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Department of Transportation and Logistics Management
National Chiao Tung University

ABSTRACT

Accurate advance purchase patterns can provide valuable insights into air
passengers’ behaviors and can be used to support airline decision-making activities with
respect to seat allocation, pricing, marketing and flight scheduling. Advance purchase
behaviors are complex and compounded with lots of factors, such as price dynamics,
airline competition, trip flexibility, seasonality, etc. Previous studies conduct
questionnaire surveys on air passengers so as to develop advance purchase behaviors.
The samples collected by questionnaire surveys can represent real individual advance
purchase behaviors, but the number of valid samples is usually rather limited and
required of high survey cost. In contrast, with the growing revenue share of online
purchasing, to develop and predict the collective advance purchase behaviors of flights
directly based on transaction data is obviously much more timeliness, cost economic,
and representative. The predicted advance purchase levels at a specific time of a
specific flight based on historical transaction data can be viewed as a reference level in
comparing with current sales data so as to dynamically advise pricing and promotion
strategies prior to departure. Additionally, according to our analyses on the air ticket
transaction data, it is found that advance purchase patterns differ remarkably across
flights.

To explore flight advance purchase patterns, a functional concurrent regression
model was firstly proposed. Several factors contributing to aggregate advance purchase
patterns of various types of flights including flight schedule attributes (such as time of
day, day of week, months of year and special vacations) and historical load factors were
examined based on the shape of the advance purchase curve of each flight. The ticket
transaction data which containing 1,044 flights and 134,820 transaction records of
Taipei-Macau (TPEMFM) route in 2011 was used for model estimation. With better



learning of advance purchase patterns and passenger behaviors for sales flights, airlines
are able to develop and make appropriate adjustments for current strategy more

efficiently and compete more effectively in today's marketplace.

Furthermore, the advance purchase behaviors of individual air passengers are
considered. As airlines dynamically adjust prices and sales strategy based on the
learning sales patterns, passengers can also decide to purchase at the ongoing price or
choose to delay their purchase decisions. Therefore, choice models including discrete
multinomial logit model and continuous logit model are proposed for the empirical
analysis of advance purchase behaviors of air passengers. By modeling both price and
departure time preferences of air passengers, the individual choice model developed in
this research is expected to offer a rich behavioral interpretation of advance purchase
behaviors and allow airlines. to evaluate potential impacts of the implementing
strategies. The models developed in this research have the potential to both improve
existing applications. in seat allocation and extend the scope of applications to other

areas of airline planning such as pricing and revenue management.

KEYWORDS: Air transport demand, Advance purchase patterns, Advance purchase
behaviors, Functional data analysis, Functional concurrent regression

model, Discrete multinomial logit model, Continuous logit model.
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“Every passing minute is another chance to turn it all around.”
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Chapter 1 Introduction

The chapter consists of four sections. Section 1.1 addresses the principal concept
on analyzing advance purchase behavior of air passenger in this study. The research
problems, objectives, and flowchart are introduced in Section 1.2, 1.3, and 1.4,

respectively.
1.1 Background and Motivation

How air passengers choose departure times and purchase tickets in advance is
essential for airlines to develop revenue management (RM) strategies. The advance
purchase pattern provides valuable insights that can be altered by airlines to support
decision making activities such as seat allocation, pricing, marketing, sales and flight
scheduling. With better learning of advance purchase patterns and passenger behaviors
for sales flights, airlines are able to know which and when do flights need to be
promoted to increase sales. Based on the learning purchase pattern, airlines can develop
and make appropriate adjustments for current strategy more efficiently and compete

more effectively in today's marketplace.

Effective revenue management strategies have clearly helped airlines to increase
profit and allocate resources more efficiently. For the non-storable and perishable goods
such as flight tickets, airlines generally implement RM strategies to optimize selling
strategies and make the most profit possible based on the remaining capacity, current
market conditions and anticipated demand. RM demand model has been proposed
based on a hypothesized inverse demand function using traditional statistics techniques,
such as time series, averaging methods, or simple probability distributions (McGill and
Ryzin, 1999). Those demand models mostly assume passenger demand to be
independent among fare products that created based on different restrictions for
passenger segmentation. Through setting the booking limits and fare restrictions to each
designed fare classes, airlines are able to segment the demand by distinguishing
passengers with different levels of willingness to pay and applying price discrimination

to obtain the highest revenue possible.



Airlines generally employ strikingly complex pricing and sales strategies for the
intense market competition, differentiated demand patterns, and achieving effective
customer segmentation to achieve price discrimination (Bilotkach et al., 2010). For
example, previous studies have shown that advance purchase discounts can be altered
as an effective means to shift demand (Gallego et al., 2008; Dana, 1999, 1998; Gale and
Holmes, 1993). By setting advance purchase discounts to sales flight tickets, airlines
are able to induce price-sensitive leisure passengers to purchase earlier. The less price-
sensitive but time-sensitive business passengers may therefore decide to purchase later.
In addition, to prevent business passengers from purchasing tickets at discounted fares
that designed for leisure travelers, the airlines typically built complex fare rules and
restrictions to make the deals less unattractive to business travelers. Moreover, airlines
also dynamically adjust prices based on learning demand to achieve higher load factor
and gain extra revenue (Escobari, 2012; Deneckere and Peck, 2012). However, on the
other hand, passengers can decide to make advance purchase at the ongoing price or to
delay their purchase decisions. Those price and sales strategies may decrease the
product value that passengers may be forced to make trade-offs between price, product
attributes and advance purchase deadlines, and therefore, change their purchasing
behaviors (Hotle et al., 2015; Escobari, 2014). Without knowing the real advance
purchase behaviors of air passengers, the typical hypothesized demand functions may

lead to erroneous estimated results.

Additionally, because of the rapid growth in low cost carriers (LCCs) market,
many airlines have virtually removed typical fare restrictions which are typically used
for market segmentation. Low-cost carriers not only acquire market by offering lower
fares, but also prevailing one-way pricing models that disrupt the traditional pricing and
revenue management strategies of full service carriers by relaxing fare rules such as
advance purchase requirements and the Saturday night stay requirement of discounted
fare products. Moreover, online sales have become one of major distribution channels
for airlines and travel agencies. From the passenger perspective, online purchases allow
passengers to compare different product offerings more easily. Therefore, it increases
price transparency among purchased flight tickets and competition airlines. Passenger

nowadays may perceive fare classes as different prices for a seat on an airplane and
2



purchase based on price rather than product characteristics (Garrow, 2009). These
market changes have made traditional fare products less clearly defined, and
assumptions of traditional RM models such as independence across fare classes may no

longer be valid (Barnhart and Smith, 2012).

Furthermore, in order to trace individuals’ advance purchase decisions, recent
researches have introduced choice models to RM for its ability to accommodate
passenger preferences in RM strategies that can better explain how individuals making
trade-offs (Garrow, 2009; Talluri and van Ryzin, 2004a, 2004b). The decisions of
passengers can be modeled based on either stated preferences survey data
(Proussaloglou and Koppelman, 1999; Wen and Lai, 2010) or revealed preferences data.
Most of previous studies based on stated preferences usually needed to conduct a
questionnaire survey on air passengers so as to develop advance purchase behaviors.
The samples collected by questionnaire surveys can represent real individual advance
purchase behaviors, but the number of wvalid samples is usually rather limited and
required of high survey cost. In contrast, with the growing revenue share of online
purchasing, to develop and predict the collective advance purchase behaviors of flights
directly based on transaction data is obviously much more timeliness, cost economic,

and representative.

Despite that demand models based on discrete choice models may be more
appropriate in RM applications, for the revealed preferences settings, there is limited
empirical research due to data acquisition problems. Both chosen and non-chosen
alternatives are needed for revealed preference model implementations. Although the
support of computer systems lowers down data collection costs, most of firms can still
only record the results of passengers of successful purchase and information about non-
chosen alternatives had been difficult to obtain, which made inferring the true demand
with available data remains a quite expensive and challenge issue. In this study, we will
then focus on how to use existing data sources to develop and estimate a model of airline

advance purchase behavior that can better reflects passenger interests.

Given the background, a better understanding of passenger choice behavior is

crucial to support the decision making process of airline and compete more effectively
3



in today's marketplace. The approach is expected to offer a rich behavioral
interpretation for air passenger advance purchase behaviors. It is also important that the
model be capable of supporting a broad range of policy implications by utilizing the
available disaggregated data. Grabbing these challenges and opportunities may provide
the potential to explore advance purchase behavior from real-time transaction databases

and thus motivate this research.

1.2 Research Problems

Accurate advance purchase behaviors can provide valuable insights into air
passengers’ behaviors and that can be used to support airline decision-making activities
with respect to seat allocation, pricing, marketing and flight scheduling. With the
growing popularity of online purchasing, to develop and predict the collective advance
purchase behaviors of flights directly based on transaction data is much more timeliness,
cost economic, and representative. Instead of using data based on costly large-scale
questionnaire surveys, we will focus in this research on analyzing actual advance
purchase behaviors as reflected in past transaction records. The transaction data used
for empirical estimation in this study was based on International Air Transport
Association (IATA) billing and settlement plan (BSP), which is widely used by financial
department of airlines and easily acquired comparing with other data sources. The flight
schedule data was also integrated to the analysis dataset. This will provide the basis to
explore the trade-off between the major dimensions of airline passenger preferences

such as schedule convenience and price.

In sum, this research attempts to explore advance purchase patterns and behaviors
of air passengers based on the transaction data by examining the following problems in

sequence:
(1) How is advance purchase behaviors represented?
(2) Do patterns of advance purchase behaviors exist?

(3) What are the relevant factors affecting advance purchase behaviors of air

passengers?
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How these patterns support airline decisions?

1.3 Research Objectives

Based on the abovementioned background and motivations, the objectives of this

research are:

(1

)

Propose an approach for identifying advance purchase behavior patterns and

exploring their characteristics:

The approach proposed in this research was aimed to explore the advance
purchase patterns and its role in airline’s decision process. Given this
objective, two types of methodologies were employed. The first was the
functional data analysis techniques including curve smoothing and functional
descriptive statistics. They were adopt to transform the discretely collected
transaction data into functional curves/objects for analyze. The second one
was_functional regression model that used to examine the potential
contributing factors including flight schedule attributes (such as time of day,
day of week, months of year and special vacations) and historical load factors

that may influencing the advance purchase patterns.

Propose an approach for examining advance purchase behavior of air

passengers.

The second objective was aimed to examine the individual advance purchase
decision of passengers. After identifying flights that might have poor sales
performance, airlines can adjust prices and sales strategy dynamically based
on learning patterns. However, the behavior of passengers might be also
forced to change. Two models were proposed to empirical analysis of the
advance purchase behaviors of air passengers. The discrete choice model was
firstly used to explore which choice set construct scheme based on advance
purchase time that can estimate choice model well. Taking account for the
nature of continuous purchase time choices in this study, the continuous logit

model was then proposed.



1.4 Research Methods

The research methods of this study consist of two parts. The first part related to
functional data techniques and a functional regression models, which are adopted to
explore and predict aggregated advance purchase patterns of flights at different
departure time before investigating advance purchase behaviors of air passengers. The
FDA techniques are appropriate for the data with ideal units of observation are defined
as functions on continuous domain, that allows for the accurate estimation of
parameters for the use in the analysis movement patterns, data noise reduction and
interpolation through curve smoothing, and applicability to handle data with irregular
time sampling periods. It provides a natural way to think through modeling problems
in a functional form, as would be the case if finite data were used to estimate an entire
function, its derivatives, or the values of other functional, that traditional multivariate

analysis approaches lack (Ramsay and Silverman, 2002, 2005, 2009).

Second, choice models including discrete choice and continuous choice model are
then used to examine contributing factors to advance purchase behaviors. The choice
models can be applied to the analysis of individual choice behavior when they are faced
with multiple alternatives. To date, unlike previous studies, we defined advance
purchase period ‘and took it as the response variable (alternatives) to obtain the
probability of purchasing in each time period. To reduce the number of alternatives and
explore which choice set construct scheme that can estimate choice model well, the
multinomial logit model (MNL) was used. The MNL is the most basic choice model
and is widely used due to its simple estimation resulting from its strong assumptions.
However, the independence of irrelevant alternatives (IIA) property of MNL model has

restricted in many practical situations.

Although the more advance choice models such as nested logit model (NL) and
generalized nested logit model (GNL) can alleviate the ITA problem. Some choices are
continuous response variables such as advance purchase time, departure time, and
location. Arbitrarily discretizing these continuous choices variables may lead to an

erroneous result. The continuous logit model is used. The continuous choice model



represents a generalization form of the MNL for continuous response variable settings
and can be derived directly from the random utility theory. In this study, the advance
purchase time choices of the individual passenger are considered as continuous. The
continuous logit model is applied for its advantage of offering strong theoretical
supports based on the random utility framework without discretizing the decision time

horizon.

1.5 Research Flowchart

Given the objectives, the research flowchart was illustrated in Figure 1-1. The
remainder of the dissertation is organized as follows. Chapter 1 introduces the research
background, objectives, and the expected for this research. In Chapter 2, the literatures
regarding the advance purchase behaviors, functional data analysis and choice models
were reviewed. Chapter 3 presents methodologies for the advance purchase patterns
and passenger choice model applicable to disaggregate data including function-on-
function regression model, discrete multinomial logit model (MNL), and continuous

choice model.

Chapter 4 presents the explanatory analysis for analysis dataset. Existing data
sources including air ticket transaction data and flight schedule dataset will firstly
combined to investigate the departure time preferences of passengers such as time of
day, days of week and months of year. Note that, our dataset also contains transaction
records from both direct purchasing passengers and from multiple distribution channels,
which makes it hard to distinguish passenger behaviors from travel agents. Therefore,
for simplicity, only the direct purchasing passengers were considered for passenger
choice behavior modeling. Figure 1-2 further provides the data processing flow and
model framework for this study. The explanatory analysis mainly focuses on passenger
demand, advance purchase patterns, and purchasing price distribution. The estimating
results from proposed there models were presented in Chapter 5. The related issues and
applications were later discussed in Chapter 6. Finally, the conclusions and

recommendations were drawn in Chapter 7.
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Chapter 2 Literature Review

The aim of this chapter is to build a conceptual framework which explains the
advance purchase patterns and its role in airline’s decision process. First, a brief
overview of advance purchase behavior analysis and applications on air transportation
field are provided. Then, an extensive review on functional data analysis is presented,
focusing on applications in pattern analysis. Finally, a comprehensive review in
individual discrete and continuous choice model is presented, focusing on the setting

and application related to this research.
2.1 Advance Purchase Behavior Analysis

The advance purchase behaviors of airline passengers have received increasing
attention from researchers and marketing managers. In RM contexts, airlines employ
different pricing strategies in response to intense market competition, differentiated

demand patterns, and achieving effective customer segmentation.

Bilotkach et al. (2010) documented a set of stylized facts about price-setting
dynamics across airlines who operating between New York City (NYC) and London
(LON) area airports. A sample of daily fare quotes for non-stop travel from
Expedia.com website were used. Their finding suggests that price-setting dynamics is
indeed different across airlines on the research market. Airlines appear to employ
strikingly different pricing strategies on this market. The estimated result also show that
fares increase at an accelerated rate as the departure date approaches. In addition, the
offered fares for last-minute travel were higher for the airlines with lower market share.
Their conclusions may apply not only to the airline industry, but also to other markets
for perishable products, such as hotels and car rentals markets that are characterized by

fixed capacity and uncertain demand.

Escobari (2012) empirically investigated the dynamic pricing of inventories with
uncertain demand as the departure date nears. In his study, a unique U.S. airlines panel
data set was used. A dynamic pricing equation and a dynamic demand equation were

jointly characterize with adjustment processes between prices and sales. The estimated
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results show that, at a fixed point prior to the departure date, the price increases as the
inventory decreases. On the contrary, for a given inventory, the price decreases as there
is less time to sell under, with breaks at 7 and 14 days to departure when price increases.
Moreover, current decisions to price and purchase can be affected by prior realizations
of fares and sales. Demand shocks have a positive and much larger effect on prices than
the positive effect of anticipated sales. These findings are consistent with previous
theoretical models of optimal pricing under uncertain demand and perishable

inventories.

Deneckere and Peck (2012) formulated a dynamic model of perfectly competitive
price posting under demand uncertainty. A dynamic trading model with uncertainty in
demand and production in advance was developed. Information about aggregate
demand is dispersed across different consumers, that resulting in information
asymmetries among consumers, and between consumers and firms. Firms can
dynamically adjust their prices to reflect information about aggregate demand extracted
from observing the aggregate quantity sold, whereas consumers who have not yet
purchased can decide whether to purchase or wait to try to purchase in later based on
observed information from post history of sales and posted prices. The proposed model
shown that high-valuation consumers purchase early and low-valuation consumers may
delay their purchase decisions to exploit the option to refuse to purchase in the future if

the sale price exceeds their valuation.

While airlines adjust prices dynamically based on learning demand from historical
sale patterns, passengers can also decide to make advance purchase at the going price
or to delay their purchase decision. Dynamic pricing strategies may decrease the value
of the product and force passengers to make trade-offs between price, product attributes
and deadlines, and therefore, change their advance purchase behaviors. In addition,
airlines generally utilize advance purchase behaviors as a means of discriminating
between passengers with high and low willingness-to-pay based on their time value and

can improve the efficiency of seat allocation.

For example, by setting advance purchase discount, airlines can induce price-

sensitive passengers to purchase tickets earlier and induce passengers who are less
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price-sensitive but more time-sensitive to make purchases later (Dana, 1999, 1998; Gale
and Holmes, 1993). Dana (1998) examined a model in which consumers are
heterogeneous in both their valuations and their demand uncertainty. The estimated
results shown that consumers with more certain demands are willing to buy in advance
because the presence of consumers with higher valuations and less certain demands
could lead to an increase in prices. Advance-purchase sales were made to low-valuation
customers, as results from traditional second-degree price discrimination model. Firms
may use advance-purchase discounts or discriminatory pricing practices to affect the
allocation of resources. Dana (1999) further demonstrates that when firms faced
unforecastable demand fluctuations, equilibrium price dispersion could be used to
efficiently shift demand and lower capacity costs even when the peak time is unknown,

particularly when the costs to some consumers of changing departure day was high.

Escobari (2014) proposed a dynamic demand model with a panel dataset and
analyzed how valuations change as the departure date nears. Their results support the
claim that purchasing behavior changes as the departure date nears. They concluded
that the lower valuations consumers become more price sensitive as their departure day
approaches whereas high-valuation consumers tend to purchase earlier. Air passengers
may sort themselves efficiently in equilibrium with low valuation travelers delay
purchase decisions and even deciding not to buy if prices closer to departure are higher

than their valuation.

Hotle and Garrow (2014) investigated how competitors' low-fare offerings
influence the online search behavior of customers using unique website click stream
data collected from the major carrier’s website. A truncated negative binomial model
was proposed to predict the number of searches as a function of low-fare offerings for
the same airport pair and competing airport pairs in the region. Clickstream data
combined with detailed information about competitors' low-fare offerings for 10
directional markets was used to estimate the model. Their study found that the number
of searches decreased as the difference between the carrier's lowest fare and
competitors' lowest fare increased. The search intensity also increased as trip duration

increased. In addition, trip characteristics had more impact on search behavior than the
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fare variables. The findings provide insight into the role of competitor pricing on multi-

airport choice as it relates to customers' online search behavior.

Hotle et al. (2015) examined how passengers respond to advance purchase ticket
deadlines and price uncertainties. They modeled the number of searches (and purchases)
for specific search and departure dates. To correct price endogeneity problem, the
instrumental variable was used. Results suggested that both search and purchase
behaviors vary by search day of week, days from departure, lowest offered fares,
variation in lowest offered fares across competitors, and market distance. Their works
had showed that the number of searches increases just prior to an advance purchase
deadline. The increase can be explained by passengers switching their desired departure

dates to avoid higher fares after an advance purchase deadline.

2.2 Functional Data Analysis

To investigate and display the aggregated advance purchase patterns of air
passengers, functional data analysis (FDA) techniques are used in this study. FDA is a
collection of techniques in statistics for the analysis of curves or functions, which
extends traditional statistical methods applications, such as functional ANOVA
(fFANOVA), functional principal component analysis (FPCA), canonical analysis,
functional regression and functional clustering. The systematic overviews including
Morris (2015), Ullah and Finch (2013), Ramsay and Silverman (2002, 2005, 2009) and
Ferraty and Vieu (2006) had provided in-depth theoretical developments of functional
data analysis, but also elaborated on the empirical applications in medicine,

econometrics and biostatistics.

It has powerful ability of analyzing highly nonlinear and heterogeneous
longitudinal data and is powerful in visualizing and capturing complex data patterns
with a few simple measures (Dass and Shropshire, 2012). The techniques are
appropriate for the data whose ideal units of observation are defined as functions on
continuous domain. Under an FDA framework, each element is considered to be a
function, the discretely collected observations are converted into functional

curves/objects by specifying smooth basis functions before modeling and analysis. To
13



date, FDA has better forecasting abilities than traditional models in dynamic

environments (Dass, Jank, & Shmueli, 2011).

Wang, Jank and Shmueli (2008) applied functional data analysis to explain and
predict the price of an ongoing online auction. In addition, the auction's price velocity
and acceleration with other auction-related information were considered. To investigate
the relationship between eBay’s auction dynamics and other auction-related
information, functional regression analysis was used. A novel set of Harry Potter and
Microsoft Xbox data from eBay were applied to their proposed model. The estimated
results had shown that the forecasting model based on functional data analysis
outperformed traditional methods such as double exponential smoothing model, that do

not take into account the dramatic change in auction dynamics.

Sood, James and Tellis (2008) proposed functional regression model to analysis
and predict the market penetration of new products. Functional data analysis techniques
including spline regression, functional principal components, functional clustering, and
functional regression were applied. Several models including the Classic Bass model,
Estimated Means, Last Observation Projection, a Meta-Bass model, and an Augmented
Meta-Bass model were also proposed to compare its performance and predict eight
aspects of market penetration. Data about market penetration from most of 21 products
across 70 countries, for a total of 760 categories were used formodel estimation. Results
shown that functional regression model was superior to the abovementioned models.
The product-specific effects were more important than country-specific effects when

predicting penetration of an evolving new product.

Dass and Shropshire (2012) demonstrated FDA techniques on firm performance
measures. Methodologies including functional principal component analysis,
functional regression, and functional clustering were used to investigate measures of
firm financial performance based on panel data set of the 1,000 largest U.S. firms by
revenues from 1992 to 2008. The FDA techniques were adopted to explore how these
measures vary across firms over time, common trends or factors across performance of
all firms, the effect of various measures of firm size on these performance measures,

and clusters of firms based on the dynamics of performance measures. Finally, the
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forecasting results obtained from FDA were compared with hierarchical linear
modeling and the FDA-based forecasting model had better accuracy than the model
based on HLM.

In terms of pattern analysis, Gaston et al. (2008) illustrated how FDA can be used
in the simulation of time-varying arrival processes. The study focused particularly in
the estimation of the cumulative mean function of a non-homogeneous Poisson Process
(NHPP). The arrival processes are usually seen as discrete processes that can be
described by using appropriate stochastic point processes. The dataset of observed
arrival times of patients to the primary health center during 150 days was used.
Functional principal component analysis and functional ANOVA methods were applied
to estimate it from observed independent streams of arrival times. The results exhibited
that FDA provides a useful framework for studying problems related with non-

homogeneous Poisson process.

Gao and. Niemeier (2008) investigated daily patterns for diurnal ozone and
nitrogen oxides cycles, their interrelationships, and the multilevel spatio-temporal
variations of .ozone and nitrogen oxides measurements from Southern California.
Functional data analysis techniques take account for the continuous nature of diurnal
ozone/nitrogen oxides processes by converting discrete observed values into functional
diurnal curves. Representative summer diurnal ozone profiles are constructed using
functional clustering. Variability in hourly distribution of traffic activities and emissions
is also discussed. The results provide valuable insights for identifying optimal

transportation emissions control strategies.

Chiou (2012) presents a methodological framework for uncovering traffic flow
patterns and prediction. Functional data techniques were applied for classification and
prediction of traffic flow pattern, identify clusters with similar traffic flow patterns,
facilitating accurate prediction of daily traffic flow. The methodology not only assist in
predicting traffic flow trajectories, but also identify distinct patterns in daily traffic flow
of typical temporal trends and variabilities. The empirical results shown that the
proposed functional mixture prediction model can work reasonably well to predict

traffic flow.
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Chiou (2014) studied the missing values and outliers problems that frequently
encountered in traffic monitoring data. The missing values were imputed by sampling
the daily traffic flow rate trajectories from random functions using the conditional
expectation approach to functional principal component analysis (FPCA). Based on the
FPCA approach, the FPCA scores can be applied to the functional bagplot and
functional highest density region boxplot, which makes outlier detection possible for
incomplete functional data. The simulation study had shown that the FPCA approach
performs better than two commonly discussed methods in the literature, the
probabilistic principal component analysis and the Bayesian PCA. The proposed
functional data methods for missing value imputation and outlier detection can be used

in many applications with longitudinally recorded functional data.

Guardiola and Mallor (2014) analysis the daily traffic flow profiles based on the
employment functional data techniques. 1-min traffic data from the I-94 Freeway in the
Twin Cities, Minnesota (U.S.) metroplex ranging from 2004 to 2011 was used. To
clustering recognized traffic patterns and also to identify outliers (bad performance in
the recording of data or special circumstances that affected the traffic), functional
principal component analysis model was proposed. In addition, multivariate control
charts were adopted to monitor the daily flow traffic pattern over time and to be able to
recognize major changes in the pattern’s behavior. The functional analysis allows a
maximum exploitation of the recorded historical data in daily traffic flow monitoring

that would otherwise be difficult to detect via classical statistical methods.

Tastambekov et al. (2015) studied the short to mid-term aircraft trajectory
prediction problem, which is crucial to conflict detection and resolution algorithms of
Air Traffic Management (ATM) applications. To predict where an aircraft will be
located over a 10—30 min time horizon, a local linear functional regression model was
proposed. The validation of the proposed model had been strengthening with extensive
simulations. In addition, a learning process had been used to adjust parameters. The
approach considered data preprocessing, localizing and solved by using wavelet
decomposition. One year of historical trajectories records between airports over France

was used. The estimation shown efficient results with high robustness.
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Jamaludin and Zulkifli (2016) studied spatial and temporal variabilities of rainfall
patterns for 32 rainfall observation stations in the East Peninsula Malaysia using
functional data analysis. Functional concepts such as functional descriptive statistics
and functional analysis of variance were applied to describe the spatial and temporal
rainfall fluctuations at the stations and at any time throughout the year. The discretely
collected rainfall records of 32 stations for 32 years were used for estimation. The
estimated results suggested that the rainfall profiles of studied regions were very
dependent on their geographical and spatial locations of the regions, as well as the

monsoon effect, which reflects the months of the year.

2.3 Revealed Preference Discrete Choice Models

To trace the individual advance purchase decision of passengers, recent researches
have introduced choice models to revenue management for its ability to accommodate
passenger preferences in RM strategies. The approach supports RM decisions by
replacing typical demand forecasting models of probability and time-series models with
models based on discrete choice theory. Though demand models based on choice
models may be more appropriate in RM applications, empirical studies are limited due

to the high cost of data acquisition.

In terms of passenger choice modeling, the decision process of passengers can be
modeled with either stated preferences data or using the revealed preferences data. The
stated preferences approach is estimated with dataset that collected through designed
scenario surveys, whereas the revealed preferences approach is typically based on the
real booking/transactions. One advantage of using revealed preferences data is that
transaction data provide a direct record of the actual choices of air passengers and are
easily collected by airlines. Using revealed preferences data also avoids the risk of
response bias from the questionnaire surveys associated with the hypothetical nature of
stated preference data (Carrier, 2008). In addition, with the growing online purchasing,
to estimate and predict the advance purchase behaviors of flights directly based on

transaction data is much more intuitive, cost economic, and representative.
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However, for revealed preference model implementations, both chosen and non-
chosen alternatives are needed to replicate the purchase scenario. Although the support
of computer systems have reduced the cost of data collection, most firms only record
data for passengers who had decided to purchase and information about non-chosen
alternatives had been difficult to obtain. Therefore, inferring the true demand with

available data remains a challenge issue.

Previous studies have used logit models of demand to analyze advance purchase
behavior based on revealed preferences data for the airline industry (Escobari and
Mellado, 2014; Vulcano et al., 2010; Carrier, 2008), hotel (Newman et al., 2014) and
railway industry (Hetrakul and Cirillo, 2015, 2014, 2013). Within the airline industry,
Talluri and Ryzin (2004b) analyzed a single-leg, multiple-fare-class RM problem under
a general discrete choice model of demand. The choice model specifies the probability
of purchasing each fare product asa function of the set of available fare products. The
model is then incorporated into objective function of capacity allocation problem. To
estimate choice models when no-purchase data are unobservable, an additional
estimation procedure based on the expectation-maximization (EM) was also developed.
Results of a simulation study were provided to compare choice-based method to a

traditional single-leg method and shown a significant improvement in revenue.

Carrier (2008) modeled time-of-travel choice for airline travelers based on the
latent class model with booking and seat availability data from Amadeus database. The
choice set for each booking was reconstituted from data for booking, fare rules, and
seat availability. To date, to represent time as a continuous variable, a trigonometric
function was used. Estimation results of 2,000 bookings from three European short-
haul markets shown that the latent class model and a continuous function of time led to
a significant improvement in the fit of the model compared to previous models based
on a deterministic segmentation of the demand and time-period dummies. This research
had extended the scope of potential applications of passenger choice models to airline

planning decisions such as pricing and revenue management.
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Vulcano et al. (2010) proposed a choice-based RM model with readily available
airline data such as data for flight schedules, revenue accounting, seat availability and
screen scrape (sample information about alternatives and fares offered by competitors
at different points in time during the booking horizon). To exploit passenger preferences,
a single-segment MNL model was constructed. To account for unobservable data, a
maximum likelihood estimation algorithm that uses a variation of the expectation-
maximization method was developed. The selected market was New York City to
Florida. The estimated results were then used in a simulation study to assess the revenue
performance of the EMSR-b (expected marginal seat revenue, version b) capacity
control policies. Their simulation result showed significant improvements (1%—5%) in

average revenue in the tested markets.

Hetrakul and Cirillo (2013, 2014) applied multinomial logit, latent class, and
mixed logit models to investigate heterogeneous characteristics of railway passenger
behavior that differ by the length of haul based on internet booking data with limited
individual variables. Their analysis quantifies the importance of fare, advanced booking,
departure time of day, and day of week in purchase timing decision. They found the
latent class model is found to be superior to mixed logit model in term of prediction
capability. The empirical result shows that segmenting price sensitivity by booking
period is more appropriate than by socioeconomic information. They further delivered
RM optimization result that shows revenue improvement from 16.24% to 24.96% in
multinomial logit models and from 13.82% to 21.39% in latent class models

respectively.

Escobari and Mellado (2014) empirically studied advance purchase behaviors of
air tickets in a dynamic setting. To date, it is the first study that estimates the itinerary
choice (i.e., flight choice) in a revealed preference setting where information on choices
and all the alternative flights is available. Their dataset included detailed data for
contemporaneous prices and for characteristics of both chosen and non-chosen flights.
The data contained all the 317 flights from the six carriers that served between New
York City (Newark Liberty, John F. Kennedy, and La Guardia) and the main airport in

Toronto (Toronto Pearson International) from December 19 to 24, 2008. The estimated
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results shown that in a 100-seat flight a 10% increase in prices throughout a 100-period
selling season reduced quantity demanded by 7.7 seats. The quantity demanded was
more responsive to prices for departures in the morning and evening when compared to

departures in the afternoon.

2.4 Continuous Choice Models

Despite the many advantages of discrete choice models, choices response variables
such as advance purchase time, departure time, and location are continuous and must
be transformed to discrete alternatives for the model estimation. To directly discretize
those continuous variables may suffer from some limitations. For example, the
discretization for discrete choice models is usually based on different research purposes
to divide the study period into a limited number of intervals. The interval settings
usually do not cover the entire study period and to cause loss of temporal resolution.
Additionally, two points close in time are likely to be perceived as similar alternatives
by passengers but may be possibly misclassified into two discrete time periods.
Although some studies have calculated correlations among alternatives, continuous
treatment of time variable seems more intuitive and preferable (Bhat and Steed, 2002).
Furthermore, different discrete interval settings would also lead to different and

unstable estimation results (Chiou and Liu, 2016a).

The continuous logit model was first proposed and applied in location choice
model (Ben-Akiva et al., 1985; McFadden, 1973). The method provides continuous
setting grounded in random utility theory and that retains the key advantages of
measuring the utilities. To model a continuous time-of-travel, Abou-Zeid et al. (2006)
modeled tour-based time-of-day choice using multinomial logit models that consist of
arrival time choice, departure time choice, and both. The model was estimated by using
household activity survey data and transportation level-of-service information from the
highway network. In addition, 35 time periods consisted of 33 half-hour intervals and
two extreme periods of longer duration were used to model the choice process.
Continuous utility functions including continuous arrival time functions, departure time

functions, and duration functions as well as variables interacted with these functions
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were proposed. The test applications shown that the developed tour-based time-of-day

modeling procedure during this research worked.

Popuri et al. (2008) developed time-of-day models framework for Tel Aviv tour-
based model system of Israel’s Ministry of Transport. A joint model of arrival and
departure time choice with continuous trigonometric functions was presented. Instead
of alternative-specific variables and constants settings, continuous trigonometric
functions of arrival and departure time were proposed. The setting allowed for smooth
and cyclic arrival and departure time profiles for each market segment. To predict door-
to-door travel speeds and times for arrival or departure in each time slots, an additional
regression methodology was used. The estimated results shown that the proposed
modeling framework that using the commonly available household survey data and
some basic level-of-service data could provide more estimation details and better suited

for policy testing.

Lemp and Kockelman (2010) empirically investigated departure time choices with
continuous logit model using Bayesian estimation techniques. The home-based work
tour departure time had been modeled in a continuous fashion. Additionally, ordinary
least squares regression models were used to estimate travel times and their variance
across times of day for the auto and transit modes. These network variables were used
to inform estimation of the continuous logit model of departure time. The model was
estimated on work tour data from the 2000 San Francisco Bay Area Travel Survey
(BATS). The estimated results were reasonable and meaningful for multiple
applications. Their work can be extended to a two-dimensional choice construct so that

the departure and return times can be modeled simultaneously.

Lemp et al. (2010) further extended the method to a continuous cross-nested logit
model (CCNL). The model resulted from generalizing the discrete cross-nested logit
model (CNL) for continuous response settings and formulated to come from the
generalized extreme value (GEV) class of models. Bayesian estimation techniques and
San Francisco Bay Area data were used for parameter estimation. The CCNL model
also conforms to random utility theory, which offers a strong theoretical basis by

offering the economic welfare implications for evaluation of policy alternatives. The
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empirical results showed that the model predictions were very similar to those obtained
by the continuous logit model, the CCNL performs better in terms of out-of-sample
prediction. In addition, the proposed CCNL model allows a more flexible choice

behavior to emerge.

Ben-Akiva and Abou-Zeid (2013) addressed methodological issues that arise
when modelling time-of-travel preferences. Three approaches including unequal period
lengths, schedule delay and the 24-hour cycle were reviewed. These methodologies
were then applied in a tour-based travel demand model and estimated with the 2000
Bay Area travel survey dataset that included survey data of 36,680 individuals from
15,064 households. The estimated models tested with various scenarios such as
highway and transit improvements and congestion pricing. The estimated results
showed that the time-of-travel distributions were reasonable. The peak spreading was
observed when congestion levels increased. Additionally, the time-of-travel
distributions predicted by the model for a baseline scenario compared favorably with

the observed patterns.

However, none of abovementioned models have ever been used to analyze the
airline industry or advance purchase behavior. Empirical studies of how departure time
preferences of air passengers affect advance purchase behaviors are also limited. The
market conditions today have more complicated the purchase decisions process for air
passengers. Without a clear understanding of the advance purchase behavior, the

potential benefits of RM may be limited.

2.5 Review Summary

Based on the literature review, this section summarizes major studies related to
this research and identifies promising research directions for this dissertation. Table 2-
1 lists major studies focusing on pricing dynamics of airlines in revenue management
applications and advance purchase behavior changes of air passengers. As airlines
learning sales patterns from existing stock changes, airlines can dynamically adjust
their sales and marketing strategies. Moreover, by setting advance purchase discounts,

airlines can further shift demand effectively. On the other hand, air passengers can
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choose to purchase at ongoing price based on their preferences, or wait for the
acceptable price, or decide to drop the deal. Based on the behavior dynamics, this
research aims to empirically analyze factors influencing advance purchase behaviors of
air passengers and provide empirical evidences to support existing decision theory.
Table 2-2 further summarizes major researches applying functional data analysis where
the framework is relevant to this research. Function data analysis techniques including
parameter smoothing and functional regression model were used to explore flight
advance purchase patterns based on the shape of the advance purchase curves of each
flight. Table 2-3 represents major studies of discrete choice models with respect
advance purchase behaviors, whereas Table 2-4 lists the continuous choices models
related to time-of-travel choice and purchase timing decisions. Compared with previous
studies that introduced time of purchasing as explanatory variables into choice model,
the advance purchase days are seen as the response variable (alternatives) in this
dissertation. To explore the extent to which choice set construct scheme based on the
time of purchase that can estimate choice model well, discrete choice models were used.
A continuous logit model was further proposed to account for the continuous nature of
advance purchase time. These tables also provide comparison for the studies proposed

in this dissertation to the existing studies reviewed.
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Table 2-1: Summary of studies related to advance purchase behaviors

Authors Topic Behavior changes

Bilotkach et al. Price-settine dvnamics * Price-setting dynamics is different across airlines and fares increases at an
(2010) gy accelerated rate as the departure date approaches.

Escobari (2012) Dynamic pricing with uncertain - Current decisions to price and purchase can be affected by prior realizations of

Deneckere and
Peck (2012)

Dana (1998)

Dana (1999)

Escobari (2014)

Hotle and Garrow
(2014)

Hotle et al. (2015)

demand

Dynamic model of perfectly
competitive price posting under
demand uncertainty
Advance-purchase discounts and
price discrimination. in
competitive markets.

Using yield management to shift
demand when the peak time is
unknown

How valuations change as the
departure date near?

How competitors' low-fare
offerings influence the online
search behavior?

How passengers respond to
advance purchase deadlines and
price uncertainties?

fares.and sales.

- High-valuation consumers purchase early and low-valuation consumers may

delay their purchase decisions or refuse to purchase.

+ Firms may use advance-purchase discounts or discriminatory pricing practices

to affect the allocation of resources.

* Equilibrium price dispersion could be used to efficiently shift demand and lower

capacity costs, particularly when the costs of changing departure day was high
for customers.

- Lower valuations consumers become more price sensitive as their departure day

approaches whereas high-valuation consumers tend to purchase earlier.

- The number of searches decreased as the difference between the carrier's lowest

fare and competitors' lowest fare increased.

+ The number of searches increases just prior to an advance purchase deadline.
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Table 2-2: Summary of researches applying functional data analysis

Authors

Application

Functional data analysis techniques

Wang, Jank and
Shmueli (2008)

Sood, James and Tellis
(2008)

Dass and Shropshire
(2012)

Gaston et al. (2008)

Gao and Niemeier
(2008)

Jeng-Min Chiou (2012)

Jeng-Min Chiou (2014)
Guardiola and Mallor
(2014)

Tastambekov et al.
(2015)

Jamaludin and Zulkifli
(2016)

Predict the price of an ongoing online auction

Predict the market penetration of new products.

Firm performance measures

Estimation of'the cumulative mean function of a
non-homogeneous Poisson arrival Process (NHPP)

Daily patterns for diurnal ozone and nitrogen oxides
cycles,

Traffic flow patterns and prediction

Missing values and outliers problems 1in traffic
monitoring data

Daily traffic flow monitoring

Short to mid-term aircraft trajectory prediction
problem

Spatial and temporal variabilities of rainfall patterns

* Functional regression for a functional response variable

* Functional principal components analysis
* Functional clustering
- Augmented Functional Regression model

* Functional principal component analysis
* Functional clustering
* Functional regression for a functional response variable

- Functional principal component analysis
* Functional ANOVA

* Functional principal components analysis
* Functional clustering

+ Functional mixture prediction
* Functional clustering and discrimination

* Functional principal components analysis
* Functional principal components analysis

* Local linear functional regression model

* Functional descriptive statistics
* Functional ANOVA
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Table 2-3: Summary of revealed preference discrete choice models

Authors Application Model Data Choice-set
. . single-leg, multiple- . . . .
Talluri and Ryzin Multinomial logit choice .
(2004b) fare-class RM model (MNL) transaction data Fare products
problem
time-of-travel choice booking and seat availability
Carrier (2008) latent class model data from Amadeus Fare products

Vulcano et al.
(2010)

Hetrakul and
Cirillo (2013,
2014)

Escobari and
Mellado (2014)

for airline travelers

choice-based RM
model

purchase timing
decision
of railway passenger

advance purchase
behaviors of air tickets
in a dynamic setting

Multinomial logit choice

model (MNL)

Multinomial logit, latent

class, and mixed logit
models

Multinomial logic choice

model (MNL)

database

flight schedules, revenue
accounting, seat availability
and screen scrape data

internet booking data with
limited individual variables

transaction data from online
travel agency Expedia.com

Fare products

31 alternatives, from 30 days
before departure to departure
day.

All of available fare products
across airlines
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Table 2-4: Summary of continuous choice models

Authors Application

Model

Data

Choice-set

Abou-Zeid et al.
(2006)

tour-based time-of-
day choice

Popuri et al. (2008)  time-of-day models

Lemp and

Kockelman (2010) departure time choices

Lemp et al. (2010)  departure time choices

Methodological issues
that arise when
modelling time-of-
travel preferences.

Ben-Akiva and
Abou-Zeid (2013)

Multinomial logic choice
model (MNL) with

continuous utility function.

Multinomial logic choice
model (MNL) with

continuous- utility function.

Continuous logit model
using Bayesian estimation
techniques

Continuous cross-nested
logit model (CCNL)

Continuous logit model

Household activity survey
data and transportation
level-of-service information
from the highway network.

Israel National Travel Habits
Survey (NTHS) conducted
in 1996

Work-tour data from the
2000 San Francisco Bay
Area Travel Survey
(BATS)
Work-tour data from the
2000 San Francisco Bay

Area Travel Survey
(BATS)

2000 San Francisco Bay Area
Travel Survey (BATS)

35 time periods (33 half-hour
intervals and two extreme
periods of longer duration)

666 alternative corresponding
to the arrival and departure
time combinations

[36 % (36 + 1)/2]

Continuous departure time

Continuous departure time

Continuous departure time
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Chapter 3 Models

After reviewing related references, this chapter aims to present a model for
identifying advance purchase patterns and exploring their characteristics, and to
propose an approach for examining the advance purchase behaviors of air passengers.
The remainder of this section is organized as follows. First, a functional concurrent
regression model is presented in Section 3.1 for the advance purchase patterns of
specific type of flights. To explore the extent to which choice set construct scheme
based on advance purchase time that can estimate choice model well, the discrete choice
model is presented in Section 3.2.1. Meanwhile, the continuous choice model is

described in later Section 3.2.2.
3.1 Aggregate Pattern Model

Although the daily transaction data used in this study is discretely collected, the
true nature of the data is continuous. Instead of considering the observed transactions
as discrete values, the data is treated as a finite curve over a time period and further
examined with a functional linear model. The approach provides a mean to investigate
the effects of potential contributing factors on the shape of abovementioned advance

purchase curves.

For functional linear models, there are three scenarios for response y:; and
explanatory variables x;. Functional linear models can be functional in one or both of
the response variable y with argument ¢ is functional and one or more of the independent
variables x is functional. Table 3-1 summaries three types of functional linear models
and corresponding relationship between response and explanatory variables. In this
study, a function-on-function regression model is used to investigate advance purchase
patterns of air passengers and predict the future pattern. Function-on-function
regression model relates to a smoothed functional response variable, (), the known
independent variables, one or multiple functional explanatory variable z(¢) and multiple
explanatory indicators x, by a linear combination of parameter functions. The simpler

case of function-on-function model is also called concurrent model, where the value of
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the response variable y(7) is predicted only by the values of one or more functional

response variable at the same time ¢ (Ramsay and Silverman, 2005).

Table 3-1: Function linear models

Response Explanatory variables
variable Scalar Function

functional predictor
Scalar linear models regression
(scalar-on-function)

functional response
Function regression
(function-on-scalar)

function-on-function
regression

In this study, a concurrent model is proposed to predict the advance purchase
patterns after seven days (1 week after). Assume that an observation interval ¢ of 0~60
days (about 9 weeks), the time-varying cumulative daily transaction pattern for the

flight j is given as Eq. (1):
7 ()= Bo0)+ 2 5, (DA () 2,0 (1)

where y(¢) is a functional response of predicted load factors after 1 week, whereas x;i(¢)
consist of a functional explanatory variable of historical load factor (7 days before
current day) and multiple categorical indicators related to flight characteristics such as
time of day (MORNING and AFTERNOON), day of week (FRIDAY), month of year
(PEAK.SEASON) and VACATION indicators. fi(¢) are coefficients to be estimated.
The first stage of FDA is to represent the discrete observe proportion into a functional
form by a suitable basis function/system. Therefore, the variables are required to be
specified with selected basis system to define the function in advance for modeling. The

basis system is a linear combination of basis functions @«(¢) as presented in Eq. (2).

x, () = ;Ck¢k(t) 2)
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The basis functions ¢i(¢) are assumed mathematically independent of each other
and so that any function can be approximated arbitrarily well by a weighted sum of a
large number K of basis functions (Ramsay and Silverman, 2005), whereas ck refers to
the estimated basis coefficient. The basis functions are required to have features as close
as possible to the data, so that an accurate representation of the function can be obtained
with only a few basis terms (Clarkson et al., 2005). For example, the Fourier basis
system is the common choice for periodic data, whereas the B-spline generally serves
well for non-periodic functions. The wavelet basis is suitable for sparse dataset, which
is particularly good in presenting jumps, spikes or peaks in estimating data. The most
commonly used basis system of FDA are Fourier basis and B-spline basis, while other

basis are available.

A linear combination of K number B-spline basis is used to represent the curves
for open-ended transaction data and a more flexible fitting in this study. The B-spline
basis function is a piecewise polynomial function of order p, with the interior
breakpoints (knots) at ¢, t,..., . The number of B-spline basis functions K can be
determined by the relation of order of the polynomials plus number of interior
breakpoints. Note that the observation time interval 7 of interest of 0 to 60 days is broken
into 10 equally spaced sub-intervals and within each interval a polynomial of order 4 is
employed. Based on this, the total number of B-spline can be settled with K=13. Here,
the order of the B-spline is settled by the default value of our program as 4, meaning
that piecewise cubic polynomials will be used. Although it is possible to use different
order of polynomials in each sub-interval, in our study we will keep the order constant.
To estimate the basis coefficient, the regression smoothing method is used. The
polynomial smoothing spline may result in a potentially better fit but usually tends to
have a poorer recovery of the underlying trend (Ramsay et al. 2009). Thus, to avoid
potentially overfitting problems, the roughness penalty is incorporated into the least
square criterion for a finer control over the amount of smoothing. A measure of a
function’s roughness (i.e. total curvature) is defined by the integrated squared second
derivative and an additional smoothing parameter A is also specified to control the
degree of curvature penalty. The penalized sum of squares (PENSSE) is given as

follows:
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PENSSE = SSE + [[D"x, ()T dt 3)

As shown in Eq. (3), m represents the mth derivation of the function x;(¢). In this
study, the second derivative (m = 2) is used. When the roughness is included in the
fitting process, the goal is to find a function that minimizes the penalized residual sum
of squares error (PENSSE). In addition, the generalized cross-validation (GCV)
criterion (Craven & Wahba 1979) is used to control the roughness of the estimate to
prevent curve over-fitting and determine the best value for smoothing parameter A. The

criterion is defined by:

_ n SSE
T ) = Y @

The criterion shows a twice-discounted mean square error measure, where the
degrees of freedom are controlled by A. The left factor discounts this estimate by
multiplying by n/(n—df(2)). The right factor is the unbiased estimate of error variance
familiar in regression analysis, and represents discounting by subtracting df(4) from n.
The proposed FDA model is then estimated by R “fda” package and selected in terms
of the GCV index. The estimated results are later described in Chapter 5. In order to
evaluate the prediction accuracy of the proposed model, the mean absolute percentage

error (MAPE) based on Lewis (1982) is employed and described as Eq. (5).

)

where ji(?) is the forecasted output at time # for the flight j and » represents total number
of transaction records. The smaller the MAPE value, the less forecast error and thus the
more accurate is the forecasted result. Based on MAPE and applying Lewis’s scale,

provides some framework as shown in Table 3-2 to judge the model.
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Table 3-2: A scale of judgment of forecast accuracy (Lewis, 1982)

MAPE value Judgment of Forecast Accuracy
Less than 10% highly accurate
11 to 20% good forecast
21 to 50% reasonable forecast
51% or more inaccurate forecast

3.2 Individual Choice Model

To further investigate the individual advance purchase behaviors of air passengers,
choice models are used. However, our numerical dataset not only contains transaction
records from both direct purchasing passengers, but also from diverse distribution
channels, including travel agencies, direct Internet sales and airline counters. It is hard
to distinguish individual passenger behaviors from other purchasing channels.
Therefore, for individual advance purchase behavior modeling, this study considers
only the subset of transactions that had been made through the direct purchasing

channel (website and airline counters).

3.2.1 Discrete Choice Model

To study the purchase timing decision of advance purchase behaviors, the advance
purchase days was defined in this study as days between tickets issued date and
departure date. Noted that previous studies had introduced time of booking/purchasing
as explanatory variables into' choice model with developed different segmentation
schemes (Carrier, 2008; Garrow, 2012; Hetrakul & Cirillo, 2013, 2014). Compared with
those approaches, here we take the advance purchase days as the response variable
(alternatives) that the goal of our proposed model is to obtain the probability of advance
purchasing in each time segment. In order to reduce the number of alternatives and
facilitate model development, the advance purchase horizon is further divided into five
time periods according to three segmentation methods: the first method is to divide the
horizon into five equal time periods (each period is of 12 days). The second method is
to divide the horizon into five time periods with equal number of purchases. Finally,

the third method is to divide the horizon according to subjective judgment from
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experience managers of the study airline.

This study models the advance purchase behaviors in static settings and from
airline perspective; hence we assume that all five purchasing period alternatives are
available to passengers at the same time under perfect information. Additionally, since
our data contains transactions data of only one carrier, it is not able to account for the
choices of other flights or carriers. The settings here only consider the choice of advance
purchase period within the same flight. However, for transaction data, only the time
period of successful transaction was recorded and none of information regarding
unsuccessful transactions in other time periods was available. A data-intensive method
is used to impute the values of generic variables of other time periods. The purchase
prices in the other periods of flight j were imputed by advance purchase days, service
classes and purchase months. Passengers are assumed to be myopic that they purchase
at the price whenever their valuation exceeds it. Finally, factors including price, and
travel time preferences (time of day, day of week, and months of year) are then further

examined by using multinomial logit (MNL) model.

As presented in Eq. (6), the utility of passenger » who purchased at the alternative

advance purchase period i for flight j is given by,

U

i =0 + PIOZPRICE), . +y10g(PRICE), ; X X,. + OX,, + &, (6)

nij
Here, the systematic component part of utility is modeled a linear function of
observed characteristics, V., =@, + Blog(PRICE)

+ 7 log(PRICE)
whereas the unobserved random component is expressed as enj. f, y and o are the

niy wy X Xy T OXy

coefficients to be estimated. In Eq. (5), awij is the alternative specific constant for the
alternative i, i € Cn € {1, ... , 5} which captures the average effect on utility of all
variables that are not included in the model. The log(PRICE).; and its interaction terms
of travel time preferences are settled as generic variables, that the marginal effect of
the variable is assumed to have same impact on the utility of each alternative. The
interaction term specification is helpful to account for the relationships between
purchase price and flight preferences. Notably, if the carrier learns more about the
demand as departure day approaches and dynamically adjust price strategies, the
correlation between log(PRICE).; and the unobserved x» + &x; may cause potential

price endogeneity problem. Escobari (2012, 2014) controlled for the potential
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endogeneity with internal instruments and flight fixed effect. Since the price dynamic
is not the current issue of this study, we assume &x;j is uncorrelated with log(PRICE)ui;.
Finally, the probability Px; of passenger n choosing advance purchase period i can be
derived as Eq. (7).

Vi

e
By Y %

keC,

The selected explanatory variables are purchase price (in logarithmic form) and
flight schedule preferences x;. Flight specific attributes such as morning flight
(MORNING), flights on Friday (FRIDAY), flights in peak months including July and
August (PEAK.SEASON) according to flight schedule database are treated as
alternative specific variables to capture the time of day, days of week and month of year
preferences of air passengers. The setting allows us to observe the marginal effect of
flight preference changes across advance purchase periods. Furthermore, to identify
passengers who often travel around consecutive holidays (more than three days) and
special vacation such as Chinese New Year and spring vacation, are also marked as

vacation (VACATION) tourists.
3.2.2 Continuous Choice Model

The discrete choice models provide a methodology for tracing individual decision
making processes and for profitably exploiting their preferences for product attributes.
However, some choices are continuous response variables such as advance purchase
time, departure time, and location. Arbitrarily discretizing these continuous choices
variables may lead to an erroneous result. This section further present continuous choice
model, which takes advance purchase time alternatives as continuous. The continuous
logit model is advantageous at treating advance purchase time in a continuous fashion
and offers strong theoretical supports based on the random utility framework without

discretizing the decision time horizon.

The continuous choice model represents a generalization form of the MNL for
continuous response variable settings and can be derived directly from the random

utility theory. Here, assume a passenger n purchasing a ticket for flight ; at the advance
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purchase time #, where the continuous advance purchase time period of interest z is
bounded by b; and b2. For the discrete choice model, the g” discrete alternative of z can
be presented as #; (g = 1, 2, ..., G). Suppose the number of discrete advance purchase
period alternatives K is defined as G=1+[(b2 - b1)/s], where s denotes the distance of
each alternative. If the limit of distance is close to 0, such that s — 0, the continuous

choice probability function can be written as Eq. (8).

exp(V;/. (t))
[“exp(7, (2))a

bl

Pnj(t):

®)

The utility of passenger » who purchased at the continuous advance purchase time
t for flight j can be expressed as the sum of a deterministic part of the utility Vy;(?), and

an unobserved random component &x;(#) as discrete choice models:
U, (6)=F(t)+e, (1) ©

Here, since the utility is presented as continuous form in advance purchase time,
the explanatory variables that do not vary over time alternatives (e.g., departure time
preference of an individual) are specified by sinusoidal functions of advance purchase
time interacted with variables. This study models the advance purchase behaviors in
static settings and from airline perspective. All purchase time alternatives are assumed
to be available to passengers at the same time under perfect information. Passengers are
assumed to chosen flights already and only have to make their purchase decision at
particular time ¢ based on their preferences. The deterministic part of the utility is given

as Eq. (10) and the sinusoidal function used in our model is presented as Eq. (11).

Vn_/(t):“PRICEm‘(t)"' an7(t) (10)
{. (zmj . (4mj . (2Lmj (2m] (4mj [szﬂ'
y(t): sin| — |,sin| —|,...,sIn ,COS ,cos| —|,...,COS
T T T T T T
(11)
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As presented in Eq. (10), the time-varying variables (i.e. purchase price) are
presented as PRICEq(t), whereas Xy represents the time-invariant flight preferences of
the flight j for passenger n. Flight specific attributes such as morning flight MORNING
and AFTERNOON), flights on Friday (FRIDAY), flights in peak months including July
and August (PEAK.SEASON) according to flight schedule database and vacation
(VACATION) are incorporated to capture departure time preferences of air passengers.
The setting is helpful to observe the marginal effect of flight preference changes across
advance purchase time. To further consider the price uncertainties that passengers may
likely face while making purchase decisions, the coefficient of variation (CV) of
observed historical prices across flights within the purchasing month is also
incorporated, which reflects potential price fluctuation caused by airline promotions. If
price uncertainties were higher, passengers may wait for a better price and delay their

purchase. a and S are the coefficients to be estimated.

In the Eq. (11), y(¢) is a collection of sine and cosine functions of advance purchase
period of T (b; to bz). The model specification allows the utility function to take on a
variety of shapes and reflect the passenger preference variations over time. Additionally,
some variables may be interacted with fewer than 2L sinusoidal functions, similar
settings can be seen in Abou-Zeid et al. (2006), Popuri et al. (2008), and Lemp et al.
(2010a, 2010b). Notably, the correlation between PRICE.(f) and the unobserved
Xnjt+eni(f) may cause potential price endogeneity problem if the airline learns more about
the demand as departure day approaches and dynamically adjusts price. Some
researches had controlled the potential endogeneity with internal instruments and flight
fixed effect (Escobari, 2012, 2014a). This study treats PRICE(t) as endogenous and

assumes &ni(¢) is uncorrelated with price.

Unfortunately, the study dataset only contains transactions data of one airline;
therefore, it is not able to account for choice behaviors among airlines. Additionally,
since the transaction dataset only records successful transactions, to obtain time-varying
prices for continuous logit model estimation, an additional ordinary least squares
regression model is constructed. While some airlines have applied dynamic pricing

strategy to change fares from time to time, others are typically accounting for designed
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fare classes and restrictions and remaining capacity of competitors in the market.
Several factors influencing the price settings of the study airline were estimated by a

regression model, as shown below:

Price, (1) = px, +(iw( 1))’ j*SEATS +¢ (12)

k=1

where x; represents the explanatory variables for the flight j, such as the maximum
stay limitation (YEE1M), fare classes, and the number of remaining seats (SEATS)). To
further described how remaining capacity varied over time ¢, a number of sinusoidal
functions y’(f) were also introduced to the regression model. The setting here were
aimed to capture the effect of the number of remaining seats on airline pricing settings.
Passengers are assumed to be myopic that they purchase at the price whenever their

valuation exceeds it. Finally, ¢ and @ are the coefficients to be estimated.
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Chapter 4 Data

Prior to estimates of the abovementioned models, this chapter presents a numerical
analysis of available datasets used for model estimations in this research. The analysis
focuses on elements of historical air ticket transaction data for proposed aggregate
advance purchase pattern model and individual advance purchase choice model
proposed in the previous chapter. The analysis focuses on exploring the distribution of

passenger demand, advance purchase patterns, and purchasing price.
4.1 Numerical Dataset

To empirically investigate key factors contributing to advance purchase patterns,
the ticket transaction data of Taipei-Macau (TPEMEM) route in 2011 are used. Taipei-
Macau (TPEMFM) route was selected because of its high flight frequencies. The flight
length of the selected route is approximately 840 km, and the flight time is about 2
hours. Notably, the Taipei-Macau route had the largest number of annual passengers in
the studied airline. The transaction dataset was based on International Air Transport
Association (IATA) billing and settlement plan (BSP), aka "Bank Settlement Plan",
which is an electronic billing system. The system is built to facilitate the payment and
data flow between multiple travel agencies and airlines. Instead of every agent having
an individual relationship with each airline, all of the information is consolidated
through the system. The dataset is widely used by financial department of airlines and
easily acquired comparing with other data sources. It provides records of all
transactions between airlines and diverse distribution channels, including travel
agencies, direct Internet sales and airline counters. Table 4-1 presents a sample record

of airline revenue accounting data.

The revenue accounting data has one record per ticket issued. Each ticket has
unique ticket number and different flight coupons for the itinerary. Here, a coupon
represents a single flight leg in the itinerary, which is the sequence number of the
coupon in the ticket. For example, coupon number of 1 identifies a ticket for the first

flight of the whole itinerary, whereas coupon number of 2 represents a ticket for the
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second leg. The data fields related to this study were departure date, itinerary origin and
destination, fight number, coupon number, ticket number, issue station, issue date
(purchase date), sales office, tour code, fare basis, service class, agent and price. The
seat availability data is then derived by ordering every issued ticket by issued date, as
well as the itinerary information (round trip or one-way trip) can be also obtained
through mapping ticket number and coupon number. To date, to study the time of
advance purchase behaviors of air passengers, the advance purchase days was defined

as days between the flight ticket issued (purchased) date and departure date.

Table 4-1: Airline revenue accounting data sample record

Item Information
Departure Date 2011/12/1
Origin/Destination TPEMFM
Fight Number 351
Coupon Number |
Ticket Number 2440792666
Issue Station TPE
Issue Date 2011/11/11
Sales Office 22473
Tour Code 403XIN21162554
Fare Basis *YEE3M/IN90
Service Class K
Agent Code 34305585
Price(TWD) 2,500

*YEE3M/IN: Economy excursion fare, valid 90 days for Infant

Table 4-2 further presents the detail descriptions of service class and fare-basis
code, which represented designed fare products and rules for numerous distribution
channels and passenger value segments. While those fields may be useful for segment
the demand and identify differences of air travel passenger choice behavior over
purchasing, it is difficult to apply for the study due to the fact of complexity fare rules.
Only a subset of data can be found in most of previous literatures (Carrier, 2008). In
addition, the BSP dataset also contains transaction records from both direct purchasing
passengers and from multiple distribution channels, which makes it hard to distinguish

passenger behaviors from travel agents. Therefore, we only considered outbound flights
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and regular economy class tickets to reduce the complexity of problem.

Table 4-2: Descriptions of service class and fare-basis

Service Class Code Identifies
CJ,D Business class
Y Economy class
G Group Passengers
Fare-basis Code Identifies
EE Excursion fare
ow One Way Journey
RT Round Trip
2 Fare for 2 persons
VP Value Package
AD Agent Discount Fare
BB Budget fare
BD Budget fare Discount
CB Cabin Baggage
CG Tour Conductor Fare
CH Accompanied Child fare
DG Discounted Government Fares
ID Industry Discount
IN Infant fare (Not occupying a seat)

4.2 Passenger demand

With the purposes to complete the purchasing information, the flight schedule data
was also integrated to the analysis dataset. Figure 4-1 shows the total passengers
arranged by months and Table 4-3 lists the detail information of descriptive statistics
for analysis flights. The dataset contains 1,044 flights and 134,820 transaction records.
The most popular months flying to Macau were June, July and August, whereas March
and October had the fewest passengers. In terms of average load factor (total
passengers/ seat capacity, here we referred as 185 seats of Airbus A320 family), July
and August had the highest value, followed by June. The summary statistics shows that

July and August were the most popular travel months.

The BSP dataset provides records of all transactions between airlines and diverse

distribution channels, including travel agencies, direct Internet sales and airline
40



counters. Noted that the transaction records of group passengers were also categorized
in the direct purchase category of the original dataset. In our study, we only considered
the individual passenger who purchase through the airline website and counters. Overall
speaking, the percentage of direct purchase passenger takes 18.37% of the total sales,
which was relatively higher compared with other operating routes according to our
sponsor airline. It is believed that long-haul routes should have lower percentage of
direct passengers. December and June were the top 2 months that had the most direct

purchase passengers of 2,935 (22.84%) and 2,680 (26.76%) respectively.
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Figure 4-1: Total passengers of TPEMFM in 2011 by months

The study airline offered three daily flights that departed in the morning, afternoon
and evening (Departure at 08:10, 13:30 and 18:20; arrival at 09:45, 15:10, and 20:10,
respectively). The two datasets were combined to investigate the departure time
preferences of passengers such as time of day, days of week and months of year. Data
anomalies including outliers or incomplete records are also removed, which results in
the final subset of 1,044 flights and 134,820 transaction records. Table 4-4 further lists
the selected flights and correspondent load factor (LF) information for this study. The

afternoon flights had the most passengers of 49,064 and highest mean load factor of
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0.747. The morning flights had medium values, whereas the evening flights had lowest
mean load factors of 0.622. The table suggests that passengers may prefer afternoon

flights the most, followed by morning flights.

Table 4-3: Passenger statistics by months

. Total Average Direct
Months Flights Passengers Load Fa%tor purchasing
1 89 9,717 59.02% 1,550 (15.95%)
2 81 10,206 68.11% 2,044 (20.03%)
3 88 9,235 56.73% 1,916 (20.75%)
4 86 11,095 69.74% 2,025 (18.25%)
5 87 10,954 68.06% 1,632 (14.90%)
6 89 12,850 78.04% 2,935 (22.84%)
7 87 14,403 89.49% 1,842 (12.79%)
8 93 14,903 86.62% 2,670 (17.92%)
9 86 11,650 73.22% 1,608 (13.80%)
10 90 10,570 63.48% 1,883 (17.81%)
11 81 9,223 61.55% 1,983 (21.50%)
12 87 10,014 62.22% 2,680 (26.76%)
Total 1,044 134,820 69.69% 24,768 (18.37%)

Table 4-4: Load factor statistics by flight schedule

Flights  Flights Passengers: mean.LF  max.LF ~min.LF med.LF

Morning 342 45,835 0.724 1.000 0.097 0.784
Afternoon 355 49,064 0.747 0.995 0.173 0.795
Evening 347 39,921 0.622 0.995 0.049 0.605
Total 1,044 134,820 0.698 0.995 0.049 0.751
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4.3 Advance purchase behaviors

In order to investigate advance purchase behaviors of air passenger, the advance
purchase days was defined as days between the flight ticket purchased date and
departure date. Figure 4-2 exhibits the overall advance purchase pattern of direct sale
channels prior to departure for the Taipei-Macau route. The left axis of figure 4-2 shows
the cumulative percentages of advance purchase passengers, whereas right axis presents
the number of passengers in percentages by advance purchase days. Since 97.05% of
passengers purchased their tickets within 60 days, for individual choice models, an
observation interval of 60 days (9 weeks) is studied. Table 4-5 further lists the detailed
cumulative percentage of direct purchase passengers within 7 advance purchase days.
Data indicates that 2 days prior to departure day had the most advance purchase
passengers, followed by the 1 day before departure day. About 2% of passengers
purchased at the departure day, and approximately 50% of passengers purchased tickets
1 week before departure. It is belief that advance purchase patterns are different

depending on the route characteristics, flight characteristics and price dynamics.
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Figure 4-2: Aggregate advance purchase pattern prior to departure
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Table 4-5: Cumulative percentage of advance purchase passengers

Advance Cumulative
purchase days Passengers Percentage Percentage
0 2,797 2.07% 1.34%
1 9,686 7.17% 8.56%
2 10,716 7.93% 16.54%
3 7,970 5.90% 22.48%
4 8,678 6.42% 28.95%
5 8,897 6.58% 35.58%
6 9,201 6.81% 42.44%
7 9,557 7.07% 49.56%
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Figure 4-3: Aggregate mean advance purchase pattern by time of day

By combining the flight schedule and BSP transaction data, we can investigate the
departure time preferences of passengers such as time of day, days of week and months
of year. Passengers are assumed to make advance purchase decisions for a particular
flight which represent their travel preferences. Figure 4-3 illustrates the different
advance purchase patterns between morning, afternoon and evening flights. As
expected, the afternoon flights have the highest final load factor as presented in Table
4-4. The advance purchases for morning and afternoon are identical and both increasing

sharply before approximately 2 weeks prior to departure. The evening flights have
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relatively stable advance purchase pattern and lower final load factor compare with
morning and afternoon flights. Figure 4-3 further illustrates the different advance
purchase patterns by month of year. Interestingly, February afternoon flights had much
higher value compared with other months, suggesting passengers who preferred
afternoon flights in February may purchase much earlier. The evening flights in June,
July, August and December had shown identical patterns as February afternoon flights,
suggesting in these months, passengers may exhibit same behaviors. Based on that, it
is belief that different departure time preferences of air passengers may present different

advance purchase patterns.
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Figure 4-4: Aggregate advance purchase pattern by month of year

4.4 Price distributions

While service class and fare basis are typically used for designing fare products, it
is difficult to be applied in the study because of the complexity of various fare rules.
Therefore, for simplicity, this study considers only the subset of economic class of fare

basis YEEIM and YEE3M round-trip tickets purchased through the direct purchasing
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channel (website and airline counters). Table 4-6 lists service classes and its
corresponding average prices, and Figure 4-5 shows the price distribution across the
advance purchase horizon. Notably, as departure day approaches, the observed price
range tends to widen, and the number of expensive airline tickets sold increases.
However, since passengers nowadays may less aware of designed fare classes instead
of purchase price, passengers are assumed to make advance purchase timing decisions

based on ticket price and their departure time preferences when purchasing the flight

tickets.
Table 4-6: Average prices with respect to service class
Service classes Avg.price SD.price
W 4.702 0.160
L 4.568 0.203
B 4.519 0.053
T 3.889 0.114
Q 3.796 0.017
X 3.426 0.120
Z 3.292 0.038
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Figure 4-5: Price distribution of selected classes
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Chapter 5 Results

Based on the data analysis in the previous chapter, the objective of this chapter is
to demonstrate the estimation results of proposed models. The methodologies presented
in Chapter 3, including the functional concurrent regression, multinomial logit, and
continuous logit models are applied in this chapter to explore the advance purchase

behaviors of air passengers.
5.1 Aggregate Pattern Model

The proposed functional concurrent regression model for advance purchase pattern
analysis was estimated with R package “fda”. An observation interval of 60 days (about
9 weeks) is studied. Data anomalies including outliers or incomplete records are also
removed, which results in the final subset of 1,044 flights and 134,820 transaction
records. 80% of data (836 flights) were randomly selected as training set and 20% of
data (209 flights) were used for validation. By combining BSP and flight schedule
dataset, the flight-specific attributes obtained from flight schedule database were used
to capture the time of day (morning, afternoon and evening flight), days of week (flight
on Friday), and month of year (flights in peak months) preferences of air passengers.
Additionally, consecutive holidays and special vacations are also marked for model
estimation. To date, the advance purchase days was defined as days between the flight
ticket issued (purchased) date and departure date. Table 5-1 presents the descriptive

statistics of selected variables for the aggregate advance purchase pattern model.

Table 5-1: Descriptive statistics for functionl concurrent model

Variables Description %

HISTORICAL LF Functional objects, load factor at 7 days before current day

MORNING Dummy, 1 if morning flight; 0 if others. 32.76%
AFTERNOON Dummy, 1 if afternoon flight; 0 if others. 34.00%
FRIDAY Dummy, 1 if flight on Friday; O if others. 14.66%
PEAK SEASON  Dummy, 1 if travel in July and August; O if others. 17.24%
VACATION Dummy, 1 if consecutive holidays; 0 if others. 10.54%
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Prior to model estimation, functional data analysis techniques are adopted to
transform discretely collected transaction dataset into the function form for model
estimation. The discrete observed response variable of daily transactions are further
presented as time-varying cumulative load factors. The observation time interval ¢ of
interest of 0 to 60 days is further broken into 10 equally spaced sub-intervals of 9
breakpoints and within each interval a polynomial of order 4. The daily transaction data
are therefore smoothed by the total number of K=13 (9 breakpoint with default order 4
polynomials) B-spline basis curves in advance for functional regression modeling. The
B-Spline functions are the most common choice of approximation system for non-
periodic functional data, whereas Fourier series basis systems are popular for periodic

data and functions (Ramsay and Silverman, 2005).

Here, Figure 5-1 exhibits the 13 B-spline curves used in this study. The x-axis
represents the observation interval and the y-axis represents the B-spline function
values. The nine interior knots are also exhibited as vertical dashed lines in the figure.
The B-spline basis function has a property of the sum of the function value of time 7 is
equal to one, which is known as the partition of unity property. For example, the value
of the first and last basis functions are exactly one at the boundaries of ¢ equals 0 and
60, whereas all the other basis functions will go to zero at these end points. The property
assures the invariance of the shape of the B-spline curve under translation and rotation,
which is useful when fitting the curve. Based on the B-spline basis system, the best
value for smoothing parameter A is then determined by generalized cross-validation
(GCV) criterion. Figure 5-2 further shows how GCV values varies as a function of
logio(L) for the daily transaction data. The dashed line represents the minimum GCV
value for advance purchase patterns, where the value of logio(A) is -0.25 and the
minimum GCV value is 0.8724. Therefore, the best value for smoothing parameter A is

determined with value of 0.5623.
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Figure 5-3: Advance purchase smoothing curves

Figure 5-3 (a) displays the smoothed advance purchase curves over the advance
purchase period, whereas Figure 5-3 (b) and (c) shows the summary statistics for the
functional data in terms of their mean and standard deviation for flights. It shows that
the final load factor is about 0.7059. The mean advance purchase curve has gradually
increased as the departure day approaches, and has drastically increase around 2 weeks.
The pattern suggests passengers may make their purchase decisions late. On the other
hand, the plot of the standard deviation function shows a stable increase and reaches
the highest value 0f 0.2313, implying that the load factors are relatively unstable toward

the departure day.
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Figure 5-4: Permutation F-test

Figure 5-4 shows the results of permutation F-test for a predictive relationship
between future load factors and investigating factors. Here, the dashed line represents
the permutation 0.05 critical value for the maximum of F statistic and the dotted line
the permutation critical value for the point-wise statistic. Result shows the max
observed F value is 16.6491, indicating that there is a significant difference with the
functional response and investigating covariates. The smoothed curves are then
examined by the functional concurrent regression model with pointwise approach, that
is, to apply least square for a fixed r=¢*, and repeat the process for the entire observation
interval to obtain the time-varying estimate coefficient, B(t) (Ramsay and Silverman,
2005). To date, because of the response variable 1s a continuous curve, so is the
estimated f(t), which makes interpreting the results different from classical regression

model.

The estimated regression coefficients for intercepts and flight specific attribute
effects on advance purchase patterns are shown in Figure 5-5. The dashed lines
represent pointwise 95% confidence intervals for these effects, where the confidence
bounds are calculated by adding +2 standard errors at each point of the parameter curve,
which indicating the significance of each effects. The first panel 5-5(a) shows the time-

varying coefficients for the intercept. The coefficient is positive throughout the entire
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observation intervals, and increasing sharply around 2 week prior to departure. The
pattern corresponds to the mean load factor for all advance purchase patterns over the
observation intervals of 0~60 days as Figure 5-3(b). Figures 5-5(b) ~ (g) exhibit

contributing effects of factors on the mean load factor respectively.

Figure 5-5(b) illustrates the time-varying effects of load factors at 7 days before
current day on predicting the current load factor. Throughout the entire advance
purchase observation interval, the coefficient is positive, indicating a positive
relationship between the historical load factors and predicting load factor at any time
during the advance purchase. The relationship has sharp decreases around 2.5 weeks
before departure. One possible explanation is that, for our study short-haul route,
approximately 80% passengers made their purchases within 3 weeks prior to departure.
That leads to very sparse final load factors as Figure 5-3(c) presented, thereby causing
the sharply decreasing slope and weaken relationship between historical and predicting

load factor.

The coefficients for morning and afternoon flights are further presented as Figure
5-5(c) and 5-5(d), where both figures exhibit a similar pattern. The coefficient of
morning flight shows more negative effects than noon flights, but both turn to positive
effects around 2 weeks before departure. The pattern indicates that passengers who
preferred morning and noon flights may tend to purchase around 2 weeks prior to
departure. The afternoon flights have relatively stable effects than that of morning
flights, suggesting that afternoon flights may have more stable demand. However,
morning flights have shaper incensement and higher final coefficient toward departure
date, indicating that morning flights are more popular. Figure 5-5(¢), 5-5(f) and 5-5(g)
illustrate the coefficient plots for Friday, peak-season and vacation flights, respectively.
The estimated coefficients of three flight specific attributes all have increasing positive
effects on load factor throughout the entire observation interval, suggesting that those

three types of flights have gradually increasing demand as the departure day arrives.
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Interestingly, the coefficient for vacations effect has all increasing positive effects
on the average load factor, but a sudden drop pattern around 3 weeks before departure
day. The estimated results suggest that passengers tend to purchase early for vacation
trips and may hardly purchase tickets on departure day. When the tickets were getting
fewer and fewer transaction would be made, thus the vacation flights have sudden
decreasing trend and minor effects. The same pattern can be observed for Friday and
peak-season flights around 1 week prior to departure. Further insights can be gained
from Figure 5-6, which depict the predicted advance purchase curves under four time-
invariant variables, including time of day (MORNING and AFTERNOON), day of
week (FRIDAY), month of year (PEAK.SEASON) and VACATION indicators.

Figure 5-6(a) shows the advance purchase curves for morning, afternoon and
evening flights. In terms of load factors, morning and afternoon flights have higher final
predicted load factor, suggesting those two types of flights are more popular. The
predicted curve of morning flights (the solid curve) is slightly smaller than afternoon
flights, but with identical same shapes. Around 2 weeks prior to departure, the predicted
values for those two types of flights have a significant increment, and become larger
than evening flights approximately 1 week before departure. Surprisingly, the predicted
curve of evening flights (the dotted curve) are larger than other two types of flights
before 2 weeks prior to departure, implying that passengers may purchase earlier. One
possible explanation is that airlines may pay more attention on popular fights and tend
to hold the seats, which may result in phenomenon of late purchases and delay increases

of load factor.

Figure 5-6(b) further depicts advance purchase curves for the Friday and non-
Friday flights, whereas Figure 5-6(c) shows how the load factor changes in the peak-
season (flights in July and August). Figure 5-6(d) demonstrates the predicted curves for
flights in consecutive holidays and special vacations. As expected, Friday and peak-
season fights (the solid curves) exhibit the same pattern as popular flights, which have
larger final predicted load factors and sharp upward trend. Although the advance
purchase pattern of non-Friday flights (the dashed curves) has slightly difference

compared with Friday flights, but shown diverge at around 2 weeks before departure.
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The non-Friday flights (the dashed curves) have slightly different shape compared
with Friday flights, but diverge at 2 weeks before departure which result in the lower
final load factor of non-Friday flights. The non-peak season flights present the same
advance purchase pattern as evening flights, and also lower load factor. For those two
types of not popular flights, airline could create promotion plans or discounts around 2
weeks to enhance final load factor. Notably, vacation flights shows the similar early
purchase patterns, but the curve much steeper as departure day approaches. The
modeling results suggest that passengers who travel on consecutive holidays tend to
make their purchases earlier (planned travelers), and there are also some passengers
prefer to purchase tickets close to the departure date (spontaneous travelers). One
explanation is that the study route is short-haul and therefore has more spontaneous
travelers than long-haul air routes. Hence, for the vacation short-haul flights, airlines
can appropriately raise the price to gain extra revenue. We believe that the advance

purchase behaviors for long-haul air routes should be different.
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Figure 5-6: Aggregate advance purchase pattern prior to departure
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Finally, Figure 5-7 exhibits the time-varying MAPE value for the forecast and the
eventual outcomes. The calculated overall MAPE is 27.85%, whereas the maximum
and minimum value is 36.55% and 20.80%, respectively. Based on Lewis (1982)
forecasting accuracy scale, the MAPE values of the proposed model are ranging from
21 to 50%, indicating that the model has reasonable forecast performance for future

load factor.
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Overall MAPE: 28.14%
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Figure 5-7: Mean absolute percentage error (MAPE)
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5.2 Individual Choice model

5.2.1 Discrete Choice Model

To study the individual advance purchase decisions of air passengers, a subset of
economic round-trip tickets that purchased through the direct purchasing channel
(website and airline counters) was used. Compared with previous studies that
introduced time of booking/purchasing as explanatory variables into choice model, the
advance purchase days are seen as the response variable (alternatives) in our study.
Moreover, to reduce the number of alternatives and facilitate model development, the
advance purchase horizon is divided into five time periods according to three
segmentation methods, including equal time periods (each period is of 12 days), time
periods with equal number of purchases and time periods according to subjective

judgments from the study airlines.

For the subjective judgment method that suggested by experts from the study
airline, as departure day approaches, the airline will generally begin to check the seat
reservations and decide to have discounts and promotions to raise sale volume or not.
The airline will announce promotion information to travel agencies around 1 to 2
months from the departure day. Two weeks prior to departure, they will start to ask
travel agencies to pay for group passengers, or return the remaining seats, so the
remaining seats of the flight will change dramatically. In the last week prior to departure,
promotions such as “last minute sale” and internet advertisements will be performed to
attract individual passengers. Finally, we expect passengers purchasing tickets at the
departure day have different choice behaviors. Passengers are assumed to make advance
purchase decisions for a particular flight which represent their travel preferences. Table
3-3 outlines the defined advance purchase time periods and number of passengers.
Figure 5-8 demonstrates the relationships between defined periods and advance

purchase days for the selected dataset.
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Table 5-2: Defined advance purchase periods

Equal time period Equal purchase number Subjective judgment
Period Days Days Days
Number before Dep. Number before Dep. Number before Dep.
P1 2,048 (71%) 0~12 744 (26%)  0~2 164 (6%) 0
P2 509 (18%)  13~24 676 (23%)  3~5 1,396 (48%) 1~7
P3 204 (7%) 25~36 405 (14%)  6~9 632 (22%)  8~14
P4 105 (4%) 37~48 559 (19%)  10~17 497 (17%) 15~31
P5 33 (1%) >49 515(18%)  >17 210 (7%) >31
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Figure 5-8: Time periods of advance purchase of three segmentation methods

To obtain the probability of purchasing in each time segment, multinomial logit
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(MNL) model is used. Several factors contributing to advance purchase behaviors are
further examined. The selected generic variable is the average purchase price in
logarithmic form (PRICE), whereas flight schedule preferences including morning
flight (MORNING), flight on Friday (FRIDAY), flights in peak months including July
and August (PEAK.SEASON), and travel on vacation (VACATION) are treated as

alternative specific variables to capture the time of day, days of week and month of year



preferences of air passengers across advance purchase periods. Additionally, to account
for the relationships between purchase price and flight preferences, the interaction term
specification is used. All the alternative specific variables are expected to decrease as
departure day approaches. For simplicity, this study considers only the subset of
economic class (service classes of W, L, B, T, Q, X) of fare basis YEE3M tickets. Data
anomalies including outliers or incomplete records were also removed, which results in
the final of 2,899 transaction records for model estimations. The descriptive statistics

of explanatory variables for discrete choice model are reported as Table 5-3.

Table 5-3: Descriptive statistics for discrete choice model

Variables Description Mean/%_ Sd Med. Max Min,

Purchase price in thousands New

PRICE . 3.546. - 0.346  3.450 4.750  3.050
Taiwan Dollars

ADVDAYS Advancequigggitays before 10.548 11.374 7 60 0
departure

MORNING Dummy, 1 if morning flight; 0 if 31.46%
others.

FRIDAY Dummy, 1 if Friday; 0 if others. 21.52%

PEAK SEASON Dummy, 1 if July and August; 0 16.97%
if others.

VACATION Dummy, 1 if consecutive 11.69%

holidays; 0 if others.

Table 5-4 presents the estimation results of the three MNL models by using
LIMDEP NLogit software. Results demonstrate that all abovementioned variables are
significantly tested with the expected sign. For model comparisons, several
performance indices, including log-likelihood statistic at optimal, adjusted rho-square
and Akaikes Information Criterion (AIC) are selected. The optimal log-likelihood
values of three models are -2,524.61, -4,485.71 and -3,738.01, respectively; whereas
the adjusted rho-square are 0.455, 0.034 and 0.195. In term of two indices, the model
based on the equal time period performs best. Additionally, the equal time period model
also has the smallest AIC/N value of 2.010, suggesting the proposed temporal
segmentation based on equally of 12 days can better explain the advance purchase

behaviors.
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Table 5-4: Estimated results of three models

Variables / Equal time period Equal number .SubJ cctive
Experiments Judgement
Coeff.  t-value Coeff.  t-value Coeff.  t-value
ASC2 -1.855 24230 -0.137 -2.280 " 2.023 21470
ASC3 2,769 243607 -0.857 -9.910™" 0918  8.520°"
ASC4 -3.559  -23.320"" -0.729 93207 0422  3.780 "
ASCS5 -4301 -21.350 7" -0.938 -10.910 ™" -0295 -2.2207
log(PRICE) -1.042 2,160 -1.025  -2.660
log(PRICE)*MORNING 2358 -3.210™" 2436 44807  -1.860  -2.980 "
log(PRICE)*PEAK.SEASON 2.713  3.160 ™ 2306  3.940™ 2740  3.930™"
log(PRICE)*VACATION 4.853 5680 2670 41407  3.8900 5360
MORNING (P2) 0.498  4.700 " 0.928  3.840 "
MORNING (P3) 0.526 3410™" 0330 26807 1354 54407
MORNING (P4) 0.691 33607 0557 51707 1429  5.660
MORNING (P5) 0.615 5520  1.551 5.680 **
FRIDAY (P2) 0.528  4.570."
FRIDAY (P3) 0.558 -3.360 """ ~0.413  3.050" . 0.228 1.970 **
FRIDAY (P4) 0360  2910™" 0.666  5.680 "
FRIDAY (P5) 0.503  4.040 7
PEAK.SEASON (P2) 0.784  6.650™"  0.561 34107 0443 2100
PEAK.SEASON (P3) 0.793 44407 1.076 4930
PEAK.SEASON (P4) 1149~ 7220 1.196  5.360°
PEAK.SEASON (P5) 0.852  4.850°"
VACATION (P2) -0.295 -1.760 " -0.811  -5.490 ™
VACATION (P3) 0.924  5.050™"  -0499 2260  -0.690 -3.770 "
VACATION (P4) 1.599 © 7370
VACATION (P5) 1.048 25407 0897 62607  0.671 3.560
Goodness of fit measures
No. of observation 2,899 2,899 2,899
No. of parameters 17 20 20
Log-likelihood at zero -4,665.76 -4,665.76 -4,665.76
Log-likelihood at constant -2,634.70 -4,603.24 -3,881.59
Log-likelihood at optimal -2,524.61 -4,485.71 -3,738.01
p? 0.459 0.039 0.199
Adj-p? 0.455 0.034 0.195
AIC/N 2.010 3.563 2.972

Note: *** ** and * represent reaching 1%, 5% and 10% significance level, respectively.
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For the generic variables, the log(PRICE) coefficients in the equal time period
model has significantly negative marginal effect of -1.042 on advance purchase as
expected, suggesting the higher purchase price, the lower utility of passengers and thus
the probability of the airline being chosen decreases. The interaction term between
log(PRICE) and morning flights has a negative coefficient of -2.358 which makes that
the total of log(PRICE) marginal effect becomes -3.4. The result indicates that purchase
price has larger negative effect for the morning flight. In contrast, the interaction terms
of PEAK.SEASON and VACATION flights have a positive effect of 2.713 and 4.853,
implies that the passengers' disutility of price effect is lower when passengers travel
during peak season or vacation, which results in the price effect turns to be positive.
One possible explanation for this could be that we used the transaction records that
provides only purchased alternative for modeling. Only the passengers who accepted
the higher purchasing price were being recorded in our dataset, passengers who chose

to purchase later nor not purchase were unable to capture.

For the alternative specific dummy variables included in the model are aimed to
capture the flight schedule preferences across advance purchase periods. All alternative
specific variables have the significantly positive effects on utility when compared with
base alternative (advance purchase period 1: within 12 days prior to departure). Both
MORNING and FRIDAY variables show the expected decreasing pattern. The utility
decreases as the advance purchase period approaches departure day, implying that
passengers who prefer morning and Friday flights tend to purchase ticket earlier.
However, the coefficients of VACATION variables present the positive but irregular
effect. One possible reason for this might be that airlines are believed to hold the seats

of lower fare class and release them as late as possible before vacation times.

Tables 5-5 further summarizes aggregate direct price elasticities. The elasticities
of ordinal flights are determined according to the estimated parameter of log(PRICE)
excluding interaction effects. As expected, the longer the advance purchase days are,
the higher the direct elasticity. The values of most elasticities are larger than one,
indicating that the passengers are sensitive to price changes. The elasticity decreases

closer to the date of departure, implying that passengers becomes less sensitive to price
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as closer to the date of departure. This phenomenon also reflects that once passengers
have decided the purchase flight. They may have to make the purchase as departure day
approaches, no matter how price changes. For ordinal flights, Period 5 has the highest
elasticity of -1.297, suggesting 1% of log price increases will result in 1.297% decrease
of choice probability in Period 5 (>49 days prior to departure), whereas Period 1 (0~12
days prior to departure) has the lowest direct elasticity of -0.371 which is less than one,
suggesting the price inelasticity of Period 1 passengers. The elasticities of morning
flights are 3 times higher than those of ordinal flights, indicating that passengers

preferring morning flights are more price sensitive.

Interestingly, popular flights in peak season and vacation have positive elasticities,
suggesting price increases will also result in increase of choice probability. This is
because the positive estimated total log price effects of 1.671 and 3.811. The result
suggests that passengers may need to spend more for purchasing peak season and
vacation flights. However, our data only reflects the behavior of passengers who
accepted the higher purchase price. Passengers may choose alternative flights from
other carriers or choose not to purchase. The elasticity values of morning and vacation
flights are larger than other flights, suggesting those two types of flights are more

sensitive to price changes, leaving a large room for RM strategies.

Table 5-5: Direct price elasticities

Advance Ordinal Morning Peak season Vacation
purchase periods flights flights flights flights
Period 1 -0.371 -1.209 0.594 1.355
Period 2 -1.040 -3.391 1.666 3.801
Period 3 -1.196 -3.899 1.915 4.370
Period 4 -1.231 -4.014 1.972 4.499
Period 5 -1.297 -4.231 2.078 4.742

Note: Ordinal flights are defined as the flights are not in the morning, peak season and vacation.
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5.2.2 Continuous Choice Model

To explore what kind of segmentation methods can better reconstitute choice sets
for individual advance purchase behavior modeling, previous section had provided the
estimated results of three segmentation methods. However, some choices/response
variables are continuous in nature such as advance purchase time, departure time, and
location. Arbitrarily discretizing these continuous choices variables may lead to an
erroneous result. The discretization for discrete choice models is based on different
research purposes to divide the study period into a limited number of intervals, which
may not able to cover the entire time period and to cause loss of temporal resolution. In
our study, previous section had shown that different discrete interval settings would also
lead to different and unstable estimation results. Although previous studies had
prevented this situation by considering correlations among alternatives, continuous

treatment of time variable seems more intuitive and preferable.

In order to avoid the subjective segmentation of advance purchase horizon, a
continuous logit model was constructed. The estimated results are presented in this
section. For simplicity, this study considers only the subset of economic class (service
classes of W, L, T, X) of fare basis YEE1M and YEE3M round-trip tickets purchased
through the direct purchasing channel. After excluding anomalies such as
outliers or incomplete records, the final subset contained 2,534 transaction records. The
flight-specific attributes obtained from flight schedule database were used to capture
the time of day (morning, afternoon and evening flight), days of week (flight on Friday),
and month of year (flights in peak months) preferences of air passengers. Consecutive
holidays and special vacations are also marked for model estimation. The coefficient of
variation (CV) of observed historical prices across flights within the purchasing month
is also incorporated, which reflects potential price fluctuation caused by airline
promotions. Table 5-6 presents the descriptive data for selected variables for the

proposed continuous logit model.
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Table 5-6: Descriptive statistics for continuous choice model

Variables Description Mean/% Std
PRICE Purchasing price in thousands (NTD) 3.53 0.33
ADV Advance purchase days 7.92 11.36
SEATS Number of remaining seats at the time of purchase 114.50 47.58
CLASS Dummy for service classes as shown in Table 2.

YEEIM Dummy, 1 if YEEIM; 0 if YEE3M. 95.70%

Dummy, 1 if CV of observed prices across flights

cv within the purchase month > 0.1; O if others. 23.68%
MORNING Dummy, 1 if morning flight; 0 if others. 32.91%
AFTERNOON  Dummy, 1 if afternoon flight; 0 if others. 48.34%
FRIDAY Dummy, 1 if flight on Friday; 0 if others. 21.39%
PEAK.SEASON Dummy, 1 if travel in July and August; 0 if others.  26.60%
VACATION Dummy, 1 if consecutive holidays; 0 if others. 10.97%

In addition, to obtain time-varying purchase prices for continuous logit model
estimation, an additional ordinary least squares regression model is firstly constructed.
Table 5-7 reports the estimation results for purchase price at various advance purchase
time. The R-squared and adjusted R-squared values of 0.875 and 0.874, respectively,
indicate a good model fit. For the explanatory variables, advance purchase days (ADV)
has significantly negative effect of -0.002, suggesting that price decreases as the number
of advance purchase days increases. As expected, maximum stay limitation within 30
days (YEEIM) and lower service classes (comparing with highest class W) have
significant negative effects, suggesting the lower service class the lower purchase price.
The result reflects the airline revenue management strategy that utilized fare levels to
distinguish passengers with different price elasticities. Although some of the SEATS
variables that interacted with sinusoidal functions were not tested for statistical
significance, the overall coefficients present a reasonable negative effect of -0.056 to -
0.255. This suggests as the number of seats available in the market increases, the ticket
price decreases. Figure 5-9 further exhibits the fitted price corresponding with each
service class is overlaid with the observed price. The time-varying purchase prices were
imputed by the estimated regression model, which are then incorporated with flight

specific attributes for passenger advance purchase time choice modeling.
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Table 5-7: Estimated purchase price model

Variable Coeft. t-value
(Intercept) 4.7746 143.8120 ***
ADV -0.0022 -3.0870
YEEIM -0.0775 -4.9240 *
CLASS L -0.1662 -5.1120 ™7
CLASS B -0.2284 -5.8170
CLASS T -0.8067 -26.2130 7
CLASS Q -0.8931 -25.4620
CLASS X -1.2646 -41.7270 ™
CLASS Z -1.3955 -45.2150 ™
Seats -0.0088 -1.8030 -
Seats*sin(27t/60) 0.0029 2.1740 ©
Seats*cos(2nt/60) 0.0003 1.1750
Seats*sin(4nt/60) 0.0017 1.3490
Seats*cos(4nt/60) 0.0017 2.0520 °
Seats*sin(67t/60) 0.0008 24160 ©
Seats*cos(67t/60) 0.0001 0.6490
Seats*sin(8mt/60) -0.0018 2.2130 ©
Seats*cos(8mt/60) 0.0030 1.7540 -
Seats*sin(2mt/60)2 -0.0011 -2.2220 °
Seats*cos(2mt/60)2 -0.0001 -1.1690
Seats*sin(4nt/60)2 0.0001 0.6020
Seats*cos(4nt/60)2 -0.0003 -2.1880 °
Seats*sin(6mt/60)2 -0.0002 -2.1650 ©
Seats*cos(6mt/60)2 0.0000 -0.3470
Seats*sin(8nt/60)2 0.0003 2.4290 °
Seats*cos(8nt/60)2 -0.0088 -1.8030 -
Observations 2,534
R-squared 0.8754
Adj. R-squared 0.8742

Note: *** represents 1% level; ** represents 5% level; * represents 10% level

65



451 %Kﬁé Ge 3 * oo i T ¥
8 w
S 40 L
o = Smaam Eng - g
5y millnn N, e L, = 2T oo “n mT
o 00000000 5 0¢ 55 0 e5] o * | ®Q
< z
351
3.01
7 21 35 49

Advance purchase days

Figure 5-9: The observed and fitted purchase curve of purchase price

For the choice model estimation, GAUSS software (Aptech Systems, 1995) was
used to estimate the continuous logit model with the maximum likelihood method.
Table 5-8 shows the estimation results for continuous choice model whereas Figure 5-
10 depicts the actual and estimated arrival curves for advance purchase passengers.
Figure 5-10(a) shows that the estimated arrival curve is close to the actual one,
suggesting a good model fit. From the estimation results, most of the selected
explanatory variables are significantly tested with an expected sign. The time-variant
variable, PRICE, has a negative effect of -0.292 on advance purchase time decision,
which suggests that, as price increases, the passenger utility decreases. Thus, the
probability of making purchase at time t decreases. That is, passengers could possibly
delay their purchase due to the higher purchase price, and vice versa. These modeling
results correspond with previous RM research showing that airlines can use price

strategies to shift demand.

For the interacting effects of price with other time-invariant variables, including
CV, time of day (MORNING and AFTERNOON), day of week (FRIDAY), month of
year (PEAKSEASON) and VACATION indicators, are not intuitive to be interpreted.
Accordingly, Figure 5-10(b)-(f) depict the predicted arrival curves of advance purchase
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Table 5-8: Estimated continuous logit model

Variable Coeff. t-value
PRICE -0.292 -16.612 ***
Departure time function

sin(27t/60) -0.544 -2.464 **
cos(2nt/60) 0.613 4.576 *x*
sin(4nt/60) -0.318 -2.492 **
cos(4nt/60) 0.341 2.602 ***
sin(6mt/60) -0.188 -3.334 HxE
cos(6mt/60) -0.043 -0.658

cr

sin(27t/60) -0.296 -2.349 **
cos(2nt/60) 0.063 0.588
sin(4nt/60) -0.132 -1.305
cos(4mnt/60) -0.243 -2.723  HkE
Morning flight indicator interaction

sin(27t/60) -0.007 -0.031
cos(2nt/60) -0.588 -4.521 Hx*E
sin(4nt/60) 0.336 2.640 ***
cos(4mnt/60) -0.442 -3.452 HxE
Afternoon flight indicator interaction

sin(27t/60) 0.264 1.390
cos(2nt/60) -0.388 -2.888 HHE
sin(4nt/60) 0.291 2.050 **
cos(4nt/60) -0.405 -3.102 #**
sin(67t/60) 0.362 4.289 **
cos(6mt/60) -0.068 -0.795
Friday indicator interaction

sin(27t/60) 0.395 3.380 ***
cos(2nt/60) -0.316 -3.984 HxE
Peak season indicator interaction

sin(27t/60) 0.338 3.158 ***
cos(2nt/60) -0.231 -3.074 Hx*
Vacation indicator interaction

sin(27t/60) -0.953 -7.540 H*x*E
cos(2nt/60) -0.324 -2.948 HxE
sin(4mt/60) -0.365 -3.060 #**
cos(4nt/60) -0.123 -1.220

Note: *** represents 1% level; ** represents 5% level; * represents 10% level

67



passengers under four time-invariant variables, where Figure 5-10(b) presents the
predicted arrival curves for different price uncertainty within the purchase month. The
density curves are identical before 21 days before departure day, suggesting the price
uncertainty has minor effect on advance purchase time. The predicted values of high-
CV are lower than low-CV within 10 days prior to departure, implying that passenger
tend to delay purchases when price fluctuation is high. A possible explanation is that,
as the departure day nears, only the expensive fare products are available for passengers.

Passengers may wait for cheaper flight tickets and thus results in delay purchasing.

Figure 5-10(c) further shows the advance purchase time decision for passengers
choosing morning, afternoon or evening flights. In terms of density before 2 weeks
prior to departure, the predicted values for morning flights (solid curve) are higher than
those of other two flights. These results imply that passengers who prefer morning
flights tend to purchase tickets earlier. In contrast, passengers preferring evening flights
have a steeper advance purchase curve, especially within 10 days before departure,
indicating the passengers of evening flights tend to purchase tickets much later. Airlines
may yield a low-high pricing mechanism for evening flights, and high-low pricing

strategy for passengers who prefer morning flights.

Meanwhile, Figure 5-10(d) depicts advance purchase time choice differences for
the Friday flight. Figure 5-10(e) shows how the advance purchase time decision
changes in the peak-season (flights in July and August). Finally, Figure 5-10(f)
demonstrates the predicted atrival curve for traveling in consecutive holidays more than
three days. As expected, passengers tend to purchase earlier for the Friday and peak-
season fights (the solid curves). In contrast, the non-Friday and non-peak season (the
dashed curves) have relatively lower density value but increase sharply within 21 days
before departure, which suggests that passengers tend to purchase later. Airline could
create promotion plans for weekdays and non-peak flights around 3 weeks to induce
passengers to purchase earlier. Those results also correspond to the phenomenon of that
leisure passengers usually plan their trips in advance and purchase flight tickets earlier

whereas business travelers tend to purchase tickets close to the departure date.
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The predicted density curve of vacation flights in Figure 5-10(f) shows the similar
early arrival patterns as those of Friday and peak-season flights, but the curve
surprisingly becomes much steeper within approximately seven days before departure.
The modeling results suggest that passengers who travel on consecutive holidays tend
to make their purchases earlier (planned travelers) and there are also some passengers
prefer to purchase tickets close to the departure date (spontaneous travelers). One
possible explanation is that the study route is short-haul and has more spontaneous
travelers than long-haul air routes. Hence, for the vacation short-haul flights, airlines
can deploy different seat management strategies or appropriately raise the price for
individual passengers as departure day approaches to gain extra revenue. We believe

that the advance purchase behaviors for long-haul air routes should be different.

In sum, compared with the estimated results of aggregate advance purchase pattern
model (as presented in Figure 5-6), the individual passengers are tend to purchase
popular flights (Morning, Afternoon, Friday, Peak season and Vacation) earlier as
expected. On the other hand, the value of predicted density is lower as departure day
approaches, suggesting that the probability of purchasing popular flights is gradually
decreasing. Interestingly, the predicted final load factor of vacation flights is not as high
as expected (Figure 5-6d) which might be resulted from the revenue management
operations. According to our study airlines, they usually reserve seats of vacation flights
for group travelers rather than for individual passengers, and released seats
approximately 1 weeks prior to departure day. Based on the strong increment of
predicted density of vacation flight as shown in Figure 5-10(f), the seat-release timing

could be earlier for the vacation flight individual passengers.
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Figure 5-10: The predicted arrival curves of advance purchase passengers
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Chapter 6 Applications

In previous chapters, we have developed and estimated models for the advance
purchase patterns and air passenger choice, methodologies including functional
concurrent regression model, discrete multinomial logit model (MNL), and continuous
choice were used. In this chapter, we discuss how the parameter estimates of both
continuous models can be applied to monitor and forecast future advance purchase
pattern for the selected flight and to predict passengers’ purchase behaviors under
different pricing strategies. In particular, we will show how these models can be used
to support a wide range of short to medium term airline planning decisions. The rest of
this chapter is organized as follows. The introduction of model application and

flowchart is described in Section 6.1. An example scenario is introduced in Section 6.2.
6.1 Application Flowchart

Accurate advance purchase behaviors can provide valuable insights that can be
used to support airline decision-making activities with respect to seat allocation, pricing,
marketing and flight scheduling. The purposes of this study are aimed to identify the
usual patterns of flights with different attributes, and to find a proper representation of
advance purchase patterns for analyzing air passengers’ advance purchase process. If
we can identify and monitor the advance purchase pattern for the specific type of flight
during the sales horizon, airlines are able to develop or make appropriate adjustments
in time for a more effective sales strategy. For example, knowing accurate advance
purchase patterns are able to allow airlines to know which and when do flights need to
be promoted to increase sales. More importantly, to assist planners to evaluate potential
impacts of the implementing strategy for increasing sales and revenue. This section will
discuss these potential implementations. Figure 6-1 provides the flowchart for

application at both the aggregate and individual levels of the proposed models.
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As illustrated in Figure 6-1, in order to identify the various advance purchase
patterns of flights with different characteristics, datasets including flight schedule,
current sales and purchase prices is collected at advance purchase day ¢. To investigate
and predict the aggregate advance purchase patterns of flights, a functional concurrent
model was firstly proposed. The aggregate pattern model provides a mechanism for us
to analyze the relationship of factors that contribute to the heterogeneous patterns of
distinct types of flights and forecast the future advance purchase pattern based on
historical load factors. The output predicted load factors are then further monitored and
compared with a preset goal, or with flights of similar attributes. Different pricing
strategies should be used for different flights according to maximize sales volume and
revenue. If the predicted values and patterns are within the expected range, indicating
that the result meets the performance expectation and therefore we can keep observing
and re-checking the sales status at the next period. If the predicted pattern is lower than
prior expectation, an additional marketing promotion or discounts can be developed and
implemented to the direct purchase channel to increase sales. On the contrary, if the
predicted pattern is lower than prior expectation, airline could further consider raise the

purchase price to gain an extra revenue.

Furthermore, for a clear understanding of how purchase price changes may
influence the advance purchase behaviors, the individual advance purchase choice
model was developed. The proposed continuous logit model has shown that advance
purchase behaviors are significantly affected by price, price uncertainty, time of day
(morning, afternoon and evening flight), days of week (flight on Friday), months of
year (peak or off-peak seasons), and consecutive holiday. The predictive densities of
the individual choice model not only allow us to observe and explain passengers’
advance purchase decisions based on the purchase price and departure time preferences,
but also can be used to evaluate pricing policy influences for airlines. Finally, after
predicting corresponding arrival patterns of individual passengers, the updated load
factors could be able to compare with a preset goal. The design process should be repeat

and to refine or improve the solution if necessary.
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6.2 Application Scenarios

Follow the flowchart presented in Figure 6-1, an example scenario was developed
in this section. The basic idea of proposed framework is to provide a mechanism for
airlines to identify the sales/advance purchase patterns of specific type of flights during
any time of the sales horizon. In doing so, historical load factors and flight characters
were used. The proposed model is able to monitor and forecast the future advance
purchase pattern of study flights. If the preset goal were failed to reach preset targets,
different pricing and marketing strategies should be altered to increase the advance
purchase probability of customers. A continuous logit model was used here to analysis
the advance purchase behaviors of air passengers. According to the predicted densities,
the choice model allows airlines to evaluate pricing policy influences and support the

development of more effective strategies.

The application scenario present in this session will be used to provide more
detailed descriptions of how the proposed framework for advance purchase patterns and
passengers’ behaviors by providing suitable examples. Here, we assume there is a non-
vacation, non-peak season, morning flight at 28 days prior to departure. Based on
aggregate pattern model presented in Chapter 3.1, the historical load factors of 7 days
(29~35 days) before current day were collected to forecast the advance purchase pattern
for next 7 days (22~28 days). The historical load factors for the scenario testing were
randomly selected from the validation dataset. The model input variables for the

aggregate advance purchase pattern model are summarized as Table 6-1.

Table 6-1: Descriptive statistics for the design scenario

Variables Description
Historical LF Historical load factor of 29~35 days before current day
Morning Morning, 1
Afternoon Non-afternoon, 0
Friday Friday, 0
Peak Season Non-peak season, 0
Vacation Non-vacation, 0
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Figure 6-2 depicts the predicted aggregate advance purchase pattern for simulation
scenario. Based on the aggregate pattern model, the “*” points marked on Figure 6-2
represent the seven historical load factors of 29~35 days before current day (day 28)
that used for the prediction. The black triangles “A” are the aggregate pattern model
forecasting results for 22~28 advance purchase days. In addition, to predict future
pattern before 21 days prior to departure, an additional rolling-window prediction
technique based on the aggregate pattern model prediction results is used. The results

of rolling prediction are marked with “*”” symbol.

Moreover, in order to monitor the sales performance, the confidence bounds are
used on the propose flow. The confidence bounds can be seen as the threshold values
for the adjustment of current ongoing strategies. Of course, the preset monitoring
thresholds are based on different requirements of airlines. The example provided here
is a reference to describe how our propose models works. The solid line presents the
mean average advance purchase pattern based on the predicted functional curves of the
morning flight at non-Friday, non-vacation and non-peak season. The dashed lines serve
as pointwise 95% confidence intervals by adding +2 standard errors of functional values
at each observation points. The mean average pattern curve presented here had
eliminated the effect of estimating load factors to present the general condition for the

specific type of flights.

Both historical and predicted load factors presented in Figure 6-2 are slightly
below the average advance purchase pattern and the preset threshold. The rolling
prediction results of observing flights also shows that the future advance purchase
pattern will be lower than the average performance. Additionally, the simulation result
indicates that the final forecasting load factor would be 0.6733, and that is lower than
the average load factor of 0.6963, if the current sales or marketing strategy for the flight
remains unchanged. Based on the simulation results of aggregate pattern model, airlines
can develop more efficient sales strategies or adjust purchase prices in time to increase

sales volume.

75



Load Factor

Density

Advance purchase days

Figure 6-2: Aggregate advance purchase pattern for simulation scenario

—— Remain unchanged
---- Increase by 25%
-------- Discount by 25%

000 002 004 006 008 010 0412 014

Advance purchase days

Figure 6-3: Advance purchase time distributions of pricing scenarios

76



However, passengers can also decide to make advance purchase at the ongoing
price or choose to delay their purchase decision. Those price changes may force
passengers to make trade-offs between price and flight attributes of desired departure
time, and therefore, change their purchasing behaviors. In this research, a continuous
choice model had proposed to empirically investigated advance purchase behaviors of
air passengers considering both price and departure time preferences. Follow the

scenario, a simple price-setting example with two different strategies is provided.

The first price adjustment policy assumes a purchase price increase of 25%, and
the second one assumes a purchase price decrease of 25%. Figure 6-3 further presents
the estimated densities for the individual air passenger. The dashed lines represents the
simulate result of the first price adjustment policy of increasing purchase price by 25%.
The probability of an individual passenger making purchases during from 22 to 28 days
prior to departure will decrease from 4.639% to 3.041%. On the other hand, the dotted
line shows if the purchase price had 25% discount, the probability of advance purchase
will increase from 4.639% to 6.669%, suggesting about a 2% improvement. The
predictive densities in the above two price adjustment policy show the expected effects
on air passenger advance purchase time decisions, and can be used to evaluate pricing
policy influences by airlines. Figure 6-4 further shows the predicted aggregate advance
purchase pattern for the original prediction and 25% price discount scenarios. After
refining the sales or marketing strategy, airlines should re-check load factor at the next

advance purchase day #-/ and repeat the process to refine or improve the solution.
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Chapter 7 Concluding Remarks

As mentioned earlier, a better understanding of passenger choice behavior is
crucial to support the decision making process of airline. The objectives of this research
were to propose an approach for identifying advance purchase patterns and exploring
their characteristics, and to propose an approach for examining the advance purchase
behaviors of air passengers. This chapter concludes this dissertation by summarizing
the important findings of this research. The summary of the work performed in this
research was described in Section 7.1. Recommendations for further research were

drawn in Section 7.2.

7.1 Summary

7.1.1 Contributions to practice

The primary contributions related to practices with regarding to advance purchase

patterns of air passengers are summarized in the following points:

1. The proposed aggregate advance purchase pattern model is aimed to identify
and forecast the advance purchase patterns of various types of flights during
any time of the sales horizon. The predicted advance purchase levels at a
specific time of a specific flight based on historical transaction data can be
viewed as a reference level in comparing with current sales data so as to
dynamically advise pricing and promotion strategies prior to departure.
Additionally, according to our analyses on the air ticket transaction data, it is
found that advance purchase patterns differ remarkably across flights. To
explore flight advance purchase patterns, functional data analysis (FDA)
techniques are used. Several factors contributing to aggregate advance
purchase patterns of various types of flights including flight schedule
attributes (such as time of day, day of week, months of year and special

vacations) and historical load factors are examined.

2. Afunctional concurrent regression model was used to investigate the effects
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of abovementioned variables on the shape of the advance purchase pattern
curve. The empirical results has showed how abovementioned variables
affected advance purchase patterns. In terms of time-varying coefficient, the
coefficient of morning flight shows more negative effects than noon flights,
but both turn to positive effects around 2 weeks before departure, indicating
passengers who preferred morning and noon flights tend to purchase later.
The estimated coefficients of Friday, peak-season and vacation flights have
increasing positive effects on load factor throughout the observation interval,
suggesting those flights have gradually increasing effect as the departure day
approaches. The coefficients for special vacation has a decreasing negative
effect toward the departure day, suggesting passengers tend to purchase early

for vacation trips and may hardly purchase tickets on the departure day.

With better learning of advance purchase patterns for sales flights, airlines
are able to develop and make appropriate adjustments for current strategy
more efficiently and compete more effectively in today's marketplace. For
example, based on the estimated result of the proposed aggregate pattern
model, the popular flights such as morning, afternoon, Friday and peak-
season flights have identical sharp upward advance purchase patterns around
2 weeks prior to departure. Airlines may offer advance purchase discount to
induce passengers to purchase earlier and further to reduce the rationing risk.
On the other hand, around 2 weeks before departure, airlines can raise the

purchase price for late-purchasing passengers to gain extra revenue.

Furthermore, the advance purchase behaviors of individual air passengers are
considered. As airlines adjust prices and sales strategy dynamically based on
learning patterns, passengers can also decide to purchase at the going price
or choose to delay their purchase decisions. The discrete choice model was
firstly used to explore which choice set construct scheme based on advance
purchase time that can estimate choice model well. To facilitate model
development, the advance purchase horizon is divided into five time periods

according to three segmentation methods, including equal time periods, time
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periods with equal number of purchases and time periods according to
subjective judgments. Explanatory variables including price, flight schedule
(time of day, day of week, and months of year) and fare class preferences are
examined. In terms of adjusted rho square, AIC value and log-likelihood
statistics, the equal time segmentation performs best. Based on the estimated
coefficients, the log price has negative effect on advance purchase, suggesting
the higher price, the lower utility of passengers. The interaction terms for
peak season and vacation have positive effects, implying that the passengers'
disutility of price is lower when passengers travel during vacation time. As
for dummy variables, the morning and Friday flights show the expected
decreasing pattern as departure day approaches, indicating that passengers
prefer morning and Friday flights generally purchase ticket earlier in advance.
The irregular pattern of vacation variable reflects the behavior of the airline
strategies by holding and releasing seats for vacation flights. Additionally,
based on the direct and cross-elasticity analysis, the extent of advance

purchase behavior with respect to price strategy is also revealed.

However, some choices are continuous response variables, to arbitrarily
discretize these continuous choices variables may lead to an erroneous result.
Different discrete interval settings would also lead to different and unstable
estimation results. The continuous logit model has advantage of treating
advance purchase time in a continuous setting and offers theoretical supports
based on the random utility. Therefore, a continuous logit model was further
proposed in this research for empirical analysis of the advance purchase
behaviors of air passengers. Additionally, an additional ordinary least squares
regression model was also used to obtain time-varying purchase prices for
continuous logit model estimation. The study identified several contributing
factors in flight ticket prices set by the studied airline, including the advance
purchase days, maximum stay, fare class, percentage of group passengers,
and the number of remaining seats at the time of purchase, whereas the
purchase price, time of day (morning, afternoon and evening flight), days of

week (flight on Friday), months of year (flights in peak season) and
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consecutive holiday preferences of air passengers are then examined by the

continuous logit model.

The estimated results show that as the departure day nears, passengers may
delay their purchases if prices widely vary. The individual passenger who
preferring morning or afternoon flights tends to purchase ticket earlier, while
passengers of evening flights appear to purchase flight tickets within 10 days
before departure. Passengers also make advance purchase earlier for the
Friday and peak season. For the effect of vacations on short-haul flights, some
passengers who travel on consecutive holidays prefer to make their purchases
earlier (planned travelers), but some in contrast are likely to purchase tickets
close to the departure date (spontaneous travelers). By modeling both price
and departure time preferences of air passengers, the individual choice model
developed in this research is expected to offer a rich behavioral interpretation
of advance purchase behaviors and allow airlines to evaluate potential

impacts of the implementing strategies.

Finally, a scenario application example is provided to show how the
proposed models can be applied to monitor and forecast future advance
purchase pattern for the selected flight, and to evaluate passengers’ purchase
behaviors under different pricing and promotion strategies. The basic idea of
proposed framework is to provide a mechanism for airlines to identify the
sales/advance purchase patterns of specific type of flights during any time of
the sales horizon. The aggregate pattern model is able to monitor and forecast
the future advance purchase pattern of study flights. If the preset goal were
failed to reach preset targets, different pricing and marketing strategies should
be altered to increase the advance purchase probability of customers. The
individual choice model is used for analyzing the advance purchase behaviors
of air passengers. According to the predicted densities of choice model,
airlines are allowed to evaluate pricing policy influences and support the
development of more effective strategies. The models developed in this

research have the potential to both improve existing applications in seat
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allocation and extend the scope of applications to other areas of airline
planning such as pricing and revenue management. The proposed framework
may not only apply to the airline industry, but also to other online sales
markets for perishable products, such as train, hotel rooms, car rentals, and

entertainment and sporting events.

7.1.2 Contributions to methodologies

The primary contributions related to methodologies in this study are summarized

in the following points:

1. This study is a new attempt to apply functional data analysis for advance
purchase pattern analysis. This study proposed a functional concurrent
regression model which could effectively examine the characteristics that
contribute to the heterogeneous advance purchase patterns of distinct types
of flights and air passengers. The estimation results indicated that significant
differences exist between all variables and advance purchase patterns differ
remarkably across flights. These characteristics also provide valuable insights
into air passengers’ behaviors and can be used to support airline decision-

making activities.

2. To empirically investigate of the advance purchase behaviors of air
passengers, the individual advance purchase choice models that accounting
for departure time preferences heterogeneity are developed. Instead of
segmenting passengers by trip purpose or by socio-economic attributes of air
passengers, which is not available in the transaction data, advance purchase
time horizons are used to classify passenger into groups. With this approach,
passenger segments can be identified, and the differences in their behavioral

preferences among groups can be captured.

3. Moreover, advance purchase behaviors were modeled using an easily
acquired and continuously growing transaction dataset to prevent the cost of

a large-scale questionnaire survey. With the growing revenue share of online
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purchasing, to estimate and predict the advance purchase behaviors on
individual passenger directly based on transaction data is believed much

intuitive, cost economic, and representative.

4. In particular, to facilitate model development, the advance purchase choice
of individual passenger is modeled from both discrete and continuous
approaches. The discrete approach had divided the advance purchase horizon
into five time periods according to three segmentation methods. On the
contrary, the continuous logit model is advantageous at treating advance
purchase time in a continuous fashion and offers strong theoretical supports
based on the random utility theory. The study shown that different discrete
interval settings would lead to different and unstable estimation errors,
whereas a continuous logit model can provide reasonable results and allow

more intuitive interpretations of advance purchase behaviors.

7.2 Recommendations

This analysis clarified the advance purchase behaviors of air passengers. The
following recommendations reflect the need for an improved understanding of complex

advance purchase behaviors.

1. The study is based on a short-haul air route (Taipei-Macau), the advance
purchase behaviors of long-haul air routes are believed to be remarkably

different. The comparisons deserve for further study.

2. For the aggregate advance purchase model, the advance purchase curves are
diverse in shape and the standard deviation of load factors increase sharply
as the departure day approaches. Airlines might adjust price and sales strategy
based on changing load factors of different flights in practice. Future studies
can apply functional cluster analysis that clustering smoothed curves based
on the different advance purchase patterns. It will be desirable to categorize
the flights in advance of estimating the functional regression model for better

estimated and prediction results.
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For the individual advance purchase model, the online ticket transactions data
investigated in this study only account for low percentage of whole advance
purchase records, but with a growing share of online sales in airline revenues,
the proposed model can be used to examine a larger dataset for advance

purchase behaviors.

Since the dataset does not contain the socio-economic variables and trip
characteristics of air passengers, similar models that consider more valuable
explanatory variables should be estimated based on a questionnaire survey on

air passengers so as to draw more policy implications for RM strategies.

The discrete logit model proposed in this study is aimed to explore which
choice set construct scheme that can estimate choice model well. The
multinomial logit model (MNL) was applied due to its simple estimation and
strong assumptions based on the random utility framework. Future researches
can apply more advanced model such as nested logit model (NL) or
generalized extreme value (GEV) models that can alleviate the IIA problem

of the standard logit model.

The average price regression methodology presented in the continuous logit
model is only a substitute until fully dynamic models are developed. The
regression _model could be improved by incorporating dynamic pricing
models for a better reflection of airline competition (Bilotkach et al., 2010)
and the price change in the advance purchase time variation (Escobari, 2012;

Deneckere and Peck, 2012).

The dataset used in this study did not enable analysis of choices among
alternative flights and carriers nor “not fly” alternative. Future studies could
consider other data sources such as web searches log data that provide
information of all options is available for better model estimation. To date,
Escobari and Mellado (2014b) have empirically studied advance purchase
behaviors of air tickets in a dynamic setting with revealed preference data

where the information of all options is available.
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