will be continuously checked and the fans will
start automatically when the concentrations of toxic gases exceed specified levels.
The fans can also be operated manually from the monitoring center. If any fault
should occur in the ventilation system or if any queues should form, creating ex-

cessive volumes of exhaust fumes, the tunnel will automatically be closed to traffic.
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(www.bergen-guide.com).

(3). Lighting

Lighting produces several maintenance problems as a result of being vulnerable
to damage and usually need frequent checking and replacement of outages, especially
in areas such as portals where boost lighting ensure a safe transition from daylight
conditions. Light conditions should be checked and maintained. Especially in long
tunnels, the standby battery lighting leads to the maintenance of necessary air
conditioning equipment to prevent deterioration of the batteries. A safe viewing
distance of 1000 meters or more is designed in the Laerdahl road tunnel with design
speed 80 km per hour (content.engineering.com). In the rail tunnel, the luminance
requirement of tunnel environment is generally low and basically for orientation and
maintenance, not for passage (Bickel et al, 1996, p.1); however, this concept probably
need be adjusted for the sabotage issue, such as 911 terrorism. Lighting for escape
is very important; hence the rail tunnel may need similar concern on the lighting
for the exit path as the road tunnel. Moreover, providing at least adaptable lighting
for capable of detecting abnormal situations and rapidly informing the tunnel work

center should also be important for both kinds of tunnels (Diamantidis et al, 2000,
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Vuilleumier et al, 2002, p.158). Therefore, providing reasonable lighting environment
for CCTV cameras is suggested for rail tunnels. CCTV with cameras and infrared
image processors is important for ITS as well as for tunnels’ intelligence; this will

be discussed in the next subsection.

(4). Drainage

Most tunnels rely on pumped systems, and maintenance of the protective features
such as grit traps and filters is a critical factor in preserving the equipment. For that
electrical equipment, a vital safety aspect is the provision of detailed information
and procedures needed to isolate any item or system in the event of accident damage

or during maintenance operations.

Poor maintenance results in reduced safety or economy loss for tunnels (Mashimo,
2002); poor drainage may worse lead the whole tunnel filled with water by an un-

expected flood (Diamantidis, 2000).

(5). Traffic Control

The control of traffic is vital in the tunnel situation. most tunnels have individual

by—laws specifying the nature of controls, which may include: (1). a limit on vehicle
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dimensions; (2). control of specified goods that are permitted to use the tunnels,
e.g. petroleum products, dangerous chemicals and explosives, and limits on vehicle
weights. Such by-laws have to be backed up by systematic checking against abuse
and commonly there will also be physical control devices, which are subject to
regular damage and must be inspected and repaired as part of a program of routine

maintenance.

In the renovated Mont-Blanc road tunnel every 600 meters, a lay-by is situated
for allowing heavy goods vehicles to stop; every 600 meters a turning bay for allowing
maintenance and rescue vehicles to operate in the vehicles (Vuilleumier et al, 2002).
In Japan, lay—bys are generally provided at intervals of between 500 and 1500 meters
in long road tunnels (Mashimo, 2002). In the Laerdal road tunnel, four sections have
been subdivided by means of specially widened areas that are large enough to allow

coaches and trains to turn without having to reverse (content.engineering.com).

(6). Fire Risk

Despite the careful regulation of traffic using tunnel, there will remain a risk
of fire from fuels normally carried in vehicle, or from faults developed in the nec-

essary service through the tunnel. Attention must be given to the provision and
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maintenance of well fighting equipment.

Constructing an escape tube is seriously considered as an important idea for
improving tunnels’ fire safety (Egresi and Lineback, 2001). ”Cross-over” passages
that allow trains to switch from one track to another are considered in both the
Sei-kan tunnel (pref.aomori.jp) and the Channel tunnel; beside the main tunnel (in—
between the two train tunnels of the Channel), there is a smaller service tunnel that
serves as an emergency escape route, and the safety door for compartment design is

considered (Diamantidis, 2000, Eisner, 2000).

Emergency telephones (every 250 meters) and fire extinguishers (every 125 me-
ters) of the Laerdal tunnel have been installed at closer intervals. Computer, monitor
or radio link systems for fire service, medical services and other emergency services

are designed (content.engineering.com).

(7). Contingency Management

The access difficulties associated tunnels and the sensitivity to stoppage require
that emergency procedures are prepared and labor and equipment made available
at short notice. Contingencies include the removal of damaged vehicles, demolition

and removal of tunnel finishes involved in accidents, clearance of drains and dealing
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with random breakdown of services and structural elements. To minimize the effects
of repairs, a program of regular close inspection is essential, and some work may be

done at night.

On May 29, 1999, a construction work affected an accident, and 12 people were
killed in the Tauern tunnel, Austria (Leitner, 2001). It is worthwhile to note that an
incident of relatively harmless nature may transform to be a disaster (Vuilleumier et
al, 2002); a big disaster may be originated from a traffic disturbance or interference
which is affected by an ordinary repair work such as the above. Especially in a
tunnel’s closer, probable darker environment, the driver has rather heavy vision
burden, which is an adversary condition for driving (Shaheen and Niemeier, 2000).
Therefore, giving fault tolerance for real-time information facilities, or giving spare
concern for short-time adjustable facilities such as air handling facilities, to provide
more flexible maintenance time and time period for disaster sensitive tunnels should
be especially critical.

5.1.3 Distributed intelligence in tunnels

Compared to other information processing networks, a tunnel’s SCADA (Bickel, et
al, 1996, p.495) network locates in worse environment or has more restricted condi-

tions for repair and maintenance; however, it relates the inescapable responsibility
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of public safety. Therefore, it is reasonable to take the concept of dual nodes, just
as human’s two eyes, to take place of the traditional single-node concept for tun-
nels’ SCADA network for assuring node’s fault tolerance and for strengthening the
capability of data acquisition. Intelligent transportation systems (ITS) are using
advanced technologies, especially information technologies in transportation plan-
ning and management; a tunnel is a part of a transportation system; hence, some
reviews related to the relationship between I'TS and the tunnel are discussed in the

following.

Advanced technologies of detection and communication systems can make more
effective judgment now (Harlow and Peng, 1996). However, the ITS still need better
environment of communication media or advanced degree of coordination for assur-
ing information or control can be sent to any place required (Hall, 1995, p.141). In
this paper, the desire of Hall is also what this dissertation intends to achieve. It
just proposes a distributed and robust network with parallel processing capability
to extensively provide transportation information and various mobile communica-
tions services, tunnels’ environmentally related data or other valuable information
for drivers who can prevent from doing something wrong or make correct responses

for potential incidents, or even get some personal special behavioral or physiological
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assistance (Groeger and Rothengatter, 1998 , Shaheen and Niemeier, 2001).

Tunnels can be disaster sensitive places, especially in the earthquake intensive ar-
eas such as Taiwan; therefore, related safety and quality factors of tunnels’ structure
as well as environmental control should be cared for (Wang et al, 2001). Moreover,
tunnels are three dimensional objects, even with some rather hidden spaces. Hence,
monitoring the movement of the tunnel structure or the distribution of environ-
mental measure-factors with a three-dimensional approach can be an insightful,
proactive strategy (La Pointe et al, 1998; Roozenmond, 2001). In this dissertation,
the proposed degree-3 network configurations can be more orderly applied to dif-
ferentiate between front-back information and up—down information, and link them
to exclusive terminals. Such an ITS network in the tunnel can have parallel infor-
mation processing capability to act faster, more comprehensive to correctly discern
various abnormal traffic behaviors, structural deterioration, electrical or mechanical

disability, poor air quality, water leakage or many other disordered factors.

ITS are oriented for promoting travelers’ safety, comfort, convenience and other
welfare (Kanninen, 1996), basically, they are quality oriented. However, an un-

acceptable long loss of telecommunication signals for travelers in especially long
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tunnels can very easily happen due to some small ordinary faults. Moreover, once
an incident happened in a place, some information could not be acquired, travelers
might locate in a rather dark space or even in a densely smoky, hot adversary envi-
ronment that can make both escape and rescue very difficult. Therefore, providing
robustness for the telecommunication or SCADA network in the tunnel is just pro-
viding travelers well mobile phone services, comfort and life safety in the tunnel.
This kind of assurance is just the objective of the ITS. Hence in this dissertation,
proposing the SCADA network, which has mathematically proved fault tolerance
for the node and the link, as well as a mechanism of working order for checking and

maintaining the network system, is considered worthwhile.

CCTYV has become a valuable surveillance and control asset for tunnel manage-
ment (Bickel et al, 1996, p.373, 486, 492). It can be used for incident verification,
traffic policy evaluation, and displayed message verification. Lighting environment
is related to the installation of CCTV in the tunnel, and this issue has been dis-
cussed in the previous subsection. Current CCTV technology allows viewing of 400
to 800 meters in a direction if its visual environment is ideal, and generally is spaced
less than 200 meters in the tunnel (Bickel et al, 1996, p.491). One every 150 meters

spaced cameras on each wall side are used to ensure surveillance of the renovated
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Mont Blanc Tunnel (Vuilleumier et al, 2002). Infrared image processors (cameras)
may be needed when light condition is not well (Klein, 2001, p.258-259). CCTV
can also apply image—processing techniques to extract traffic movement information

for real-time management (Zhang and Forshaw, 1997).

Therefore, CCTV is concerned as an essential element for intelligent transporta-
tion systems (McQueen and McQueen, 1999, p.26, 128, 406) as well as for the node
element of our proposed SCADA networks in tunnels in this dissertation (Bickel et
al, 1996, p.494-495). Since the data process of CCTV may take lots of computing
memory; therefore in this dissertation, it is considered that a node represents a ter-
minal which links one CCTV camera as the base together with other detectors or
control units to establish up the SCADA network of degree-3 (i.e. honeycomb torus
and honeycomb rectangular torus) for the tunnel. However, the proposed network
configurations of this dissertation are a kind of systematical architectures, which can
also be applied in any terminal as the node, which may or may not link a CCTV

camera.

A tunnel is a tube-like space or is a single room; however, it is essentially a

large and closed space. The whole space should be surveyed and controlled with
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a distributed but coordinative real-time processing system. Distributed processing
can minimize the severity of a single failure (Bickel et al, 1996, p.495) and also can
benefit parallel real-time processing (Zhang and Forshaw, 1997). The distributed
intelligence with multiplexing transmission has been considered as the basis of a
supervisory control and data acquisition (SCADA) system in the network (Bickel et
al, 1996, p.495). However for such large—scale network, a working order for monitor-
ing and checking of the SCADA system is important; this concept for maintaining
the ventilation systems, radio connections, lightning systems, traffic lights, emer-
gency equipment, etc., has already been considered in the Laerdal Tunnel, Norway;
however, detailed information has not been found yet (content.engineering.coml).

5.1.4 Summary of this section

We can summarize the key concepts reviewed in this section as follows:

(1). Quality or environment protection is becoming important concern for decid-
ing whether a tunnel is built; therefore, especially for lengthy tunneles quality or

environment protection should be well designed and continuously controlled.

(2). The lengthy tunnel can probably be constructed very fast by modern technology.

(3). Some people found that tunnel accidents are becoming more and more frequent



CHAPTER 5. ESTABLISHING NETWORK CONFIGURATIONS FOR TUNNELS81

now, and tunnels’ system configuration and management for well ventilation, fire

protection or disaster response cannot be overlooked.

(4). An incident of relatively harmless nature can probably transform to be a dis-
aster; fault tolerance and systematical inspection should be concerned especially for

important facilities in disaster sensitive tunnels.

(5). CCTV has become a valuable surveillance and control asset for tunnel manage-

ment or an I'TS element.

(6). CCTV can be distibutively planned along the tunnel at intervals of around
150200 meters, this information can a refeference for estimating the node—scale of

a SCADA network in the tunnel.

(7). In the rail tunnel, the lighting requirement of tunnel environment is generally

low; however, this concept probably need be adapted for the sabotage issue.

(8). The working order for monitoring and checking of the large—scale SCADA

network can be a feature of modern tunnel design.

(9). In a tunnel, providing a SCADA network, which has mathematically proved

fault tolerance for the node and the link, as well as a mechanism of working order for
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Table 5.4: General Performance of Common Networks

Network Diameter Cost Bisection Width
mesh-connected computer 2(n)0s 8(n)s (n)Ps
hexagonal mesh 1.16(@)y3 6.93@)** 2.31(n)°3
honeycomb mesh 1.63@)y3 4.90()°*S 0.82(n)°s
honeycomb rhombic mesh 2.83@y* 8.49()*> 0.71(n)°s
honeycomb square mesh 2(n)*® 6(n)*S 0.5@)*s
torus (n)os 4(n)°s 2(n)*s
hexagonal torus 0.58@p> 3.46(@)05 4.61(n)°s
honeycomb torus 0.81()y* 2.45@)*> 2.04(n)°s
honeycomb rhombic torus 1.06@)s 3.18@)°s 1.41@)°s
honeycomb square torus (n)os 3(n)0s (n)0s

checking and maintaining the network system, is considered obeying the objective

of developing the ITS.

5.2 Considering Cost and Robustness for Tun-
nel’s SCADA Network

Stojmenovic, 1997 made a comparison for general networks, shown as Table 5.4. We

can find the honeycomb tori (including honeycomb rectangular torus and honeycomb
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rhombic torus) and the hexagonal torus have different merits. The former has rather
lower cost; however, the latter looks rather more robust (i.e., the bisection width is

larger).

In the previous two chapters, we have proved that the honeycomb tori or general-
ized honeycomb tori already can have good fault-tolerance capability or robustness.
Therefore, we may consider more on the cost factor. Stojmenovic estimated the
cost as the product of degree and diameter for a general analysis. Hence, we may
need consider a network of less degreenumber but with enough fault—tolerance ca-
pability. In the next section, we will show that if the network considering both
node’s and link’s fault tolerance, the network’s degree should be at least three. In
another words, the honeycomb tori or generalized honeycomb tori can be considered

for tunnel’s SCADA network.

Stojmenovic’s comparison considers the length of all links are same from the com-
munication aspect, hence the physical longer wraparound link is essentially deemed
with the same length as that of other links. In the real tunnel project, longer link
naturally needs higers cost; however, on the comprehensive comparison level, indi-

vidual detail factor probably can be neglected. Especially, the network well fitted
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the space is important.

A tunnel is like a tube, and tunnel configuration types have been shown in Figure
5.1. In this research, the HReT for the SCADA network (Bickel et al, 1996, p.495)
of a single disaster sensitive tunnel or two parallel disaster sensitive tunnels are
proposed as prototypes for adapting (Chown, Kaplan & Kortenkamp, 1995). The
master SCADA network of other tunnel configuration may be composed of these
above two adaptable proposals. Moreover, instead of the ring, another degree-3
torus network, i.e., GHT(m, 2k, k) and (m-k) even, but with less fault tolerance
has also been studied in the previous chapter. It can again possibly be adapted for
independent tunnels or tube space with less fault tolerance demand; such as: the

service tunnel or the ventilation shaft.

5.3 Dual CCTYV Based Nodes for Tunnel’s SCADA
Network

The CCTV (closed circuit television) is an essential element of the SCADA network

of a tunnel (Bickel et al, 1996, p.373, 491) and also an important unit of the intel-

ligent transportation systems (McQueen and McQueen, 1999, p.26, 128, 406). To

improve the security of the tunnel systems, experts of the tunnel may suggest the

CCTV or other safety related utilities be arranged in a ring network (see Figure
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Figure 5.2: The Degree of List, Ring and Double-Ring

5.2), because the ring structure can support operating even if a single link is broken.

However, it is still vulnerable, especially when a node is faulty.

Humans’ two eyes can give us a solution direction. Just as two eyes can offer
more capability of information acquisition and fault tolerance than one eye can, we
can apply a set of two CCTV cameras instead of one in tunnel structures or other
transportation systems (for example: Chrest et al, 1996, p.127). We can consider
that they are two cooperative partners and each is also an independent unit. Then,
we can see that the ring network with degree two cannot regularly fit the degree

requirement of a network of dual nodes. Each node needs to be connected by its dual
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(An HReT network can integrate even-number clusters of dual nodes with degree 3 regularly.)

(a). clusters of (b). clusters of (c). clusters of interwoven horizontal
horizontal links vertical links and vertical links

Figure 5.3: A Double-Ring Network Integrates Only Two Rings of Dual Nodes

partner, a forward node and a backward node; therefore, the degree of the network
should be at least 3. Hence a double-ring network may be considered; however, it

can only integrate two rings of dual nodes (see Figure 5.3 or and Figure 5.5).

In the state of practice, processors can be coordinated as a unit for the best
operation, and once a processor of a unit is not good or out of order, the unit can
be automatically controlled for the second best operation. HReT or GHT networks
with degree-3 can fit the above concept of coordinated unit, and they are naturally

more robust than a ring network with degree-2.
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Moreover, since the image analysis of CCTV information needs a lot of CPU
memory, therefore one terminal is connected with one CCTV camera, and this ter-
minal is arranged as one node for the network of dual-nodes (see Figure 5.4). This
network system cannot only have nodes’ fault tolerance and provide clearer informa-
tion, but also may offer a mechanism of parallel processing for real-time management

(Zhang and Forshaw, 1997).

We do not mean that each CCTV camera is the only information source for a
node in our proposed network prototypes. The CCTV may be replaced by other su-
pervisory sensors in rail tunnels due to light condition. Besides, other safety related
sensors and utilities for a zone should be connected and systematically controlled

(Bickel et al, 1996, p.453).

However, from item 7 of Section 5.1.4 and the recent sabotage disaster of Taegu
subway, South Korea in February 18, 2003, which killed more than 120 people
(abcnews.go.com), the installation of an ideal CCTV system may still be needed for
correct and real-time incident management in some rail tunnels (Diamantidis et al,

2000, p.139), then the CCTV can be a main information source for a node terminal.
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Figure 5.4: Conceptual Tunnel Section
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5.4 Hamiltonian Order of the Network as the Base
for System Management

Mathematically, a path connects every node once and only once is called a hamilto-
nian path; and if the first node of the path is linked with the last node, it is called
a hamiltonian cycle or simply hamiltonian (Bondy, 1980, p.53). Hamiltonian is in

sequential order.

If a network with two adjacent faulty nodes and the network still keeps hamilto-
nian, then we say this network has “fault tolerance” (Megson, Liu & Yang, 1999). If
the network is Hamiltonian and once a link is broken, all nodes can still be connected
as a hamiltonian path. The existence of hamiltonian property is a good criterion
for evaluating system management for the network of a lot of nodes, because this
sequential order is not only good for processing information, but also important for

assuring quality of diagnosis, maintenance, and installation of hardware.

In Chapter 3 and 4, we have proved that HReT and GHT networks can have
hamiltonian property or more fault tolerance to benefit system management. The
proposed networks can be adapted to the rectangular or tunnel space. Besides, they

are not expensive, but efficient and robust configurations for diagnosis, maintenance,
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Figure 5.5: HReT for a pair of running tunnels

and renewal without concerning devices at a premium.

5.5 Prototypes with HReT Network for a Single
and a Pair of Running Tunnels

The donut-shaped HReT network can be fitted to two parallel tunnels connected
together by links as proposed in Figure 5.5. Each tunnel can coordinate with the

other.

For long tunnels, separated spaces are generally required, shown as an example
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in Figure 5.4. For integration concern, these hidden spaces should be monitored and
controlled by the network system. The torus network with degree-3 can also fit this

requirement.

Tracing along the top and the bottom of a tunnel, we can construct a torus.
In Figure 5.6, we propose this network for a high—speed rail (HSR) for its disaster
sensitivity. Safety network might be concerned first in the HSR, to detect any
small environmental, mechanical or electrical changes and respond correctly and

immediately.

This network configuration may need be adapted for specific purposes or specific
areas. For example: On link adaptation, the degree of certain nodes can be increased
to have more faults tolerance or to form a specific zone such as the portal area or the
area near the connecting passages between two tunnels. On axis lines, the number
of the axis line can be configured by any positive even number as Theorem 1; but

in Figure 5.5, there are m = 4 axis lines.
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Tunnel's Ceiling Level

~ A HSR's Upper Level
- —»* HSR's Lower Level

N " Tunnel's Pipe-Space Level

Figure 5.6: HReT for a single running tunnel

5.6 Prototype with GHT network for Service or
Secondary tunnels

In Figure 5.6, the HReT network traces along the top and the bottom of a pipe-

shaped space. However, even number of axis-lines for both top and bottom is re-

quired by HReT configuration. The even number of axis-lines can make sense for

the configuration of railway or vehicle roads.

However, the configuration of service lines in tunnels may be different, although
the coordination among service lines (or unit of nodes) is still required. In addition,
accidents happened in the service tunnel are relatively not so urgent as those hap-
pened in the running tunnels. The GHT network follows Theorem 3, which is at

least hamiltonian or can have fault tolerance (i.e., at least can keep hamiltonian in
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the network with a faulty edge), can be applied for such tunnels.

Figure 5.7(b), adapted from Figure 5.7(a), is the 3-dimensional network config-
uration proposal for service or secondary tunnels. The difference between Figure
5.7(a) and Figure 5.7(b) is that instead of following the sequential sequence of a
simple cycle in 5.7(a), in 5.7(b) the second half nodes along the axis-line start from
the beginning section of the first half nodes with a pair of wires. The 3-dimensional
Figure 5.7(a) looks complicated; however, it is rather simple in the 2-dimensional

presentation.
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() o)

Figure 5.7: (a) 3D of GHT(3,18,9) in Figure 4.1 (d), (b) Adapted of (a) / prototype
for service tunnels .



Chapter 6

Conclusions and Suggestions

6.1 Conclusions

In this research, we propose to integrate torus-based networks with the tunnels,
such as a single running tunnel, a pair of running tunnels, and a single service
tunnel. Dual processors are assumed to be coordinated for the best operation. If one
processor of a dual-unit is not good or out of order, this unit needs be automatically
controlled for the second best operation. HReT or GHT, as torus—based networks
with degree-3 can fit the concept of “coordinated dual-unit”, and they are naturally

more fault-tolerant than a ring network with degree—2.

For the network of large amounts of nodes and links, giving sequential or hamilto-
nian order for diagnoses and maintenance can be worthwhile for securing the whole
environment. We prove that certain shaped GHT networks, (i.e., GHT(m,2k k),

(m-k) is even), can at least be hamiltonian, and can have fault tolerance (i.e., at

95
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least exists a hamiltonian cycle in the network when one link is broken); the HReT
network basically can keep hamiltonian “when one link is broken” or “when two

nodes of mathematically different corresponding parties are broken”.

6.2 Suggestions

Our proposals are prototypes especially proposed for planning disaster sensitive or
long tunnels. The HReT network is proposed for critical single or parallel running
tunnels. The GHT(m,2k,k) network is proposed for secondary or service tunnels.
They are aimed to promote safety, and benefit travelers’ welfare in the emerging era
of ITS. Tt is suggested to design a real-time intelligent network with fault tolerance

for disaster sensitive tunnels.

In this dissertation, due to: (1) the torus is essentially like a pair of tunnels
connected by communication links at both ends, (2) the tunnel disaster is a very
critical or typical issue for high-level monitoring and coordinatively controlling;

therefore the tunnel is the main target for application.

However, instead of considering a tunnle, we may consider applying similar net-
works for any important path, which seriously requires coordinatively monitoring

and controlling. In most cases paths are double-loaded due to reasonable or econom-
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ical space—use reason, and they may have critical monitoring or controlling targets
at both sides. Depending on our purposes, dual-nodes concept can be applied either

along the one—tunnel shaped path or along the two—tunnel shaped path.
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