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Abstract

VIF-based Iterative Matrix Perturbation Method for Linear Models

having Collinearity Problem

Chien-Chia Liäm Huang

In this thesis, we develop a novel matrix perturbation method for solving the data

collinearity problem in linear models. The proposed matrix perturbation method inherits

the merit from matrix theory and is shown effective both theoretically and practically. On

the one hand, from the theoretical perspective, we provide and prove several important

results concerning the quantities pertinent to the method, for instance, the eigenvalue

perturbation theorem, boundedness results and so like. On the other hand, from the

practical perspective, we carry out real-world applications to validate the effectiveness of

the proposed method.

This thesis comprises four pieces of work, each presented in one chapter, from Chap-

ters 2 to 6. In Chapter 2, we develop the base model for the entire thesis, a VIF-based

(variance-inflation-factor-based) optimization model for solving the data collinearity prob-

lem in linear regression, with the full set of the linear model assumptions fulfilled. Employ-

ing the first-order Taylor approximation, we construct a linearly-constrained quadratic

programming (LCQP) model. The optimization model turns out to be strictly convex

and thence can be solved in polynomial time. We further propose an iterative algorithm

for obtaining a dense but biased estimate less influenced by data collinearity. Since the

total bias for the new estimate is bounded, we term the estimate the accumulatively-least-

bias estimate. Real-world applications validate that the variances of the estimates can be

improved using the proposed method.

In Chapter 3, for purpose of gaining more improvements in variance, we develop a

series of optimization models, based upon the second-order Taylor approximation. Of

all developed models, we pay special attention to the one with VIF approximated up to

the second order and with the objective unchanged. The resultant model is a (possibly



nonconvex) quadratically constrained quadratic programming (QCQP) problem. QCQPs

are a special branch of classic nonlinear programming problems and are of both theoretical

and practical interests. Since the underlying QCQP can be nonconvex, we treat the convex

and nonconvex cases respectively. For the convex case, the traditional Karush-Kuhn-

Tucker (K-K-T) optimality condition guarantees the global optimality of the solution.

As to the nonconvex case, to achieve the global optimality, we resort to the linear conic

programming (LCOP) technique. Existing results provide us with a solid theoretical

support. Also, we provide the generic structure of a solution algorithm for obtaining a

new estimate.

In Chapter 4, we relax the homoskedasticity assumption in the linear model assump-

tions and establish the corresponding results. In general, there are two approaches to

address the heteroskedasticity models. The first approach is to stick to the OLSEs and

then use the heteroskedasticity-robust covariance estimates for the subsequent hypothesis

testings. The other approach goes to the generalized least squares (GLS). However, the

use of GLS requires the knowledge of the function representative of the heteroskedasticity,

which is in general not known explicity and which requires further estimation. Therefore,

in this particular chapter, we shall resort to the first approach and leave the second ap-

proach to the later chapter. The main result we prove resides in that the optimal pertur-

bation matrix derived in Chapter 2 can be used to improve the heteroskedasticity-robust

covariance estimates. Based upon this result, we establish the revised hypothesis test-

ing procedures, such as perturbed t- or perturbed F -test using the improved covariance

estimates. We illustrate the method with a real world application.

In Chapter 5, we proceed on to relax the normality assumption and assume that

the error distributions now follow the exponential family, which leads to the notion of

generalized linear models (GLMs). The main results are that we propose a new collinearity

diagnostic for generalized linear models and that we propose a new estimate for generalized

linear models having collinearity problems. The new diagnostic is termed the weighted

variance inflation factor (WVIF), which behaves exactly the same as the traditional VIF

in regression diagnostic, both indicating how inflated the variances are due to the presence



of data collinearity. The resulting estimate is termed the perturbed maximum likelihood

estimate (PMLE). Although the PMLE is no longer unbiased, but it comes with an

improved variance. We analyze a real world cancer dataset to show the effectiveness of

our method.

In Chapter 6, we extend the results established for the GLMs in Chapter 5 to a unified

variance reduction method for theory of generalized least squares (GLS). GLS is involved

in various applications, such as heteroskedastic regression models, time-series models hav-

ing autoregression correlated errors, fixed and random effect models in panel data, the

estimation of maximum likelihood estimates in GLMs, the measurement-error regression

models, and so on. Particularly, we show that the proposed diagnostic, WVIF, can be

used for detecting data collinearity for any regression models involving GLS estimations.

Moreover, as a by-product, we propose a new class of estimates, called the perturbed gen-

eralized least squares estimate (PGLS), for such classes of models. Importants properties

and illustrations using real-world applications are given.
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Chapter 1

Introduction

Regression modeling has been one of the most useful and important tools for statistical

research. Of all the clans in regression modeling, linear regression refers to building a

linear relationship between a set of explanatory variables and a response variable, enabling

the researchers to examine how those explantory interact with each other and affect the

responses. For instance, in econometrics, by having all other factors fixed, one can perform

the ceteris peribus analysis to examine how a unit change in a given factor affects the

outcome by simply looking at the coefficient associated. Others such as biology, physics,

environmental science and the likes are the related applicable fields. Thence, its wide

applicability renders regression modeling an important tool for scientific studies.

Linear regression is favorable in the sense that the estimation can be done by using

the ordinary least squares (OLS). The theorey of OLS is so well-founded that it provides

a systematic way for researchers to obtain an estimate almost automatically. In the

meanwhile, supported by a rich body of statistical inference, OLS has become the core of

the regression analysis.

Whereas theoretically explanatory variables are assumed independent implicitly in

most, if not all, linear models, the analysis proceeds with data given exogenously in prac-

tice. Usually, data are collected from a vast unknown population, encompassing certain

degree of stochasticity and unpredictability, and thus problems result. For instance, an

erroneous input of a data point may likely yield a completely different result for the esti-

mates; missing data points due to certain reasons can be an obstacle for the subsequently

1



analysis; or high similarity (dependency) in the collected data may lead to unsatisfactory

results and so like. Problems of this sort are referred to as the data problems.

Of all data problems in linear regression, we are more concerned about the nearly

linear dependency among several factors assumed independent implicitly in the model

specification. Numerically, high dependency results directly in rank-deficiency problem

in the OLS estimation. The resultant problems, such as high variance, low statistical

significance, and even incorrect signs, can frustrate the researchers aiming to model a

problem using the regression.

Biased regression has been one of the approaches devised in the literature for solv-

ing data collinearity problems in linear regression. The most dominant method is this

particular category is the ridge regression. Ridge regression has won its fame by its sim-

plicity in implementation in practice and by producing good results. Yet, ridge regression

has certain problems. First of all, by definition, the collinearity stems from the depen-

dency between at least two different covariates in the data matrix. Instead of tackling the

problem from the root, the ridge method tackles the problem by breaking the intrinsic

structure of the correlation matrix, under the assumption that the data matrix is nor-

malized. Second, the breaking the intrinsic structure leads to plausibly good results. In

particular, from the persepective of VIF, the results are even infeasible, rendering also

the hypothesis testings infeasible, which in turn renders the future inferences infeasible.

Third, the ridge method requires a one-dimensional parameter. To find a good parameter

for the ridge method, one potentially has to deal with hard optimization problem which

is NP-hard in nature. Thence, to even find a local optimal, the computational effort will

be quite unfriendly, let alone looking for the global oiptimality. Moreover, a simply local

optimal cannot guarantee the performance of the resulting ridge estimate.

Motivated by such frustrations, we aim to develope a alternative and useful method,

based on the reliable diagnostic tool, to solve the commonly seen problem in the context of

linear regression. The developed method is useful becasue our method inherits the merit

from matrix theory and mitigates the data collinearity problem by improving not only

the values of the underlying diagnostic but also the very intrinsic eigenstructure of the
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correlation matrix. The close connection between the diagnostic used and the correlation

matrix leads to the success of our method in dealing with the problem.

We carry out both the real-world applications (when they are accessible) and random

instance experiments (when they are inaccessible) to validate the developed method. The

success in real-world applications reveals that our method is capable of addressing realistic

datasets troubled by the existence of data collinearity. Moreover, from the results of the

random instance experiments, we learn that our method has more capability in dealing

with arbitrarily generated (with some variabilities well controlled) datasets.

1.1 Preliminary

Next, we shall first introduce the basic notations to be used subsequently in the thesis,

followed by the specification of the linear model that serves as the fundamental of the

entire analysis. Assumptions are given thereafter.

1.1.1 Basic Notations

All vectors are in boldface and are real column vectors, unless otherwise specified. An

m-by-1 vector is denoted by x ≡ [xi]
m
i=1 ∈ Rm, for xi the i-th element thereof and for

m ∈ N, the set of natural numbers.

Matrices are real and in capitals. A real m-by-n matrix A, with ai,j as its (i, j)-th

element, for i ∈ {1, ...,m} and j ∈ {1, ..., n}, is written as A ≡ [ai,j] ∈ Rm×n. Occasionally,

we use (A)i,j ≡ ai,j to indicate the (i, j)-th element of a matrix A. We let A ≡ [ai,j]i6=j ∈

Rm×m be a squared matrix with all diagonals being zero and with off-diagonals ai,j’s,

∀i 6= j. A diagonal matrix A ∈ Rm×m is denoted by Diag[ai] with ai the i-th diagonal

element and with all off-diagonals zero. We denote by A � (�)0 a positive (semi)definite

matrix A. The transpose of a matrix A ∈ Rm×n is denoted by AT ∈ Rn×m. The inverse of

a matrix A ∈ Rm×m, if it exists, is denoted by A−1 ∈ Rm×m; otherwise, we use the Moore-

Penrose generalized inverse of a matrix A which is denoted by A†. The determinant of a

matrix A ∈ Rm×m is denoted by detA. The trace of a matrix A ∈ Rm×m is denoted by
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trA ≡
∑m

i=1 ai,i, the sum of the diagonals. The (k, l)-th submatrix derived from deleting

the k-th row and l-th column of a matrix A is denoted by A{k, l}. In particulat, when

k = l, we write the submatrix as A{k}.

The eigen-system of a matrix A ∈ Rm×m is denoted by the pair (Λ(A),V(A)), where

Λ(A) = [λi]
m
i=1 is the vector of eigenvalues and V(A) ≡ (υ1, ..., υm) is a matrix composed of

the eigenvectors υk ∈ Rm, for k = 1, ...,m. We write λi(A) as the i-th smallest eigenvalue

of a matrix A of proper dimension. As a convention, the smallest and largest eigenvalues

are denoted by λmin(= λ1) and λmax(= λm), respectively. The condition number (CN) of

a matrix A ∈ Rm×m is defined by the ratio κ(A) ≡ | λmin

λmax
|(A).

We adopt the conventional vector/matrix l2-norms, meaning that the basic axioms for

a norm are satisfied. For an m-by-1 vector x, the l2-norm is defined by ‖x‖2
2 ≡

∑m
i=1 x

2
i .

As for a matrix A ∈ Rm×m, its norm is given by ‖A‖2
2 ≡

∑m
i,j=1 a

2
i,j. Moreover, for any

matrix Q � 0, the induced norm for a vector x is denoted by ‖x‖2
Q ≡ xTQx.

A univariate random variable Y ∈ R that is normally distributed with mean E [Y ]

and variance V ar (Y ) is denoted by Y ∼ N (E [Y ] , V ar (Y )). If Y is a standard normal

random variable, then it is denoted by Y ∼ N (0, 1). For a multi-variate case, we replace

the singletons E [Y ] and V ar (Y ) by a vector E [Y] and the covariance matrix σ. Thence,

we write Y ∼ N (E [Y] , σ), for Y ∈ Rm, m ∈ N.

1.1.2 The Linear Model

We will consider a general centered and scaled linear model, viz.,

y = Xβ + u. (1.1)

In particular, X ∈ Rn×k is the centered and scaled data matrix, where n is the number

of observations and k is the number of independent variables considered. The matrix

product XTX (≡ ΩXX) ∈ Rk×k is the correlation matrix for the independent variables

accordingly (Belsley, 1984). The correlation coefficient between variable i and variable

j is denoted by $i,j, viz., ΩXX ≡ [$i,j] with $i,j = 1, if i = j, and −1 ≤ $i,j ≤ 1, if
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i 6= j, for 1 ≤ i, j ≤ k. Let y ∈ Rn be the response (or the dependent) vector, β ∈ Rk

the vector of regression coefficients and u ∈ Rn be the error vector. When estimated, the

fitted model is given by

ŷ = Xβ̂ + û, (1.2)

wherein β̂ is the estimated regressor vector, û is the residual vector and ŷ is the predicted

vector.

1.1.3 Assumptions

Whereas, in this dissertation, there is no specific datatype requirement, the two major

datatypes in question are cross-sectional and time-series. The basic assumptions for

both datatypes are the traditional linear model assumptions, viz., the Gauss-Markov

assumptions. However, the detailed descriptions of the assumptions for each data type

differ.

For cross-sectional data, the full set of G-M assumptions state: (i) linear in parame-

ters (β’s); (ii) random sampling; (iii) no perfect collinearity; (iv) zero conditional mean

E(u|X) = 0; and (v) homoskedasticity, V ar(ui|X) = V ar(ui) = σ2.

For time-series data, we will enforce the full set of the G-M assumptions that state:

(i) linear in parameters (β’s); (ii) no perfect collinearity; (iii) zero conditional mean

E(ut|X) = 0, t = 1, . . . , n; (iv) homoskedasticity, V ar(ut|X) = V ar(ut) = σ2, t = 1, . . . , n;

and (v) no serial correlations Corr(ut, us|X) = 0,∀t 6= s.

Besides the aformentioned sets of assumptions for the two datatypes, we also require

the so-called normality assumption on the random error, viz.,(vi − 1) ui ∼ N (0, σ2), i =

1, . . . , n, for cross-sectional data; and (vi − 2) ut ∼ N (0, σ2), t = 1, ..., N for time-series

data.

Lastly, we will assume that the data matrix is exogenous in essence, viz., X is given

and fixed.
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1.2 Organization of the Dissertation

This is how the dissertation is organized. In Chapter 2, we show how to build the VIF-

based optimization model for linear regression having collinearity problem, given the

full set of linear model assumptions fulfilled. Based upon the first-order approximation,

the resulting optimization model is a convex linearly-constrained quadratic programming

(LCQP) problem. Built upon the LCQP, we propose an iterative algorithm for solving

linear regression having collinearity problem. We carry out real-world applications to

validate the effectiveness of the proposed method.

In Chapter 3, we construct various second-order optimization models. We pay special

attention to one variant that is a (possibly non-convex) qudratically-constrained quadratic

programming (QCQP) problem. We discuss both the convex and nonconvex cases. For the

first case, we can directly obtain the global optimality using the existing results. For the

second case, we employ the linear conic programming (LCOP) technique to reformulate

the problem. Well-established results ensure us to attain the global optimality.

In Chapter 4, we relax the homoskedasticity assumption and stick to the OLS ap-

proach. We prove that the optimal perturbation derived from solving the LCQP in

Chapter 2 can be used to reduce the variance portions of the heteroskedasticity-robust

covariance estimate (HCE), thereby increasing the statistical significance. Variants of the

HCEs can also be obtained. Besides, we provide perturbed versions of the test statistics

and the pertinent interval estimations.

In Chapter 5, we relax the normality assumption for the error distributions and assume

they all follow the exponential family. Such a class of models is called the generalized

linear models (GLMs) and we focus on the collinearity diagnostic problem for this par-

ticular class. By far, condition number is still the major diagnostic tool for detection of

collinearity in the literature. We then propose a new diagnostic tool, which is called the

weighted VIF (WVIF), for detecting the presence of data collinearity. A by-product of

the new diagnostic is class of alternative estimates for generalized linear models, which is

called the perturbed maximum likelihood estimates (PLMEs), with variances improved.

In Chapter 6, we extend the results in Chapter ]5 to a unified framework for the
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family of models involving the generalized least squares (GLS) estimations. We extend

the perturbation method to the theory of GLS and apply the new diagnostic developed in

Chapter 5 to detecting the presence of data collinearity in such a class of models. A new

class of alternative estimates, called the perturbed generalized least squares estimates

(PGLSEs), then can be formed using the diagnostic. Conclusions and future research

directions are given in 7.

7



Chapter 2

VIF-based Iterative Matrix

Perturbation Method for Linear

Regression having Collinearity

Problems

In this chapter, we address data collinearity problem in multiple linear regression from

an optimization perspective. We propose a novel linearly constrained quadratic program-

ming model, based on the concept of the variance inflation factor (VIF ). We employ the

matrix perturbation method that involves imposing a general symmetric non-diagonal

perturbation matrix on the correlation matrix. The proposed VIF -based model reduces

the largest VIF by minimizing the resulting biases. The VIF -based model can mitigate

the harm from data collinearity through the reduction in both the condition number

and VIF s, meanwhile improving the statistical significance. The resulting estimate has

bounded biases under an iterative framework and hence is termed the least accumulative

bias (LABs) estimate. Certain potential statistical properties can be further considered

as the side constraints for the proposed model. Various numerical examples validate the

proposed method.
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2.1 Introduction

Motivation. Collinearity problem describes the situation that the non-orthogonality

exists among explanatory variables in regression models. The breakdown in the orthogo-

nality among explanatory variables causes imprecisions in the use of normal equation in

the ordinary least squares (OLS) estimations. The imprecision oftentimes leads to high

variances, and thus low statistical significance, and even the incorrect signs of the OLS

estimates (OLSEs) (Zhen and Wohlgenant, 2010). This renders the OLSEs, even though

they still exist, inappropriate in statistical senses. Moreover, the power in prediction

of the established regression model is far weakened (Belsley, 1984). Hence, collinearity

deserves more attention because its presence has frustrated the researchers endeavoring

to establish important relationship among interesting variables using regression models

(Shacham and Brauner, 1997; Næs and Mevik, 2001).

Belsley et al. (2005) ascribed collinearity problem to a data problem, instead of a sta-

tistical one. This is because the specification of the models has implied the independence

among the explanatory variables. Inevitably, yet, we work with non-experimental data,

pooling from an unknown vast population. Uncertainties and unpredictabilities in the

behaviour of the collected samples oftentimes lead to unsatisfactory results. Much effort

has been sowed in designing sophisticated experiments as well as new techniques to, at

least, mitigate the harm from data collinearity, for example the ridge regression (Hoerl

and Kennard, 1970), the LASSO (Tibshirani, 1996) and the bridge regression (Frank and

Friedman, 1993).

Spanos and McGuirk (2002) discussed the near-multicollinearity problems by classify-

ing the problems into (i) a structual issue (systematic volatility) and (ii) a numerical issue

(erratic volatility). Systematic volatility refers to high correlations among the explanatory

variables, concerning the structure of the correlation matrix that potentially invokes the

presence of the data collinearity. The numerical issues concern the ill-conditionedness of

the data matrix.

Ridge regression has won its reputation in addressing data collinearity problems suc-

cessfully by imposing perturbations on the diagonals of a correlation matrix. Ridge re-
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gression takes effect by sacrificing the intrinsic structure of the correlation matrix, viz., the

correlation between a variable and itself is 1 by definition. The perturbation, no matter

how small, on the diagonals of the correlation matrix violates this definition essentially.

We aim at the proposal of a novel approach that incorporates both the systematic

and erratic volatilities, as aformentioned. From the systematic perspective, the proposed

approach mitigates the effects from data collinearity by preserving the intrinsic structure

of the correlation matrix, in which aspect the ridge regression does not. From the erratic

perspective, the proposed approach exploits the numerical sensitivity of a matrix suffering

from ill-conditionedness, inheriting the essence from matrix theory (Horn and Johnson,

2012). Moreover, our approach retains the intrinsic property of a correlation matrix.

Therefore, our approach enjoys both theoretical and numerical merits.

Literature Review. By far, there is no concensus for the detection of the presence of

data collinearity. The presence of data collinearity is often detected through the concepts

of the condition number (CN ), the variance inflation factor (VIF ) and so forth (Fox and

Monette, 1992; Curto and Pinto, 2007; Kovács et al., 2005). Another criterion is that if

there is more than one non-diagonal elements of the correlation matrix having value(s)

very close to ±1, the collinearity can be said to be present. All those concepts are built

upon the correlation matrix for the explanatory variables in regression models. Each of

these existing diagnostic tools has its own advantages and weaknesses. For a thorough

discussion, please refer to Belsley et al. (2005).

The concept of CN relates to the eigenstructure of the correlation matrix. The CN

is defined through the ratio of the largest to the smallest eigenvalues of the correlation

matrix. A high CN value, usually 30 in the literature (Belsley et al., 2005), suggests the

presence of data collinearity. Nevertheless, there is still no rule of thumb for the CN to

reveal the presence of data collinearity. One of the drawbacks of CN is that CN tends

to be inflated, misleading the researchers to believing the presence of data collinearity

(Lazaridis, 2007). The use of CN as the main diagnostic tool should be with caution.

Another widely used diagnostic tool is called the VIF that indicates how the variance

of the corresponding coefficient is inflated due to data collinearity (Curto and Pinto, 2011;
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Robinson and Schumacker, 2009). Naturally, a high VIF value for an explanatory variable

suggests the presence of data collinearity. Although there is no rule of thumb for VIF s,

a value of 10 is often adopted, but with caution (Obrien, 2007). Built upon the concept

of VIF, Fox and Monette (1992) introduced a generalized diagnostic for the collinearity

problems. Curto and Pinto (2011) proposed the corrected VIF s that incorporate the R2

values as the adjustments for the original VIF s. Lin et al. (2011) proposed a regression

method using the concept of VIF as the criterion for variable selection. Liao and Valliant

(2012) examined the role of VIF s in complex survey data. Increases in the use of VIF as

the major tool for different purposes reveals the increase in its importance in the literature.

Based upon this fact, we adopt VIF as the major tool as a natural choice.

There have been a great many of techniques developed as the remedy for the con-

sequent symptoms resulting from data collinearity. To name a few, the ridge regression

(Hoerl and Kennard, 1970) and McDonald (2009)), the LASSO, the bridge regression, the

principal component regression (Batah et al., 2009), the partial least-squares regression

(Abdi, 2010), better estimates, say Liu-type estimates (Liu, 2003)) or other estimates

(Bagheri and Midi, 2009), the variable deletion/selection approach (Xin and Zhu, 2012),

data adjustments (Echambadi and Hess, 2007; Shieh, 2011) and so forth (Bashtian et al.,

2011; Fierro and Bunch, 1992; Lin, 2008) have been widely used and discussed. Others

are referred to Soofi (1990); Leung and Yu (2000) and Næs and Mevik (2001).

In light of the above from the literature, we propose a novel approach, built upon

the concept of VIF, as a new remedy for data collinearity problems in multiple linear

regression. More specifically, we develop a novel optimization model based upon the

concept of VIF to tackle data collinearity problems. Similar to ridge regression but

unlike those intended for variable selection, the proposed VIF -based model possesses the

feature that all the variables in the regression model are kept, which can be of practical

interest (McDonald and Schwing, 1973) and (Schwing and McDonald, 1976).

Our Contributions. We address the data collinearity problems in multiple linear re-

gression. Our contributions are summarized as follows.

First of all, we propose a novel VIF -based optimization model to overcome the data
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collinearity problems. To the best of our knowledge, there is no such model to date in the

literature. The established linearly constrained quadratic programming (LCQP) model

is convex, so it is computationally efficient. Moreover, on the one hand, our approach

resembles LASSO (Tibshirani, 1996) and bridge regression (Frank and Friedman, 1993)) in

the sense that all involve solving associated optimization models to obtain estimates. On

the other hand, our approach resembles ridge regression in the sense that the established

estimate can be representative of a revised normal equation, to be discussed in the next

paragraph.

Second, compared to the ridge regression, our approach tackles the collinearity prob-

lems in a more reasonable way. Ridge estimates are derived from imposing a diagonal

perturbation matrix, λI, for I an identity matrix of appropriate dimension, on the corre-

lation matrix, viz., β̂R = (XTX + λI)−1XTy, given the centered and scaled data matrix

X and y. This can be counterintuitive, for the correlation between a variable and itself

is by definition 1, no matter how small the perturbation λ is. One may even find out

that the ridge regression can still produce a solution by setting λ = 1. Our approach

preserves the intrinsic of the correlation matrix by imposing a perturbation matrix W on

the correlation matrix, viz., β̂W = (XTX+W)−1XTy, forW symmetric and having zeros

on the diagonal. Such an imposition does not change the values on the diagonal of the

original correlation matrix.

Third, our approach provides another tool for regression modelling that evades variable

selection when data collinearity problem is present. This can be helpful when certain

important variables might be ruled out by the variable selection according to certain

criteria, as pointed out in McDonald and Schwing (1973) and Schwing and McDonald

(1976). Therefore, our approach accompanies the ridge regression in this aspect. Both

the LASSO and the bridge regression are intended for variable selections, so we will not

make comparisons therewith.

Lastly, various examples validate our approach. The numerical results indicate that

(i) our approach can not only improve the VIF s, but the CN as well; (ii) statistical

significance can be potentially improved; and (iii) estimates with different signs can be
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corrected.

2.2 Model Derivation

In this section, we aim at the establishment of the LCQP for addressing data collinearity

problems. Before that, we first introduce certain notations that will be used subsequently

in the model derivation. We then specify the construction of the model.

The key idea of the proposed approach resides in the superposition of a symmetric

non-diagonal perturbation matrix on the correlation matrix. This essentially originates

from the matrix theory. When a matrix suffers from ill-posedness, viz., the condition

number thereof is very high, a slight perturbation in the data can result in a relatively

large change in the eigenstructure of the matrix (Horn and Johnson, 2012). Our model

inherits the merit of the theory, to show that such perturbations can be obtained through

solving a convex LCQP.

We start with the centered and scaled regression model, generally without intercept.

In light of Belsley et al. (2005), both the normal equation and the VIF s can be considered

as a function of the correlation matrix. We employ the first-order Taylor approximation

on both the normal equation and the VIF s to construct the objective function and the

constraints, respectively, for the resultant LCQP. The LCQP has a convex quadratic objec-

tive function and a set of linear constraints. The convexity guarantees the computational

efficiency in solving the LCQP, as will be shown later in Section 2.6.

2.2.1 Preliminary

We start with the centered and scaled regression model

y = Xβ + u. (2.1)

An OLSE can be secured by the normal equation, as a function of the correlation matrix,

in particular

β̂ (ΩXX) =
(
XTX

)−1
XTy ≡ Ω−1

XXΩXy, (2.2)
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where ΩXy ≡ XTy. The population correlation matrix is by definition symmetric and

positive definite. The sample correlation matrix, however, may not be so, depending on

the behaviour of the collected non-experimental data, for example Knol and ten Berge

(1989). In this study, we assume that the sample correlation matrix is positive definite,

viz., ΩXX � 0. Mathematically, we require the smallest eigenvalue of the correlation

matrix to be positive.

In light of Belsley et al. (2005), the VIF s of the independent variables can be derived

from the diagonal elements of the inverse of the correlation matrix, viz., the diagonals of

Ω−1
XX . We denote by Vi (ΩXX) the VIF for the i-th independent variable, in particular

Vi (ΩXX) ≡
(
Ω−1
XX

)
i,i

, for i ∈ {1, ..., k} . (2.3)

Our aim is to find a symmetric non-diagonal perturbation matrixW ≡ [∆$i,j]i6=j such

that the resulting correlation matrix remains positive definite, viz.,

Ω∗XX = ΩXX +W � 0. (2.4)

Note that (W)i,j ≡ ∆$i,j = 0, for i = j. Quantities imposed with (2.4) are said to be

perturbed. In our case, the OLSEs (2.2) imposed with (2.4) become the perturbed OLSEs

(POLSEs), or simply perturbed estimates, in particular

β̂W (Ω∗XX) ≡ (Ω∗XX)−1 ΩXy. (2.5)

The VIF s (2.3) imposed with (2.4) become the perturbed VIF s, in particular

Vi (Ω∗XX) ≡
(
Ω∗−1
XX

)
i,i

, for i ∈ {1, ..., k} . (2.6)

We shall employ the perturbation method by applying the first-order Taylor approxima-

tion to the perturbed versions of (2.2) and (2.3), viz., (2.5) and (2.6), to establish the

objective function and the constraints, respectively, for the LCQP.
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2.2.2 Objective Function

We start with the perturbed normal equation (2.5). Applying the first-order Taylor ap-

proximation about ΩXX to β̂ (Ω∗XX) suggests

β̂W (Ω∗XX) = β̂ (ΩXX) +
∑

i>j
β̂′i,j (ΩXX)4$i,j = β̂ (ΩXX) +B$, (2.7)

where $ ∈ Rk(k−1)/2 is the decision vector consisting of 4$i,j, ∀i > j, and the columns

of B ∈ Rn×(k(k−1)/2) are made of β̂′i,j (ΩXX) for each particular pair (i, j), ∀i 6= j. We

remind the readers of that the perturbation matrix W ≡ [4$i,j]i6=j will be composed of

the elements in the decision vector $, by rearranging the elements properly. The matrix

B can be derived from taking partial derivative of (2.2) with respect to the nondiagonals.

In particular,

β̂′i,j (ΩXX) =
∂β̂i,j (ΩXX)

∂$i,j

= −Ω−1
XX

(
eiβ̂j + ejβ̂i

)
,∀i 6= j

wherein ei is a column zero vector with 1 at the i-th position.

Since we are imposing perturbations on the OLSEs, the resulting estimates become

biased. We define the bias by the difference between the perturbed and the original

estimates, viz., bW ≡ β̂W (Ω∗XX) − β̂ (ΩXX) = B$. Therefore, our objective here is to

minimize the bias incurred from such perturbations. In particular, we aim to minimize

the bias in the regression estimate as well as the length of the perturbation, viz.,

min
$∈Rk(k−1)/2

‖B$‖2
2 + ρ‖$‖2

2 = $T (BTB + ρI)$, (2.8)

which is convex given any ρ > 0.
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2.2.3 VIF Constraints

We proceed on with the perturbed VIF s in (2.6). Applying the first-order Taylor approx-

imation about ΩXX to each Vl (Ω∗XX) suggests

Vl (Ω∗XX) = Vl (ΩXX) +
∑
i>j

V ′l (ΩXX) ∆$i,j, for l = 1, ..., k. (2.9)

The keys to obtain the derivative V ′l (ΩXX) are twofold. First, from matrix theory (Horn

and Johnson 1990), we know that

Vl (ΩXX) = det ΩXX{l}/ det ΩXX . (2.10)

Second, the determinant of a matrix is the product of its eigenvalues, viz.,

det ΩXX =
n∏
p=1

λp (ΩXX) and det ΩXX {l} =
n−1∏
p̂=1

λp̂ (ΩXX {l}) , (2.11)

where λp and λp̂ are the p-th and p̂-th eigenvalues for the matrices ΩXX and ΩXX {l},

respectively.

Based upon (2.10) and (2.11), it can be shown that

V ′l (ΩXX) = 2

[
n−1∑
q̂=1

υ̂q̂,̂ıυ̂q̂,̂
λq̂ (ΩXX {l})

−
n∑
q=1

υq,iυq,j
λq (ΩXX)

]
Vl (ΩXX) , (2.12)

which is a scalar. Note that υq and υ̂q̂ are the q-th and q̂-th eigenvectors associated with

ΩXX and ΩXX {l}, respectively; and υq,i and υ̂q̂,̂ı are the i-th and ı̂-th elements of the

eigenvectors υq and υ̂q̂, respectively. We can thereby write (2.9) as

Vl (Ω∗XX) = Vl (ΩXX) + vTl $, for l = 1, . . . , k, (2.13)

for i 6= j and ı̂ 6= ̂ in (2.12). Note that the vector vl in (2.13) is composed of (2.12) for

different pairs (i, j).
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From (2.13) we define the difference between the perturbed and the original VIF s by

dl ($) ≡ Vl (Ω∗XX)− Vl (ΩXX) = vTl $, for l = 1, . . . , k.

Our aim is to decrease the VIF s by imposing a perturbation on the correlation matrix,

viz., we want dl ($) < 0. To this end, according to the authors’ experience, it suffices

to consider only the independent variable with the largest VIF value, in particular, we

consider

Vk∗ (Ω∗XX) = Vk∗ (ΩXX) + vTk∗$

where k∗ = max1≤j≤k {j|Vj (ΩXX) ≥ Vi (ΩXX) , for i 6= j}. We denote such a constraint

as

Vmax (Ω∗XX) = Vmax (ΩXX) + vTmax$ so that dmax ($) < 0 (2.14)

Note that (2.14) constitutes a linear constraint, and thus convex. We are now ready to

state the LCQP.

2.2.4 A Convex Quadratic Programming Model

Combining (2.8) and (2.14), we form the following norm-minimization model

min
$∈Rk(k−1)/2

{
$T (BTB + ρI)$ : −vTmax$ = vr

}
(2.15)

where ρ(> 0) is an exogenous trade-off parameter and vr(> 0) is the reduction in the

VIF. An intuitive interpretation of (2.15) is the following. We aim to find a perturbation

matrix (symmetric and zeros diagonals) so that the largest VIF is reduced, meanwhile

minimizing the bias resulting from the perturbation.

The strict convexity of the objective function guarantees that the global minimizer

to (2.15) can be found, in light of the K-K-T optimality condition (Bazaraa et al., 2013)

which in our case is both necessary and sufficient. In particular, the optimal perturbation
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vector $∗ is given by

$∗ =
−vr

‖vmax‖2
(BTB+ρI)−1

(
BTB + ρI

)−1
vmax. (2.16)

The trade-off parameter ρ plays two roles in the model. First, we wish the norm of

perturbation $T$ is small enough so that the model works well. If the norm were too

large, the model could have poorly performed. The trade-off parameter ρ serves as the

penalty imposed on the norm of $T$. Second, the addition of the trade-off parameter

ensures that the objective function is well-posed, viz., BTB + Diag [ρ] � 0 , for ρ > 0.

The choices of the parameters ρ and vr will be discussed more in Section 2.4.

2.3 Statistical Issues

There are certain issues for the perturbation matrix derived from (2.15) as well as the

goodness of fit for the perturbed model. We discuss the issues in what follows.

2.3.1 Approximate Confidence Bounds

Let Ω∗XX ≡
[
$∗i,j

]
. We require that the perturbed correlation coefficients should lie

within the confidence interval under the null hypothesis H0 :
{
$∗i,j = $i,j

}
for a specific

level of confidence. Let the null hypothesis be H0 :
{
$∗i,j = $i,j

}
against the alternative

H1 :
{
$∗i,j 6= $i,j

}
. We adopt the Fisher’s Z -transform on the correlation coefficients,

given by

Z$∗ =
1

2
ln

(
1 +$∗i,j
1−$∗i,j

)
, for i 6= j,

following approximately an normal distribution with mean Z$ and variance σ2
Z = 1

n−3
,

viz., Z$∗ ∼ N
(
Z$, (n− 3)−1). The Fisher’s Z-statistic (Z) is defined as

Z ≡ (Z$∗ − Z$)

σZ
=

√
n− 3

2
ln

[(
1 +$∗i,j

)
(1−$i,j)(

1−$∗i,j
)

(1 +$i,j)

]
→ N (0, 1) .
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Since both the standard deviation σZ and $i,j, ∀i, j ∈ {1, ..., k}, are known, we can

derive the confidence bounds for $∗i,j accordingly. It is not hard to see that the following

constraint satisfies the 100× (1− α) % confidence interval for $∗i,j

(1+$i,j)

(1−$i,j) exp
(

2zα
2√

n−3

)
− 1

(1+$i,j)

(1−$i,j) exp
(

2zα
2√

n−3

)
+ 1
≤ $∗i,j ≤

(1+$i,j)

(1−$i,j) exp
(

2z1−α2√
n−3

)
− 1

(1+$i,j)

(1−$i,j) exp
(

2z1−α2√
n−3

)
+ 1

, for i 6= j (2.17)

Unfortunately, the confidence bounds (2.17) serves merely as an approximation for

the perturbed correlation coefficient $∗i,j, for i 6= j. The use of the Fisher’s Z-transform

relies on the normality condition. The Fisher’s Z-statistic can perform very poorly if

the sample size is not large enough, say n < 500 (Paul, 1989). Moreover, there is so

far no well-founded hypothesis testing procedure for testing the relationship between the

perturbed and the original correlation coefficients, viz., H0 :
{
$∗i,j = $i,j

}
against the

alternative H1 :
{
$∗i,j 6= $i,j

}
. We bring up (2.17) for purpose of completion.

2.3.2 Range of Correlation Coefficients

We require that the perturbed correlation matrix still retains its own characteristic, viz.,

every correlation coefficient should be within the −1 to 1 range. Mathematically, we have

$∗i,j ∈ (−1, 1) , for i 6= j, and $∗i,j = 1, for i = j. (2.18)

2.3.3 Sign Restrictions

The signs of the perturbation should satisfy some rules, if any. That is, for some specific

(i, j)-th element, the corresponding perturbation is restricted in sign,

4$i,j = 0 or ±4$i,j > 0, for (i, j) ∈ I (2.19)

where I is an index set subject to sign restrictions.
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2.3.4 Goodness of Fit

The value of R2 must be less than unity. The R2 statistic is defined by R2 = 1 −

C1 (ỹ − ŷ)T (ỹ − ŷ), where ỹ ≡ (y−y), ŷ = Xβ̂ and C1 ≡
(
ỹT ỹ

)−1
. It is obvious that

R2 is a function of the regression estimate β̂, and therefore a function of the correlation

matrix. In particular, letting R2 ≡ R (ΩXX), we see that

R (ΩXX) = 1− C1

(
ỹ −Xβ̂ (ΩXX)

)T (
ỹ −Xβ̂ (ΩXX)

)
.

Imposing a perturbation matrix W such that (2.4) holds, the first-order Taylor ap-

proximation of R (Ω∗XX) about ΩXX suggests

R (Ω∗XX) = R (ΩXX) +
∑
i>j

R′i,j (ΩXX)4$i,j, (2.20)

in which R′ (ΩXX) is the partial derivative with respect to $i,j, ∀i > j. It is not hard to

see that the R′i,j (ΩXX) in (2.20) is given by, for i 6= j,

R′i,j (ΩXX) = 2C1

(
β̂T − ỹTXΩ−1

XX

)(
eiβ̂j + ejβ̂i

)
, (2.21)

which is a scalar and ei is a column zero vector with 1 at the i-th position. Expressed in the

vector/matrix notation, (2.21) becomes R (Ω∗XX) = R (ΩXX) + rT$. Similarly, we want

the difference between the perturbed and original R-squareds to remain non-negative,

viz.,

R (Ω∗XX)−R (ΩXX) = rT$ ≥ 0. (2.22)

Remarkably, the R2 constraint (2.22) can be helpful when we lose grip on the R2 for the

perturbed model.

As a consequence, at the optimal perturbation $∗, the changes in the goodness of fit

is given by

∆R =
rT (BTB + ρI)−1vmax

‖vmax‖2
(BTB+ρI)−1

vr = O(vr). (2.23)

Numerical evidences suggest that the changes in the goodness of fit is negligible.
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2.3.5 Refined VIF-based LCQP Model

The original LCQP (2.15) can be refined by incorporating the side constraints (2.17)-

(2.19) and (2.22), viz.,

min
$∈Rk(k−1)/2

{
$T
(
BTB + ρI

)
$ :− vTmax$ = vr, (2.17)-(2.19) and (2.22)

}
. (2.24)

According to our experience, there is no need to impose additional complexity to the

original LCQP model (2.15). Thence, the statistical constraints (2.17)-(2.19) and (2.22)

will be treated as posterior test.

2.3.6 On Positive Definiteness of Perturbed Correlation Matrix

We now return to (2.4) left assertive. In general, W is indefinite in essence, so there is

no guarantee that (2.4) is true. Computationally, however, if one can ensure that the

minimal eigenvalue of ΩXX is greater than or equal to the maximal eigenvalue ofW , (2.4)

will hold. Specifically, assuming that Ω∗XX is positive definite, then, for any x 6= 0, we see

that

xTΩ∗XXx = xT (ΩXX +W) x >

(
min

1≤i≤k
{λi (ΩXX)} − max

1≤i≤k
{λi (W)}

)
xTx > 0, (2.25)

which implies min1≤i≤k {λi (ΩXX)} ≥ max1≤i≤k {λi (W)}.

2.4 Proposed Algorithm, Parameter Settings and Nu-

merical Issues

Before introducing the proposed algorithm, we bring up certain numerical issues that

relate to the design of the proposed algorithm. The proposed algorithm requires certain

exogeneous inputs to begin with. We shall describe the model input and the settings

thereof. We state the general structure of the proposed algorithm thereafter.
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2.4.1 Numerical Issues and Algorithm Inputs

Recall that the proposed LCQP (2.15) tackles the data collinearity problem by reducing

the largest VIF while keeping the resultant biases well controlled. The hope to find a

perturbation matrix that can reduce the largest VIF down to a specified level in a one-step

fashion can be of greed and is risky rendering the LCQP (2.15) to collapse. Compared to

the ridge regression, designing an iterative algorithm for our approach is of necessity, as

the inevitable trade-off for finding a more general symmetric non-diagonal perturbation

matrix. We shall show that the computational efficiency of the designed algorithm for the

LCQP (2.15) does not frustrate us much, albeit iterative.

Parameters for the VIF-based model. For the LCQP (2.15), we need to specify

the trade-off parameter ρ and the reduction in VIF vr. The trade-off parameter ρ is by

default set to 5. We will show that the choice of ρ does not affect much the performance

of (2.15).

The choice of vr is more important than that for ρ, because the choice of vr relates

directly to the performance (or quality) of the solution to the LCQP model. A moderate

level for vr, say 5, is oftentimes a good choice. Any value greater than 10 would not

be recommended. We choose vr = 1 by default. A more elaborate setting for vr is the

dynamic adjustment. Keeping vr at a constant level may limit the performance of our

approach, especially at few steps before termination. A recommended setting for vr would

be in decreasing order, viz., vir > vi+1
r > 0 for i the iteration number. The only trade-off

for the dynamic adjustment is, however, that the number of iterations increases. This can

be offset by the computational efficiency in solving (2.15).

Parameters for the algorithm. Since the proposed algorithm is iterative in nature,

we need to specify the initial values for the algorithm to begin with. The OLSEs β̂OLS

for (2.1) are chosen as the initial estimates for the algorithm. The correlation matrix

ΩXX as well as the VIF s {Vj (ΩXX) , j = 1, ..., k} are known from the data beforehand.

Alternatively, it suffices to have the knowledge of the collected data, viz., y and X.

We now specify the stopping criterion for our iterative algorithm. Recall that what
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LCQP (2.15) does is to reduce the largest VIF while keeping the bias minimized. And

since our aim is to mitigate the harm from the presence of data collinearity, it is reasonable

to set an appropriately desired level for the largest VIF to go to. We denote the desired

level by vl. For the purpose of comparison, we shall let vl be 3 by default, depending on

the examples.

Algorithm Inputs. By and large, the algorithm inputs can be represented as a six-

tuple vector P , in particular

P = (y, X, ρ, vr, vl) (2.26)

2.4.2 A VIF-based Algorithm

We now present our proposed algorithm. A general algorithmic structure for the algorithm

is given below.

Algorithm 1 VIF-Based Iterative Algorithm

Require: Problem input P as in (2.26)

Ensure: Optimal POLSEs β̂W ;
1: repeat
2: Generate matrix B for objective function and vector vk∗ for constraint;
3: Use (2.16) to form W∗ = [∆$i,j]i>j;
4: Update OLSE;
5: until maxj=1,...,k Vi ≤ vl

Regarding the Step 4 of the proposed algorithm, the readers must be aware of the fact

that the superposition of the perturbation matrix W∗ has a universal effect on all VIF s

(and, of course, the estimates). Recall that the constraint of the LCQP (2.15) is built

upon the independent variable with the largest VIF, and the index thereof is determined

by k∗ = max
1≤j≤k

{j|Vj (ΩXX) ≥ Vi (ΩXX) , i 6= j}. The perturbation matrix W∗ is, however,

imposed upon each and every non-diagonal element of the correlation matrix. There is

no escape that all VIF s change due to the superposition. Fortunately, the changes in

the VIF s are beneficial in the sense that only those pathological VIF s are reduced while

those good VIF s fluctuates slightly around their original values. We shall prove this fact

in later chapter. By and large, numerically, we effectively calculate all VIF s in Step 4

23



and the index in the constraint −vTmax$ = vr (or rT$ ≥ 0) varies over iterations.

2.5 Hypothesis Testing

In this section, we discuss the hypothesis testing on the perturbed estimates. As the ob-

jective function of (2.15) suggests, the superposition of the perturbation on the correlation

matrix results in changes in the OLSEs. It is necessary to perform the standard t-test on

the perturbed regression estimates. We also show that the the t-statistic is effectively a

function of the VIF s.

We implement the standard t-test on the null hypothesis H0 :
{
β̂j (Ω∗XX) = 0

}
against

H1 :
{
β̂j (Ω∗XX) 6= 0

}
. The purpose is to ensure that the POLSEs still retain their statis-

tical significance.

The t-statistic for the j-th estimate is defined by tj = β̂j/se
(
β̂j

)
, for j = 1, ..., k.

The standard errors of the regression estimates are effectively functions of the VIF s, in

particular,

se
(
β̂j

)
=
√
σ2Vj (Ω∗XX) with σ2 =

∥∥∥(y − ȳ −Xβ̂ (Ω∗XX)
)∥∥∥2

2
,

for a centered and scaled model (2.1). The perturbed t-statistic therefore is defined as

tj (Ω∗XX) ≡ β̂ (Ω∗XX) /
√
σ2Vj (Ω∗XX). (2.27)

From the relationship between tj (Ω∗XX) and Vj (Ω∗XX) in (2.27), it is obvious that the

reductions in VIF s increase the values of the t-statistics.

2.6 Numerical Examples - Real Data

We apply the LCQP (2.15) and the proposed algorithm in Section 2.4.2 to four examples

of two data types. The first two examples are of cross-section. One of them is the diabetes

dataset discussed in Efron et al. (2004), and the other is a collinear dataset (Chatterjee

and Hadi, 2006) in that the correlation coefficients among independent variables are all
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greater than 0.9. The rest are time-series datasets. One of them is drawn from (Chatterjee

and Hadi, 2006), and the other is from Zhen and Wohlgenant (2010). All experiments are

implemented in MATLAB R2010b with Pentium 4, 3GHz CPU and 1G RAM.

2.6.1 The Diabetes Dataset

The diabetes data, as discussed in Efron et al. (2004), has 10 explanatory variables,

inclusive of age, sex, bmi, map, tc, ldl, hdl, tch, ltg and glu; and there is one response

variable. The context of the dataset is to construct a model to examine the relationship

among those variables. The basic regression information is summarized in Table 2.1,

consisting of the OLS estimates, VIF values and the standard error.

Vars age sex bmi map tc CN

β̂OLS −0.48 −11.42 24.76 15.45 −37.72 470.08

VIF s 1.22 1.28 1.51 1.46 59.2 −

s.e. 59 60.46 65.7 64.6 411.46 −

Vars ldl hdl tch ltg glu R2

β̂OLS 22.7 4.81 8.43 35.78 3.22 0.52

VIF s 39.19 15.4 8.89 10.08 1.49 −

s.e. 334.79 209.87 159.45 169.75 65.16 −

Table 2.1: The summary of the original information for the Diabete data, derived from

the OLS. Note: s.e. denotes standard error

Applying the LCQP (2.15) using the algorithm to the model yields the perturbed

information in Table 2.2. We see that the R2 value for the perturbed model remains at

the same level as that from the OLS results. The CN has dropped down enormously from

470 to 21.
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Vars age sex bmi map tc CN

β̂W −0.2 −11.31 25.56 15.99 −37.12 20.46

VIF s 1.17 1.32 2.26 1.52 2.99 Iters

s.e. 57.88 61.52 80.59 65.99 92.76 93

Vars ldl hdl tch ltg glu R2

β̂W 22.92 4.28 9.01 36.45 3.76 0.52

VIF s 2.09 1.75 2.18 2.18 1.4 CPU

s.e. 77.45 70.81 79.1 79.19 63.46 6.48

Table 2.2: The summary of the original information for the Diabete data, derived from

the proposed algorithm

Figure 2.6.1 indicates the relationship between the CN and the VIF s. From the figure,

we first observe that the VIF s for (a) age, (b) sex, (c) bmi, (d) map and (j) glu basically

fluctuate around their original values, even though the VIF s for (c) bmi and (d) map

increase slightly. As for those variables with pathological VIF s, their VIF s suggest a

tendency to decrease over the iterations.

Figure 2.6.1 concerns two things. First, Figure 2.6.1 -(a) shows the relationship be-

tween the CN and the perturbation norm ‖$‖2 over the iterations. By and large, the

norm increases as the CN decreases, even though there are certain fluctuations after the

60-th iteration. This fact indicates that it indeed takes more effort for the perturbation to

reduce to VIF s, as the ill-posedness is mitigated. The basically reflects the matrix prop-

erty (Horn and Johnson, 2012). Second, Figure 2.6.1-(b) gives the numerical validation

of the postive definiteness assumption (2.4).

2.6.2 An application to Collinear Data

We make an attempt to deal with collinear dataset as an example. The context of the

collinear dataset results from a study on the equal opportunity in public education in

United States. The objective was to examine the effect of school inputs on students’

achievements. More details are referred to Chatterjee and Hadi (2006) and the related
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Figure 2.1: Figures (a) - (j) represent the relationship between the condition number and
the VIF s for each explanatory variable in the diabetes dataset. (Solid Line – Left Axis;
Dashed Line – Right Axis)

literature therein. There are 3 independent variables (FAM, PEER and SCHOOL), 1

dependent variable (ACHV ) and 70 random measurements.

The regression information is summarized in Table 2.3 below. As the authors men-

tioned, a high F -statistic value (5.72) indicates that the three variables are valid as the

explanatory variables, although the t-statistics reveal statistical insignificance individu-

ally.

Variables FAM PEER SCHOOL CN

β̂OLS 1.16 1.74 −1.91 393.97

VIF s 38.443 31.478 88.372 R2

s.e. 12.52 11.33 18.98 0.19

Table 2.3: The summary of the original information for the education data, derived from

the ordinary least squares.

The information in Table 2.3, as well as the correlation matrix below, all suggest the
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Figure 2.2: Figure (a) shows the relationship between the condition number and the
perturbation norm; Figure (b) concerns th positive definiteness property of the perturbed
correlation matrix for diabetes data. (Solid Line – Left Axis; Dashed Line – Right Axis)

strong collinearity among independent variables. The strong linear structure between

pairs of the three variables does affect the estimates obtained in Table 2.3.

Vars FAM PEER SCHOOL

FAM 1 0.959 0.986

PEER − 1 0.983

SCHOOL − − 1

Table 2.4: The correlation matrix for variables FAM, PEER and SCHOOL.

We see that the original OLSE for SCHOOL suggests a negative marginal effect, with

respect to standard deviations, on students’ achievements, holding other factors constant.

However, our approach suggests a more reasonably positive marginal effect for SCHOOL,

as summarized in Table 2.5. The confliction between the original and pertured results

suggest that more investigation may be needed to confirm how those variables are related.
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Variables FAM PEER SCHOOL CN R2

β̂W 0.46 0.54 0.14 14.39 0.18

VIF s 2.66 2.85 3.84 Iter CPU

s.e. 3.33 3.44 3.99 87 1.73

Table 2.5: The summary of the original information for the education data, derived from

the proposed algorithm

Figure 2.6.2 shows that all VIF s,together with the CN, decreases. More to that, if we

compare (c) to (a) and (b) in Figure 2.6.2, the proposed algorithm effectively renders the

most pathological VIF to decrease stably over the iterations.
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Figure 2.3: The relationships between the condition number and VIF s for (a) FAM, (b)
PEER and (c) SCHOOL for education data. (Solid Line – Left Axis; Dashed Line – Right
Axis)

The next figure shows (i) the relationship between the condition number and the per-

turbation norm; and (ii) the relationship between the minimal and maximal eigenvalues

for Ω∗XX andW . In Figure 2.6.2-(a), the figure again confirms that, as the condition num-

ber drops down, the perturbation norm becomes larger. In Figure 2.6.2-(b) the positive
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definiteness is firm accordingly.
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Figure 2.4: Figure (a) shows the relationship between condition number and the pertur-
bation norm. Figure (b) concerns the positive definiteness of Ω∗XX for education data.
(Solid Line – Left Axis; Dashed Line – Right Axis)

2.6.3 The Sales Dataset

The following data represents a period of 23 years during which the firm was operating

under fairly stable condition. The data shows the effect of the advertising expenditures

(At and the lagged At−1), promotion expenditures (Pt and the lagged Pt−1), and sales

expense (Et) on the aggregate sales of a firm in period t. For details of the data, please

see Chatterjee and Hadi (2006).

We summarize the OLS information is given in Table 2.6.
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Vars At Pt Et At−1 Pt−1 CN

β̂OLS 2.35 3.9 3.15 1.6 2.03 233.92

VIF s 36.94 33.47 1.08 25.92 43.52 R2

s.e. 6.81 6.48 1.16 5.7 7.39 0.92

Table 2.6: The summary of the original information for the advertising data, derived from

the ordinary least squares

Applying the proposed approach to the dataset, the results are summarized in Table

2.7. The CPU time is 0.7 second for 47 iterations.

Vars At Pt Et At−1 Pt−1 CN R2

β̂W 1.98 3.49 3.44 1.21 1.6 11.78 0.92

VIF s 2.51 2.85 1.16 1.97 2.36 Iters CPU

s.e. 1.03 1.77 2.61 0.72 0.79 45 0.69

Table 2.7: The summary of the new information for the advertising data, derived from

the proposed algorithm

In Figure 2.6.3, we observe that the good VIF for (c) Et fluctuates upward slightly,

while other pathological VIF s drop down enormously. All results reveal the same conclu-

sion as in the previous two examples.

2.6.4 United States Pork Data

The following example illustrates the United States Pork dataset. The dataset contains

the retail price (rp), deflated retail price (drp), net farm value (nfv), total price spread

(tps), deflated price spread (dps), wage price (wp), wage price index (wpi), fuel price

index (fpi), industrial cost (ic), deflated industrial cost (dic), quantity (q), consumer

price index (cpi), and top 4 concentration rate (cr4 ) for US pork industry since 1970 to

2008.
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Figure 2.5: The relationship between the condition number and VIF s for (a) At (b) Pt
(c) Et (d) At−1 and (e) Pt−1 (From Top to Bottom) (Solid Line – Left Axis; Dashed Line
– Right Axis)

Vars lp lq ldw ldpe lcr4 d98 t

lp 1 −0.25 0.89 −.004 −0.79 −0.19 −0.86

lq − 1 0.13 −.17 −0.04 0.07 −0.11

ldw − − 1 −0.05 −0.78 −0.19 −0.91

ldpe − − − 1 −0.02 −0.27 0.12

lcr4 − − − − 1 0.25 0.95

d98 − − − − − 1 0.19

t − − − − − − 1

Table 2.8: The correlation matrix for explanatory variables for US Pork Data

We refer the detailed context of the dataset to Zhen and Wohlgenant (2010). The

model of interest is a detrended one, given by lr = β1lp+β2lq+β3ldw+β4ldpe+β5lcr4+

β6d98 + β7t + ε, where lr is the log of the difference between deflated retail price and

deflated price spread, lp is the log of deflated retail price, lq is the log of quantity, ldw is
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Figure 2.6: The figure shows (i) the relationship between the condition number and the
perturbation norm; and (ii) the positive definiteness of Ω∗XX for sales data. (Solid Line –
Left Axis; Dashed Line – Right Axis)

the log of deflated wage price index, ldpe is the log of deflated fuel price index, lcr4 is the

log os top 4 concentration rates, d98 is equal 1 if the year is 1998 or 1999; and 0, otherwise,

and t is the cardinal of the years. As reported, the results for the trended version have a

sign difference between coefficients for ldw. Too see that, we first look at the correlation

matrix given below. Table 2.9 contains the OLS information. The trending variable was

intended to account for the trending variations existing among the variables. However,

it turns out that introducing a detrending variable t invokes serious collinearity problem

for the problem.

Vars lp lq ldw ldpe lcr4 d98 t CN

β̂OLS 0.19 −0.04 −0.15 0.06 0.06 −0.05 −0.43 336.74

VIF s 18.45 3.61 22.38 1.87 25.19 1.17 58.79 R2

s.e. 0.28 0.13 0.31 0.09 0.33 0.07 0.51 0.98

Table 2.9: The summary of the original information for (detrended) US pork data, derived

from the ordinary least squares
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More to that, if we look at the trended version of the problem, we see that the coeffi-

cient for ldw has effectively a different sign, see Table 2.10.

Vars lp lq ldw ldpe lcr4 d98

β̂OLS 0.21 −0.03 −0.01 0.01 0.2 −0.05

VIF s 18.45 3.61 22.38 1.87 25.19 1.17

s.e. 0.37 0.16 0.33 0.09 0.16 0.09

Table 2.10: The summary of the original information for (trended) US pork data, derived

from the ordinary least squares

We attempt to see if the proposed approach can mitigate the effect from introducing

the detrending variable t. Table 2.11 suggests the perturbed information for the detrended

model.

Vars lp lq ldw ldpe lcr4 d98 t CN R2

β̂W 0.19 −0.04 0.03 0.01 −0.15 −0.05 −0.14 14.1 0.96

VIF s 2.65 1.05 2.69 1.73 2.95 1.12 2.31 Iters CPU

s.e. 0.19 0.12 0.19 0.15 0.2 0.12 0.18 197 3.53

Table 2.11: The summary of the original information for (detrended) US pork data,

derived from the proposed algorithm

Two things can be observed. First, the proposed approach successfully reverses the

sign for variable ldw, agreeing with that in the trended model. Second, however, as we

see from Table 2.11, the coefficient for variable lcr4 becomes negative, meaning that the

marginal percentage effect on lr has a 14% drops, holding others constant.

Figure 2.6.4 reveals the fact that the CN behaves as VIF s, especially those pathological

ones, do. In Figure 2.6.4-(a), we observe that there are certain fluctuations on the curve

for the perturbation norm over the iterations. Similarly, there is a quick incline in CN at

around 120-th iteration. The phenomena may be due to certain implicit numerical issues.

By and large, Figure 2.6.4-(a) confirms that as the CN goes down, the perturbation norm

goes up. Figure 2.6.4-(b) simply confirms the positive definiteness of ΩXX .
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2.7 Concluding Remarks

In this study, we propose a novel optimization model, based on the concept of VIF, to

alleviate data collinearity problems in multiple linear regression. We show that the VIF s

can decrease through solving the convex LCQP (2.15), using the proposed VIF-based

algorithm. Various numerical examples validate the proposed approach.

The comparison between the proposed algorithm and the ridge regression can be un-

fair, because both approaches require exogenous parameters that directly affect the per-

formance thereof. More to that, the relationship between the settings for ridge regression

and our approach is not obviously related. In general, ridge regression outperforms the

proposed algorithm in the VIF reduction.

There are a few issues needed to be solved. First of all, the development of the

testing procedure for testing the hypothesis H0 :
{
$∗i,j = $i,j

}
against the alternative

H1 :
{
$∗i,j 6= $i,j

}
is still missing in the literature. Once the testing procedure has been

constructed, the examination of the perturbations generated by the LCQPs (2.15) can be
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Figure 2.8: Figure (a) shows the relationship between the condition number and the
perturbation norm; and Figure (b) concerns the positive definiteness of Ω∗XX . (Solid Line
– Left Axis; Dashed Line – Right Axis)

done. Second, as the numerical examples suggest, the algorithm still suffer from numerical

instability after certain iterations. This is due to the feature that the proposed algorithm

can decrease the CN while decreasing the VIF s. As the CN has dropped down to a certain

level, the sensitivity of the matrix becomes weak. So, a stablization of the performance

of the algorithm may be needed.
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Chapter 3

Second-Order VIF-based

Optimization Model for Linear

Regression having Collinearity

Problems

In this chapter, we study the linear regression having data collinearity problems. In or-

der to achieve more improvements in the variance inflation factors, we propose a family

of second-order VIF-based optimization models. Among the family, we pay special at-

tention to one with the VIF constraint approximated up to the second order and with

the objective unchanged. This particular model is a quadratically constrained quadratic

programming (QCQP), an important branch of nonlinear programming problems. The

established second-order model has a wide applicability that it can be used whether or

not the existence of heteroskedasticity is observed.

3.1 Introduction

This chapter is sequel to Chpater 2 in that the authors proposed a VIF-based optimiza-

tion model to treat linear regression models having collinearity problems, based upon

the first-order approximation in both the OLSEs and the VIFs. Under the first-order
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approximation, the authors showed that the problem is equivalent to solving a linearly-

constrained quadratic programming (LCQP) which can be solved quite efficiently using

any commercial software. Moreover, strict convexity of the established LCQP ensures an

explicit solution to the problem, rendering the solution procedure much easier.

First-order approximation, albeit practically useful, provides merely a rough approxi-

mation to the problem in question. More precisions, and therefore more information, can

be secured if one delves into higher-order approximations, say the second-order approx-

imation. The more information we have in hand, the closer we get to the core of the

problem. Therefore, it becomes our interest to derive a preciser second-order model for

linear regression having collinearity problems.

Combinations of two criteria (bias and VIF) result in three potential variants for

the second-order family. Since the VIF is more important than the bias itself, we shall

focus on a particular variant that encompasses a second-order approximation on the VIF

constraint, while the bias objective remains unchanged. This particular variant turns

out to be a quadratically constrained quadratic programming problem (QCQP), having

a possibly nonconvex constraint depending on the VIF associated.

QCQPs are a classic branch of nonlinear programming problems and are of both the-

oretical importance and practical interest. Various famous nonlinear programming prob-

lems belong to its clan. For instance, the Max-Cut problem, binary quadratic programs,

trust-rigion method and the likes are all of QCQP.

Essentially, QCQP is NP-hard and cannot be solved in polynomial time. For convex

QCQPs, given any precision, computationally efficient algorithms can be used to solve

the problems in polynomial time. On the other hand, not surprisingly, the same does not

apply to nonconvex QCQPs. For many years, researchers have endeavored themselves

in developing computationally efficient algorithms for solving nonconvex QCQPs to ap-

proximate the global optimality. To name a few, Al-Khayyal et al. (1995) developed a

relaxation method for solving nonconvex QCQPs; Audet et al. (2000) proposed a branch

and cut algorithm to solve nonconvex QCQPs and similarly Linderoth (2005) proposed

a simiplicial branch and bound algorithm;Anstreicher (2009) compared the semidefinite
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programming (Vandenberghe and Boyd, 1996; Boyd and Vandenberghe, 2009) to the

reformulation-linearization technique for nonconvex QCQPs; Anstreicher (2012) studied

the convex relaxation for QCQPs. For more discussions, see Fang and Rajasekera (1986);

Ben-Tal and Teboulle (1996); Nemirovskii and Scheinberg (1996); Zheng et al. (2011);

Misener and Floudas (2012) and the references therein. See also Bao et al. (2011) for a

thorough review.

The proposed second-order VIF-based model has a wide applicability. In light of

Chapter 2, the proposed model is applicable to not only homoskedastic linear regression

models but also heteroskedastic ones, both under the influence of data collinearity. When

there is no departure from homoskedaticity, the situation is clear, viz., one simply adds

higher-order terms to the original VIF-based model given in Chapter 2. When the depar-

ture from homoskedasticity is observed, one either follows the traditional OLS-approach,

with nothing changed, or one resport to the alternative WLS-approach, with the mere

changes in the basic matrices.

This is how the rest of this study is organized. In Section 3.2, we show how to construct

the second-order VIF-based model for linear regression having collinearity problems. The

resulting optimization problem is nonlinear in essence. Several variants are also discussed.

In Section 4.2, we apply the conic reformulation technique to solving the established

optimization problem and design a solution procedure to achieve the global optimality.

We also carry out numerical examples for validate the effectiveness of the method. Lastly,

we give some concluding remarks in Section 3.4.

3.2 The Model

We shall follow Chapter 2, viz., we aim to find a perturbation matrix W such that the

ill-conditioned matrix XTX becomes well-posed. Specifically, we wish to find such W

so that XTX +W � 0 holds. Quantities imposed with the perturbation are said to be

perturbed.
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3.2.1 Objective Function

The superposition of W renders the new estimate β̂ biased. Thence, we wish that such a

perturbation will result in a bias that is minimal.

The bias comes primarily from the ordinary least squares estimate (OLSE) that can

be deemed a function of the correlation matrix, given the data matrix is centered and

scaled. In particular, we see that

β̂OLS(ΩXX) = (XTX)−1XTy ≡ Ω−1
XXΩXy, (3.1)

where XTX ≡ ΩXX is the correlation matrix among the factors and XTy ≡ ΩXy. The

superposition of W onto ΩXX results in the perturbed OLSE (POLSE)

β̂OLS(Ω∗XX) = (XTX +W)−1XTy = Ω∗−1
XXΩXy. (3.2)

Now, applying the Taylor series expansion up to the second order to β̂OLS(Ω∗XX) about

ΩXX suggests

β̂OLS(Ω∗XX) = β̂OLS(ΩXX)

+
∑
i>j

∂β̂OLS(ΩXX)

∂$i,j

∆$i,j +
1

2!

∑
i>j

∑
k>l

∂2β̂OLS(ΩXX)

∂$i,j$k,l

∆$k,l∆$i,j,

where the first-order partial derivative ∂β̂OLS(ΩXX)
∂$i,j

is given by

∂β̂OLS(ΩXX)

∂$i,j

= −Ω−1
XX(eie

T
j + eje

T
i )β̂OLS, (3.3)

for i > j, and

∂2β̂OLS(ΩXX)

∂$i,j$k,l

= (I + Ω−1
XX(eke

T
l + ele

T
k ))Ω−2

XX(eie
T
j + eje

T
i )β̂OLS, (3.4)
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for i > j and k > l. Hence, (3.2.1) can be written as

β̂OLS(Ω∗XX) = β̂OLS(ΩXX) +B1$ +B2$ ⊗$, (3.5)

where ⊗ denotes the Kronecker product so that $ ⊗$ ∈ R(k(k−1)/2)2 , B1 ∈ Rk×(k(k−1)/2)

is the matrix associated with the first-order approximation (3.3) and B2 ∈ Rk×(k(k−1)/2)2

is the matrix associated with the second-order approximation (3.4).

From (3.5), the difference between β̂OLS(Ω∗XX) and β̂OLS(ΩXX) can be seen as the bias

and we want to minimize the resulting bias. In particular, we aim at minimizing

min
$∈W
‖B1$‖2

2 + ‖B2$ ⊗$‖2
2 + ρ1‖$‖2

2 + ρ2‖$ ⊗$‖2
2 (3.6)

where W denotes the feasible region containing those $’s feasible to the optimization

problem, which soon will be discussed, and ρ1 and ρ2 are penalty parameters.

Since the term $ ⊗ $ is quadratic in $, the established objective function can be

further simplified as a standard quadratic form

min
$∈W

1

2
$T B̃$ + bT$ (3.7)

for symmetric matrix B̃ and some vector b. Note that B̃ may or may not be positive

(semi)definite in essence. Therefore, the simplified objective function 3.7 can be noncon-

vex.

3.2.2 Feasible Region

The presence of collinearity renders the variances of the OLSEs unsatisfactorily high,

reflecting in the associated VIF s. Therefore, we aim to reduce the VIF s through the help

of the perturbation.

According to Belsley et al. (2005), a VIF is a function of the correlation matrix ΩXX ,

in particular,

Vl(ΩXX) =
det ΩXX{l}

det ΩXX

, for l = 1, . . . , k, (3.8)
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where ΩXX{l} is the l-th submatrix deriving from deleting the l-th column and row of

ΩXX . The perturbed VIF is therefore

Vl(Ω∗XX) =
det Ω∗XX{l}

det Ω∗XX
, for l = 1, . . . , k. (3.9)

Applying Taylor approximation to (3.9) about ΩXX up to the second order suggests

Vl(Ω∗XX) = Vi(ΩXX) + vTl,1$ +
1

2!
vTl,2$ ⊗$, for l = 1, . . . , k, (3.10)

where vl,1 ∈ Rk(k−1)/2 and vl,2 ∈ R(k(k−1)/2)2 contain the first- and the second-order

information about the changes in l-th VIF, respectively.

The components of vl,1 are the derivative ∂Vl
∂$i,j

which has been given in Chapter 2 and

is given by

∂Vl(ΩXX)

∂$i,j

= 2

(
k∑
l=1

υl,iυl,j
λl

−
k−1∑
l=1

νl,iνl,j
θl

)
Vl(ΩXX), for i > j and l = 1, . . . , k, (3.11)

where υl,i (υl,j) and νl,j (νl,j) are the i(j)-th component of the l-th eigenvectors of the

matrices ΩXX and ΩXX{l}, respectively. Note that the indexes i and j run through

different dimensions of the matrices ΩXX and ΩXX{l} in the terms in the parentheses in

(3.11).

The components of vl,2 comprise the second-order derivative ∂2Vl
∂$i′,j′∂$i,j

which is given

by

∂2Vl(ΩXX)

∂$i′,j′∂$i,j

= 4

(
k∑
l=1

υl,iυl,j
λl

−
k−1∑
l=1

νl,iνl,j
θl

)(
k∑
l=1

υl,i′υl,j′

λl
−

k−1∑
l=1

νl,i′νl,j′

θl

)
Vl(ΩXX)

+

 k∑
l=1

∂λl
∂$i′,j′

∂λl
∂$i,j

− λl ∂2λl
∂$i,j∂$i′,j′

λ2
l

−
k−1∑
l=1

∂θl
∂$i′,j′

∂θl
∂$i,j

− θl ∂2θl
∂$i,j∂$i′,j′

θ2
l

Vl(ΩXX),

(3.12)

for l = 1, . . . , k.

It remains to specify the first- and second-order derivatives in (3.12). The first deriva-
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tive ∂λl
∂$i,j

has been given in Chapter 2 and has the following expression

λl
∂$i,j

= 2υl,iυl,j;

υl
∂$i,j

= (ΩXX − λI)†(eie
T
j + eje

T
i )υl, for l = 1, . . . , k,

(3.13)

where υl,i denotes the i-th element of the eigenvector associated with the l-th eigenvalue

and (ΩXX −λI)† is the Moore-Penrose generalized inverse of the singular matrix. Similar

expressions can be obtained fairly easily for the derivative with respect to $i′,j′ .

To obtain an expression for the second derivative ∂2λl
∂$i,j∂$i′,j′

and ∂2υl
∂$i,j∂$i′,j′

, two things

are needed: (i) the eigensystem with respect to the l-th eigenvalue, in particular,

(ΩXX − λlI)υl = 0;

υTl υl = 1;

(3.14)

and (ii) the derivative of the generalized inverse of a matrix (P. Decell Jr, 1974), described

in the following theorem

Theorem 3.1 (Derivative of the Moore-Penrose Generalized Inverse). Given a singular

matrix A ∈ Rn×m ≡ [ai,j], denote the Moore-Penrose generalized inverse by A† ∈ Rm×n.

The first-order derivative with respect to ai,j, A
†′, is given by

A†′ = −A†A′A† + (A′TA†TA† + A†A†TA′T )− A†A(A′TA†TA† + A†A†TA′T )AA†; (3.15)

wherein A′ is the first-order derivative of A.

Proof. The proof of Theorem 3.1 has a similar argument as that in P. Decell Jr (1974)

and therefore is sketched in what follows.

According to the definition of the generalized inverse of a singular matrix, the gener-

alized inverse must satisfy: (i) AA†A = A; (ii) A†AA† = A†; (iii) (AA†)T = AA†; and

(iv) (A†A)T = A†A. Then the derivative A†′ is the solution to the system of equations

deriving from taking derivatives, elementwise, on (i)− (iv).
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With the above, we can obtain the expressions for the second derivatives

∂2λl
∂$i′,j′∂$i,j

= 2(
∂υl,i
∂$i′,j′

υl,j + υl,i
∂υl,j
∂$i′,j′

);

∂2υl
∂$i′,j′∂$i,j

=
∂(ΩXX − λI)†

∂$i′,j′
(eie

T
j + eje

T
i )υl + (ΩXX − λI)†(eie

T
j + eje

T
i )

∂υl
∂$i′,j′

;

wherein the first term on the RHS of the second equality exploits (3.15). Note that

∂υl,i
∂$i′,j′

= 1{i=i′} is binary and the same for
∂υl,j
∂$i′,j′

.

Taking the derivative of (3.14) twice, with respect to $i,j and $i′,j′ respectively, sug-

gests the following system of equations

−∂2λl
∂$i′,j′∂$i,j

υl +
∂(ΩXX − λlI)

∂$i′,j′

∂υl
∂$i,j

+
∂(ΩXX − λlI)

∂$i,j

∂υl
∂$i′,j′

+
(ΩXX − λlI)∂2υl
∂$i′,j′∂$i,j

= 0;

∂2υl
∂$i′,j′∂$i,j

+
∂υl

∂$i′,j′

∂υl
∂$i,j

= 0;

where the first-order derivatives are given in (3.13) and the second-order in (3.2.2).

From Chapter 2, it becomes apparent that the difference represents the changes in the

VIF. In particular, defining vr as the reduction in the i-th VIF, we obtain the following

nonlinear constraint

vTi,1$ +
1

2!
vTi,2$ ⊗$ ≤ −vr, (3.16)

for 1 ≤ i ≤ k. Now, define

k∗ ≡ {1 ≤ j ≤ k : Vj(ΩXX) ≥ Vi(ΩXX) for i 6= j} (3.17)

as the index(es) associated with the OLSE(s) having the largest VIF value. Then (3.16)

with respect to (3.17) becomes

vTk∗,1$ +
1

2!
vTk∗,2$ ⊗$ ≤ −vr. (3.18)

It then follows that the feasible region comprises those $’s feasible to (3.19), viz.,

W ≡
{
$ ∈ Rk(k−1)/2 : vTk∗,1$ +

1

2!
vTk∗,2$ ⊗$ ≤ −vr

}
(3.19)
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which is quadratic in essence.

3.2.3 A Nonlinear Optimization Model and Its Variants

It remains to combine (3.6) and (3.19) to obtain the following quadratically-constrained

nonlinear optimization model

min
$∈W

{
‖B1$‖2

2 + ‖B2$ ⊗$‖2
2 + ρ1‖$‖2

2 + ρ2‖$ ⊗$‖2
2

}
(3.20)

where ρ1 and ρ2 are exogenous parameters.

In conjunction with Chapter 2, various combinations of VIF-based models can be

obtained, depending on what the focus is. For instance, compared to the bias, it makes

more sense to have better precision in VIF, because VIF relates directly to the statistical

significance. Thence, we may as well consider the variant

min
$∈W

{
1

2

(
‖B1$‖2

2 + ρ1‖$‖2
2

)}
, (3.21)

which is now a quadratically-constrained quadratic programming (QCQP) model. In this

study, we shall play with the established QCQP (3.21), for the importance of the values

of the biases is relatively minor.

To end this section, we note that since the variable $⊗$ in the constraint is composed

of the quadratic and bilinear terms of the $i,j’s, it then can be expressed as the following

general form

vTk∗,1$ +
1

2!
vTk∗,2$ ⊗$ ≤ −vr ⇒

1

2
$TVk∗$ + vTk∗$ ≤ −vr, (3.22)

for some appropriate symmetric matrix Vk∗ and vector vk∗ . Consequently, 3.19 becomes

W ≡
{
$ ∈ Rk(k−1)/2 :

1

2
$TVk∗$ + vTk∗$ ≤ −vr

}
. (3.23)
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3.3 Solution Strategies

Since the objective function in (3.21) is strictly convex given any ρ > 0, the convexity

of the VIF constraint then becomes the key in determining the difficulty of the QCQP

(3.21). In what follows, we shall discuss two possible cases, convex and nonconvex, and

design an associated solution algorithm for each case.

3.3.1 Convex Case - Simple Case

Let us first consider the case in that the matrix Vk∗ in the VIF constraint of (3.21) is

positive definite. In this case, we have convex QCQP problem that can be solved rather

efficiently using any commercial solver.

The convexity of the problem (3.21) ensures that solving the system of K-K-T opti-

mality conditions leads to the global optimality. In particular, the corresponding K-K-T

system is given by

5L($,µ)|$=$∗ =
(
BT

1 B1 + ρ1I + µVk∗
)
$∗ + µvk∗ = 0;

1

2
$∗TVk∗$

∗ + vTk∗$
∗ + vr ≤ 0, µ ≥ 0;

µ

(
1

2
$∗TVk∗$

∗ + vTk∗$
∗ + vr

)
= 0,

(3.24)

where µ is the Lagrangian multiplier associated with the VIF constraint. It then is not

hard to see that the optimal perturbation $∗ has the following expression

$∗ = −µ∗(BT
1 B1 + ρI + µ∗Vk∗)

−1vk∗ (3.25)

where $∗ solves the unconstrained dual problem

max
µ≥0

{
vrµ−

µ2

2
vTk∗
(
BT

1 B1 + ρI + µVk∗
)−1

vk∗

}
, (3.26)

which can be solved using any numerical searching scheme.
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3.3.2 Nonconvex Case - Conic Reformulation

Now, consider that case in that the constraint in (3.21) is non-convex, so (3.21) becomes

non-convex in essence. As aforementioned, a general nonconvex QCQP is NP-hard and

thus cannot be solved in poly-nomial time, unless NP = P (Cormen et al., 2001). Despite

the fact, it is still our aim to design a non-heuristic algorithmic procedure to solve the

resulting QCQP (3.21). To do this, we shall resort to the LCOP technique to solve the

problem.

First, to obtain a conic relaxation for the established QCQP (3.21), let us first define

the following sets

D(k2−k+2)/2 =

U ∈M(k2−k+2)/2 :

 1

$


T

U

 1

$

 ≥ 0,∀$ ∈W

 ;

Z =

Y ∈M(k2−k+2)/2 : Y =

 1

$


T  1

$

 , for some $ ∈W

 ;

(3.27)

where D(k2−k+2)/2 is a closed convex cone with dimension (k(k−1)/2+1)×(k(k−1)/2+1),

Z is a set of matrices of the same dimension and W is the feasible region and has been given

in (3.19). The dual of the cone D(k2−k+2)/2 is given by Closure(Cone(Z)) ≡ D∗(k2−k+2)/2,

the closure of the cone associated with the set Z, according to Lu et al. (2011).

With the above, we obtain the following nonconvex linear conic programming problem

(LCOP)

minimize
1

2
(BT

1 B1 + ρ1I) •W

subject to
1

2
Vk∗ •W + vk∗$ + vr ≤ 0. 1 $T

$ W

 = Y ;

Y ∈ D∗(k2−k+2)/2; and

rank(Y ) = 1,

(3.28)

wherein the rank constraint is nonconvex in essence. By relaxing the rank constraint, we
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obtain the following convex LCOP

minimize
1

2
(BT

1 B1 + ρ1I) •W

subject to
1

2
Vk∗ •W + vk∗$ + vr ≤ 0. 1 $T

$ W

 = Y ;

Y ∈ D∗(k2−k+2)/2,

(3.29)

associated with the original QCQP (3.21). Now, applying the conic duality theory

(Shapiro, 2001), the dual of the LCOP (3.29) is given by

maximize
1

2
κ− µvr

subject to

 −κ µvTk∗

µvk∗ (BT
1 B1 + ρ1I + µVk∗)

 ∈ D(k2−k+2)/2;

µ ≥ 0.

(3.30)

We have the following theorem

Theorem 3.2 (Equivalence (Lu et al., 2011)). If the QCQP (3.21) has a finite optimal

value, then the established (3.29), (3.30) and (3.21) are equivalent in the sense that they

all have the same optimal value.

3.3.3 Solution Algorithm

We shall design a solution algorithm for deriving the POLSEs based upon the conic

reformulation (3.30).

Algorithm. The basic structure of the algorithm is basically the same as that in Jou

et al. (2014), with the only difference residing in the subroutine for getting the optimal
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perturbation. A generic structure of the proposed algorithm is given in the following

pseudo-code, see Algorithm 2.

Algorithm 2 Iterative Algorithm for POLSEs

Require: Problem input P = (X,y, vr = 1, vl = 6, ρ = 50)

Ensure: Optimal POLSEs β̂W ;
1: repeat
2: Generate matrix B1 for objective function, and matrix Vk∗ and vector vk∗ for

constraint;
3: (Subroutine) Obtain the optimal perturbation $∗

4: Update POLSE;
5: until maxj=1,...,k V̂i ≤ vl

Subroutine. It remains to specify the subroutine for obtaining the optimal perturbation

$∗. To do this, we first note that the decision variable of the LCOP (3.30) is not $, while

that of (3.29) is. Despite this fact, according to Theorem 3.2, (3.30) and (3.29) share

the same optimal value. Thence, an immediate intuition to circumvent the problem is to

solve (3.30) for the optimal value, and then impose the optimal-value-constraint on (3.29)

to obtain the optimal perturbation $∗.

To be specific, let us assume the pair (κ∗, µ∗) solves (3.30) with the optimal value

κ∗ − µ∗vr. Then, to obtain the optimal perturbation, we solve the revised QCQP

minimize
1

2
(BT

1 B1 + ρ1I) •W

subject to
1

2
Vk∗ •W + vk∗$ + vr ≤ 0. 1 $T

$ W

 = Y ;

Y ∈ D∗(k2−k+2)/2,

1

2
(BT

1 B1 + ρ1I) •W =
1

2
κ∗ − µ∗vr

(3.31)

wherein the last equality is the optimal-value-constraint added to (3.29).

Notably, an LCOP problem may or may not be computable, depending on the intrinsic

structure of the underlying cone. The key to solving an LCOP problem then resides in

finding a cone so that the problem becomes computable essentially.
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Hence, the last step to solving the LCOP (3.30) is to find a computable cone C∗(k2−k+2)/2

such that C∗(k2−k+2)/2 ⊇ D∗(k2−k+2)/2 and C(k2−k+2)/2 ⊆ D(k2−k+2)/2 on the dual side. The

question as to how to find the computable cone C∗(k2−k+2)/2 will be referred to Lu et al.

(2011) for further details.

The result follows.

Theorem 3.3. If (3.29) has finite optimal value, then there exists at least one $∗ such

that W = $∗$∗T and that the optimal value is 1
2
κ∗ − µ∗vr.

We are ready to state the subroutine for deriving the optimal perturbation.

Algorithm 3 Subroutine

Require: Problem input B1, ρ1, Vk∗ ,vk∗ and vr
Ensure: Optimal Perturbation $∗

1: Solve the LCOP (3.30) to obtain (κ∗, µ∗);
2: Solve the revised QCQP (3.31) to obtain the $∗

3.4 Concluding Remarks

We propose a family of second-order VIF-based optimization models for linear models

having collinearity problem. Based upon the previous work in Chapter 2, the second-

order model can be applied whether or not the heteroskedasticity may be present. More

specifically, the departure from homoskedasticity can be dealt with by either constructing

new optimization models or delivering the optimal perturbation matrix generated by the

original QCQP (3.31) directly to the associated HCEs.

The well-founded theory for linear conic programming facilitates solving the original

nonconvex nonlinear programming problem. Notably, the difficulty of the solving the

problem remains unchanged, however.
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Chapter 4

VIF-based Iterative Matrix

Perturbation Method for

Heteroskedasticity-Robust

Covariance Estimators in the

Presence of Collinearity

In this study, we investigate linear regression having both heteroskedasticity and collinear-

ity problems. We discuss the properties related to the perturbation method. Important

observations are summarized as theorems. We then prove the main result that states

the heteroskedasticity-robust variances can be improved and that the resulting bias is

minimized by using the matrix perturbation method. We analyze a practical example for

validation of the method.

4.1 Introduction

In the context of linear regression, the major problem of having heteroskedasticity resides

in the invalidity of the usual test statistics, say t- or F -statistic, that they no longer follow

their original distributions, regardless of the sample size. To circumvent the problem, the
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heteroskedasticity-robust covariance estimate (HCE) is employed (White, 1980; Cribari-

Neto et al., 2007, 2014). The key idea of the HCE is to take advantage of the ordinary

least squares (OLS) residual, by which an HCE is proven able to remove the effect of

heteroskedasticity in a consistent sense. Correct inference is then drawn using the vari-

ance portion lying on the main diagonal of the HCE associated, instead of the original

covariance estimate. For more dicussions, see Andrews (1991); Bollerslev (1986); Engle

(2002); MacKinnon and White (1985) and the references therein; see also MacKinnon

(2013) for a thorough discussion.

Regression modeling is subject to another source of problems coming primarily from

the nature of the collected data, called the data problem (Belsley et al., 2005). The

most commonly seen data problems include the existence of outliers, missing inputs, the

presence of collinearity among covariates and so forth. Of all data problems, we are more

concerned about the collinearity problem. High dependency renders the OLS estimation

procedure involving matrix inversion problematic, resulting in consequences inclusive of

inflated variances, weakened power in prediction and even controversial signs against the

hypothesis (Belsley et al., 2005). Biased regressions, such as the ridge regression (Hoerl

and Kennard, 1970), the LASSO (Tibshirani, 1996), the bridge regression (Frank and

Friedman, 1993) and the likes (Mandel, 1982; Wold et al., 1984; Stewart, 1987; Lin et al.,

2011), have been widely accepted methods for dealing with such problems in regression.

Chances are that one encounters the situation in that the regression model suffers

from both heteroskedasticity and collinearity problems at the same time. Little work has

been done for such a class of models in the literature, though. Most of the existing work is

based on the ridge-type estimates. For instance, Alheety and Kibria (2009) discussed such

a problem based on the Liu estimate (Liu, 2003) which is a variant of the OLSEs. In a

most recent paper, Aslam (2013) studied the problem by directly applying the ridge-type

estimates to the HCEs. However, only the numerical evidences were provided. For some

recent developments, see Alkhamisi (2012); Khalaf (2012); Aslam (2014); Månsson et al.

(2014) and the references therein. When both problems exist, an immediate consequence

resides in the possibly inflated variances in the HCE associated, making the subsequent
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inference less significant in the statistical sense. The major work then is to employ the

matrix perturbation method in Chapter 2 to the new class of linear regression models

having both heteroskedasticity and collinearity problems at the same time. We aim to

show that the heteroskedasticity-robust variances can be improved by imposing an optimal

perturbation matrix on the HCE, when using the OLS approach.

We summarize our contributions in what follows. First, we provide theoretical justifi-

cations as the ground support for the matrix perturbation method developed in Chapter

2. Important theorems such as the eigenvalue perturbation theorem are discussed. Sec-

ond, we prove that the optimal perturbation matrix can be directly applied to improve

the heteroskedasticity-robust variances in the presence of data collinearity. Monotonic im-

provements can be observed under certain condition. Third, because the heteroskedasticity-

robust variances are improved, this implies that the perturbations help shorten the pre-

dicted 1-S.D. heteroskedasticity-robust intervals for the unknown parameters.

This is how this study is organized. In Section 4.2, we study the properties related

to the iterative matrix perturbation. Several important observations are summarized as

theorems. Implications are discussed. In Section 4.3, we state the main results on the

heteroskedasticity-robust variances and the sketch of proofs are given. Perturbed testing

statistics and the associated confidence intervals are given in Section 4.4. A practical

example is analyzed using the proposed method and results and discussions are given in

Section 4.5. Conclusions and future research directions are in Section 4.6.

4.2 Some Properties

In this section, we study some properties regarding the perturbation method and the

sketch of proofs are given.

It has been shown there exists an unique optimal perturbation matrix W such that

Ω∗XX ≡ ΩXX +W � 0, meaning positive definite, and that the resulting bias is minimized,

where XTX ≡ ΩXX with X normalized. In particular, W comprises the components of
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the vector $∗ = [∆$i,j]i>j

$∗ =
−vr

‖vk∗‖2
(BTB+ρI)−1

(
BTB + ρI

)−1
vk∗ , (4.1)

where vr is the reduction step in the (largest) VIF; vk∗ is the vector made of the derivative

∂(Ω−1
XX)k∗,k∗/∂$i,j, for i > j; k∗ corresponds to the index of the largest VIF; B is a matrix

made of the derivative ∂β̂OLS/∂$i,j, for i > j; and ρ(> 0) is a penalty parameter. The

optimal perturbation matrix W is then formed by the relationship W = [∆$i,j]i6=j, with

Wi,i = 0, for all i = 1, . . . , k.

The presence of data collinearity renders the matrix ΩXX , with X centered and scaled,

ill-conditioned and thus the eigen-structure is very sensitive to small perturbations on the

elements (Horn and Johnson, 2012). The perturbation method inherits this merit from

matrix theory and works by changing the eigen-structure to achieve the goal. The first

theorem concerns the changes in the eigenvalues of the matrix ΩXX through perturbation.

Theorem 4.1 (Eigenvalue Perturbation Theorem). Let 0 < λmin ≤ λ2 ≤ · · · ≤ λmax and

0 < λ∗min ≤ λ∗2 ≤ · · · ≤ λ∗max be the eigenvalues for ΩXX and Ω∗XX , respectively. Then for

$∗ in (4.1) such that Ω∗XX � 0, we have

(i) λ∗max ≤ λmax;

(ii) λ∗min ≥ λmin;

(iii) Define s(A) ≡ maxi6=j |λi−λj| as the spread of a squared matrix A. Then s(Ω∗XX) ≤

s(ΩXX); and

(iv) Let I = {1, ..., k} be the index set corresponding the increasingly-ordered eigenvalues.

Then for $∗ in (4.1) such that Ω∗XX � 0, there exists a proper index set J = {1, ..., j} ⊂ I

such that λ∗j ≥ λj, for j ∈ J and λ∗j′ ≤ λj′, for j′ ∈ I\J .

Proof. To prove (i), one begin with the difference λ∗min−λmin and use Cauchy’s interlacing

theorem (Horn and Johnson, 2012) to see that the difference is indeed positive. Similar

argument applies to prove (ii). As for (iii), simply use (i) and (ii). The last claim is

proven by the fact that trΩXX = trΩ∗XX .

The eigenvalue perturbation theorem possesses several important implications. First of all,
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traditional matrix perturbation theory gives two-side bounds on the associated eigenvalues

(Stewart and Sun, 1990). Albeit important, the information on how a specific eigenvalue

moves can sometimes be inconclusive. Theorem 4.1 tells the directions in which the largest

and smallest eigenvalues move.

Second, from (i)–(iii) of Theorem 4.1, one can immediately connect to the CN of the

perturbed matrix Ω∗XX . Specifically, the smaller the spread of a matrix is, the smaller the

CN thereof will be, which leads to the following results on the reduction in CN.

Theorem 4.2 (Reduction in condition number). For $∗ in (4.1) such that Ω∗XX � 0

holds, the following hold:

(i) The perturbed CN becomes smaller, viz.,

κ(Ω∗XX) ≤ κ(ΩXX). (4.2)

(ii) Let vr be the reduction in the largest VIF. Then for $∗ in (4.1) such that ΩXX+W � 0

holds, we have

κ(Ω∗XX) = κ(ΩXX) +O(vr). (4.3)

To prove Theorem 4.2, we need the following lemma.

Lemma 4.1. Given any x and y in Rn. If x and y lie in the same quadrant, then for

any matrix Q � 0 in Rn×n, we have xTQy > 0.

Proof. It follows that

xTQy = trQxyT = trQR > λmin(Q)trR > 0, (4.4)

where the first inequality follows from Fang et al. (1994) and the last inequality holds

because the diagonals of R ≡ xyT are positive and λmin(Q) > 0 due to positive definite-

ness.

Proof of Theorem 4.2. The first claim is an immediate corollary of (i) and (ii) in Theorem
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4.1. To prove (ii), we start with the following first-order approximation for CN

κ(Ω∗XX) = κ(ΩXX) + cT$, (4.5)

where c ∈ Rk(k−1)/2 is the vector comprising derivatives ∂κ(ΩXX)/∂$i,j for i > j. It is

not hard to see that

∂κ(ΩXX)

∂$i,j

=
2λminυmax,iυmax,j − 2λmaxυmin,iυmin,j

λ2
min

, for i > j, (4.6)

where υmax,i, for instance, is the i-th entry of the eigenvector associated with λmax and

the rest follow. Then, at the optimal perturbation $∗ (4.1), we have

κ(ΩXX) = κ(Ω∗XX)− cT$∗

= κ(Ω∗XX) +

(
cT
(
BTB + ρI

)−1
vk∗

‖vk∗‖(BTB+ρI)−1

)
vr

= κ(Ω∗XX) +O(vr).

(4.7)

It remains to use Lemma B.1 to show the constant associated with vr is positive, which

is equivalent to prove cT
(
BTB + ρI

)−1
vk∗ > 0. This completes the proof.

A subtle geometric implication of Theorem 4.2 is when collinearity is present, ΩXX is

ill-conditioned and thus the shape of ΩXX is very ellipsoidal. The shape of ΩXX can be

refined to be more round-shaped through the optimal perturbation W .

As to VIF, in light of Chapter 2, generally the reduction in VIF s is not universally

monotonic. Only those pathological VIF s are improved, while non-pathological ones

fluctuate slightly around their original values. By pathological, we mean those VIF s with

values greater than some critical value, dependent of vl and vr. By and large, the sum of

all VIF s decreases. We summarize the observations in the next theorem.

Theorem 4.3 (Reduction in VIF s). For $∗ in (4.1) such that Ω∗XX � 0 holds, the

following are true.
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(i) The sum of all perturbed VIFs is less than or equal to that of the original VIFs, viz.,

trΩ∗−1
XX ≤ trΩ−1

XX . (4.8)

(ii) Let vl be the target VIF for the largest VIF to achieve. Then if min1≤l≤k Vl(ΩXX) > vl

for any vl > 1/λmin(ΩXX) + vr, we have

(
Ω∗−1
XX

)
i,i
≤ (Ω−1

XX)i,i, ∀i = 1, ..., k. (4.9)

Proof. To prove (i), use the fact that the trace of a matrix equals the sum of its eigenvalues

and consider the difference trΩ∗−1
XX − trΩ−1

XX , it follows that

trΩ∗−1
XX − trΩ−1

XX =
n∑
i=1

(
1

λ∗i
− 1

λi

)
=

n∑
i=1

(
λi − λ∗i
λ∗iλi

)
≤
∑n

i=1(λi − λ∗i )
λ∗minλmin

= 0 (4.10)

The first inequality holds because λmin ≤ λj, ∀j and the same for λ∗min. The last equality

holds for trΩ∗XX = trΩXX .

To prove (ii), given min1≤i≤k Vi(ΩXX) > vl, we have Vj(ΩXX) > vl, ∀j = 1, ..., k. For

the case j = k∗, this is trivial. Consider any j 6= k∗, we see that

(
Ω∗−1
XX

)
j,j
−
(
Ω−1
XX

)
j,j
<
(
Ω∗−1
XX

)
j,j
− vl =

θ∗minθ
∗
2 · · · θ∗k−1

λ∗minλ
∗
2 · · ·λ∗max

− vl ≤
1

λ∗min

− vl ≤ 0. (4.11)

by using Cauchy interlacing theorem (Horn and Johnson, 2012). Here θ∗j is the j-th

eigenvalue of the submatrix ΩXX{k∗}, j = 1, . . . , k−1, and vl >
1

λ∗min
+vr for some vr > 0.

The completes the proof.

4.3 Main Results - Perturbed HCEs

Consider the HCE that has the following expression

HC0 = σ2(XTX)−1XTEX(XTX)−1, (4.12)
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where E ≡ Diag [ê2
i ] for which ê2

i is the i-th squared OLS residual. Following the same

maneuver in Chapter 2 and given X centerd and scaled, (4.12) is indeed a function of

correlation matrix ΩXX , viz.,

HC0(ΩXX) = σ2Ω−1
XXX

TEXΩ−1
XX ≡ Ω−1

XXÊΩ−1
XX , (4.13)

for Ê ≡ XTEX. Note that, under homoskedasticity, we have E = σ2I so thatHC0(ΩXX) =

σ2Ω−1
XX is the original OLS covariance matrix.

Remarkably, the residual matrix E is effectively a function of ΩXX but has been

implicitly ignored in (4.13). This is because the changes in each element of E is of order

O(sup1≤j≤k(k−1)/2$j) and the total change in X is of orderO(sup1≤i≤n sup1≤j≤k(k−1)/2$
i
j).

Numerically, such changes are negligible in general.

The perturbed version of (4.12) is thus given by

HC0(Ω∗XX) = σ2Ω∗−1
XXÊΩ∗−1

XX = (ΩXX +W)−1Ê(ΩXX +W)−1, (4.14)

which we shall call perturbed heteroskedasticity-robust covariance estimate (PHCE). The

main result for PHCE says monotonic improvements in the variance portions can be

achieved under certain condition.

Theorem 4.4 (Reduction in Heteroskedasticity-Robust Variances). If min1≤j≤k Vj > vl,

for any vl > 1/λmin(ΩXX) + vr, then for $∗ in (4.1) such that ΩXX +W � 0 holds, we

have

(HC0(Ω∗XX))i,i ≤ (HC0(ΩXX))i,i, for i = 1, . . . , k. (4.15)

Note that the condition ”min1≤j≤k Vj > vl, for any vl > 1/λmin(ΩXX) + vr” in the above

theorem is purely theoretical. A practical condition is

min
1≤j≤k

Vj > vl, for any vl > ε+ vr for any ε > 0. (4.16)

To prove Theorem 4.4, we need the following lemmas. The first lemma concerns the

determinant of Ω∗XX , while the other specifies the changes in the VIF matrix Ω−1
XX .
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Lemma 4.2 (Changes in determinant). If min1≤j≤k Vj > vl, for any vl > 1/λmin(ΩXX) +

vr, then for $∗ in (4.1) such that ΩXX +W � 0 holds, we have det(Ω∗XX) ≥ det(ΩXX).

Lemma 4.3 (Changes in VIFs). If min1≤j≤k Vj > vl, for any vl > 1/λmin(ΩXX) + vr,

then for $∗ in (4.1) such that ΩXX +W � 0 holds, we have

(i) Vi,j(Ω∗XX) ≤ Vi,j(ΩXX), if Vi,j(ΩXX) > 0; and

(ii) Vi,j(Ω∗XX) ≥ Vi,j(ΩXX), if Vi,j(ΩXX) < 0.

Proof. If i = j, then the proof is trivial. For any i 6= j, we consider two cases, viz., (i)

Vi,j(ΩXX) > 0 and (ii) Vi,j(ΩXX) < 0. For both cases, proofs are completed by starting

with the difference Vi,j(Ω∗XX)− Vi,j(ΩXX) and use Lemma 4.2.

Proof of Theorem 4.4. Consider the difference ∆(HC0(ΩXX))i,i ≡ (HC0(Ω∗XX))i,i−(HC0(ΩXX))i,i:

∆(HC0(ΩXX))i,i =
k∑
p=1

Vp,i(Ω∗XX)
k∑
q=1

Vi,q(Ω∗XX)Êq,p −
k∑
p=1

Vp,i(ΩXX)
k∑
q=1

Vi,q(ΩXX)Êq,p

≤
k∑
p=1

Vp,i(ΩXX)
k∑
q=1

(Vi,q(Ω∗XX)− Vi,q(ΩXX))Êq,p

≤ 0,

where the last two inequalities follow from Lemma 4.3.

To end this section, we mention some variants of HCEs that can be used in the presence

of outliers (Cribari-Neto et al., 2007).

Corollary 4.1 (Variants of HCE). By replacing the weight matrix E in (4.12), several

variants can be obtained. In particular, we have

HCm(Ω∗XX) = σ2(ΩXX +W)−1Êm(ΩXX +W)−1, m = 1, 2, 3 (4.17)

where Ê1 = n
n−rE, Ê2 = Diag

[
1

1−hi

]
E and Ê3 = Diag

[
1

(1−hi)2

]
E. Here hi is the i-th

diagonal of the perturbed hat matrix H ≡ X(XTX +W)−1XT .
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4.4 Perturbed Test Statistics and Confidence Inter-

vals

Having established the results above help us construct the perturbed versions of the test

statistics. Perturbed test statistics will be used to construct the perturbed confidence

intervals under specific level of confidence.

Perturbed t-Statistics and Interval Estimation We are interested in the following

test on the estimates, viz.,

H0 : β̂j(Ω
∗
XX) = βj against H1 : β̂j(Ω

∗
XX) 6= βj, for some 1 ≤ j ≤ k. (4.18)

The corresponding t-test statistics are therefore

t̂mj (Ω∗XX) ≡ β̂j(Ω
∗
XX)− βj

σ
√

(HCm(Ω∗XX))j,j
, m = 0, 1, 2, 3. (4.19)

Accordingly, we can construct the (1−α)% confidence interval for the perturbed regressors.

In particular,

β̂j ± t1−α
2
,n−tr(H)σ

√
(HCm(Ω∗XX))j,j,

for which H ≡ X(XTX +W)−1XT is the perturbed hat matrix.

Perturbed F -Statistics We are also interested in the test on some group of estimates,

viz.,

H0 : β̂j(Ω
∗
XX) = 0 for j ∈ J against H1 : β̂j(Ω

∗
XX) 6= 0 for at least one j ∈ J , (4.20)

wherein J ⊆ K ≡ {1, ..., k} is an index set. The perturbed F -statistic has the following

general form

F̂m(Ω∗XX) ≡ 1

σ2 |J |
β̂J (Ω∗XX)T (HCm(Ω∗XX){K\J })−1β̂J (Ω∗XX),m = 0, 1, 2, 3, (4.21)
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where, for some matrix A, A{j} denotes the submatrix derived from deleting the j-th row

and column of A and |A| denotes the cardinality of some set A.

4.5 An Example

We shall illustrate our established results with a practical example drawn from Bayhan

and Bayhan (1998), to which the detailed descriptions are referred. Implementation is

run using MATLAB R2012a under the Windows environment with 2.5GHz CPU and 4G

RAM.

This example contains two covariates, X1 and X2, and a response vector y. The corre-

lation coefficient between X1 and X2 is 0.92, indicating strong collinearity relationship in

between. Using the White’s test under the null hypothesis that the error is homoskedas-

tic, the resulting p-value is 1.3323e−14, suggesting that we reject the null hypothesis, and

hence heteroskedastic.

From the information in the row associated with OLSE in Table 4.1, we see that the

variance portions in the HCE are unsatisfactorily high, even though there has been no

concensus on a rule of thumb for HCE that indicate the presence of stong collinearity.

According to Theorem 4.4, monotonic improvements in the variance portions can be

expect, using the practical bound (4.16).

We implement the iterative algorithm developed in Chapter 2 on the Bayhan’s data.

The parameter setting for the algorithm is vl = 4 (target level for the largest VIF to

achieve), vr = 2 (reduction step in VIF) and ρ = 50 (penalty) and the OLSE is chosen

to initialize the algorithm. Total number of iterations is 3 and it takes 0.387 CPU second

on average (100 trials). Since the optimal perturbation is unique, so results are the same

in each and every trial. Results are summarized in 4.1.

V1 V2 HC1 HC2 λmin λmax CN

OLSE 6.507 6.507 87.119 85.11 0.08 1.92 23.985
POLSE 3.591 3.591 26.989 26.267 0.151 1.849 12.282

Table 4.1: Summary for Bayhan’s data; V stands for VIF and HC for heteroskedasticity-
robust variance.
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From Table 4.1, we first see that both the VIFs (V1 and V2) and the heteroskedaticity-

robust variances (HC1 and HC2) are enormously improved, which implies the new es-

timate POLSE is less influenced by the presence of data collinearity. Second, the im-

provements in the eigenvalues, viz., minimal λmin increases and maximal λmin decreases,

lead to the improvement of the CN, thereby healing the ill-conditionedness essentially, see

Theorem 4.1 in Section 4.2.

Graphical evidences are given in Figure 4.1. The first two subfigures show the re-

lationships between the heteroskedasticity-robust variances and the VIFs. Monotonic

improvement is as expected, since the condition in Theorem 4.4 is fulfilled. The rest

subfugures simply show the improvements in the eigenvalues lead to the improvement in

the CN.

β̂1 β̂2

OLSE 0.283 1.713
Int Est (-14.801, 15.336) (-13.256, 16.683)
POLSE 0.756 1.315
Int Est (-7.64, 9.151) (-6.967, 9.597)

Table 4.2: Estimators and their 1-S.D. interval estimation for Bayhan’s data

Table 4.2 shows information of the estimates and their associated interval estimations

under a 95% confidence level for the problem. It can be observed that, at the outset,

the interval estimation has quite big ranges for both estimates, which simply results

from the presence of data collinearity, which in turn inflates the corresponding standard

deviations. After implementing the algorithm, the ranges of the new interval estimations

are improved.

All the results suggest the success of the imposition of the optimal perturbation W

on the correlation matrix XTX in dealing with linear regression having both the het-

eroskedasticity and collinearity problems. Moreover, the computational efficiency adds

more practical values to the proposed method.
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Figure 4.1: Plots for pairs of indexes; A vs. B with A corresponding to left y-axis (blue,
solid line) and B to right y-axis (green, dashed line); x-axis denotes the iteration counts
and only those integral values count.

4.6 Conclusions

We prove that the optimal perturbation matrix obtained in Chapter 2 can be directly ap-

plied to the HCE to improve the heteroskedasticity-robust variances, when heteroskedas-

ticity is present. The application is almost effortless, because the optimal perturbation

$∗ has an explicit expression and the additional complexity merely involves matrix ad-

dition. Unlike ridge-type estimates, one of the advantages of the LABs-type estimate is

its capability in improving not only the VIFs but the CN in the meanwhile. However, no

comparisons are made between our method and the ridge method, because each method

involves different numbers of exogenous parameters. Lack of connection between the pa-

rameters renders the comparison somewhat meaningless. We will leave this for an open

problem for the moment.
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Chapter 5

A New Multicollinearity Diagnostic

for Generalized Linear Models

We propose a new collinearity diagnostic tool for generalized linear models (GLMs). The

new diagnostic tool is termed the weighted VIF (WVIF) behaving exactly the same as

the traditional VIF in the context of regression diagnostic, given data matrix normalized.

Compared to the use of CN (CN), WVIF shows more reliable information on how severe

the situation is, when data collinearity does exist. An alternative estimate, a by-product

of the new diagnostic, outperforms the ridge estimate in the presence of data collinearity

in both aspects of WVIF and CN. Evidences are given through analyzing a real-world

cancer data using logistic models.

5.1 Introduction

It has been well known that high linear dependency among covariates in any regression

model, including not only traditional regression models but generalized linear models

(GLMs), can pose frustrating statistical problems, such as unsatisfactorily inflated vari-

ances, lowered power in prediction and even incorrect signs, to the estimation results

(Belsley et al., 2005). An evident example resides in the ordinary least squares (OLS)

estimation. Strong linear dependecy among certain covariates renders the data matrix

X rank deficient, and so is the matrix XTX that plays an important role in the OLS
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estimation.

Similar problems can occur in the GLMs. Although the estimation procedure is based

on the maximum likelihood (ML) estimation, the ultimate estimate, the ML estimate

(MLE), is oftentimes obtained through the iteratively re-weighted least squares (IWLS)

algorithm, involving again the computation of matrix inverse (McCullough and Nelder,

1989). When the matrix XTX is ill-conditioned, the weighted matrix XTWX can be ill-

conditioned as well, for some weight matrix W (Schaefer et al., 1984; Lee and Silvapulle,

1988). Then problems take place.

In the context of linear regression, the detection of the presence of data collinearity has

been well studied. For instance, the correlation coefficients, the CN (CN) and the variance

inflation factors (VIFs), all which are based upon the information from correlation matrix,

have been thoroughly discussed (Belsley et al., 2005). Little work has been done for GLMs,

however. In the work of Schaefer et al. (1984), the authors discoursed three aspects that

serve as the criteria for collinearity diagnostic, inclusive of (i) the R2 value when regressing

one variable on the others; (ii) the sum of squared residuals in (i); and the minimal

eigenvalue of the matrix XTWX. It is intuitive to see that when collinearity is present,

the R2 tends to 1, the sum of squared residuals tends to 0, and the minimal eigenvalue

tends to 0. A similar discussion can be found in Schaefer (1986). In conjunction with (iii)

above, the criterion of looking at the minimal eigenvalue is equivalent to looking at the

CN of a matrix. The authors (Lee and Silvapulle, 1988) suggested that CN be a formal

diagnostic tool for the detection of collinearity and a value exceeding 10 (Belsley et al.,

2005) can be used as a threshold to tell if collinearity is present. Similarly, in the work by

Lesaffre and Marx (1993), the authors also treated CN as the main tool for collinearity

diagnostic. In other work such as Weissfeld and Sereika (1991), the authors developed

some collinearity diagnostics using the singular value decomposition (SVD) technique.

For more discussions, see Mackinnon and Puterman (1989); Lesaffre and Marx (1993).

Biased estimation has been a widely accepted techique in dealing with non-orthogonal

problem in regression. The most famous techniques in the clan are the ridge regression

(Hoerl and Kennard, 1970), the LASSO (Tibshirani, 1996) and the principal component
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regression (Hadi and Ling, 1998; Batah et al., 2009). As for GLMs, it dates back to the

70’s or earlier that researchers began applying the ridge method to GLMs, in particular

the logistic models, with collinearity problem and much research has been done on this

topic. Schaefer et al. (1984); Schaefer (1986) proposed the ridge logistic estimate as a

remedy for logistic regression having data collinearity problem. Follow-up research, such

as Lee and Silvapulle (1988); Le Cessie and Van Houwelingen (1992), all disucssed the

ridge logistic estimate in the same fashion. Application of LASSO to logistic models has

also been studied, see Meier et al. (2008) and the references therein. Besides, similar idea

applied to the Poisson regression has been developed as well Månsson and Shukur (2011).

As pointed out in Lazaridis (2007), treating CN as the only main collinearity diagnostic

tool can at times be misleading by its disguised high value. Chances are that an extremely

high value of CN does not necessarily lead to the conclusion of strong collinearity by only

looking at its revised value. Investigations are sometimes needed for confirmation. Thus,

CN should be used with caution. Further, given CN be the main diagnostic tool, the

ridge method may not be of any help in dealing with the ill-conditioning problem. When

dealing with collinearity problems in traditional regression models, the power of the ridge

method resides in reducing the VIFs enormously, but not the CN nor the eigenvalues.

Nevertheless, in the most recent work (Garćıa et al., 2014), the authors pointed out that

the VIFs resulting from the ridge regression may pathologically violate the basic definition

of a VIF, viz., the range of a VIF is [0,∞). Hence, the combination of the CN and the

ridge method may not be a good choice, as will be evident in Section 5.2. On the other

hand, in Chapter 2 we proposed a new estimate, called the LABs estimate, for regression

models having collinearity problem. The prominent properties of a LABs estimate resides

in the ability of improving both the CN and the VIFs of the estimate, without breaking

any basic defintions. As such, we believe using LABs-type estimates to combat collinearity

problems in GLMs will be a better alternative.

In this study, it is our aim to propose a new collinearity diagnostic tool for GLMs,

based on the perturbation method in Chapter 2. This new diagnostic will be termed

the weighted VIF (WVIF). When data matrix X is standardized, WVIFs behave exactly
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the same as the traditional VIFs, both indicating how inflated a variance is due to the

presence of data collinearity. Since the new diagnostic is a weighted version of the VIF,

the problem pointed out by Garćıa et al. (2014) is then avoided, viz., the range of a

WVIF is now (0,∞). An alternative estimate, with improved variances, can be obtained

as a by-product. For ease of presentation, the analysis will be done through analyzing

a single-class logistic model. The generalizations to multinomial logistic models and to

more generic GLMs can be done with slight modifications.

5.1.1 Our Constributions

Our contributions are as follows. First, we introduce a new multicollinearity diagnostic for

GLMs. This newly proposed diagnostic is termed the weighted VIF (WVIF) and functions

exactly the same as the VIF in the context of the traditional regression diagnostics.

Second, whereas CN of the Fisher’s information matrix has been considered the ma-

jor tool for multicollinearity diagnostic in the literature, the problem pointed out by

Lazaridis (2007) may lead to frustratingly misguiding results in telling the presence of

data collinearity. On the contrary, the WVIF avoids such a problem and provides direct

information on how inflated a variance is because of data collinearity.

Third, since a WVIF is the weighted version of a VIF, the range of a WVIF becomes

(0,∞), in lieu of [1,∞) for a VIF, assuming that the R2 value of regressing one variate

on the others has the range [0, 1]. It is worth mentioning that ridge regression oftentimes

yields fantastic results on VIFs, viz., some VIFs are less than 1, impling negative R2

value of regressing one variate on the others, see Garćıa et al. (2014). On the other hand,

the perturbation method in Chapter 2 avoids such problems and can keep all definitions

intact. Thus, applying the LABs method may be a better alternative.

Last but not least, based upon the WVIF and the LABs method, we propose a new

estimate for GLMs under the influence of data collinearity. Whereas this new estimate

is obtained through perturbing the original MLE, we shall name it the perturbed MLE

(PMLE). The PMLE has improved variances and the resulting bias is minimal in an

optimal sense. We further show some bounds on the measurements of goodness of fit.
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5.1.2 Organizations

This is how the rest of the study is organized. We start with analyzing a practical example

and examine the performance of the ridge method applied to the logistic regression, from

the perspective of CN of the Fisher’s information matrix in Section 5.2. Then, we propose

the new diagnostic and study some basic properties of the resulting estimate in Section

5.3. The practical example will be revisited and discussed from the perspective of the

proposed diagnostic in Section 5.4. Comparisons of the estimates are also made therein.

Conclusions are given in Section 5.5.

5.2 An Example - Cancer Data

We shall begin with a practical example Lee (1974); Lesaffre and Marx (1993). This

example contains 5 continuous variables (CELL - X1, SMEAR - X2, Infil - X3, LI - X4

and TEMP - X5) and a response vector y taking on binary values. The goal is to build

a logistic model to examine the relationship among the covariates. Details and data are

referred to Lesaffre and Marx (1993).

Vars β̂1 β̂2 β̂3 β̂4 β̂5 CN
OLSE -0.037 -0.312 0.357 0.248 -0.077 19.03

RMLE -0.196 -1.594 1.811 1.304 -0.422 418.11
MLE -0.196 -1.594 1.811 1.304 -0.422 418.13

Table 5.1: Summary of OLSE, RMLE and MLE for the cancer data

For purpose of illustration, we analyze the full model, with all variables included. In

this illustration, data matrix X is standardized so that the linear predictor η constains

no intercept, viz., β0 = 0. The OLS estimate (OLSE) is chosen to initialize the IWLS

algorithm. The initial CN, evaluated at the OLSE, is 19.031, indicating the presence of

mild collinearity among the covariates. Two maximum likelihood estimates (MLEs) are

derived using the usual IWLS and the ridge method, denoted by MLE and ridge MLE

(RMLE) Schaefer et al. (1984); Schaefer (1986); Lee and Silvapulle (1988); Le Cessie and

Van Houwelingen (1992). The shrinkage parameter k for the ridge method is set to be

0.001. Results are summarized in Table 5.1.
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We can first observe that the RMLE is essentially the same as the MLE, with a slight

difference in the CNs which are unsatisfactorily high, suggesting the presence of strong

collinearity. As a matter of fact, when applying the IWLS or the ridge method, the CN

increases iteration by iteration, as shown in Figure 5.1. This reveals that, upon arriving

at the MLE or RMLE, this estimate still has a serious ill-conditioning problem.
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Figure 5.1: Increasing trend in CN using the ridge estimation in logistic regression

This is no surprise, because the ridge method reduces merely the VIFs, but not the

CN. On the contrary, the LABs method Jou et al. (2014) is capable of improving both

the VIFs and the CN. To provide evidences, we digress to revisit the education data from

(see Chatterjee and Hadi, 2006, pp.222-228) (note this is an example for linear regression,

not generalized linear models). The results are summarized in Table 5.2.

Vars V IFβ1 V IFβ2 V IFβ3 CN
OLS 38.44 31.48 88.37 393.95

RDG (k1) 0.56 0.46 1.28 393.94
RDG (k2) 0.42 0.35 0.87 266.32

LABs 2.66 2.85 3.84 14.39

Table 5.2: Comparison of VIFs for the education data Chatterjee and Hadi (2006); The
ridge shrinkage parameters k1 = 10−5 and k2 = p−1/βTOLSβOLS = 0.249; data are centered
and scaled

From Table 5.2, the results yielded by the ridge method are either fantastic or unsat-

isfactory. First, a VIF with value less than 1 implies negative R2 value. For instance,
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in the choice of k2, the R2
j values are −1.38, −1.86 and −0.15, respectively. This totally

violates the basic definition of a VIF obviously. For a similar discussion, see Garćıa et al.

(2014). Moreover, the CNs in the cases of either k1 or k2 are worse than what LABs

method produces. All these evidences indicate that the LABs method outperforms the

ridge method and can be a better alternative in dealing with collinearity problems.

Returning to the cancer data, it is known that the ridge method applied to the IWLS

for logistic regression is done through the following recursion

β̂l+1 = β̂l + (XT ŴlX + kI)−1XT (y − π̂l), (5.1)

at the (l+ 1)-st iteration. The algorithm terminates once the difference between the suc-

cessive estimates differs negligibly. From Figure 5.1, the increasing trend in CN implies

that (XT ŴlX+kI) gets more and more ill-conditioned, indicating strong ill-conditioning

problem at the RMLE, which in turn is likely to cause the variances inflated unsatisfac-

torily.

5.3 Weighted VIF - A New Diagonstic

Let us consider the following generalized linear model for logistic regression

y = π + ε, (5.2)

where y ∈ Rn×1 is the random component vector taking binary values; π is the systematic

component vector, defined by

π ≡ E[y] = (1 + exp{−XT β̂})−1 ∈ Rn×1, (5.3)

with X collinear and normalized; and ε is the random error vector with mean zero and

variance V ar(εi) = πi(1− πi), for i = 1, . . . , n, with W ≡ Diag[πi(1− πi)]. In this study,

we shall assume that each component of y is i.i.d. and follows some distribution in the

exponential family. In our case, yi follows a bernoulli distribution, or equivalently, y
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follows a binomial distribution.

Let β̂MLE be the MLE for (5.2). Asymptotically, we have

β̂MLE ∼ N (β, (XT Ŵ∞X)−1φ), (5.4)

viz., β̂MLE follows a multivariate normal distribution with mean β and covariance (XT Ŵ∞X)−1φ.

When X has rank-deficiency problem, the matrix XT Ŵ∞X can be ill-conditioned, thereby

inflating the variances of the MLE Lee and Silvapulle (1988); Lesaffre and Marx (1993).

Now, take X̂ ≡ Ŵ
1/2
∞ X, with X collinear and normalized. The asymptotic variance is

therefore (XT Ŵ∞X)−1φ = (X̂T X̂)−1φ. Under this setting, the situation becomes similar

to that in Chapter 2. So, define

Ω̂XX ≡ X̂T X̂, (5.5)

which will be termed the weighted correlation matrix, even though it is not, among the

covariates. On the main diagonals of the matrix Ω̂−1
XX lie the weighted VIFs (WVIFs)

associated with the covariates. The WVIF has a similar function as the conventional VIF

does, viz., their values both represent how inflated the variances are due to the presence of

data collinearity. Moreover, the use of CN as the diagnostic for detection the presence of

data collinearity can be misleading Lazaridis (2007). Therefore, we propose the WVIF as

a new diagnostic tool, as it provides direct information on the severity of data collinearity.

Hence, one can tell the presence of data collinearity by simply looking at the values of the

WVIFs associated, provided there are more than one WVIF having value greater than a

threshold, say, 6 or more Belsley et al. (2005), although there has been no rules of thumb

as yet.

5.3.1 An Alternative Estimate

Assume that MLE β̂MLE exists for (5.2) and is a limit point of a convergent sequence, viz.,

β̂MLE = (XT Ŵ∞X)−1XT Ŵ∞Z = Ω̂−1
XXΩ̂Xz, (5.6)
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where Ω̂Xz ≡ XT Ŵ∞Z. The variances of the MLE β̂MLE may still be inflated due to the

presence of data collinearity. Our strategy here is to find a perturbation matrixW so that

the pathological WVIFs can be improved. The resulting estimate then takes the form

β̂MLE(W) = Ω̂∗−1
XXΩ̂Xz, (5.7)

for which Ω̂∗XX ≡ XT Ŵ∞X+W � 0. We shall call this new estimate the perturbed MLE

(PMLE), which will be obtained through an iterative algorithm as given in Chapter 2.

It has been shown that the optimal perturbation $∗ = [∆$i,j]i>j ∈ Rk×k(k−1)/2, where

k is the number of covariates, has an explicit expression. The following expression serves

as a counterpart in a WVIF case

$∗ =
−vr

‖v̂k∗‖2

(B̂T B̂+ρI)
−1

(
B̂T B̂ + ρI

)−1

v̂k∗ , (5.8)

where vr is the reduction step in the (largest) WVIF; v̂k∗ is the vector made of the

derivative ∂(XT Ŵ∞X)−1
k∗,k∗/∂$i,j, for i > j; k∗ corresponds to the index of the largest

WVIF; B̂ is a matrix made of the derivative ∂β̂MLE/∂$i,j, for i > j; and ρ(> 0) is a

penalty parameter. The optimal perturbation matrixW is then formed by the relationship

W = [∆$i,j]i6=j, with Wi,i = 0, for all i = 1, . . . , k.

5.3.2 Performance of PMLEs

We study the performance of the proposed estimate in what follows. Results are summa-

rized as theorems without proofs.

The very first concern resides in the question if Ω̂∗XX ≡ Ω̂XX +W � 0 holds. The

perturbation matrix W is generally indefinite, so there is no guarantee the positive def-

initeness of Ω̂∗XX will hold. Nevertheless, from matrix theory, a necesary and sufficient

condition for Ω̂∗XX � 0 to hold is to check if λmin(Ω̂−1
XXW) > −1. For a proof, refer to

Horn and Johnson (2012).

The perturbation method takes effect by changing the eigen-strucutre of the matrix

Ω̂XX . The minimal eigenvalue of a matrix is oftentimes an crucial criterion to tell if a
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matrix is ill-conditioned Schaefer et al. (1984); Lesaffre and Marx (1993). It has been

shown that imposing an optimal perturbation matrix comprising (5.8) can improve the

minimal eigenvalue essentially. The following result states how the minimal eigenvalue of

the matrix Ω̂∗XX changes.

Theorem 5.1 (Minimal Eigenvalue). Let 0 < λmin ≤ λ2 ≤ · · · ≤ λmax and 0 < λ∗min ≤

λ∗2 ≤ · · · ≤ λ∗max be the increasingly-ordered eigenvalues for Ω̂XX and Ω̂∗XX , respectively.

Then for $∗ in (5.8), we have λ∗min ≥ λmin.

As was evident in Table 5.2 in Section 5.2, the LABs method heals the ill-conditionedness,

reflecting on the improvement in the CN through changing the eigen-structure of the ma-

trix Ω̂XX . The next result .

Theorem 5.2 (Condition Number). Let κ and κ∗ be the CN associated with the matrices

Ω̂XX and Ω̂∗XX , repsectively. For the optimal perturbation $∗ given in (5.8), we have

κ∗ ≤ κ.

Similar to Chapter 2, the optimal perturbation (5.8) is obtained by constraining on the

reduction in the largest WVIF(s). Normally, imposing reduction on the most pathological,

or simply the largest, WVIF renders the reduction in other pathological ones, while those

non-pathologicals fluctuate slightly around their original values. However, if all WVIFs

are pathological, then a monotonic reduction can be observed. We have the following

result.

Theorem 5.3 (WVIFs). For $∗ given in (5.8), the following are true:

(i) The sum of all perturbed WVIFs is less than or equal to that of the original WVIFs,

viz.,

trΩ̂∗−1
XX ≤ trΩ̂−1

X . (5.9)

(ii) Let vl be the target WVIF for the largest WVIF to achieve and vr > 0 the reduction

in the largest WVIF. Then if min1≤i≤k Vi(Ω̂XX) > vl(vr) for any vl > λ−1
min(Ω̂XX) + vr, we

have (
Ω̂∗−1
XX

)
i,i
≤
(

Ω̂−1
XX

)
i,i

, ∀i = 1, ..., k. (5.10)
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where vl(vr) means the parameter vl is dependent on the other parameter vr.

Note here that the condition in (ii) of Theorem 6.3 is far too crude and theoretical. A

practical bound for (ii) to hold is min1≤i≤k Vi(Ω̂XX) > vl for any vl > vr. In other words,

as long as all WVIFs are pathological, monotonic reduction is certain.

5.3.3 Goodness of Fit

When measuring the goodness of fit of the constructed model, one way is to measure

the deviance and the other the generalized Pearson’s χ2 statistic, both following a χ2

distribution with the same degree of freedom asymptotically. The perturbed versions of

(5.11) and (5.13) can be obtained by replacing the MLE β̂MLE by the PMLE β̂(W). We

shall look into the measurements of fit in both aspects.

The deviance is defined as two times the difference between log-likelihood functions.

In particular, for our case, the deviance has the following expression

D(y; π̂) = −2
n∑
i=1

{
yi log

(
π̂i

1− π̂i

)
+ log (1− π̂i)

}
. (5.11)

Consider the difference ∆D ≡ D(y; π̂(W))−D(y; π̂) and the result follows

Proposition 5.1. Given the optimal perturbation matrix W comprising $∗, define the

bias b ≡ β̂(W)− β̂MLE. Then ∆D(W) ≥ −2
∑n

i=1 exp{−xTi β(W)}.

Proof. It is not hard to show that

∆D(W) ≥ −2
n∑
i=1

(log π̂i(W)− log π̂i)

≥ −2
n∑
i=1

{
exp{−xTi β̂(W)} − exp{−xTi β̂MLE}

}
≥ −2

n∑
i=1

exp{−xTi β(W)}.

(5.12)

where we have used the facts 1− 1/y ≤ log y ≤ y− 1 for any y > 0 Topsoe (2004), ea ≥ 0

and ea − 1 ≤ ea,∀a ∈ R.
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Another measurement of fit is the Pearson’s χ2-statistic defined through the following

standardized residual

X2 ≡
n∑
i=1

(
yi − π̂i√
π̂i(1− π̂i)

)2

∼ χ2
n−(k+1), (5.13)

where π̂i = (1 + exp{−xTi β̂})−1, for i = 1, . . . , n. Following the same maneuver, let the

difference ∆X2 ≡ X2(W)−X2. We have the following property

Proposition 5.2. Given the optimal perturbation matrix W comprising $∗ and the bias

b as defined previously. Then ∆X2(W) ≤
∑n

i=1 exp{−xTi β̂(W)}.

Proof. We see that

∆X2(W) ≤
n∑
i=1

1− π̂i(W)

π̂i(W))
− π̂i

(1− π̂i)

=
n∑
i=1

1

π̂i(W))
− 1

(1− π̂i)

≤
n∑
i=1

exp{−xTi β̂(W)}.

(5.14)

where we have used the facts 0 ≤ yi ≤ 1, for all i = 1, ..., n, and ea ≥ 0,∀a ∈ R.

5.4 Cancer Data Revisited

Let us revisit the cancer data discussed in Section 5.2 and we add the WVIF perspective

to the problem.

Table 5.3 summarizes the WVIF information, corresponding to OLSE, MLE, RMLE

and PMLE for the cancer data. A few things can be observed in the table. First, at

OLSE, high WVIFs suggest strong collinearity existing among the variables. However,

since the OLSE serves simply as a starting point for the IWLS, there is no need to worry

about the collinearity problem at this moment.

Second, the difference between the MLE and RMLE is negligible, meaning that the

ridge method does not take much effect on improving the performance of the alternative

estimate RMLE. Values of WVIFs for both estimates merely indicate the presence of mild

collinearity among the variables. Yet, from the persepctive of CN, extremely high CN may
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Figure 5.2: Plots for WVIFs resulting from the algorithm

Vars WV IF1 WV IF2 WV IF3 WV IF4 WV IF5 CN
OLSE 12.145 57.149 81.8 1.136 1.042 19.031
MLE 1.682 5.944 8.447 0.078 0.114 418.13

RMLE 1.684 5.945 8.449 0.079 0.115 418.11
PMLE 0.822 2.755 3.869 0.075 0.111 193.556

Table 5.3: Results for the centered and scaled cancer data; Note: (i) for OLSE, we have
V0 = I and π̂i = 0; (ii) parameters for obtaining the PMLE are vl = 4, vr = 2 and
ρ = 50, see Chapter 2; (iii) total additional iterations are 3 and it takes 0.353 CPU
seconds (average under 100 trials) for the algorithm to terminate

lead the researchers to the conclusion that severe ill-conditioning problem exists, provided

the WVIF information is left behind. This observation is consistent with Lazaridis (2007).

Third, the PMLE outperforms both the MLE and RMLE in both the CN and the

WVIFs. Even though, the CN is still high (≈ 194), but the WVIF provides more reliable

information on the serverity of the data collinearity. Improvement in the WVIF means

that the PMLE is less influenced by the presence of data collinearity and so PMLE has

lowered variances. A graphical evidence is given in Figure 5.2. Furthermore, in Table 5.4,

we see that the χ2-statistic and the deviance of PMLE do not differ much from that of

MLE or of RMLE, which means that the conclusion of goodness of fit for the MLE/RMLE

applies to PMLE, under certain level of confidence.

To end this section, we look into another important criterion used to identify the pres-
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Vars β̂1 β̂2 β̂3 β̂4 β̂5 χ2 D
OLSE -0.037 -0.312 0.357 0.248 -0.077 23.769 42.157
MLE -0.196 -1.594 1.811 1.305 -0.421 71.942 29.106

RMLE -0.196 -1.594 1.811 1.305 -0.421 71.942 29.106
PMLE -0.023 -1.286 1.438 1.303 -0.417 72.308 29.311

Table 5.4: Summary of the estimates and the associated χ2-statistics and the deviances

ence of data collinearity, i.e., the minimal eigenvalue of the Fisher’s information matrix

XT Ŵ∞X. When the effect of collinearity is strong, the minimal eigenvalue tends to 0, ren-

dering the CN tend to infinity Schaefer et al. (1984); Schaefer (1986). In conjunction with

the high value of CNs at MLE and RMLE, we can see that λmin at either estimate remains

close to zero, leading to high CN value and indicating the severity of data collinearity. On

the other hand, improvement in λmin is manifest at the PMLE, consistent with Theorem

B.2. Changes in λmin before reaching the PMLE are (0.063, 0.078, 0.1004, 0.138), as shown

in Figure 5.3.

Estimates MLE RMLE PMLE

λmin(XT Ŵ∞X) 0.063 0.063 0.138

Table 5.5: Minimal eigenvalue of XT Ŵ∞X at each estimate
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Figure 5.3: Changes in λmin(XŴ∞X) resulting from the algorithm
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5.5 Conclusions

In this study, we propose a new collinearity diagnostic tool for generalized linear models,

illustrated by analyzing a logistic model. Similar to the VIF in the context of traditional

regression models, the WVIF plays the same role in generalized linear models. The success

of the application to a real-world problem manifests its practical value. The extension

to multi-class binary-response models and the generalization to more generic generalized

linear models should be immediate with certain modifications.
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Chapter 6

Variance Reduction Method for

Generalized Least Squares in the

Presence of Multi-collinearity

In this study, we propose a variance reduction method for generalized least squares (GLS)

in the presence of multicollinearity. It is well known that the asymptotic variance of a

GLS estimate is (XTWX)−1σ2, given X centered and scaled. The key idea of the variance

reduction method then resides in reducing the diagonal elements of the weighted matrix

(XTWX)−1 by imposing a perturbation matrix on it. The proposed method has a wide

applicability in dealing with either regression models having heteroskedasticity, or time-

series models with autoregressive serial correlation, or fixed (random) effect models for

panel data, or the measurement-error models, or even the generalized linear models, all

in the presence of multi-collinearity. We carry out real-world applications to validate the

proposed method.

6.1 Introduction

Generalized least squares (GLS), first described by Aitken (1936), is employed when the

covariance structure of the response vector is not scalar and is representive of some co-

variance matrix Σ. It is well known that GLS estimates (GLSEs) are unbiased, efficient,
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consistent and asymptotically normal (Amemiya, 1985). The well known ordinary least

squares (OLS) is special case of GLS when Σ = I. There are situations in which pa-

rameter estimations are done through the GLS. For instance, in linear regression, when

the homoskedasticity is absent, the weighted least squares (WLS) is used. The WLS is

another offspring in the GLS family and has a special covariance structure with zero off-

diagonals in Σ. In time-series modeling, the existence of correlated error, or sometimes

called the autoregressive correlated error, poses some problems on the usual OLS esti-

mate (OLSE), which is no longer the best linear unbiased estimate (BLUE). Under this

circumstance, GLS plays an crucial role in the estimation procedure. For generalized lin-

ear models (GLMs) (McCullough and Nelder, 1989), even though the estimation is done

via the maximum likelihood (ML) estimation, the ML estimates (MLEs) are obtained

through the so-called iteratively re-weighted least squares (IRWL) algorithm which is an-

other variant of the GLS. All these examples have indicated the importance and wide

applicability of the GLS.

In linear regression, the OLS estimation is problematic when the collected data exhibits

collinear behaviour among the covariates. When the data matrix X has rank-deficiency

problem, the inverse of the matrix XTX suffers from numerical instability, thereby render-

ing the resulting OLSE unsatisfactory. Consequences, such as high variances, weakened

prediction power and even incorrect signs of some OLSEs against the hypothesis (Bels-

ley et al., 2005), can be expected. Similar problems can occur in the GLS estimation.

GLS estimation involves the inverse of the weighted matrix XTWX, for some weight

matrix W . When the matrix XTX is rank deficient, it is likely that XTWX suffers from

ill-conditioning problem as well (Schaefer et al., 1984; Lee and Silvapulle, 1988).

To circumvent the problem, biased regression techniques have been applied to obtain

alternative estimates. Among all biased regressions, the ridge regression (Hoerl and Ken-

nard, 1970) has been the well accepted technique to do the job. To name a few, Schaefer

et al. (1984); Schaefer (1986) proposed the ridge logistic estimate as a remedy for logistic

regression having data collinearity problem. Follow-up research, such as Lee and Silvapulle

(1988); Le Cessie and Van Houwelingen (1992), all disucssed the ridge logistic estimate
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in the same fashion. Similar research on Poisson regression and application of LASSO

to GLMs (Meier et al., 2008) can be found as well Månsson and Shukur (2011). Most

recently, the authors propose another VIF-based estimate to solve the multicollinearity

problem in both linear regression and GLMs. The central idea of the method consists

in perturbing the off-diagonals of the correlation matrix, contrary to the ridge method.

Interesting properties can be found in Chapters 2 and 3.

Comparing the perturbation method, the ridge method has several drawbacks. First,

the VIFs resulting from the ridge method may not all be feasible (some VIFs may be less

than 1), for a VIF is supposed to be greater than or equal to 1, by definition (0 ≤ R2
j ≤ 1

so that 1 ≤ (1 − R2
j )
−1 < ∞), see Garćıa et al. (2014). Our method preserves this

property. Second, the search for the optimal shrinkage parameter in the ridge method

is no easy task, which in general involves solving a non-convex optimization problem.

Comparatively, our method merely involves solving a convex optimization problem at each

stage and the total number of required iterations is finite. Further, it has been proven that

the optimal perturbation exists and is unique. Third, the rationale of the perturbation

method resides in the fact that multicollinearity stems from the close connection among

different pairs of covariates, instead of that between a covariate and itself. Therefore,

the perturbations on the off-diagonals make more sense than perturbing the diagonals in

addressing multicollinearity problem.

In the traditional regression diagnostics, the detection of the presence of multicollinear-

ity is often done through the correlation-related indexes, such as the correlation coeffi-

cients, condition number (CN) and variance inflation factor (VIF) (Belsley et al., 2005).

On the other hand, for GLMs, CN of the Fisher’s information matrix is by far still the

major diagnostic tool. Compared to VIF, the other indexes, especially the CN (Lazaridis,

2007), may not clearly reflect how severe the situation is, because VIF has a direct connec-

tion to the variance of the estimate, while the others do not. Therefore, VIF has become

a widely accepted index for detection of multicollinearity. In Chapter 5, a new diagnos-

tic tool for generalized linear models, called the weighted VIF (WVIF), is proposed and

behaves exactly the same as the traditional VIF in indicating how inflated a variance is
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due to the presence of multicollinearity among covariates. In that work, the perturbation

method is employed to solve the multicollinearity problem in GLMs and the resulting

estimate has its variance enormously improved.

Our Contribution. The major contribution of this work is that we extend the idea

of WVIF to the theory of GLS, as the new diagnostic for detecting the multicollinearity

problems in various situations in which GLS is applied. The resulting family of estimates is

termed the pertured GLS estimates (PGLSEs) that possess the property that the variances

are greatly improved in the presence of multicollinearity. Further, since the increase in bias

at each stage is minimized, the total bias upon obtaining a PGLSE is also minimized. The

ill-conditionedness of the weighted matrix XTWX can also be healed in the meanwhile.

Organization. This is how this study is organized. In Section 6.2, we show how to

construct the PGLSEs by imposing an optimal perturbation vector $∗, to be used to

form the optimal perturbation matrix W , on the weighted matrix XTWX . In Section

6.4, we first introduce an iterative algorithm for obtaining the PGLSEs and then apply the

method to analyzing two real-world examples, one with autoregressive serial correlation

problem (to the first order) in time-series modeling in Section 6.4.2 while the other with

multicollinearity problem in GLMs . Conclusions are given in Section 6.5.

6.2 Perturbed Generalized Least Squares

Consider a GLSE

β̂GLS(≡ β̂g) = (XTWX)−1XTWy, (6.1)

for X normalized and collinear, and for some weight matrix W . For regression models

having heteroskedasticity, the weight matrix is a diagonal matrix, with the j-th diag-

onal being hj(X)−2 (or ĥj(X)−2) for heteroskedasticity; for time-series models having

autoregressive serial correlation, assumed AR(1), the Prais-Winston’s Prais and Winsten

(1954) weight matrix has its (i, j)-th element as (1− φ̂)−1φ̂|i−j|, where φ̂ ≡
∑n
i=1 êtêt−1∑n
i=1 ê

2
t

with

êt = yt− β̂1xt1 − · · · − β̂kxtk for t = 1, ..., n; as to the logistic models, the weight matrix is
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diagonal and has its j-th diagonal as πj(1 − πj), where πj = E(yj) for j = 1, . . . , n. For

more details, see Amemiya (1985).

In general, the asymptotic variance of β̂g can be written as (XTWX)−1σ2. When X

has rank deficiency problem, the matrix XTX becomes ill-conditioned, which may very

likely lead the matrix XTWX to being ill-conditioned as well Schaefer et al. (1984); Lee

and Silvapulle (1988). In this case, the variances tend to be inflated unsatisfactorily.

The diagonals of the matrix (XTWX)−1 can then be thought of as a multiplier of the

asymptotic variance for each component of β̂g, which we shall term the weight variance

inflation factor (WVIF). Obviously, A special case of WVIF is the traditional VIF in

the regression diagnostic, when W = I Belsley et al. (2005). Thence, a WVIF behaves

exactly the same as a VIF, both indicating how inflated a variance is due to the presence

of multicollinearity. If the inflated diagonals can be reduced, then the variances are

improved.

In Chapter 2, the authors proposed a matrix perturbation method that helps improve

the diagonal elements of the matrix (XTX)−1, viz., the VIFs, in the OLS estimation.

The proposed perturbation method involves solving a series of linearly-constrained con-

vex quadratic bias-minimization problems, until the largest VIF is below certain level.

The major finding in Chapter 2 consists in showing that by solving the following bias-

minimizing optimization problem

min ‖B$‖2
2 + ρ‖$‖2

2

s.t. −vTmax$ = vr and $ ∈ Rk(k−1)/2
(6.2)

which has a unique optimal solution $∗ = [∆$i,j]i>j

$∗ =
−vr

‖vk∗‖2
(BTB+ρI)−1

(
BTB + ρI

)−1
vk∗ . (6.3)

where B is a matrix comprising the derivative ∂β̂OLS/∂$i,j, for i > j; vk∗ is a vector

comprising the derivative ∂(XTX)−1
k∗,k∗/∂$i,j, for i > j; k∗ corresponds to the index of

largest VIF; and vr > 0 and ρ > 0 are given parameters, such that the largest VIF is

reduced by an amount of at least vr. Remarkably, W is formed by properly arranging
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∆$i,j into the positions corresponding to each (i, j)-pair, for all i 6= j. Therefore, W

has zero diagonals (Wi,i = 0) and is symmetric (Wi,j = Wj,i). The increase in bias is

reprentative in terms of B and $∗, viz., B$∗. The resulting new estimate then looks like

β̂OLS(W) = (XTX +W)−1XTy = β̂OLS +B$∗, (6.4)

with XTX + W � 0 and with bias B$∗. Since at each stage the increase in bias is

minimized, the accumulative bias is also minimized upon obtaining (6.4). This estimate

(6.4) is thus termed the least-accumulative-bias (LABs) estimate.

Following the same maneuver, we assume that there exists a matrix L such that

W = LTL and take X̂ ≡ LX and ŷ ≡ Ly. Then (6.1) becomes

β̂g = (X̂T X̂)−1X̂T ŷ. (6.5)

We can immediately harness the results in Chapter 2 and obtain a new optimal pertur-

bation Ŵ comprising the vector $̂∗ = [∆$̂i,j]i>j

$̂∗ =
−vr

‖v̂k∗‖2

(B̂T B̂+ρI)
−1

(
B̂T B̂ + ρI

)−1

v̂k∗ . (6.6)

where B̂ is a matrix comprising the derivative ∂β̂GLS/∂$i,j, for i > j; v̂k∗ is a vector

comprising the derivative ∂(XTWX)−1
k∗,k∗/∂$i,j, for i > j and k∗ corresponds to the

index of largest WVIF, such that the largest WVIF is reduced by an amount of at least

vr. Consequently, the perturbed GLSE (PGLSE) is given by

β̂g(Ŵ) = (XTWX + Ŵ)−1XTWy = (X̂T X̂ + Ŵ)−1X̂T ŷ. (6.7)

for which X̂T X̂ + Ŵ � 0 and with bias B̂$̂∗.
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6.3 Some Properties

In this section, we study the properties of the perturbation method for GLS estimations.

For ease of presentation, we let Ω̂XX ≡ XTWX and Ω̂∗XX ≡ XTWX + Ŵ .

The question that if the addition of the perturbation matrix Ŵ to the GLSE β̂g still

makes Ω̂∗XX ≡ XTWX + Ŵ positive definite has been answered in Chapter 2.

The next result is the eigenvalue perturbation theorem for GLS. Notice that the im-

prove in the largest eigenvalue is no longer true for GLS. It may be because of the structure

of the weighted matrix.

Theorem 6.1 (Minimal Eigenvalue). Let 0 < λmin ≤ λ2 ≤ · · · ≤ λmax and 0 < λ∗min ≤

λ∗2 ≤ · · · ≤ λ∗max be the increasingly-ordered eigenvalues for Ω̂XX and Ω̂∗XX , respectively.

Then for $∗ in (5.8), we have λ∗min ≥ λmin.

Even without the good results on the largest eigenvalue, we still have the following

good property on the condition number.

Theorem 6.2 (Condition Number). Let κ and κ∗ be the CN associated with the matrices

Ω̂XX and Ω̂∗XX , repsectively. For the optimal perturbation $∗ given in (5.8), we have

κ∗ ≤ κ.

The next result can be treated as a variant of the VIF results in Chapter 4.

Theorem 6.3 (WVIFs). For $∗ given in (5.8), the following are true:

(i) The sum of all perturbed WVIFs is less than or equal to that of the original WVIFs,

viz.,

trΩ̂∗−1
XX ≤ trΩ̂−1

X . (6.8)

(ii) Let vl be the target WVIF for the largest WVIF to achieve and vr > 0 the reduction

in the largest WVIF. Then if min1≤i≤k Vi(Ω̂XX) > vl(vr) for any vl > λ−1
min(Ω̂XX) + vr, we

have (
Ω̂∗−1
XX

)
i,i
≤
(

Ω̂−1
XX

)
i,i

, ∀i = 1, ..., k. (6.9)

where vl(vr) means the parameter vl is dependent on the other parameter vr.
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6.4 Iterative Algorithm and Examples

In the first part of this section, we first introduce an iterative algorithm for obtaining the

PGLSE. The algorithm serves as a variant of that in Chapter 2 and has a similar structure,

see Algorithm 4. The only difference resides in the input for the problem underlying. In

the second part, we shall analyze two practical examples, one with serial correlation to

the first order and the other a GLM having multicollinearity problem.

6.4.1 An Iterative Algorithm

Similar to the algorithm proposed in Chapter 2, the algorithm for obtaining PGLSEs

requires input, given in the following sextuple

P = (X,y,W, vr, vl, ρ), (6.10)

where X is the centered and scaled data matrix, y is the centered response vector, W is

the weight matrix, vr is the reduction step in the largest WVIF, denoted by V̂ , vl is the

target level for the largest WVIF to achieve, and ρ is a penalty parameter.

Algorithm 4 Iterative Algorithm for PGLSEs

Require: Problem input P = (X,y,W, vr = 2, vl = 4, ρ = 50)

Ensure: Optimal PGLSEs β̂GLS(Ŵ);
1: repeat
2: Generate matrix B̂ for objective function and vector v̂k∗ for constraint;
3: Use (B.5) to form Ŵ = [∆$̂i,j]i6=j;
4: Update GLSE by (6.7);

5: until maxj=1,...,k V̂i ≤ vl

The generic structure of the algorithm is given in Algorithm 4. The algorithm is always

initialized with the OLSE with at least one pathological WVIF, or equivalently variances.

The algorithm accomplishes the task by reducing the largest WVIF at at least an amount

of vr at each iteration and terminates when the largest WVIF is less than or equal to the

target level vl. The requirement of the iterative setup consists in the numberical stability,

because we are doing perturbation. Any attempt of one-step fashion will only crush the

algorithm.
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The setting of vr depends on vl. According to Belsley et al. (2005), an appropriate

value for vl is 6, depending on the cases Craney and Surles (2002); Obrien (2007). A basic

criterion for the setting of vr is vr < vl. An alternative strategy is an iterative setup, say,

vi+1
r = 0.5vil at (i + 1)-st iteration. As to the penalty ρ, usually a value greater that or

equal to 30 will suffice. The value of ρ has a minor effect on the result, since the norms

of the increases in bias ‖B̂$̂∗‖2 are approximately of order O(10−2), depending on W

(whereas O(10−3) for the perturbation method in Chapter 2). In general, the value of the

penalty is positively related to the norm of the increase in bias ‖B̂$̂∗‖2, according to our

experiences.

6.4.2 Example - Longley’s Data

The first example is taken from Faraway (2002) and is known as the Longley’s data

Longley (1967). The problem contains two covariates, GNP and population, and one

response variable, the number of people employed from 1947 to 1962. The errors are

assumed to take an autoregressive form up to the first order and the model to be fitted

is given by

Employedt = β1GNPt + β2Populationt + εt,

εt+1 = ηεt + et,

et ∼ N (0, τ 2)

(6.11)

It is not hard to see that the estimated coefficient for the autoregressive function is

η̂ = 0.31 and therefore the weight matrix W is formed by the rule Wi,j = η̂|i−j|. To

use the OLS estimation (6.5), one need to first apply the Cholesky decomposition to the

weight matrix such that W = LTL and the obtain the transformed matrices X̂ ≡ LX and

ŷ ≡ Ly. The following table summarizes the information of fitting the model by GLS.

In Table 6.1, high values of both WVIFs indicate the presence of severe collinearity at

the GLSE. The same conclusion can be made by looking at the CN. Applying the proposed

method to the GLSE yields the results also in Table 6.1. Total number of iterations for

the algorithm to terminate is 10 and the average CPU time is 0.42 second (100 trials).

We first see that the sign of coefficient associated Populationt changes from negative
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Vars β̂1 β̂2 WV IF1 WV IF2 λmin λmax CN
GLSE 120440 -32880 20.246 19.463 0.025 8.518 337.235

PGLSE 5184 3565 3.46 3.326 0.15 8.3937 55.958

Table 6.1: Summary of PGLSE for centered and scaled Longley’s data; WV IF ’s are the
diagonals of the matrix (X̂T X̂)−1;λ’s are the eigenvalues and CN is the condition number

of the matrix X̂T X̂.

to positive, which may require more investigations to make certain that the sign-changing

makes any sense. Nevertheless, our result indeed provides a different viewpoint on the

relationship between the employment and the population. From Table 6.1, the WVIFs

have been enormously improved and both eigenvalues are improved as well, the latter

of which is consistent with Theorem 1 in Chapter 3. Figure 6.1 shows the monotonic

improvement in the WVIFs, since both WVIFs are pathological and Figure 6.2 shows the

relationships between the CN and the eigenvalues.
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Figure 6.1: Plots of the WVIFs

6.4.3 Example - Cancer Data

The next example is taken from Lee (1974); Lesaffre and Marx (1993). This example

contains 5 continuous variables (CELL - X1, SMEAR - X2, Infil - X3, LI - X4 and TEMP

- X5) and a response vector y taking on binary values. Details and data are referred to
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Figure 6.2: Plots of CN (blue line to left y-axis) versus λmin and λmax (dashed lines to

right y-axis) of the matrix XT ŴX

Lesaffre and Marx (1993).

Vars WV IF1 WV IF2 WV IF3 WV IF4 WV IF5 CN
OLSE 12.145 57.149 81.8 1.136 1.042 19.031
MLE 1.682 5.944 8.447 0.078 0.114 418.13

PMLE 0.822 2.755 3.869 0.075 0.111 193.556

Table 6.2: Results for the centered and scaled cancer data; Note: (i) for OLSE, we have
V0 = I and π̂i = 0; (ii) parameters for obtaining the PMLE are vl = 4, vr = 2 and
ρ = 50, see Chapter 2; (iii) total additional iterations are 3 and it takes 0.353 CPU
seconds (average under 100 trials) for the algorithm to terminate

In this illustration, data matrix X is normalized so that the linear predictor η constains

no intercept, viz., β0 = 0. The iteratively re-weighted least squares (IRLS) algorithm is

initialized with any arbitrary estimate and we choose the OLSE to begin with. Table

6.2 summarizes the WVIF information, corresponding to OLSE, MLE and PMLE for the

cancer data. A few things can be observed in the table. First, at OLSE, high WVIFs

suggest strong collinearity existing among the variables. However, since the OLSE serves

simply as a starting point for the IRLS, there is no need to worry about the collinearity

problem at this moment. However, values of WVIFs at the MLE merely indicate the

presence of mild collinearity among the variables. Even so, we can still implement out

algorithm to obtain a better estimate for this problem.
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Another important criterion used to identify the presence of data collinearity is the

minimal eigenvalue of XT ŴX. When the effect of collinearity is strong, the minimal

eigenvalue tends to 0, rendering the condition number tend to infinity Schaefer et al.

(1984); Schaefer (1986). From Table 6.3, improvement in λmin is manifest at the PMLE,

again consistent with Theorem 1 in Chapter 5. Changes in λmin before reaching the PMLE

are (0.063, 0.078, 0.1004, 0.138), iteration by iteration, as shown in Figure 6.3.

Estimates MLE PMLE

λmin(XT ŴX) 0.063 0.138

Table 6.3: Minimal eigenvalue of XT ŴX at each estimate
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Figure 6.3: Changes in λmin(XŴ∞X) resulting from the algorithm

6.5 Conclusions

In this study, we propose a variance reduction method based on the concept of WVIF,

which behaves exactly the same as the VIF in the context of regression diagnostics, for

the problems that are solved by GLS. The proposed method can be thought of as a gener-

alization of the VIF-based method, when the weight matrix is identity I. Applications to

pracitcal problems validates the effectiveness and make the proposed method of practical

use.
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Chapter 7

Conclusions and Future Research

Directions

In this proposal, we have established a VIF-based optimization model, which is convex

quadratic, to solve a series of collinearity problems in linear regression. First, we solve the

prototype problem that is the collinearity problem in linear regression without departures

from any of the full set of Gauss-Markov assumptions. Based upon the establishment, we

construct the so-called least-accumulative-bias (LABs) estimates.

Second, we extend the LABs estimates to a wider class of linear models having

collinearity problems. We study the situations when the departure from homoskedas-

ticity is observed. When the form for the non-constant conditional variance is unknown,

we prove that the optimal perturbation matrix generated by the VIF-based model can

be directly applied to the associated HCEs to reduce the variance portions (under cer-

tain conditions). On the other hand, provided the form for heteroskedasticity is given or

well estimated, we show that there exists another optimization model able to solve the

collinearity problem.

Third, we propose a conceptual second-order VIF-based optimization model for linear

models having collinearity problem. The second-order model serves as a mean to provide

a preciser solution for solving the collinearity problem. Moreover, the second-order model

can be applied whether or not the homoskedasticity holds. Since the second-order model
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is nonlinear and nonconvex in essence, so simplify solving the problem entails the use

of the more sophisticated technique, called linear conic programming (LCOP). Existing

theory guarantees the global optimality for the perturbation matrix.

7.1 Future Research Directions

As of this moment, we have basically covered the collinearity problem in a linear model,

mostly for cross-sectional data. In what follows, we shall discuss some doable extensions

for our method.

7.1.1 Optimal Rank-2 Perturbation

Recall that our method produces a series of optimal perturbation matrix W which is

typically full-rank and brings universal impact to the entire correlation matrix, except for

the main diagonals, as is shown below.

W =



0 $1,2 . . . $1,k

$2,1 0
. . . $2,k

...
. . . 0

...

$k,1 $k,2 . . . 0


.

To improve the numerical performance, it is an intuitive idea to find an optimal rank-2

perturbation matrix, resulting from a sum of two rank-1 matrix and its transpose.

Ŵ =



0 0 $i,j 0

0 0
. . . 0

$j,i
. . . 0

...

0 0 . . . 0


.

It has been known that any rank-1 matrix M is equivalent to the product of two rank-1

vectors, viz., M = uvT , for some vectors u and v. In our case, we then wish to find u and

v such that Ŵ = uvT + vuT .
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7.1.2 Nonconvex Lp Regression for p ∈ (0, 1)

Another interesting but aggressive breakthrough is the establishment of the theory of the

so-called Lp-regression for 0 < p < 1. Conventionally, people deal with the cases for any

p ≥ 1, building solid and beautiful theories. However, the case for any 0 < p < 1 has

been quite less studied ever since the regression analysis was in its infancy. The main

reason resides in the non-convexity of the use of (quasi)-norm ‖ • ‖2
p. Difficulties occur

when trying to build even a simple point estimation for such a less-studied branch.
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2
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Figure 7.1: The comparison between l2-norm (blue line) and l0.5-norm (green line)

Unlike any usual Lp-norm for p ≥ 1, an Lp-norm for p ∈ (0, 1) endows small residuals

more weight in the estimation process. For instance, when ui = 0.3, we have ‖ui‖0.5 =

0.548, while ‖ui‖2 = 0.09. Such a difference will lead to very distinct results for different

choice of p. Therefore, we believe the study on the Lp-regression for 0 < p < 1 will be so

interesting that many surprising properties can be established to enrich the literature.
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Appendix A

Schinnar’s CN-Based Model -

Review

In this appendix, we shall review Schinnar’s CN-based optimization model for solving

collinearity problem in multiple linear regression in brief (Schinnar and Walters, 1983).

The only difference between Schinnar’s model and our model resides in the diagnostic

used in formulating the models. Therefore, we shall merely review the difference.

A.1 Formulation using Condition Number

Let C(A) denote the condition number of some matrix A ∈ Rk×k. By definition, the condi-

tion number of the correlation matrix ΩXX is defined by the following ratio of eigenvalues

C(ΩXX) ≡ λmax(ΩXX)

λmin(ΩXX)
, (A.1)

where we assume that ΩXX � 0 and λmax(ΩXX) (λmin(ΩXX)) is the largest (smallest)

eigenvalue of the correlation matrix ΩXX .

The goal here is to find a perturbation matrixW such that C(ΩXX+W) gets improved

in comparison to C(ΩXX). To do this, we apply the Taylor’s expansion up to the first
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order to C(ΩXX +W) and it follows that

C(ΩXX +W) = C(ΩXX) +
∑
i>j

C ′(ΩXX)$i,j,

= C(ΩXX) + cT$,

(A.2)

wherein the term cT$ can be deemed the difference between the original condition number

C(ΩXX) and the new one C(ΩXX+W). Note that the derivative C ′(ΩXX) has the following

representation

C ′(ΩXX) =
λ′maxλmin − λ′minλmax

λ2
min

, (A.3)

where λ′max = 2µmax,iµmax,j, the i− and j−th element of the eigenvector µmax and the

rest follows similarly.

Since the presence of collinearity in the data matrix renders C(ΩXX) unsatisfactorily

high, we want C(ΩXX +W) < C(ΩXX), or equivalently, −cT$ > 0. With this along

with the same maneuver on the estimate β̂(ΩXX), one can formulate the following bias-

minimization model

min
$∈Rk(k−1)/2

{
$T (BTB + ρI)$ : −cT$ = cr

}
(A.4)

where ρ(> 0) is an exogenous trade-off parameter and cr(> 0) is the reduction in the CN.
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Appendix B

Application to Weighted Least

Squares - A Special Case of

Generalized Least Squares

In this appendix, we study the properties of the perturbation method applied to the

weighted least squares estimates (WLSEs) under the influence of collinearity. All proofs

will be given in Section B.2.

B.1 Properties

Before stating the results, the relationship among the theorems is as follows. Theorem

B.1 serves as the fundamental of Theorem B.2. Theorem B.2, in turn, leads to Theorems

B.3 and B.4. We may now state the results.

Because the perturbation matrix W is in general indefinite, there is no guarantee the

matrix Ω̂∗XX will be positive definite. A necessary condition for Ω̂∗XX � 0 to be true

is to compare the smallest eigenvalue of Ω̂XX , λmin

(
Ω̂XX

)
, to the largest eigenvalue of

W , λmax(W). That is, if we have λmin

(
Ω̂XX

)
> λmax(W), then Ω̂∗XX � 0 holds true.
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Specifically, for any x 6= 0, we see that

xT Ω̂∗XXx = xT (Ω̂XX +W)x

>

(
min

1≤i≤n

{
λi

(
Ω̂XX

)}
− max

1≤i≤n
{λi (W)}

)
xTx > 0,

and therefore we need λmin

(
Ω̂XX

)
> λmax(W) for Ω̂∗XX � 0 to be true. Theorem B.1

provides a stronger (both necessary and sufficient) condition for the positive definiteness

of Ω̂XX to be true.

Theorem B.1 (Positive Definiteness of Ω̂∗XX). The matrix Ω̂∗XX ≡ Ω̂XX +W is positive

definite if and only if every eigenvalue of Ω̂−1
XXW is greater than −1.

The perturbation method takes effect by changing the eigenstructure of the ill-conditioned

matrix Ω̂XX , especially on the eigenvalues. Whereas traditional matrix perturbation the-

ory (Stewart and Sun, 1990) provides two-sided bounded for the changes in the eigenval-

ues, how a specific eigenvalue changes can sometimes be inconclusive. The next theorem

specifies the exact directions of the changes in the smallest and largest eigenvalues of Ω̂XX

after perturbation.

Theorem B.2 (Eigenvalue Perturbation Theorem). Let 0 < λmin ≤ λ2 ≤ · · · ≤ λmax and

0 < λ∗min ≤ λ∗2 ≤ · · · ≤ λ∗max be the increasingly-ordered eigenvalues for Ω̂XX and Ω̂∗XX ,

respectively. Then for $∗∈W, we have λ∗min ≥ λmin.

Whereas Theorem B.2 only specifies the change in λmin is montonic, there is no guar-

antee that λmax shares the same property. Nevertheless, the increase in λmin still leads to

the reduction in the CN of ΩXX . The result is given in what follows.

Theorem B.3 (Reduction in condition number). For $∗∈W such that Ω̂∗XX � 0 holds,

the following hold:

(i) The perturbed CN becomes smaller, viz.,

κ
(

Ω̂∗XX

)
≤ κ

(
Ω̂XX

)
. (B.1)
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(ii) Let 0 < vr < ∞ be the reduction in the largest VIF. Then for $∗∈W such that

Ω̂∗XX � 0 holds, the reduction in CN is of order O(vr), viz,

κ
(

Ω̂XX

)
= κ

(
Ω̂∗XX

)
+O(vr). (B.2)

Implications of Theorem B.3 are as follows. First, through the changes in the smallest

and the largest eigenvalues of the matrix Ω̂XX , the matrix becomes less and less ill-

conditioned iteration after iteration. A geometric interpretation can be made: the shape

of the matrix Ω̂XX , which was very ellipsoidal at the outset, becomes more and more

round-shaped iteration after iteration. However, on the other hand, this property becomes

the major limitation of the perturbation method, as the sensitivity in the eigenstructure

resulting from the ill-conditionedness fades. 1 Second, the ridge-type estimates do not

possess such a property in the CN as the LABs estimates do. This reveals the fact that

the ridge-type estimates take effect by reducing the WVIF (or the VIF) solely. The close

connection between WVIF (or VIF) and the CN becomes the most prominent property

of the LABs estimates over the rigde-type estimates.

Third, the connection between the WVIF and the CN leads to the possibility to

formulate another optimization problem using the CN. By letting

W̃ ≡
{
$ ∈ Rn(n−1)/2 : −cT$ = cr

}
, (B.3)

where c is a vector containing the derivatives ∂κ(Ω̂XX)
∂$i,j

for i > j and cr > 0 is the reduction

in CN, be the CN-based feasible region, we can immediately derive the following CN-based

LCQP

min

{∥∥∥B̂$∥∥∥2

2
+ ρ ‖$‖2

2 : $ ∈W̃
}
, (B.4)

where the associated W satisfies Ω̂∗XX � 0. The details will be clear later in Section B.2.

The following results follow.

Proposition B.1 (Alternative Optimal Perturbation). Given W̃ nonvoid, there exists at

least one $∗∈W̃ that solves the CN-based LCQP (B.4). In particular,
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(i) the optimal perturbation vector $∗ has an explicit expression

$∗ =
−cr

‖c‖2

(B̂T B̂+ρI)
−1

(
B̂T B̂ + ρI

)−1

c, (B.5)

where the B̂ above is the same as the one in (6.3) and ρ is the penalty parameter.

(ii) For $∗ ∈ W̃ given in (B.4), the reduction in WVIF is of order O(cr).

We remark on (ii) of Proposition B.1. For each distinct WVIF, the constant associated

with the reduction term depends on the values of the associated constraint vector v̂. To

be more specific, for some WVIFj, the constant C is given by

C =
v̂Tj (B̂T B̂ + ρI)−1c

‖c‖2
(B̂T B̂+ρI)−1

,∀j = 1, ..., k.

Furthermore, when j = k∗, the enumerator in the above constant is exactly the same as

that for the reduction in CN when using the WVIF-based optimal perturbation (6.3). The

only difference in between resides in the denominator, thereby differing in the amount of

reductions in the two aspects.

Lastly, we turn our attention to the changes in the WVIFs. Similar to the changes

in VIFs in Jou et al. (2014), the reductions in WVIFs are not universal, but only those

pathological WVIFs. By pathological, we mean those WVIFs with values higher than a

critical value, depending upon the reduction step vr and the target level vl. Variables

with good WVIFs will have their WVIF values fluctuating around the original values.

The reduction is universally monotonic only when all WVIFs are greater than the critical

value. By and large, the sum of all WVIFs will be lesser. We summarize the observations

in the next theorem.

Theorem B.4 (Reduction in WVIFs). For $∗∈W such that Ω̂∗XX � 0 holds, the following

are true:

(i) The sum of all perturbed WVIFs is less than or equal to that of the original WVIFs,

viz.,

tr
(

Ω̂∗−1
XX

)
≤ tr

(
Ω̂−1
XX

)
. (B.6)
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(ii) Let vl be the target VIF for the largest VIF to achieve and vr > 0 the reduction in the

largest VIF. Then if min1≤i≤k Vi(Ω̂XX) > vl(vr) for any vl > λ−1
min(Ω̂XX) + vr, we have

(
Ω̂∗−1
XX

)
i,i
≤
(

Ω̂−1
XX

)
i,i

, ∀i = 1, ..., k. (B.7)

where vl(vr) means the parameter vl is dependent on the other parameter vr.

B.2 Proofs of Theorems

We now give the proofs of the theorems in Section 4.2 in what follows. The first is on the

positive definiteness of the perturbation correlation matrix Ω̂XX .

Proof of Theorem B.1. Assume Ω̂∗XX is positive definite. We see that Ω̂XX + W =

Ω̂XX(I + Ω̂−1
XXW). Since the matrices I and Ω̂−1

XXW commute and are both symmet-

ric, the eigenvalues of the matrix I + Ω̂−1
XXW are the sum of eigenvalues of I and Ω̂−1

XXW ,

viz., Λ(I+Ω̂−1
XXW) = e+Λ(Ω̂−1

XXW), for e ≡ [1, ..., 1]T . Since Ω̂XX positive definite, by as-

sumption, and (I+Ω̂−1
XXW) is symmetric, the eigenvalues of the product Ω̂XX(I+Ω̂−1

XXW)

have the same number of positive, negative and zero eigenvalues as Ω̂XX . But Ω̂XX and

Ω̂∗XX are both positive definite, it follows that Λ(I + Ω̂−1
XXW) > 0, which implies the

claimed result.

By the same reasoning as above, if every eigenvalue of Ω̂−1
XXW is greater than −1,

(I + Ω̂−1
XXW) is positive definite. The product of two positive definite matrices yields a

positive definite matrix (Horn and Johnson, 2012). This concludes the proof.

Next, we prove the important eigenvalue perturbation theorem.

Proof of Theorem B.2. To prove this claim, we consider the difference λ∗min−λmin and use

the Cauchy interlacing theorem to get

λ∗min − λmin ≥
∑n−1

j=1
θj −

∑n−1

j=1
θ∗j = 0.
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where θj and θ∗j are the j-th eigenvalue of the submatrix Ω̂XX{k∗} and Ω̂∗XX{k∗}, respec-

tively.

Before the proof concerning the reduction in the CN after the optimal perturbation,

we need the following lemma.

Lemma B.1. Given any x and y in Rn. If x and y lie in the same quadrant, then for

any matrix Q � 0 in Rn×n, we have xTQy > 0.

Proof. It follows that

xTQy = trQxyT = trQR > λmin(Q)trR > 0,

where the first inequality follows from Fang et al. (1994) and the last inequality holds

because the diagonals of R ≡ xyT are positive and λmin(Q) > 0 due to positive definite-

ness.

We are ready to prove Theorem B.3.

Proof of Theorem B.3. The first claim is an immediate corollary of (i) and (ii) in Theorem

B.2. To prove (ii), we start with the following first-order approximation for CN

κ(Ω̂∗XX) = κ(Ω̂XX) + cT$,

where c ∈ Rk(k−1)/2 is the vector comprising derivatives ∂
∂$i,j

κ(Ω̂XX) for i > j. It is not

hard to see that

∂κ(Ω̂XX)

∂$i,j

=
2λminυmax,iυmax,j − 2λmaxυmin,iυmin,j

λ2
min

, for i > j,

where υmax,i, for instance, is the i-th entry of the eigenvector associated with λmax and

the rest follow. The reduction in the CN is therefore −cT$, for any $ ∈W. Let $∗∈W
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be the optimal perturbation as given in (6.3). It follows that

κ(Ω̂XX) = κ(Ω̂∗XX)− cT$∗

= κ(Ω̂∗XX) +

(
cT
(
BTB + ρI

)−1
v̂k∗

‖v̂k∗‖(BTB+ρI)−1

)
vr

= κ(Ω̂∗XX) +O(vr).

It remains to show the constant associated with vr is positive, which is equivalent to

prove cT
(
BTB + ρI

)−1
vk∗ ≥ 0. To prove this, according to Lemma B.1, it suffices to

prove that c and vk∗ lie in the same quadrant, which then guarantees the positivity. We

consider the following product

cvTk∗ ≡ P =

∂κ(Ω̂XX)

∂$i,j

×
∂Vk∗

(
Ω̂XX

)
∂$i,j

 ,

which is a matrix resulting from the product of derivatives for all (i, j) pair and i > j. The

diagonals of the above product, Pr,r, 1 ≤ r ≤ n(n−1)
2

, are positive because both quantities

are decreasing at $∗. This proves the claimed result in (ii).

Next, we prove Theorem B.4.

Proof of Theorem B.4. (i) To prove (B.6), we use the fact that the trace of a matrix equals

the sum of its eigenvalues. Considering the difference trΩ̂∗−1
XX − trΩ̂−1

XX , it follows that

trΩ̂∗−1
XX − trΩ̂−1

XX =
n∑
i=1

(
1

λ∗i
− 1

λi

)
=

n∑
i=1

(
λi − λ∗i
λ∗iλi

)
≤
∑n

i=1(λi − λ∗i )
λ∗minλmin

= 0

The first inequality holds because λmin ≤ λj, ∀j and the same for λ∗min. The last equality

holds for trΩ̂∗XX = trΩ̂XX .

(ii) Given min1≤i≤k Vi(Ω̂XX) > vl, we have Vj(Ω̂XX) > vl, ∀j = 1, ..., k. For the case

j = k∗, this is trivial because of the WVIF constraint. Consider any j 6= k∗, we see that

(
Ω̂∗−1
XX

)
j,j
−
(

Ω̂−1
XX

)
j,j
<
(

Ω̂∗−1
XX

)
j,j
− vl =

θ∗minθ
∗
2 · · · θ∗k−1

λ∗minλ
∗
2 · · ·λ∗max

− vl ≤
1

λ∗min

− vl ≤ 0.
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by using Cauchy interlacing theorem (Horn and Johnson, 2012). Here θ∗j is the j-th

eigenvalue of the submatrix Ω̂XX{k∗}, j = 1, . . . , k − 1, and vl >
1

λ∗max
+ vr for some

vr > 0. This proves (B.7).

Lastly, we prove the boundedness results on the LABs estimates and the algorithm

that terminates in a finite number of steps.

Proof. (i) The bias between the PWLSE and an OLSE is given by

‖β̂W∗ − β̂OLS‖2
2 = ‖B̂$∗‖2

2 ≤ ‖B̂‖2
2‖$‖2

2 = O(‖$∗‖2
2).

(ii) Let M be the total number of iterations for the algorithm to terminate. It follows

that

M =


Vk∗
(

Ω̂XX

)
− vl

vr

 <∞,

given 0 < vl <∞, the target level for the largest WVIF, and 0 < vr <∞, the reduction

step in WVIFs, are finite. Note that dae denotes the least integer greater than or equal

to a ∈ R.

(iii) Let i be the iteration number and M be the maximal iteration number in (ii).

We have

‖β̂iW∗ − β̂OLS‖2
2 ≤ c′‖$i‖2

2, for i = 1, ...,M,

wherein β̂iW∗ and $i are the results at the i-th iteration of the algorithm, and c′ ≡ ‖B̂‖2
2.

Hence, upon termination, the total bias generated by the algorithm is

∑M

i=1
‖β̂iW∗ − β̂OLS‖2

2 ≤
∑M

i=1
c′‖$i‖2

2 ≤ c̃M ,

where c̃M ≡ c′M sup0≤i≤M ‖$i‖2
2 is a constant. This proves the claim.
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