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ABSTRACT 

Sensitivity analysis of equilibrium network flows is useful in various fields, such 

as bilevel network design problems, road pricing and origin-destination matrix 

estimation problems. The problems mentioned above can be formulated as a 

Stackelberg game where the upper level problem aims to find the optimal strategy 

which maximizes the system performance, and the lower level problem aims to solve 

the user equilibrium problem, respectively. The reaction function of the lower level 

problem is the key to solving the Stackelberg game. Due to the characteristics of user 

equilibria, the lower level problem does not have an explicit reaction function. 

Usually, the reaction function is approximated by the sensitivity information of 

equilibrium network flows. By performing such sensitivity analysis, one can predict 

the directions of variation in the equilibrium patterns when the parameters of cost and 

demand functions are changed. With this information, the linear approximation of the 

reaction function can be obtained and applied to solve Stackelberg the game using a 

sensitivity analysis-based algorithm. 

The models involved usually exhibit a user equilibrium constraint to form a 

difficult nonlinear, nonconvex optimization problem. Due to the computational 

difficulties, a nonlinear approximation of the reaction function is incorporated for 

solving the problem more efficiently. This research tries to establish the theory of 

higher-order sensitivity analysis of network equilibrium flows in order to solve the 

problem with a nonlinear approximation of the reaction function. 

This research is also going to extend the applicability of directional 

derivative-based sensitivity analysis method. To generalize the directional 

derivative-based sensitivity analysis, the continuous differentiability assumption on 

the cost function is relaxed to be piecewise linear functions. Building on the original 

directional derivative-based method, an extended model will be studied for providing 

the required sensitivity information using piecewise linear cost functions. 
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CHAPTER 1 

Introduction 

1.1  Research Motivation 

Sensitivity analysis has been one of the most important aspects of applied mathematical 

programming, particularly in linear programming applications. Sensitivity analysis of network 

equilibrium models is very different from linear programming sensitivity analysis, yet it is no 

less important. Because of the essential nonlinearity of network equilibrium problems, any 

parameters perturbations will generally result in a change in the equilibrium solution. The 

problem of sensitivity analysis then becomes the problem of numerically approximating a 

new equilibrium solution resulting from any of a variety of parameter perturbations which 

may occur simultaneously. Therefore, the sensitivity analysis is particularly useful in control 

and pricing applications because if we can anticipate the effects of a change in the traffic 

infrastructure on the behavior of travelers, then we can utilize this knowledge to optimize 

these changes according to some goal fulfillments, such as a reduction in flows, higher 

revenue from congestion tolls, etc. 

Methods of sensitivity analysis for nonlinear programming problems [29] and for 

variational inequality problems [21, 40, 53, 59] have been applied to spatial price equilibrium 

problems [10, 22, 60]. However, direct application of these methods to the variational 

inequality formulation of the equilibrium network flow problem is not feasible since its 

solutions do not typically satisfy the required local uniqueness conditions. This is primarily 

due to the presence of path variables in the problem formulation. As a consequence, 

computational procedures which have thus far been proposed to find the gradients of arc-flow 

variables with respect to parameter perturbations require the determination of an unperturbed 

equilibrium path-flow vector with a restricted number of active paths (as for example in [24] 
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and [61]). However, since traditional algorithms (such as the Frank-Wolfe feasible direction 

algorithm) usually terminate with approximate solutions which do not satisfy these 

restrictions, one must employ auxiliary search procedures to find such path-flow vectors (as in 

the linear-programming approach of [61]). Thus, two kinds of methods, gradient-based 

method and directional derivative-based method, are proposed to overcome this issue. Based 

on these two kinds of methods, the sensitivity analysis of network equilibrium problems and 

its widespread applications have received large attention recently. It can be applied to solve 

bilevel network design problems, network signal control problems, toll pricing and 

origin-destination (OD) matrix estimation problems [18, 19, 30, 35, 65, 69, 71, 72]. 

Furthermore, the sensitivity analysis for combined distribution assignment model [57], 

combined modal split assignment model [72], and combined travel demand model [68] were 

also proposed. 

The network design problem is, in its most general form, “to choose facilities to add to a 

transportation network or to determine capacity enhancements of existing facilities of a 

transportation network which are, in some sense, optimal” [33]. Usually, this kind of problem 

can be casted as a Stackelberg game or a bilevel problem where the upper level problem aims 

to find the optimal signal setting or capacity enhancement of arcs which maximizes system 

performance and the lower level problem aims to solve the user equilibrium flows, 

respectively. In this research we will be concerned with one particular manifestation of this 

problem. For our purposes it is the problem of determining the link additions or link capacity 

enhancements (within an existing transportation network) that will “best” improve the traffic 

situation. 

Network design models can be classified in the following ways [25]: whether the 

investment decision variables are discrete (i.e., network design models are formulated in 

terms of discrete links to be considered for addition to an existing network) or continuous (i.e., 

network design models are formulated in terms of increase in the divisible capacity of each 
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link); whether the traffic assignment is a user equilibrium (i.e., each user tries to minimize 

his/her own journey time) or system equilibrium (i.e., the total journey time is minimized). In 

any case, the network might include any combination of rail, highway, or mass transit modes. 

For highway networks, which are the focus of this research, the user equilibrium model is 

much more realistic than the system equilibrium model; the system traffic equilibrium is an 

idealized target which will not be observed in practice unless cooperation among individual 

users is introduced, or, what is equivalent, a central authority with power to modify individual 

route choices is established. In other words, we recognize that individual drivers are free to 

make decisions, and that the transportation flow pattern which actually occurs will be derived 

from these decisions. This greatly complicates the solution of the network design problem. 

Clearly the mathematical program employed to determine optimal design or capacity 

enhancement program for such a network must include wither implicit or explicit constraints 

to ensure that the flow pattern is in accord with the expected behavior of users and providers 

of transportation. However, when we include such constraints, which create a nonconvex 

feasible set, we leave open the possibility that the new equilibrium flow redistribution actually 

degrades the optimization criterion employed. This phenomenon was firstly pointed out by 

Braess [8] for scalar network design problems employing user optimization as the behavioral 

description (when congestion externalities exist). Yet, in spite of these difficulties (i.e., the 

nonconvexities) some progress in the development of solution algorithms has been made. 

LeBlanc [41] formulated the network design model as a mixed integer programming 

problem, the integer variables being the set of arcs considered for addition to the network. 

This version of the network design problem is one of the largest of all spatial combinational 

problems. In the terminology of combinational problems, this problem is NP-hard. The 

number of alternative solutions is 2
L
, where L is the number of arcs. The feasible solution set 

which has to be search is enormous, and, despite much progress, the techniques for searching 

it are still quite crude. 
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Abdulaal and LeBlanc [2] formulated an alternative version of the network design problem 

in which continuous improvement variables are used instead of integer addition variables. 

Hence, their formulation is not a mixed programming problem, but it does include user 

equilibrium assignment constraints. They proposed two methods to solve the problem, one 

based on the work of Powell and the other using the Hook and Jeeves (H-J) algorithm. 

Morcotte [46], using the fact that the network assignment constraints can be formulated as a 

variational inequality problem, proposed the Constraint Accumulation Algorithm (CAA). 

However, he admits that this approach is still very difficult to apply even when few 

constraints are active. Friesz and Harker [34] solved the same problem using, what they called, 

the Iterative-Optimization Assignment Algorithm. Also, Marcotte [47] compared four 

heuristic algorithms on a small example problem of this type, and, most recently, 

Suwansirikul et al. [56] suggested an alternative heuristic called Equilibrium Decomposed 

Optimization (EOD). Many algorithms have been proposed for the bilevel programming 

problem, in which both levels of the problem are mathematical programs. Kolstad [39] 

suggests that these algorithms can be fit into following typology: (i) extreme point search 

methods, (ii) Kuhn-Tucker-Karush methods, and (iii) descent methods. Finally, and most 

importantly for our purposes, De Silva [26] presents a method which employs Fiacco and 

McCormick’s [30] and Fiacco’s [28] nonlinear programming sensitivity analysis results to 

calculate the implicit reaction functions for the second level in the bilevel problem. Chiou 

developed a series of solution methods such as gradient-based method, generalized bundle 

subgradient projection method, conjugate subgradient projection method to solve the 

continuous network design problems [12-14]. 

In regard to the network signal control problem (NSCP), the problem is to find the optimal 

signal setting which improves the performance of existing facilities in a transportation 

network. Conventional methods for optimizing signal settings can be divided into two types: 

stage-based and group-based approaches [4, 9, 11, 54, 58, 63]. The stage-based approach 
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divided the signal cycle into separate stages and solved the optimal signal settings for each 

group of compatible traffic movements in stages. This approach is regarded as superior in the 

concern for safety and loss of capacity with phase switching [58]. The group-based approach 

considered each group of traffic streams having right-of-way in the time domain directly. 

Compared with the stage-based approach, the group-based approach has a higher degree of 

flexibility in signal timing arrangement [63, 64]. However, the most optimization models 

proposed so far usually converged to a local optimal solution and without taking traffic 

rerouting effects into account when solving NSCP [9]. The equilibrium network signal control 

problem (ENSCP) is used to find an optimal network signal design when the network flow 

pattern is constrained to be equilibrium. Friesz [33] points out that this is a problem of interest 

because of Braess’ paradox [8]. This paradox shows that the congestion of the network may 

be severer when adding capacity to a congested network without taking the reaction of 

network users into consideration. Hence, in practice, the equilibrium network signal design 

problem must be solved by constraining the network flow pattern to meet user equilibrium. 

The user equilibrium network design with fixed transportation demand has been studied in 

both discrete [41] and continuous [2] versions. To help solve the signal control problem, 

Allsop [3] pointed out that the route choices of road users should be considered as the impacts 

of signal settings changing. Gartner et al. [36] and Fisk [31] described the signal control 

problem is a Stackelberg or leader-follower game between road users and the administration. 

The Stackelberg game can be represented as a bilevel problem where the upper level problem 

aims to find the optimal signal setting or link capacity expansions which maximizes system 

performance, and the lower level problem aims to solve the user equilibrium (UE) flows, 

respectively [5, 45]. 

1.2   Research Objectives and Scopes 

This research is going to extend the applicability of these two methods respectively. For 
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gradient-based method, we will introduce Kronecker product to calculate the second-order 

sensitivity information of network equilibrium flow. With the second-order sensitivity 

information, the response of the travelers with respect to the change in the traffic 

infrastructure or control policy can be approximated more precisely by a nonlinear reaction 

function. Based on the nonlinear reaction function, we can solve the network design problems 

and signal control problems with fewer iterations. For directional derivative-based method, 

we will relax the continuously differentiable assumption of arc cost functions in the network 

equilibrium problem by introducing piecewise linear arc cost functions instead. We will 

analyze the properties of the equilibrium solution in this generalized problem. Based on the 

original directional derivative-based method, an extended model will be proposed to solve the 

sensitivity information of the network equilibrium problem with piecewise linear arc cost 

functions. 

To develop sensitivity results, we begin in the Section 2.1 with a brief review of the basic 

network equilibrium problem, and in particular, the formulation of that problem as a 

variational inequality. This is followed in Section 2.2 with a formulation of an associated 

perturbed version of the equilibrium problem in which the perturbation parameters are 

associated with the arc-flow cost functions and/or travel demands. Two major types of the 

sensitivity analysis of static network equilibrium problems are reviewed in Section 2.3 and 

2.4, one is gradient-based method and the other is directional derivative-based method, 

respectively. Section 2.5 introduces applications of sensitivity analysis of network equilibrium 

problems. 

There are some issues There are some issues about TFM has been proposedby Patriksson 

(2004) [51], Josefsson and Patriksson (2007) [52], Marcotte and Patriksson (2007) [48] and 

Yang and Bell (2007) [67]. Section 3 has been written to clarify the regularity conditions of 

the Tobin-Friesz method (TFM) for user equilibrium sensitivity analysis presented in Tobin 

and Friesz [61] and rederived in Cho et al. [16]. We will discuss and demonstrate some 
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numerical examples appearing in the literature on user equilibrium sensitivity analysis about 

the issues in this section. 

In Section 4, we will introduce Kronecker product to calculate the second-order sensitivity 

information of network equilibrium flow based on row reduction gradient-based method. For 

directional derivative-based method, we will relax the continuously differentiable assumption 

of arc cost functions in the network equilibrium problem by introducing piecewise linear arc 

cost functions instead in Section 5. Finally, we provide numerical examples of calculation of 

high-order sensitivity information and directional derivatives for the extensions of 

gradient-based method and directional derivative-based method, respectively, and make a 

brief conclusion about the computational results and research findings so far. The notation 

used throughout the study is listed in Table 1. 

 

Table 1: The notation used in this study 

N  = the set of nodes of the network 

Nji ,  = specific nodes in the network 

A  = the set of arcs of the network 

Aa  = an arc in the network; a = (i, j) 

W  = the set of origin-destination pairs 

Ww  = an origin destination pair; w = (i, j) 

wP  = the set of paths between origin-destination pair w 

wPp  = a path between origin-destination pair w 

][ ap  = the arc/path incidence matrix, where 1 ap  if arc a is in path p, 0 

otherwise 

][ wp  = the origin-destination/path incidence matrix, where 1wp  if path 

wPp , 0 otherwise 
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wT  = the number of trips between origin destination pair w 

][ wTT   = the vector of all trips 

af  = the flow on arc p 

][ phh   = the vector of all path-flows 

af  = the flow on arc a 

][ aff   = the vector of all arc-flows; note that hf   

][ ayy   = the vector of all capacity variables that are desired to be increased 

 fta  = the cost on arc a as a function of all path-flows 

   ][ ftft a  = the vector of arc cost functions 

 hc p  = the cost on path p as a function of all path-flows 

   ][ hchc p  = the vector of path cost functions, note that    fchc T  
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CHAPTER 2 

Literature Review 

2.1   Formulations of Network Equilibrium Problem 

Most sensitivity analysis methods are developed with the fundamental theory of for 

nonlinear programming problems or variational inequality problems. With different problem 

formulations, various sensitivity analysis methods can be applied to calculate the sensitivity 

information respectively. Therefore, the essential of the sensitivity analysis of network 

equilibrium problems is the formulations of the network equilibrium problems. In the 

following sections, we summarize some important results from Tobin and Friesz [61] and Cho 

et al. [16]. 

Consider a transportation network G(N, A) with a finite set of nodes iN, and a finite set of 

links aA , together with a nonempty set of origin-destination (OD) pairs wW. Each wW is 

joined by a nonempty finite set of paths, pPw and the set P is the union of path set Pw for all 

OD pairs w. Let real numbers, nonnegative reals, and positive reals are denoted respectively 

by R; R+ and R++, and the cardinalities of A, W and P are denoted respectively by = |A|, = 

|W|, and = |P|. Each positive column vector, T = (Tw: wW) 
R , is designated as a possible 

travel demand vector. Each nonnegative column vector, h = (hp: pP) 
R , is designated as a 

path-flow vector. Each nonnegative column vector, f = (fa: aA) 
R , is designated as a 

arc-flow vector. The relationship between arc-flows, path-flows, and travel demand are given 

by 

hf  ,  (2.1) 

hT  ,  (2.2) 

where  is an  matrix, with ap = 1 if arc a belongs to path p and ap = 0 otherwise;  is 

an  matrix, with wp = 1 if OD-pair w belongs to path p and wp = 0 otherwise. Generally, 

 and  are the link/path and OD/path matrices associated with equilibrium paths respectively. 
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Let t: 
  RR  be an arc cost function and t(f) = (ta(f): aA) be the vector of arc cost 

functions on each arc, aA, for a given arc-flow f. Hence, the path cost of each path, pP is 

given by 

   fthc T
p  .  (2.3) 

For each f aR  and wW, the minimum path cost is denoted by 

  wpw Pphc  :min .  (2.4) 

Based on the preliminary above, Wardrop stated two principles that tend to model the nature 

of traffic behavior [62]. The first principle states the nature from a user’s point of view, and 

the second principle describes the desirable behavior from the system designer’s standpoint. 

 

Wardrop’s first principle:  

The travel time on all the routes actually used are equal, and less than those which would 

be experienced by a single vehicle on any unused route. 

 

Wardrop’s second principle:  

The average journey time is a minimum. This amounts to minimizing t(f)
T
f over feasible 

aggregate flows f. 

 

Then, we may now make the following definition: 

 

Definition 2.1 (User equilibrium) 

A flow pattern (f, ) satisfying the following conditions is a user equilibrium: 

  wwpp Pphch  ,0][  ,  (2.5) 

  wwp Pphc  ,0 ,  (2.6) 
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wTh w

Pp

p

w




,0 ,  (2.7) 

hf  ,  (2.8) 

0h ,  (2.9) 

0 .  (2.10) 

Expressions (2.5) and (2.6) are recognized as equivalent to Wardrop’s first principle [62]. 

They require that for utilized paths between a given OD pair, path cost equals the minimum 

path cost; paths whose costs exceed that minimum are not utilized. A user equilibrium flow 

pattern will ensure when no individual user has an incentive for deviating from the current 

chosen path. Expression (2.7) is a statement of flow conservation; (2.8) is definitional; (2.9) 

and (2.10) are nonnegativity conditions. Based on the definition of user equilibrium, the 

common formulations of network equilibrium problems are introduced as follows. 

2.1.1  Nonlinear Complementarity Formulation 

It is well known that the conditions defining user equilibrium can be formulated as a 

nonlinear complementarity problem (NCP). 

A NCP is as follows: find x such that 

    0,0,0  xxFxxF .  (2.11) 

Aashitiani and Magnanti [1] showed that the user equilibrium conditions can be placed in this 

form when 

 ,hx  ,  (2.12) 

    







 



wThPphcxF w

Pp

pwwp

w

,0;, ,  (2.13) 

provided arc costs are positive. 

By transforming the NCP to a fixed-point problem and applying Brouwer’s theorem, 

Aashitiani and Magnanti [1] were able to establish a quite general existence theorem for user 
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equilibrium. They found that a user equilibrium will exist when the arc cost functions are 

positive and continuous, and the travel demands are nonnegative, continuous and bounded 

from above. They also employed results from complementarity theory to establish that a user 

equilibrium is unique if arc cost functions and negative demand functions are strictly 

monotone increasing. 

2.1.2  Variational Inequality Formulation 

It is also well known that the user equilibrium conditions can be formulated as a variational 

inequality problem (VIP). 

A VIP is as follows: find x
*
X such that 

   XyxyxF  ,0** .  (2.14) 

It can be shown that x
*
 is a solution of NCP (2.11) if, and only if, it solves the VIP of 

finding x
*
R+ [38], such that 

    RyxyxF ,0** .  (2.15) 

Variational inequality formulations of network equilibrium derived from NCPs have been 

studied by Fisk and Boyce [32] and Pang [50]. It is well known that if F(x) is continuous and 

X is compact and convex, Eq. (2.14) has a solution. It is also well known that if F(x) is strictly 

monotone on X, any solution of Eq. (2.14) is unique. In particular, Dafermos [20] showed that 

the user equilibrium conditions are completely equivalent to the VIP of finding (x
*
, T

*
), 

such that  

         TfTTTffft ,,0****  .  (2.16) 

where  T  is the inverse demand function for OD pairs, and  

 








 


0;0;;,0:, ThhfwThTf w

Pp

p

w

.  (2.17) 

Smith also derived a similar result for the fixed demand case [55]. Dafermos observed that 

such formulations have powerful theorem for VIPs may be employed to establish the 
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qualitative properties if a user equilibrium [20]. 

2.1.3  Mathematical Programming Formulation 

It is also well known that the VIP is a necessary condition for x
*
 to be a local minimum of 

the mathematical program: 

  XxdyyF
x

 s.t.,min ,  (2.18) 

provided the Jacobian F(x) is a symmetric matrix. The VIP (2.14) and the mathematical 

program (2.18) are completely equivalent and possess a unique solution when X is a convex 

set and F(x) is symmetric and positive definite.  

It is then immediate from Eq. (2.16) that a user equilibrium may be found when c(f) and 

(T) are symmetric matrices, by solving  

       Tfdzzdyyt

i j
T

ijij

a
f

aa ,s.t.,min  ,  (2.19) 

which is ca convex mathematical program with an unique global minimum when t(f) and 

 T  are positive definite. The mathematical program (2.19) is essentially Beckmann’s 

equivalent optimization problem for user equilibrium [6]. Actually Beckmann’s original 

formulation dealt only with separable functions so that the symmetric restrictions necessary 

for writing down Eq. (2.19) are satisfied trivially. Originally Beckmann derived Eq. (2.19) by 

first postulating its validity and then showing that the associated Karush-Kuhn-Tucker (KKT) 

conditions are identical to the equilibrium conditions. 

2.2   Perturbation System of Network Equilibrium Problem 

To formulate this perturbation problem, suppose that the flow-cost function and travel 

demand vector are influenced by some finite-dimensional vector of perturbations, R
k
. In 

particular, suppose that a given function, 0, and that it is meaningful to consider changes in c0 

and T0 corresponding to parameter values in some neighborhood, , of 0 in the parameter 

space R
k
. Then, if for each  we define the corresponding perturbation vector,  =  - 0, 
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we may reparameterize these functions in term of the associated set of perturbation vectors, D 

= {R
k
 : +0 = }. Of special interest is the zero perturbation vector, 0D, which 

corresponds to the initial (unperturbed) parameter vector, 0. In particular, we shall be 

primarily concerned with small perturbations in this initial vector 0, and hence assume for 

convenience that all sufficiently small perturbations are possible. To be more precise, if for 

each xR
n
 and positive scalar, >0, we designate the set B(x) = {yR

n
 :∥x-y∥< }, as an 

x-neighborhood in R
n
, then we now assume that D is bounded (i.e., is contained some 

0-neighborhood). Finally, to study the continuity properties of perturbations, it is convenient 

to assume that D is a closed set (and hence that D is compact in R
k
). In summary then, we now 

say that: 

 

Definition 2.1  

Each compact set, DR
k
, containing a 0-neighborhood is designated as an admissible 

perturbation domain. 

 

Given any perturbation domain, D, it is postulated that for each D we may associate a 

unique arc cost function, t(,), and positive travel demand vector T() (where by definition t0 

= t(,0) and T0 = T(0) ). Hence if for each D and fR

 we now let 

      ThhfRhfH    and :, ,  (2.20) 

and define the feasible arc-flow set corresponding to (2.20) by  

        RfHRf ,: ,  (2.21) 

then the set if equilibrium arc-flow vectors for the equilibrium problem defined by t(,) 

and T() is now given by the solution set for the associated VIP, i.e. by  

               gfgftftVI
T

,0,:,, ,  (2.22) 

Our primary concern in the present study is with those perturbation problems for which 

these equilibrium arc-flow vectors are at least locally unique. Hence we now define a general 
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class of perturbation systems with this property as follows. If the closure of a set XR
n
, is 

designed by cl(X), then we now say that: 

 

Definition 2.2  

For any perturbation domain, D, continuous functions, ,: 
  RDRt  

 RDT : , and 

open set, FR

, the ordered collection (D, F, T, t) is designated as a perturbation system iff 

the following local uniqueness condition is satisfied: 

 

Condition 2.1 (Local uniqueness) 

For all perturbation vectors, D,  

           FcltVIFtVI   ,,1,, . 

 

Condition 2.1 asserts that for each perturbation vector, D, the VIP in (2.22) has exactly 

one solution,     Ff   , and that there exist no other solutions in    Fcl  . If 

       FtVI ,, , then f() is locally unique with respect to F, and if        FtVI ,, , 

then f() is globally unique in   . In all cases, the solution vectors, f(), define a unique 

equilibrium arc-flow function, f : D→F, with respect to the region FR

. In these terms, our 

primary objective is to study the properties of such functions. 

 

Theorem 2.1 (Continuity of arc-flows) 

For each perturbation system, (D, F, T, t), the associated equilibrium arc-flow function, f : 

D→F, is continuous. 

 

Notice also that the continuity of perturbed equilibrium arc-flows depends only on the 

continuity of t and T. In particular, this continuity property is independent of any 

monotonicity properties of c, as employed for example in the continuity theorems of Fang 
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[27], Dafermos and Nagurney [23] and Dafermos [21]. 

But while this result may be said to provide a satisfactory conceptual framework for the 

analysis of small perturbations in equilibrium arc-flows, it fails to yield any operational 

procedures for doing so. Hence, our main objective is to impose stronger structural conditions 

on perturbation system, (D, F, T, t), which will yield a procedure for approximating 

equilibrium arc-flow function, f : D→F in some small neighborhood of the unperturbed state, 

=0. 

Moreover, in order to preserve the uniqueness of the arc-flow equilibria, f(), we require a 

stronger condition on arc cost functions c(, ). In particular, a function    RR: , will be 

said to be strictly monotone on 
 RS  iff [(x) - (x)]

T
(x - y) > 0 for the distinct x, yS, 

and we now require that (D, F, T, t) satisfy the following local strict monotonicity condition: 

 

Condition 2.2 (Local strict monotonicity) 

There exists some 0-neighborhood, DBs   such that t(, ) is strictly monotone on 

   Fcl  for all sB . 

 

In the following gradient-based sensitivity analysis method, they all restrict the network to 

those arcs with positive flows and only consider path variables hp which are positive in h
*
. To 

guarantee positivity of h(, h0) for all  sufficiently close to zero, it suffices to require that in 

the perturbed network equilibrium problem, there exists at least one equilibrium path-flow 

vector in which all minimum-cost paths are used. Hence, if we let 

     0,
   RfHH  , 

denote the set of positive flow vector in    ,fH , then the desired local positivity 

condition can be stated as follows: 
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Condition 2.3 (Local positivity) 

   0H . 

 

Based on Condition 2.2 and 2.3, we can obtain the local existence condition of the 

perturbation system as following: 

 

Definition 2.3 

For any perturbation domain, D, continuous functions, ,: 
  RDRc  

 RDT : , 

and open set FR

, the ordered collection (D, F, T, t) is designated as a locally regular 

perturbation system iff (D, F, T, t) satisfies Condition 2.3 and 2.4 together with the following 

local existence condition: 

 

Condition 2.4 (Local existence) 

For all perturbation vectors, D,        FtVI ,, . 

 

Moreover, if we want to analyze the local sensitivity of equilibrium arc-flow functions, we 

may now define the relevant class of differentiable systems for our purposes as follows: 

 

Definition 2.4 

A locally regular perturbation system, (D, F, T, t), is said to be locally smooth iff there 

exists a 0-neighborhood, B(0)D, and an f(0)-neighborhood, F(0)   
RF 0 , such that the 

restricted functions,     
 RBFt 00:  and   

 RBT 0: , are continuously differentiable, 

and the following additional condition is satisfied: 

 

Condition 2.5 (Local positive definiteness) 

  0,0ftf  is positive definite. 
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Based on Definition 2.1~2.4, several gradient-based sensitivity analysis methods can be 

developed. The following section will summarize the major results of gradient-based 

sensitivity analysis methods. 

 

2.3   Gradient-Based Sensitivity Analysis 

The sensitivity analysis methods for nonlinear programming problems [19] and variational 

inequality problems [21, 40, 59] cannot evaluate the gradient-based sensitivity analysis 

formula for the traffic equilibrium problem directly due to the path-flow solution does not 

satisfy the local uniqueness condition. As a sequence, a restricted equilibrium problem is 

developed by Tobin and Friesz [61] and the gradient-based sensitivity analysis formula of 

deterministic traffic equilibrium can be applied. In Tobin and Friesz method (TFM) [61], they 

restricted the network to those with positive flow. According to the restricted network, 

assuming that a strict complementary slackness condition is satisfied and the extreme point is 

nondegenerate as follows: 

 

Condition 2.6 (Strict complementary slackness) 

If   00* ph , then 0w  for origin-destination pair wW. 

 

Condition 2.7 (Nondegenerate extreme point) 

There exists  0*h  that is a nondegenerate extreme point of  0,*fH  in the sense that 

 0*h  corresponds to a unique basis and the number of paths with positive flow is equal to the 

rank of ],[ TT   after restricting the network to arcs with positive flows. 

 

Also, the arc cost functions are assumed to be continuously differentiable and strictly 

monotone increasing. Under these assumptions, the user equilibrium conditions can reduce to 
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a perturbation system of equations when perturbation parameter is zero: 

  00,*  T

p hc ,  (2.23) 

  00*  Th .  (2.24) 

In this perturbation system, cost functions and OD demand are functions of perturbation 

parameter, . Moreover, the first equation in the system represents the equilibrium condition, 

and the second one represents the flow conservation. If taking the derivative of the system 

with respect to perturbation parameter and applying the implicit function theorem, one can 

calculate a unique arc-flow sensitivity that does not depend on which extreme point was 

chosen. The sensitivity formula of network equilibria at = 0 is  

 
 

 
  


































0

0,

0

0 *

2221

1211

T

hc

BB

BBh
p










.  (2.25) 

where 

      








 1*
11*1*

11 0,0,0, hchcIhcB p

T

p

T

p ,    

     11*1*

12 0,0,


 T

p

T

p hchcB ,    

     1*
11*

21 0,0,


 hchcB p

T

p ,    

   11*

22 0,


 T

p hcB .    

The derivatives of path-flows with respect to  at = 0 are 

   00, 12

*

11 TBhcBh p   .  (2.26) 

And the derivatives of arc-flows with respect to  at = 0 for the restricted problem can be 

written as 

   00 hf   .  (2.27) 

Since Tobin and Friesz proposed their method, it has been the most popular tool for 

producing sensitivity information in network equilibrium problems. However, the 

assumptions of their method are too strong to find a nondegenerate extreme point in the large 
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scale network topology. Consequently, two reduction methods are proposed to resolve this 

restriction. 

2.3.1  Row Reduction Gradient-Based Method 

In order to overcome the restriction of Tobin and Friesz method, Cho et al. [16] proposed a 

row reduction gradient-based method to calculate the sensitivity information of equilibrium 

network flows in the large scale network topology. The row reduction method assumed the arc 

cost functions are strictly monotone and the Jacobian matrix is positive definite. Also 

assuming that there exists a set of strictly positive flows on all the equilibrium paths when 

perturbation parameter is zero, then the solution of the perturbation system of equations exist 

and satisfy the local uniqueness condition. 

In the row reduction method, a maximum number of linearly independent equations from 

the system (2.1) and (2.2) is chosen to express dependent arc-flows in terms of independent 

arc-flows and OD demand vectors. In other words, they select a maximal set of rows from , 

says 1, for which the combined matrix [1; ] is of full row rank. Hence, we can partition  

as 















2

1
.  (2.28) 

Therefore, there must exist matrices M1 and M2 such that 

 2112 MM .  (2.29) 

Moreover, one can induce that the dependence arc-flow vector, f2, can be expressed as 

 TMfMhMhMhf 21121122  .  (2.30) 

Based on 1, and independence arc-flow vector, f1, the arc-based reduction method 

employed a “minimum-distance” technique to select a unique equilibrium path-flow vector 

for each equilibrium arc-flow vector as follows: 
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 
  
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
 .  (2.31) 

Moreover, let 
























2221

1211

1

1

111

MM

MM

TT

TT

,  (2.32) 

Eq.( 2.3-28) can be rewritten in compact form as: 

    TNfNhNhfh 2110001 ,,  ,  (2.33) 

where 























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




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




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



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


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1

1
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0
0

0

TT

TTT

I

I
N ,  (2.34) 

211111 MMN TT
 ,  (2.35) 

221212 MMN TT
 .  (2.36) 

Moreover, from Eq. (2.29) and 










1  is full row rank, one can induce that 

  
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2221

12111
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221
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TTT

.  (2.37) 

By Eq. (2.35) and (2.36), we can conclude that the flow-conservation conditions in Eq. (2.30) 

can be written as 

  0222112  TNffN ,  (2.38) 

  022  TNMf ,  (2.39) 

where 

 INM  12 .  (2.40) 

According to the perturbed network equilibrium problem, we can obtain the following system 

equations: 



 

22 

 

 
 

 


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

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




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TNMf
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2
0
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,
,, .  (2.41) 

The above system equations are continuously differentiable on all feasible solution sets. After 

differentiating Eq. (2.41) and applying the implicit function theorem, the sensitivity formula 

of row reduction method can be obtained and the invertibility of the inverse matrix is 

guaranteed exists due to the matrix [1; ] is of full row rank. 

   
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 ,  (2.42) 
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2.3.2  Column Reduction Gradient-Based Method 

The other gradient-based sensitivity analysis approach, column reduction method [67], was 

proposed to deal with the problem in the large scale network topology also. In the column 

reduction method, the link cost function t(f, ) is assumed to be positive and strictly monotone 

in f for f ≥ 0, and once continuously differentiable in (f, ); the travel demand function is 

assumed to be once continuously differentiable in . Furthermore, it is assumed that there 

exists a set of strictly positive flows on all the equilibrated paths when the perturbation 

parameter is zero. 

To overcome the non-uniqueness of path-flows in the equilibrium network flow problem, 

column reduction approach choose a maximal set of equilibrated and linearly independent 

(ELI) paths or columns in [; ]
T
. Denote the set of ELI paths as R

~
 and the corresponding 
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path-flow variables as h
~

, and the further reduced arc/path and OD/path incidence matrices as 


~

 and 
~

. Eq. (2.1) and (2.2) can be rewritten as following: 
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where “c” denotes the corresponding “complementary” matrices and vector to the ELI paths.  

For sufficiently small ε near zero, one can always fix the complementary or non-basic 

path-flow variables as  cc ff
~~

 and solve the following linear system of equations for f
~

 

for any ε near zero: 
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In this method, it is sufficient to consider the ELI working paths only. Hence, the 

equilibrium system, Eq. (2.23) and (2.24), can be reduced to: 

  0
~

0,~ *  Thc ,  (2.47) 

  00
~~ *  Th ,  (2.48) 

where  0,~ *hc  represents the corresponding reduced cost vector. Based on the equilibrium 

system in Eq. (2.47) and (2.48), differentiating both sides of the system with respect to 

perturbations ε yields: 
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where the Jacobian 
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is well defined and 

   
~

0,
~

0,~ **
~ fthc T

fh
.  (2.51) 

Applying the general implicit function theorem to Eq. (2.49), the sensitivity formula of 
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column reduction method can be derived: 
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Let 
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Then the derivatives of the ELI working path-flows with respect to ε at ε=0 are: 

   00,~~
12

*

11 TBhcBh   .  (2.54) 

In view of    0
~

0,
~~

12
*

11 TBftBf T
   and 0

~
 ch  as well as  

   0,
~

0,~ ** fthc T
  , the derivative of arc-flows with respect to ε at ε=0 are eventually 

obtained as: 

   0
~
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~~

12
*

11 TBftBf T
  .  (2.55) 

We also have the derivatives of the equilibrium OD travel cost μ with respect to ε at ε=0 given 

as: 

   00,
~

22
*

21 TBftB    .  (2.56) 

2.4   Directional Derivative-Based Sensitivity Analysis 

The other researches focused on calculating the directional derivatives of the equilibrium 

arc-flow with respect to perturbation parameters. The papers by Qiu and Magnanti [53], Yen 

[70], Outrata [49], Patriksson and Rockafellar [52], Patriksson [51], Josefsson and Patriksson 

[37], and Lu [42] proposed the theoretical development of sensitivity analysis of traffic 

equilibria and provided sufficient conditions for the existence of directional derivatives. 

Qiu and Magnanti [53] proposed an approach for conducting sensitivity analysis of 

variational inequalities defined on polyhedral sets. In order to overcome the non-uniqueness 

issue of the path-flow pattern, the conditions imposed in their method do not imply the local 

uniqueness of the perturbed solution. They generalized the usual definition of differentiability 
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to a point-to-set mapping. Hence, their method can be used to derive sensitivity properties for 

a number of equilibrium problems including traffic equilibrium problems. 

Let the cost function t(, ) and the set 

 satisfy assumptions of continuity, convergence, 

differentiability and positive definite; the derivative in the direction 0 solves the following 

variational inequality: 

VI

: find f


 satisfying  

       0,, 0
****  ffftfft

T

f     for any f ’

,  (2.57) 

where 

 ,for0,for0,for,0, 321 JphJphJpUIShhhff ppp  ,  

  (2.58) 

and 
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Yen [70] considered a network with locally Lipschitz, locally strongly monotone arc cost 

functions and studied the sensitivity of solutions to a parametric variational inequality with a 

parametric polyhedral constraint which depends on a pair of perturbation parameters. It is 

shown that the equilibrium pattern is locally unique and is a locally Lipschitz function with 

respect to the perturbation of arc cost functions and travel demand. 

Outrata [49] considered the traffic equilibrium problem described by the generalized 

equation and assumed arc cost functions are strongly monotone on the feasible set and with a 

strictly copositive partial Jacobian matrix. Then the solution mapping of the equilibrium 
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traffic pattern is directional differentiable with respect to the perturbation parameter. 

Patriksson and Rockafellar [52] considered variational inequality problems over polyhedral 

sets and assumed the arc cost functions to be monotone and the negative of the travel demand 

functions to be strictly monotone. If the Jacobian matrices of the arc cost functions and the 

negative of the travel demand functions are positive definite, then the traffic equilibria is 

single-valued, Lipschitz continuous, positively homogeneous and piecewise linear with 

respect to the perturbations of the arc cost function and the travel demand function. The 

sensitivity analysis of deterministic and elastic demand can be obtained by solving linearized 

traffic equilibrium problems. 

Patriksson [51] gave a complete study of the uniqueness, continuity and directional 

differentiability for the sensitivity of the deterministic and the elastic demand traffic 

equilibrium models. The variational inequality form of the sensitivity problem coincides with 

the first-order optimality conditions for a similar traffic equilibrium problem. Hence, the 

directional derivatives can be calculated by a traffic equilibrium solver. 

Patriksson and Rockafellar [52] studied the local uniqueness, Lipschitz continuity, and 

semidifferentiability of the elastic-demand traffic user equilibria under perturbations of the arc 

cost function and the travel demand function. By assuming the negative of the travel demand 

function to be strictly monotone in the OD cost, they formulated the problem as a VI in the (x, 

d) space. Other assumptions in that paper included the requirement that the arc cost function 

and the negative of the inverse demand function be locally strongly monotone on the affine 

hull of the critical cone. Recently, Josefsson and Patriksson [37] specialized the analysis to the 

case of separable arc cost and demand functions, with the latter also being invertible. 

Josefsson and Patriksson [37] based on the results of Patriksson [51] and studied the 

sensitivity analysis of the traffic equilibrium model with separable arc cost and demand 

functions. They formulated the sensitivity analysis problem into a linear complementary 

problem equivalent to a convex quadratic program which can be calculated by a 
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state-of-the-art traffic equilibrium solver efficiently. Their method is introduced in the 

following. 

For a variational inequality problem: 

    Xxxxxf
T

 ,0, ** , 

It can formulated as a more natural form as follows: 

   **, xNxf X   

where NX denotes the normal cone to X at x: 
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Let S denote the solution mapping from kR  to nRx  that 
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. 

The directional derivative of the solution set S() is denoted the as DS(*|x*)(’) in the 

following: 
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TX denotes the tangent cone to X and  dBxbAxRxX n  ;| . 

When the formulation is applied to the sensitivity analysis of traffic equilibria, let 
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Based on the VI form of the equilibrium network flow problem, the directional derivatives 

of equilibrium network flows can be calculated by solving a quadratic optimization problem 

[51] as 
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In this model, directional derivatives of link flow, path-flow, and travel demand are denoted 

by f’, h’, and d’, respectively. The directional derivative can be interpreted as the direction and 

the rate of change of the equilibrium solution when perturbation parameter is perturbed along 

the direction ’. The set H’ is the set of directional derivatives of path-flow which keep the 

feasibility and optimality of the original problem in the first order approximation [37, 52]. 

Lu [42] applied some recently developed sensitivity analysis techniques for generalized 

equations to analyze the behavior of the equilibrium arc-flow of such a problem when both 
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the arc cost function and the travel demand vary. The semiderivatives can be calculated by 

solving a linear traffic user equilibrium problem and the derivatives by matrix multiplication 

together with the solution of a linear equation the dimension of which is at most the number 

of arcs. 

2.5   Discussion 

The gradient-based method applied the classical implicit function theorem to the sensitivity 

analysis of equilibrium network flow problems. Performing the sensitivity analysis either by 

the row reduction method or the column reduction method, the arc-flow derivatives are 

identical. In the row reduction method, the arc-flow derivatives are involved with both 

independent arcs and dependent ones. However, in the original column reduction method, the 

arc-flow derivatives are only involved with independent paths which did not represent the 

entirely user behavior when perturbing the system. Compared with the gradient-based method, 

the directional derivative-based method is developed by the theory of VI and GE. Moreover, 

directional derivative-based method can deal with more general problem that the equilibrium 

solution is non-differentiable with respect to perturbation parameters. 



 

30 

 

CHAPTER 3 

The Issues of Nondegeneracy of Sensitivity Analysis 

This chapter has been written to clarify the regularity conditions governing application of 

the Tobin-Friesz method (TFM) for user equilibrium sensitivity analysis presented in Tobin 

and Friesz [61] and rederived in Cho et al. [16]. We have found that certain statements and 

numerical examples found in Patriksson [51], Josefsson and Patriksson [52] and Marcotte and 

Patriksson [48], if taken out of context, leave the impression that the TFM for user 

equilibrium sensitivity analysis is somehow “wrong” when, in fact, it works quite well 

provided its application is limited to those problems fulfilling the regularity conditions 

reviewed in this chapter. The following contents are taken from our paper [17]. 

3.1   The principal issues 

Although the TFM for sensitivity analyses, which was re-derived using alternative 

arguments by Cho et al. (2000) [16], has been widely used, it has been criticized by Patriksson 

(2004) [51], Josefsson and Patriksson (2007) [52], Marcotte and Patriksson (2007) [48] and 

Yang and Bell (2007) [67] on the basis of the following: 

 

Issue 1 

To apply the TFM, one must begin with an unperturbed solution that is a nondegenerate 

extreme point. This regularity condition represents a critical assumption. Example problems 

have been published that show the TFM may fail when the nondegeneracy assumption is 

relaxed. However, it is possible to modify the degenerate solutions employed in example 7.3.2 

of Josefsson and Patriksson [52], as shown in Section 3.2.2, to create valid initial solutions 

that are nondegenerate. However, our remarks should not be misconstrued as a claim that such 

modifications will always be possible, for they will not. However, in the event it is possible to 

construct a nondegenerate extreme point solution from a degenerate solution, the TFM works. 
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Moreover, the rederived method by Cho et al. [16] can sometimes be applied to cases where 

an unperturbed solution is a nondegenerate extreme point as shown in Section 3.2.6 for 

examples 7.3.2 and 7.3.3 of Josefsson and Patriksson [52]. 

 

Issue 2 

From Tobin and Friesz [61], it is clear that existence and invertibility of the Jacobian matrix 

of the path cost vector, a submatrix of the entire Jacobian matrix formed from the 

Kuhn-Tucker conditions (including the complementary slackness conditions), are crucial to 

the validity of the TFM. Differentiability of the relevant functions assures existence of that 

Jacobian, and the stipulation of differentiability as a regularity condition is not at issue. 

However, Bell and Iida [7] correctly observed that the Jacobian of the path cost vector is not 

invertible when the number of paths is larger than the number of arcs, as example 6 of Yang 

and Bell [67] illustrates. In Section 3.3, we show that sometimes it is possible for the whole 

Jacobian matrix to be invertible even though the aforementioned submatrix (the Jacobian 

matrix of the path cost vector) is not invertible. Moreover, in assessing the TFM, one should 

not forget that the alternative derivation of identical sensitivity analysis formulae in Cho et al. 

[16] was performed to overcome the potential noninvertibility of the Jacobian matrix of the 

path cost vector, provided the appropriate derivatives needed to express the Jacobian may be 

calculated. 

 

Issue 3 

Violation of traditional strict complementarity may occur. Because one of the regularity 

conditions stipulated by Tobin and Friesz [61] is strict complementarity, it is reasonable to 

expect that the violation of some form of strict complementarity would generally prevent 

sensitivity analysis based on the TFM. However, in this chapter, we show by numerical 

example that sensitivity analysis may sometimes be performed using the TFM even if strict 
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complementarity is violated, provided there is differentiability at the unperturbed user 

equilibrium solution. Example 5 in Patriksson [51] is an instance wherein both strict 

complementarity and differentiability fail to hold. In fact, sensitivity analysis of such a 

non-differentiable problem cannot be conducted using the TFM. However, when we consider 

example 7.3.1 of Josefsson and Patriksson [52], which does not fulfill strict complementarity 

but meets the differentiability standard, we find the TFM may be used successfully, as we 

illustrate in Section 3.2.2. 

 

In the following sections, we discuss some numerical examples appearing in the literature 

on user equilibrium sensitivity analysis about the issues mentioned above. 

 

3.2   Counterexamples in Patriksson (2004), Josefsson and Patriksson (2007) and 

Marcotte and Patriksson (2007) 

In Patriksson [51], there is an illustrative example explaining that the TFM can provide an 

inaccurate result. Also, Josefsson and Patriksson [52] proposed three counterexamples which 

depicted some pitfalls of the TFM and which were re-used in Marcotte and Patriksson [48]. 

However, in the aforementioned examples, the authors either ignored the requirements of the 

TFM or applied the TFM to non-differentiable examples which violated the method’s basic 

assumptions. As such the examples are not bonafide counter examples. In the discussion 

below, we will carry out TFM calculations for some of the aforementioned examples while 

enforcing the regularity conditions of TFM. 

3.2.1  Example 5 in Patriksson (2004) 

In Patriksson [51], a 5 node, 7 arc network with 2 origin-destination (OD) pairs and 6 paths 

is depicted and repeated here as Fig. 1. There are two fixed travel demands for OD pairs (1, 4), 

and (3, 5). There are three paths corresponding to each OD pair:  3,11 p ,  4,7,12 p  and 
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 4,23 p  for OD pair (1,4) and  2,54 p ,  7,1,55 p  and  7,66 p  for OD pair (3, 5). 

The arc cost functions are 

  111 10 fft   

  222 5.0 fft   

  333 103 fft   

  444 101 fft   

  555 fft   

  666 2 fft   

  777 fft   

 

1 2 41

3

5

3

5 6

72 4

 

Fig. 1: The network of Patriksson’s example 5 

 

The travel demands are subject to perturbations expressed as the following vector: 

 T3514   . When 0 , the equilibrium arc flow solution is    Tf 0,0,1,1,0,2,00*  . 

However, as mentioned in Patriksson [51], the solution does not obey strict complementarity. 

Also, the equilibrium solution is not differentiable. Therefore, this example problem is not one 

for which the TFM is applicable. That is, the TFM was never intended to apply to such a 

problem, and the example is not a counterexample. 



 

34 

 

3.2.2  Example 7.3.1 in Josefsson and Patriksson (2007) 

This example, proposed by Josefsson and Patriksson [52], considers the 4 node, 5 arc 

network with 2 OD pairs and 4 paths depicted in Fig. 2. There are fixed demands of 2 and 1 

units of flow for OD pairs (1, 2) and (4, 2), respectively. There are four paths corresponding to 

the two OD pairs: 11 p ,  3,22 p ,  43 p  and  5,34 p . The arc cost functions are 

    111 2, fft  

  222 fft   

  133 ft  

  2444  fft  

  555 fft   

When 0 , the equilibrium arc flow solution is    Tf 1,0,2,1,10*  . (Note that the arc flow 

solution, namely    Tf 1,1,1,1,10*  , given in Josefsson and Patriksson [52] is incorrect.) Since 

the solution violates strict complementary, the TFM should was never intended for application 

to this problem. However, since strict complementarity is not a necessary condition for 

differentiability, it is possible that the problem is differentiable in the neighborhood of 0  

and that the TFM may be applied, as is next discussed. 

 

1 4

2

3

1

3

2 5

4

 

Fig. 2: The network of Josefsson and Patriksson’s example 7.3.1 
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We consider perturbations of the travel demands; that is,  T4212   . The unperturbed 

solution is    Tf 1,0,2,1,10*  , and the restricted arc-path and OD-path incidence matrices are 
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In the restricted arc-path and OD-path incidence matrices, arc 4 is eliminated in the restricted 

network. The rows of the restricted arc-path incidence matrix correspond to arcs 1, 2, 3 and 5. 

The columns of arc-path incidence matrix correspond to paths 1, 2 and 4, respectively. The 

corresponding path flow solution is    Th 1,1,10*  >0. The rank of ],[ TT   is equal to the 

number of paths with positive flow, which means that  0*h  is a nondegenerate extreme point. 

It follows that 

 














































00100

00011

10100

01010

01002

0

0,* T
h hc

 

 
 








































0

0

0

0

1

0

0,*

T

hc



  

Therefore, the sensitivity of equilibrium arc flows can be obtained by Eq. (2.25) ~ (2.27) as 





















0

3/1

3/1

3/1

*f  

which is identical to the solution reported in Josefsson and Patriksson [52]. 

3.2.3  Example 7.3.2 in Josefsson and Patriksson (2007) 

In another example, Josefsson and Patriksson [52] considered a 3 node, 4 arc network with 
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the single OD pair (1, 3) and 4 paths, as depicted in Fig. 3. There is a fixed demand of 2 units 

of flow for OD pair (1, 3). Also there are four paths:  3,11 p ,  4,12 p ,  3,23 p  and 

 4,24 p . Furthermore, the arc cost functions are 

    111 , fft  

  222 fft   

  333 fft   

  444 fft   

where   is a scalar perturbation parameter of the cost function of arc 1. When 0 , the 

equilibrium arc flow solution is    Tf 1,1,1,10*  . Thus, the restricted arc-path and OD-path 

incidence matrices are 





















1010

0101

1100

0011

 and  1111 . 

 

1 2 3

1

2

3

4

 

Fig. 3: The network of Josefsson and Patriksson’s example 7.3.2 

 

In this example, the rank of ],[ TT   is 3. As the analysis in Josefsson and Patriksson [52] 

establishes, the possible number of paths having non-zero flow is either 2 or 4. It is 

impossible to find a nondegenerate path flow solution with only 3 non-zero flows. In other 

words, it is impossible to satisfy the requirements of the TFM in this example. Therefore, the 

TFM should not be applied in this example to calculate the sensitivity information even 

though the gradient exists, and the example does not constitute a counterexample. 
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3.2.4  Example 7.3.3 in Josefsson and Patriksson (2007) 

In this example, Josefsson and Patriksson [52] considered the 3 node, 3 arc network with 3 

OD pairs and 4 paths depicted in Fig. 4. There are three fixed demands of 1 unit of flow for 

each of the OD pairs (1, 2), (1, 3) and (3, 2). There are four paths corresponding to the three 

OD pairs denoted by 11 p ,  3,22 p ,  23 p  and  34 p . The arc cost functions are 

given by 

    111 2, fft  

  222 fft   

  333 fft   

where   is again a scalar perturbation parameter. When 0 , the equilibrium arc flow 

solution is    Tf 1,1,10*  . Thus, the restricted arc-path and OD-path incidence matrices are 



















1010

0110

0001

 and 



















1000

0100

0011

. 

 

1 3

2

1

2

3

 

Fig. 4: The network of Josefsson and Patriksson’s example 7.3.3 

 

In this example, the rank of ],[ TT   is 4. Path 3 is the only path connecting OD pair (1, 3); 

so the flow on path 3 is exactly equal to the associated demand. Similarly, the flow on path 4 

is exactly equal to the demand between OD pair (3, 2). Therefore, the flow on path 1 must be 

1 and the flow on path 2 is zero. The flows just described form the unique equilibrium path 
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flow solution, and the rank of ],[ TT   cannot possibly equal the number of paths with 

positive flow. Once again, this example does not satisfy the nondegenerate extreme point 

condition for the TFM. In addition, this example is non-differentiable, which fact also violates 

the TFM regularity conditions. Thus, the TFM should never be considered for application to 

this example, and the example, again, does not constitute a counterexample. 

3.2.5  Modifying Example Problems to satisfy the TFM Conditions 

Example 7.3.2 in Josefsson and Patriksson [52] violates the regularity assumptions on 

which the TFM is predicated due to its symmetric arc cost functions and network topology. If 

we make the cost functions asymmetric, as we shall illustrate, the possible number of paths 

having non-zero flow is no longer restricted to either 2 or 4. As depicted in Fig. 3. the network 

contains three nodes, four arcs, one OD pair and four paths. This example is identical to 

example 7.3.2 in Josefsson and Patriksson [52] except for the cost function of arc 2, which is 

now   222 1 fft  . 

When 0 , the equilibrium arc flow solution is    Tf 1,1,2/1,2/30*  . Thus, the restricted 

arc-path and OD-path incidence matrices are 





















1010

0101

1100

0011

 and  1111 . 

According to the equilibrium arc flow solution, a path flow solution    Th 2/1,0,2/1,10*   can 

be obtained. In this case, the rank of ],[ TT   is equal to the number of paths with positive 

flow, which implies that *h  is a nondegenerate extreme point. Due to the flow on path 3 

being zero, we may eliminate path 3 to generatethe modified    Th 2/1,2/1,10*0   which 

contains only those path variables having positive path flows. Conformally defined with 

respect to *0h , the modified arc-path and OD-path incidence matrices, denoted by 0  and 

0  respectively, are 
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



















110

001

100

011

0  and  1110  . 

It follows that 

 










































0111

1210

1121

1012

0

0,
0

0*0 T
h hc

 

 
 








































0

0

1

1

0

0,*0

T

hc



  

Therefore, we have the following derivative of arc flows with respect to the perturbation   

(of the cost function for arc 1): 





















0

0

2/1

2/1

*f  

Clearly, all requirements of the TFM are satisfied and the derivative of differentiable 

solutions with respect to perturbation parameters can be calculated by the TFM. This contrasts 

to the example 7.3.3 in Josefsson and Patriksson [52] and the example 5 in Patriksson [51], 

for which non-differentiability is encountered in violation of the assumptions intrinsic to the 

TFM. 

3.2.6  Applying Cho-Smith-Friesz Method on Counterexamples 

We illustrate in this section that the Cho-Smith-Friesz method(CSFM) extends the 

circumstances under which the TFM is applicable. 

3.2.6.1  Example 7.3.2 in Josefsson and Patriksson (2007) 

This example has been stated previously. Recall that, when 0 , the equilibrium arc flow 

solution is    Tf 1,1,1,10*   and the restricted arc-path and OD-path incidence matrices are 
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



















1010

0101

1100

0011

 and  1111 . 

In this example, the rank of ],[ TT   is 3. By inspection,   has one independent row. 

Also the rows of   that correspond to arcs 1 and 3 are linearly independent, so that we may 

partition   according to 

 T21  . (3.1) 

where 











0101

0011
1  and 










1010

1100
2 . 

The matrices referred to in Eq. (2.52) are the followings: 

  





















1000

0100

0010

0001

0,0ftf  















1100

0011
M  

  





















0

0

0

1

0,0ft  

  









0

0
022 TN   

Therefore, Eq. (2.52) reduces to the following: 





















0

0

2/1

2/1

*f  

which is identical to the solution in Josefsson and Patriksson [52]. Thereby, we see that the 

CSFM may sometimes be able to deal with cases wherein *h  is not a nondegenerate path 

solution. 
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3.2.6.2  Example 7.3.3 in Josefsson and Patriksson (2007)  

When 0  , the equilibrium arc flow solution is    Tf 1,1,10*  . Thus, the restricted 

arc-path and OD-path incidence matrices are 



















1010

0110

0001

 and 



















1000

0100

0011

. 

In this example, the rank of ],[ TT   is 3. By inspection   has three independent rows. 

Moreover, the rows of   are linearly independent. Thus 

2  

based on the notation introduced in Eq. (3.1). Therefore, the matrices of Eq. (2.52) may be 

expressed as 

  


















100

010

002

0,0ftf  

























100

010

001

M  

  


















0

0

1

0,0ft  

 


















0

0

0

022 TN   

Furthermore, Eq. (2.52) yields 



















0

0

0
*f  

which is the directional derivative when 1  employed in the Josefsson-Patriksson solution. 

However, the directional derivative when 1  cannot be obtained by the CSFM because it 

corresponds to a non-differentiable circumstance, and thereby violates the regularity 

conditions needed for application of the CSFM method. 
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3.3   Counterexamples in Yang and Bell (2007) 

Subsequent to Bell and Iida [7], non-invertibility of the Jacobian of the path cost occurring 

in Eq. (2.52) of the TFM was also observed by Yang and Bell [67]. The Jacobian of the path 

cost is in general not invertible so that the sensitivity formulae of the TFM would seem to fail 

in such a circumstance. However, Yang and Bell [67] presented an example for which the 

Jacobian of the path cost is not invertible yet the requisite information for sensitivity analysis 

exists. As we have already indicated, this is not a surprise, since the invertibility of the 

Jacobian of path cost is a regularity condition for the TFM that one may relax when it is 

realized that the sensitivity analysis formulae may be derived via the CSFM. More generally, 

the TFM sensitivity formulae remain applicable when the Jacobian of the path cost is not 

invertible. This understanding, as we now reiterate, is established by the analysis of Cho et al. 

[16] and the summary thereof presented in Section 3.3, because Cho et al. [16] derive those 

formulae without reference to the network’s topology or the presumption of invertibility of 

the Jacobian of path cost. Our remarks immediately above are not criticisms of the 

manuscripts cited but rather are meant to establish connections among the various papers on 

the subject of equilibrium sensitivity analysis that have appeared over a considerable period of 

time in various journals and books. 

3.3.1  Example 6 in Yang and Bell (2007) 

In this example, Yang and Bell [67] considered a 3 node, 2 arc network with 3 OD pairs 

and 3 paths which is depicted in Fig. 5. There are two fixed demands of 5 units of flow for 

each of the OD pairs (1, 2) and (2, 3). The demand for OD pair (1, 3) is perturbed and 

becomes 135  . The three paths are 11 p ,  22 p  and  2,13 p . The arc cost functions 

are given by 

  11111 1,   fft  

  1222  fft  
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It is helpful to define 











1

13




 . 

When 0 , the equilibrium arc flow solution is    Tf 10,100*  . Thus, the restricted arc-path 

and OD-path incidence matrices are 











110

101
 and 



















100

010

001

. 

 

 

Fig. 5: The network of Yang and Bell’s Example 6 

 

According to the equilibrium arc flow solution, a path flow solution    Th 5,5,50*   is 

obtained. The rank of ],[ TT   is equal to the number of paths with positive flow, which 

implies that *h  are all positive. By inspection, we have 

 


















































000100

000010

000001

100211

010110

001101

0

0,
0

0*0 T
h hc

. (3.2) 

Yang and Bell [67] note that the inverse of the Jacobian of the path cost matrix, 

 
1

*0

211

110

101

0,



















 hch  (3.3) 

does not exist, and it would seem that the TFM is not applicable. However, the inverse of the 

entire matrix presented on the right-hand side of Eq. (3.2) is easily shown to be the following: 
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 



















































211100

110010

101001

100000

010000

001000

0

0,
1

0

0*0 T
h hc

. (3.4) 

Also we note that 

 
 
















































10

00

00

01

00

01

0

0,*0

T

hc



  

According to Eqs. (2.25)-(2.27), the derivative of arc flows with respect to   is 











10

10*f  (3.5) 

which is identical to the solution in Yang and Bell [67]. The derivative of equilibrium costs 

with respect to   is 



















21

10

11
*  (3.6) 

which is also identical with the solution in Yang and Bell [67]. Thus, the TFM may remain 

applicable even though the Jacobian of the path cost matrix is not invertible. More precisely, 

the non-invertibility problem encountered in expression Eq. (3.3) need not be inherited by 

inverse matrix in Eq. (2.25). 

3.4   Discussion 

This section has reviewed several prior articles in which some defects of the Tobin-Friesz 

method (TFM) are indicated and some examples are shown to explain that the TFM may fail 

or lead to an incorrect solution. However, we found this is not because the TFM is incorrect 

but because some of the so-called counter examples were purposely fabricated to violate the 

assumptions intrinsic to the TFM and the related Cho-Smith-Friesz method (CSFM). That is, 
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the counter examples reported in the literature are not true counter examples for the TFM 

because they violate the regularity conditions on which the method is based.  

Nonetheless, we readily acknowledge that the TFM must be applied with care. The reward 

for exercising such care is the rather simple formulae that characterize the TFM. In this paper, 

we have seen that, sometimes when the regularity conditions of the TFM are violated, the 

equilibrium problem of interest may be modified to allow the method’s application; this is 

especially so when cost symmetries are the complicating aspect of a given problem. We also 

observed that sometimes the CSFM may be employed in lieu of the TFM to deal with 

noninvertible Jacobians. 
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CHAPTER 4 

Extension of Gradient-Based Sensitivity Analysis Method 

The sensitivity analysis method is the most popular algorithm in solving bilevel 

programming problem in the field of transportation science. In the sensitivity analysis method, 

the reaction function of the lower level problem is usually approximated by the first-order 

sensitivity information of equilibrium network flows. Due to the non-convexity and 

non-differentiability of the bilevel problem, the high-order sensitivity analysis method is 

expected to solve the problem more efficiently. Therefore, the second-order sensitivity 

formula of equilibrium network flows is one of the objectives in this research. 

Based on the first-order gradient-based sensitivity formula proposed by Cho et al. [16], the 

second-order sensitivity formula is regarded as taking the derivative of the first-order formula 

with respect to perturbation parameters. Since the first-order gradient-based sensitivity 

formula is usually a matrix, we have to introduce the theory of matrix differential calculus to 

derive the second-order sensitivity formula.  

In this section, we firstly review the main result of the row reduction gradient-based 

sensitivity method which is the first-order gradient-based sensitivity formula. Subsequently, 

some definitions and theorems of matrix differential calculus are introduced which applied to 

derive the second-order gradient-based sensitivity formula. 

4.1   Existence of High-Order Sensitivity of Gradient-Based Method 

In a general mathematical programming, the existence of high-order sensitivity of a local 

solution has been proposed by Fiacco [29]. Consider the problem P() of determining a local 

solution x() of  

 ,Minimize xg
x

  (4.1) 

   mixpi ...,,10,subject to  ,  (4.2) 
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   njxq j ...,,1,  ,  (4.3) 

where xR
n
 and  is a parameter vector in R


. 

In order to show the existence of high-order sensitivity, we consider the following 

conditions: 

 

Condition 4.1 

The functions defining P() are (p+1)th order continuously differentiable in x and if their 

gradients with respect to x and the constraints are pth order continuously differentiable in  in 

a neighborhood of (x
*
, 0), with 1p . 

 

Condition 4.2 

The second-order sufficient for a local minimum of P(0) hold at x
*
, with associated 

Lagrange multipliers u
*
 and v

*
. 

 

Condition 4.3 

The gradients  0,*xpi  (for i such that   00,* xpi ) and  0,*xq j  (all j) are linearly 

independent. 

 

Condition 4.4 

0* iu  when   00,* xpi  (i = 1, …, m) (i.e., strict complementary slackness holds). 

 

Based on condition 4.1~4.4, we can show the existence of high-order sensitivity proposed 

by Fiacco [28] as follows: 
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Theorem 4.1 (Existence of high-order sensitivity, [29]) 

If condition 4.1~4.4 hold, then          pT
Cvuxy   ,,  in a neighborhood of  = 0. 

If the problem functions are analytic in (x, ) in a neighborhood of (x
*
, ), then y() is analytic 

in a neighborhood of  = 0. 

 

Hence, if condition 4.1~4.4 hold with p=2, then the second-order sensitivity of the solution 

of P() exists. Moreover, if condition 4.1~4.4 hold with p=1, then x
*
 is a locally unique 

solution to variational inequality problem which can derive the gradient-based sensitivity 

analysis method [61]. In order to derive the second-order sensitivity formula, we start with the 

row reduction gradient-based method [16] and assume c(,) is 3rd order continuously 

differentiable in arc-flow f and c(,) and T() are twice continuously differentiable in . 

4.2   Preliminary Definitions and Theorems for Second-Order Sensitivity 

In this section, the Kronecker product and the vec operator are introduced [44]. The 

Kronecker product maps two matrices A=(aij) and B=(bst) into a matrix C=(aijbst). The vec 

operator transforms a matrix into a vector by stacking its columns one underneath the other. 

According to the definitions, the chain rule and the second-order Taylor expansion with 

respect to a matrix are derived which can be used to provide the second-order sensitivity 

analysis formula of equilibrium network flows. 

 

Definition 4.1 (Kronecker product) 

Let U be an mn matrix and V be a pq matrix, then the Kronecker product of U and V, 

denoted by U  V, is an mpnq matrix defined by 

.

1

111



















VuVu

VuVu

VU

mnm

n







  (4.4) 
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Definition 4.2 (vec operator) 

Let U be an mn matrix and Uj is the j-th column of U, then vec U is the mn1 vector 

.
2

1





















nU

U

U

Uvec


  (4.5) 

 

Based on the definition of vec operator, the derivative of matrix functions of matrices can 

be defined as follows. 

 

Definition 4.3  

Let U be an mn real matrix function of a pq matrix of real variables . The derivative of 

U with respect to s is the mnpq matrix 

 
.

T
vec

Uvec
U







   (4.6) 

 

In order to derive the second-order sensitivity formula, we have to define the chain rule for 

matrix functions first. Hence, Theorem 4.2 is introduced to provide the formula of chain rule 

for matrix functions. 

 

Theorem 4.2 (Chain rule for matrix functions, [43]) 

Let D be a subset of nmR  , and assume that 
qpRDU :  is differentiable at an interior 

point y of D. Let P be a subset of qpR   such that U(x)P for all xD, and assume that 

srRPV :  is differentiable at an interior point z = U(y) of P. Then the composite function 

srRDF :  defined by F(x) = V(U(x)) is differentiable at y, and  

  .UVF yzy    (4.7) 

 

Theorem 4.3 (Derivative of simple product of matrices, [43]) 

Let 
rmRDU :  and 

nrRDV :  be two matrix functions defined and differentiable 
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on an open set D in 
qpR 
. Then the simple product UV is differentiable on D and the Jacobian 

matrix is the mnpq matrix 

 
 

    ,VUIUIV
vec

UVvec
UV nm

T

T 






   (4.8) 

where Im and In are the identity matrices of size m and n, respectively. 

 

Theorem 4.4 ([43]) 

Let f: D → R
m
 be a function defined on a set D in nR . Let r be an interior point of D, and let 

B(0; r) be an n-ball lying in D. Let  be a point in nR with || || < r, so that  0+B(0; r). If f 

is twice differentiable at 0, then the second-order Taylor expansion of function f at 0+ is 

        ,;
2

1
; 0

2

000  fddfff    (4.9) 

where df(0; ) and d
2
f(0; ) are the first differential and the second differential of f at 0, 

respectively, and 

      ,; 000    fdf   (4.10) 

         .; 00

2

00

2    fIfd m

T
  (4.11) 

4.3   Second-Order Sensitivity Formula for Network Equilibrium Flows 

To derive the second-order sensitivity formula for equilibrium network flows, it is 

intuitively to take derivative of Eq. (2.44) with respect to s. For convenience, let  

  
   ,,

0

,
1




fU
M

Mft T

f 






 


  (4.12) 

  
 

   ,,
,

22









fV

TN

ft













  (4.13) 

where U is an ()() matrix, and V is an () matrix, respectively. 

 

Lemma 4.1  

The second-order sensitivity for equilibrium network flows is  

     ,
22

2

VUIUIV
f

k

T





















   (4.14) 
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where 

  
  

,
0

,
,

1








 


M

Mft
fU

T

f 
   (4.15) 

  
  
 

.
,

,
22
























TN

ft
fV   (4.16) 

Proof 

Since the first-order sensitivity is the product of Eq. (4.15) and (4.16), the second-order 

sensitivity can be obtained by taking derivative of the product with respect to s directly. 

According to Theorem 4.3, the formula of the second-order sensitivity is expressed as Eq. 

(4.14) and the proof is complete. 

4.4   Application to Solve Stackelberg Games with Sensitivity Analysis Method 

In this section, we briefly introduced the formulation of a Stackelberg game or a 

leader-follower game between road users and the administration sector [31]. With the 

sensitivity information, two algorithms are proposed to solve a Stackelberg game [15]. 

4.4.1  Formulation of Stackelberg Games in the Field of Transportation 

In the field of transportation, Fisk [31] pointed out a Stackelberg game can be represented 

as a bilevel problem where the upper level problem aims to find the optimal signal setting or 

capacity enhancement of arcs which maximizes system performance, and the lower level 

problem aims to solve the user equilibrium flows, respectively. The solution algorithm for 

calculating optimal strategy in general road networks should take the anticipating the 

reactions of road users into account. However, the iterative optimization assignment 

procedure which solves strategy and equilibrium flows iteratively cannot be expected to 

converge to the true solution and might lead to a decline in network performance. By contrast, 

the sensitivity analysis-based algorithm evaluates the influence factors as the derivatives of 

the reaction functions with respect to the upper-level decision variables. The derivative 

information is obtained by implementing sensitivity analysis for a given solution of the user 
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equilibrium problem. With this information, the linear approximation of the reaction function 

can be obtained and applied to sensitivity analysis-based algorithm. 

Due to the nonlinearity of the perturbed solutions in equilibrium constraints, the nonlinear 

approximation of the reaction function is expected to solve a Stackelberg game more 

efficiently. Therefore, this research tries to establish the theory of high-order sensitivity 

analysis of network equilibrium flows which can be applied to solve a Stackelberg game with 

a nonlinear approximation of the reaction function. 

Consider a signal optimization problem where the aim of the regulating agency is to 

minimize a network performance function P1 such as total travel time or gas consumption, 

with fixed OD travel demand, where travelers selecting routes on the network in an optimal 

user fashion. Notably, D denotes the set of feasible signal control variables. For any given 

D a user optimal arc flow solution f() exists and the problem of the regulator is to 

solve 

  

E. U...

,min:1

ts

fPP
D


   (4.17) 

In the general problem, the signal variables that can be set by the controlling agent include 

green and cycle times, and offsets. By specifying the cost functions ta for each network arc a 

in terms of these variables, and assuming that the behavioral hypothesis for route choice 

follows the first principle of Wardrop [62], problem P1 can be presented as 

    



Aa

aa
D

fftP 


,min:2   (4.18) 

     .,0,..  ufuftts    (4.19) 

If t(, f) is strictly monotone, then for each  0, Eq. (4.19) has a unique solution, and 

function f() is (continuously) differentiable at every point   0. Thus, P2 can be rewritten as 

P3. 
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      

.0..

,min:3











ts

fftsZP
a

aa
D

  (4.20) 

Also, given R(f(), ) = min t( f(), )(u-f ), then P2 is equivalent to P4. 

      

   .0,..

,min:4











fRts

fftsZP
a

aa
D

  (4.21) 

4.4.2  A Sensitivity Analysis-Based Linear Approximation Heuristic Algorithm 

The Iterative Optimization Assignment (IOA) method is proceeded as follows. First, fix  

and solve Eq. (4.19) for f, then fix f and solve Eq. (4.18) for s, continuing this process until 

k+1 
– k

0 or f 
k+1 

– f 
k
0. The final solution ( f

 N
,  N

) is termed the Nash solution. Notably, 

that the solution obtained using the IOA algorithm is not necessarily an optimal solution of 

the equilibrium network control problem [31]. The sensitivity analysis of equilibrium network 

flows was used to solve the equilibrium network signal design problem. 

The challenge in solving problem P2 is that, since the lower level of the problem cannot be 

represented in closed form, it is impossible to obtain an explicit reaction function that can be 

plugged into the upper level. In the sensitivity analysis-based linear approximation heuristic 

algorithm, the sensitivity information is used to create a linear approximation of the reaction 

function and is then inserted into the upper level problem, iterating until the solutions 

converge (abbreviated as LAA). This heuristic algorithm was firstly proposed by Cho and Lo 

to solve the continuous equilibrium network design problem [15]. 

The heuristic is detailed as follows: 

(A1) 

Step 0: Determine a fixed small value  > 0 and an initial value  0
. Set k = 0. 

Step 1: Solve Eq. (4.19) given  k
 and yielding f

 k
. 

Step 2: Calculate the sensitivity information  f by Eq. (2.44). 

Step 3: Using  f , Taylor expansion and Theorem 4.4, form the linear approximation f
 k+1

, 
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1kf = f
 k
 +  f(

 k+1
– k

). Since f
 k
,  k

 and  f are known, f
 k+1

 can be replaced by a 

function of  k+1
. Thus, f

 k+1
 = A + B k+1

. 

Step 4: Reformulate Eq. (4.20) as 

   

.0..

,min 11



 








ts

BAsBAt
a

kk

a
D

 

Step 5: Solve the problem in step 4 using any software package which can solve the 

optimal solution for  k+1
. If | k+1

– k
|  , then stop, otherwise set k = k + 1 and go 

to step 1. 

4.4.3 A Sensitivity Analysis-Based Nonlinear Approximation Heuristic Algorithm 

In the sensitivity analysis-based linear approximation algorithm, the reaction function of 

the lower level is based on approximation by a linear function. In this section, the reaction 

function of the lower level problem is based on approximation by a nonlinear function, and is 

plugged into the upper level problem and iterated until the solutions converge (abbreviated as 

NLAA). 

(A2) 

Step 0: Determine a fixed small value  > 0 and an initial value  0
. Set k = 0. 

Step 1: Solve Eq. (4.19) given  k
 and yielding f

 k
. 

Step 2: Calculate the sensitivity information  f and f2

  by Eq. (2.44) and (4.14). 

Step 3: Using  f, f2

  Taylor expansion and Theorem 3, form the nonlinear 

approximation f
 k+1

, 

      .12111 kk

m

Tkkkkkk fIfff      

Since f
 k
,  k

,  f and f2

  are known, f
 k+1

 can be replaced by a function of  k+1
. 

Thus, f
 k+1

 = A+B k+1 
+C( k+1

)
2
. 

Step 4: Reformulate Eq. (4.20) as 
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Step 5: Solve the problem in step 4 using any software package which can solve the 

optimal solution for  k+1
. If | k+1

– k
|  , then stop, otherwise set k = k + 1 and go 

to step 1. 

In addition to describe the algorithm in more detail, we will provide a proof that if this 

algorithm converges; it converges to an optimal solution of problem P2. 

 

Lemma 4.2  

If algorithm A2 converges, it converges to a critical point of P2. 

 

Proof 

If the sequence s
k
 converges to s*, s

k
  s*, then we know that: 

(1) If we set s
0
 = s*, f 

0
 = f * then s

1
 = s*, f 

1
 = f *; and 

(2) Let  

     



Aa

aa sfsCsBsAtsZ ,ˆ 2  

Then, by the Karush-Kuhn-Tucker necessary conditions for optimality of vectors s*  0, we 

know the following must be true: 

(i) 

 
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*ˆ
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s

sZ i

i
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
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 
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


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So, taking the derivative with respect to s, we get 
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Further, we know that 
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  .2CsBsAsf   

So, substituting Eq. (42) we know 
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So, we know if conditions (i) and (ii) are satisfied, then the following should also be satisfied 

(iii) 
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CHAPTER 5 

Extension of Directional Derivative-Based Sensitivity Analysis Method 

5.1  Formulation of Derivative-Based Sensitivity Analysis Method 

Consider a parametric variational inequality (VI) with a parametric polyhedral constraint as 

following [70] 

     ,,0, 0000  Kxxxxf
T

   (5.1) 

   ,0,  xAxRxK n 
  (5.2) 

  ,0  KRr

  ,mRE     (5.3) 

where f: R
n
E→R

n
 is a given function, x0 is a solution of this VI problem and (, ) 

are given parameters. Let S be the mapping that assigns each the set S() of solutions to the 

VI problem: 

       *** ,0| xNxfCxS K   . (5.4) 

For a convex set C in R
n
, the normal and tangent cones to C at a point xC are denoted by 

NC(x) and TC(x), respectively, defined by 

 
  










Cx

CxCyxyzRz
xN

Tn

C
,0

,,0|
 (5.7) 

and  

   .,0 somefor |cl CzxRzxT n

C    (5.8) 

With the definition of convex cone, the form of VI Eq. (5.1) is equivalent to  

    .,0 000 xNxf K    (5.9) 

Based on the VI form of the equilibrium network flow problem, the directional derivatives 

of equilibrium network flows can be calculated by solving a quadratic optimization problem 

[37] as 
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In this model, directional derivatives of link flow, path-flow, and travel demand are denoted 

by f’, h’, and d’, respectively. The directional derivative can be interpreted as the direction and 

the rate of change of the equilibrium solution when perturbation parameter is perturbed along 

the direction ’. The set H’ is the set of directional derivatives of path-flow which keep the 

feasibility and optimality of the original problem in the first order approximation. We only 

summarize main results here and readers are encouraged to refer the original papers [37, 52] 

for more details. 

In previous works, link cost functions are assumed continuously differentiable. This 

assumption is relaxed by adopting piecewise linear link cost functions in this study. A 

quadratic programming model with complementary constraints is proposed to calculate 

directional derivatives of equilibrium network flows with piecewise linear link cost functions. 

5.2  Sensitivity Analysis without Continuously Differentiable Assumption 

In the sensitivity analysis without continuously differentiable assumption of cost functions, 

two basic assumptions needs to be satisfied to guarantee the perturbed solution is Lipschitz 

continuous so that the directional derivative of perturbed solution exists. Consider two 

assumptions as follows: 
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Assumption 5.1 

Assume g is locally Lipschitz at (x0, ), that is 

      ,',;',,'',',' UEXxxxxlxgxg    (5.10) 

where X and U are the neighborhoods of x0 and 0 respectively and l > 0 is a constant. 

 

 

Assumption 5.2 

Assume g(∙,) is locally strongly monotone around x0 with a common coefficient for all 

∩U, that is  

    ,;',,'',,,'
2

UEXxxxxxxxgxg    (5.11) 

where >0 is a constant. 

 

Theorem 5.1 (Theorem 5.1 from [70]) 

Let K() be defined by Eq. (5.2) and x0 be a solution of Eq. (5.1), where (, ) is a 

given pair of parameters. If Assumption 5.1 and Assumption 5.2 are satisfied, then there exist 

constants k>0 and k>0, neighborhoods U of  and V of  such that: 

(1) For every (, )(∩U)(∩V) there exists a unique solution of Eq. (5.1) in X, 

denoted by x(, ); 

(2) For all (’, ’), (, )(∩U)(∩V),  

    .'',','    kkxx  

 

From Theorem 5.1, we can know that when cost function, t(∙,), is locally Lipschitz at (x0, 

) and locally strongly monotone, the perturbed solution is Lipschitz continuous. That is, in a 

traffic network with locally Lipschitz, locally strongly monotone function of costs on arcs, the 

equilibrium arcs flow is locally unique and is a locally Lipschitz function of the perturbation 
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of costs on arcs and of the vector of demand [70]. Thus, in this case, the directional derivative 

of the equilibrium network flows exists. 

Consider a piecewise linear function are usually used to approximate an arbitrary 

continuous function. In the domain [fa,1, fa,m], a series of grid points, fa,1, fa,2, …, fa,m, is 

introduced which divides the domain into m-1 intervals, [ta,i, ta,i+1], i=1, 2, …, m-1. In each 

interval i, a linear function, ta,i(fa,), is introduced. In general, the formulation of a piecewise 

linear function ta(va,) can be represented as the following equation. 
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 (5.12) 

where ta(fa,) is divided into m-1 segments and has m-2 inflection points, fa,2, fa,3, …, fa,m-1. 

Generally, fa,m can be regarded as the capacity of arc a. 

Recall that the sensitivity analysis of traffic equilibria can be formulated as a first-order 

approximation of original VI: 

       KxxxxrKxxDS
T

 ,0,|| **   (5.13) 

where 

  HhfhdhRRRdfhK TT  ;;|,, 
, (5.14) 
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and 

     
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. (5.16) 

In this study, the original link cost function which is continuously differentiable is replaced 

by the piecewise linear cost function, ta(fa,). The piecewise linear cost function is assumed 
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continuous. Moreover, ta(fa,) is non-differentiable at each inflection point but is continuously 

differentiable in elsewhere. In the sensitivity analysis of traffic equilibria with piecewise 

linear cost function problem, Eq. (5.16) has to be modified as 

     
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
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

, (5.16) 

where   ,tf  is the subgradient of the piecewise linear cost function w.r.t. arc flow. 

In order to depict the congestion phenomenon, ta(fa,) is assumed to be strictly increasing 

with respect to arc-flow va. Then the directional derivative of the equilibrium network flows 

exists according to Theorem 5.1, and it can be obtained by solving a convex quadratic 

programming with complementarity constraint as following. 

 

QPCC model: 

Given an *
, if f

*
 is an optimal solution of the perturbed traffic equilibria, then the 

directional derivative 

    **1

0

* 'lim'; fsfsf
s

 

 
   (5.17) 

is the optimal solution of the following convex quadratic programming with complementarity 

constraint (QPCC): 
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CHAPTER 6 

Numerical Examples 

This chapter demonstrates some numerical examples for the proposed approaches of 

gradient-based sensitivity analysis method and directional derivative-based sensitivity 

analysis method, respectively. For gradient-based sensitivity analysis method, we perform the 

second-order sensitivity analysis method in two numerical examples. The first one is a signal 

control problem for a tiny network [31]. In this example, the exact solution is known, so that 

we can justify the accuracy and efficiency of the nonlinear approximation sensitivity-based 

algorithm (NLAA). The second one is a signal control problem of a simplified real network. 

We compare the efficiency between linear approximation sensitivity-base method (LAA) and 

NLAA in this example. 

6.1   Numerical Examples of Second-Order Sensitivity Analysis Method 

6.1.1   Example 1 

The first example is chosen from Fisk [31]. The network topology is shown in Fig. 6. The 

set of OD pairs is {(1, 2), (3, 4)} and a signal exists at the intersection of arc 1 and 3. The cost 

functions used are 

,
2

,2,
3

3

322

1

1
1



f
tft

f
t    (5.1) 

where a denotes the green time on arc a and the cycle time, 1 + 3, is equal to 20. 

Additionally, the travel demand T1 from node 1 to node 2 is 10, and the travel demand T2 

from node 3 to node 4 is 10. Table 2 lists the arc cost functions ta(fa, a) and the system 

objective function Z(). Moreover, this example has an analytical optimal solution: 

.5467.1,4533.8,2694.12,7306.7 2131  ffgg    
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Fig. 6: The network topology of the example 1 

 

Table 2: Arc cost functions and the system objective function in the example 1 

)/(),( aaaaaaa fQPft    

  
a aaaa fftZ ),()(   

Arc number Pa Qa 

1 

2 

3 

2 

0 

0 

1 

2 

2 

 

In this example, 3 can be replaced by 20-1, and 1 is the only perturbation parameter 

(control variable) should be considered. Therefore, || || is equal to 1. Together with Eq. (11), 

(24) and (25), the first-order sensitivity with respect to 1 can be rewritten as 
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 (5.2) 

where 
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In Eq. (5.3), the sensitivity information of arc flow represents the change of arc flow on arc 

a respectively when the control variable s1 increases one unit. Since f1  0, 1 > 0, the 

equilibrium flow on arc 1 will increase when s1 increases one unit. In the meanwhile, the 

equilibrium flow on arc 2 will decrease. Because OD pair (3, 4) has only one path (arc 3), 1 

will not affect the equilibrium flow on arc 3. 

From Lemma 4.1, the second-order sensitivity with respect to control variable is 
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By Theorem 4.2, U can be derived by the chain rule for matrix functions as follows: 
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  (5.5) 

In this example, the matrix U is only dependent on s1. Hence, f,  U = 0 and Eq. (5.5) can 

be rewritten as 
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where Uj represents the j-th column of matrix U, and 
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Similarly, V can be derived as  
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According to Definition 4.1, Eq. (5.5), (5.6) and (5.7), Eq. (5.4) can be rewritten as 
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Therefore,  
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Hence, we have the second-order sensitivity analysis information of the equilibrium arc-flows 

and equilibrium costs, respectively in Eq. (5.20). With the first-order and second-order 

sensitivity information in Eq. (5.8) and (5.20), respectively, the first differential and the 

second differential of equilibrium arc flow fa can be obtained by Eq. (4.10) and (4.11). At 

iteration k, 
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  (5.22) 

In this example, both LAA and NLAA are implemented in the MATLAB environment. Set 

 = 0.001 and the initial 1 = 10, Table 3 lists the computational results of LAA and NLAA 

approaches, and it shows that NLAA is more efficient than LAA. 
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Table 3: Computational results of LAA and NLAA in the example 1 

 LAA NLAA 

Iteration f1 1 Z f1 1 Z 

1 8.4469 7.6365 47.2379 8.4513 7.7005 47.2358 

2 8.4537 7.7367 47.2355 8.4533 7.7305 47.2355 

3 8.4532 7.7302 47.2355 8.4533 7.7306 47.2355 

4 8.4533 7.7304 47.2355    

 

6.1.2   Example 2 

This example is a simplified real network which represents the afternoon rush hour traffic 

between the working area Hsinchu Science-based Industrial Park (HSIP) and residential area 

Jhubei city. The network topology follows Fig. 7. In this period, there is a huge amount of 

travel demand from HSIP (node 1) to Jhubei city (node 16). There are two parallel paths from 

HSIP to Jhubei city. One is freeway (arc 2-arc 4-arc 16), and the other is highway with 5 

signal-controlled intersections (arc 1-arc 6-arc 8-arc 10-arc 12-arc 14). The objective of this 

problem is to find the optimal signal settings which minimize the system cost. Table 4 lists the 

origin-destination demand. The arc cost functions ta(fa, a) and the system objective function 

Z(s) are listed in Table 5. For the signal-controlled intersections, the arcs entering the same 

intersection share the same cycle time and the minimum green time for each approach is 10 

sec. 
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Fig. 7: The network topology of the example 2 

 

Table 4: Origin-destination demand table in the example 2 (unit: veh/hr) 

 
Destination 

4 6 8 11 13 14 16 

Origin 

1 50 275 475 400 1250 275 2250 

2 0 0 0 0 2550 0 1400 

5 0 150 250 200 0 150 250 

7 0 0 500 400 0 300 450 

9 0 0 0 325 0 225 350 

12 0 0 0 0 0 125 175 

15 0 0 0 0 0 0 900 

 



 

70 

 

Table 5: Arc cost functions and the system objective function in the example 2 

Signalized arc cost function: 
  
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Non-signalized arc cost function: 
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System objective function:   
a aaaa fftsZ ),()(   

Arc number t0a (min) a a Ca(veh/min) Cyca (sec) 

1 1.8545 0.9200 3.5800 56.6667 300 

2 0.8667 0.8600 4.3400 40.0000 - 

3 1.8000 1.2700 3.9600 115.0000 - 

4 2.2364 1.2700 3.9600 115.0000 - 

5 0.2945 1.2100 2.3900 28.3333 300 

6 0.1964 1.4200 2.3200 85.0000 300 

7 0.3818 0.8600 4.3400 85.0000 300 

8 1.0154 1.2700 3.9600 68.3333 - 

9 1.0000 1.2100 2.3900 20.0000 - 

10 1.0154 1.2700 3.9600 68.3333 180 

11 0.3273 0.9200 3.5800 56.6667 180 

12 0.9818 1.4200 2.3200 85.0000 150 

13 0.6545 0.8600 4.3400 113.3333 150 

14 1.2000 1.5000 2.4400 113.3333 150 

15 3.8727 1.2700 3.9600 115.0000 - 

16 0.4909 0.8600 4.3400 40.0000 150 

 

In this example, we set  = 0.1 and the initial a = Cyca/2 for each signalized arc. Table 6 

lists the computational results of LAA and NLAA respectively. Two parallel paths from node 

1 to node 16 (2-4-16 and 1-6-8-10-12-14) have the same equilibrium travel time 13.4069 min. 

Compared with LAA, Table 6 shows that NLAA only takes 12% iteration number to attain the 

same level of precision. Figure 3 shows the convergence curves of LAA and NLAA 

respectively. The convergence rate of LAA is slower than NLAA due to the zigzag effect. 

Compared with the example 1, NLAA has more improvement in the speed of convergence 
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than in example 2. It may imply that NLAA is more efficient to deal with more nonlinear 

problems. 

Table 6: Computational results of LAA and NLAA in the example 2 

 LAA NLAA 

Arc number a (sec) fa (veh/min) ta (min) a (sec) fa (veh/min) ta (min) 

1 195.9103 31.4891 2.8118 195.8902 31.4909 2.8123 

2 - 51.4275 2.8272 - 51.4258 2.8269 

3 - 65.8333 2.0510 - 65.8333 2.0510 

4 - 117.2609 5.3043 - 117.2591 5.3041 

5 104.0897 16.6667 1.5529 104.1098 16.6667 1.5523 

6 181.5056 47.3225 0.4263 181.5054 47.3242 0.4264 

7 118.4944 27.5000 0.5199 118.4946 27.5000 0.5199 

8 - 67.7391 2.2611 - 67.7409 2.2612 

9 - 15.0000 1.6084 - 15.0000 1.6084 

10 167.0451 62.3225 2.2192 167.0943 62.3242 2.2179 

11 12.9549 5.0000 0.9517 12.9057 5.0000 0.9603 

12 123.8799 45.2391 1.4849 123.8775 45.2409 1.4849 

13 26.1201 15.0000 0.8256 26.1225 15.0000 0.8255 

14 45.4083 42.3225 4.2042 45.4106 42.3242 4.2041 

15 - 63.3333 4.3361 - 63.3333 4.3361 

16 104.5917 53.9275 5.2760 104.5894 53.9258 5.2759 

Iteration 

number 
101 12 

Objective 

Value (Z) 
2188.2886 2188.2235 
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Fig. 8: The convergence curves of LAA and NLAA in the example 2 

 

6.2   Numerical Examples of Sensitivity Analysis with Piecewise Linear Cost Functions 

To demonstrate the applicability of the proposed method, we consider a simple network 

depicted in Fig. 9. The network contains two nodes, two links, on OD pair and two paths. 

There is a fixed demand of 5 units of flow for OD pair (1, 2). There are two paths 

corresponding to the OD pair denoted by h1={1} and h2={2}. Piecewise linear link cost 

functions are given by 
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where the cost function of link 1 has a perturbation parameter 1. When 1=0, the equilibrium 

link flow solution is f
*
=[2, 3]

T
. With the change of 1, the equilibrium link flow solution at 

different 1 can be calculated and the trajectory of equilibrium solution with respect to 1 is 

shown in Fig. 10. From Fig. 10, the equilibrium solution is non-differentiable when 1=0.  
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Fig. 9: The network topology of the example 3 
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Fig. 10: The trajectory of the equilibrium solution with respect to different 1 

 

When 1’= 1, the directional derivative of link flow is f ’=[-2/5, 2/5]
T
. When 1’= -1, the 

directional derivative of link flow is f ’=[2/3, -2/3]
T
. When 1’= 1, the proposed quadratic 

optimization problem with complementarity constraints is given by 
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0,,0, 2,22,11,21,1  ffff  

 (5.24) 

Solving the optimization problem, the correct directional derivative of link flow, f ’=[-2/5, 

2/5]
T
 is obtained. When 1’= -1, the correct result, f ’=[2/3, -2/3]

T
 is also obtained. 
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CHAPTER 7 

Conclusions 

Sensitivity analysis of equilibrium network flows is useful in various fields, such as bilevel 

network design problems, road pricing and origin-destination matrix estimation problems. By 

performing the sensitivity analysis of equilibrium network flows, one can predict the direction 

of the variation in the equilibrium pattern when parameters of cost and demand functions 

change. With sensitivity information, the linear approximation of the reaction function can be 

obtained and applied to solve Stackelberg game by a sensitivity analysis-based algorithm.  

Due to the nonlinearity and convexity of the problem, the nonlinear approximation of the 

reaction function is expected to solve the problem more efficiently. Therefore, this research 

has established the theory of high-order sensitivity analysis of network equilibrium flows 

based on the gradient based sensitivity method and solved the problem with a nonlinear 

approximation of the reaction function. 

Based on the first-order sensitivity formula and the matrix calculus, this study first 

presents the general form of the second-order sensitivity formula for equilibrium network 

flows. With the second-order sensitivity formula, the reaction function can be approximated 

more accurately by a nonlinear function. From HSIP to Jhubei city, a simplified real network 

example demonstrates the speed of convergence between LAA and NLAA. The NLAA has 

significant improvement in solving the equilibrium network signal control problem with 

complicated arc cost functions; in this example the NLAA only takes 6% iterations to attain 

the same level of precision. 

This study focuses on the NLAA and a simplified delay formula is adopted to reflect the 

influence of traffic congestion. Practically, a traffic propagation model, such as TRANSYT 

model, should be included when solving the equilibrium network signal control problem. 

Since the derivatives of TRANSYT model have been obtained explicitly, it can be extended to 
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second order derivatives and applied to NLAA in the future research.  

Compared with LAA, the number of multiplications for matrix multiplication is greatly 

increasing in NLAA due to the Kronecker product operation. NLAA has polynomial 

complexity with the network size and the number of perturbation parameters because of the 

property of the Kronecker product. In this research, the computation time of NLAA is two 

times larger than LAA. There still has opportunity to improve the computing efficiency 

through adopting effective Kronecker-product algorithms. 

This research has also extended the applicability of directional derivative-based sensitivity 

analysis method. To generalize the directional derivative-based sensitivity analysis, the 

continuous differentiability assumption of the arc cost function is relaxed by introducing 

piecewise linear arc cost functions instead. Based on the original directional derivative-based 

method, a quadratic optimization problem with complementarity constraints has been 

proposed to solve the sensitivity information of the network equilibrium problem with 

piecewise linear arc cost functions. 
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